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Abstract  

This research addresses the problem of finding a minimum cost set of routes for vehicles in 

a road network subject to some constraints. Extensions, such as multiple service 

requirements, and mixed networks have been considered. Variations of this problem exist in 

many practical applications such as snow removal, refuse collection, mail delivery, etc. An 

exact algorithm was developed using integer programming to solve small size problems. 

Since the problem is NP- hard, a heuristic algorithm needs to be developed. An algorithm 

was developed based on the Greedy Randomized Adaptive Search Procedure (GRASP) 

heuristic, in which each replication consists of applying a construction heuristic to find 

feasible and good quality solutions, followed by a local search heuristic. A simulated 

annealing heuristic was developed to improve the solutions obtained from the construction 

heuristic. The best overall solution was selected from the results of several replications. The 

heuristic was tested on four sets of problem instances (total of 115 instances) obtained from 

the literature. The simulated annealing heuristic was able to achieve average improvements 

of up to 26.36% over the construction results on these problem instances. The results 

obtained with the developed heuristic were compared to the results obtained with recent 

heuristics developed by other authors. The developed heuristic improved the best-known 

solution found by other authors on 18 of the 115 instances and matched the results on 89 of 

those instances. It worked specially better with larger problems. The average deviations to 

known lower bounds for all four datasets were found to range between 0.21 and 2.61%.   
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CHAPTER 1 

1 Introduction 

1.1 Background 

The routing and scheduling of vehicles is an important area for both transportation 

planners and operations researchers. The recent advances in computing technology has led 

to breakthroughs in problem formulations and solution approaches in this area. It has been 

well documented that efficient scheduling and routing of vehicles can save industry and 

government millions of dollars every year (Bodin and Golden, 1981). The field of vehicle 

routing and scheduling covers diverse activities such as snow removal, postman delivery, 

meter reading, school bus routing, refuse collection, street maintenance, etc.  

The basic routing problem is: Given a set of nodes and/or arcs to be serviced by a 

fleet of vehicles, determine low cost and feasible routes for each vehicle starting and ending 

at a depot. A vehicle route is a sequence of points or nodes, which the vehicle must traverse 

in order, starting and ending at a depot. When the arrival and departure times at the nodes 

are specified, the problem is called a vehicle-scheduling problem. When the arrival times at 

the nodes are not specified, the problem is the simple routing problem (Bodin and Golden, 

1981). 

 

1.2 Importance of the Vehicle Routing Problem (VRP) 

Effective distribution management presents different types of decision-making 

problems at all three levels of strategic, tactical, and operational planning. Decisions related 

to the location of facilities (depots, plants, etc.) may be categorized as strategic, while the 

problems related to fleet size and mix determination could be termed tactical. Decisions 

associated with the routing and scheduling of vehicles and the staffing decision for these 

vehicles may be termed as operational planning decisions. There is a significant relationship 

among these three types of decisions. For example, for routing of vehicles, the location of 

the depot is the input. Conversely, location decisions also depend on transportation costs 

between various geographic locations (Bodin et al. 1983). This research is primarily 

concerned with vehicle routing decisions.  

The issues related to vehicle routing have a significant effect on decision making in 

both private and public sectors. In the case of snow removal, the objective is to find efficient 

 

 

1



routes of snow removal trucks so that roads are cleared as soon as possible in order to have 

safe traffic conditions.  

The significance of routing/distribution problems is evident from the magnitude of 

the associated distribution costs. The costs associated with operating vehicles for delivery 

and service purposes form an important part of the total distribution costs and is one of the 

largest cost components for many businesses.  

An efficient distribution network can significantly reduce costs and improve 

profitability.  Small percentage savings in these costs could result in substantial total savings 

over a number of years. Due to escalating fuel costs, growing salaries for crew, and high 

capital costs of replacing the vehicles, the significance of these potential savings has become 

increasingly apparent. The use of analytical routing and scheduling models and techniques 

coupled with an effective management information system can play a crucial role in the 

operational planning of distribution activities (Bodin et al. 1983).  

 Although the main objective of most routing problems is cost minimization, other 

objectives may assume primary importance, especially in the context of public sector. Some 

public sector problems may focus on safety and convenience. For example, in routing and 

scheduling of street sweepers and vehicles for household refuse collection (Bodin and Kursh 

1978), minimizing the number of U-turns or left hand turns is usually important since such 

turns are dangerous to make on major arteries. These types of turns are also not preferred in 

the context of the snow removal problem. In certain type of routing and scheduling 

problems, the choice of an appropriate objective function constitutes an important modeling 

question (Bodin et al. 1983).  

 

1.3 Classification of Vehicle Routing Problems 

There are a number of characteristics that describe any vehicle routing or scheduling 

problem. A specific vehicle routing or scheduling problem can be classified on the basis of 

these characteristics. The following taxonomy from Bodin and Golden (1981) outlines the 

complexity and wide range of problem characteristics that can exist for a vehicle routing 

problem. 

A. Time to serve a particular node or arc: 

1. time specified and fixed in advance (pure vehicle scheduling problem) 
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2. time windows (combined vehicle routing and scheduling problem) 



3. time unspecified (pure vehicle routing problem, unless there are 

precedence relationships) 

B. Number of domiciles 

1. one domicile 

2. more than one domicile 

C. Size of vehicle fleet available 

1. one vehicle 

2. more than one vehicle 

D. Type of fleet available 

1. all vehicles are the same (homogeneous case) 

2. not all vehicles are the same (heterogeneous case) 

E. Nature of demands 

1. deterministic 

2. probabilistic 

F. Location of demands 

1. at nodes (not necessarily all) 

2. on arcs (not necessarily all) 

3. mixed 

G. Underlying network 

1. undirected 

2. directed 

3. mixed 

H. Vehicle capacity constraints 

1. imposed - all the same 

2. imposed - not all the same 

3. not imposed 

I. Maximum vehicle route times 

1. imposed - all the same 

2. imposed - not all the same 

3. not imposed 

J. Costs 
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1. variable or routing costs 



2. fixed operating or capital costs 

K. Operations 

1. pickups only 

2. drop-offs only 

3. mixed 

4. split deliveries (allowed or disallowed) 

L. Objective 

1. minimize routing costs incurred 

2. minimize sum of fixed and variable costs 

3. minimize number of vehicles required 

4. maximize utility functions based on convenience or service 

5. maximize utility function based on priorities 

M. Other problem dependent constraints. 

 

A large number of different problem scenarios requiring a unique modeling 

assumption will emerge considering the possible combinations of the characteristics. The 

focus of this research is the snow removal problem, in which the demands are located on the 

arcs (Classification F). 

 

1.4 Classification of Solution Approaches 

Dantzig and Ramser (1959) first introduced the vehicle routing problem and proposed 

a linear programming based algorithm for its solution. Since then, the majority of attempts 

for solving the problems have focused on heuristic approaches (Magnanti, 1981). Marshal 

Fisher (1995) categorized the solution approaches to vehicle routing into three categories 

based on the time they were generated. The first category is of simple heuristics developed in 

the 1960s and 1970s, which were mainly based on sweep or local search. The second 

category (1980s) consists of mathematical programming based heuristics such as generalized 

assignment problem and set partitioning problem to approximate the VRP. The third 

category is currently undergoing heavy research and consists of artificial intelligence methods 

and exact optimization algorithms. Examples of optimization algorithms are K-tree, branch 

and bounds, etc. Some examples of artificial intelligence based methods are simulated 

annealing and Tabu search (Tan et al., 2001). 
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 The Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) are both 

members of the class of NP-complete problems. All known exact algorithms for these 

problems require a number of computational steps that grows as an exponential function of 

the number of nodes/arcs that must be covered. Christofides (1976) stated that the largest 

vehicle routing problem of any complexity solved till then by exact methods and reported in 

literature contained only 31 demand points (Magnanti, 1981). 

Solution strategies for vehicle routing problems can be classified as follows (Bodin and 

Golden, 1981): 

1. Cluster first - route second 

2. Route first - cluster second 

3. Improvement/exchange 

4. Savings/insertion 

5. Mathematical programming based 

6. Interactive optimization 

7. Exact procedures 

Cluster first - route second procedures group demand nodes and/or arcs first and then 

determine routes over each cluster. For examples, refer to Gillett and Miller (1974) and 

Gillett and Johnson (1976). 

Route first - cluster second procedures are the antithesis of cluster first-route second 

procedures. First, a large route is constructed including all of the demand nodes and/or arcs. 

The large route is then partitioned into a number of smaller, feasible routes. Newton and 

Thomas (1974) and Bodin and Berman (1979) used this approach for routing of school 

buses. 

Improvement or exchange procedures such as the branch exchange heuristic developed 

by Lin (1965) and Lin and Kernighan (1973) involve altering the current solution to yield 

another feasible solution with a reduced cost. This process continues till no further 

reductions in cost are possible. Bodin and Sexton (1979) modified this approach to schedule 

minibuses for the subscriber dial-a-ride problem. 

Savings or insertion procedures involve building a solution in such a way that at each 

step of the procedure, a current configuration of routes that is possibly infeasible is 

compared to a possible alternative configuration (that may also be infeasible). The current 

configuration is replaced with the configuration that gives the highest savings in terms of 
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some criterion such as total cost, or the one that inserts a demand arc or node into the 

existing routes least expensively. Examples of savings/insertion procedures for  node and 

arc routing problems are presented by Clarke and Wright (1964), Golden et al. (1980), and 

Golden and Wong (1981). 

Mathematical programming procedures include algorithms based on a mathematical 

programming formulation of the underlying routing problem. Christofides et al. (1981) and 

Stewart and Golden (1979) discuss Langrangean relaxation procedures for the routing of 

vehicles. Fisher and Jaikumar (1981) provided an example of mathematical programming 

based procedures. 

Interactive optimization based approaches involve human input or interaction into the 

solution process. The underlying basis is that experienced decision makers have the 

capability of setting and revising parameters and providing assessments based on experience 

into the optimization model. Some adaptations of this approach to vehicle routing problems 

are presented by Krolak et al. (1971), (1972). 

Exact procedures include specialized branch and bound and cutting plane algorithms for 

solving vehicle routing problems. Refer to Held and Karp (1970), (1971) and Christofides et 

al. (1981) for examples of exact procedures for VRP. 

 

1.4.1 Complexity of Routing Problems 

An important consideration in the formulation and solution of routing and scheduling 

problems is the computational complexity associated with different solution approaches for 

these problems. As most routing problems are NP-hard, known approaches for solving 

these problems optimally suffer from an exponential growth in computational time with 

problem size. If a problem is NP-hard, one frequently resorts to heuristic procedures to 

obtain near optimal solutions. A heuristic algorithm is a procedure that uses the problem 

structure in a mathematical and usually intuitive way to arrive at a feasible near-optimal 

solution (Bodin et al., 1983).  

Most public sector operations are on preset routes. The effectiveness of such operations 

depend on the efficiency of those routes. The next section discusses the background of the 

public sector route design and the snow removal process. 
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1.5 Public Sector Service and Snow Removal Operation 

An important factor in the development of strategies for the delivery of public services 

is the design of service routes. Effective route design in the public sector not only provides 

benefits in terms of reduced costs, but also offers a variety of intangible benefits such as 

quality and equity of service. Public sector route design is generally more difficult than 

private sector route design because the decision-making environment within which routing 

and delivery of service takes place is more complex. The conditions can vary dramatically 

over time and space. As a result, there may exist uncertainties about the level of demand for 

services. Intangible objectives, such as the public’s safety and satisfaction with the quality of 

service are difficult to measure. In addition, public sector routing is generally characterized 

by multiple and often conflicting objectives (Wright, 1993).  

There are other significant differences between public sector and private sector routing 

problems. Whereas private sector routing problems are generally evaluated in economic 

terms, public sector vehicle routing problems are usually concerned more with improving 

service and public welfare (Marks and Stricker, 1971). Haslam (1988) stated that snow 

removal in winter season is perhaps the most complex service for which careful route 

planning is important.  

The primary focus of this research is the design of service routes for snow removal 

operation. Next section gives a brief overview of the snow removal operation. 

 

1.5.1 Snow Removal Operation 

Refer to Minsk (1970) and Gray and Male (1981) for some historical perspectives on solving 

the snow removal problem. Cortina and Low (2001), Keseling (1994), and Lindsey and Seely 

(1999) provided background and information on snow removal procedures in Brighton, NY, 

Maryland and Utah, respectively. 

There are four major steps in snow removal and disposal operations, all of which require 

solving the underlying arc routing problem to find efficient routes for vehicles through road 

networks.  They are (Campbell and Langevin, 1995): 

1. spreading chemicals and abrasives, 

2. snow plowing, 

3. snow loading, and 

 

 

7
4. snow disposal. 



According to the Wisconsin Department of Transportation report in Better Roads 

Magazine (October 2003), spreading chemicals (also called deicing chemicals) prevents ice 

forming. Deicing chemicals work by reducing the freezing point of water.  A dry deicing 

chemical must dissolve into a brine solution before it can act. The necessary moisture can 

come from snow on the road surface or from humidity. The heat required to change ice or 

snow into water comes from the air, sun, pavement, or traffic friction. The resulting brine 

creates a film over the road surface. This film prevents compacted snow from bonding to 

the road surface, which enables easy removal of snow by plows. Abrasives such as sand and 

other agents improve vehicle traction on snow and ice-covered roads. They are especially 

useful when it is too cold for chemical deicers to work, as they work efficiently at all 

temperatures. Sand is the most common abrasive, but slag and cinders are also used 

commonly. Abrasives must be treated with salt to keep them usable.  

In areas that experience heavy snowfall and persistent low temperatures, snow plowed to 

the side of streets and sidewalks impedes traffic. Therefore, it must first be windrowed in the 

middle of the street by plows before it can be physically loaded into trucks by snowblowers 

and transported to disposal sites, where it remains until melting. 

The Snow Removal Problem is considered to be one of the most complex public 

service operations because of the dynamic environment and complexities of equipment, 

infrastructure and operations. There is also a significant variation in roadway snow removal 

operations themselves due to the vast differences in climate, network complexity, and size 

and level of service (Campbell and Langevin, 2000).  The problem of snow and ice removal 

is complex as each city has its own unique conditions, which makes the problem increasingly 

complex (Cook and Alprin, 1976). For example (Cook and Alprin, 1976), New York City, 

with a population (at that time) of eight million people, and an average snowfall of 30 inches, 

had snow removal problems very different from the city of Tulsa, Oklahoma, with an 

approximate population of 500,000 and an average annual snowfall of 10 inches. A major 

problem in New York City is the plowing and removal of snow whereas the city of Tulsa 

relies only on spreading of salt and abrasives to keep the major arteries clear in an ice or 

snow emergency.  

In developing a strategy for winter season snow removal, the goal of authorities is to 

provide efficient service within the constraints on available resources (salt and sand supplies, 

plowing and abrasive spreading equipment, and manpower) without excessively interfering 
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with public transportation (Haslam, 1988). In a Chicago study, Cook and Alprin (1976) 

concluded that “The vehicular accident rate is highest when a light snow or freezing rain has 

not been given treatment… Therefore, early salt application can significantly reduce the 

number and severity of accidents, which create congestion and involve the cost of lost time, 

property damage and personal injury… The accident rate on a wet or slippery pavement, a 

condition produced by a light untreated snow, is 330 percent that of a dry pavement… Light 

snow or freezing rain creates the most severe accident problems. If the rate can be cut in 

half by faster and better handling, the potential annual saving (to Chicago) is $1,500,000 or 

more”.  

Other characteristics of the problem include (Campbell and Langevin, 2000): 

1. Weather conditions such as temperature, wind, accumulation rate, etc. can vary 

significantly even over small distances due to topographic features and water sources 

and can vary dramatically over large distances. Weather conditions also vary 

temporally, and as conditions change, the appropriate snow control actions will 

change. For example, light dry snow, heavy wet snow, and freezing rain all require 

different actions, yet they may all occur in a matter of few hours.  

2. There are different environments in which the problems occur in terms of location, 

equipment, infrastructure, policies, and operation. Rural problems are often simpler 

due to sparser road networks; and for many storms, plowing snow off of the 

roadways or spreading chemicals and abrasives is sufficient. Also, in case of heavier 

storms, the availability of open areas adjacent to rural roadways means that snow can 

be piled beside the road and left over to accumulate. In urban areas, the problem is 

more complex due to the need for not only clearing the roadways but also to clear 

sidewalks, crosswalks, fire hydrants, public transit stops, and intersections.  

3. There are also problems due to turn restrictions for U-turns and turns across traffic 

lanes. A snowplow driving on the right side of a roadway and designed to move 

snow towards the right edge of the roadway will cause a row of snow to accumulate 

in the middle of an intersection if the snowplow truck takes a left turn, which would 

be objectionable to the general public.  

4. Snow removal operation also becomes more complex due to the wide range of 

equipment available. This equipment includes plows, spreader vehicles, and snow 

loaders and each one of them is available in multiple variations. A single authority 
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may include a diverse mix of such equipment. For example, spreader trucks have 

different carrying capacities for materials and can distribute a variety of different 

materials, at different rates. Also, trucks can spread one or two lanes in a single pass.  

5. The wide range of roadways available in a jurisdiction lead to different arc routing 

problems. A typical agency may treat a mix of different types of roadways, such as 

one way roads, single lane roads, multiple lane roads, gravel roads, etc. Some roads 

under another authority’s jurisdiction may be available for travel, but need not be 

cleared. 

6. The location of depots for chemicals and abrasives, and vehicle garages also provides 

restrictions on snow removal operations. Several silos or depots may be located 

across an area so that the spreader truck can be refilled with chemical and/or 

abrasives without returning to the main depot. 

7. Many agencies assign priorities for treatment to certain roadways to ensure that 

travel on high traffic roads remains safe. Assignment of these priorities may be based 

on Average Daily Traffic (ADT) or some other parameter. Higher priority roads may 

be served first and with greater frequency than relatively lesser priority roads. 

 

1.6 Graph Theory 

Since snow route design can be classified into the category of arc routing problems, it 

would be helpful to review some important terms in graph theory that are relevant to this 

research. 

- Graph: A graph is a collection of nodes and lines joining all or only some of these nodes. 

Some authors use the term edge for a line with no direction and the term arc for a line with 

direction. In this research, the term arc will be used for a line connecting two nodes 

irrespective of the direction of the line connecting two nodes. 

- Undirected Graph: If all the arcs in the graph have no direction, the graph is called an 

undirected graph. 

- Directed Graph: If all the arcs in the graph have directions, the graph is called a directed 

graph. 

- Mixed Graph: If both directed and undirected arcs exist in a graph, the graph is called a 

mixed graph. 

- Path: A path is a sequence of consecutive edges in a graph. 
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- Connected Graph: An undirected graph is connected if there is a path connecting all nodes 

or vertices. 

- Strongly Connected Graph: A directed graph is strongly connected if there is a path 

connecting all nodes or vertices. 

- Degree: The degree of a node is the number of arcs connected at that node. For a directed 

graph, the degree of a node is the sum of in-degree and out-degree (explained below) of that 

node. 

- In-degree (directed graph): In a directed graph, the in-degree of a node is the number of 

arcs entering into that node. 

- Out-degree (directed graph): In a directed graph, the out-degree of a node is the number of 

arcs emanating from that node. 

- Even-degree node or vertex: A node or vertex for which the degree is an even number. 

- Odd-degree node or vertex: A node or vertex for which the degree is an odd number. 

- Eulerian or Unicursal Graph: A connected graph is said to be Eulerian or unicursal if there 

exists a closed tour in the graph containing each arc exactly once and each vertex at least 

once (Eiselt et al. 1995a). The closed tour is called Eulerian circuit or Eulerian tour. 

 

1.7 Statement of the Problem and Research Objectives 

Arc Routing problems play an important role in logistics and distribution management 

and have been investigated by many researchers. Arc routing problems (ARPs) arise naturally 

in several applications where streets require maintenance, or customers located along road 

must be serviced. Efficient route planning can have a significant impact on the overall cost 

of the service (snow removal, refuse collection, mail delivery, etc.). Designing routes for 

snow removal involves solving an arc routing problem subject to several constraints such as 

capacity limit on vehicles, time and/or distance limits on each route, direction of roads, etc. 

The objective in these kinds of problems is usually to minimize the total distance, time or 

cost. The Capacitated Arc Routing Problem (CARP), introduced by Golden and Wong 

(1981), is a class of arc routing problems that is closely related to this problem. The classical 

Capacitated Arc Routing Problem is defined as: Given an undirected network with non 

negative demand on the arcs and a depot having a homogeneous fleet of vehicles, the 

objective is to find a minimal cost set of routes for vehicles, each route starting and ending at 
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the depot, such that each edge with positive demand is serviced exactly once by one vehicle, 

and the total demand serviced by each vehicle does not exceed its capacity.  

This problem is NP-hard, and it has been shown by Golden and Wong (1981) that even 

finding a solution whose cost is 1.5 times the optimal cost is NP-hard. In contrast with the 

extensive literature for the node routing problem, very few local search heuristics are 

available for the CARP. In the last few years, there has been an increase in research on arc 

routing problems, evident by a few meta-heuristics developed for the CARP (Lacomme et al. 

2004, Beullens et al. 2003). 

Recently, many extensions of the basic CARP have been investigated. Examples include 

the multi-depot CARP (Amberg et al. 2000), and CARP with intermediate facilities for 

replenishing (Ghiani et al. 2001). Very few of the authors have considered a mixed network. 

A very recent paper by Lacomme et al. (2004) is the first paper found, that addresses the 

problem of parallel arcs between nodes. This case may occur when a road segment is too 

wide to be serviced in one traversal and may need multiple traversals. This research 

addresses the problem of capacitated arc routing in the context of snow removal. This 

problem can be stated as:  

Given a graph having both directed and undirected arcs, some of which may not be 

treated but can be used for traveling, the problem is to find a total least distance set of routes 

starting and ending at the depot and satisfying the vehicle capacity, distance, and time 

constraints, and also providing the service as many times as needed on the arcs. 

The following section describes the restrictions or constraints considered in this problem. 

 

1.8 Restrictions 

1.8.1 Distance Limit 

Restrictions on distance traveled on each route: In this research, a maximum mileage 

that each route can cover is considered. This is a practical consideration since a vehicle may 

need to be refueled at the depot, and maintain a reasonable work load on the driver.  

1.8.2 Time Limit 

A closely related restriction considered in this research is the time taken to cover each 

route. This is particularly important in the context of snow removal due to sometimes widely 

varying speed limits on a road network, traffic conditions, and different speeds while spreading 
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chemicals and when not spreading chemicals (deadheading).  During snow removal, for 

example, it may be important to clear some important roads within two hours and others 

within four hours of a snowstorm.  Also, having a time restriction on each route will allow a 

reasonable workload on the driver and the crew. 

1.8.3 Capacity Restrictions 

Snow removal trucks have a fixed capacity for carrying chemicals. Each time a vehicle 

services a road or satisfies demand for a road segment, it spreads a specific amount of 

chemical. Generally, the amount of chemical that is needed to service a road is proportional to 

the length of the road and is specified in terms of pound of chemicals per lane mile. A higher 

spreading rate may be employed if the road is a high priority road or in case of a severe 

snowstorm. When the chemical capacity is exhausted, the vehicle needs to visit the depot to 

refill with the chemical and begin a new route. 

1.8.4 Road Directions and Frequency of Service 

Real road networks are a combination of one-way and bi-directional roads. Bi-

directional roads could be such that a vehicle traveling in one direction can spread both 

directions of the road. This is a common situation in snow removal. The bi-directional road 

could be wide enough such that each direction of the road needs to be traversed at least once 

to service it. Some roads may require to be serviced multiple times in one or both directions if 

the roads are too wide to be serviced just once. This may be considered to be similar to a 

situation where some high priority roads need to be serviced multiple times (even if they can 

be serviced in one traversal). All of these considerations need to be incorporated in an arc 

routing problem for snow removal, so as to model real world problems as closely as possible. 

1.8.5 Prevention of Sub tours: 

It is important to prevent independent tours that do not start and end at the depot 

node. Each route should begin and end at the depot node. This restriction may be enforced, 

even though it eliminates some feasible routes that start and end at the depot, but still 

contain sub-tours that do not include the depot. 

 

1.9 Assumptions 
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The following assumptions are made in formulating the problem: 



• Data on road network such as distance between nodes, and service requirement of 

each arc are available. 

• Vehicle capacities are fixed and same for all vehicles. 

• If a vehicle starts servicing or traveling without service on an arc or road segment, it 

must complete that arc or road segment. In other words, breaking a route in the 

middle of an arc is not allowed. 

• The number of routes is not fixed in advance. 

• Priorities for treatment of roads are not considered, but can be incorporated by first 

running the model on high priority roads, and then repeat with the other roads. 

However, quality of the results may suffer. 

• Speed while servicing the roads may be less than the speed for deadheading 

(traveling without service). 

• Time needed to service an arc depends on the distance and the speed of traveling on 

that arc (equal to deadheading speed or servicing speed depending on whether the 

arc is being serviced or not). 

• Traffic stoppages due to traffic signals or bad road conditions are not considered. 

 

1.10 Research Objectives 

This research attempts to meet the following objectives: 

1. Develop an Integer Programming (IP) Model to minimize the total distance traveled, 

subject to the restrictions described above. Small size problems will be developed 

and solved using the IP model. 

2. Since the problem is NP-hard, the second objective is to develop an efficient meta-

heuristic. A software will be developed for this algorithm and used to find good 

solutions for larger size problems. 

3. Compare the results obtained with the meta-heuristic to results provided by other 

heuristics in the literature on a set of publicly available problem instances.  

 

The next chapter presents a literature review of various types of arc routing problems. 
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CHAPTER 2 

2 Literature Review 

2.1 Introduction to Arc Routing Problems 

Finding routes for snow removal involves finding paths or cycles that traverse a set of 

arcs in a graph. Snow route design can be classified into the category of arc routing 

problems. In arc routing problems (ARPs), the aim is to determine least cost cycles or paths 

on a specified arc subset of a graph, with or without constraints.  

Eiselt et al. (1995a, 1995b) provided an exhaustive survey of different types of arc 

routing problems. According to Eiselt et al. (1995a), the earliest documented reference to 

ARPs is the famous Konigsberg bridge problem. In this problem, the objective was to 

determine whether one could traverse each of the seven bridges on the Pregel river in 

Konigsberg (Figure 1) only once, and return to the origin point. Swiss mathematician 

Leonhard Euler (1736) showed that this was impossible and found conditions for the 

existence of a closed circuit. The problem of determining such a closed circuit was solved by 

Hierholzer (1873). Fleischner (1990) provided English translation of the original articles of 

Euler and Hierholzer (Eiselt et al., 1995a)  

 

Figure 2.1 The seven bridges of Konigsberg (from Eiselt et al. 1995a) 

 

ARPs can be defined as a special case of the class of general routing problems studied 

by Orloff (1974) and by Male et al. (1977) (Eiselt et al., 1995a). 
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Let G= (X, E) be a connected graph, where X= {x1,x2,…., xn} is the node set and 

E={(xi,xj):xi, xj belong to X, i ≠ j} is the arc set. With every arc (xi, xj) is associated a 



nonnegative cost dij. dij can be assumed to be ∞ if the are (xi, xj) does not exist. This could 

also be the case when (xi, xj) is a one-way arc. Depending on whether E is a set of directed 

arcs or edges (undirected arcs), the associated ARP is referred to as directed or undirected 

ARP. Graphs that include both directed arcs and undirected arcs are called mixed graphs 

(Eiselt et al., 1995a).  

ARP can be classified into many categories depending on various characteristics of the 

problem such as whether all arcs in the graph, or only a subset of the arcs, need to be 

traversed, whether the graph is directed, undirected, or mixed, whether there are capacity 

restrictions or not, etc. Broadly, ARPs can be classified into two categories: the Chinese 

Postman Problem (CPP) and the Rural Postman Problem (RPP) depending on whether all 

the arcs in the graph, or only a subset of the arcs, need to be traversed. As described below, 

these two categories of problems can be further categorized into many sub-categories 

depending on various characteristics. 

 

1. The Chinese Postman Problem (CPP)  

The Chinese Postman Problem is named after the Chinese mathematician, Mei-Ko 

Kwan (1962) who defined this problem. The CPP is concerned with finding a minimum cost 

covering tour that visits every arc in a given network (or graph) at least once. Some of the 

real world applications of this problem are routing of police cars, robot exploration, design 

of Very Large-Scale Integration (VLSI) circuits, and automated guided vehicles. The classical 

Chinese Postman Problem assumes that all arcs in the network are undirected. The problem 

involving graphs in which all arcs are directed is called the Directed Chinese Postman 

Problem (DCPP); and the one in which some of the arcs are directed is called Mixed 

Chinese Postman Problem (MCPP).  The Capacitated Chinese Postman Problem (CCPP) 

arises when each arc has a positive demand associated with it and the vehicles that cover 

them have a finite capacity. Due to vehicle capacity restrictions, the vehicle needs to return 

back to the depot to either replenish its capacity or end the route. Windy Postman Problem 

(WPP) is a problem similar to the mixed Chinese Postman problem (MCPP). In the WPP, 

the cost of traversing an edge of an undirected graph depends on the direction of travel. 

Hierarchical CPP (HCPP) is an extension of the CPP in which there is a precedence 
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relationship between arcs in the network, and the order of servicing the arcs must follow this 

relationship (Eiselt et al., 1995a). 

 

2. The Rural Postman Problem (RPP) 

The Rural Postman Problem (RPP) is the problem of finding a minimum cost tour that 

must visit a subset of arcs in a given network (or graph) at least once. The arcs in the graph 

that do not need to be covered can be used for traveling.  Few practical problems require the 

service of all arcs in the network. Therefore, most practical arc routing applications are of 

the RPP type (Eiselt et al., 1995b). Some examples of real world problems that can be 

modeled as the RPP are routing for urban waste collection, snow removal problem, electric 

meter reading, etc. The RPP involving graphs in which all arcs are directed is called Directed 

Rural Postman Problem (DRPP), the one in which all arcs are undirected is called 

Undirected Rural Postman Problem (URPP), and the one in which only some of the arcs 

need to be traversed at least once in a given direction but can be traversed as often as needed 

in the reverse direction is called Stacker Crane Problem (SCP). The Capacitated Arc Routing 

Problem (CARP), introduced by Golden and Wong (1981), is closely related to the RPP. In 

this problem, each arc in the network has a non-negative demand and all arcs with positive 

demand must be covered by a fleet of vehicles subject to vehicle capacity constraints. The 

classical CARP considers all arcs to be undirected, with at most one edge between two nodes 

and vehicle capacities to be homogenous. Various extensions of the classical CARP have 

been studied over the past few years (Lacomme et al. 2004, Amberg et al. 2000). The CARP 

is probably the most common problem in arc routing, since most real world problems have 

capacity restrictions (Eiselt et al. 1995b). The chemical and/or abrasive spreading problem 

for snow removal can be most naturally seen as a CARP. In case of the snow removal 

problem, demands on some arcs of the graph could be zero. This is a common situation in 

road salting applications. For example, a county authority is responsible for only county 

roads but could traverse through roads in city jurisdiction and state highways. The demand 

on each arc can be calculated as the product of distance of the road segment and the 

chemical and/or abrasive spreading rate (typically 100-300 lb/lane mile).  Due to the 

capacity restriction, one route may not be able to service all the arcs, and trucks would need 

to return to depot or storage facility to refill with the chemical and/or abrasive.  
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There is an extensive body of literature addressing the topic of arc routing. Dror (2000) 

provided a detailed review of arc routing methods, solution approaches and applications. 

The purpose of the next section is to review that portion of the literature, which is most 

relevant to the problem considered in this research.  

 

2.2 Literature Review 

In this section, a summary of the literature for RPP, and CARP is presented and is 

followed by a discussion of literature on the snow removal operation. Since this research is 

concerned mainly with a problem closely related to CARP, CARP and snow removal 

literature will be covered in more detail. 

 

2.2.1 Rural Postman Problem 

The Rural Postman Problem was introduced by Orloff (1974). Both the directed and 

undirected cases of RPP are NP-hard (Lenstra and Rinooy Kan, 1976). However, when the 

subset of arcs to be serviced or traversed is equal to all the arcs in the graph, the problem 

becomes the simple CPP and can be solved in polynomial time (Eiselt et al., 1995b). 

Fredrickson et al. (1978) proved that the Stacker Crane Problem (SCP) is NP-hard. The 

Capacitated Arc Routing Problem (CARP) was introduced by Golden and Wong (1981) and 

proven to be NP-hard. The RPP is a special case of CARP where the arcs to be serviced 

have a unit demand, the arcs that need not be serviced have a zero demand, and the vehicle 

capacity is equal to the total number of required arcs (arcs to be serviced) (Eiselt et al., 

1995b). Most practical problems belong to the category of RPP because usually not all arcs 

or street segments in a network require service.  

A standard algorithmic approach for the RPP is to first determine a least cost 

augmentation of the graph to make it unicursal, and then obtain a Eulerian circuit on the 

augmented graph. Heuristics are used for the augmentation phase since RPPs are NP-hard. 

These heuristics often use variations of matching algorithms or shortest spanning tree 

algorithms to create an augmented graph satisfying the unicursality condition. Exact 

algorithms for the generation of the unicursal graphs use techniques commonly used for the 

traveling salesman problem (TSP) (Eiselt et al., 1995b). 

Most applications of RPP involve multiple vehicles, single or multiple depots, and a 

number of limits due to vehicle capacity, distance covered, and time taken. A common 
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strategy for solving RPPs by heuristic means is to first decompose the problem into smaller 

problems by breaking the original network into smaller graphs (For example, see Chapleau et 

al. 1985, and Levy and Bodin 1989) (Eiselt et al., 1995b). Often, to model real world 

problems as closely as possible, traffic restrictions such as restrictions on U-turn, left-turns, 

and right -turns have been considered (For example, see Bodin and Kursh 1979, and 

McBride 1982). The following sections detail the literature found in the areas of undirected 

RPP, directed RPP, CARP, and specific literature in the area of arc routing for snow 

removal. 

 

2.2.1.1 Undirected Rural Postman Problem (URPP) 

In the URPP, all arcs are undirected, i.e. all the arcs can be traveled in either direction. 

When the subset of the graph that needs to be serviced is connected, the problem can be 

solved by computing shortest chains (in the complete graph) between odd-degree vertices 

and then applying the methods used for the Undirected Chinese Postman Problem (UCPP) 

(Eiselt et al. 1995b). 

Frederickson (1979) suggested a method of modifying the graph and solving the 

modified graph using a heuristic based on Christofides (1976) heuristic for symmetrical TSP. 

Christofides (1981), Sanchis (1990) and Corberan and Sanchis (1994) proposed integer 

programming formulations for the RPP (Eiselt et al. 1995b). Hertz, Laporte, and Nanchen-

Hugo (1999) discussed post optimization heuristics for the undirected RPP.  

 

2.2.1.2 Directed Rural Postman Problem (DRPP) 

In a DRPP, all the required arcs in the graph are directed. The directed CPP (DCPP) is 

a special case of the DRPP when the subset of the graph that needs to be serviced is 

connected (Eiselt et al. 1995b). 

Christofides et al. (1986) proposed a heuristic for the DRPP, which involves 

constructing a shortest spanning arborescence at an arbitrary vertex (refer to Edmonds 1967) 

and solving a transportation problem to find a Eulerian graph from the modified graph. 

Finally, a Eulerian circuit is determined on the augmented graph. A mathematical 

programming formulation and an exact algorithm were also presented by Christofides et al. 

(1986). 
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2.2.2 Capacitated Arc Routing Problem (CARP) 

In the CARP, each arc has a non-negative demand that needs to be satisfied by a fleet of 

vehicles having a fixed capacity. In the CARP, one needs to determine the least cost traversal 

of all arcs having a positive demand so that the total demand of all arcs serviced by a vehicle 

does not exceed its capacity.  Some authors have solved the CARP by first transforming it to 

the more common node routing problem (refer to Pearn et al., 1987). 

Golden and Wong (1981) proved that finding a solution for the CARP for which the 

cost is guaranteed to be less than 1.5 times the optimal value is NP-hard.  Golden and Wong 

(1981) proposed an integer programming formulation for the undirected CARP. Belenguer 

and Benevant (1991) also developed an integer programming formulation for the undirected 

CARP. 

Lower bounds for the undirected CARP were developed by Golden and Wong (1981), 

Assad et al. (1987), Win (1987), Pearn (1988) and Benavent et al. (1992). More recently, 

tighter bounds were developed by Belenguer and Benavent (1998) by mathematical 

formulation and linear relaxation of the CARP and generating valid inequalities.  

Heuristic algorithms for the CARP can be broadly classified into three categories (Eiselt et 

al. 1995b) 

1. Simple construction methods, 

2. two-phase construction methods, and 

3. improvement methods. 

 

1. Simple construction methods 

Most simple construction methods for the CARP were developed in the context of 

undirected Capacitated Chinese Postman Problem (CCPP), but can be easily adapted for the 

general CARPs (Hertz and Mittaz, 2001). The Capacitated Chinese Postman Problem 

(CCPP) is a special case of the CARP where all the arcs in the graph have a positive and 

non-zero demand. 

Christofides (1973) developed the Construct-Strike Algorithm for the solution of the 

undirected CCPP. This algorithm gradually constructs feasible tours and removes them from 

the graph. The removal of the tours is such that it does not separate the graph into 

disconnected components. When a cycle is constructed, all required arcs on the tour are 

removed from the original graph. The Construct-Strike procedure is repeated until no more 
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feasible vehicle routes can be determined. Pearn (1989) extended this idea and modified the 

algorithm by eliminating the restriction that that the graph obtained after removing a tour be 

connected. 

Golden et al. (1983) proposed a heuristic algorithm, called the Path Scanning Algorithm 

in which feasible cycles are constructed one at a time using a set of five rules for arc 

selection. The procedure is repeated using each of the five rules and the best solution is 

selected. Pearn (1989) proposed using one of the five rules at random every time an edge is 

selected. The problem is solved several times using different random numbers and the best 

solution is selected. 

Golden et al. (1983) also proposed a heuristic algorithm called the Augment-Merge 

Algorithm, which is based on Clarke and Wright (1964) algorithm for the node routing 

problem. In this algorithm, incomplete cycles are created, each containing a different arc. 

Then, the incomplete cycles are combined based on a savings criterion. 

Chapleau et al. (1984) proposed an algorithm called the Parallel-Insert Algorithm in 

which several routes are constructed in parallel using the same method as in the Path 

Scanning Algorithm. The objective is to obtain a balance between costs of different routes. 

This algorithm was applied to school bus routing.  

Pearn (1991) developed an algorithm based on the steps used in the Augment-Merge 

and Parallel-Insert algorithms. In the first step, cycles connected to the depot are gradually 

constructed with all arcs in the network that can be included in the cycles while maintaining 

feasibility. For constructing the feasible cycles, criteria based on cost and demand are 

suggested. In the second step, the arcs remaining are merged in the existing cycles (created in 

first step) using a savings criterion (Eiselt et al. 1995b).  

 
2. Two-Phase Construction Algorithms 

Two-Phase Construction algorithms for the CARP can be categorized as (Eiselt et al. 

1995b): 

a) Cluster First, Route Second Heuristics 

Heuristics in this class cluster all arcs in the graph first and then construct routes 

over each cluster while satisfying the capacity constraint. Win (1987) proposed the 

application of a greedy criterion and Benavent et al. (1990) proposed a generalized 
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assignment algorithm for partitioning the arcs into clusters. By using a simple 

modification of a CPP algorithm, vehicle routes can be determined. 

 
Route First, Cluster Second Heuristics 

According to Win (1987), these heuristics involve first constructing a giant Euler 

tour covering all edges having positive demands. If these edges create a connected 

graph, then a simple modification of a CPP algorithm can be applied to obtain the 

tour in polynomial time. Otherwise, Frederickson’s ½-approximation algorithm 

(Frederickson 1979) can be applied for the resulting RPP. A ½-approximate 

algorithm is one that gives results that are at most 1.5 times the optimal value. As a 

next step, Win (1987) suggested the use of a heuristic, which he termed fit bin 

packing heuristic, for partitioning the giant tour into feasible clusters. Ulusoy (1985) 

described an algorithm for the clustering phase, which involves transforming the 

original graph into another one on which a shortest path problem is solved. Hertz et 

al. (2000) presented an algorithm called CUT for partitioning of a route into smaller 

and feasible routes.  

 

2. Improvement Methods 

Improvement methods can be applied for enhancing the solutions obtained by 

construction algorithms. The following section presents the meta-heuristics that have been 

applied for the CARP. 

 

2.2.2.1 Meta-heuristics for the CARP 

Many recent meta-heuristics have been proven to be highly effective for the solution of 

the CARP. Meta-heuristics such as simulated annealing and Tabu search have been applied 

quite successfully to a variety of practical problems. Li (1992) applied simulated annealing 

and Tabu search procedures to a road gritting problem. Eglese (1994) proposed a simulated 

annealing algorithm for the CARP, which can also be used for problems with multiple depot 

locations and many side constraints.  The papers by Li and Eglese (1996), and Eglese (1994) 

will be discussed in more detail in the literature pertaining to routing for snow removal. 

A Tabu search based algorithm called CARPET was presented by Hertz et al. (2000) for 

solving the undirected CARP. This algorithm uses a neighborhood structure similar to that 
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of the TABUROUTE procedure used for the node routing problem (Gendreau et al., 1994). 

A number of procedures used in the search process are described: SHORTEN, DROP, 

ADD, PASTE, CUT, SWITCH, and POSTOPT. An initial solution is constructed by 

solving the RPP using Frederickson’s algorithm (Frederickson, 1979). An objective function 

was defined based on total length of solution and a penalty function that depends on the 

total demand exceeding the vehicle capacity. Computational results show that CARPET 

outperformed all known heuristics (up to the time of the paper) on benchmark problems 

and often produced an optimal solution. 

Hertz and Mittaz (2001) considered the undirected CARP (UCARP) and proposed an 

adaptation of the variable neighborhood descent (VND) algorithm for its solution.  The 

initial solution was constructed using Frederickson’s Algorithm (Frederickson, 1979) by 

relaxing the capacity constraints. Several procedures, that were used in the CARPET meta-

heuristic such as SHORTEN, CUT, SWITCH, ADD and DROP, as described in Hertz 

(2000), were used in this paper. Extensive computational experience was reported using 

three of the datasets found in the literature, and showed that for larger instances, an 

adaptation of the variable neighborhood descent performed better than CARPET both in 

terms of solution quality and time. 

Belenguer and Benavent (1998) studied the polyhedron associated with the CARP and 

generated valid inequalities to develop a linear programming based cutting plane algorithm 

for the problem. The lower bounds produced by this procedure outperformed all previously 

known lower bounds for a set of 34 available instances in the literature. Belenguer and 

Benavent (2003) further extended this research, proposed new valid inequalities, and 

developed a cutting plane algorithm method based on the new inequalities. Computational 

results on three data sets revealed that this procedure produced lower bounds better than 

any other procedure in the literature; and for 47 out of 87 instances, the lower bounds 

proved that the previously known heuristic solutions were optimal. 

Amberg et al. (2000) considered a capacitated arc routing problem with multiple depot 

locations (M-CARP). A route first cluster second approach was applied in which routes are 

first created by transforming the M-CARP into a multiple center capacitated minimum 

spanning tree (CMST). An algorithm was developed to create intial solutions on the 

modified CMST and simulated annealing was used to improve the initial solutions. The 

algorithm developed was applied to real world problems in the areas of Konigstein and 
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Wennigsen. The authors concluded that heuristics can produce good solutions, and 

suggested ways to improve the running time of the algorithm. 

A Tabu scatter search procedure to solve the CCPP was described by Greistorfer 

(2003). The Capacitated Chinese Postman Problem (CCPP) is a special case of the CARP. 

For constructing the initial routes, the graph is made Eulerian by using a matching algorithm 

(Lawler. 1976). Initial routes are combined into bigger ones using a savings based approach. 

A hybrid Tabu scatter search algorithm based on Tabu search and population based 

strategies was developed and the computational results showed that the algorithm was 

competitive with benchmark instances in the literature. 

Mourao and Amado (2005) discussed a heuristic method for a mixed capacitated arc 

routing problem (MCARP) for the refuse collection in Lisbon. An algorithm, which they 

termed as service direction algorithm was used to transform the mixed network into a 

directed one. A lower bound was produced and a heuristic method based on Eularian and 

directed graph was applied. Comparison with heuristics developed and extended by 

Lacomme et al. (2002) showed a good performance of the developed heuristic.  

A local search technique, using methods derived from a node routing contexts, such as 

moving arcs between routes and within the same route, was embedded into a meta-heuristic 

called guided local search (GLS), by Beullens et al. (2003) to solve the capacitated arc routing 

problem. The mechanisms of neighbor lists and edge marking were used in order to check 

some moves in the local search procedure rather than checking complete neighborhoods. 

Experiments on benchmark problems showed that this heuristic finds all the known upper 

bounds and improves the bounds for a few instances.  

An efficient hybrid genetic algorithm (HGA) was used to solve the basic undirected 

CARP by Lacomme et al. (2001a). It outperformed the CARPET meta-heuristic developed 

by Hertz (2000). In continued research, Lacomme et al. (2001b) developed a cutting plane 

algorithm to generate tight lower bounds or an optimum value for an extended CARP 

(ECARP) with a mixed network, turn restrictions, and different costs for servicing and 

traveling without servicing an arc. Further, a bi-objective function considering the total cost 

of trips and total overload was defined and an enhancement of the HGA was applied. The 

results produced were comparable to those of the cutting plane algorithm. 

A powerful memetic algorithm (MA) for solving the extended CARP as described 

above was presented by Lacomme et al. (2004). Memetic algorithms are heuristic-based 
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search procedures that are closely related to genetic algorithms. Compared to an earlier 

paper by Lacomme et al. (2001a), this paper addressed other objectives such as makespan 

and number of vehicles used, and covered new extensions such as mixed graphs, two distinct 

costs per link, parallel arcs between two nodes, limit on trip length, limited fleet, and turn 

penalties. Three classical heuristics (Path Scanning by Golden et al (1983), Augment-Merge 

by Golden and Wong (1981) and Ulusoy’s heuristic by Ulusoy (1985)) were enhanced to 

handle the ECARP and provide initial solutions. Computational evaluation was performed 

on three classical instances in the literature (DeArmon (1981), Belenguer and Benevant 

(2003), and Eglese instances built by Belenguer and Benevant (2003)) and the best memetic 

algorithm for the CARP was found to outperform all known heuristics.  

A mixed capacitated arc routing problem (MCARP) with different costs for treatment 

and deadheading was considered by Belenguer et al. (2006). According to the authors, no 

published paper addressed this kind of problem in which a mixed graph (directed and 

undirected arcs) and a subset of arcs needing service are considered. Three heuristics (Path 

Scanning by Golden et al. (1983), Augment-Merge by Golden and Wong (1981) and 

Ulusoy’s heuristic by Ulusoy (1985)) were extended for the MCARP with additional features 

such as a mixed network, parallel links, different costs for servicing and deadheading, 

prohibited turns and turn penalties, trip cost limit, dumping sites, and windy edges. A lower 

bound for the MCARP was developed using a cutting plane algorithm without the 

extensions mentioned. A memetic algorithm was developed and the results on various 

instances were compared to the lower bound generated and were promising. 

Table 2-1

Table 2-1 Summary of Meta-heuristics for the CARP 

 presents a summary of recent meta-heuristics applied to the CARP. 

Author Problem and solution method 

Belenguer et al. 

(2006) 

Problem: A mixed capacitated arc routing problem (MCARP) with extensions.  

A lower bound was developed using a cutting plane algorithm. Three construction heuristics 

for constructing initial solutions and a memetic algorithm for local search were applied. 

Mourao and Amado 

(2005) 

Problem: Mixed capacitated arc routing problem (MCARP) for refuse collection in Lisbon.  

A service direction algorithm was used to transform the mixed network into a directed one and 

a heuristic method based on Eularian and directed graph was applied. A lower bound was also 

produced. 
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Author Problem and solution method 

Lacomme et al. 

(2004) 

Problem: CARP with extensions.  

Three construction heuristics were extended to create initial solutions, and a memetic 

algorithm was applied. Computational evaluation was performed on three classical instances in 

the literature. 

Belenguer and 

Benavent (2003) 

Problem: Basic CARP. 

New valid inequalities were developed and a cutting plane algorithm method based on the new 

inequalities was proposed. This procedure obtained best known lower bounds for three 

datasets in literature. For 47 out of 87 instances, the lower bounds proved that the previously 

known heuristic solutions were optimal. 

Beullens et al. (2003) Problem: Basic CARP. 

Moves based on methods derived from a node routing context were embedded in a guided 

local search (GLS) meta-heuristic.  

Greistorfer (2003) Problem: A special case of CARP- Capacitated Chinese Postman Problem.  

The graph is made Eulerian by using a matching algorithm and initial routes are constructed 

(Lawler, 1976). Initial routes are combined into bigger ones using a savings based approach. A 

hybrid Tabu scatter search algorithm with population based strategies was developed. 

Hertz and Mittaz 

(2001) 

Problem: Basic CARP. 

An adaptation of the variable neighborhood descent (VND) algorithm was applied. The initial 

solution was constructed using Frederickson’s Algorithm (Frederickson, 1979) by relaxing the 

capacity constraints. Several procedures that were used in the CARPET meta-heuristic as 

described in Hertz (2000) were used in this paper.  

Amberg et al. (2000) Problem: CARP with multiple depot locations (M-CARP).  

A route first cluster second approach was applied in which routes are first created by 

transforming the M-CARP into a multiple center capacitated minimum spanning tree (CMST). 

An algorithm was developed to create intial solutions on the modified CMST and simulated 

annealing was used to improve the initial solutions. The algorithm developed was applied to 

real world problems. 

Hertz et al. (2000) Problem: Basic CARP. 

A Tabu search based algorithm called CARPET was applied. This algorithm uses a 

neighborhood structure similar to that of the TABUROUTE procedure used for the node 

routing problem (Gendreau et al., 1994). A number of procedures were used in the search 

process. An objective function was defined based on total length of solution and a penalty 

function that depends on the total demand exceeding the vehicle capacity.  

Belenguer and 

Benavent (1998) 

Problem: Basic CARP. 

Valid inequalities were generated to develop a linear programming based cutting plane 

algorithm for the problem. The lower bounds produced by this procedure outperformed all 

previously known lower bounds for a set of 34 available instances in the literature. 

Other meta-

heuristics 

Li (1992) applied simulated annealing and Tabu search procedures to a road gritting problem. 

Eglese (1994) proposed a simulated annealing algorithm. Li and Eglese (1996) described a time 

constraint two-phase heuristic algorithm and tested it on three administrative regions in U.K. 
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The following section presents the literature pertinent to the problem of snow route 

generation. 

 

2.2.3 Arc Routing for Snow Removal 

Campbell and Langevin (2000) provided an excellent review of arc routing for roadway 

snow and ice control and presented literature with recent application of two snow route 

design software. 

Scientific and analytical research work on roadway snow and ice control began to attract 

significant attention in the 1960s. By 1979, many authors had begun to address the arc 

routing problems for snow removal (Campbell and Langevin 2000). 

A systems study of snow removal by Minsk (1979) and a value engineering study by 

Russel and Sorenson (1979) were conducted. A simulation model for urban snow removal 

was developed by Tucker and Clohan (1979) which allows decision makers to vary 

parameters of the snow removal process related to truck and snow storm characteristics and 

observe the results of the model before implementing them. Their model applies to the 

problem of snow plowing, but they stated that it can be easily applied to the problem of 

spreading chemicals and/or abrasives. This model was validated using truck routes and 

storm data from Newington, Connecticut. Their guidelines for routing included minimizing 

U-turns at intersections, left turns, and deadheading. Five storms were simulated and a 

sensitivity analysis was performed to analyze the role of snowfall rate and initial depth of 

snow at the start of plowing. 

According to Marks and Stricker (1971), parked cars, cars stuck in the middle of a road, 

and priorities in plowing are critical factors in modeling snow removal. In their analysis, they 

revealed the shortcomings of the CPP model with respect to real world constraints. A few 

ways were described to consider priorities for plowing roads. They developed a 

decomposition heuristic to obtain a solution for the CPP. Finally, they presented an 

application for trash collection in Cambridge, Massachusetts. 

A graph theory formulation was used by Liebling (1970, 1973) to divide the city of 

Zurich, Switzerland into sectors for snow removal, and a CPP was solved in each sector. 

This study was presented to assist municipal authorities in Zurich in the choice of equipment 

for street cleaning, determination of sites for depot location and planning of routes for snow 

removal. 
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A dynamic routing heuristic for the problem of routing of salt spreader trucks was 

developed by Cook and Alprin (1976). The objective considered was the minimization of the 

time required to spread salt over a network of streets. Street segments were defined in such a 

way that they could be serviced with exactly one truck load of salt. After each truck is refilled 

with salt at the salt storage facility, it is assigned to the nearest untreated street segment. A 

simulation model for spreading salt was developed for the city of Tulsa, Oklohoma, and was 

demonstrated to the city officials who felt that it would be useful to apply the developed 

heuristic in the following snow season. 

An algorithm that works by tracing a Eulerian circuit on a directed graph and that 

considers street priorities by selecting higher priority roads whenever possible was developed 

by Lemieux and Campagna (1984). It was assumed that street plowing must be done on both 

sides, once in each direction. The authors developed an interactive computer program and 

tested it on a small network. 

Routing of snow blowers for loading snow into trucks was considered by Gilbert 

(1989), who modeled the problem as a node routing problem, where the nodes correspond 

to the street segments to be cleared. The author considered a fixed depot and a number of 

workdays to complete the snow removal operation. A large-scale non-linear programming 

model with several precedence constraints and restrictions on snow loading operation in the 

city was presented. An algorithm using an insertion method that adds nodes iteratively to a 

given work shift was developed. In the first step of the insertion method, higher priority 

nodes are added in the first shift of the workday. As the last days of work for completing the 

snow removal operation approach, the algorithm adds nodes that balance the work schedule. 

The heuristic was tested using data from one district in Montreal, Canada, and produced 

good results. 

A solution approach for the single vehicle arc routing problem for snow removal that 

involves constructing Eulerian subgraphs, determining lower and upper bounds by dynamic 

programming, and solving a traveling salesman problem by branch and bound was 

developed by Gelinas (1992). Precedence constraints on the road network were also 

considered. The developed heuristic was tested using data from one district in Montreal, 

Canada. 

A decision support system for snow and ice control called the SnowMaster system was 

developed by Evans (1990) and Evans and Weant (1990). The system was designed to aid 
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local agencies to route snow and ice control vehicles for improved service, higher equipment 

utilization, and lower capital and operating costs. The route design component of the system 

includes five different arc selection rules. The results were generated for each of the five 

rules and the user can select the best route. Capital costs of equipment were considered in 

order to aid in the identification of the appropriate mix of equipment required. The authors 

presented an application of the SnowMaster system for Butler County, Ohio. Simulation 

models for Butler county, OH showed that savings of up to $250,000 could be achieved 

over three years by reduction in equipment purchase costs due to improved routes generated 

by the SnowMaster system.  

Recent decision support systems combine arc routing heuristic algorithms, user-friendly 

interfaces, interactive route design capability, and ability to work with digital maps. In a joint 

project involving researchers at Purdue University and personnel of the Indiana Department 

of transportation (INDOT), a computerized system called Computer Aided System for 

Planning Efficient Routes (CASPER) was developed for rural snow and ice control. 

CASPER has evolved over many years incorporating a number of improvements, and is 

currently used to design service routes for snow removal in Indiana. Several papers were 

written during various phases of the development of CASPER. Reference may be made to 

Haslam and Wright (1991), Wang (1992), Wright (1993), Wang and Wright (1994), Wang et 

al. (1995), and Goode and Nantung (1995) for more details on CASPER. The objective in 

CASPER is to minimize cost by reducing the number of routes and reducing the number of 

deadhead miles traveled, while satisfying specified service levels and maintaining class 

continuity (priorities).  CASPER combines spatial network data, multiobjective heuristic 

optimization procedures, and a user controlled interactive graphical interface. In CASPER, 

first a route generation heuristic is used that is guided by a penalty function that incorporates 

conflicting objectives of satisfying time limits for routes, minimizing deadhead travel, and 

maintaining class continuity. The next step involves a local improvement heuristic based on 

Tabu search. In this procedure, one or two arcs are swapped and penalty values are used to 

evaluate the improvement as a result of the move if the move results in infeasible routes. 

The route improvement heuristic is a modification of the algorithm presented by Haslam 

and Wright (1991). Reference is made to Wang (1992) for discussion of the application of 

Tabu search to the problem of snow route design. INDOT estimated savings of $2.2 million 
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in the first year and a total of $4.8 million over ten years with the use of CASPER. It was 

observed that the depot location plays an important role in creating good service routes.  

An adaptation of the GENIUS algorithm developed earlier for the TSP by Gendreau et 

al. (1992) was used for construction of routes in GeoRoute software for route optimization 

(Campbell and Langevin, 2000). Giro Enterprises Inc. of Montreal, Canada developed 

GeoRoute software for snow and ice control, which has been implemented in several 

regions by PSR Group Ltd., a consulting company based in Canada. GeoRoute is an 

interactive decision support system consisting of four modules: network manager, route 

manager, site editor, and map generator. The optimization module in the software is the 

Route manager, which allows for each type of operation: spreading, plowing, and snow 

blowing. GeoRoute gives the user the option to evaluate a variety of different snow removal 

environments, such as turn restrictions, urban and rural conditions, repetitive treatment, 

number of passes, time windows, etc. GeoRoute has been used extensively in several 

locations, including the cities of Laval, Charlesbourg and Ottawa in Canada, and in the 

United Kingdom. For the city of Ottawa, Canada, testing showed that optimized routes 

generated by GeoRoute increased productivity by 60-90 percent. 

Eglese (1994) described rural snow and ice control research, based on previous research 

carried out by Eglese (1988), in which the objective was to find the most cost efficient way 

of carrying out winter gritting within some practical constraints. An important element of 

the study was design of a heuristic algorithm to route gritters. Extensions to the winter 

gritting problem such as road treatment time constraints, multiple depot locations, and 

limited vehicle capacities were considered. It was assumed that trucks can spread both 

directions of the road in one pass. Eglese proposed decomposing the even connected graph 

(the underlying road network) into cycles according to a checkerboard pattern. In this 

pattern, a cycle has common boundary with adjacent cycles, but it does not overlap with 

another cycle. A graph is then formed in such a way that a vertex in the graph corresponds 

to a cycle obtained by the previous decomposition. An edge is included between two vertices 

in the graph if the corresponding cycles have a common node in the original graph. Each 

tree containing the depot node in this graph corresponds to a vehicle tour in the original 

graph. The construction algorithm was based on a procedure described by Male and 

Liebman (1978) and involved using a heuristic similar to the Clarke-Wright (1964) savings 

heuristic on a graph derived from solving the CPP on the network. A simulated annealing 
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based heuristic was used to improve the results obtained from the construction heuristic. 

The objective considered was to minimize the number of routes, a penalty due to the 

additional distance over the maximum allowed, and a penalty due to additional time taken 

over the maximum gritting time allowed. It was found that simulated annealing improved the 

initial solutions. The number of routes generated by the heuristic was equal to or less than 

the current number of routes. This algorithm was tested in three areas having 111, 303, and 

280 roads respectively. The most significant result of the study was that the number of 

required depots could be reduced by more than 50% without increasing the number of 

gritters.  

A time constraint two-phase heuristic algorithm was described by Li and Eglese (1996) 

in which the farthest untreated arc is chosen to begin a route. Phase one of the algorithm 

extends the route back from the near end of the selected arc to the depot, and phase two 

extends the route from the far end of the selected arc to the depot. As each arc is added, 

capacity and time constraints are checked to maintain feasibility. The user can either run the 

algorithm automatically or interact with the system in selecting the next road to be inserted 

into the route. The authors considered multiple salt storage facilities for reloading trucks 

with salt without going back to the depot, and mixed networks (directed and undirected 

arcs). They found that this algorithm produced better results than the one described in 

Eglese (1994). The authors tested this algorithm using data from three administrative regions 

in Lancashire, U.K. Results showed that allowing user intervention produced fewer routes 

and reduced the total distance when compared to the automatic version.     

A combined location and routing problem dealing with location of main depots as well 

as supplementary salt storage depots (silos) was considered by Lotan et al. (1996) for the 

problem of winter gritting in the province of Antwerp, Belgium. The Province has 1074 

kilometers of road, 747 roads, and 257 nodes. Equal capacity trucks and priorities of roads 

were considered.  In stage 1 of their approach, the authors consider the problem of 

partitioning the region into districts and determining the location of main depots such that 

there exists a feasible route with minimum deadheading distance. In stage 2, they locate 

supplementary depots and solve the associated routing problem. Some findings include the 

advantages of locating silos close to borders between districts and the differences between 

spreading both directions of a road in one pass and making two passes to spread in both 

directions.  
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Many real world road characteristics that cause problems in snow removal such as right 

and left turns, street crossings, U-turns, and street changes were modeled by Gendreau et al. 

(1997). Vertices were replicated for each one of the mentioned characteristics and artificial 

arcs were introduced. The authors were asked by LogiRoute company to conduct numerical 

experiments in order to determine the appropriate penalties for: deadheading, left turns, U-

turns, street crossings, and street changes. Experiments were performed on 30-street 

networks in three suburbs of Montreal, Canada.  Refuse collection and snow plowing 

problems were considered in order to determine the penalties. 

A decision support system for aiding the Maryland State Highway Administration 

Office of Maintenance staff in developing snow emergency routes for Calvert County, 

Maryland was developed by Haghani and Qiao (2001). A mathematical programming 

formulation that takes into account time windows for network hierarchy was presented and a 

combination of currently existing heuristic procedures with slight adaptations was proposed 

to solve the arc routing problem for snow removal. Calvert County was divided into four 

sections for salting. The application of this algorithm resulted in savings in terms of reduced 

deadhead miles and reduced number of trucks used. It was projected that the algorithm 

would save between 10 and 38 % of total route length and between 15 and 54 % of 

deadhead mileage. 

In an extension to their earlier research, Haghani and Qiao (2002) considered more 

realistic constraints in order to model the snow removal problem. They presented two 

problems, one to minimize the total number of trucks, and the other to minimize the total 

deadhead distance given a fixed number of trucks. Mathematical programming formulations 

for these two problems were presented. It was assumed that all salting roads are 

bidirectional. For solving these problems, a Capacitated Minimum Spanning Tree (CMST) 

was constructed. Based on test results conducted for Calvert county, Maryland, it was found 

that the number of trucks currently used could be reduced by two (or 15 %) and the total 

deadhead distance could be reduced by 4 %. 
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CHAPTER 3 

3 Exact Algorithm 

3.1 Introduction 

The CARP is NP-Hard (Golden and Wong, 1981) and only very small problems could 

be solved optimally. For larger problems, the computation time is great and it is impractical 

to apply exact algorithms to them.  Even though only small problems can be solved by exact 

methods, developing mathematical models provides an insight into the complexity involved 

in solving the problem and provide better understanding of its details. 

 

3.2 Mathematical Model 

In this section, a mathematical formulation, based on the model originally provided by 

Golden and Wong (1981) and later modified by Haghani and Qiao (2001), is presented. In 

their model, Haghani and Qiao considered time windows for servicing of arcs and variable 

service requirements of arcs (number of times an arc needs to be serviced).  The indexes, 

parameters and decision variable definitions for the mathematical formulation are given 

below: 

Table 3-1 Mathematical Model Nomenclature 

Type of 

Variable Notation Definition 

A Set of arcs in the network 

i, j Node index 

p Vehicle index 

k Maximum number of vehicles available for servicing the network 

n Number of nodes in the network 

W Vehicle capacity 

Nij 

Number of times arc (i,j) needs to be serviced in the direction i to 

j 

Qij Demand of arc (i,j) in the direction i to j 

Parameters 

Tij 

Time required to travel without servicing arc (i,j) in the direction i 

to j (deadheading time) 
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Gij 

Difference between servicing time and deadheading time for an 

arc (i,j) in the direction i to j 

D Maximum distance a vehicle can cover in a route 

T Maximum time a vehicle can take to cover a route 

Fij
p 

Flow variable for arc (i,j) and vehicle p in the direction i to j. This 

variable is used in the formulation to ensure that no subtour is 

allowed 

Cij Distance between nodes i and j 

Xij
p 

Xij
p =1 if an arc (i,j) is used by vehicle p for either servicing or 

traveling without servicing (deadheading) in the direction i to  j 
Decision 

Variables 
Lij

p Lij
p =1 if an arc (i,j) is serviced by vehicle p in the direction i to  j 

 

 

This formulation assumes that each vehicle can service each arc at most one time. A 

required arc is an arc that needs to be serviced, i.e. it has a positive demand. 

 

3.2.1 Objective Function 

1 ,

.
k

p
ij ij

p i j A

Minimize C X
= ∈
∑ ∑  (1) 

The objective is to minimize the total distance traveled by all the available vehicles to 

service all the required arcs in the network. This includes arcs that are required to be serviced 

and arcs that are not required to be serviced but can be used for traveling to reach a required 

arc or the depot. 

 

3.2.2 Constraints 

• Route continuity constraint: 

To make sure that a vehicle entering a node exits that node. 

1 1
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• Vehicle capacity constraint: 



This constraint ensures that in a route, the total amount of chemicals required during 

servicing of arcs does not exceed the vehicle capacity. 

 

,
.pij ij

i j A
L Q W

∈

≤∑  1..p k∀ =  (3) 

 

• Service frequency constraint: 

This ensures that each arc with a positive demand is serviced the number of times 

needed. 

For arcs that can be serviced by traveling once in either directions (from i to j or j to i):  

 

1
1  

k
p p

ij ji
p
L L

=
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For arcs that have to be serviced a finite number of times (Nij) in one direction (from i to j): 

 

1
N   

k
p

ij ij
p
L

=

=∑ ( , )  where N 1iji j A∀ ∈ >=  (5) 

 

• Travel time constraint 

This constraint limits the travel time on a route to a finite value. It also includes the 

deadheading (traveling without servicing) and considers that the time for servicing may be 

higher than the time for traveling.  

 

, ,

. .p p
ij ij ij ij

i j A i j A

T X G L T
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+ ≤∑ ∑    1..p k∀ =  (6) 

 

• Service/Deadheading constraint 

This constraint ensures that an arc can be serviced only if the vehicle travels on that arc. 
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• Total distance constraint 

This constraint limits the total distance traveled on a route and includes the deadhead 

distance and the service distance. 

 

.
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X C D
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≤∑  1..p k∀ =  (8) 

 

• Sub-tour eliminating constraint 

This constraint is adapted from a formulation of a different problem by Golden and 

Wong (1981). It prevents the formation of sub-tours in the route. A sub-tour is a loop that 

does not include the depot node and is not connected to the depot node through other arcs 

in the network. 

The flow variable Fij
p can take positive values only if Xij

p=1, i.e. if an arc (i,j) is used by 

vehicle p for either servicing or traveling without servicing. 
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2.p p
ij ijF n X≤ ( , )i j A∀ ∈  (10) 

0p
ijF ≥  (11) 

In order to explain the sub-tour breaking constraint, an example is presented below (See 

Figure 3.1). Node 1 is the depot note and all the arcs can be used for traveling in either 

direction. One or more arcs in the network may have a positive demand and need to be 

serviced. One vehicle is used to service the network.  
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Figure 3.1 Example to Illustrate the Sub-tour Breaking Constraint 

 

Applying the first sub-tour breaking constraint (Equation 9): 

 

1 1 1 1 1 1 1 1 1
21 23 24 12 32 42 21 23 242, 1:  + + - - - =    i p F F F F F F L L L= = + +  (12) 

1 1 1 1 1 1 1 1
31 32 34 13 23 43 31 32 343, 1:  + + - - - =i p F F F F F F L L L= = + + 1

  

 (13) 

1 1 1 1 1 1 1 1 1
41 42 43 14 24 34 41 42 434, 1:  + + - - - =i p F F F F F F L L L= = + +  (14) 

 

Adding the above three equations, 

 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
21 12 31 13 41 14 21 23 24 31 32 34 41 42 43- + - + - = + +   F F F F F F L L L L L L L L L+ + + + + +  (15) 

 

The right hand side of equation 15 has a value greater than 0 as the network has at least 

one arc with a positive demand. All the terms in the left hand side of equation 15 are flow 

variables for arcs connected to the depot node 1. In order to satisfy equation 15, the left 

hand side of equation 15 must be a positive number. Since the flow variable for an arc can 

be a positive value only if a vehicle travels on that arc (equation 10), equation 15 ensures that 

at least one arc connected to the depot node is used for traveling, thus preventing the 

formation of sub-tours. 
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To illustrate the mathematical formulation, a simple problem having 9 nodes and 12 

arcs, as shown in Figure 3.2, is considered. The distance, demand, and service requirement of 

each arc are presented in Table 3-2. A requirement of 0.50 for an arc means that that arc can 

be serviced by traveling in either direction of the arc. All other parameters are shown in 

Table 3-3. 

A deadheading speed of 25 distance units per hour and a servicing speed of 15 distance 

units per hour are assumed in this model. Therefore the time to deadhead (Tij) on arc (i,j) is 

1/25 * Cij. The difference between servicing time and deadheading time (Gij) is (1/15-

1/25)*Cij= 1/37.5*Cij 

A complete formulation of the problem is listed in appendix A. The problem was first 

coded and solved using MPL/CPLEX to find the minimum route distance. The model has 

403 constraints, 132 integer variables, and 1095 continuous variables. MPL/CPLEX solved 

the problem in approximately 8 seconds. Adding 1 arc to this problem caused the 

computation time to increase to more than 34 minutes. 
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Figure 3.2 Example to Illustrate the Mathematical Formulation 
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Table 3-2 Example Problem Parameters (i) 

Beginning 
Node 

(i) 

Ending 
Node (j) 

Distance 
(Cij) 

Demand 
(Qij) 

Requirement 
(Nij) 

1 2 2 2 0.50 
1 8 2 2 0.50 
1 9 3 3 0.50 
2 3 3 3 0.50 
3 4 2 2 1.00 
3 5 3 3 0.50 
3 9 6 6 1.00 
4 6 5 5 0.50 
4 7 4 4 0.50 
5 6 4 4 1.00 
5 9 6 6 0.50 
6 5 4 4 1.00 
7 8 7 7 0.50 

 

Table 3-3 Example Problem Parameters (ii) 

Parameter Value 

k 3 vehicles 
n 9 nodes 
W 18 units 
T 2 hours 

 

 

Larger problems could not be solved by this method as they required too much 

computation time, and the computation time increases exponentially with the size of the 

problem. Therefore, a heuristic algorithm needed to be developed to obtain a near optimal 

solution for large problems. 
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CHAPTER 4 

4 Heuristic Algorithm 

4.1 Introduction 

Golden and Wong (1981) proved that even finding a solution for the CARP that lies 

within 1.5 times the optimal cost is NP-hard. Therefore, to solve this problem, a heuristic 

method needs to be developed. Heuristics are common-sense rules drawn from experience 

to solve combinatorial problems. They do not always lead to the optimum solution but 

usually produce good results in a reasonable computation time. 

In this research, a heuristic algorithm based on a Greedy Randomized Adaptive Search 

Procedure (GRASP) (Resende and Ribeiro, 2003) was developed to solve the problem. 

GRASP is a multi-start meta-heuristic for combinatorial problems, in which each iteration 

consists of two parts: construction and local search. The construction phase builds a feasible 

solution, whose neighborhood is investigated during the local search phase until a local 

minimum is found. The best overall solution is kept as the final result. A Route Construction 

Algorithm (RCA) is used to create initial solutions for the problem, and then a Simulated 

Annealing meta-heuristic is applied to perform the local search on the results obtained by 

RCA in each iteration of the GRASP. 

This chapter explains the methodology and detailed description of the heuristic 

algorithm used along with a numerical illustration. 

 

4.2 Phase 1: Route Construction Algorithm (RCA) 

RCA works by tracing a route beginning at the depot node and incrementally adding an 

arc based on constraints and certain criteria at each iteration, until a route is completed. At 

each iteration, a list of candidates, Restricted Candidate List (RCL), is created by considering 

all possible candidates that satisfy a greedy evaluation function and that can be added to the 

current partial solution without destroying the feasibility of the solution. The greedy 

evaluation function calculates the incremental increase in total cost due to addition of the 

candidate element to the partial solution and considers only the candidates whose 

incremental cost lie below a threshold value. A candidate is selected from the RCL randomly 

and added to the current partial solution. This step is repeated until the final solution is 

obtained. 
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In the context of the problem on hand, the term cost is used to refer to the distance. 

The term “required arc” in this discussion is used for an arc that has a positive demand and 

needs to be serviced by a vehicle. The nomenclature used in the construction heuristic is 

given in Table 4-1.  

Table 4-1 RCA Nomenclature 

Variable Definition 
RCL Restricted Candidate List 
α Threshold parameter. Value between 0 and 1 

Cmin 
Lowest incremental cost of a candidate element to be added to the partial 
solution 

Cmax 
Highest incremental cost of a candidate element to be added to the partial 
solution 

E List of possible candidates that can be added to the partial solution 
No_Routes Number of routes developed in the network 

 

The steps of the construction algorithm (RCA) as applied to the CARP are outlined below: 

1. Calculate the shortest distance between each pair of nodes in the network using 

Floyd's algorithm. For details on Floyd’s Algorithm, please refer to Appendix B. Set 

No_Routes = 0. 

2. Set current node = depot node, Partial Route as no route, Partial Cost=0, and 

Remaining Capacity = Capacity of Vehicle. Each route starts from the depot node. 

If no required arcs exist in the network (i.e. all arc requirement = 0), go to step 7. 

Otherwise, go to step 3. 

3. If one or more required arc is connected to the current node then go to step 4, 

otherwise go to Step 6. 

4. Create a restricted candidate list (RCL) consisting of all arcs that can be added to the 

current route without violating the vehicle capacity constraint, and having a cost in 

the range R = [Cmin, Cmin + α * (Cmax-Cmin)] 

The value of α is selected between 0 and 1. A value of α close to 0 implies that the 

next arc for insertion would always be a low cost arc and a value of α close to 1 

implies that an arc would be selected at random from all the candidates. The 

selection of the value of α is discussed in detail in chapter 7 (Experimentation). 
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5. If RCL has at least one arc element, select an arc at random from the RCL and add 

that arc to the partial route. Update Partial route as the current Partial route with the 



added arc, Partial cost = Partial cost  + cost of the added arc, Remaining capacity = 

Remaining Capacity - capacity requirement of the added arc. If the requirement of 

the added arc is an integer (>=1), subtract 1 from the requirement of the added arc, 

otherwise set the requirement of the added arc, in both directions, to zero. Set 

current node as the ending node of the recently added arc and go to step 3. 

Otherwise, go to step 6. 

6. If no required arc in the network can be added to the route without violating the 

capacity constraint of the route, find the shortest route back to the depot; update the 

Partial route with the shortest path to the depot, Route cost = Partial cost + shortest 

distance to the depot. Set No_Routes = No_Routes + 1, and go to step 2.  

Otherwise, find the shortest path to the closest node that is connected to a required 

arc whose service requirement does not exceed the remaining vehicle capacity. 

Update the Partial route with the shortest path to the closest node, Route cost = 

Partial cost + shortest distance (cost) to the closest node. Set the current node as that 

node, and go to step 4. 

7. The solution is the set of routes covering all the required arcs in the network. The 

total number of routes in the network is No_Routes. 

 

Another variation of the above algorithm was tried. Instead of setting an upper limit on 

the cost of arcs that can be part of RCL (as in the version described above), a lower limit was 

set on the cost of arcs that can be part of RCL. This ensures that arcs having the longest 

distances are given preference. The range R in step 4 of the above algorithm was modified to 

[Cmax - α * (Cmax-Cmin), Cmax] for this purpose. In this case, a value of α close to 0 implies that 

the next arc for insertion would always be the high cost arc and a value of α close to 1 

implies that an arc would be selected at random from all the candidate arcs. Results obtained 

with this approach did not show significant difference from those obtained with the above 

version of RCA. 

One of the rules from Golden et al.'s Path Scanning Algorithm (1983) was also adopted 

to generate the initial solution. The steps vary from the RCA in the selection of the 

candidate to be added to the partial solution at each step. If the remaining vehicle capacity 

after the partial route is constructed is less than half of the total vehicle capacity, an arc that 

minimizes the distance from end of the arc to the depot is selected for inserting in the route. 
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Otherwise, an arc that maximizes the distance from end of the arc to the depot is selected. 

The value of α in step 4 of RCA can also be modified for this rule as shown below: 

 

α = 0, if vehicle capacity is less than half-full 

   = 1, otherwise   

 

The solution obtained from RCA is used as the starting solution in a simulated 

annealing algorithm. In the next section, an example of the Route Construction Algorithm 

(RCA) is presented. 

 

4.2.1 Route Construction Algorithm (RCA) Example 

A simple illustration of the RCA is given below.  

Consider a set of arcs as shown in Figure 4.1 with the depot at node 1. Each arc has 

beginning and ending nodes, length (distance), arc demand, and capacity requirement as 

shown in Table 4-2. A capacity requirement of 0.5 for an arc means that the arc can be 

serviced by traveling in either direction on the arc (from beginning node to the ending node 

or the ending node to the beginning node). A requirement expressed as an integer implies 

that the arc needs to be serviced that many times in the direction from the beginning node to 

the ending node. All arcs can be used for traveling in either direction, except arcs 3-4 and 3-

9, which are one way arcs. 

A vehicle capacity of 18 is used in this example. 
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Figure 4.1 Example to Illustrate the RCA 

 

Table 4-2 Example Problem Parameters 

Beginning 
Node 

Ending 
Node 

Distance Demand Requirement 

1 2 2 2 0.50 
1 8 2 2 0.50 
1 9 3 3 0.50 
2 3 3 3 0.50 
3 4 2 2 1.00 
3 5 3 3 0.50 
3 9 6 6 1.00 
4 6 5 5 0.50 
4 7 4 4 0.50 
5 6 4 4 1.00 
5 9 6 6 0.50 
6 5 4 4 1.00 
7 8 7 7 0.50 
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The RCA algorithm as applied to the above example is illustrated in the following steps: 

Step 1: Shortest distance between each pair of nodes in the network is calculated using 

Floyd's algorithm. A table showing the distances between all pairs of nodes is shown below. 

Number of routes = 0 

Table 4-3 RCA Example Distance Matrix 

From/To 1 2 3 4 5 6 7 8 9 

1 - 2 - - - - - 2 3 

2 2 - 3 - - - - - - 

3 - 3 - 2 3 - - - 6 

4 - - - - - 5 4 - - 

5 - - 3 - - 4 - - 6 

6 - - - 5 4 - - - - 

7 - - - 4 - - - 7 - 

8 2 - - - - - 7 - - 

9 3 - - - 6 - - - - 

 

Step 2: Set current node = 1 (depot node)  

Partial route: None, Partial cost: 0, Remaining capacity: 18 

Steps 3 and 4: Since three required arcs (1-2, 1-8, 1-9) are connected to the depot node, a 

Restricted Candidate List (RCL) is created. The lowest cost arc connected to the depot node 

is arc 1-2 with cost 2 and the highest cost arc connected to the depot node is arc 1-9 with 

cost 3 and all these arcs can be added to the route without violating the route capacity 

constraints. Therefore, Cmin= 2 and Cmax= 3 

Value of α was selected as 0.4. 

Range of costs for inclusion in RCL = [2, 2+0.4*(3-2)] = [2, 2.4] 

Two arcs 1-2 and 1-8 connected to node 1 have cost in the range [2, 2.4] and are therefore 

included in the RCL.  

Step 5: An arc is selected at random from RCL and the selected arc is added to the partial 

route. Selected arc: 1-2  

Partial route: 1-2, Partial cost: 0+2 = 2, Capacity remaining: 18-2 = 16, Requirement for arc 

1-2 is 0. 
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Set current node = 2 and go to step 3. 

Steps 3 and 4: Since one required arc ( 2-3) is connected to the node 2 and arc (2,3) can be 

added to the partial route without violating route capacity constraint, RCL consists of  arc 

(2,3) and this arc is added to the partial route.  

Partial route: 1-2-3, Partial cost: 2+3 = 5, Remaining capacity: 16-3 = 13, Requirement for 

arc 2-3 is 0. 

Set current node = 3 and go to step 3. 

Steps 3 and 4: Three required arcs (3-4, 3-5, 3-9) are connected to the current node 3. All 

these three arcs can be added to the current route without violating route capacity constraint. 

Cmin= 2 (for arc 3-4) and Cmax= 6 (for arc 3-9) 

Value of α = 0.4 

Range of costs for inclusion in RCL = [2, 2+0.4*(6-2)] = [2, 3.6] 

Two arcs 3-4 and 3-5 connected to node 3 have cost in the range [2, 3.6] and are therefore 

included in the RCL.  

Step 5: An arc is selected at random from RCL and the selected arc is added to the partial 

route. Selected arc: 3-4  

Partial route: 1-2-3-4, Partial cost: 5+2 = 7, Remaining capacity: 13-2 = 11, Requirement for 

arc 3-4 is 0. 

Set current node = 4 and go to step 3. 

Steps 3 and 4: Two required arcs (4-6, 4-7) are connected to the current node 4. Both these 

arcs can be added to the current route without violating route capacity constraint. Cmin = 4 

(for arc 4-7) and Cmax= 5 (for arc 4-6) 

Value of α = 0.4  

Range of costs for inclusion in RCL = [4, 4+0.4*(5-4)] = [4, 4.4] 

Arc 4-7 has cost in the range [4, 4.4] and is the only arc in the RCL.  

Step 5: Since arc 4-7 is the only arc in RCL, it is added to the partial route.  

Partial route: 1-2-3-4-7, Partial cost: 7+4 = 11, Remaining capacity: 11-4 = 7, Requirement 

for arc 4-7 is 0. 

Set current node = 7 and go to step 3. 

Steps 3 and 4: One required arc (7-8) is connected to the current node 7 and can be added to 

the current route without violating route capacity constraint. Therefore, RCL consists of arc 

7-8.  
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Step 5: Since RCL consists of one arc (7-8), this arc is added to the partial route  

Partial route: 1-2-3-4-7-8, Partial cost: 11+7 = 18, Remaining capacity: 7-7 = 0, Requirement 

for arc 7-8 is 0. 

Set current node = 8 and go to step 3. 

Steps 3 and 4: One required arc (8-2) is connected to the current node 8, but this arc cannot 

be added to the partial route without violating the route capacity constraint. Therefore, RCL 

doesn’t have any arc elements. 

Step 5: Since RCL doesn’t consist of any arc elements, go to step 6. 

Step 6: No required arc in the network can be added to the partial route without violating 

the route capacity constraint. Therefore, trace the shortest path back to the depot node 1 

(which is 8-1). 

Route: 1-2-3-4-7-8-1, Route cost: 18+2 = 20. 

Increment the number of routes by 1 i.e. Number of routes = 1, and go to Step 2. 

Step 2: Set current node = 1 (depot node) and continue the steps in the algorithm to cover 

all the required arcs in the network. 

 

In the following section, the simulated annealing algorithm is discussed in detail. 

 

4.3 Phase 2: Simulated Annealing Heuristic  

4.3.1 Background 

Simulated annealing is a search technique used to find good solutions to combinatorial 

problems. Metropolis et al. (1953) first published the ideas that form the basis of simulated 

annealing. The idea behind simulated annealing is that if molten material is cooled back into 

a solid state, the structural properties of the cooled solid depend on the rate of cooling. If 

sufficiently slow cooling is used, large and orderly arranged crystals are formed and this state 

is stable and has the lowest energy. On the other hand, if the material is cooled quickly, 

imperfections are formed in the crystal structure. In this state, the material is in a state of 

instability and has a higher energy. Simulated Annealing algorithm provides an algorithmic 

way of exploiting the connection between this type of thermodynamic behavior and the 

search for global minima for a combinatorial optimization problem (Henderson, et al., 2003). 

Metropolis  et al.’s algorithm simulates the change in energy of a physical system when 

subjected to a cooling process until it reaches a state of thermal equilibrium. 
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Later, Kirkpatirick et al. (1983) suggested the use of simulated annealing to search for 

feasible solutions of an optimization problem in order to reach an optimal solution. 

Simulated annealing algorithm searches a wide solution space by accepting inferior solutions 

with a probability that decreases as the algorithm progresses. By sometimes accepting a non-

improving solution, the simulated annealing algorithm avoids being trapped in local optima 

and can search different areas in the solution space for the global optima. 

Since the work of Metropolis, a significant amount of work has been done on simulated 

annealing and its applications in different fields of combinatorial optimization.  

The general simulated annealing algorithm for a minimization problem is outlined 

below. 

 

Select an initial solution s0, an initial temperature t0, temperature reduction factor a, and 

number of iterations at each temperature NIk, current solution s=s0, counter k=0, best 

solution smin=s0, best objective function value fmin=f(s0) 

 

Repeat 

Set counter n=0 

 Repeat 

 Generate a solution s’ ε N(s), where N(s) is neighborhood of solution s 

 ∆ s,s’ = f(s)-f(s’) 

 if ∆s,s’  ≥ 0, then s ← s’. If f(s’)< f(smin) then fmin=f(s’) and smin=s’ 

 if ∆s,s’ < 0, then s ← s’ with probability exp(∆ s,s’ / tk ) 

 n=n+1 

until n = NIk 

k=k+1 

 set tk = a.tk-1 

Until stopping condition = true 

 

The stopping condition can be expressed in terms of minimum temperature or 

maximum number of iterations allowed. If the temperature of the system is less than or 
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equal to the minimum temperature desired or the maximum number of iterations has been 

reached, the algorithm stops. 
 

4.3.2 SA Heuristic Algorithm 

The simulated annealing algorithm takes the final route obtained from the construction 

algorithm RCA and searches for better solutions in the solution space.  This is performed by 

moving arcs between routes. The common terms used in describing the algorithm are 

discussed below.  

 

Terms used:  

Required arc/ Serviced Arc - Arc that is required to be serviced 

Unrequired arc - Arc that can be used for traveling but doesn’t require servicing 

(deadheading) 

Routex1 - The route from which one or more arcs are removed with or without insertion of 

one or more arcs from other routes 

Routex2 - The route in which one or more arcs are inserted with or without removal of one 

arc or more arcs from this route. 

 
As explained previously, the simulated annealing search process starts with the solution 

obtained from RCA and searches a defined neighborhood of this solution for a better one. 

As simulated annealing allows for uphill moves, i.e. moves that give solutions worse than the 

current solutions, there is a chance that the process can escape local minima and find better 

solutions. Different types of moves were tried on a few problems and five types of moves 

performed the best. These are: 

 

1. One arc move- Moving one arc from Routex1 to Routex2 (Move1) 

2. One to one exchange- Exchanging one arc between Routex1 and Routex2 (Move2) 

3. Two to one exchange- Moving two arcs from Routex1 to Routex2, and one arc from 

Routex2 to Routex1 (Move3) 

4. Three to one exchange- Moving three arcs from Routex1 to Routex2, and one arc 

from Routex2 to Routex1 (Move4) 
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5. Three to two exchange- Moving three arcs from Routex1 to Routex2, and two arcs 

from Routex2 to Routex1 (Move5) 

 

When arc(s) are removed or inserted in a route, a Route Improvement (RI) algorithm is 

used to connect the arcs in the route starting and ending at the depot node. The next section 

describes RI in detail. 

 

4.3.2.1 Route Improvement Algorithm (RI) 

The input for the RI is a set of arcs, which are obtained as a result of different types of 

moves as explained above. As an example, consider two routes A and B with Route A 

consisting of 5 arcs: {A1, A2, A3, A4, A5} and Route B consisting of 4 arcs: {B1, B2, B3, 

B4} in that sequence. Both routes start and end at the depot node. If Move2 is performed 

on these two routes and arc A3 in route A is exchanged with arc B2 in route B, new routes 

need to be traced through the new sets of arcs. The 2 sets of arcs now become: 

 

Set 1: {A1, A2, A4, A5, B2} 

Set 2: {B1, B3, B4, A3} 

 

RI works on each set of arcs, one set at a time to create a low cost route starting and 

ending at the depot. The algorithm works by first tracing a route starting and ending at the 

depot and connecting all the arcs in the set. Then the route is divided at multiple points, 

which results in creation of multiple elements. The sequence of elements in the route is 

changed by moving the elements within the route. This results in multiple sequences or 

routes. The output of this algorithm is the route (sequence of elements) having the cheapest 

cost among the evaluated (rearranged) sequences of elements. The following terms are used 

in describing RI, depending on the number of points at which an initial or intermediate route 

(obtained after rearranging) is divided.  

 

Level 1 routes: Set of routes obtained by splitting the input route at 2 points in all possible 

ways and rearranging the split segments. The analysis performed for obtaining these routes is 

called Level 1 analysis. 

 

 

50



As an example, consider a route starting and ending at the depot node (node 1) that contains 

4 required one-way arcs A1, A2, A3 and A4 as shown below: 

 

1-A1-A2-A3-A4-1 

 

Not considering the depot node, Table 4-4 shows the points where the routes can be 

split and the possible rearrangements of segments created. 

Table 4-4 Possible Splitting Points and Rearrangements  

  
No 

Splitting points 
(denoted by ~) 

Segments 
created 

Possible 
Rearrangements 

1 A1~A2~A3-A4 A1, A2, A3-A4 A1-A2-A3-A4,  
A1-A3-A4-A2,  
A2-A1-A3-A4,  
A2-A3-A4-A1,  
A3-A4-A1-A2,  
A3-A4-A2-A1 

2 A1-A2~A3~A4 A1-A2, A3, A4 A1-A2-A3-A4,  
A1-A2-A4-A3,  
A3-A1-A2-A4,  
A3-A4-A1-A2,  
A4-A1-A2-A3,  
A4-A3-A1-A2 

3 A1~A2-A3~A4 A1, A2-A3, A4 A1-A2-A3-A4,  
A1-A4-A2-A3,  
A2-A3-A1-A4,  
A2-A3-A4-A1,  
A4-A1-A2-A3,  
A4-A2-A3-A1 

 

Level 2 routes: Set of routes obtained by splitting the input route at 3 points in all possible 

ways and rearranging the split segments. The analysis performed for obtaining these routes is 

called Level 2 analysis. This is done in a similar fashion to the example shown for Level 1 

routes. 

N1: The number of best (cheapest) Level 1 routes tracked. The cost of each route created 

during Level 1 analysis is evaluated and the N1 cheapest routes are tracked for further 

analysis. 
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N2: The number of best (cheapest) Level 1 routes selected for splitting at 3 points (for 

creating Level 2 routes). The cost of each route created during Level 2 analysis is evaluated 

and the N2 cheapest routes are tracked for further analysis. 

 

The steps followed in RI are explained below: 

1. Create a route starting at the depot and connecting each required arc in the set and 

ending at the depot, using a construction algorithm. This algorithm is based on the 

greedy heuristic approach called “next best” (NB), originally applied to job scheduling 

problems (Gavett, 1965). This method works by selecting the task, which has the least 

cost after the current task is completed. This procedure was modified for tracing a route 

through a set of arcs starting and ending at the depot node. An example that shows the 

details of this algorithm is presented in section 4.3.2.1.1. 

2. The route obtained in step 1 is split at two points in all possible ways (Level 1 analysis). 

Splitting at two points creates three segments. The sequence in which the three segments 

are serviced is changed, i.e. the split segments are rearranged in all possible ways and the 

cost of each route is evaluated. While rearranging the elements, both orientations of an 

arc are considered if the arc is a two-way arc (allowing service in both directions). 

3. During Level 1 analysis, new routes are found. The N1 lowest cost routes are tracked 

and stored in the Level 1 list. If a route cheaper than a route in Level 1 list is found, the 

new route is included in the list and the list is updated.  

4.  The top N2 routes are selected from the level 1 list. These routes are called Level 2 

routes and are stored in the Level 2 list. Each Level 2 route is then split at 3 points in all 

possible ways, thus creating four segments. The sequence in which the four segments are 

serviced is changed, i.e. the split segments are rearranged in all possible ways and the cost 

of each route is evaluated considering both orientations of an arc if the arc is a two-way 

arc (allowing service in both directions). 

5.  If a new route is obtained during Level 2 analysis and it is cheaper than a route in Level 

1 list (top N1 routes), Level 1 analysis (splitting at two points) is performed on the new 

route. If Level 1 analysis on this new route creates a route that is cheaper than a top N2 

route in the Level 2 list, Level 2 analysis is performed on the newly created route.  

6. The cheapest cost route obtained after Level 1 and Level 2 analysis is the final route 

produced by the algorithm. 
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This algorithm is illustrated with an example in the next section. 

 

4.3.2.1.1 RI Example 

Consider a route represented as: 

1-(1-2)-(3-4)-(4-5)-(5-6)-7-8-(9-10)-10-11-1  

 

Parenthesis in the above route implies that the arc inside parenthesis is a required arc. 

The above route can be explained as: 

 

- Start at depot (node 1) 

- Service arc 1-2 

- Move from 2 to 3 by the shortest distance (which is 2-3) 

- Service arc 3-4 

- Service arc 4-5 

- Service arc 5-6 

- Move from node 6 to 9 via the shortest distance (which is 6-7-8-9) 

- Service arc 9-10 

- Move from 10 to depot via the shortest distance (which is 10-11-1) 

 

Suppose a required arc 12-13 is moved from another route Routex1 to this route as a 

result of performing Move1 (one arc move). Considering only the required arcs, the arcs in 

the route above can be denoted as shown in Table 4-5.  

Table 4-5 List of Arcs Including the Inserted Arc 

 
Arc Denoted by: 

1-2 A1 

3-4 A2 

4-5 A3 

5-6 A4 

9-10 A5 

12-13 
A6 

 (inserted arc) 
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Using this notation, the route (without the inserted arc) can be represented as: 

1-A1-A2-A3-A4-A5-1 

 

Using the NB algorithm, a route is created using the above arcs (including the inserted 

arc). A square matrix is created with dimension of (1 + no of arcs), where each cell denotes 

the distance from the row element to the column element for that cell. Each cell in the first 

row denotes the distance from the depot node to the end of the arc of the column element 

and each cell in the first column denotes the distance from the end of the arc in the row 

element to the depot node. All other cells consist of distance values from the end of the arc 

in the row element to the end of the arc of the column element. 

The construction algorithm starts at the depot node, and traces the partial route from 

depot node to the minimum cost column element. The first row and the selected column are 

then covered. Next, the minimum cost uncovered element in the row corresponding to the 

column element (excluding column 1) is found and that element is inserted into the route 

and the corresponding row and column are covered. This step is repeated till all the 

columns, except column 1, are covered; the route is completed by connecting the end of the 

last arc to the depot. If two or more elements have the same minimum cost, the next 

element for insertion in the route is selected randomly. Table 4-6 represents an example of 

the representation of the square matrix. 

 

Table 4-6 Matrix for Creating a Route in the RI Example 

From\To 1 A1 A2 A3 A4 A5 A6 
1 - 3 6 5 7 10 9 

A1 3 - 3 4 6 12 12 
A2 4 7 - 1 3 9 13 
A3 5 8 5 - 2 8 14 
A4 7 10 7 4 - 6 17 
A5 9 12 13 10 10 - 11 
A6 4 7 10 9 11 9 - 
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The steps for generating the initial route using the above matrix are outlined below: 

1. Starting at depot node 1, find the column element with the smallest value. The 

smallest value is 3 for element A1.  

Partial solution: 1-A1, Partial cost: 3 

Cover row 1 and column A1.  

2. From row element A1, find the column element (excluding the first column) not 

covered before and with the smallest value. The smallest value is 3 for the element 

between row A1 and column A2. 

Partial solution: 1-A1-A2, Partial cost: 6 

Cover row A1 and column A2. 

3. From row element A2, find the column element (excluding the first column) not 

covered before and with the smallest value. The smallest value is 1 for the element 

from A2 to A3. 

Partial solution: 1-A1-A2-A3, Partial cost: 7 

Cover row A2 and column A3. 

4. From row element A3, find the column element (excluding the first column) not 

covered before and with the smallest value. The smallest value is 2 for the element 

from A3 to A4. 

Partial solution: 1- A1-A2-A3-A4, Partial cost: 9 

Cover row A3 and column A4. 

5. From row element A4, find the column element (excluding the first column) not 

covered before and with the smallest value. The smallest value is 6 for the element 

from A4 to A5. 

Partial solution: 1-A1-A2-A3-A4-A5, Partial cost: 15 

Cover row A4 and column A5. 

6. From row element A5, find the column element (excluding the first column) not 

covered before and with the smallest value. The smallest value is 11 for the element 

from A5 to A6. 

Partial solution: 1-A1-A2-A3-A4-A5-A6, Partial cost: 26 

Cover row A5 and column A6. 

7. Since all columns (except column 1) have been covered, go back to the depot node 1 

from the row element A6. The cost of traveling from A6 to 1 is 4. 
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Final solution: 1-A1-A2-A3-A4-A5-A6-1, Final cost: 30 

 

In this way, an initial route is traced connecting the depot node with the set of arcs listed in 

Table 4-5. 

The generated route is: 

1-A1-A2-A3-A4-A5-A6-1………………………………………………………………(16) 

 

In (16), the starting and ending 1 denote the depot node.  

The next step is to divide this route at multiple points. As an example, the generated route 

can be divided at two points denoted by “~” below: 

 

1-A1~A2-A3~A4-A5-A6-1 

 

Splitting at 2 points creates 3 elements (not considering the depot node):  

A1, A2-A3, A4-A5-A6 

 

These elements are rearranged, i.e. sequence is changed. The possible sequences are: 

1. (A1, A2-A3, A4-A5-A6) – same as original route 

2. (A1, A4-A5-A6, A2-A3) 

3.  (A2-A3, A1, A4-A5-A6) 

4. (A2-A3, A4-A5-A6, A1) 

5. (A4-A5-A6, A1, A2-A3) 

6. (A4-A5-A6, A2-A3, A1) 

 

In this way a route is split in all possible ways at 2 points, rearranged and the cost is 

evaluated. While rearranging the elements, both orientations of an arc are considered if the 

arc is a two-way arc (allowing service in either direction). The N1 routes with least cost 

routes (obtained after rearranging the elements in all possible ways) are tracked (Level 1 

routes). The top N2 (Level 2 routes) of these N1 routes are further analyzed by splitting at 3 

points in all possible ways and rearranging the elements obtained after splitting. If a cheaper 

route than any of the top N1 routes is found during Level 2 analysis, then Level 1 analysis is 

performed on that route.  If Level 1 analysis on this new route creates a route that is cheaper 
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than a top N2 route in the Level 2 list, Level 2 analysis is performed on the newly created 

route. The cheapest cost route obtained after Level 1 and Level 2 analysis is the final output 

of the algorithm. 

Using RI, low cost routes are determined for both Routex1 and Routex2 routes obtained 

as a result of one of the five moves explained in Section 4.3.2. The next section describes the 

five type of moves performed in detail. 

 

4.3.2.2 Types of Moves 

A brief introduction was given in section 4.3.2 about the five types of moves performed 

on the routes obtained by RCA. These moves help in exploring the solution space in depth. 

Each of these moves is performed for a specific number of iterations as part of the 

simulated annealing heuristic. 

 

The moves performed are: 

1. Move1 

This type of move involves moving a single arc from one route to another (from 

Routex1 to Routex2) 

Steps in Move1: 

1. Create a candidate list of arcs that can be moved from one route to another without 

violating the capacity constraint of the route to which it is moved. 

There are 3 categories of such arcs-  

a) Arcs for which both the preceding and succeeding arcs are not serviced arcs. 

b) Arcs for which only one of the preceding or succeeding arc is a serviced arc.  

c) Arcs for which both the preceding and succeeding arcs are serviced arcs.  

For moving an arc from one route to other, the highest preference is given to type 

(a) arcs followed by type (b) and then type (c) arcs.  

2. For each arc that can be moved, all the candidate routes in which the arc can be 

inserted without violating the route capacity constraint are determined.  

3. An arc is selected at random from the three types of candidate arcs listed in step 1, 

with the highest probability of selection assigned to type (a) arcs followed by type (b) 

and type (c) arcs. 

 

 

57



4. For the arc selected for moving from one route into another, the route in which the 

arc can be inserted is selected at random from the candidate routes created in step 2.  

In another version of Move1, the shortest distance from a candidate arc to each of 

the possible destination routes is found and the route that is closest to the arc is 

selected. The distance of a route from an arc is calculated by evaluating the minimum 

value among the distances from each of the two nodes of the arc to all nodes in the 

candidate destination routes. The destination route that is closest to the arc is 

selected for insertion. 

The route from which the arc is to be removed is designated as Routex1 and the route into 

which the arc is inserted is designated as Routex2. 

 

2. Move2 

This type of move involves exchanging two arcs between two routes without exceeding 

the route capacity limits of the routes to which the arcs are moved.  

Steps in Move2: 

1. A list of pair of arcs that can be exchanged between all possible pair of routes in the 

network is created using complete enumeration, in such a way that exchanging the 

arcs does not violate the route capacity constraint of either of the routes.  

2. A selection is made at random from the list created in step 1. The selected item 

consists of the two arcs to be exchanged (and the routes they belong to). The routes 

whose arcs are exchanged are referred to as Routex1 and Routex2. The first selected 

arc (defined by the selected item) is removed from Routex1 and inserted into 

Routex2 and at the same time, other selected arc (defined by the selected item) is 

removed from Routex2 and inserted into Routex1. 

 

3. Move3 

This type of move involves moving two arcs from one route (Routex1) to another 

(Routex2) and moving one arc from Routex2 to Routex1. The exchange of arcs is performed 

in such a way that the maximum route capacity of the two routes is not exceeded. Steps in 

Move3 are similar to those of Move2. 
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This type of move involves moving three arcs from one route (Routex1) to another 

(Routex2), and moving one arc from Routex2 to Routex1. The exchange of arcs is 

performed in such a way that the maximum route capacity of the two routes is not exceeded. 

Steps in Move4 are similar to those of Move2. 

 

5. Move5 

This type of move involves moving three arcs from one route (Routex1) to another 

(Routex2), and moving two arcs from Routex2 to Routex1. The exchange of arcs is 

performed in such a way that the maximum route capacity of the two routes is not exceeded.  

Steps in Move5 are similar to those of Move2. 

 

Sets of moves are defined such that each set contains each move only once and the 

moves are sequenced in a random order (e.g. Move3 - Move4 - Move1 - Move5 - Move2). 

Within each set, each of the five moves is performed for a fixed number of iterations. Upon 

completion of the moves in one set, the algorithm proceeds with a different set. 

 

The nomenclature used in the simulated annealing heuristic is given in Table 4-7.  

Table 4-7 Simulated Annealing Nomenclature 

Variable  Definition  

T  Temperature  

N  Counter (Number of iterations) at the current temperature  

N_max Max number of iterations at each temperature  

RCA_Cost  Cost (distance) obtained from the construction heuristic  

RCA_Routes  Set of routes obtained from the construction heuristic.  

Best_Cost  Lowest cost (for the best solution) 

Best_Routes Route corresponding to the lowest cost  

Curr_Cost  Current cost  

Curr_Routes Set of routes corresponding to the current cost 

R  Random value between 0 and 1  

SA_Cost Simulated Annealing cost  
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SA_Routes  Simulated Annealing route set 

∆TC  Value of (Curr_cost  – SA_Cost)  

a  Temperature reduction factor  

N_move Maximum number of iterations for each type of move 

N_iteration Counter (Number of iterations in the heuristic) 

Max_Iteration Maximum number of iterations in the heuristic 

 

The steps for the SA algorithm are as follows: 

  

1. Set the values of parameters a, T, N_max, N_move, Max_Iteration and set N = 0, 

N_iteration = 0. Create a Set of moves, Type of move is the first in the set. Cooling 

schedule is governed by the maximum number of iterations at each temperature 

N_max and the temperature reduction factor a. The temperature reduction factor 

ranges between 0 and 1 and determines the rate at which the temperature parameter 

reduces. This means that after every N_max iterations, the temperature is reduced by 

a factor a. The initial temperature T should be high enough to allow an almost free 

exchange of neighboring solutions, which allows the heuristic to search different 

areas of the solution space.  

2. Set Best_Cost = RCA_Cost, and Best_Routes = RCA_Routes. In this step the best 

cost and route set are set to the solution value and route obtained from the RCA. 

Also the current cost and route set are set equal to the RCA’s cost and route set, i.e. 

Curr_Cost = RCA_Cost and Curr_Routes = RCA_Routes. 

3. Set N_iteration = N_iteration +1. The overall iteration counter is incremented by 1. 

4. Set N = N +1. The annealing schedule iteration counter is incremented by 1. 

5. Calculate the cost after performing the move and set it equal to SA_Cost. Also, set 

the new route set obtained as SA_Routes. 

6. Calculate the difference between the current cost and the simulated annealing cost, 

∆TC=  (Curr_Cost – SA_Cost).  

7. If ∆TC >= 0 then set Curr_Cost = SA_Cost and Curr_Routes = SA_Routes. In this 

step, the difference between current cost and the simulated annealing cost is 

evaluated. If the difference is greater than or equal to 0, then it means that the SA 
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solution is better than the current solution and the current values are set as SA 

values. Also, if the simulated annealing solution is less than the best solution 

obtained so far, then set the best solution as the simulated annealing solution., i.e. if 

SA_Cost < Best_Cost, set Best_Cost = SA_Cost and Best_Routes = SA_Routes.  

8. If ∆TC < 0 and Exp(∆TC/T) > R, then set Curr_Cost = SA_Cost and Curr_Routes 

= SA_Routes. If the SA solution obtained is greater than or equal to the current 

solution, the non improving solution is either accepted or rejected based on a 

probability function. R is a random value between 0 and 1. As the value ∆TC gets 

closer to 0, the non-improving solution has a higher chance of being accepted. Also 

as T gets smaller the probability of accepting a non-improving solution decreases.  

9. If N = N_max then set T = a * T and N = 0. If the maximum number of iterations 

at the current temperature has been reached, the value of temperature is multiplied 

by a temperature reduction factor a (discussed in detail in Chapter 7). The 

temperature reduction factor has a value between 0 and 1. The annealing schedule 

counter N is reset to 0.  Go to step 10. 

10. If N_iteration = Max_Iteration, the heuristic terminates, else go to step 11.  

11. If (N_iteration MOD (5 *N_move)) = 0 then generate a new set of moves. Type of 

move is the first in the set. Go to step 3. 

Otherwise, go to step 12. 

12. If (N_iteration MOD N_move) = 0, then update type of move to the next move 

within the set of moves. Go to step 3. 

Otherwise, go to step 3.   

 

The process flow chart for the SA heuristic is shown in Figure 4.2. 
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Figure 4.2 SA Flow Diagram 

1

Step 1: Input values for a, T, N_max, Max_Iteration. 
Set N=0, N_iteration=0

Create a Set of Moves, Type of move is the first in the set

Step 2: Set Best_Cost = RCA_Cost, Best_Routes = RCA_Routes. 
Set  Curr_Cost = RCA_Cost and Curr_Routes = RCA_Routes.

Step 3:  Set N_iteration = N_iteration +1 

Step 4:  Set N = N +1

Step 5: Calculate the cost after performing the move.
Set cost to SA_Cost

Set the new route set to SA_Routes.

3
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Step 6: Calculate ∆TC =  (Curr_Cost – SA_Cost). 

Step 8:  
∆TC < 0 AND 

Exp(∆T/T) > R

1

Step 7:  
∆TC >= 0

Set Curr_Cost = SA_Cost 
Set Curr_Routes = SA_Routes

2

Step 7:  
SA_Cost < 
Best_Cost

Set Curr_Cost = SA_Cost 
Set Curr_Routes = SA_Routes

No

Set Best_Cost = SA_Cost 
Set Best_Routes = SA_Routes

No

Yes

Yes

Yes

No

 

Figure 4.2  SA Flow Diagram (Contd.) 
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set T = a * T 
N = 0

2

Step 9:  
N = N_max

Step 10:  
N_iteration = 
Max_Iteration

Step 12: 
(N_iteration MOD 

N_move) = 0 

Yes

No

Update type of move to the next move 
within the set of moves

Yes

No

End

Step 11:  
(N_iteration MOD 
(5 *N_move)) = 0

3

Generate a new set of moves
Type of move is the first in the set 

Yes

3 3

No

Yes

No

  

 

 

Figure 4.2  SA Flow Diagram (Contd.) 
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CHAPTER 5 

5 Experimentation 

5.1 Introduction 

In order to evaluate the efficiency of a heuristic algorithm, one needs to compare its 

results to some standard benchmark. Barr et al. (1995) identified the following two cases: 

• Where the optimal solution is known, the heuristic solution can be directly compared to it 

to measure the effectiveness of the heuristic.  

• Where optimal solutions are unknown or unobtainable by current methods, some other 

benchmark of performance should be offered such as a comparison to a tight lower (upper) 

bound or comparison to a published solution values on publicly available test problems. 

 

Since the CARP is NP-hard, performing comparisons between the heuristic results and 

the results obtained from exact methods would only be possible for small size problems. In 

order to test the solution quality, the heuristic is applied to publicly available test problems 

and the results are compared to published solution values for those problems. 

 

5.2 Problem Instances 

The heuristic was applied to four sets of problem instances provided in the literature. 

The benchmark sets used and the number of problems in each set is listed in the table 

below. 

Table 5-1 Problem Instances 

Set Name 
Number of 
instances 

Built by Problem sizes 

1 gdb 23 DeArmon (1981) No of nodes: 7-27 
No of required arcs: 11-55 

2 val 34 Belenguer and Benavent 
(2003) 

No of nodes: 24-50 
No of required arcs: 34-97 

3 egl 24 Belenguer and Benavent 
(2003) 

No of nodes: 77-140 
No of required arcs: 51-190 

4 mval 34 Belenguer et al. (2006) No of nodes: 24-50 
No of required arcs: 43-138 
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The gdb, val and egl datasets have instances with undirected arcs and mval has instances 

with both directed and undirected arcs (mixed network).  

 

5.3 Experimentation Overview  

A program was written in Microsoft Visual Basic 6.0 that performs the steps of the 

RCA and the SA heuristic. The output of the RCA is the input to the SA heuristic, which 

should improve the solution obtained by the RCA. After several replications, in which RCA 

is applied followed by SA, the best overall solution is selected. The following section 

describes the selection of parameters in the application of the RCA and the simulated 

annealing heuristic. 

 

5.3.1 Selection of the threshold parameter α in the RCA 

As discussed earlier, the value of the threshold parameter (α) controls what elements are 

included in the RCL from among possible candidates for insertion into the partial route. 

This parameter controls the randomness and greediness in the algorithm; a value of α = 0 

corresponds to a pure greedy construction, and a value of α = 1 corresponds to a pure 

random construction for a minimization problem. Experiments were performed on some 

test problems to evaluate the effect of α on the results. The results obtained showed that no 

single value of α produced the best results, and that changing the value at the start of each 

new replication of the multi-start RCA provided better results than keeping the value of α 

fixed for all replications. At each start, the value of α is selected at random from the set 

[0,0.2,0.4,0.6,0.8,1] in order to generate a broad range of construction solution values for the 

local search process. The number of replications was set at 30 for all problem instances.  

 

5.3.2 Selection of the SA parameters 

The selection of parameters used in the SA heuristic should be made with care, as they 

affect the speed of the algorithm and the quality of the solutions obtained. Using the same 

nomenclature used in , these parameters are listed below. Table 4-7

1. Initial temperature, T 

2. Temperature reduction factor, a 

3. Maximum number of iterations at each temperature, N_max 
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4. Maximum number of iterations for each type of move, N_move 



5. Stopping criterion- maximum number of iterations in the heuristic, Max_Iteration 

The initial temperature (T), the rate at which the temperature is reduced (a), and number 

of iterations at each temperature (N_max) define the cooling schedule. After every N_max 

iterations, the temperature is multiplied by the temperature reduction factor a.  Initially the 

temperature should be high enough so that non improving moves are accepted with a 

reasonable probability, as this would allow a broader solution space to be explored. If a very 

high initial temperature is used, almost all non-improving moves would be accepted and it 

would take a long time for the heuristic to converge to a low cost solution. The temperature 

reduction factor should be selected for sufficiently slow cooling as this would allow for in 

depth exploration of the solution space at a particular temperature. However, this is done at 

the expense of the speed of the algorithm. As explained previously, a type of move is 

selected from the set of moves (having five moves in random order) and applied for 

N_move iterations during the SA local search. Upon completion of 5*N_move moves 

(N_move moves performed for each of the five types of moves), the algorithm proceeds 

with a different set of moves. The stopping criterion is defined in terms of the maximum 

number of iterations (N_max) in the SA heuristic, and the heuristic stops when that number 

has been reached. The value of N_max is set in such a way that the temperature gets close to 

zero when the heuristic stops. 

 

5.3.2.1 Values of parameters used 

An initial value of temperature was selected using the following formula: 

 

ln( )
CostDiffIT

pa
=  

 

where,  

IT = The initial temperature value 

CostDiff = Estimate of the difference between the initial solution and a solution obtained 

after performing a non-improving move. This value is set as the average cost (length) of all 

arcs that require service in the network. This provides a rough approximation of the increase 

in cost acceptable as a result of a non-improving move. 
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pa = Initial probability of accepting a non-improving solution with a cost equal to the 

minimum cost + CostDiff. This probability is set as a random value between 0.3 and 0.4. 

Values of all other parameters were selected after experimenting with a few problem 

instances. These values are given in the following table. 

 

Table 5-2 Simulated Annealing Parameters 

Parameter Value 

Temperature reduction factor, a 0.985 – 0.995 
Maximum number of iterations at each temperature, N_max 300 
Maximum number of iterations for each type of move, 
N_move 

1000 

Stopping criterion- maximum number of iterations in the 
heuristic, Max_Iteration 

125,000 

 

Using these parameters, the final value of the temperature, when the stopping criterion 

is met, is generally close to 0. Although these guidelines were followed for most of the 

problem instances, slightly different parameter values provided better solutions for some 

instances during the experimentation phase, and hence were used for those instances. 

 

5.4 Comparisons of the results 

The Microsoft Visual Basic 6.0 programming language was used to code the heuristic 

algorithms developed. The software was run on a computer with central processor unit 

(CPU) clock speed of 2.99 MHz and a total of 1 gigabyte of random access memory (RAM) 

to solve the problems listed in Table 5-1 as well as few small test problems that are used for 

comparison with the mathematical programming model described in Chapter 3. 

 

5.4.1 Comparison of results with the Mathematical Programming (MP) model 

A few small problems were solved using the mathematical programming (MP) model 

described in Chapter 3 and the results were compared to the results obtained with the 

developed heuristic. Table 5-3 presents the results obtained on three instances. 
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Table 5-3 Comparison of Results with the MP model 

No. Number 
of nodes 

Number 
of arcs 

MP Model Developed Heuristic 

   Optimal 
Solution 

Time taken 
(seconds)

RCA 
Solution 

SA  
Solution 

Time taken 
(seconds)

1 9 11 73 8 98 73 0 
2 8 13 55 280 81 55 0 
3 9 12 81 2040 97 81 1 

 

As shown in the table, the time required to run the MP model is extremely high even 

for very small problems. For example, in problem 3, which has 9 nodes and 12 arcs, the MP 

model obtained the optimal solution of 81 in approximately 34 minutes (~2040 seconds). 

For the same problem, the developed heuristic obtained the optimal solution in 

approximately 1 second.  

 

5.4.2 Comparison of the results with problem instances in literature 

In order to evaluate the performance of the heuristic developed, the results obtained for 

the gdb, val, and egl instances were compared to those obtained with the CARPET heuristic 

(developed by Hertz et al., 2000) and memetic algorithm, MA (developed by Lacomme et al., 

2004). The results obtained by MA are the best known in literature for these problem 

instances. The results obtained for the mval instances were compared against solution values 

provided by Belenguer et al. (2006). CARPET is designed for undirected problems and was 

applied to gdb, val, and egl datasets and not the mval dataset (which has mixed networks). 

The results obtained by CARPET on these datasets were reported by Lacomme et al. (2004). 

The results of the heuristic developed and the results obtained by CARPET and MA were 

also compared against known lower bounds in order to illustrate the quality of the solutions 

obtained. According to Lacomme et al. (2004), the lower bounds for the gdb instances were 

obtained by Belenguer and Benavent (2003), except for gdb14, which was obtained by 

Amberg and Vob (2002). The lower bounds for all val and egl instances were reported by 

Belenguer and Benavent (2003). For the mval instances, the lower bounds were obtained by 

Belenguer et al. (2006).  
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Tables 5-4 through 5-6 show the results obtained for the datasets listed in Table 5-1. 

Columns (1) to (3) give the lower bound, results obtained by CARPET (2000), and the 

results obtained by MA, respectively. Column (4) gives the results obtained with the RCA, 

column (5) gives the results obtained with SA and column (6) gives the percentage 

improvement obtained by SA over the RCA results. The average deviation from the lower 

bound for a dataset is calculated as the percentage change in the sum of solution values 

obtained on all instances over the sum of the lower bounds on all instances in the dataset. 

The gray shaded cells denote instances in which the results of the developed heuristic match 

the results obtained by MA, and black shaded cells denote instances in which the results of 

the developed heuristic beat the results obtained by MA.  

Table 5-4 presents the results for the gdb instances. The developed algorithm matched 

the best-known results in the literature for all 23 instances. The average deviation of results 

obtained from the best-known lower bounds was 0.21%. The average improvement of SA 

over the results obtained with RCA was found to be 7.76%, with a lowest improvement of 

0.00% and a highest improvement of 17.18%. 

The results obtained for the val instances are shown in Table 5-5. The developed 

algorithm matched the best-known results in the literature for 33 of the 34 instances. The 

average deviation of results obtained from the best-known lower bounds was 0.62%. In all 

cases, the SA improved the results obtained from the RCA and the average improvement 

was found to be 11.82%. The lowest and the highest improvement were found to be 4.42% 

and 17.86% respectively. 

Table 5-6 presents the results obtained for the egl instances. The developed heuristic 

performed the best on these instances compared to the other heuristics. Out of the 24 

instances, 15 of the best-known results obtained with MA (Lacomme et al., 2004) were 

improved, and on 5 more instances, the results were matched. The average deviation of the 

results obtained with SA from the best-known lower bounds was 2.61% as opposed to 

2.69% deviation for the results obtained by MA. The improvement obtained with SA over 

RCA was in the range 11.92%-20.12%, and the average improvement was 15.59%. 

The results obtained for the mval instances are shown in Table 5-7. The developed 

heuristic matched the best-known results on 28 of the 34 instances and beat the results on 

four other instances. The average deviation of the results obtained with SA from the best-

known lower bounds was 0.50% compared to 0.55% deviation for the results obtained with 
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MA (Belenguer et al. 2006). The improvement obtained with SA over RCA was in the range 

7.63%-24.42%, and the average improvement was 18.99%. 

The results obtained with SA were similar to MA (best in the literature) for small 

problems (sets gdb & val), but better for larger problems (sets egl & mval), specially for egl 

which has the largest problems. 
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Table 5-4 Computational Results for the gdb Instances 

 (1) (2) (3) (4) (5) (6) 

gdb instances Lower Bound 
(LB) 

CARPET 
(2000) 

MA 
 (2004) 

RCA 
results SA results* %  

Improvement

gdb1 316 316 316 337 316 6.23% 
gdb2 339 339 339 374 339 9.36% 
gdb3 275 275 275 311 275 11.58% 
gdb4 287 287 287 317 287 9.46% 
gdb5 377 377 377 397 377 5.04% 
gdb6 298 298 298 331 298 9.97% 
gdb7 325 325 325 359 325 9.47% 
gdb10 344 352 348 402 348 13.43% 
gdb11 303 317 303 350 303 13.43% 
gdb12 275 275 275 294 275 6.46% 
gdb13 395 395 395 447 395 11.63% 
gdb14 450 458 458 553 458 17.18% 
gdb15 536 544 536 580 536 7.59% 
gdb16 100 100 100 102 100 1.96% 
gdb17 58 58 58 60 58 3.33% 
gdb18 127 127 127 131 127 3.05% 
gdb19 91 91 91 91 91 0.00% 
gdb20 164 164 164 174 164 5.75% 
gdb21 55 55 55 63 55 12.70% 
gdb22 121 121 121 129 121 6.20% 
gdb23 156 156 156 166 156 6.02% 
gdb24 200 200 200 207 200 3.38% 
gdb25 233 235 233 246 233 5.28% 
TOTAL 5825 5865 5837   5837   
Average deviation 
from LB   

0.69% 0.21% 
  

0.21% 
  

*No of instances in which best-known solutions were improved by the developed heuristic: 0,  
No of instances in which best-known solutions were matched by developed heuristic: 23 
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Table 5-5 Computational Results for the val Instances 

 (1) (2) (3) (4) (5) (6) 

val instances Lower Bound 
(LB) 

CARPET 
(2000) 

MA 
 (2004) 

RCA 
results SA results* %  

Improvement
val1a 173 173 173 181 173 4.42% 
val1b 173 173 173 203 173 14.78% 
val1c 235 245 245 260 245 5.77% 
val2a 227 227 227 243 227 6.58% 
val2b 259 260 259 277 259 6.50% 
val2c 455 494 457 545 457 16.15% 
val3a 81 81 81 87 81 6.90% 
val3b 87 87 87 102 87 14.71% 
val3c 137 138 138 168 138 17.86% 
val4a 400 400 400 450 400 11.11% 
val4b 412 412 412 473 412 12.90% 
val4c 428 428 428 508 428 15.75% 
val4d 520 530 530 636 530 16.67% 
val5a 423 423 423 461 423 8.24% 
val5b 446 446 446 488 446 8.61% 
val5c 469 474 474 531 474 10.73% 
val5d 571 581 581 668 581 13.02% 
val6a 223 223 223 248 223 10.08% 
val6b 231 233 233 267 233 12.73% 
val6c 311 317 317 372 317 14.78% 
val7a 279 279 279 319 279 12.54% 
val7b 283 283 283 327 283 13.46% 
val7c 333 334 334 382 334 12.57% 
val8a 386 386 386 439 386 12.07% 
val8b 395 395 395 449 395 12.03% 
val8c 517 527 527 606 527 13.04% 
val9a 323 323 323 368 323 12.23% 
val9b 326 326 326 390 326 16.41% 
val9c 332 332 332 370 332 10.27% 
val9d 382 391 391 464 391 15.73% 
val10a 428 428 428 469 428 8.74% 
val10b 436 436 436 487 436 10.47% 
val10c 446 446 446 503 446 11.33% 
val10d 524 530 528 606 530 12.54% 

TOTAL 11651 11761 11721   11723   
Average deviation 

from LB   0.94% 0.60%   0.62%   
*No of instances in which best-known solutions were improved by the developed heuristic: 0,  
No of instances in which best-known solutions were matched by developed heuristic: 33 
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Table 5-6 Computational Results for the egl Instances 

 (1) (2) (3) (4) (5) (6) 

egl instances Lower Bound 
(LB) 

CARPET 
(2000) 

MA 
 (2004) 

RCA 
results SA results* % 

Improvement

egl-e1-a 3515 3625 3548 4110 3548 13.67% 
egl-e1-b 4436 4532 4498 5136 4498 12.42% 
egl-e1-c 5453 5663 5595 6430 5613 12.71% 
egl-e2-a 4994 5233 5018 5849 5027 14.05% 
egl-e2-b 6249 6422 6340 7539 6317 16.21% 
egl-e2-c 8114 8603 8395 10361 8380 19.12% 
egl-e3-a 5869 5907 5898 7365 5898 19.92% 
egl-e3-b 7646 7921 7816 8985 7801 13.18% 
egl-e3-c 10019 10805 10369 11735 10336 11.92% 
egl-e4-a 6372 6489 6461 7994 6460 19.19% 
egl-e4-b 8809 9216 9021 10339 9019 12.77% 
egl-e4-c 11276 11824 11779 13879 11659 16.00% 
egl-s1-a 4992 5149 5018 5978 5018 16.06% 
egl-s1-b 6201 6641 6435 7460 6394 14.29% 
egl-s1-c 8310 8687 8518 9961 8518 14.49% 
egl-s2-a 9780 10373 9995 12029 9943 17.34% 
egl-s2-b 12886 13495 13174 15815 13338 15.66% 
egl-s2-c 16221 17121 16715 20455 16648 18.61% 
egl-s3-a 10025 10541 10296 13000 10384 20.12% 
egl-s3-b 13554 14291 14028 16201 13984 13.68% 
egl-s3-c 16969 17789 17297 20649 17373 15.87% 
egl-s4-a 12027 13036 12442 14936 12421 16.84% 
egl-s4-b 15933 16924 16531 19310 16505 14.53% 
egl-s4-c 20179 21486 20832 24558 20755 15.49% 

TOTAL 229829 241773 236019   235837   
Average deviation 

from LB   
5.20% 2.69% 

  
2.61% 

  
*No of instances in which best-known solutions were improved by the developed heuristic: 14,  
No of instances in which best-known solutions were matched by developed heuristic: 5 
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Table 5-7 Computational Results for the mval Instances 

 (1) (2) (3) (4) (5) (6) 

mval instances Lower Bound 
(LB) 

CARPET 
(2000) 

MA 
 (2006) 

RCA 
results SA results* % 

Improvement
mval1a 230 N/A 230 249 230 7.63% 
mval1b 261 N/A 261 310 261 15.81% 
mval1c 309 N/A 315 406 314 22.66% 
mval2a 324 N/A 324 440 324 26.36% 
mval2b 395 N/A 395 482 395 18.05% 
mval2c 521 N/A 526 671 21.61% 
mval3a 115 N/A 115 141 115 18.44% 
mval3b 142 N/A 142 162 142 12.35% 
mval3c 166 N/A 166 206 166 19.42% 
mval4a 580 N/A 580 710 580 18.31% 
mval4b 650 N/A 650 860 650 24.42% 
mval4c 630 N/A 630 789 630 20.15% 
mval4d 746 N/A 770 970 763 21.34% 
mval5a 597 N/A 597 695 597 14.10% 
mval5b 613 N/A 613 721 613 14.98% 
mval5c 697 N/A 697 842 697 17.22% 
mval5d 719 N/A 739 900 739 17.89% 
mval6a 326 N/A 326 393 326 17.05% 
mval6b 317 N/A 317 400 317 20.75% 
mval6c 365 N/A 371 488 370 24.18% 
mval7a 364 N/A 364 450 364 19.11% 
mval7b 412 N/A 412 544 412 24.26% 
mval7c 424 N/A 426 544 426 21.69% 
mval8a 581 N/A 581 688 581 15.55% 
mval8b 531 N/A 531 650 531 18.31% 
mval8c 617 N/A 638 832 635 23.68% 
mval9a 458 N/A 458 560 459 18.04% 
mval9b 453 N/A 453 552 453 17.93% 
mval9c 428 N/A 429 540 429 20.56% 
mval9d 514 N/A 520 663 520 21.57% 
mval10a 634 N/A 634 749 634 15.35% 
mval10b 661 N/A 661 769 661 14.04% 
mval10c 623 N/A 623 789 623 21.04% 
mval10d 643 N/A 649 832 651 21.75% 

TOTAL 16046   16143   16134   
Average deviation 

from LB   
  0.60% 

  
0.55% 

  

526 

*No of instances in which best-known solutions were improved by the developed heuristic: 4,  
No of instances in which best-known solutions were matched by developed heuristic: 28 
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CHAPTER 6 

6 Conclusion 

This chapter provides a summary of the research performed, the conclusions obtained, 

and recommendations for future research. 

 

6.1 Overview of Research 

The objective of this research was to minimize the total distance required to service all 

the required arcs in a network with vehicles having limited servicing capacity. The goals of 

this research were:  

1. To develop a mathematical model of the problem.  

2. To develop a construction heuristic to generate initial feasible solutions to the 

problem, then use a simulated annealing algorithm to improve the initial solution 

3. To compare the results obtained with the developed heuristic to the results provided 

by other authors on benchmark problems in literature 

  

It is not practical to solve this problem optimally. A mathematical model was developed 

for the problem, and used to solve small problems. Even very small problems, with as few as 

12 arcs, took more than 34 minutes to solve. A heuristic algorithm based on a multi-start 

meta-heuristic, and a Greedy Randomized Adaptive Search Procedure (GRASP) (Resende 

and Ribeiro, 2003) was developed to solve the problem. In each iteration of GRASP, an 

initial solution was built using a construction heuristic (RCA), and local search was 

performed on the solutions obtained using a simulated annealing (SA) based heuristic. The 

best overall solution obtained from several iterations of GRASP is considered as the final 

result.  

RCA traces a route beginning at the depot node and incrementally adds an arc based on 

constraints and certain criteria at each iteration, until a route is completed. The final solution 

obtained using RCA is a set of routes that cover all the required arcs in the network.  A SA 

based local search process is applied to this solution to improve it. Five types of moves that 

exchange arcs between pairs of routes are performed to evaluate the solution space in search 

of a better solution.  
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In order to test the proposed algorithm’s performance, the developed heuristic was 

applied to publicly available test problems, and the results obtained were compared with the 

best-known solutions in literature. The tests were performed on 4 data sets (gdb, val, egl, and 

mval), having a total of 115 problem instances. The heuristic was able to improve the best-

known solutions in 18 of those instances, and matched the best-known solutions in 89 other 

instances. The following table presents a summary of the results on the 4 datasets. 

Table 6-1 Summary of Results 

Dataset No. of 
instances 

No. of instances 
previous best-

known solutions 
improved 

No. of instances 
previous best-

known solutions 
matched 

Deviation from 
Lower Bound 

gdb 23 0 23 0.00%-1.78% 
val 34 0 33 0.00%-4.26% 
egl 24 14 5 0.49%-3.59% 

mval 34 4 28 0.00%-2.92% 
 

6.2  Contribution to Literature 

The contributions made by this research to the existing body of knowledge are as follows:  

• A mathematical model was developed for the mixed network capacitated arc routing 

problem having arcs with multiple service requirements, and maximum distance and 

time limits on routes. 

• Developed a heuristic algorithm based on GRASP; each iteration in GRASP consists 

of a construction heuristic followed by a simulated annealing heuristic to improve 

the solution of the construction heuristic. 

 

6.3 Recommendations for Future Research  

The following recommendations are made for future work: 

• Other meta-heuristics such as Tabu Search, Genetic algorithms, Ants Colony, and 

combination of meta-heuristics (hybrid meta-heuristics) may be used for the search 

process and the results obtained can be compared with the results obtained in this 

research. 
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• Add extensions to the CARP such as different vehicle capacities, road priorities, 

multiple depots, intermediate facilities for refilling the vehicles, etc. and modify the 



developed heuristic for those cases. For a discussion on practical applicability of the 

developed heuristic, please refer to Appendix C. 

• Apply parallel processing implementation of the SA search process. This can be 

achieved by various ways as suggested by Aarts and Korst (1989); one of the ways 

they suggested was to allow multiple processors to proceed with annealing using 

different random numbers until the temperature is reduced. The best result from all 

the processors is chosen and the heuristic continues with the new temperature 

setting. Applying parallel computing can improve the effectiveness of the search 

process and significantly reduce the computation time. 

• Add enhancements to the construction heuristic such as path relinking and bias 

functions. Instead of selecting a candidate randomly from the RCL for insertion into 

a route, a probability function can be introduced to bias the selection towards 

particular candidates. 

Path relinking is an intensification strategy for GRASP and was originally proposed 

by Laguna and Marti (1999). In path relinking, two solutions are selected from a set 

of high quality solutions obtained during previous search processes. A path is then 

generated from one solution to another using the fewest number of moves needed. 

Once the path is completed, one or more of the intermediate solutions are used to 

initiate a new search process. 
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APPENDIX A 

Mathematical Programming Code for the Model 
 
TITLE 
 Arc_routing_pb 
 
INDEX 
 i:=1..9   
 j:=1..9 
 p:=1..3 
 r:=1..9 
   
DATA 
 

c[i,j]:=SPARSEFILE("Final_DIST.dat");  !Distance values stored in a DAT file (shown on next page) 
n[i,j]:=SPARSEFILE("Final_nij.dat"); !Requirement values stored in a DAT file (shown on next page) 
t[i,j]:=1/25 * SPARSEFILE("Final_DIST.dat"); 
g[i,j]:=1/37.5 * SPARSEFILE("Final_DIST.dat"); 

 
  
DECISION VARIABLE 
X[i,j,p] 
WHERE (c[i,j] >0); 
l[i,j,p] 
WHERE (c[i,j] >0); 
f[i,j,p] 
WHERE (c[i,j] >0); 
 
MODEL 
 Min Z =SUM(i,j,p: c[i,j]*X[i,j,p]); 
 
SUBJECT TO 
  
 C1[i,p]: 
 SUM(r: X[i:=r,j:=i,p]) - SUM(r: X[i,j:=r,p]) =0; 
 
 C2[i,j] where (n[i,j] < 1): 
  SUM (p: l[i,j,p]) + sum(p: l[i:=j,j:= i,p]) = 1;  
 
 C3[i,j] where (n[i,j] >= 1): 
  SUM(p: l[i,j,p]) = n[i,j]; 
  
 C4 [p]: 
  SUM(i,j: l[i,j,p] *  c[i,j]) <= 18; 
 
 C5[p]: 
  SUM(i,j:t[i,j]*X[i,j,p])+SUM(i,j:g[i,j]*l[i,j,p]) <= 2 
 
 C6[i,j,p]: 
  X[i,j,p] >= l[i,j,p]; 
 
 C7[p]: 
  SUM(i,j: X[i,j,p] * c[i,j]) <= 30; 
 C8[i,p] Where i<>1: 
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  SUM(r:f[i,j:=r,p])- SUM(r:f[i:=r,j:=i,p])= SUM(j:l[i,j,p]); 
 
 C9[i,j,p]: 
  f[i,j,p] <= sqr(count(i)) * X[i,j,p]; 
  
 C10[i,j,p]: 
  f[i,j,p] >= 0; 
 
 C11[i,j,p]: 
  l[i,j,p] >= 0; 
 
 C12[i,j,p]: 
  X[i,j,p] >= 0; 
    
 BINARY 
 X[i,j,p], l[i,j,p]; 
 
END 
 
Content of the file “Final_DIST.dat” (having distance values from node i to j): 
1,2,2, 
2,1,2, 
1,9,3, 
9,1,3, 
1,8,2, 
8,1,2, 
2,3,3, 
3,2,3, 
3,4,2, 
3,5,3, 
5,3,3, 
3,9,6, 
4,6,5, 
6,4,5, 
4,7,4, 
7,4,4, 
5,6,4, 
6,5,4, 
5,9,6, 
9,5,6, 
7,8,7, 
8,7,7 
Content of the file “Final_nij.dat” (having requirement values for arc (i,j)): 

1,2,0.5, 
1,9,0.5, 
1,8,0.5, 
2,3,0.5, 
3,4,1, 
3,5,0.5, 
3,9,1, 
4,6,0.5, 
4,7,0.5, 
5,6,1, 
5,9,0.5, 
7,8,0.5, 
6,5,1 
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APPENDIX B 

Floyd’s Algorithm 

Floyd’s Algorithm is designed to compute the shortest distances between all nodes in a 

graph. It has a complexity of O(n3). The input for the algorithm is the initial distance matrix 

(Dij
0), in which each row represents the starting node (i) and each column represents an 

ending node (j). Each cell in the matrix denotes the distance between the starting node and 

the ending node if there is an arc between the starting and ending node. If there is no arc 

between the starting node (i) and the ending node, a very large value is used in position (i,j) 

in the matrix.  

The pseudo-code for Floyd’s Algorithm is shown below. Let n be the total number of nodes 

in the graph. 

 

Algorithm Floyd (Input: Initial Distance Matrix- Dij
0) 

For k=1 to n 

 For i=1 to n 

  For j=1 to n 

   Dij
k = Minimum [Dij

k-1, Dik
k-1 + Dkj

k-1]  

Return matrix Dij
n with shortest distances. 

End 

 

The path corresponding to the shortest distance between nodes i and j is the shortest path 

between those nodes. 
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APPENDIX C 

Practical Applications of the Developed Heuristic 

The results obtained by the developed heuristic prove that the heuristic can be applied to 

practical problems. It can be adapted for use in networks having multiple depots, 

intermediate facilities for refilling, non-homogeneous vehicle capacities, road priorities and 

other practical features. The heuristic can be applied for real life problems having 

operational constraints such as one-way streets, restricted junctions, different costs for 

servicing, and traveling without servicing.  The heuristic may also be integrated with a GIS 

system to provide a visual representation of the routes. Typically, benefits obtained with a 

routing software include improved fleet efficiency, enhanced service, even the distribution of 

the workload, and reduction in fuel costs. 

The price of a route optimization package can quickly pay for itself even in a small fleet. In 

addition to gasoline savings achieved by the reduced mileage, other costs such as labor costs 

due to nonproductive time and fixed cost of trucks can also be reduced (by reducing number 

of routes). A cost/benefit analysis may be performed to compare the estimated savings to be 

realized from having better routings of the vehicles, against the investment made in 

purchasing a route optimization software.  
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