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Abstract 
 
In this survey we examine ways to reformulate integer and mixed integer programs. Typically, 
but not exclusively, one reformulates so as to obtain stronger linear programming relaxations, and 
hence better bounds for use in a branch-and-bound based algorithm. First we cover in detail 
reformulations based on decomposition, such as Lagrangean relaxation, Dantzig-Wolfe column 
generation and the resulting branch-and-price algorithms. This is followed by an examination of 
Benders’ type algorithms based on pro jection. Finally we discuss in detail extended formulations 
involving additional variables that are based on problem structure. These can often be used to 
provide strengthened a priori formulations. Reformulations obtained by adding cutting planes in 
the original variables are not treated here. 
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1 Introduction

Integer linear programs (IPs) and mixed integer linear programs (MIPs) are often difficult

to solve, even though the state-of-the-art mixed integer programming solvers are in many cases

remarkably effective, and have improved radically in the last ten years. These solvers typically

use branch-and-cut involving cutting planes to obtain improved linear programming bounds and

branching to carry out implicit enumeration of the solutions. However these systems essentially

ignore problem structure.

The goal in this chapter is to show the numerous ways in which, given an initial formulation

of an IP, problem structure can be used to obtain improved problem formulations and more

effective algorithms that take the structure into account. One common way to obtain reformu-

lations is by adding valid inequalities (cutting planes) in the original variables. This topic is

treated in considerable detail in Chapters ??. Here we consider other possibilities. The general

motivation is to obtain a reformulation for which the optimal value of the linear programming

relaxation is closer to the optimal value of the IP than that of the original formulation and that

is computationally tractable.

One approach is to introduce new variables so as to better model the structure of the prob-

lem - the resulting extended formulations will be studied in detail. Introducing new variables

typically permits one to model some combinatorial structure more precisely and to induce inte-

grality through tighter linear constraints linking the variables. One such extended formulation

is provided by the classical Minkowski representation of a polyhedron in terms of its extreme

points and extreme rays. An alternative is to develop reformulations based on projection onto

a subset of the variables, based on Farkas’ lemma and/or Fourier-Motzkin elimination. Projec-

tion allows one to reduce the number of variables so that calculations are typically faster: thus

for a mixed integer program one might project onto the integer variables, and for an extended

formulation giving an improved bound one might project so as to obtain the tightened bound

while working in the space of the original variables.

There are also other reasons leading us to look at alternative formulations. One might be

to treat or eliminate symmetry among solutions (see Chapter ??), another might be to obtain

variables that are more effective as branching variables, or variables for which one can develop

effective valid inequalities.

Reformulations often rely on a decomposition of the problem. Given a hard integer program
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(IP) in the form

min{cx : x ∈ X} where X = {x ∈ Z
n
+ : Ax ≥ a},

one typical way to obtain a set with structure is to decompose X into two (or more) sets X =

Y ∩Z, where one or both of the sets Y, Z has structure and is a candidate for reformulation. In

addition reformulations often require specific solution methods: the reformulation may involve

a very large number of variables and/or constraints, in which case it becomes necessary to

develop algorithms that treat the corresponding columns or rows implicitly, Dantzig-Wolfe

decomposition and Benders’ decomposition being the two classical examples.

The contents of this chapter are as follows. In Section 2 we introduce the different concepts

used later. We give definitions and simple examples of polyhedra, formulations, extended

formulations and reformulations obtained by projection. We discuss how decomposition can be

used to obtain simpler sets, and what we mean by a set with structure.

In Section 3 we consider reformulations that are appropriate when the optimization problem

over a “simpler” set Z, obtained by dropping some “hard” constraints, is relatively easy to solve.

In particular we consider the Lagrangean dual approach to obtain tight bounds and related

algorithms, and the Dantzig-Wolfe reformulation whose linear programming relaxation gives

an identical bound. The basic column generation algorithm to solve the linear programming

relaxation of the Dantzig-Wolfe reformulation is presented, as well as its integration into a

branch-and-bound algorithm to solve the integer problem. In Section 4 we consider formulations

and algorithms based on projection, in particular Benders’ reformulation. Projection typically

leads to formulations with a very large number of constraints, so here the algorithms rely on

cut generation.

The reformulations in Sections 3 and 4 are generic. In Section 5 we consider sets with more

structure for which it is possible to obtain interesting extended formulations. In many cases

optimization over the sets is polynomially solvable. We show extended formulations a) based

on variable splitting such as the multi-commodity reformulation of single source fixed charge

network flow problems, b) for sets over which one can optimize by dynamic programming, c)

for sets in the form of disjunctions, and d) for a variety of other sets with structure.

In Section 6 we discuss hybrid reformulations and algorithms; for example if X = Y ∩Z and

both sets have some special structure, we might wish to combine a (large) extended formulation

for Y with a (large) cutting plane description for Z. Section 7 consists of historical notes as

well as a few references concerning recent theoretical and computational developments.
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2 Polyhedra, Reformulation and Decomposition

2.1 Introduction

Given a problem that has been formulated as a linear integer program, we are interested in

finding reformulations (alternative problem descriptions) that are more effective in one way or

another. We present some basic results about polyhedra, and give definitions of formulations

and extended formulations, with a couple of examples to show how reformulations arise. Finally

we discuss how decomposition leads one to simpler subsets, and indicate how their structure

can be exploited to provide reformulations and possibly specialized algorithms.

Throughout we assume that our objective is to solve the integer program

(IP ) min{cx : x ∈ X}

where X is a discrete solution set that can be modeled as the set of integer points satisfying a

set of linear inequalities

X = P ∩ Z
n with P = {x ∈ R

n
+ : Ax ≥ a}

or the mixed integer program

(MIP ) min{cx + hy : (x, y) ∈ XM}

where XM is given in the form

XM = PM ∩ (Zn × R
p) with PM = {(x, y) ∈ R

n
+ × R

p
+ : Gx + Hy ≥ b}.

P and PM will be referred to as the initial formulations of X and XM respectively. For

simplicity, results are presented for the integer set X, unless the presence of continuous variables

y is important.

2.2 Polyhedra and Reformulation

Here we study the feasible solutions sets X and XM arising in IP and MIP respectively.

Throughout we will use the term reformulation informally to mean any alterative description

of problems IP or MIP.

Definition 1 A polyhedron P ⊆ R
n is the intersection of a finite number of half-spaces. In

other words there exists A ∈ R
m×n, a ∈ R

m such that P = {x ∈ R
n : Ax ≥ a}.
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Definition 2 A polyhedron P is a formulation for X if X = P ∩ Z
n.

Sets such as X have many formulations. If P 1, P 2 are two formulations for X with P 1 ⊂ P 2,

we say that P 1 is a stronger formulation than P 2, because

z(c) = min{cx : x ∈ X} ≥ min{cx : x ∈ P 1} ≥ min{cx : x ∈ P 2} ∀c ∈ R
n

and thus the lower bound on z(c) provided by the linear programming relaxation with formu-

lation P 1 is always greater than or equal to that provided by P 2.

Definition 3 Given X ⊆ R
n, the convex hull of X, denoted conv(X), is the smallest closed

convex set containing X.

The convex hull of an integer set X, or a mixed integer set XM defined by rational data

is a polyhedron. Thus the strongest possible formulation is provided by conv(X) because

z(c) = min{cx : x ∈ conv(X)}.

Given an initial formulation P of X, one classical way to obtain a stronger formulation is to

add valid inequalities (cutting planes) in the x variables so as to obtain a better approximation

to conv(X). This is discussed in Chapters ??. The main concepts presented in this chapter,

extended formulations and projection, are now defined.

Definition 4 An extended formulation for a polyhedron P ⊆ R
n is a polyhedron Q = {(x, w) ∈

R
n+p : Gx + Hw ≥ d} such that P =projx(Q).

Definition 5 Given a set U ⊆ R
n × R

p, the projection of U on the first n variables, x =

(x1, · · · , xn), is the set

projx(U) = {x ∈ R
n : ∃ w ∈ R

p with (x, w) ∈ U}.

Minkowski’s representation of a polyhedron in terms of its extreme points and extreme rays

gives an extended formulation that can be useful for both linear and integer programs.

Definition 6 Given a non-empty polyhedron P ⊆ R
n,

i) x ∈ P is an extreme point of P if x = λx1 + (1 − λ)x2, 0 < λ < 1, x1, x2 ∈ P implies that

x = x1 = x2.

ii) r is a ray of P if r 6= 0 and x ∈ P implies x + µr ∈ P for all µ ∈ R
1
+.

iii) r is an extreme ray of P if r is a ray of P and r = µ1r
1 + µ2r

2, µ ∈ R
2
+ \ {0}, r1, r2 rays

of P implies r1 = αr2 for some α > 0.
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From now on we assume that rank(A) = n which is necessary for P to have extreme points.

Theorem 1 (Minkowski) Every polyhedron P = {x ∈ R
n : Ax ≥ a} can be represented in the

form

P = {x ∈ R
n : x =

∑

g∈G

λgx
g +

∑

r∈R

µrv
r,
∑

g∈G

λg = 1, λ ∈ R
|G|
+ , µ ∈ R

|R|
+ }

where {xg}g∈G are the extreme points of P and {vr}r∈R the extreme rays of P .

Example 1 The polyhedron

P = {x ∈ R
2
+ : 4x1 + 12x2 ≥ 33, 3x1 − x2 ≥ −1, x1 − 4x2 ≥ −23}

has the extended formulation

Q = {(x, λ, µ) ∈ R
2 × R

3
+ × R

2
+ : x =

(
33
4

0

)

λ1 +

(
21
40
103
40

)

λ2 +

(
19
11
68
11

)

λ3 +

(

1

0

)

µ1 +

(

4

1

)

µ2,

λ1 + λ2 + λ3 = 1}. See Figure 1.

The concept of extended formulation for a polyhedron generalizes to sets X of integer points,

and in particular one can apply Definition 4 to conv(X).

Definition 7 An extended formulation for an IP set X ⊆ Z
n is a polyhedron Q ⊆ R

n+p such

that X =projx(Q) ∩ Z
n.

Minkowski’s Theorem (Theorem 1) obviously provides an extended formulation for X.

Specifically take

Q = {(x, λ, µ) ∈ R
n × R

|G|
+ × R

|R|
+ : x =

∑

g∈G

λgx
g +

∑

r∈R

µrv
r,
∑

g∈G

λg = 1}

where {xg}g∈G are the extreme points and {vr}r∈R the extreme rays of conv(X).

Definition 8 An extended formulation Q ⊆ R
n+p for an IP set X ⊆ Z

n is tight if projx(Q) =

conv(X).

An extended formulation Q ⊆ R
n+p for an IP set X = P ∩ Z

n is compact if the length of

the description of Q is polynomial in the length of the description of X (i.e., the length of the

description of the initial formulation P of X).
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Figure 1: Extreme Points and Rays of P and conv(P ∩ Z
n)

In general the number of extreme points and extreme rays of conv(X) is not polynomial in the

length of the description of X, so the extended formulation provided by Minkowski’s Theorem

is not compact. Similarly the number of inequalities in the x variables required to describe

conv(X) is usually not polynomial in the length of the description of X.

In the framework of integer programs one also encounters more general reformulations in

which some of the additional variables are required to be integer, replacing the integrality

constraints on some of the original variables. It may then be possible to drop the original

variables.

Definition 9 An extended IP-formulation for an IP set X ⊆ Z
n is a set QI = {(x, w1, w2) ∈

R
n × Z

p1 × R
p2 : Gx + H1w1 + H2w2 ≥ b} such that X =projxQI .

There is a somewhat similar result to Minkowski’s theorem concerning an extended IP-

formulation.

Theorem 2 Every IP set X = {x ∈ Z
n : Ax ≥ a} can be represented in the form X =projx(QI),

where
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QI = {(x, λ, µ) ∈ R
n × Z

|G|
+ × Z

|R|
+ : x =

∑

g∈G

λgx
g +

∑

r∈R

µrv
r,

∑

g∈G

λg = 1},

where {xg}g∈G is a finite set of integer points in X, and {vr}r∈R are the extreme rays (scaled

to be integer) of conv(X).

Note that when X is bounded, all the points of X must be included in the set {xg}g∈G and

R = ∅.

Theorem 2 provides an example of a common situation with extended IP-formulations in

which there is a linear transformation x = Tw linking all (or some) of the original x variables

and the additional variables w. In such cases IP can be reformulated in terms of the additional

variables in the form

min{cTw : ATw ≥ a, w ∈W},

where the set W provides an appropriate representation of the integrality of the original x

variables.

Example 2 The set of integer points X = P ∩ Z
2 where

P = {x ∈ R
2
+ : 4x1 + 12x2 ≥ 33, 3x1 − x2 ≥ −1, x1 − 4x2 ≥ −23}

has an extended IP-formulation, based on Theorem 2:

Q = {(x, λ, µ) ∈ R
2 × Z

6
+ × Z

2
+ : x =

(

9

0

)

λ1 +

(

3

2

)

λ2 +

(

1

3

)

λ3 +

(

1

4

)

λ4 +

(

2

6

)

λ5 +

(

5

7

)

λ6 +

(

2

5

)

λ7 +

(

6

1

)

λ8 +

(

1

0

)

µ1 +

(

4

1

)

µ2,
∑6

p=1 λp = 1}.

Here the points (2, 5)T and (6, 1)T are not extreme points of conv(X). However they cannot

be obtained as an integer combination of the extreme points and rays of conv(X), so they are

necessary for this description. See Figure 1.

Given an IP set X or a MIP set XM , an alternative is to concentrate on a subset of the

more important variables (for instance the integer variables in an MIP). Here projection is the

natural operation and the lemma of Farkas a basic tool. From now on, we typically assume

that all the variables x or (x, y) encountered in IP or MIP are non-negative.
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Lemma 3 (Farkas) [36] Given A ∈ R
m×n and a ∈ R

m, either the polyhedron {x ∈ R
n
+ : Ax ≥

a} 6= ∅ or (exclusive) there exists v ∈ R
m
+ such that vA ≤ 0 and va > 0.

This immediately gives a characterization of the projection of a polyhedron. Specifically if

Q = {(x, w) ∈ R
n
+×R

p
+ : Gx + Hw ≥ d}, it follows from the definition that x ∈projx(Q) if and

only if Q(x) = {w ∈ R
p
+ : Hw ≥ d −Gx} is nonempty. Now the Farkas’ Lemma, with A = H

and a = d−Gx, gives:

Theorem 4 (Projection) Let Q = {(x, w) ∈ R
n × R

p
+ : Gx + Hw ≥ d}. Then

projx(Q) = {x ∈ R
n : v(d−Gx) ≤ 0 ∀ v ∈ V } = {x ∈ R

n : vj(d−Gx) ≤ 0 for j = 1, . . . , J}

where V = {v ∈ R
m
+ : vH ≤ 0} and {vj}Jj=1 are the extreme rays of V .

Example 3 Given the polyhedron Q = {(x, y) ∈ R
2
+ × R

3
+ :

−2x1 −3x2 −4y1 +y2 −4y3 ≥ −9

−7x1 −5x2 −12y1 −2y2 +4y3 ≥ −11},

we have that V = {v ∈ R
2
+ : −4v1 − 12v2 ≤ 0, v1 − 2v2 ≤ 0,−4v1 + 4v2 ≤ 0}. The extreme rays

are v1 = (1, 1)T and v2 = (2, 1)T . From Theorem 4, one obtains

projx(Q) = {x ∈ R
2
+ : 9x1 + 8x2 ≤ 20, 11x1 + 11x2 ≤ 29}.

The classical application of this approach is to reformulate mixed integer programs.

Now we illustrate by example the sort of reformulations that can arise using additional

variables and projection for a problem with special structure.

Example 4 Formulations of the Directed Steiner Tree Problem

Given a digraph D = (V, A) with costs c ∈ R
|A|
+ , a root r ∈ V and a set T ⊆ V \ {r} of

terminals, the problem is to find a minimum cost subgraph containing a directed path from r to

each node in T .

One way to formulate this problem is to construct a subgraph in which one requires |T | units

to flow out from node r and one unit to flow into every node of T . This leads one to introduce

the variables:

xij = 1 if arc (i, j) forms part of the subgraph and xij = 0 otherwise, and yij is the flow in arc

(i, j). The resulting MIP formulation is
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min
∑

(i,j)∈A cijxij

−
∑

j∈V +(r) yrj = −|T | (1)

−
∑

j∈V +(i) yij +
∑

j∈V −(i) yji = 1 i ∈ T (2)

−
∑

j∈V +(i) yij +
∑

j∈V −(i) yji = 0 i ∈ V \ (T ∪ {r}) (3)

yij ≤ |T |xij (i, j) ∈ A (4)

y ∈ R
|A|
+ , x ∈ {0, 1}|A|,

where V +(i) = {j : (i, j) ∈ A} and V −(i) = {j : (j, i) ∈ A}, (1) indicates that |T | units flow

out from node r, (2) that a net flow of one unit arrives at each node i ∈ T , (3) that there is

conservation of flow at the remaining nodes and (4) that the flow on each arc does not exceed

|T | and is only positive if the arc has been installed.

This problem has special network structure that we now exploit.

Multicommodity flow variables

To obtain an extended formulation, consider the flow directed towards node k as a separate

commodity for each node k ∈ T . Then wk
ij denotes the flow in arc (i, j) of commodity k with

destination k ∈ T . The resulting extended formulation is:

min
∑

(i,j)∈A cijxij

−
∑

j∈V +(r) wk
rj = −1 k ∈ T (5)

−
∑

j∈V +(i) wk
ij +

∑

j∈V −(i) wk
ji = 0 i ∈ V \ {r, k}, k ∈ T (6)

−
∑

j∈V +(i) wk
kj +

∑

j∈V −(i) wk
jk = 1 k ∈ T i ∈ T (7)

wk
ij ≤ xij (i, j) ∈ A, k ∈ K (8)

w ∈ R
|K|×|A|
+ , x ∈ [0, 1]|A|.

Constraints (5)-(8) are flow conservation and variable upper bound constraints for each com-

modity. The constraints yij =
∑

k∈K wk
ij (i, j) ∈ A provide the link between the original flow

variables y and the new multi-commodity flow variables w, but the y variables are unnecessary

as there are no costs on the flows.
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The main interest of such an extended formulation is that the value of its linear programming

relaxation is considerably stronger than that of the original formulation because the relationship

between the flow variables yij or wk
ij and the arc selection variables xij is more accurately

represented by (8) than by (4).

Projection onto the Binary Arc Variables

It is well-known (from the max flow/min cut theorem) that one can send flow of one unit

from r to k in a network (V, A) with capacities if and only if the capacity of each cut separating

r and k is at least one. Considering the arc capacities to be xij, this immediately validates

the following formulation in the arc variables x. Equivalently one can apply Theorem 4 to the

extended formulation Q = {(x, w) ∈ [0, 1]|A| ×R
|K|×|A|
+ satisfying (5)− (8)} and project out the

w variables. In both cases one obtains the formulation:

min
∑

(i,j)∈A cijxij
∑

(i,j)∈δ+(U) xij ≥ 1 r ∈ U, T \ U 6= ∅

x ∈ {0, 1}|A|,

where δ+(U) = {(i, j) ∈ A : i ∈ U, j /∈ U} is the directed cut set consisting of arcs with their

tails in U and their heads in V \ U .

The potential interest of this reformulation is that the number of variables required is as

small as possible and the value of the linear programming relaxation is the same as that of the

multi-commodity extended formulation. In Section 5 we will consider the more general problem

in which there are also costs on the flow variables yij.

2.3 Decomposition

When optimizing over the feasible set X of IP is too difficult, we need to address the question

of how to “decompose” X so as to arrive at one or more sets with structure, and also indicate

what we mean by “structure”.

We first present three ways of decomposing.

1) Intersections. X = Y ∩ Z. Now if the set Z has structure, we can consider reformulations

for the set Z. More generally, one might have X = X1 ∩ · · · ∩XK where several of the sets Xk

have structure. Another important variant is that in which X = Y ∪Z and Z itself decomposes
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into sets Zk each with distinct variables, namely Z = Z1 × · · · × ZK .

2) Unions (or Disjunctions). X = Y ∪ Z where Z has structure. Again one might have

X = X1 ∪ · · · ∪XK where several of the sets Xk have structure.

3) Variable Fixing. Let x = (x1, x2) ∈ Z
q × R

n−q. For fixed values x̄1, let Z(x̄1) = {x ∈

X : x1 = x̄1}. This is of interest if Z(x̄1) has structure for all relevant values of x̄1. Again

an important case is that in which Z(x̄1) decomposes into sets with distinct variables, i.e.

Z(x̄1) = Z1(x̄1) × · · · × ZK(x̄1) and each set Zk(x̄1) just involves the variables x2k, where

x2 = (x21, · · · , x2K).

Now we indicate in what circumstances we say that the set Z obtained above has structure.

i) there is a polynomial algorithm for the optimization problem min{cx : x ∈ Z}, denoted

OPT(Z, c).

ii) OPT(Z, c) can be solved rapidly in practice.

iii) there is a polynomial algorithm for the separation problem, SEP(Z, x∗), defined as follows:

Given the set Z ⊆ R
n and x∗ ∈ R

n, is x∗ ∈ conv(Z)? If not, find a valid inequality πx ≥ π0 for

Z cutting off x∗ (i.e. πx ≥ π0 for all x ∈ Z and πx∗ < π0).

iv) there is a polyhedron P ′ (often P ′ = conv(Z ′) where Z ⊆ Z ′) for which there is a separation

algorithm (exact or heuristic) that can be solved rapidly in practice.

v) Set Z has specific structure that can be exploited by introducing new variables that better

describe the integrality of the variables. Examples of sets with interesting extended formulations

include network design problems with 0-1 variables to indicate which arcs are open, such as

the Steiner tree problem in Example 4, and scheduling problems in which it is useful to model

start times in detail. Problems that can be solved by dynamic programming and problems of

optimizing over sets defined by disjunctions are also candidates for reformulation through the

introduction of new variables.

Ways to reformulate and exploit sets with structure of type i) and ii) arising from decom-

position by intersection are the subject of the next section. Sets with structure of type iii) or

iv) are amenable to reformulation by the addition of cutting planes. A special case of this type,

treated in Section 4, is that in which the set Z(x̄1), obtained by variable fixing, has structure

of type i) or ii). Combined with projection, this leads to reformulations and algorithms in the

subspace of the x1 variables. Structure of type v) and extended formulations for a wide variety

of problems are presented in Section 5.
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3 Price or Constraint Decomposition

Consider a (minimization) problem of the form

(IP ) z = min{cx : x ∈ X}

that is difficult, but with the property that a subset of the constraints of X defines a set Z

(X ⊂ Z) over which optimization is “relatively easy”. More specifically,

(IP ) z = min{cx : Dx ≥ d, Bx ≥ b, x ∈ Z
n
+

︸ ︷︷ ︸

x∈X

} (9)

where the constraints Dx ≥ d represent “complicating constraints” that define the integer set

Y = {x ∈ Z
n
+ : Dx ≥ d}, while the constraints Bx ≥ b define a set Z = {x ∈ Z

n
+ : Bx ≥ b} that

is “more tractable”, meaning that min{cx : x ∈ Z} can be solved rapidly in practice.

Here we examine how one’s ability to optimize over the simpler set Z can be exploited to

produce dual bounds by relaxing the complicating constraints and penalizing their violation

in the objective function (a procedure called Lagrangean relaxation). The prices associated to

each constraint placed in the objective function are called Lagrange multipliers or dual vari-

ables, and the aim is to choose the prices to try to enforce satisfaction of the complicating

constraints Dx ≥ d. An alternative is to view the problem of optimizing over X as that of

selecting a solution from the set Z that also satisfies the constraints defining Y . This leads to

the so-called Dantzig-Wolfe reformulation in which variables are associated to the points of the

set Z as specified in Theorems 1 or 2. The LP solution to this reformulation provides a dual

bound that is typically tighter than that of the LP relaxation of the original formulation of X

and is equal to the best bound that can be derived by Lagrangean relaxation of the constraints

Dx ≥ d. This will be demonstrated below.

In many applications of interest Bx ≥ b has block diagonal structure: i.e. Z = Z1×· · ·×ZK

in which case the integer program takes the form

(IPBD) min{
K∑

k=1

ckxk : (x1, · · · , xK) ∈ Y, xk ∈ Zk for k = 1, . . . , K}
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and can be written explicitly as:

min c1x1 + c2 x2 + . . . + cK xK

D1 x1 + D2 x2 + . . . + DK xK ≥ d

B1 x1 ≥ b1

(IPBD) B2 x2 ≥ b2

. . . ≥
...

BK xK ≥ bK

x1 ∈ Z
n1
+ , x2 ∈ Z

n2
+ , . . . xK ∈ Z

nK
+ .

Here relaxing the constraints Dx ≥ d allows one to decompose the problem into K smaller size

optimization problems: min{ckxk : xk ∈ Zk}.

Another important special case is the identical sub-problem case in which Dk = D, Bk =

B, ck = c, Zk = Z∗ for all k. In this case the “complicating” constraints only depend on the

aggregate variables

y =
K∑

k=1

xk , (10)

so the complicating constraints correspond to a set of the form Y = {y ∈ Z
n
+ : Dy ≥ d}. The

problem can now be written as:

(IPIS) min{cy : Dy ≥ d, y =

K∑

k=1

xk, xk ∈ Z∗ for k = 1, . . . , K} . (11)

Example 5 (The bin packing problem)

Given an unlimited supply of bins of capacity 1 and a set of items indexed by i = 1, . . . , n of

size si ∈ (0, 1], the problem is to find the minimum number of bins that are required to pack all

the items. Let K be an upper bound on the number of bins that might be needed (K = n, or K

14



is the value of any feasible solution). A direct IP formulation is

min
K∑

k=1

uk (12)

K∑

k=1

xik = 1 ∀i (13)

∑

i

si xik ≤ uk ∀k (14)

xik ∈ {0, 1} ∀i, k (15)

uk ∈ {0, 1} ∀k (16)

where uk = 1 if bin k is used and xik = 1 if the item of size i is placed in bin k. This is a natural

candidate for price decomposition. Without the constraints (13), the problem that remains

decomposes into K identical knapsack problems. In addition the block diagonal subsystems

(knapsack problems) are identical.

In this section,

i) we review the Lagrangean relaxation and Dantzig-Wolfe reformulation approaches, showing

the links between them and the fact that both provide the same dual bound;

ii) we then discuss algorithms to compute this dual bound: sub-gradient methods and the

column generation procedure, as well as stabilization techniques that are used to improve con-

vergence, and

iii) we consider the combination of column generation with branch-and-bound to solve problems

to integer optimality: deriving branching schemes when using a Dantzig-Wolfe reformulation

can be nontrivial in the case of a block diagonal structure with identical sub-problems.

For simplicity, most of these developments are presented for the case of a single subsystem in-

volving only bounded integer variables. However the developments easily extend to the case of a

mixed integer or unbounded subsystem Z, or to a subsystem with block diagonal structure. The

case where these blocks are identical will be discussed separately. The economic interpretation

of the algorithms reviewed here will justify the use of the terminology “price decomposition”.

3.1 Lagrangean Relaxation and the Lagrangean dual

The Lagrangean relaxation approach to a problem IP with the structure outlined above

consists of turning the “difficult” constraints Dx ≥ d into constraints that can be violated at

15



a price π, while keeping the remaining constraints describing the set Z = {x ∈ Z
n
+ : Bx ≥ b}.

This gives rise to the so called Lagrangean sub-problem:

L(π) = min
x
{cx + π(d−Dx) : Bx ≥ b, x ∈ Z

n
+} (17)

that by assumption is relatively tractable. For any non-negative penalty vector π ≥ 0, the dual

function L(π) defines a dual (lower) bound on the optimal value z of IP : indeed the optimal

solution x∗ of IP satisfies cx∗ ≥ cx∗ + π(d −Dx∗) ≥ L(π) (the first inequality results from x∗

being feasible for IP and π ≥ 0, the second holds because x∗ is feasible in (17)). The problem

of maximizing this bound over the set of admissible penalty vectors is known as the Lagrangean

dual:

(LD) zLD = max
π≥0

L(π) = max
π≥0

min
x∈Z
{cx + π(d−Dx)}. (18)

We now reformulate the Lagrangean dual as a linear program, assuming that the constraint

set Z is non-empty and bounded. The Lagrangean sub-problem achieves its optimum at an

extreme point xt of conv(Z), so one can write

zLD = max
π≥0

min
t=1,...,T

{cxt + π(d−Dxt)} , (19)

where {xt}t=1,...,T is the set of extreme points of conv(Z), or alternatively {xt}t=1,...,T is the

set of all points of Z. Introducing an additional variable σ representing a lower bound on the

(c− πD)xt values, we can now rewrite LD as the linear program:

zLD = max πd + σ (20)

πDxt + σ ≤ cxt t = 1, . . . , T (21)

π ≥ 0, σ ∈ IR1. (22)

Taking its linear programming dual gives:

zLD = min
T∑

t=1

(cxt)λt (23)

T∑

t=1

(Dxt)λt ≥ d (24)

T∑

t=1

λt = 1 (25)

λt ≥ 0 t = 1, . . . , T. (26)
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From formulation (23)-(26), one easily derives the following result.

Theorem 5 (Lagrangean duality)

zLD = min{cx : Dx ≥ d, x ∈ conv(Z)}. (27)

Indeed, by definition of the set of points {xt}Tt=1, conv(Z) = {x =
∑T

t=1 xtλt :
∑T

t=1 λt =

1, λt ≥ 0 t = 1, . . . , T}. Thus, the value of the Lagrangean dual is equal to the value

of the linear program obtained by minimizing cx over the intersection of the “complicating”

constraints Dx ≥ d with the convex hull of the “tractable” set Z.

Example 6 (Lagrangean relaxation for the bin packing problem).

Continuing Example 5, consider an instance of the bin packing problem with n = 5 items and

size vector s = (1
6 , 2

6 , 2
6 , 3

6 , 4
6). For the dual solution π = (1

3 , 1
3 , 1

3 , 1
2 , 1

2), the Lagrangean sub-

problem is the problem:

L(π) =
5∑

i=1

πi + K min(u−
1

3
x1 −

1

3
x2 −

1

3
x3 −

1

2
x4 −

1

2
x5)

1

6
x1 +

2

6
x2 +

2

6
x3 +

3

6
x4 +

4

6
x5 ≤ u

x ∈ {0, 1}5, u ∈ {0, 1}.

The optimal solution is x = (1, 1, 0, 1, 0), u = 1. For K = n (a trivial solution is to put each

item in a separate bin), the resulting lower bound is 12
6 −

5
6 = 7

6 . The best Lagrangean dual

bound zLD = 2 is attained for π = (0, 0, 0, 1, 1), x = (0, 0, 0, 0, 1) and u = 1.

3.2 Dantzig-Wolfe Reformulations

Here we consider two closely related extended formulations for problem IP: min{cx : Dx ≥

d, x ∈ Z}, and then we consider the values of the corresponding linear programming relaxations.

We continue to assume that Z is bounded. The Dantzig-Wolfe reformulation resulting from
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Theorem 1 (called the convexification approach) takes the form:

zMc = min
∑

g∈Gc

(cxg)λg (28)

∑

g∈Gc

(Dxg)λg ≥ d (29)

(DWc)
∑

g∈Gc

λg = 1 (30)

x =
∑

g∈Gc

xgλg ∈ Z
n (31)

λg ≥ 0 ∀g ∈ Gc (32)

where {xg}g∈Gc are the extreme points of conv(Z).

The Dantzig-Wolfe reformulation resulting from Theorem 2 (called the discretization ap-

proach) is

zDWd = min
∑

g∈Gd

(cxg)λg (33)

∑

g∈Gd

(Dxg)λg ≥ d (34)

(DWd)
∑

g∈Gd

λg = 1 (35)

λg ∈ {0, 1} ∀g ∈ Gd (36)

where {xg}g∈Gd are all the points of Z.

As pointed out above, the extreme points of conv(Z) are in general a strict subset of

the points of Z (Gc ⊆ Gd). Note however that the distinction between the two approaches

disappears when considering the LP relaxations of the Dantzig-Wolfe reformulations: both sets

allow one to model conv(Z) and they provide a dual bound that is equal to the value of the

Lagrangean dual.

Observation 1

i) The linear program (23)-(26) is precisely the linear programming relaxation of DWc.

ii) It is identical to the linear programming relaxations of DWd (any point of Z can be obtained

as a convex combination of extreme points of conv(Z)). Hence

zDWc
LP = zDWd

LP = min{cx : Dx ≥ d, x ∈ conv(Z)} = zLD,
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where zDWc
LP and zDWd

LP denote the values of the LP relaxations of DWc and DWd respectively.

In addition there is no difference between DWc and DWd when Z ⊂ {0, 1}n as every point

x ∈ Z is an extreme point of conv(Z). In other words

x =
∑

g∈GC

xgλg ∈ {0, 1}n in DWc if and only if λ ∈ {0, 1}|G
d| in DWd.

To terminate this subsection we examine the form DWd takes when there is block diagonal

structure. Specifically the multi-block Dantzig-Wolfe reformulation is:

min{
K∑

k=1

∑

g∈Gd
k

(cxg)λkg :
K∑

k=1

∑

g∈Gd
k

(Dxg)λkg ≥ d;
∑

g∈Gd
k

λkg = 1,∀k = 1, . . . , K; λkg ∈ {0, 1}∀k, g ∈ Gd
k} .

(37)

where Zk = {xg}g∈Gd
k

for all k with xk =
∑

g∈Gd
k
xg λkg ∈ Zk.

Identical Subproblems

When the subproblems are identical for k = 1, . . . , K, the above model admits many different

representations of the same solution: any permutation of the k indices defines a symmetric

solution. To avoid this symmetry, it is normal to introduce the aggregate variables νg =
∑K

k=1 λkg. Defining Z∗ = Z1 = · · · = ZK and Z∗ = {xg}g∈G∗ , one obtains the reformulation:

min
∑

g∈G∗

(cxg)νg (38)

(DWad)
∑

g∈G∗

(Dxg)νg ≥ d (39)

∑

g∈G∗

νg = K (40)

ν ∈ Z
|G∗|
+ , (41)

where νg ∈ Z+ is the number of copies of xg used in the solution. The projection of reformulation

solution ν into the original variable space will only provide the aggregate variables y defined in

(10):

y =
∑

g∈G∗

xgνg . (42)
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Example 7 The cutting stock problem

An unlimited number of strips of length L are available. Given d ∈ Z
n
+ and s ∈ R

n
+, the problem

is to obtain di strips of length si for i = 1, . . . , n by cutting up the smallest possible number of

strips of length L.

Here Z∗ = {x ∈ Z
n
+ :
∑n

i=1 sixi ≤ L}, each point xg of Z∗ corresponds to a cutting pattern,

D = I and c = 1, so one obtains directly the formulation

min{
∑

g∈G∗

νg :
∑

g∈G∗

(xg)νg ≥ d, ν ∈ Z
|G∗|
+ }

in the form DWad, without the cardinality constraint (40). The bin packing problem is the

special case in which di = 1 for all i and each cutting pattern contains each strip length at most

once.

To complete the picture we describe how to solve the linear programming relaxation of

the Dantzig-Wolfe reformulation in the next subsection and how to use this reformulation in a

branch-and-bound approach to find an optimal integer solution (subsection 3.5).

3.3 Solving the Dantzig-Wolfe Relaxation by Column Generation

Here we consider how to compute the dual bound provided by the “Dantzig-Wolfe re-

laxation”, using column generation. Alternative ways to compute this dual bound are then

discussed in the next subsection.

Consider the linear relaxation of DWc given in (28)-(32) or DWd given in (33)-(36) which

are equivalent as noted in Observation 1. This LP is traditionally called the (Dantzig-Wolfe)

master problem (MLP ). It has a very large number of variables that will be introduced

dynamically in the course of the optimization by the revised simplex method. We assume

that Z is a bounded integer set. Let {xg}g∈G be either the extreme points of conv(Z) or all

the points of Z. Suppose that, at iteration t of the simplex algorithm, only a subset of points

{xg}g∈Gt with Gt ⊂ G are known. They give rise to the restricted master linear program
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(RMLP):

zRMLP = min
∑

g∈Gt

(cxg)λg (43)

(RMLP)
∑

g∈Gt

(Dxg)λg ≥ d (44)

∑

g∈Gt

λg = 1 (45)

λg ≥ 0 g ∈ Gt.

The dual of (RMLP) takes the form:

max πd + σ (46)

πDxg + σ ≤ cxg g ∈ Gt (47)

π ≥ 0, σ ∈ R
1. (48)

Let λ′ and (π′, σ′) represent the primal and the dual solutions of the restricted master program

RMLP respectively.

The column generation algorithm follows directly from the following simple observations

exploiting both primal and dual representations of the master problem.

Observation 2

i) Given a current dual solution (π′, σ′), the reduced cost of the column associated to solution

xg is cxg − π′Dxg − σ′.

ii) ζ = ming∈G(cxg − π′Dxg) = minx∈Z(c − π′D)x. Thus, instead of examining the reduced

costs of the huge number of columns, pricing can be carried out implicitly by solving a single

integer program over the set Z.

iii) The solution value of the restricted Master problem zRMLP =
∑

g∈Gt(cxg)λ′
g = π′d + σ′

gives an upper bound on zMLP . MLP is solved when ζ − σ′ = 0, i.e., when there is no column

with negative reduced cost.

iv) The pricing problem defined in ii) is equivalent to the Lagrangean sub-problem given in (17);

hence, each pricing step provides a Lagrangean dual bound.

v) For another view point on iv), note that the dual solution π′ of RMLP, completed by ζ, forms

a feasible solution (π′, ζ) for the dual of MLP :

{max πd + σ : πDxg + σ ≤ cxg, g ∈ G; π ≥ 0; σ ∈ R
1},
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and therefore π′d + ζ gives a lower bound on zMLP .

vi) If the solution λ′ to RMLP is integer, the corresponding value of zRMLP provides a valid

primal (upper) bound for problem IP.

Point ii) is crucial as our motivation for the Dantzig-Wolfe reformulation was the assumption

that solving an optimization problem over Z is relatively tractable. Point vi) highlights a strong

point of the column generation approach: it tends to produce primal integer solutions in the

course of the solution of MLP.

The Column Generation Algorithm for a master program of the form (23)-(26):

i) Initialize primal and dual bounds PB = +∞, DB = −∞. Generate a subset of points xg

so that RMLP is feasible. (Master feasibility can be achieved using artificial columns. It is

standard to combine Phases 1 and 2 of the simplex method to eliminate these artificial columns

from the LP solution).

ii) Iteration t,

ii.a) Solve RMLP over the current set of columns {xg}g∈Gt; record the primal solution λt

and the dual solution (πt, σt).

ii.b) Check whether λt defines an integer solution of IP; if so update PB. If PB = DB,

stop.

ii.c) Solve the pricing problem

(SP t) ζt = min{(c− πtD)x : x ∈ Z}.

Let xt be an optimal solution.

If ζt − σt = 0, set DB = zRMLP and stop; the Dantzig-Wolfe master problem MLP is

solved.

Otherwise, add xt to Gt and include the associated column in RMLP

(its reduced cost is ζt − σt < 0).

ii.d) Compute the dual bound: L(πt) = πtd + ζt; update DB = max{DB, L(πt)}. If PB =

DB, stop.

iii) Increment t and return to ii).

When problem IP has a block diagonal structure with the kth subproblem having optimal

value ζk, the corresponding upper bounds on the unrestricted master LP value zMLP are of the

form π′d +
∑K

k=1 σ′
k and the lower bounds of the form π′d +

∑K
k=1 ζk. When the K subsystems
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are identical these bounds take the form π′d + Kσ′ and π′d + Kζ respectively. The typical

behavior of these upper and lower bounds in the course of the column generation algorithm

is illustrated in Figure 2. Example 8 demonstrates the column generation procedure on an

instance of the bin packing problem.
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Figure 2: Convergence of the column generation algorithm

Example 8 (Column generation for the bin packing problem)

Consider the same instance as in Example 6 with n = 5 items and size vector s = (1
6 , 2

6 , 2
6 , 3

6 , 4
6).

Initialize the restricted master RMLP with the trivial packings in which each item is in a separate

bin. The initial restricted master then takes the form:

min ν1 + ν2 + ν3 + ν4 + ν5
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Its optimal value is Z = 5 with dual solution π = (1, 1, 1, 1, 1). The column generation sub-

problem is

ζ = 1−max{x1 + x2 + x3 + x4 + x5 : x1 + 2 x2 + 2 x3 + 3 x4 + 4 x5 ≤ 6, x ∈ {0, 1}5}.

The optimal solution of the knapsack problem is x6 = (1, 1, 1, 0, 0) with value 3, which gives the

lower bound L(π) =
∑

i πi + K (1− 3) = −5 (with K = 5). x6 is added to the restricted master

with associated variable ν6. The successive iterations give

t Zt master sol. πt L(πt) PB xt

5 5 ν1 = ν2 = ν3 = ν4 = ν5 = 1 (1, 1, 1, 1, 1) −5 5 (1, 1, 1, 0, 0)

6 3 ν4 = ν5 = ν6 = 1, (0, 0, 1, 1, 1) −2 3 (0, 0, 1, 1, 0)

7 3 ν1 = ν4 = ν5 = 1 (0, 1, 0, 1, 1) −2 3 (0, 1, 0, 1, 0)

8 3 ν1 = ν6 = ν7 = ν8 = 1
2 , ν5 = 1 (1, 0, 0, 1, 1) −2 3 (1, 0, 0, 0, 1)

9 2.5 ν6 = ν7 = ν8 = 1
2 , ν9 = 1 (0, 1

2 , 1
2 , 1

2 , 1) 0 3 (0, 1, 0, 0, 1)

10 2.33 ν6 = ν8 = ν10 = 1
3 , ν7 = ν9 = 2

3 (1
3 , 1

3 , 1
3 , 2

3 , 2
3) 2

3 3 (1, 1, 0, 1, 0)

11 2.25 ν6 = ν11 = 1
4 , ν9 = ν10 = 1

2 , ν7 = 3
4 (1

4 , 1
4 , 1

2 , 1
2 , 3

4) 4
3 3 (0, 0, 1, 0, 1)

12 2 ν11 = ν12 = 1 (0, 0, 0, 1, 1) 2 2 (0, 0, 0, 0, 1)

In this example, the master problem has an optimal solution that is integer, so this is an optimal

solution of the bin packing problem (the column generation procedure ends with PB=DB).

The column generation algorithm has an appealing economic interpretation, derived directly

from linear programming duality. Dantzig-Wolfe decomposition can be viewed as a procedure

for decentralizing the decision-making process. The master problem plays the role of the coordi-

nator setting prices that serve as incentives to meet the global constraints
∑

k Dxk ≥ d. These

prices are submitted to the subdivisions. Each independent subdivision uses these prices to

evaluate the profitability of its activities (xk ∈ Zk) and returns an interesting business proposal

(with negative reduced cost). The procedure iterates until no more improving proposals can be

generated, and the given prices are optimal.

3.4 Alternative methods for solving the Lagrangean Dual

By Observation 1, the above column generation algorithm solves the Lagrangean dual

zLD = maxπ≥0 L(π). Alternatives to the column generation approach to solving the Lagrangian

dual can be related to the different formulations of the problem: its max-min form (19) or the
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dual linear program (20)-(22). The dual point of view is particularly important in the analysis

of the convergence of methods for solving the Lagrangean dual: convergence is driven by the

successive dual solutions, even for the column generation procedure. Dual analysis have in-

spired enhanced column generation algorithms making use of so-called stabilization techniques.

A better theoretical convergence rate can only be achieved by using non-linear programming

techniques such as the bundle method. On the other hand, simpler methods (such as the sub-

gradient algorithm), whose convergence in practice is worse than that of the standard column

generation approach, remain useful because of their easy implementation and their ability to

cope with large size problems.

Here we review some of the classical alternative approaches to solving the Lagrangean Dual

arising from the different formulations given in Section 3.1.

Figure 3: The Lagrangean dual function L(π) seen a piecewise affine concave function; we

assume π ∈ R
1 in this representation; each piece is defined by a vector xt.

Note that L(π) = ming∈G(c − πD)xg + πd is a piecewise affine concave function of π, as

illustrated in Figure 3. Solving the Lagrangean dual requires the maximization of this non-

differentiable concave function. A simple method for this is:

The sub-gradient algorithm (for solving the Lagrangean dual in its form (19)):

i) Initialize π0 = 0, t = 1.

ii) Iteration t,

ii.a) Solve the Lagrangean subproblem (17) to obtain the dual bound L(πt) = max{cx+πt(d−
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Dx)} and an optimal solution xt.

ii.b) Compute xt’s violation of the dualized constraints (d − Dxt); this provides a “sub-

gradient”

that can be used as a “potential direction of ascent” to modify the dual variables.

ii.c) Update the dual solution using

πt+1 = max{0, πt + ǫt(d−Dxt)}

where ǫt is a appropriately chosen step-size.

iii) If t < τ , increment t and return to ii).

Central to this approach is the simple dual price updating rule of step ii.c. The rule

leads to an increase in the prices associated with violated constraints and a decrease for non-

tight constraints. Observe, however, that it ignores all previously generated points xg for

g = 1, . . . , t − 1 when updating π. Not surprisingly this can result in poor performance.

Moreover, the convergence of the algorithm is quite sensitive to the selection of the step size

(choosing it too large leads to oscillations and possible divergence, choosing it too small leads

to slow convergence or convergence to a nonoptimal point.). It is usual to use a normalized

step size: ǫt = αt

||d−Dxt|| . Standard choices are:

i) αt = C(PB − L(πt)) with C ∈ (0, 2), where the primal bound PB acts as an overestimate

of the unknown Lagrangean dual value zLD, so the step size reduces as one gets closer to the

optimal value zLD;

ii) the αt form a geometric series: αt = Cρt with ρ ∈ (0, 1) and C > 0;

iii) the αt form a divergent series: αt → 0 and
∑

t αt →∞; for instance, take αt = 1
t .

Convergence is guaranteed for i) if PB is replaced by a lower bound on zLD and for ii) if C and

ρ are sufficiently large. Step size iii) is always convergent, but convergence is very slow because

of the divergent sequence. Parameter τ in step iii) allows one to limit the number of iterations.

Another standard heuristic termination rule is to stop when the dual bound DB = maxt{L(πt)}

has not improved for several iterations.

The sub-gradient approach can be used as a heuristic to produce a candidate solution for

the primal problem (27). However it is not guaranteed to satisfy constraints Dx ≥ d while the

primal solution of (23)-(26) does. The candidate, denoted x̂, is obtained as a convex combination

of previously generated points xg for g = 1, . . . , t. Possible updating rules are:

i) x̂ =
∑t

g=1 xgλg where λg =
αg

t
g=1 αg

, or
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ii) x̂ = αx̂ + (1− α)xt with α ∈ (0, 1).

The latter rule is of interest because it puts more weight on the points xt generated most

recently. Using step size iii), the theory predicts the convergence of x̂ towards an optimal so-

lution to (27). In practice however, one would first check whether x̂ verifies Dx ≥ d and if

so record the associated value as an upper bound on zLD that can be helpful in monitoring

convergence (although there is no monotonic convergence of these upper bounds as in Figure

2). If furthermore x̂ verifies the integrality conditions, then it defines a primal bound PB.

The volume algorithm is a variant of the sub-gradient method in which one uses the informa-

tion of all the previously generated Lagrangean subproblem solutions to estimate both primal

and dual solutions to (23)-(26), thus providing better stopping criteria. At each iteration,

i) the estimate of a primal solution is updated using: x̂ = ηx̂ + (1 − η)xt with a suitable

η ∈ (0, 1);

ii) the dual solution estimate π̂ is defined by the price vector that has generated the best dual

bound so far: π̂ = argmaxg=1,...,t{L(πg)};

iii) the “direction of ascent” is defined by the violation of the dualized constraint by the primal

solution estimate x̂, i.e. (d−Dx̂), instead of using the latest Lagrangean sub-problem solution

xt;

iv) the dual price updating rule consists in taking a step from π̂ instead of πt: πt+1 =

max{0, π̂ + ǫt(d−Dx̂)}.

The method is inspired by the conjugate gradient method. It is equivalent to making a suitable

correction vt in the dual price updating direction πt+1 = max{0, πt + ǫt(d −Dxt) + vt}. The

name Volume refers to the underlying theory saying that the weight (1−η)ηg−1 of the gth solu-

tion xg in the primal solution estimate x̂ approximates the volume that is under the hyperplane

πDxt + σ = cxg in the dual polyhedron of Figure 3 augmented by the constraint σ ≥ π̂d. The

algorithm stops when primal feasibility is almost reached, i.e., when ||(d −Dx̂)|| ≤ ǫ or when

the duality gap is small enough: ||cx̂− π̂d|| ≤ ǫ. The implementation of the method is as simple

as that of the sub-gradient algorithm while its convergence performance is typically better.

The linear programming representation (20)-(22) of the Lagrangean dual suggests the use

of a cutting plane procedure to introduce dynamically the constraints associated with the dif-

ferent xg points. This procedure is a standard nonlinear programming approach to maximize a

concave non-differentiable function, known as Kelley’s cutting plane algorithm. It is identical to
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the above column generation procedure but seen in the dual space: point xg defines a violated

cut for (20)-(22) if and only if it defines a negative reduced cost column for (23)-(26).

The convergence of the basic column generation algorithm (or its dual counter part) suffers

several drawbacks, as illustrated by Figure 2: i) during the initial stages, when few points xg

are available, primal and dual bounds are very weak and ineffective, ii) convergence can be

slow with very little progress made in improving the bounds, iii) the dual bounds can behave

erratically as π jumps from one extreme point solution to another at successive iterations, and

iv) the upper bounds zRMLP can remain stuck at the same value due to degeneracy (iterating

between alternative solutions of the same value).

Efforts have been made to construct more sophisticated and robust algorithms. They com-

bine several mechanisms:

i) proper initialization (warm start): what is essential is to have meaningful dual solutions π

from the outset (using a dual heuristic or a rich initial set of points xg, produced for instance

by the sub-gradient method);

ii) stabilization techniques that penalize deviations of the dual solutions from a stability center

π̂, defined as the dual solution providing the best dual bound so far: the dual problem becomes

max
π≥0
{L(π) + S(π − π̂)},

where S is a penalty function that increases as π moves away from π̂;

iii) smoothing techniques that moderate the current dual solution based on previous iterates:

the price vector sent to the subproblem is

πt = απt−1 + (1− α)πt, ; (49)

where πt is the current dual solution of RMLP, α ∈ (0, 1) is a smoothing parameter, and πt−1

is the smoothed price of the previous iterate.

iv) an interior point approach providing dual solutions corresponding to points in the center of

the face of optimal solutions of RMLP as opposed to the extreme points generated by simplex-

based algorithms;

v) reformulation strategies to avoid degeneracy or symmetries. ???For instance, when the MLP

is a set covering problem, a dynamic row aggregation and disaggregation procedure allows one

to control degeneracy and to reduce the number of iterations. Another approach consists in
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adding valid dual cuts in (20)-(22) to break dual symmetries.

These mechanisms can be combined into hybrid methods.

Stabilization techniques differ essentially in the choice of the penalty function. Several

typical penalty function are pictured in Figure 4 for a 1-dimensional vector π. When S is a

piecewise linear function, the modified dual problem can still be formulated as a linear program

(with artificial variables). For instance, to model a boxstep penalty function S(πi) = 0 if

π ∈ [0, πi] and −∞ otherwise (for πi = 2∗ π̂i), the master program (23)-(26) is augmented with

artificial columns ρi for i = 1, . . .m, whose costs are defined by the upper bounds πi on the the

dual prices. The resulting primal - dual pair of augmented formulations of the master are:

min
∑T

t=1(cx
t)λt +

∑

i πiρi
∑T

t=1(Dix
t)λt + ρi ≥ di ∀i
∑T

t=1 λt = 1

λt ≥ 0 t = 1, . . . , T. ρi ≥ 0 ∀i

max
∑

i πidi + σ
∑

i πiDix
t + σ ≤ cxt = 1, ∀t

πi ≤ πi ∀i

π ≥ 0, σ ∈ IR1.

(50)

Properly setting the parameters that define this stabilization function may require difficult

experimental tuning.

In theory the convergence rates of all the LP-based methods (with or without piece-wise

linear penalty functions) are the same (although LP stabilization helps in practice). However

using a quadratic penalty allows one to benefit from the quadratic convergence rate of Newton’s

method to get an improved theoretical convergence rate. The bundle method consists in choos-

ing S = ||π−π̂||2

η where η is a parameter that is dynamically adjusted to help convergence. (In

the case of equality constraints Dx = d, the bundle method has an intuitive interpretation in

the primal space: solving the penalized dual is equivalent to solving the augmented Lagrangean

subproblem: min{cx + π̂(d − Dx) + η||d − Dx||2 : x ∈ conv(Z)}.) The method calls for the

solution of a quadratic program at each iteration (the dual restricted master involves the max-

imization of a concave objective under linear constraints). Experimentally the bundle method

translates into a drastic reduction in the number of iterations for some applications. The extra

computing time in solving the quadratic master is often minor.

Similarly, interior-point based solution approaches such as the Analytic Center Method

(ACCPM) can be shown theoretically to have a better rate of convergence. Even smoothing

techniques can benefit from a theoretical analysis: using rule (49), one can show that at each

iteration either the dual bound is strictly improved, or the column generated based on the
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smoothed prices πt has a strictly negative reduced cost for the original prices πt.

π̂

S(π − π̂)

π

π̂

S(π − π̂)

π

π̂

S(π − π̂)

π

π̂

S(π − π̂)

π
π̂

S(π − π̂)

π

Figure 4: Examples of penalty functions: the boxstep; three piece-wice linear penalty functions;

the quadratic penalty of the bundle method.

In practice, each of the above enhancement techniques has been shown to significantly

reduce the number of iterations in certain applications. However there may be overheads that

make each iteration slightly more time consuming. Another factor in assessing the impact of

the enhanced techniques is the time required by the pricing subproblem solver: it has been

observed that stabilized, smoothed or centered dual prices π can make the pricing problem

harder to solve in practice. Thus the benefit from using the stabilization techniques is context

dependent.

3.5 Optimal Integer Solutions: Branch-and-Price

To solve problem IP based on its Dantzig-Wolfe reformulation, one must combine column

generation with branch-and-bound; the resulting algorithm is known as branch-and-price or

IP column generation. The issues are how to select branching constraints and how to carry
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out pricing (solve the resulting subproblem(s)) after adding these constraints. Note that a

standard branching scheme consisting in imposing a disjunctive constraint on a variable λg of

the Dantzig-Wolfe reformulation that is currently factional is not advisable. First, it induces

an unbalanced enumeration tree: rounding down a λg variable is weakly constraining, while

rounding up is considerably more constraining, especially when the corresponding bounds are 0

and 1 respectively. Second, on the down branch it is difficult to impose an upper bound on a λg

variable: the associated column is likely to be returned as the solution of the pricing problem

unless one specifically excludes it from the sub-problem solution set (essentially adding the

constraint x 6= xg in the sub-problem which destroys its structure), or one computes the next

best column. The alternative is to attempt to express branching restrictions in terms of the

variables of the original formulation. In general, deriving an appropriate branching scheme in a

column generation context can be non-trivial, especially when tackling problems with identical

subsystems.

Below we start by considering the case of a single subsystem. The branching schemes

developed for this case already indicate some of the issues and extend directly to the case with

multiple but distinct subsystems. We will then consider the case of a set partitioning master

program with multiple identical subsystems in 0-1 variables. In this case, a classical approach is

the Ryan and Foster branching scheme. We place it in the context of alternative schemes. From

this discussion, we indicate the basic ideas for dealing with the general case. In particular, we

outline a general branching and pricing scheme that is guaranteed to produce a finite branching

tree and to maintain the structure of the pricing problem when the set Z is bounded.

3.5.1 Branch-and-Price with a Single or Multiple Distinct Subsystems

We describe the algorithm for a single subsystem, which extends to the case of distinct

subsystems. We suppose that λ∗ is an optimal solution of the Dantzig-Wolfe linear programming

relaxation.

i) Integrality Test. If λ∗ is integer, or more generally if x∗ =
∑

g∈G xgλ∗
g ∈ Z

n, stop. x∗ is

an optimal solution of IP.

ii) Branching. Select a variable xj for which x∗
j =

∑

g∈G xg
jλ

∗
g /∈ Z. Separate into two

subproblems with feasible regions X ∩ {x : xj ≤ ⌊x∗
j⌋} and X ∩ {x : xj ≥ ⌈x∗

j⌉}.

Let us consider just the up-branch (U); the down-branch is treated similarly. The new IP for
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which we wish to derive a lower bound is the problem:

zU = min{cx : Dx ≥ d, x ∈ Z, xj ≥ ⌈x
∗
j⌉}.

There are now two options, depending whether the new constraint is treated as a complicating

constraint, or becomes part of the “tractable” subproblem.

Option 1. The branching constraint is dualized as a “difficult” constraint: Y U
1 = {x ∈ Z

n :

Dx ≥ d, xj ≥ ⌈x
∗
j⌉} and ZU

1 = Z.

iii) Solving the new MLP: The resulting linear program is

zMLP1 = min
∑

g∈G

(cxg)λg

(MLP1)
∑

g∈G

(Dxg)λg ≥ d

∑

g∈G

xg
jλg ≥ ⌈x∗

j⌉

∑

g∈G

λg = 1

λg ≥ 0 g ∈ G,

where {xg} is the set of points of Z.

iv) Solving the new subproblem. Suppose that an optimal dual solution after iteration

t is (πt, µt, σt) ∈ R
m
+ × R

1
+ × R

1
+. The subproblem now takes the form:

(SP t
1) ζt

1 = min{(c− πtD)x− µtxj : x ∈ Z}.

Option 2. The branching constraint is enforced in the sub-problem: Y U
2 = Y and ZU

2 =

Z ∩ {xj ≥ ⌈x∗
j⌉}.

iii) Solving the new MLP: The resulting linear program is
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zMLP2 = min
∑

g∈GU
2

(cxg)λg

(MLP2)
∑

g∈GU
2

(Dxg)λg ≥ d

∑

g∈GU
2

λg = 1

λg ≥ 0 g ∈ GU
2 .

where {xg}g∈GU
2

is the set of points of ZU
2 .

iv) Solving the new subproblem. Suppose that an optimal dual solution after iteration

t is (πt, σt) ∈ R
m
+ × R

1
+. The subproblem now takes the form:

(SP t
2) ζt

2 = min{(c− πtD)x : x ∈ Z ∩ {x : xj ≥ ⌈x
∗
j⌉}}.

Note that, with Option 2, branching on xj ≥ ⌈x
∗
j⌉ on the up-branch can be viewed as

partitioning the set Z into two sets Z \ ZU
2 and ZU

2 : adding the constraint
∑

g∈GU
2

λg = 1 is

equivalent to adding
∑

g∈G\GU
2

λg = 0 and thus the columns of Z \ ZU
2 are removed from the

master.

Both options 1 and 2 have certain advantages and disadvantages:

• Strength of the linear programming bound

zMLP1 = min{cx : Dx ≥ d, x ∈ conv(Z), xj ≥ ⌈x
∗
j⌉}

≤ zMLP2 = min{cx : Dx ≥ d, x ∈ conv(Z ∩ {x : xj ≥ ⌈x
∗
j⌉})},

so option 2 potentially leads to better bounds.

• Complexity of the subproblem

For option 1 the subproblem is unchanged, whereas for option 2 the subproblem may

remain tractable, or it may become more complicated if the addition of bounds on the

variables makes it harder to solve.
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• Getting Integer Solutions

If an optimal solution x∗ of IP is not an extreme point of conv(Z), there is no chance that

x∗ will ever be obtained as an optimal solution of the subproblem under Option 1. Under

Option 2, because of the addition of the bound constraints, one can eventually generate

a column xg = x∗ in the interior of conv(Z).

The above pros and cons suggest that Option 2 may be preferable if the modified subproblem

remains tractable.

In the above we only consider branching at the root node and the modifications to the

column generation procedure after adding a single branching constraint. The two options can

be used throughout the branch-and-price tree, adding a new lower or upper bound on a variable

on each branch. Both schemes also extend to mixed integer programs in which case branching

is carried out only on the integer variables.

3.5.2 Branch-and-Price with Identical Subsystems

In the case of identical subsystems the Dantzig-Wolfe reformulation is given by DWad (38)-

(41). Here the model variables result from an aggregation: νg =
∑K

k=1 λkg with
∑

g∈G νg = K.

Hence, there is no direct mapping back to the original distinct subsystem variables (x1, · · · , xK).

The projection (42) of reformulation solution ν into the original variable space will only provide

the aggregate variables y defined in (10). The “Integrality Test” needs to be adapted. More-

over, branching on a single component of y is typically not enough to eliminate a fractional

solution. In particular, the Option 1 scheme typically does not suffice because one may have

y∗j =
∑

g∈G xg
jλ

∗
g ∈ Z for all j even though the current master solution does not provide an

optimal integer solution to the original problem. The extension consists in defining branching

entities involving more than one variable xj of the original formulation. This can be interpreted

as defining auxiliary variables on which to branch. The branching constraint can then either

go in the master (as in Option 1) or be enforced in the pricing problem (as in Option 2), which

amounts to branching on appropriately chosen subsets Ẑ ⊂ Z.

First, we provide an “Integrality Test” although its definition is not unique.

Integrality Test. Sort the columns xg with ν∗
g > 0 in lexicographic order. Disaggregate ν into
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λ variables using the recursive rule:

λ∗
kg = min{1, νg −

k−1∑

κ=1

λ∗
κg, (k −

∑

γ≺g

ν∗
g )+} ∀k = 1, . . . , K, g ∈ G , (51)

where g1 ≺ g2 if g1 precedes g2 in the lexicographic order. For all k, let (xk)∗ =
∑

g∈Gc xgλ∗
kg.

If x∗ ∈ Z
Kn, stop. x∗ is a feasible solution of IP.

Note that if ν∗ is integer, the point x∗ obtained by the above mapping will be integer. In

general x∗ can be integer even when ν∗ is not. However, when Z ⊂ {0, 1}n, ν∗ is integer if and

only if x∗ is integer.

Let us now discuss Branching. We first treat the special case in which the master problem

is a set partitioning problem. Then we present briefly possible extensions applicable to the

general case.

The Set Partitioning Case

For many applications with identical binary subsystems, one has Z ⊆ {0, 1}n, D = I, d =

(1, ..., 1), and the master takes the form of:

min{
∑

g

(c xg) νg :
∑

g

xg
j νg = 1 ∀j,

∑

g

νg = K, νg ∈ {0, 1} ∀g ∈ G}. (52)

One example is the bin packing problem of Example 8 in which Z is the set of solutions of a

0-1 knapsack problem. Another is the graph (vertex) coloring problem in which columns corre-

spond to node subsets that can receive the same color and Z is the set of stable sets of the graph.

Assume that the solution to the master LP is fractional with ν∗ 6∈ {0, 1}|G|. Branching

on a single component yj is not an option. Indeed, if Ĝ = {g : xg
j = 1}, y∗j =

∑

g∈G xg
jν

∗
g =

∑

g∈Ĝ ν∗
g = 1 for any master LP solution. However there must exist a pair of coordinates i and

j such that

w∗
ij =

∑

g:xg
i =1,xg

j =1

ν∗
g = α with 0 < α < 1,

so that one can branch on the disjunctive constraint:

(wij =
∑

g:xg
i =1,xg

j =1

νg = 0) or (wij =
∑

g:xg
i =1,xg

j =1

νg = 1),
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where wij = xixj is interpreted as an auxiliary variable indicating whether or not components

i and j are in the same subset of the partition.

We present three ways to handle the branching constraint, numbered 3, 4 and 5 to dis-

tinguish them from the Options 1 and 2 above. They are illustrated on the up-branch wij =
∑

g:xg
i =1,xg

j =1 νg = 1.

Option 3. The branching constraint is dualized as a “difficult” constraint: Y U
3 = {x ∈ Z

n :

Dx ≥ d, wij ≥ 1} and ZU
3 = Z. Then the master includes the constraint

∑

g:xg
i =1,xg

j =1 νg ≥ 1

with associated dual variable µ and the pricing subproblem needs to be amended to correctly

model the reduced costs of a column; it takes the form:

ζ3 = min{(c− πD)x− µwij : x ∈ Z, wij ≤ xi, wij ≤ xj , wij ∈ {0, 1}}.

If one wishes to enforce branching directly in the pricing subproblem, note that one cannot

simply set wij = 1 in the subproblem because this branching constraint must only be satisfied

by one of the K subproblem solutions. Instead one must restrict the subproblem to Ẑ in such

a way that any linear combination of its solutions x ∈ Ẑ satisfies wij =
∑

g∈Ĝ:xg
i =1,xg

j =1 νg = 1.

This can be done either through Option 4 or 5:

Option 4. Let Y U
4 = {x ∈ Z

n : Dx ≥ d} and Ẑ = ZU
4 = Z ∩ {xi = xj}. The combination

of this restriction on the solution set with the set partitioning constraints
∑

g∈Ĝ:xg
i =1 νg = 1

and
∑

g∈Ĝ:xg
j =1 νg = 1 results in the desired output:

∑

g∈Ĝ:xg
i =1,xg

j =1 νg = 1. With this option

the master is unchanged, while the pricing subproblem is:

ζ4 = min{(c− πD)x : x ∈ Z, xi = xj}.

Option 5. Here on the up branch one works with two different subproblems: one whose

solutions have wij = 1 and the other whose solutions have wij = 0. Let Y U
5 = {x ∈ Z

n : Dx ≥ d}

and Ẑ = ZU
5A ∪ZU

5B with ZU
5A = Z ∩ {xi = xj = 0} and ZU

5B = Z ∩ {xi = xj = 1}. Then, in the

master program the convexity constraint
∑

g∈G νg = K is replaced by
∑

g∈GU
5A

νg = K − 1 and
∑

g∈GU
5B

νg = 1, and there are two pricing subproblems, one over set ZU
5A and one over set ZU

5B:

ζ5A = min{(c− πD)x : x ∈ Z, xi = xj = 0} and ζ5B = min{(c− πD)x : x ∈ Z, xi = xj = 1}.

Option 3 can be seen as an extension of Option 1. Option 4 is known in the literature as

the Ryan and Foster branching scheme. Option 5 can be seen as an extension of Option 2. The
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analysis of the advantages and disadvantages of Options 3, 4 and 5 provides a slightly different

picture from the comparison of Options 1 and 2:

• Strength of the linear programming bound

zMLP3 = min{cx : Dx ≥ d, x ∈ conv(Z)K , wij ≥ 1}

≤ zMLP4 = min{cx : Dx ≥ d, x ∈ conv(ZU
2 )K},

≤ zMLP5 = min{cx : Dx ≥ d, x ∈ (conv(ZU
5A)K−1 × conv(ZU

5B))},

• Complexity of the subproblem

The three options assume a change of structure in the subproblem (even Option 3). The

Option 5 modifications of fixing some of the subproblem variables are the least significant.

• Getting Integer Solutions

Both Option 4 and 5 allow one to generate a column xg = x∗ in the interior of conv(Z),

but Option 5 is better in this regard.

The down-branch can be treated similarly: Y D
3 = {x ∈ Z

n : Dx ≥ d, wij = 0}, ZD
4 =

Z ∩ {xi + xj ≤ 1}, ZD
5A = Z ∩ {xi = 0} and ZD

5B = Z ∩ {xi = 1, xj = 0}.

Note that the pricing problem modifications are easy to handle in some application while

they make the pricing problem harder in others. The Option 3 modifications affect the cost

structure in a way that is not amenable to standard pricing problem solvers in both of our

examples: bin packing and vertex coloring. The Option 4 modifications do not affect the struc-

ture of the stable set sub-problem for the vertex coloring problem: addition of the inequality

xi + xj ≤ 1 on the down-branch amounts to adding an edge in the graph, while adding xi = xj

in the up-branch amounts to aggregating the two nodes – contracting an edge. However, for the

bin packing application, a constraint of the form xi + xj ≤ 1 in the down-branch destroys the

knapsack problem structure, so that a standard special purpose knapsack solver can no longer be

used, while the up-branch can be handled by the aggregation of items. The Option 5 modifica-

tions are easily handled by preprocessing for both the bin packing and vertex coloring problems.

The General Case with Identical Subsystems

For the general case, such as the cutting stock problem of Example 7, the Master LP relaxation
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is

min{
∑

g∈G

(cxg)νg :
∑

g∈G

(Dxg)νg ≥ d,
∑

g∈G

νg ≤ K, ν ∈ R
|G|
+ }.

If its solution ν does not pass the “Integrality Test”, one must apply an ad-hoc branching

scheme. The possible choices can be understood as extensions of the schemes discussed in

Options 1 to 5.

Option 1 Branching on the aggregate variables y does not guarantee the elimination of all

fractional solutions. As we have seen in the set partitioning case, no fractional solutions

can be eliminated in this way. However for the general case, in some (if not all) fractional

solutions, there exists a coordinate i for which yi =
∑

g∈G xg
i νg = α /∈ Z. Then one can

create two branches
∑

g∈G

xg
i νg ≤ ⌊α⌋ and

∑

g∈G

xg
i νg ≥ ⌈α⌉.

This additional constraint in the master does not change the structure of the pricing

problem that becomes

ζ = min{(c− πD)x− µixi : x ∈ Z}

where µi (resp. −µi ) is the dual variable associated to up-branch (resp. down-branch)

constraint.

Options 3 and 4 If the original variables do not offer a large enough spectrum of branching

objects (i.e. if the integrality of the aggregate yi value does not yield an integer solution

x to the original problem), one can call on an extended formulation, introducing auxiliary

integer variables. Then one can branch on the auxiliary variables, either by dualizing the

branching constraint in the master (Option 3) or, when possible, by enforcing it in the

subproblem (Option 4). A natural approach is to exploit the extended formulation that

is implicit to the solution of the pricing problem. For example, in the vehicle routing

problem, solutions are the incidence vectors of the nodes in a route, whereas the edges

defining the routes implicitly define the costs of the route; branching on the aggregated

edge variables summed over all the vehicles allows one to eliminate all fractional solutions.

For the cutting stock problem, solving the knapsack subproblem by dynamic programming

amounts to searching for a longest path in a pseudo-polynomial size network whose nodes

represent capacity consumption levels (see Section 5.4). Branching on the associated edge

flows in this network permits one to eliminate all fractional solutions.
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Options 2 and 5 For a general integer problem, a generalization of the Option 2 approach is

to look for a pair consisting of an integer j and an integer bound lj for which
∑

g:xg
j≥lj

νg =

α 6∈ Z, and then create the two branches:

∑

g∈Ĝ

νg ≥ ⌈α⌉ or
∑

g∈G\Ĝ

νg ≥ K − ⌊α⌋ (53)

where Ẑ = Z ∩ {xj ≥ lj} = {xg}g∈Ĝ. Then pricing is carried out independently over the

two sets Ẑ and Z \ Ẑ = Z ∩ {xj ≤ lj − 1} on both branches. As in the set partitioning

special case, one may have to consider sets Ẑ defined by more than a single component

bound. It is easy to show that if a solution ν does not pass the “Integrality Test” there

must exists a branching set Ẑ = Z ∩ {sx ≥ l}, where l ∈ Z
n is a vector of bounds and

s ∈ {−1, 1}n defines the sign of each component bound, such that
∑

g:xg∈Ẑ νg = α 6∈ Z.

Then, branching takes a form generalizing (53) and pricing is carried out independently

for Ẑ and its complementary sets: the technicalities are beyond the scope of this chapter

(see the references provided in Section 7); in particular, to avoid the proliferation of the

number of cases to consider when pricing, it is important to chose a branching set Ẑ that

is either a subset of a previously defined branching set or lies in the complement of all

previously defined branching sets.

Option 1 can always be tried as a first attempt to eliminate a fractional solution. Although

easy to implement, the resulting branching can be weak (low improvement in the dual bound).

Options 3 and 4 are application specific schemes (whether the branching constraint can be

enforced in the subproblem and whether this modifies its structure are very much dependent

on the application). By comparison Option 5 is a generic scheme that can be applied to all

applications for which adding bounds on the subproblem variables does not impair its solution

(i.e., it works if Z is bounded). Typically it provides the strongest dual bound improvement.

3.6 Practical Aspects

In developing a branch-and-price algorithm, there are many practical issues such as a proper

initialization of the restricted master program, stabilization of the column generation procedure

(as discussed in Section 3.4), early termination of the master LPs, adapting primal heuristics and

preprocessing techniques to a column generation context, combining column and cut generation,

and branching strategies. Note that the branching schemes of Section 3.5 must be understood
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as default schemes that are called upon after using possible branching on constraint strategies

that can yield a more balanced search tree.

Initialization is traditionally carried out by running a primal heuristic and using the heuris-

tic solutions as an initial set of columns. Another classical option is to run a sub-gradient or

a volume algorithm to obtain an initial bundle of columns before going into the more compu-

tationally intensive LP based column generation procedure. An alternative is to run a dual

heuristic to estimate the dual prices. These estimates are then used to define the cost of the

artificial columns associated with each of the master constraints as presented in (50).

The column generation approach is often used in primal heuristics. A branch-and-price

algorithm can be turned into a heuristic by solving the pricing problem heuristically and carrying

out partial branching. A classical heuristic consists in solving the integer master program

restricted to the columns generated at the root node using a standard MIP solver (hoping that

this integer program is feasible). Another common approach is to apply iterative rounding of

the master LP solution, which corresponds to plunging depth-first into the branch-and-price

tree (partial backtracking yields diversification in this primal search). The branching scheme

underlying such a rounding procedure is simpler than for exact branch-and-price (for instance

one can branch directly on the master variables as only one branch is explored).

4 Resource or Variable Decomposition

The “classical” problem tackled by resource decomposition is the mixed integer program

zMIP = min cx + hy

(MIP ) Gx + Hy ≥ d

x ∈ Zn, y ∈ Rp
+

where the integer variables x are seen as the “important” decision variables (possibly repre-

senting the main investment decisions). One approach is then to decompose the optimization

in two stages: first choosing x and then computing the associated optimal y. A feedback loop

allowing one to adjust the x solution after obtaining pricing information from the optimization

of y makes the Benders’ approach different from simple hierarchical optimization.

In this section we first derive the Benders’ reformulation in the space of the x variables

and show how it can be solved using branch-and-cut. We then consider the case where the y

variables are also integer variables as well as the case with block diagonal structure in which
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the subproblem obtained when the x variables are fixed decomposes, and finally we discuss

computational aspects.

4.1 Benders’ reformulation

The approach here is to rewrite MIP as a linear integer program just in the space of the

integer variables x. First we rewrite the problem as

zMIP = min{cx + φ(x) : x ∈ projx(Q) ∩ Z
n}

where

Q = {(x, y) ∈ Rn ×Rp
+ : Gx + Hy ≥ d}

and

φ(x) = min{hy : Hy ≥ d−Gx, y ∈ Rp
+}

is the second stage problem that remains once the important variables have been fixed in the

first stage. This can in turn be written as

zMIP = min{cx + σ : x ∈ projx(Q) ∩ Z
n, (σ, x) ∈ Pφ}

where Pφ = {(σ, x) : σ ≥ φ(x)}. Note that when x yields a feasible second stage problem, i.e.,

x ∈projx(Q), Pφ can be described by linear inequalities. By LP duality, φ(x) = max{u(d −

Gx) : uH ≤ h, u ∈ Rm
+} = maxt=1,...,T ut(d − Gx) where {ut}Tt=1 are the extreme points of

U = {u ∈ R
m
+ : uH ≤ h}. In addition a polyhedral description of projx(Q) is given by Theorem

4. Thus we obtain the reformulation:

zMIP = min cx + σ

vr(d−Gx) ≤ 0 r = 1, · · · , R

(RMIP ) σ ≥ ut(d−Gx) t = 1, · · · , T

x ∈ Z
n,

where {ut}Tt=1 and {vr}Rr=1 are the extreme points and extreme rays of U respectively.

RMIP is a linear integer program with a very large (typically exponential) number of

constraints. With modern mixed integer programming software, the natural way to solve such

a problem is by branch-and-cut (see Chapter ??).
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Specifically at each node of the enumeration tree, a linear programming relaxation is solved

starting with a subset of the constraints of RMIP . If this linear program is infeasible, RMIP

at that node is infeasible, and the node can be pruned. Otherwise if (σ∗, x∗) is the current

linear programming solution, violated constraints are found by solving the linear programming

separation problem

φ(x∗) = min{hy : Hy ≥ d−Gx∗, y ∈ R
p
+}, (54)

or its dual max{u(d−Gx∗) : uH ≤ h, u ∈ R
m
+}. There are three possibilities:

i) The linear programming separation problem (54) is infeasible and one obtains a new extreme

ray vr with vr(d−Gx∗) > 0. (An extreme ray is obtained as the dual solution on termination

of the simplex algorithm). The violated constraint vr(d − Gx) ≤ 0, called a feasibility cut, is

added, and one iterates.

ii) The linear programming separation subproblem is feasible, and one obtains a new dual ex-

treme point ut with φ(x∗) = ut(d−Gx∗) > σ∗. The violated constraint σ ≥ ut(d−Gx), called

an optimality cut, is added, and one iterates.

iii) The linear programming separation subproblem is feasible with optimal value φ(x∗) = σ∗.

Then, (x∗, σ∗) is a solution to the linear programming relaxation of RMIP and the node is

solved.

Example 9 Consider the mixed integer program

min −4x1 −7x2 −2y1 −0.25y2 + 0.5y3

−2x1 −3x2 −4y1 +y2 −4y3 ≥ −9

−7x1 −5x2 −12y1 −2y2 +4y3 ≥ −11

x ≤ 3, x ∈ Z
2
+, y ∈ R

3
+

where the feasible region is similar to that of Example 3.

The extreme rays v1 = (1, 1)T , v2 = (2, 1)T of the feasible region of the dual U = {u ∈ R
2
+ :

−4u1 − 12u2 ≤ −2, u1 − 2u2 ≤ −0.25,−4u1 + 4u2 ≤ 0.5} were calculated in Example 3. The

extreme points are u1 = (1/32, 5/32), u2 = (1/20, 3/10), so the resulting complete reformulation

RMIP is:

42



min σ −4x1 −7x2

−9x1 −8x2 ≥ −20

−11x1 −11x2 ≥ −29

σ −1.15625x1 −0.875x2 ≥ −2

σ −1.15x1 −0.9x2 ≥ −2.1

x ≤ 3, x ∈ Z
2
+.

Now we assume that the extreme points and rays of U are not known, and the problem is to

be solved by branch-and-cut. One starts at the initial node 0 with only the bound constraints

0 ≤ x ≤ 3 and dynamically add Benders’ cuts during branch-and-cut. We further assume that

a lower bound of -100 on the optimal value of φ(x) is given.

Node 0. Iteration 1. Solve the Master linear program:

ζ = min σ −4x1 −7x2

σ ≥ −100

x1 ≤ 3, x2 ≤ 3, x ∈ R
2
+.

Solution of the LP Master ζ = −133, x = (3, 3), σ = −100.

Solve the separation linear program

min −2y1 −0.25y2 + 0.5y3

−4y1 +y2 −4y3 ≥ −9 + 15

−12y1 −2y2 +4y3 ≥ −11 + 36

y ∈ R
3
+ .

The ray v = (1, 1) shows that the separation LP is infeasible. The corresponding feasibility cut

−9x1 − 8x2 ≥ −20 is added to the Master LP.

Node 0. Iteration 2.

Solution of the LP Master: ζ = −117.5, x = (0, 2.5), σ = −100.

Solution of the Separation LP: φ(x) = 3/16 > σ. u = (1/32, 5/32). The corresponding optimal-

ity cut σ − 1.15625x1 − 0.875x2 ≥ −2 is added to the Master LP.

Node 0. Iteration 3.

Solution of the LP Master: ζ = −17 5
16 , x = (0, 2.5), σ = 3

16 .

Solution of the Separation LP: φ(x) = σ. The LP at node 0 is solved.

Create node 1 by branching on x2 ≤ 2 and node 3 by branching on x2 ≥ 3, see Figure 5.
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Node 1. Iteration 1

The constraint x2 ≤ 2 is added to the Master LP of Node 0, Iteration 3.

Solution of the LP Master: ζ = −15.514, x = (4/9, 2), σ = 0.264.

Solution of the Separation LP: φ(x) = σ. The LP at node 1 is solved.

Create node 3 by branching on x1 ≤ 0 and node 4 by branching on x1 ≥ 1.

Node 3. Iteration 1

The constraint x1 ≤ 0 is added to the Master LP of Node 1, Iteration 1.

Solution of the LP Master: ζ = −14.25, x = (0, 2), σ = −0.25.

Solution of the Separation LP: φ(x) = σ. The LP at node 3 is solved. The solution is integer.

The value -14.25 and the solution x = (0, 2), y = (0.25, 0, 0.5) are stored. The node is pruned

by optimality.

Node 4. Iteration 1

The constraint x1 ≥ 1 is added to the Master LP of Node 1, Iteration 1.

Solution of the LP Master: ζ = −13.26. The node is pruned by bound.

Node 2. Iteration 1

The constraint x2 ≥ 3 is added to the Master LP of Node 0, Iteration 3.

The LP Master is infeasible. The node is pruned by infeasibility.

All nodes have been pruned. The search is complete. The optimal solution is x = (0, 2), y =

(0.25, 0, 0.5) with value -14.25. The branch-and-cut tree is shown in Figure 5.

4.2 Benders with Integer Subproblems

The Bender’s approach has also been found useful in tackling integer programming models

of the form

min{cx + hy : Gx + Hy ≥ d, x ∈ {0, 1}n, y ∈ Y ⊆ Z
p},

where the x variables are 0-1 and represent the “strategic decisions”, and the y variables are

also integer. Once the x variables are fixed, there remains a difficult combinatorial problem

to find the best corresponding y in the second stage. Typical examples are vehicle routing (or
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x2<=2  x2>=3
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x=(0.444,2)

ζ= -15.514

x=(0,2) 

ζ= -14.25  ζ= -13.26

   x=(0,2.5) 

   ζ= -14.3125

Figure 5: Branch-and-Cut Tree for Benders’ Approach

multi-machine scheduling) in which the x variables may be an assignment of clients to vehicles

(or jobs to machines) and the y variables describe the feasible tours of each vehicle (or the

sequence of jobs on each machine).

As before one can design a Benders’ reformulation and branch-and-cut algorithm in the

(σ, x) variables:

zMIP = min{cx + σ, σ ≥ φ(x), x ∈ Z
n},

where φ(x) =∞ when x 6∈ projx(Q). However the separation subproblem is no longer a linear

program but the integer program:

φ(x) = min{hy : Hy ≥ d−Gx, y ∈ Y }. (55)

Now one cannot easily derive a polyhedral description of the projection into the x-space as in

the continuous subproblem case. The combinatorial subproblem (55) must be solved repeatedly

at each branch-and-bound node. It is often tackled by constraint programming techniques,

especially when it reduces to a feasibility problem (in many applications h = 0).

A naive variant of the algorithm presented in Section 4.1 is to solve the master problem

to integer optimality before calling the second stage problem: one only calls the separation

algorithm when RMIP has an integer solution x∗ ∈ {0, 1}n. The separation is typically easier
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to solve in this case. This approach is often used when the subproblem is handled by constraint

programming. There are three possible outcomes:

i) The separation subproblem is infeasible for the point x∗ ∈ {0, 1}n, and one can add the

infeasibility cut

∑

j:x∗

j =0

xj +
∑

j:x∗

j =1

(1− xj) ≥ 1 (56)

that cuts off the point x∗.

ii) The separation subproblem is feasible for x∗, but φ(x∗) > σ∗. One can add the optimality

cut

σ ≥ φ(x∗)− (φ(x∗)−M)
( ∑

j:x∗

j =0

xj +
∑

j:x∗

j =1

(1− xj)
)

that cuts off the point (σ∗, x∗), where M is a lower bound on φ.

iii) The separation subproblem is feasible for x∗, and φ(x∗) = σ∗ = hy∗. Now (x∗, y∗) is a

feasible solution with value cx∗ + φ(x∗). The node can be pruned by optimality.

This naive version has to be improved to have any chance of working in practice (for instance,

in some applications one can add certain valid inequalities in the x variables a priori). In

particular it is important to find inequalities that cut off more than just the point x∗. One case

in which a slightly stronger inequality can be generated is that in which x∗ ∈ {0, 1} infeasible

implies x infeasible whenever x ≥ x∗. In this case one search for a minimal infeasible solution

x̃ ≤ x∗ and the infeasibility cut (56) is replaced by the inequality:

∑

j:x̃j=1

(1− xj) ≥ 1

stating that in any feasible solution at least one variable with x̃j = 1 must be set to zero.

Finally note that one can also work with a relaxation of (55) as any feasibility cut or

optimality cut that is valid for the relaxation is valid for (55).

4.3 Block Diagonal Structure

In many applications MIP has block diagonal structure of the form
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min cx + h1y1 + h2y2 + · · · +hKyK

G1 x + H1 y1 ≥ d1

G2 x + H2 y2 ≥ d2

. . .
. . . ≥

...

GK x + HK yK ≥ dK

x ∈ X, yk ∈ Zk k = 1, . . . , K

Here the second stage subproblem breaks up into K subproblems

ζk = min{hkyk : Hkyk ≥ dk −Gkx, yk ∈ Zk}.

One important and well-known case is that of two-stage stochastic linear and integer program-

ming, where x represent the first stage decisions (discrete or otherwise). Then depending on a

discrete probability distribution, one observes the random variables involving one or more ele-

ments of (Gk, Hk, hk, dk) with probability pk before taking an optimal second stage decision yk.

Note that all the subproblems will have a similar structure in the relatively common situation

in which the matrices Hk, Gk are independent of k.

We now consider an example in which all the costs are restricted to the x variables, but the

subproblems are hard combinatorial problems.

Example 10 (Multi-Machine Job Assignment Problem)

There are K machines and n jobs. Each job j has a release date rj and a due date dj. The

processing time of job j on machine k is pk
j and the associated processing cost is ck

j . The problem

is to assign each job to one machine so that the jobs on each machine can be scheduled without

preemption while respecting the release and due dates, and the sum of the assignment costs are

minimized.

Letting xk
j = 1 if job j is assigned to machine k, the problem can be written as

zMIP = min{
K∑

k=1

n∑

j=1

ck
j x

k
j :

K∑

k=1

xk
j = 1 ∀ j, xk ∈ Zk ∀ k},

where xk ∈ Zk if and only if the set Sk = {j : xk
j = 1} of jobs can be scheduled on machine

k. The set Zk can be represented as a linear integer program, but the feasibility problem for

each machine is well-solved in practice by the“Cumulative Constraint” from Constraint Pro-

gramming. Given a proposed assignment x∗, one calls the Cumulative Constraint in turn for
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each of the K subproblems. Either x∗ is a feasible assignment, or one or more infeasibility cuts

∑

j∈Sk

xk
j ≤ |S

k| − 1,

are added (involving as small as possible a set Sk of infeasible jobs). Note that as the costs are

limited to the x variables, there are no optimality cuts for this problem.

4.4 Computational Aspects

Much recent research has shown the importance of normalization in generating cutting

planes, and Benders’ algorithm is no exception. Returning to the algorithm outlined in Subsec-

tion 4.1, given (x∗, σ∗), a violated feasibility or optimality cut is generated if and only if there

is no feasible point (x∗, y∗) attaining the present lower bound cx∗ + σ∗, or equivalently the set

{y ∈ R
p
+ : Hy ≥ d−Gx∗, hy ≤ σ∗} = ∅.

By Farkas’ Lemma this holds if and only if

{(u, u0) ∈ R
m
+ × R

1
+ : u(d−Gx∗)− u0σ

∗ > 0, uH − u0h ≤ 0} 6= ∅.

Taking the normalization
∑m

i=1 ui + u0 = 1 motivated by the aim of generating a minimal

infeasible subsystem of inequalities and also the fact that this normalization has been effective

for other problems, the earlier separation problem (54) is replaced by the linear program:

ζ = max u(d−Gx∗)− u0σ
∗

uH − u0h ≤ 0
∑m

i=1 ui + u0 = 1

u ∈ R
m
+ , u0 ∈ R

1
+.

Now if ζ > 0, the inequality u(d − Gx) ≤ u0σ is violated by ζ. Note that this is a feasibility

cut when u0 = 0 and an optimality cut when u0 > 0. A recent computational study has shown

that Benders’ algorithm is significantly more effective and requires far fewer iterations when

this normalized separation problem is used.
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5 Extended Formulations: Problem Specific Approaches

We now consider the use and derivation of extended formulations based on explicit problem

structure in more detail.

Typically we again have a decomposition X = Y ∩Z of the feasible region, and Z has some

specific structure that we wish to exploit. In nearly all such cases a minimal inequality descrip-

tion of conv(Z) requires a very large number of constraints. However there is the possibility

that one can find a compact extended formulation that is tight or at least considerably stronger

than the initial formulation for Z. This section is mainly about such reformulations.

First it is natural to ask when there is hope of finding such a compact and tight extended

formulation for Z. An important indication is given by the Polynomial Equivalence of Opti-

mization and Separation. Informally it states that, subject to certain technical conditions:

A family of problems min{cx : x ∈ Z ⊆ Zn} is polynomially solvable if and only if for all

instances Z and all c there is a polynomial separation algorithm for conv(Z).

Assuming P 6= NP, this tells us that a tight and compact extended formulation can only

exist for a problem for which the optimization/separation problem is in P. However it gives no

guarantee of the existence of such a formulation.

Below we briefly discuss ways in which “relatively compact” extended formulations can be

used. Then we look at different ways to derive extended formulations. We have attempted

to classify them according to the method of derivation. In particular we consider extended

formulations based on variable splitting, dynamic programming algorithms, unions of polyhedra,

explicit convex hull descriptions or the associated separation problem, and finally a section with

miscellaneous extended IP-formulations.

5.1 Using Compact Extended Formulations

Here we consider briefly different ways to make use of extended formulations that are com-

pact or of “reasonable size”.

Intersection

Given an initial formulation P of X, the decomposition X = Y ∩ Z and an extended

formulation Q for Z, then Q′ = P ∩Q is an extended formulation for X. Assuming that Q is
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compact, one simple option is to feed the reformulated problem

max{cx + 0w : (x, w) ∈ Q′, x ∈ Z
n}

to an MIP solver. Alternatively one might also try to improve the formulation of Y and

combine this with the extended formulation Q so as to produce an even stronger reformulation,

see Section 6.

Projection

Again given the decomposition X = Y ∩ Z and an extended formulation Q for Z, one may

wish to avoid explicit introduction of the new variables w ∈ R
p. One possibility is to use linear

programming to provide a separation algorithm for projx(Q).

Separation Algorithm

Given Q = {(x, w) ∈ R
n
+ × R

p
+ : Gx + Hw ≥ d} and x∗ ∈ R

n
+,

i) check whether Q(x∗) = {w ∈ R
p : Hw ≥ d − Gx∗} 6= ∅. This can be tested by linear

programming.

ii) If Q(x∗) 6= ∅, then x∗ ∈ projx(Q). Stop.

iii) If Q(x∗) = ∅, then by Farkas’ lemma there exists v∗ ∈ V = {v ∈ R
m
+ : vH ≤ 0} with

v∗(d − Gx∗) > 0 (v∗ is obtained as a dual solution of the linear program used in i)). Then

v∗Gx ≥ v∗d is a valid inequality for projx(Q) cutting off x∗.

Note that the Minkowski non-compact extended formulation of Z (see Section 2) can be used

in a similar manner to provide a separation algorithm for conv(Z). However in this case the

column generation subproblem (or some alternative) must be used, and the column generation

subproblem is the optimization problem over Z.

Inequality Representation of projx(Q)

One can sometimes obtain an explicit polyhedral description of projx(Q) by way of linear

inequalities. In the simple cases the projection can be obtained directly from inspection of Q.

Otherwise given Q = {(x, w) ∈ R
n
+ × R

p
+ : Gx + Hw ≥ d}, one may be able to describe all the

extreme rays {v1, · · · , vT } of V = {v ∈ R
m
+ : vH ≤ 0}. This immediately gives the polyhedral

description {x ∈ R
n
+ : vtGx ≥ vtd, t = 1, . . . , T} of projx(Q). Alternatively, a systematic

method of projecting out variables one at a time, known as “Fourier-Motzkin elimination”, can

be used to eliminate the w variables in certain cases.
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5.2 Variable Splitting I: Multi-commodity Extended Formulations

Using a multi-commodity extended formulation of the flows as for the directed Steiner

tree problem presented in Example 4 is an example of variable splitting. Here we consider a

more general fixed charge network flow problem, and present two further applications to the

asymmetric traveling salesman problem and a lot-sizing problem.

Single-Source Fixed Charge Network Flows

Given a directed graph or network D = (V, A), a root r ∈ V , a vector b ∈ R|V | of demands

with br < 0, bv ≥ 0 for all v ∈ V \ {r}, unit flow costs c ∈ R|A| and fixed costs q ∈ R
|A|
+ for the

use of an arc, the problem is to find a feasible flow that minimizes the sum of all the flow and

fixed costs. This can be formulated as:

min
∑

(u,v)∈A(quvxuv + cuvyuv)
∑

u∈δ−(v) yuv −
∑

u∈δ+(v) yvu = bv v ∈ V

yuv ≤ |br|xuv ∀ (u, v) ∈ A

y ∈ R
|A|
+ , x ∈ [0, 1]|A|, x ∈ Z

|A|.

The linear programming relaxation of this model does not provide good bounds because, when

yuv > 0 for some arc (u, v), one typically has yuv << |br|. Thus xuv = yuv

|br|
<< 1, which means

that the fixed cost term quvxuv seriously underestimates the correct fixed cost quv. One way to

improve the formulation is to use a multi-commodity reformulation.

Let T = {v ∈ V \ {r} : bv > 0} be the set of terminals, or commodities. We now treat flow

with destination t ∈ T as a distinct commodity and define the variable wt
uv to be the flow in

arc (u, v) with destination t ∈ T . The resulting reformulation is

min{qx + cy : (x, y, w) ∈ Q, x ∈ Z
|A|},
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where Q is the polyhedron

∑

j wt
jr −

∑

j wt
rj = −bt ∀ t ∈ T

∑

j wt
jv −

∑

j wt
vj = 0 ∀v ∈ V \ {r} ∀ t ∈ T, t 6= v

∑

j wt
jt −

∑

j wt
tj = bt ∀ t ∈ T

wt
ij ≤ btxij ∀(i, j) ∈ A ∀ t ∈ T

yij =
∑

t∈T wt
ij ∀(i, j) ∈ A (57)

y ∈ R
|A|
+ , w ∈ R

|A|·|T |
+ , x ∈ [0, 1]|A|.

Note that now the bound on the flow in arc (i, j) is xij ≥ maxt∈T
wt

ij

bt
. Again considering

the linear programming relaxation, it is often the case that wt
ij = bt for some commodity t, and

this forces xij = 1, so that in this case the evaluation of the fixed cost for the arc (i, j) is exact.

For the special case of the directed Steiner tree problem introduced in Section 2.2, we showed

that projection of the above formulation leads us to the reformulation min{qx : x ∈ P ′, x ∈ Z
n}

where P ′ is the polyhedron

{x ∈ [0, 1]|A| :
∑

i∈X,j∈V \X

xij ≥ 1, ∀ X with r ∈ X, t ∈ T ∩ (V \X)}.

As P ′ has an exponential number of constraints, one can use the max-flow/min-cut theorem

to provide a polynomial separation algorithm for the polyhedron P ′. Note that this is exactly

the Benders’ separation problem. For this special case, the linear programming relaxation has

an optimal solution that solves the original problem in certain cases, in particular when the

network is Series Parallel, or when T = V \ {r} (minimum weight spanning tree) or |T | = 2

(shortest path).

More generally network design problems, in which the first stage variables are the choice of

open arcs (or the multiples of capacity installed) and the second stage variables are the resulting

flows, are often treated by Benders’ approach.
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TSP and Sub-tour Polytope: A Three-Index Flow Reformulation

It is well known and follows directly from the last reformulation that the asymmetric trav-

eling salesman problem (ATSP ) can be written as the integer program:

min
∑

cijxij (58)
∑

j

xij = 1 ∀ i ∈ V (59)

∑

j

xij = 1 ∀ j ∈ V (60)

∑

i∈X

∑

j∈V \X

xij ≥ 1 ∀ X with φ ⊂ X ⊂ V (61)

x ∈ {0, 1}|A|, (62)

where xij = 1 if arc (i, j) lies on the tour. Let Z = {x ∈ Z
|A| satisfying (61) and (62)}. To

model these connectivity constraints one can again use multi-commodity flows to ensure that

one unit can flow from some root node r ∈ V to every other node. This leads to the extended

formulation Q for conv(Z):

∑

j

wt
ij −

∑

j

wt
ji = 1 ∀ i = r, t ∈ V \ {r}

∑

j

wt
ij −

∑

j

wt
ji = 0 ∀ i ∈ V \ {r, t}, t ∈ V \ {r}

wt
ij ≤ xij ∀ (i, j) ∈ A, t ∈ V \ {r}

x ∈ [0, 1]|A|, w ∈ [0, 1] ∀(i, j) ∈ A, t ∈ V \ {r}

where wt
ij is the flow in (i, j) from node r to node t. Here Q is a tight and compact extended

formulation for Z.

For the symmetric traveling salesman problem on an undirected graph G = (V, E), one can

also make use of this reformulation by setting ye = xij + xji, and adding wt
ij + wt′

ji ≤ ye for

all (i, j) ∈ E, t, t′ ∈ T . Conversely it can be shown that projection onto the edge variables

y gives back the well-known sub-tour elimination constraints
∑

e∈E(S) ye ≤ |S| − 1, where

E(S) = {e = (i, j) ∈ E : i, j ∈ S}.
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Uncapacitated Lot-Sizing

The uncapacitated lot-sizing problem involves time periods t = 1, · · · , n, demands dt in

period t, production costs pt, a set-up or fixed production cost qt and a unit (end-of-period)

storage cost ht.

Letting xt, st be the production and end-stock in period t, and yt ∈ {0, 1} indicate if there

is a set-up or not, a natural formulation as an MIP is given by:

min
∑n

t=1 ptxt +
∑n

t=1 htst +
∑n

t=1 qtyt

st−1 + xt = dt + st ∀ t (63)

xt ≤Myt ∀ t (64)

s, x ∈ Rn
+, y ∈ {0, 1}n (65)

with feasible region XLS−U .

For this problem various polynomial algorithms are known, as well as a complete description

of the convex hull of solutions given by an exponential number of facet-defining inequalities.

As this problem can be viewed as a special case of the fixed charge network flow problem,

it is easy to add an additional subscript to the production and stock variables indicating the

period t in which the units will be used to satisfy the demand.

Rescaling the resulting production variable, one can define new variables wut to be the

fraction of the demand in period t satisfied by production in period u. This leads immediately

to the following reformulation QLS−U of XLS−U

t∑

u=1

wut = 1 1 ≤ t ≤ n (66)

wut ≤ yu 1 ≤ u ≤ t ≤ n (67)

w ∈ R
(n−1)n/2
+ , y ∈ [0, 1]n (68)

xu =

n∑

t=u

dtwut 1 ≤ u ≤ n (69)

st =
∑

u≤t

∑

t<ℓ

dℓwuℓ 1 ≤ t ≤ n. (70)

It can be shown that projx,s,y(Q) = conv(XLS−U ). It follows that the linear program

min{px + hs + qy, (x, s, y, w) ∈ QLS−U}
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has an optimal solution that solves the lot-sizing problem. Note that this formulation can also

be obtained from the complete multi-commodity reformulation by elimination of the multi-

commodity stock variables.

5.3 Variable Splitting II

Here we present other reformulations obtained by variable splitting.

Given an integer variable x with 0 ≤ x ≤ C, it is possible to model it with binary variables,

either with a so-called unary expansion:

x =
C∑

q=0

zq,
C∑

q=0

zq = 1, z ∈ {0, 1}C+1,

or with a binary expansion

x =
P∑

p=0

2pwp ≤ C, , w ∈ {0, 1}P+1,

where P = log2⌊C⌋.

Time-Indexed Formulation

Machine scheduling problems are traditionally modeled using variables representing the

starting time (or completion time) of the jobs. However, when using these variables, sequencing

constraints (enforcing that a machine can only process one job at a time) are not easily modeled

as linear mixed integer programs. Consider a single machine scheduling problem, suppose that

there are n jobs with processing times pj , release dates rj and deadlines dj for job j. Let

variable xj represent the start-time of job j, with rj ≤ xj ≤ dj − pj ∀j. These variables must

satisfy the disjunctive constraints

xj ≥ xi + pi, or xi ≥ xj + pj ∀ i, j

which are often modeled in mixed integer programming by the introduction of so-called big M

constraints of the form yj ≥ yi + pi −M(1− δij), where the variable δij = 1 if job i precedes j.

Time-indexed variables, based on the unary decomposition of the x variables, allow one to

build a linear IP-reformulation avoiding the big M constraints. Assuming integer processing
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times pj , one can introduce new variables wj
t where wj

t = 1 if job j starts at the beginning of

the interval [t− 1, t], and wj
t = 0 otherwise. Then one obtains the IP-reformulation

∑T
t=1 wj

t = 1 ∀ j
∑n

j=1

∑t
u=t−pj+1 wj

u ≤ 1 ∀ t

wj
t ∈ {0, 1} for t ∈ rj , . . . , dj − pj + 1, ∀j

where the first constraint ensures that each job j is started once, the second that at most one

job is on the machine in each period, and the range of definition of the variables handles the

release and due dates, and the original variables are obtained by setting xj =
∑

t(t− 1)wj
t .

Many different objective functions and constraints, such as precedence constraints, are eas-

ily handled using such time-indexed variables. Though pseudo-polynomial in size, the linear

programming relaxation of this extended IP-formulation typically provides a stronger bound

than that of a big-M formulation in the (x, δ) variables.

Capacity-Indexed Variables

In capacitated vehicle routing problems with integral demands, it has been proposed to

apply variable splitting to the arc indicator variables. Specifically if xa = 1 indicates that an

arc a forms part of a vehicle route, wa
q = 1 indicates that a = (i, j) forms part of the route and

the total load of the vehicle while traversing arc a is q. Now as a quantity di is delivered to

client i, one must have
∑

a∈δ−(i)

wa
q =

∑

a∈δ+(i)

wa
q−di

∀ q

and flow conservation becomes:

C∑

q=0

∑

a∈δ−(i)

qwa
q −

C∑

q=0

∑

a∈δ+(i)

qwa
q = di ∀ i ∈ V.

Summing over S ⊂ V and defining aggregate variables y−q (S) =
∑

a∈δ−(S) wa
q and y+

q (S) =
∑

a∈δ+(S) wa
q , one obtains integer knapsack sets

C∑

q=0

qy−q (S)−
C∑

q=0

qy+
q (S) =

∑

i∈S

di, y−q (S), y+
q (S) ∈ Z

C+1
+ .

for which a variety of cutting planes can be generated. Here xa =
∑

q wa
q provides the link to

the original arc variables.
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Fractionality-Indexed Variables and Network Dual MIPs

A network dual set is a mixed integer set in which all the constraints have two non-zero

entries of +1 and -1 respectively. Thus we consider the set

XND = {x ∈ R
n : xi − xj ≥ bij for i, j ∈ N, xi ∈ Z

1 for i ∈ I ⊂ N}

where N = {1, . . . , n}. Such sets have been studied recently motivated by research on lot-sizing

problems.

For the presentation here, we assume that each right-hand side value bij is a multiple of 1
K ,

so we can write bij = ⌊bij⌋ +
hij

K with hij ∈ Z
1
+ and hij ∈ {0, 1, . . . , K − 1}. As a consequence

of this assumption, one can assume that Kxi ∈ Z
1 for all i.

Following the idea of a unary expansion, we can write

Kxi = K⌊xi⌋+
K−1∑

h=0

hzh,
K−1∑

h=0

zh = 1, z ∈ Z
K
+ .

This in turn can be rewritten as

Kxi = ⌊xi⌋+ (⌊xi⌋+ zK−1) + (⌊xi⌋+ zK−2 + zK−1) + · · ·+ (⌊xi⌋+ z1 + · · ·+ zK−1)

=
K−1∑

h=0

(⌊xi⌋+
K−1∑

j=K−h

zj)

=

K−1∑

h=0

wh
i

where wh
i = ⌊xi⌋ if xi − ⌊xi⌋ < K−h

K and wh
i = ⌈xi⌉ if xi − ⌊xi⌋ ≥

K−h
K .

With these variables, one obtains the extended formulation

xi = 1
K

∑K−1
h=0 wh

i i, j ∈ N (71)

wt
i − w

f(t)
j ≥ ⌊bij⌋ t = 0, . . . , K − hij − 1, for i, j ∈ N (72)

wt
i − w

f(t)
j ≥ ⌊bij⌋+ 1 t = K − hij , . . . , K − 1, for i, j ∈ N (73)

xi = wh
i for h = 0, . . . , K − 1, i ∈ I, (74)

where f(t) = t + hij mod K. For the integer variables xi with i ∈ I, one can use (74) to

eliminate the corresponding w variables. The important observation is that this reformulation
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again has network dual structure, but with an integer right hand side. Thus the corresponding

matrix is totally unimodular and the extremal solutions are integer. So it provides a tight and

compact extended formulation for XND.

We now indicate briefly how network dual sets arise in lot-sizing problems.

Example 11 Consider the set

sk−1 +
∑t

u=k Cyu + rt ≥
∑t

u=k du 1 ≤ k ≤ t ≤ n (75)

s ∈ R
n+1
+ , r ∈ R

n
+, y ∈ [0, 1]n, y ∈ Z

n, (76)

known as the constant capacity Wagner-Whitin relaxation with backlogging, where st, yt are the

same stock and set-up variables introduced earlier for the lot-sizing problem, and rt represents

the backlog/shortage at the end of period t.

Introducing the new variables: zt =
∑t

u=1 yu, σk−1 = −(sk−1 − Czk−1 +
∑k−1

u=1 du)/C and

ρt = (rt+Czt−
∑t

u=1 du)/C, constraint (75) after division by C can be written as ρt−σt−1 ≥ 0,
1
C sk−1 ≥ 0 becomes zk−1 − σk−1 ≥ (

∑k−1
u=1 du)/C, 1

C rt ≥ 0 becomes ρt − zt ≥ −(
∑t

u=1 du)/C,

and 0 ≤ yt ≤ 1 becomes 0 ≤ zt − zt−1 ≤ 1.

Thus one obtains the reformulation:

ρt − σk−1 ≥ 0 1 ≤ k ≤ t ≤ n

zk−1 − σk−1 ≥ (
∑k−1

u=1 du)/C 1 ≤ k ≤ n

ρt − zt ≥ −(
∑t

u=1 du)/C 1 ≤ t ≤ n

−zt + zt−1 ≥ −1 1 ≤ t ≤ n

zt − zt−1 ≥ 0 1 ≤ t ≤ n

ρ, σ ∈ R
n, z ∈ Z

n,

which is precisely a network dual MIP.

More generally when the bt take arbitrary values, the extended formulation (71)-(74) can

always be reduced to a size that is polynomial in F , the number of distinct fractional values

taken by the continuous variables in the extreme point solutions. For the lot-sizing set (75)-

(76), the F is 0(n2), corresponding to the values
∑t

u=k du/C mod 1, so that the extended

formulation is both tight and compact.

5.4 Reformulations based on Dynamic Programming

In many cases, solving a problem by dynamic programming can interpreted as transforming

it to a shortest or longest path problem (in an appropriate network of possibly very large size).
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It is then natural to look for a reformulation as a network flow problem. More generally, a

dynamic programming recursion can often be written as a linear program, and the dual of this

linear program provides an extended formulation in which the variables indicate which terms

are tight in the dynamic programming recursion. We demonstrate with two examples, the first

of which illustrates the simple case in which the dynamic program corresponds to a longest

path algorithm.

The Integer Knapsack Problem

Consider the integer knapsack problem:

z = max{
n∑

j=1

cjxj :

n∑

j=1

ajxj = b, x ∈ Z
n
+}

with {aj}
n
j=1, b positive integers. (The standard inequality knapsack problem is obtained by

taking an = 1 and cn = 0). It is well-known that the dynamic programming recursion:

G(t) = max
j=1,...,n:t−aj≥0

{cj + G(t− aj)}

with G(0) = 0, can be used to find z = G(b) and then the corresponding optimal solution. One

can convert the recursion into a linear program in which the values G(t) for t = 0, . . . , b are the

variables:

minG(b)

G(t)−G(t− aj) ≥ cj j = 1, . . . , n, t = aj , · · · , b

G(0) = 0.

Defining dual variables wj,t−aj
for all t, j with t− aj ≥ 0, the linear programming dual is

max
∑n

j=1

∑b−aj

t=0 cjwjt
∑

j wjt = +1 t = 0

−
∑

j wj,t−aj
+
∑

j wjt = 0 t = 1, · · · , b− 1

−
∑

j wj,t−aj
= −1 t = b

wjt ≥ 0, t = 0, 1, · · · , b− aj , j = 1, · · · , n

(77)
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0 1 2 3 4 5 6 7

5 5 5 5 5 5

7 7 7 7 7 7

0 0 0 0 0 0 0

Figure 6: Knapsack Longest Path: a = (2, 3, 1), b = 7, c = (5, 7, 0)

The resulting problem can be viewed as a longest path problem in a network D = (V, A) with

nodes V = {0, 1, . . . , b} and arcs (t, t + aj) ∈ A for all t ∈ {0, 1, · · · , b − aj} and weight cj for

all j. Any path from 0 to b corresponds to a feasible solution of the knapsack problem. Adding

the equations xj =
∑b−aj

t=0 wjt that count the number of times j-type arcs are used, one has

that the polyhedron is a tight extended formulation for Z = {x ∈ Z
n
+ :
∑n

j=1 ajxj = b}.

An instance of the network corresponding to this extended formulation is shown in Figure

4.

The optimal linear programming solution x1 = 7
2 , x2 = x3 = 0 is not integral and provides

an upper bound on z of 17.5. The linear programming relaxation of the extended formulation

has an optimal solution w1
0 = w1

2 = w2
4 = 1, wj

t = 0 otherwise, giving the optimal solution

x1 = 2, x2 = 1 of value 17.

Optimal cardinality constrained subtrees of a tree

The second example involves a somewhat different dynamic program. One is given a rooted

directed tree T = (V, A) with node weights c|A|. Node 1 is the root. The problem is to find an

optimal rooted subtree with 1 as the root containing at most k nodes. Let H(v, k) denote the

maximum weight subtree with at most k nodes rooted at v. For simplicity, we suppose that it

is a binary tree and the left and right sons of node k are the nodes 2k and 2k + 1 respectively.

The dynamic programming recursion is:

H(v, k) = max{H(v, k − 1), cv + max
t=0,...,k−1

[H(2v, t) + H(2v + 1, k − 1− t)]},

where the first term in the maximization can be dropped for v 6= 1. Replacing the max by

appropriate inequalities and taking the optimal value H(1, K) as the objective function leads

to the linear program:
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minH(1, K)

H(1, k)−H(1, k − 1) ≥ 0 1 ≤ k ≤ K

H(v, k)−H(2v, t)−H(2v + 1, k − 1− t) ≥ cv ∀v ∈ V, 0 ≤ t < k ≤ K

H(v, k) ≥ 0 ∀v ∈ V, 0 ≤ k ≤ K.

Taking y1,k and xv,k,t,k−1−t as dual variables, we obtain

max
∑

v∈V cv
∑K

k=1

∑k−1
t=0 xv,k,t,k−1−t

∑

t x1,K,t,K−1−t + y1,k ≤ 1
∑

t x1,k,t,K−1−t + y1,k − y1,k+1 ≤ 1 1 ≤ k ≤ K − 1
∑k−1

t=0 xv,k,t,k−1−t −
∑

κ>k xp(v),κ,k,κ−1−k ≤ 0 ∀v > 1 even,∀k
∑k−1

t=0 xv,k,t,k−1−t −
∑

κ>k xp(v),κ,κ−1−k,k ≤ 0 ∀v > 1 odd,∀k

x, y ≥ 0.

where p(v) = ⌊k
2⌋. Here xv,k,t,k−1−t = 1 means that the optimal tree contains a subtree

rooted at v containing k nodes with t (resp k − 1 − t) nodes in the subtrees rooted in its

left (resp. right) successors, and y1k = 1 indicates that H(1, k) = H(1, k − 1). Setting xv =
∑K

k=1

∑k−1
t=0 xv,k,t,k−1−t allows us to complete the extended formulation.

5.5 The Union of Polyhedra

One of the very basic polyhedral results of relevance to integer programming concerns the

union of polyhedra. Assume P = conv(P 1 ∪ · · · ∪ PK) where P k = {x ∈ Rn : Akx ≤ bk} and

Ck = {x ∈ Rn : Akx ≤ 0} is the recession cone of P k for all k.

Theorem 6 (Balas) If P k 6= φ and C = Ck for k = 1, · · · , K, then

conv(∪K
k=1P

k) = projx{(x, w, δ) ∈ IRn × IRnK ×RK
+ : Akwk ≤ bkδk, k = 1, · · · , K
∑K

k=1 δk = 1, x =
∑K

k=1 wk}.

Disjunctions arise frequently in integer programming. Given a 0-1 set X = P ∩ Z
n where

P = {x ∈ R
n : Ax ≤ b, 0 ≤ x ≤ 1} it is natural to select some variable j and consider the

disjunction

P = P 0
j ∪ P 1

j where P i
j = {x ∈ P : xj = i} for i = 0, 1.
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One use of extended formulations is to give tightened formulations that are then projected

back into the original space. One example using the above disjunction is the lift-and-project

approach presented in Chapter ??.

Here we consider situations in which a problem becomes easy when the value of one variable

is fixed. Then, if one can describe the convex hull of solutions when this variable is fixed, an

extended formulation is obtained for the original set by taking the convex hull of the union of

the convex hulls.

1− k Configurations

A 1− k configuration is a special 0-1 knapsack set of the form

Y = {(x0, x) ∈ {0, 1}n+1 : kx0 +
n∑

j=1

xj ≤ n}.

To describe its convex hull O(nk) valid inequalities are needed. Now observe that Y = Y 0 ∪Y 1

where Y 0 = {x ∈ {0, 1}n+1 : x0 = 0} and Y 1 = {x ∈ {0, 1}n+1 : x0 = 1,
∑n

j=1 xj ≤ n − k}.

To obtain the convex hulls of Y 0 and Y 1, it suffices to drop the integrality constraints in their

initial descriptions. Theorem 6 then gives the extended formulation Q:

xj = xj0 + xj1 j = 0, . . . , n

x00 = 0, 0 ≤ xj0 ≤ δ0 j = 1, . . . , n

x01 = δ1, 0 ≤ xj1 ≤ δ1 j = 1, . . . , n
n∑

j=1

xj1 ≤ (n− k)δ1

δ0 + δ1 = 1, δ ∈ R
2
+.

After renaming xj1 as wj , and replacing δ1 by x0 and xj0 by xj − wj for j = 1, . . . , n, the

resulting tight extended formulation is:

0 ≤ xj − wj ≤ 1− x0 j = 1, . . . , n

0 ≤ wj ≤ x0 j = 1, . . . , n
n∑

j=1

wj ≤ (n− k)x0

x ∈ [0, 1]n+1, w ∈ [0, 1]n.
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Circular Ones Matrices

Consider the set X = {x ∈ {0, 1}n : Ax ≤ b} where A is a circular ones matrix, i.e, each

row is either of the form

0 0 0 1 1 1 1 0 0

with 0’s followed by 1’s followed by 0’s, or of the form

1 1 0 0 1 1 1 1 1

with 1’s followed by 0’s followed by 1’s.

Let P k = {x ∈ [0, 1]n : Ax ≤ b,
∑n

j=1 xj = k} for k = 0, . . . , n. Observe first that subtracting

a row of the second type from a row of all 1’s gives a row of the first type. Secondly a 0-1

matrix with only rows of the first type is known as a consecutive 1’s matrix, and is known to

be totally unimodular. It follows that P k = conv(P k ∩ Z
n) and

conv(X) = conv(∪n
k=0P

k),

so a tight extended formulation is obtained immediately from Theorem 6.

5.6 From Polyhedra and Separation to Extended Formulations

Given the set X ⊆ Z
n, suppose that a family of valid inequalities for X are known. This

family explicitly or implicitly describes a polyhedron P containing the feasible region X. A

first possibility is that the inequalities directly suggest an extended formulation.

Uncapacitated Lot-Sizing

Let XLS−U be as described in (63)-(65). It has been shown that every non-trivial facet-

defining inequality for conv(XLS−U ) is of the form

∑

j∈S

xj +
∑

j∈L\S

djlyj ≥ d1l (78)

where L = {1, . . . , l}, S ⊆ L, l = 1, . . . , n and dut ≡
∑t

j=u dj .

Let µjl = min{xj , djlyj} for 1 ≤ j ≤ l ≤ n. One sees that (78) is satisfied for all S if and

only if
∑l

j=1 min{xj , djlyj} ≥ d1l. It follows immediately that a tight and compact extended

formulation is given by the polyhedron consisting of the original constraints (63)-(65) and the
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constraints

∑l
j=1 µjl ≥ d1l 1 ≤ l ≤ n

µjl ≤ xj 1 ≤ j ≤ l ≤ n

µjl ≤ djlyj 1 ≤ j ≤ l ≤ n.

A second possibility is that the separation problem for P can be formulated as an optimiza-

tion problem that can be reduced to a linear program. Specifically suppose that P = {x ∈ R
n :

πtx ≥ πt
0, t = 1, . . . , T}. Now x∗ ∈ P if and only if ζ ≥ 0 where ζ = mint=1,...,T (πtx∗ − πt

0).

Suppose now that the latter can be reformulated as a linear program:

ζ = min
w
{gx∗ + hw − d0 : Gx∗ + Hw ≥ d, w ∈ R

p
+}.

By LP duality, ζ ≥ 0 if and only if there exists a dual feasible solution with a non-negative

value, namely

{u ∈ R
p : ud− uGx∗ ≥ d0 − gx∗, uH ≤ h, u ∈ R

m
+} 6= ∅.

Finally letting x vary, this gives us an extended formulation

Q = {(x, u) ∈ R
n × R

p : ud− uGx ≥ d0 − gx, uH ≤ h, u ∈ R
m
+}

for which P =projx(Q).

Subtour Elimination Constraints

Consider the relaxation of the set of forests or symmetric traveling salesman tours consisting

of the set Y defined by the exponential family of subtour elimination constraints. Specially set

Y = ∩K
k=1Y

k where Y k = P k
Y ∩ Z

|E| and

P k
Y = {x ∈ [0, 1]|E| :

∑

e∈E(S)

xe ≤ |S| − 1 ∀k ∈ S ⊆ V }.

Now consider the separation problem for x∗ ∈ [0, 1]|E|. One sees that x∗ ∈ P k
Y if and only if

max
S:k∈S⊆V

{
∑

e∈E(S)

x∗
e − |S \ {k}|} ≤ 0.
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Letting vj = 1 if j ∈ S and ue = 1 if e = (i, j) ∈ E(S), this optimization problem can be

formulated as the IP

ζ = max
∑

e∈E

x∗
eue −

∑

j∈V \{k}

vj (79)

ue ≤ vi, ue ≤ vj ∀e = (i, j) ∈ E (80)

ue ≥ vi + vj − 1 ∀e = (i, j) ∈ E (81)

u ∈ {0, 1}m, v ∈ {0, 1}n, vk = 1. (82)

It can then easily be shown that the constraints (81) can be dropped, and in addition that the

integrality and bounds can be relaxed. It follows that ζ ≤ 0 if and only if η ≤ 0 where

η = max
∑

e∈E

x∗
eue −

∑

j∈V \{k}

vj

ue ≤ vi, ue ≤ vj ∀e = (i, j) ∈ E

u ∈ Rm, v ∈ R
n
+.

In this last linear program, either η = 0 or it is unbounded, so the dual of this linear program

is feasible if and only if η ≤ 0. In other words x∗ ∈ [0, 1]n is in P k
Y if and only if Qk 6= ∅, where

Qk is the polyhedron:

wijk + wjik = xe ∀e = (i, j) ∈ E
∑

j:j<i

wjik +
∑

j:j>i

wijk ≤ 1 i 6= k

∑

j:j<i

wjik +
∑

j:j>i

wijk ≤ 0 i = k

x ∈ R
m, wijk, wjik ≥ 0 ∀e = (i, j) ∈ E.

5.7 Miscellaneous

There are several other reasons that might lead one to try an alterative formulation. An

important one, already discussed in Section 3, is the problem of symmetry. A second is to find

good branching directions for use in the context of branch-and-bound and branch-and-cut, and

a third as before is to derive stronger linear programming bounds.
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Symmetry-Breaking in Vertex Coloring

Given a graph G = (V, E) with |V | = n and |E| = m, the textbook formulation for vertex

coloring is based on the variables:

yk = 1 if color k is used

xik = 1 if vertex i receives color k, where k = 1, . . . , K are the permissible colors.

This leads to the formulation:

min
∑

k yk
∑

k xik = 1 ∀i ∈ V

xik + xjk ≤ yk ∀k,∀(i, j) ∈ E

xik ≤ yk ∀k,∀i ∈ V

xik ∈ {0, 1} ∀k,∀i ∈ V, yk ∈ {0, 1}∀k.

Clearly given any coloring, any permutation of the colors leads to essentially the same solution

independently of the structure of the graph. To avoid this symmetry and also to tighten the

formulation, it suffices to observe that, given any feasible coloring, each stable set can be

assigned the color of its node of minimum index. Hence one can eliminate all variables xik with

k > i, and also eliminate yk by setting yk = xkk. Note that a similar approach works for the

bin packing problem of Example 5.

Boolean Reformulation: 0-1 Knapsack

Given two 0-1 knapsack sets of the form

Xi = {x ∈ {0, 1}n :
n∑

j=1

ai
jxj ≤ ai

0} i = 1, 2

with {ai
j} positive integers, it is natural to ask when X1 = X2, or the two sets are equal. In

particular one might be interested in finding the set of integer coefficients for which the right-

hand side value ai
0 or the sum of the weights

∑n
j=1 ai

j is minimum. It also seems likely that the

corresponding formulation PXi is typically tighter when the coefficients are smaller.

Example 12 Consider the knapsack set

X = P 1 ∩ Z
n where P 1 = {x ∈ [0, 1]5 : 97x1 + 65x2 + 47x3 + 46x4 + 25x5 ≤ 136}.
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It can be verified that X can also be expressed as

X = P 1 ∩ Z
n where P 2 = {x ∈ [0, 1]5 : 5x1 + 3x2 + 3x3 + 2x4 + 1x5 ≤ 6}

and this is the reformulation with integer coefficients with the minimum possible right hand-side

value.

In addition it is easy to check that the extreme points of P 2 all lie in P 1 and thus P 2 ⊂ P 1.

Improved Branching Variables for an Equality Integer Program.

Consider the set

X = {x ∈ Z
n
+ : Ax = b}

with A ∈ Zm×n and b ∈ Z
m. “Integer programming in a fixed number of variables is poly-

nomially solvable” is one of the most fundamental results in integer programming. Lattice

reformulations and the calculation of a reduced basis of a lattice play an important role in

the proof of this result. Here we indicate briefly how a lattice reformulation can be used as a

heuristic to look for effective branching variables. See the references cited in Section 7 for the

appropriate lattice definitions.

Suppose that x0 ∈ Z
n with Ax0 = b, then X can be rewritten as X = {x ∈ Z

n
+ : x =

y + x0, Ay = 0}. Now given a matrix T ∈ Z
n×(n−m) such that {y ∈ Z

n : Ay = 0} = {y ∈ Z
n :

y = Tw, w ∈ Z
n−m}, then X =projx(W ) where

W = {(x, w) ∈ R
n × Z

n−m : x = x0 + Tw}.

Here the extended IP-formulation does not provide tighter bounds. However it is possible to

find an appropriate matrix T in polynomial time using a “reduced basis” algorithm, and for

certain instances the new integer variables w are much more effective variables for branching

than the original variables x.

Example 13 Consider the set X = {x ∈ Z
5
+ : ax = b} where

a = (11737 7263 9086 32560 20823), b = 639253.

This has the extended formulation
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−1 −1 7 239

0 0 −11 616

−1 0 −10 −445

0 1 4 33

1 −1 −2 −207











w, x ∈ R
5
+, w ∈ Z

4.

Here branching on w4, it is easily verified that X = ∅, whereas this is very hard to detect when

branching on the x variables, demonstrated by the fact that the best MIP solvers all require

millions of nodes to prove infeasibility for this tiny instance.

5.8 Existence of Polynomial Size Extended Formulations

Yannakakis showed that for the perfect matching polytope there is no extended formulation

that is “symmetric” in a very general sense. This includes formulations in which one chooses

a root, such as the extended formulation for the subtour polytope in Subsection 5.2. Thus it

appears very unlikely that every family of IPs: min{cx : x ∈ X} that is polynomially solvable

has a polynomial size extended formulation whose projection in the original variables provides

conv(X). It remains a major challenge to discover necessary and/or sufficient conditions for

the existence of polynomial size extended formulations for such problems.

On the other hand it has very recently been shown that for the 0-1 knapsack problem

z = min{cx : ax ≥ b, x ∈ {0, 1}n}, given any ǫ > 0, there exists a polynomial size extended

formulation based on disjunctions for which the value zLP of the linear programming relaxation

is such that z ≤ (1 + ǫ)zLP .

6 Hybrid Algorithms and Stronger Dual Bounds

Here we consider ways to obtain stronger dual bounds for the problem z = min{cx : x ∈

Y ∩Z} by using properties of both the sets Y and Z. Thus we assume as before that optimizing

over Z is relatively easy, and now we assume also that we can either optimize over Y relatively

easily, or that we have a cut generation routine for Y or some polyhedron PY containing

conv(Y ).
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6.1 Lagrangean Decomposition or Price-and-Price

Here we assume that we can optimize efficiently over the set Z and also over the set Y . We

reformulate IP by duplicating the x variables giving the new formulation:

min cy

y − z = 0

y ∈ Y

z ∈ Z.

Applying Lagrangean relaxation, the subproblem with dual variables u ∈ R
n gives two sub-

problems min{(c − u)y : y ∈ Y } and min{uz : z ∈ Z}, and by Theorem 5 the value of the

resulting Lagrangean dual is min{cx : x ∈ conv(Y )∩conv(Z)}. This model can be solved either

by dual methods such as a basic subgradient approach, or by a column generation approach

(called Price-and-Price in this context).

In the latter case, the restricted master problem at iteration t is constructed from a set

{yi}i∈It−1 of extreme points of conv(Y ) and a set {(zj)}j∈Jt−1 of extreme points of conv(Z)

giving the linear program:

min cx

x−
∑

i∈It−1

λiy
i = 0

(RMPP )
∑

i∈It−1

λi = 1

x−
∑

j∈Jt−1

βjz
j = 0

∑

j∈Jt−1

βj = 1

λ ∈ R
It−1

+ , β ∈ R
Jt−1

+ ,

where the x variables can be easily eliminated. If (π, π0, µ, µ0) are optimal dual variables, one

can solve the two pricing subproblems

ζ1 = min{πx− π0, x ∈ Y }

and

ζ2 = min{µx− µ0, x ∈ Z}.
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If ζ1 < 0 or ζ2 < 0, then the corresponding optimal solution provides a new column to be added,

and one updates RMPP. If ζ1 = ζ2 = 0, the algorithm terminates. In practice, convergence

(and dual instability) require an even more careful treatment in price-and-price than in branch-

and-price.

6.2 Cut-and-Price

Here we assume that we can optimize efficiently over the set Z = {x ∈ Z
n
+ : Bx ≥ b} and

that there is a cut generation algorithm for Y = {x ∈ Z
n
+ : Dx ≥ d}, or more realistically for

some polyhedron PY containing conv(Y ).

The restricted master problem at iteration t.

This problem is constructed from a set {xi}i∈It−1 of extreme points of conv(Z) and a set

{(αj , αj
0)}j∈Jt−1 of valid inequalities for PY (or Y ), including the constraints Dx ≥ d, giving

the linear program:

min cx

x−
∑

i∈It−1

λix
i = 0

(RMCP )
∑

i∈It−1

λi = 1

∑

j∈Jt−1

αjx ≥ αj
0 for j ∈ J t−1

λi ≥ 0 for i ∈ It−1,

Let (x, λ) be a primal optimal solution and (π, π0, µ) ∈ R
n × R

1 × R
|Jt−1|
+ a dual optimal

solution. Here again, one can eliminate the x variables, observing that π = c −
∑

j∈Jt−1 µt
jα

j

from dual feasibility.

The order in which the two subproblems are solved below is arbitrary. We have chosen to

give priority to column generation.

The Optimization Subproblem – Adding Columns.

Solve ζt = min{πx− π0 : x ∈ Z} with solution xt.

If ζt < 0, the column corresponding to xt has negative reduced cost. Set It = It−1 ∪ {t}, set

t← t + 1, and reoptimize RMCP.
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Otherwise go to the (Constraint) Separation Subproblem.

The Separation Subproblem – Adding Constraints.

Solve the separation problem to see if the point x =
∑

i∈It−1
λix

i can be cut off.

If a cut (αt, αt
0) is generated, set J t = J t−1 ∪ {t}, set t← t + 1, and reoptimize RMCP.

Otherwise stop.

On termination x =
∑

i∈It−1 λix
i ∈ PY ∩ conv(Z). If the separation routine is exact for

conv(Y ), the optimal value on termination is, as with the other hybrid approaches, min{cx :

x ∈ conv(Y ) ∩ conv(Z)}.

Example 14 (The Vehicle Routing Problem)

Given a fleet of K identical vehicles of capacity C, and clients with demands di for i = 1, . . . , n,

the problem is to determine a delivery route for each vehicle starting and ending at the depot,

so that the demand of each client is satisfied by exactly one vehicle, the total amount delivered

by a vehicle does not exceed its capacity and the total travel costs are minimized. Consider a

complete graph G = (V, E), where the nodes V = {0, . . . , n + 1} correspond to departure from

the depot (node 0), the n customers and arrival at the depot(node n + 1). The travel cost on

edge e is ce.

One possibility is to formulate the problem with K distinct vehicles based on the variables

xk
e such that xk

e = 1 if edge e is traversed by vehicle k. However as the vehicles are identical,

one can attempt to build a formulation using the variables xe specifying the number of vehicles

traversing edge e. Note that xe ∈ {0, 1} for all e. This leads to a standard formulation

min
∑

e∈E

ce xe (83)

∑

e∈δ(i)

xe = 2 ∀i ∈ V \ {0, n + 1} (84)

∑

e∈δ(i)

xe = K ∀i ∈ {0, n + 1} (85)

∑

e∈δ(S)

xe ≥ 2 B(S) ∀S ⊆ V \ {0, n + 1} (86)

xe ∈ {0, 1} ∀e ∈ E, (87)
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where B(S) denotes the minimum number of vehicles required to visit the set S of clients. The

value of B(S) is in fact the solution of a bin-packing problem, but a valid formulation is obtained

if one ensures that the number of vehicles traveling through S is sufficient to satisfy the sum of

the demands, i.e.
∑

e∈δ(S) xe ≥ 2 (
∑

i∈S di)/C.

On the other hand the price decomposition approach leads to an extended formulation in

which one must select K feasible routes in such a way that each client is visited exactly once,

leading to the master problem

min{
∑

g∈G

(
∑

e

cex
g
e)λg :

∑

g∈G

(
∑

e∈δ(i)

xg
e)λg = 2 ∀i ∈ V \ {0, n + 1},

∑

g∈G

λg ≤ K, λg ∈ {0, 1} ∀g}

(88)

where Z = {xg}g∈G is the set of edge incidence vectors of feasible routes.

Unfortunately optimizing over this set Z is a hard problem that is not tractable in practice.

This suggests using a relaxation of the set Z in which feasible routes are replaced by “q-routes”,

where a q-route is a walk beginning at node 0 and ending node n + 1 for which the sum of the

demands at the nodes visited does not exceed the capacity. It is easily seen that if the union of

K q-routes satisfies the degree constraints (84)-(85), then one has K feasible routes. However,

in the LP relaxation, inequalities (86) are useful cuts. Thus, a hybrid cut-and-price approach

can be implemented where the master is

min
∑

e∈E

ce xe

x satisfies (84)− (86)

xe =
∑

p∈P

qp
eλp ∀e ∈ E

∑

p∈P

λp = K,

x ∈ R
|E|, λ ∈ {0, 1}P

in a form ready to be tackled by a cut-and-price algorithm. The degree constraints are kept

throughout, the constraints (86) are generated by cutting planes, and the q-routes are generated

by column generation. Branching is dealt with by branching on the original xe variables.

In practice one may choose to eliminate the original xe variables by substitution, the cut

generation problem is tackled using a heuristic because the calculation of the exact bin-packing

value B(S) is hard. Cuts of the form (86) can be generated by identifying small sets S that
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require more than one vehicle, or else inequalities are generated in which B(S) is replaced by

a lower bound (
∑

i∈S di)/C or ⌈(
∑

i∈S di)/C⌉. The separation problem for the inequalities with

right hand side (
∑

i∈S di)/C is solvable by maximum flow algorithms. For the column generation

problem, a dynamic programming algorithm is used to find q-routes of minimum reduced cost.

7 Notes

Here we present notes providing some basic historical references, some references for results

or applications mentioned in the chapter, and a few recent references concerning interesting

extensions or examples of the ideas presented in the different sections.

7.1 Basics of Reformulation

The result (Theorem 1) that every polyhedron is finitely generated by extreme points and

extreme rays is due to Minkowski [74] and its converse, Theorem 4, to Weyl [96]. Meyer [73]

showed that for integer programs and mixed integer programs with rational data the convex

hull of solutions is a polyhedron. Theorem 2 on the representation of integer sets is proved in

Giles and Pulleyblank [46].

???Farkas, Fourier-Motzkin???

7.2 Dantzig-Wolfe and Price Decomposition

The first use of an optimization subproblem to price out an exponential number of non-basic

variables can be found in a paper of Ford and Fulkerson [39] on multi-commodity flows. Specifi-

cally they used an path-flow formulation, and then using the LP dual variables on the arcs, they

solved shortest path problems for each commodity to find a path with negative reduced cost to

enter the basis. This was closely followed by the Dantzig-Wolfe decomposition algorithm [22].

The first applications to discrete problems are the two papers on the cutting stock problem

of Gilmore and Gomory [47, 48], introduced in Example 7, in which the subproblem was a

knapsack problem, as well as the model of Dzielinski and Gomory [28] on multi-item lot-sizing

in which the subproblem was a single item lot-sizing problem.
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Lagrangean Relaxation

Early work showing the effectiveness of Lagrange multipliers in optimization can be found

in Everett [35]. The first demonstration of the effectiveness of Lagrangean relaxation and the

subgradient algorithm were the seminal papers of Held and Karp [54, 55] on the symmetric

traveling salesman problem, based on the 1-tree relaxation that can be solved by a greedy

algorithm. The survey of Geoffrion [44] clarified the properties of Lagrangean relaxation as

applied to integer programs, including the integrality property, and Fisher [37] was one of

several researchers to popularize the approach.

Later dual heuristics, or approximate algorithms for the Lagrangean dual, were proposed

by numerous authors, including Bilde and Krarup [12] and Erlenkotter [33] for uncapacitated

facility location, Wong [98] for directed Steiner trees and Balakrishnan, Magnanti and Wong

[3] for multicommodity uncapacitated fixed charge network flows.

Solving the Lagrangean dual

The subgradient algorithm was proposed in Uzawa [87], Ermolev [34] and Polyak [79]. Its

variant, the volume algorithm, is due to Barahona and Anbil [5]. The cutting plane algorithm

applied to the LP form of the Lagrangean dual is known as the method of Kelley [60] or Cheney-

Goldstein [18]. It is the equivalent of the column generation approach but carried out in the

dual space. The piece-wise linear stabilization of column generation is studied in du Merle et

al. [27] and Ben Amor et al. [9]. Stabilization based on smoothing dual prices was introduced

by Neame [75] (using a convex combination of the current master dual solution and that of the

previous iterate) and Wenges [95] (using a convex combination of the current dual solution and

the dual solution that yielded the best Lagrangean bound). Recently Pessoa et al (2009) [77]

have proved that at each iteration either the column generated with the smoothed prices has

a strictly negative reduced cost for the restricted master, or one gets a strictly improving dual

bound and a new associated stability center.

The Bundle method, in which a quadratic term is introduced in the restricted master dual

problem to penalize the deviation from a stability center, was developed by Lemaréchal [63],

see also [64, 61]. There has been a large amount of research on such methods in the last few

years. In many cases, and particular for very large problems in which the column generation

approach is much too slow, the proximal bundle method has been effective. See Borndorfer et

al. [13, 14] for applications to vehicle and duty scheduling in public transport and airline crew
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scheduling. Bundle’s numerical performance is compared to LP based column generation in

[16], and many references can be found in the thesis of Weider [94].

The analytic center cutting plane method (ACCPM) is due to Goffin and Vial [51].

Branching and Column Generation

For some of the first successful applications of integer programming column generation to

routing problems, see Desrochers, Soumis et al. [26] and Desrochers and Soumis [25]. The

branching rule of Ryan and Foster appears in [84]. Vanderbeck and Wolsey [89, 88] discuss dif-

ferent branching strategies (extending the scheme of Ryan and Foster to cases where the master

is not a set partitioning problem) and their inherent difficulties. Villeneuve et al. [93] suggest

that one can always proceed by using standard branching in an “original” formulation and

re-apply Dantzig-Wolfe reformulation to the problem augmented with branching constraints,

but this leads to problems of symmetry in the case of multiple identical subproblems. Exam-

ples of branching on auxiliary variables, implicitly using an extended formulation as presented

in Options 3 and 4 can be found in Belov et al. [7], Campêlo et al. [17] and Carvalho [23].

The scheme presented in Option 2 and its extension presented in Option 5 has been proposed

as a generic all-purpose scheme by Vanderbeck [90] (although it normally assumes a bounded

subproblem, it is can also be used in some application specific context where the subproblem

is unbounded).

7.3 Resource Decomposition

The resource decomposition approach that became known as Benders’ algorithm was pro-

posed by Benders [8]. Geoffrion [42] produced the first important surveys on different ways to

create decomposition algorithms. Geoffrion and Graves [45] reported a successful application

of Benders’ algorithm to a large distribution problem. Magnanti and Wong [69] studied ways

to obtain strong Benders cuts. Since branch-and-cut algorithms became a practical possibil-

ity, this allows one to solve the Benders’ reformulation directly by solving LP subproblems to

generate cuts at the nodes rather than having to solve an integer program at each iteration, as

proposed originally. Applications of Benders’ algorithm to two stage stochastic programs are

numerous, see for example Van Slyke and Wets [91]. The case with integer variables at both
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stages was treated by Laporte and Louveaux [62] among others. The multi-machine job assign-

ment problem was first treated by Jain and Grossman [57]. The importance of normalization

and the computational effectiveness of using a modified linear program to solve the separation

problem is demonstrated in Fischetti et al. [38].

7.4 Extended Formulations

Apart from Minkowski’s representation of a polyhedron, extended formulations were not

considered systematically as a tool for modeling integer programs until the 70’s.

Grötschel, Lovasz and Schrijver’s paper on the equivalence of optimization and separation

[50] implies that, unless P = NP , one can only hope to find tight and compact extended

formulations for integer programs if the corresponding optimization problem is polynomially

solvable. Balas and Pulleyblank [4] gave an extended formulation for the perfectly matchable

subgraph polytope of a bipartite graph and extended formulations have been proposed for a

variety of combinatorial optimization problems in the last twenty years.

Variable Splitting I: Multi-Commodity Extended Formulations

Rardin and Choe [82] explored the effectiveness of multi-commodity reformulations, and

Wong [97] showed that the multi-commodity reformulation gave the spanning tree polytope.

For the Steiner problem on series parallel graphs, see Prodon et al. [81]. Bilde and Krarup

[12] showed that the extended facility location reformulation for uncapacitated lot-sizing was

integral, and later Eppen and Martin [32] proposed an alternative formulation. The book of

Pochet and Wolsey [78] contains numerous reformulations for different single and multi-item

lot-sizing problems.

Variable Splitting II

Pritsker et al. [80] contains one of the first uses of a time-indexed formulation for a scheduling

problem. Gouveia [52] demonstrates the use of capacity indexed variables. The reformulation

of network dual MIPs was studied in Conforti et al. [19], and the specific formulation proposed

here is from Conforti et al. [21]. The first compact extended formulation for the constant

capacity Wagner-Whitin relaxation with backlogging is due to Van Vyve [92].
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Extended Formulations based on Dynamic Programming

Martin [70] and Eppen and Martin [32] showed how dynamic programs can be used to

derive extended formulations. The longest/shortest path formulations for knapsack problems

were known in the early 70’s and probably date from the work of Gilmore and Gomory [47] on

knapsack functions or Gomory on group problems. For dynamic programs that are not of the

shortest path type, see Martin et al. [72]. The cardinality constrained problem is a natural

generalization of the problem of finding an optimal subtree of a tree.

The Union of Polyhedra

The characterization of the convex hull of the union of polyhedra is due to Balas [2]. Recently

Conforti and Wolsey [20] show how the union of polyhedra can be used to develop compact and

tight extended formulations for several problems whose complexity was not previously known.

1 − k configurations are studied by Padberg [76]. Circular ones matrices are treated in

Bartholdi et al. [6], see also Eisenbrand et al. [29].

From Polyhedra and Separation to Extended Formulations

Martin [71] demonstrates how LP separation algorithms can lead to extended formulations.

Miscellaneous

Equivalent knapsack problems are studied in Bradley et al. [15]. The polynomiality of IP

with a fixed number of variables is due to H.W. Lenstra, Jr., [67] and the lattice reformulation

demonstrated in the example was proposed by Aardal and A.K. Lenstra [1]. See Lenstra,

Lenstra and Lovasz [66] for properties of reduced bases and a polynomial algorithm to compute

a reduced basis.

Existence of Polynomial Size Extended Formulations

Yannakis [99] presents lower bounds on the size of an extended formulation for a given class

of problems, and shows that even though weighted matching is polynomially solvable, it is most

unlikely that there is a tight and compact extended formulation. The existence of polynomial

size extended formulations approximating the convex hull of the 0-1 knapsack polytope is from

Bienstock and McClosky [10].
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7.5 Hybrid Algorithms and Stronger Dual Bounds

For Lagrangean decomposition, see Jornsten and Nasberg [59] and Guignard and Kim [53].

For cut-and-price, recent papers include Fukasawa et al. [41] on vehicle routing and Ochoa et

al. [86] on capacitated spanning trees. In the latter paper use was also made of the capacity-

indexed variables from subsection 5.3. Jans and Degraeve [58] combine an extended formulation

and column generation for a multi-item lot-sizing problem.
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