
The Capacitated Minimum Spanning Tree Problem

PhD Student: Héctor Efráın Ruiz y Ruiz

Thesis directed by

Maria Albareda Sambola

Elena Fernández Aréizaga

Department of Statistics and Operations Research
Universitat Politècnica de Catalunya. BarcelonaTech

Acknowledgments

Along the development of this thesis I’ve had the pleasure of working with some researchers
from whom I learnt a lot. I am specially grateful to Elena Fernández and Mari Albareda
for their unconditional support and patience, specially in the most difficult moments. I also
want to thank Mauricio Resende for his contributions to do part of this work.

Most of this work was developed in the Departament d’Estad́ıstica i Investigació Opera-
tiva of the Universitat Politècnica de Catalunya. I want to thank the department and all its
members for all the facilities and help I found here. Specially to Sonia Navarro and Laura
Maŕı for their help during the thesis deposit.

I also want to thank the CONACYT for their financial support.

Finally, I want to thank my parents for the gift of life; my brothers and sister for all
the time and experiences that we have shared; and all my friends for their support and
friendship.

i

Contents

Introduction 1

1 Problem definition and literature review 5

1.1 Problem definition . 5

1.2 Literature review . 8

1.2.1 Formulations and exact methods . 8

1.3 Heuristic methods . 10

2 Formulations and valid inequalities for the CMST 14

2.1 Two basic binary formulations . 14

2.1.1 Directed formulation . 15

2.1.2 Hop indexed formulation . 15

2.2 Well-known valid inequalities . 17

2.2.1 Bin-packing inequalities . 17

2.2.2 Multistar inequalities . 18

2.2.3 Rootcutset inequalities . 19

2.2.4 GSEh inequalities . 20

3 New formulations for the CMST 22

3.1 The subroot formulation . 22

3.2 Valid inequalities for the subroot formulation 23

3.2.1 Subroot multistar inequalities . 23

3.2.2 s-tree multistar inequalities . 27

3.2.3 Subroot rootcutset inequalities . 27

3.2.4 Other inequalities . 27

3.2.5 Solution algorithm for the subroot formulation 28

3.3 Subroot hop indexed formulation. 32

3.3.1 Solution algorithm for the subroot hop indexed formulation 34

4 A BRKGA heuristic for the CMST 39

4.1 Biased random-key genetic algorithms . 39

4.2 Encoding and decoding . 40

4.2.1 Direct assignment decoder . 41

4.2.2 Cost-based assignment decoder . 43

4.2.3 Predecessor assignment decoder . 44

4.2.4 Feasibility recovery procedure for the predecessor assignment decoder 44

ii

4.3 Improvement phase . 45
4.3.1 Minimum spanning tree stage (MST-stage) 46
4.3.2 Local search stage . 47
4.3.3 Impact of MST computations . 49
4.3.4 Strategic oscillation . 49
4.3.5 Neighborhood reduction . 50

4.4 BRKGA algorithm for the CMST . 50

5 Numerical Experience 53
5.1 Benchmark instances . 53
5.2 BRKGA experimental results . 54

5.2.1 BRKGA implementation details . 58
5.2.2 BRKGA numerical results analysis . 59

5.3 Experimental results with the cutting plane algorithms 70
5.3.1 Variable elimination . 71
5.3.2 Results obtained with the subroot formulation 72
5.3.3 Results obtained with the subroot hop indexed formulation 76

6 Conclusions and future research 83

iii

iv

Introduction

Choices are part of our lives. In some occasions, the choice has to be made among a small
number of alternatives, and intuition and common sense can be enough to make a good
decision. However, when it comes to choose some elements of a large set that altogether
satisfy our needs in the best possible way, the complexity of the decision can notably increase.
In daily life situations, like choosing the best combination of possible dishes and drinks
to design a banquet, the impact of the decision is relative, and most of the acceptable
combinations are almost equally good. But when the decision affects the economy of a
company (as for instance, when selecting the particular goods to be sold in a supermarket
in order to produce the highest possible yields) or the cost and quality of a public service
(e.g. when deciding which bus stops to set and the links between them to form the bus lines)
it becomes very important to take all available information into account to make the best
possible decision. In this case, mathematics are a very useful support.

The study of sets as mathematical objects has always been a relevant field of mathe-
matics that is called Combinatorics. Although some tools in this field, as the combinatorial
coefficients, were already known in the 12th century, most of the relevant developments
were carried out during the 17th century and afterwards. Indeed, the term combinatorics
itself was not introduced until 1666, when Gottfried Leibniz published his book De Arte
Combinatoria.

Going beyond the study of the sets by themselves and their structural properties, many
other fields of mathematics are strongly related to sets and make intensive use of results
from combinatorics. Among them, we find, for instance, probability theory, order theory,
graph theory and combinatorial optimization. The focus of this last field are optimization
problems that are defined over discrete sets and whose feasible solutions are those subsets
that fulfill some established conditions. If the ground set has a small number of elements, it
is possible to explicitly enumerate all feasible solutions, and then, choose the most attractive
one. However, as the ground set becomes larger, the number of subsets explodes and the
time required just to enumerate the feasible solutions of a problem can be unaffordable for
the decision maker. Therefore, specific tools are required to solve these problems.

Given the fact that, as just mentioned, the optimization problems faced in combinatorial
optimization are discrete and that the size of the set of solutions to consider can be extremely
large, in most cases, the only way to solve these problems efficiently is to exploit the specific
structure of each particular problem. For this reason, there is a large variety of problems that
have been studied within the scope of combinatorial optimization. Many of these problems
can be expressed in terms of graphs, which often allows to make use of results from graph
theory to have a deeper knowledge of the properties of the involved sets.

A very important class of graphs is that of connected graphs. In many problems defined

1

over a graph, solutions are subgraphs that are required to be connected. For instance, if
one seeks to find a route for traveling between two cities, that route cannot be formed
by unconnected links; also, in the design of a telecommunications network, all the nodes
need to be accessible from the server. Since the most elemental connected graph is a tree,
tree structures are often essential to guarantee connectivity in the solution of combinatorial
optimization problems.

For this reason, Minimum Spanning Tree (MST) problems are considered to be among
the core problems in combinatorial optimization. These problems have been widely studied
by researchers who have identified some of their structural properties and have developed
efficient algorithms for solving them. This type of problems has applications in telecommu-
nications, vehicle routing, network design, facility location, etc.

From the theoretical point of view, the interest of studying the MST lies in its inherent
particularity as a mathematical object. The MST problem considers a set of vertices which
need to be all connected in the best possible way through the use of edges or arcs with an
associated weight. This problem can be solved exactly in polynomial time. This can be done
using greedy algorithms as the ones proposed by Kruskal (1956) and Prim (1957). From
the practical point of view, as noted above, the connecting structures of the MST are of
great utility in graph-related applications. Along with the traveling salesman problem, it is
considered to be the basis of network systems design and a wide variety of scheduling and
routing applications.

Many results are known about integer programming formulations of this problem and
their structure. Besides, many extensions of the MST problem have been studied, which
consider other constraints in addition to the connectivity ones. Among these additional
constraints the most common are the capacity constraints, as they are present in many real
life applications and also in many problems that have the MST as a subproblem. Capacity
constraints can be useful to model different types of situations. Most of them arise when
the tree has a root, or special vertex, from which some communication flow must be sent
(or received) to/from the rest of vertices. Depending on the situation they model, capacity
constraints may be expressed in many ways. For instance, as a parameter over the links in
the graph, when a limit exists on the flow that can circulate on each of the arcs of a tree.
Also as a vertex degree limit, as a maximum number of links between two vertices, or as a
maximum number of vertices on each of the branches of the rooted tree.

Depending of how we express such capacity constraints we obtain different extensions
of the problem. Among such extensions we can mention the k-minimum spanning tree, the
degree-constrained minimum spanning tree, the hop constrained minimum spanning tree,
and the capacitated minimum spanning tree. The k-minimum spanning tree problem deals
with finding the MST which connects at least k vertices, while in the degree-constrained
minimum spanning tree the number of edges connecting any vertex in the resulting graph
is limited. When we are interested in trees with a limited depth, we talk about the hop
constrained minimum spanning tree. In this thesis we focus on the Capacitated Minimum
Spanning Tree (CMST), an extension of the MST which considers a central or root vertex
which receives and sends commodities (information, goods, etc) to a group of terminals.
Such commodities flow through links which have capacities that limit the total flow they can
accommodate.

These capacity constraints over the links result of interest because in many applications
the capacity limits are inherent. We find the applications of the CMST in the same areas as

2

n0�
��

n1

n2��

n3

n4
Z
Z

n5
Q
Q
Q

n6
�
�

n7 �

n8
�� n9XX

n10
�
��

n11�
�

n12
ZZ

n13
�

�
�

�
�
�

n14@@

n15
��

n16

n17��

n18

n19@@

n20
��

n21
Z
Z

n22
@

n23
ZZn24��

n25
��

a) MST Example

n0�
���

n16

n2��)

n3�

n4
Z
Z~

n5
Q

Q
QQs

n6

@
@
@

@
@
@
@

@@R

n7 �3

n8
@@R n9��/

n10@@I

n11�
�/

n12
ZZ~

n13
�
���

n14

n15

�����*

n16
���

n17��*

n18 �
���

n19@@I

n20����*

n21

-

n22

A
A
A
A
A
A
AU

n23@
@I

n24���
n25��7

b) CMST Example capacity = 5

Figure 1: MST and CMST solution comparison

the applications of the MST; telecommunications network design, facility location planning,
and vehicle routing.

The CMST arises in telecommunications networks design when the presence of a central
server is compulsory and the flow of information is limited by the capacity of either the server
or the connection lines. Its study also results specially interesting in the context of the vehicle
routing problem, due to the utility that spanning trees can have in constructive methods.
As it is well known, the best heuristics for the vehicle routing problem from the point of
view of the worst case behavior are based on the use of spanning trees (Christofides 1976).
The same idea has also been successfully transferred to arc routing problems (Frederickson,
Hecht, and Kim 1976) and it has already been shown how solving the CMST can help in the
solution of capacitated arc routing problems (Amberg, Domeschke, and Voß 2000).

By the simple fact of adding capacity constraints to the MST problem we move from
a polynomially solvable problem to a non-polynomial one (See Figure 1). Its theoretical
interest and applications, make the CMST, a problem of profound interest. Because the
CMST is NP-hard, it is very difficult to find provable optimal solutions with exact methods.
That explains why heuristic methods have been widely used in many of the works previous
to this thesis. Nonetheless, there are also many exact methods, some of them with fairly
good results.

Given the difficulty of the CMST, our capability of solving different sets of instances
relies to a large extent on our capability of proposing tight formulations. In this context, one
further difficulty which limits the sizes of the instances that can be successfully addressed
is the number of variables that the tighter formulations involve. From this point of view,
finding an equilibrium between the tightness of the formulation and its memory requirements
may become crucial. Another issue that becomes critical from an algorithmic point of view,

3

is the study of various classes of valid inequalities to reinforce the formulations, together
with their separation problems.

From a different point of view, any formulation can be reinforced by incorporating the
information derived from good quality solutions. This information can be used to reduce the
size of the instances with elimination tests, or to reduce the size of the enumeration trees
by incorporating good incumbent values from the beginning. This reinforces the interest of
heuristic methods.

All the above issues are studied in this thesis, where we focus on formulations and so-
lutions methods for the CMST. We present two new formulations that somehow relate the
CMST with a location problem in which the vertices connected to the root of the tree must
be selected. For these formulations, we develop different families of valid inequalities that
can be used to reinforce the linear programming relaxation of the formulations and we study
their corresponding separation problems. We also propose a Biased Random Key Genetic
heuristic which exploits the structure of the problem and produces very good quality solu-
tions, improving in some cases the best solution known so far.

This thesis has the following structure. In Chapter one, we define the problem and
present an extensive literature review about the CMST. In the second Chapter, we describe
two previous formulations of the problem present in the literature, and review the most
important families of valid inequalities that have been developed. Two new formulations
for the CMST are introduced in Chapter three, as well as solution algorithms for both of
them. A Biased Random Key Genetic heuristic for the CMST is presented in Chapter four.
In Chapter five we present the computational results obtained by the heuristic method and
the solution algorithms of the proposed formulations. Finally, in Chapter six we present the
conclusions for this thesis.

4

Chapter 1

Problem definition and literature
review

Extensive research has been carried out on the capacitated minimum spanning tree (CMST)
and related problems. Various formulations have been proposed as well as solution methods,
including exact and heuristic approaches. Since the problem is of type NP-Hard, many
heuristic algorithms have been developed. Because the CMST is a minimization problem,
heuristics are typically used to find upper bounds (any feasible solution yields an upper
bound). Additionally, efficient exact methods have been developed. In this chapter we
describe and define the problem, introduce some notation, and present a review of the existing
literature. In such review we include formulations and exact methods as well as the most
relevant heuristic approaches.

1.1 Problem definition

As mentioned in the introduction, in combinatorial problems defined over graphs, trees be-
come essential structures when connectivity is an issue. A tree is defined as any connected
graph without cycles. A spanning tree is a tree in which every vertex of the original graph
has at least one incident link. In the CMST we look for spanning trees that satisfy additional
constraints. In principle, trees are structures defined on non directed graphs. However in the
CMST, some additional conditions require a given vertex to be a reference for the others.
For this reason, it is convenient to work on a directed graph and to call the reference vertex
the root, and terminals the other vertices.

Let G = (V,A) be a directed network without loops, with V = {v0, v1, . . . , vn} , where
v0 represents the root and V + = {v1, . . . , vn} ⊂ V the set of terminals. Abusing notation
we will indistinctively use vi ∈ V or i ∈ V (respectively vi ∈ V + or i ∈ V +). Each terminal
i has an associated demand di, which must be sent from the root. Each arc a = (i, j) ∈ A
has an associated cost cij > 0. Consider now the following notation. Let T ⊂ A denote a
given spanning tree of G rooted at v0:

• Subroot: Vertex connected to v0 in T .

• Subtree (Ti ⊆ T): Subgraph of T which is a tree rooted at vertex i ∈ V . Note that

5

0

123

456

78

91011

15

1617

12

131418

subtree
(rooted
at node 5)

s-tree
(rooted
 at node 3)

Figure 1.1: Tree T rooted at vertex 0.
Nodes 1, 2, and 3 are subroots of T . Leaves are vertices 4, 6, 7, 8, 9, 11, 13, 14, 16, 17, and
18.The subtree {(5, 12), (12, 13), (12, 14)} is a rooted arborescence, rooted at vertex 5. The

subtree {(3, 9), (3, 10), (3, 11), (10, 15), (15, 16), (15, 17), (15, 18)} is an s-tree, rooted at
subroot 3.

since T is acyclic, Ti is also acyclic. A particular case of subtrees are those rooted at
subroots of T for which we will use a different notation .

• s-tree (s-Tk ⊂ T): Subtree rooted at k where k is a subroot of T (Figure 1.1).

• V (Ti) ⊆ V +: Set of terminals connected by subtree Ti.

• d(S) =
∑
j∈S

dj : Sum of the demands of the vertices in set S ⊆ V +. When S = V (Ti)

for a given subtree Ti we simply write d(Ti) = d(V (Ti)) =
∑

j∈V (Ti)

dj .

• Cost of T , c(T) =
∑

(i,j)∈T
cij .

Feasible solutions to the CMST are spanning trees of G rooted at v0 such that the to-
tal demand of any s-tree does not exceed a given capacity Q > 0. That is, for any s-tree
s-Tk ⊂ T a capacity constraint is satisfied d(s-Tk) ≤ Q

Then, the capacitated minimum spanning tree problem is to find a spanning tree
rooted at v0, satisfying the capacity constraints, of minimum total cost.

A particular case of special interest arises when all the terminal demands have the same
value. This case is called the unitary demand (UD) case. In this case, without loss of gen-
erality it can be assumed that di = 1 for all i ∈ V +. The general case is also called the
non-unitary demand case (non-UD) and can be always transformed into the UD case. The
transformation is achieved by replacing original vertices i with associated demand di > 1
with a set M of artificial vertices with |M | = di. Every new vertex m ∈M has an associated
demand dm = 1. Also two types of artificial arcs replace the original arcs incident with
vertex i. The first type connect every pair of vertices m, p ∈M and have cost cpm = 0. The

6

second type, have cost cmj = cij for every pair of vertices m ∈M, j ∈ V +.

The complexity of the CMST is of type NP-hard when 3 ≤ Q ≤ n/2 for the UD case as
was shown by Papadimitriou (1978). This also applies for the general general case, as it can
always be transformed into the UD case.

The CMST is an extension of the MST with supplementary capacity restrictions (Figure
1). By the simple fact of adding these capacity constraints, the complexity of the problem
increases notably. As in any NP-hard problem, optimal solutions for the CMST are difficult
to find. Nevertheless, in the UD case, there are special values of Q for which the optimal
solution is trivial or can be found using a polynomial time algorithm. These values are:

• Q = 1. The optimal solution in this case is trivial, and is given by the star solution
(all terminals are subroots).

• Q = 2. An optimal solution for this value of Q can be obtained by solving a perfect
matching problem on a modified graph (Papadimitriou 1978).

• Q = n − 1. To obtain an optimal solution for this case, we compute the MST for all
subsets S ⊂ V + with | S |= n − 1 and connect the node i = V + \ S directly to the
root. An optimal solution is the one with minimal cost.

• Q ≥ n. For this particular case, the capacity constraints are redundant. Therefore,
an optimal solution can be found by solving the associated MST problem. As we have
mentioned, this is achieved using a greedy algorithm such as Kruskal’s or Prim’s.

• In the general case (non-UD) of the CMST, when the capacity is greater than or equal
to the accumulated demand of all the terminals (Q ≥ d(V +)), an optimal solution is
also obtained by computing an MST. Note that having Q ≥ d(V +) in the general case,
is equivalent to have Q ≥ n in th UD case.

Some well know extensions of the CMST are:

• The multilevel capacitated minimum spanning tree considers a feasible set of capacities
available for the arcs (Gamvros, Golden, and Raghavan 2006; Uchoa, Toffolo, de Souza,
Martins, and Fukasawa 2012). The cost of each arc depends on its length and the
selected capacity, which needs to be greater than or equal to the flow passing through
the arc.

• The topological network design problem (Gavish 1989) differs from the CMST in the
objective function, which considers both, setup and traffic costs for the arcs.

• The delay constrained capacitated minimum spanning tree (Lee and Atiquzzaman 2005)
considers capacity constraints as well as traffic and delay constraints over the s-trees.

• In this work we deal with deterministic data. Indeed, another extension of the CMST,
is the one that considers uncertainty on the demand of each vertex and on the cost of
the arcs (Öncan 2007).

Also, as an extension of the MST, the CMST is related to many other problems. Among
them we can mention the following:

7

• The K-minimum spanning tree is to find an spanning tree which connects at least k
vertices of set V at minimum cost (Katoh, Ibaraki, and Mine 1981).

• The degree-constrained minimum spanning tree problem (Narula and Ho 1980), includes
constraints on the number of edges incident with any non-leaf vertex. The min-degree
constrained minimum spanning tree (de Almeida, Martins, and de Souza 2012) is an
extension of the degree- constrained minimum spanning tree problem, in which non-leaf
vertices are required to have a degree greater than a previously defined degree.

• The hop constrained minimum spanning tree problem (Balakrishnan and Altinkemer
1992; Gouveia 1995b), includes constraints to limit the maximum number of hops
allowed when designing the network to connect all vertices. The depth is defined as
the number of arcs in the path from the root to any terminal.

• The Minimum spanning tree with conflict constraints (Zhang, Kabadi, and Punnen
2011) includes additional conflict constraints among pairs of vertices on the graph. The
solution has to include at most one edge linking each pair of vertices with conflicts.

1.2 Literature review

1.2.1 Formulations and exact methods

The first exact methods developed for solving the CMST were enumeration procedures based
on combinatorial bounds. Many of these branch and bound methods are based on the relax-
ation of the capacity constraints of the CMST. To avoid confusions, in this section the term
node is related to a search tree in a branch and bound procedure, while vertex is related to
the graphs in which combinatorial problems are defined. Also it is important to mention,
that many of the first solution methods were developed to solve the UD case of the CMST.
Unless specified, the solution methods or formulations presented in this section were pro-
posed for the UD case.

The MST is a well known relaxation of the CMST where capacity constraints are not
considered. The main reason to use this relaxation is the ability of algorithms like Kruskal’s
(Kruskal 1956), and Prim’s (Prim 1957) to optimally solve the problem in a short computing
time. In these algorithms the search tree is explored focusing either on arcs or vertices. For
the arc oriented algorithms enumeration is done by fixing arcs (i, j) which are included in
(xij = 1) or excluded from the solution (xij = 0). For the vertex oriented algorithms vertices
are subject to a clustering process, which determines whether or not a pair of vertices is
in the same cluster. In both of these approaches a MST is solved at every node of the
search tree. When the solution of such MST is feasible for the CMST, it is optimal for the
current subproblem and therefore such node is discarded for further branching. Chandy and
Russell (1972) presented an arc oriented branch and bound in which the branching process
starts using the infeasible arc (an arc that violates the capacity constraint) closest to the
root node. Every time a variable is fixed, the cost matrix is modified. As explained before,
nodes of the search tree are discarded for further branching when the MST solution of the
subproblem is feasible for the CMST. The cost matrix is updated taking into account the
fixed variables. Later, Elias and Ferguson (1974) improved the algorithm introducing logical
tests, dominance criteria and improved lower bounds. Logical tests allow to reduce the

8

number of variables, while the lower bound is improved adding a degree constraint on the
root node. Dominance criteria are used to fix certain arcs included in the initial solution.
After fixing those arcs, the enumeration process starts. As in Chandy and Russell (1972)
the cost matrix is updated considering the fixed variables.

The first vertex oriented branch and bound algorithm was proposed by Chandy and Lo
(1973) and is based on Litlle’s algorithm (Little, Murty, Sweeney, and Karel 1963) for the
Travelling Salesman Problem (TSP). The subproblems are branched on by considering pairs
of vertices which either belong to the same subtree or not. Another vertex oriented algorithm
was developed by Kershenbaum and Boorstyn (1983) based on the construction of subtrees.
The algorithm initially considers every terminal of the graph as a subtree. Branching is
done using a LIFO policy. Using the same approach of subtree construction, an arc oriented
branch and bound algorithm is also presented. Another arc oriented algorithm was designed
by Han, McMahon, and Sugden (2002) in which arcs are sorted according to their cost and
a binary search engine is used to explore the search tree.

Many formulations have been proposed to model the CMST. Among the mixed integer
formulations we can mention the flow formulation by Chandy and Russell (1972). This for-
mulation has been extensively used to develop exact algorithms and also as a base for other
types of formulations. Using this formulation Gavish (1982) proposed a Benders decomposi-
tion approach with disappointing results, although, a new set of generalized cut constraints
was introduced. This family was equivalent to the well-known generalized subtour elimina-
tion (GSE) constraints used for the the TSP. Better results were obtained by Gavish (1983)
using a Lagrangean relaxation with a modified version of this formulation. In that work,
the Lagrangean relaxation dualizes the capacity constraints and includes a degree constraint
for the root, which improves the lower bound and thus the results of the algorithm. A
Dantzig-Wolfe approach, a linear relaxation and a subgradient optimization procedure are
compared. To compare the performance of the different approaches, the heuristic by Elias
and Ferguson (1974) is used to find upper bounds. Using the flow formulation as a base,
other formulations and solution methods have been developed, like the single commodity
flow formulation proposed by Gavish (1989). Also, Frangioni, Pretolani, and Scutellà (1999)
used the flow formulation to model the CMST as a minimum cost flow problem. Lower
bounds are found in a very short computing time using Lagrangean relaxation, although the
quality of the bounds is not good.

Among the binary formulations for the CMST, one of the most important ones, is the
directed formulation by Gavish (1985). This integer formulation included a new set of con-
straints equivalent to the GSE constraints (derived from (Gavish 1982)). These constraints
are used for controlling the connectivity and the capacity constraints on the solution. The
above constraints are relaxed in a Lagrangean fashion and the resulting model is solved with
an augmented Lagrangean procedure. A dual ascent algorithm is used to identify violated
constraints. The results showed small optimality gaps and fairly good CPU times. Malik
and Yu (1993) introduced new valid inequalities for this formulation, which were separated
using a heuristic. These inequalities are stronger than those of Gavish (1982). Lagrangean
relaxation was applied to these inequalities and the resulting problem was solved using the
subgradient method. Toth and Vigo (1995) also proposed a Lagrangean relaxation strength-
ened in a cutting plane fashion by iteratively adding violated constraints to the Lagrangean
problem. Additionally, they presented another lower bound procedure based on the solution

9

of minimum cost flow problems. They also proposed an overall additive lower bounding
procedure, which was included within a branch and bound algorithm.

A branch and bound algorithm was developed by Hall (1996) using the undirected version
of the formulation by Gavish (1985). In this formulation arcs aij = (i, j) are replaced by
edges eij = (i, j). The algorithm was used to solve instances for the general case as well as
for the UD case. It incorporates a cutting plane method in which multistar and rootcutset
inequalities are incorporated. These strong inequalities are separated using heuristic methods
based on the contraction of vertices over the fractional graph induced by the solution of the
LP relaxation of the model. The used valid inequalities are based on the previous polyhedral
study of Araque, Hall, and Magnanti (1990), where it is shown that under certain conditions,
multistar and rootcutset inequalities are facet defining. Zhang (1993) proved similar results
but for the directed version of such inequalities. A review of directed formulations at that
time can be found in Gouveia (1993).

Based on the flow formulation, Gouveia (1995a) developed the 2n-formulation for the
CMST. Using capacity indexed variables and following the idea of the flow conservation
rules, Gouveia presented a binary formulation with 2n constraints and Qn2 variables. He
also proposed valid inequalities and four solution methods based on Lagrangean relaxation.
Two different types of test instances were introduced for the UD case. Such test instances be-
came a standard, which started to be used by other researchers. Using the same benchmark
instances has helped to compare the performance of the different algorithms. A complete
description of those instances is given in Chapter 5. Gouveia and Martins (2000) presented
another binary formulation, the hop indexed formulation, also based on the flow formula-
tion. Valid inequalities based on the GSE inequalities were presented as well as a heuristic
separation method. A cutting plane algorithm was used to solve the LP relaxation of the for-
mulation obtaining fairly good results. A comparison between different types of formulations
and methods was presented in that work. Using the same formulation, Gouveia and Martins
(2005) enhanced their previous cutting plane algorithm using stronger valid inequalities as
well as a new separation method that gave improved results. In Chapter 2 we present a more
extensive review of such formulation.
A different formulation for the CMST, the q-arb formulation proposed by Uchoa, Fuka-
sawa, Lysgaard, Pessoa, de Aragao, and Andrade (2008), is based on a type of arborescence
structures called q-arbs which are used to define the variables. The model is solved using a
branch-and-cut-and-price algorithm. Using this algorithm, many of the best known solutions
of the test instances were improved or confirmed to be optimal. To the best of our knowledge,
at present, such algorithm still produces the best results among all exact methods.

1.3 Heuristic methods

Because of the theoretical and empirical difficulty of the CMST, many approximate solution
methods have been developed to find upper bounds for the problem. Many of these methods
include heuristics, metaheuristics and other approaches that have shown to be able to find
good feasible solutions for the CMST.

Among the different heuristics that have been developed for the CMST we can distin-
guish two types: Constructive heuristics, which build a solution, and improvement heuristics,
which start with a given solution and try to improve it. Among constructive algorithms we
can mention the modified versions of Prim’s, Kruskal’s and Vogel’s approximation algorithm

10

for the MST (Chandy and Russell 1972; Kershenbaum 1974). Modified Prim and modified
Kruskal algorithms work as their original version, but include capacity checks to avoid the
inclusion of edges that violate the capacity constraint. Vogel’s approximation algorithm
works on a cost matrix which is modified using a trade-off function that considers the first
and second closest vertex of every terminal.
The above mentioned construction algorithms focus on arcs. In contrast, Sharma and El-
Bardai (1970) and McGregor and Shen (1977) designed construction algorithms focused on
vertices. The procedure in Sharma and El-Bardai (1970) uses polar coordinates to create
clusters of vertices. Polar coordinates are estimated using the root as the main reference. A
greedy method considering capacity constraints is used to build the solutions. McGregor and
Shen (1977) proposed a vertex contraction procedure. When two vertices are selected to be
linked by an edge such vertices are contracted and replaced by one new vertex and distances
to other vertices are recomputed. Infeasible contractions of vertices are not allowed. Ker-
shenbaum (1974) designed a heuristic based on Kruskal’s modified algorithm, that assigns
weights to terminals. These weights are used to compute a modified cost matrix which is
used to build solutions.

One of the most important heuristic, among the improvement ones, is the one by Esau
and Williams (1966). The initial solution for this procedure is the star tree (all terminals are
subroots) which is subject to improvement using a savings strategy. It is simple and fast, and
the quality of solutions is good. Due to the algorithm’s efficiency and simplicity, many other
authors have developed enhanced versions. Whitney’s savings heuristic (1970) is very similar
to the Esau-Williams algorithm. The starting solution is the same and the only difference
lies in the savings strategy criterion used in the improvement phase. While Esau-Williams
considers for replacement only the edges directly connected to the root, Whitney’s procedure
considers all the edges in the current solution. The algorithm by Lee and Atiquzzaman (2005)
generates an initial solution using Esau-Williams and then applies a local search based on
vertex exchange. Battarra, Öncan, Altinel, Golden, Vigo, and Phillips (2011) presented a
genetic algorithm for setting the parameters of the Esau-Williams algorithm.

Gavish and Altinkemer (1986) proposed a parallel savings heuristic also based on Esau-
Williams. In this heuristic multi-exchange of edges is allowed while in Esau-Williams only a
pair of edges is exchanged at each step. Unfortunately, this algorithm has the tendency to
produce solutions with a big number of s-trees with wasted capacity. For that reason Gavish
(1991) introduced dummy vertices to cleverly control the maximum number of matches
allowed at each iteration and thus reduce the number of s-trees with wasted capacity.

Another important and natural improvement heuristic is to compute the MST of the
s-trees which are part of the solution obtained by a construction algorithm. Esau and
Williams (1966) and Whitney (1970) used such an approach to improve the solution when
their algorithm is unable to find further improvement. This improvement procedure can be
applied to any feasible solution.

The improvement heuristic by Elias and Ferguson (1974), also based on Esau-Williams,
starts using the MST solution of the problem instead of the star tree. The initial solution is
infeasible (if it is feasible, then it is optimal) and unused edges replace edges in the current
solution. Instead of using a savings strategy a least cost strategy is used. The algorithm
stops when a feasible solution is found.

11

Karnaugh (1976) designed a second order greedy algorithm for the CMST. Second order
algorithms create subproblems modifying the original model (changing data or including
constraints), which are solved using a heuristic procedure. In that work the cost matrix is
perturbed at each step and the resulting subproblem is solved with a modified version of
Esau-Williams. An inhibition procedure is also included to help in the diversification of solu-
tions. Martins (2007) proposed an enhanced second order algorithm based on Esau-Williams.
The difference with a second order algorithm, is that the enhanced version is able to drop
some of the previously defined constraints to find improved solutions. Dropped constraints
are included in a tabu list to avoid local optima.

As metaheuristics started to appear, many were applied to the CMST. One of the first
attempts was done by Amberg, Domeschke, and Vob (1996) who used simulated annealing
and tabu search. Their algorithm considers two neighborhoods: Vertex exchange and vertex
shifting. Using also tabu search Sharaiha, Gendreau, Laporte, and Osman (1997) developed
a procedure where the explored neighborhood is related to subtrees. Infeasible solutions
(according to capacity) are allowed and an aspiration criterion is also applied. Ahuja, Orlin,
and Sharma (2001) developed another tabu search algorithm that included a new type of
neighborhood search structures. The new structures are based on neighborhoods previously
defined in Amberg, Domeschke, and Vob (1996) and in Sharaiha, Gendreau, Laporte, and
Osman (1997) and include vertex shifting, vertex exchange and subtrees shifting. The dif-
ference lies in the fact that the neighborhoods are explored using a cyclic multi-exchange
strategy. Using a customized improvement graph, the algorithm is able to find cyclic multi-
exchanges to improve the solution. Further improvements of this algorithm were carried out
in Ahuja, Orlin, and Sharma (2003) by creating a composite very large scale neighborhood
in which cyclic multi-exchange improvements are found. To the best of our knowledge, the
best heuristic results are obtained by this algorithm, which was applied both to UD and
non-UD instances. Combining tabu and scatter search, Fernández, Dı́az, and Ruiz (2005)
designed a heuristic in which initial solutions are generated using a randomized version of
Esau-Williams. Two arc related neighborhoods are explored during the tabu search and
solutions are combined during the scatter search phase to create a support graph, which is
transformed into a CMST solution by a vertex contraction procedure.

Patterson, Pirkul, , and Rolland (1999) solved the CMST using the adaptive reasoning
technique. This algorithm introduces special strategies to exploit construction neighborhoods
combined with some memory functions of tabu search. The procedure is based on Esau-
Williams with additional constraints that help to avoid local optima. GRASP was applied
by Souza, Duhamel, and Ribeiro (2003) on the CMST. Their GRASP algorithm explores an
edge exchange neighborhood and uses Esau-Williams to improve solutions.

Genetic algorithms have also been used on the CMST, although with not so good results.
One of the problems faced by genetic algorithms is the way solutions are coded for crossover.
The predecessor coding, which is a common way to represent CMST solutions, has the
difficulty that crossover can lead to infeasible offsprings. To overcome this problem Zhou,
Cao, Cao, and Meng (2007) used a different encoding. On the other hand, Raidl and Drexel
(2000) and de Lacerda and de Medeiros (2006) used complicated crossover techniques to
obtain feasible solutions.

Ant colony optimization (ACO) has been used by Reimann and Laumanns (2006), who
developed a fast procedure to solve the UD case. Using a TSP savings procedure, solutions

12

for the capacitated vehicle routing problem (CVRP) are built and used to create clusters of
vertices which are transformed into CMST solutions using Prim’s algorithm.

A dual-primal relaxation adaptive memory programming heuristic was proposed by Rego,
Mathew, and Glover (2010) to solve the CMST. This type of algorithm explores the dual
solution space by incorporating cutting planes of relaxed surrogate constraints. Using tabu
search and projecting dual solutions into the primal space, primal feasible solutions are
obtained. Further improvement is accomplished by using a scatter search procedure.

Rego and Mathew (2011) proposed a filter and fan algorithm that combines local search
with tree search procedures. Diversification of the solutions is achieved by a fan procedure
and a filter procedure helps to reduce the size of the search tree. The filter and fan algorithm
makes use of tabu search adaptive memory as well as strategic oscillation.

In addition, there are other types of approaches for finding bounds on the solution of
the CMST like the one introduced by Gouveia and Paixão (1991). Using clustering and
decomposition techniques the original problem is transformed to obtain smaller size problems,
which are solved using dynamic programming. Altinkemer and Gavish (1988) designed a
heuristic algorithm based on the partitioning of a Hamiltonian tour that provides constant
error guarantees for the bounds.

13

Chapter 2

Formulations and valid inequalities
for the CMST

In this chapter we give some preliminaries for the work we have developed in this thesis. First
we present two basic formulations that use binary variables, which allow us to highlight some
of the main issues related to the CMST. The chapter ends with an overview of the most used
valid inequalities and their separation. Again, the aim is not to be exhaustive but to give
the basis of the developments on this work.

2.1 Two basic binary formulations

When modeling the CMST there are two important issues that need to be considered; con-
nectivity of the tree and capacity constraints. An easy way to address these issues is the use
of flow variables and flow conservation constraints. With such constraints we assure con-
nectivity, while capacity issues are solved setting up an upper limit on the value of the flow
variables. The formulations based on flow variables are mainly mixed integer programming
(MIP) models as flow variables are essentially continuous. A common alternative to model
the CMST is the use of integer (binary) variables associated with arcs in conjunction with
cutset inequalities that guarantee connectivity and capacity constraints.

Experience has shown that the linear relaxations (LP) of binary formulations provide
tighter lower bounds than those of MIP models. Unfortunately, in binary formulations the
number of constraints is exponential on the number of vertices of the problem and it is
impossible to solve the CMST using the full formulation. Therefore, these constraints need
to be relaxed and iteratively separated and added to the formulation.

Formulations are also influenced by the CMST variant that is studied. The UD case
allow for tighter formulations with the inconvenience that they are not useful or need to be
adapted to solve the general case. Here we present two formulations, the first one considers
the general demand case while the second one considers only the UD case. The first formula-
tion is the classical one, commonly used by researchers to define the CMST. The second one
is a three index formulation, which has been useful to develop part of the research presented
in this thesis.

To facilitate comprehension through this and the next chapter in some situations we will

14

abuse notation using: ∑
i∈V

∑
j∈V

xij to express
∑

(i,j)∈A
i∈V,j∈V

xij . (2.1)

2.1.1 Directed formulation

A classical mathematical programming formulation for the CMST is the one proposed by
Gavish (1983). In this directed formulation, arcs leave from the root towards the leaves. This
formulation includes a set of inequalities based on the general subtour elimination constraints
(GSE) (Malone and Bellmore 1971) to guarantee connectivity and capacity limit.

The decision variables are the following:

xij =

{
1, if arc (i, j) is part of the solution, (i, j) ∈ A with j ∈ V +

0, otherwise.

Then, the CMST is formulated as:

min
∑
i∈V

∑
j∈V +

cijxij (2.2)

s.t.
∑

(i,j)∈A

xij = 1 j ∈ V + (2.3)

∑
i/∈S

∑
j∈S

xij ≥
⌈
d(S)

Q

⌉
S ⊆ V +, |S| ≥ 2 (2.4)

xij ∈ {0, 1} (i, j) ∈ A with j ∈ V + (2.5)

With equations (2.3) we guarantee that for every vertex there is only one incoming arc.
Constraints (2.4) are the classical connectivity constraints, as extended by Laporte. and
Nobert (1983) for the Vehicle Routing Problem (VRP) to take capacities into account. Also
called bin-packing inequalities, with these constraints the connectivity of the solution is
assured and the accumulated demand of the subtrees is limited so each subtree does not
exceed the capacity in any solution. Recall that d(S) =

∑
j∈S

dj denotes the overall demand

of the vertices of set S.

The above formulation has n2 variables, and a number of constraints, which is exponential
on |V +|. Note that there are some variables which are not defined (i.e. arcs going from
terminal vertices to the root). Additionally, it is possible to eliminate some other variables
based on optimality criteria. Variants of this formulation have been also studied, like the
non-directed version (Hall 1996).

2.1.2 Hop indexed formulation

This formulation was presented in Gouveia and Martins (2000), and improved in Gouveia
and Martins (2005). It is based on the single commodity network formulation by Gavish
(1983) and applies only to the UD case. It takes into account the fact that every arc has a

15

certain depth in relation to the root. Consider an arc (i, j) with depth t which is part of the
solution. If t = 1, we have that such arc has as origin the root (i = 0) and as destination
the subroot j. When t = 2 the arc (i, j) is originated at the subroot i and arrives to vertex
j, which is neither the root nor a subroot. Arcs with t ≥ 3, link vertices which are neither
the root nor a subroot. Notice that the depth of a vertex is determined by the depth of its
incoming arc (Figure 2.1).

The following variables are defined:

uijt =

{
1, if arc (i, j) with depth t is in the solution, (i, j) ∈ A with j ∈ V +, t = 1, ..., Q
0, otherwise

zijt ≥ 0,
The flow passing through arc (i, j), (i, j) ∈ A with j ∈ V +, t = 1, ..., Q
when this arc has depth t

0

123

45

6

7

8

9

10

11

15

12

1314

15,9,5
U

11,15,4
U

10,11,3
U

3,10,2
U

0,3,1
U

0,2,1
U

0,1,1
U

1,4,2
U1,5,2

U

5,12,3
U

2,7,2
U

7,8,3
U 7,6,3U

12,13,4
U

6,14,4
U

Figure 2.1: Example of hop indexed variables

It is important to notice that index t for variables z and u, has values ranging from 1 to
Q because no feasible solution would have any arc with depth greater than Q. Note that,
since this formulation is used to model the UD case, the capacity constraints are in fact
cardinality constraints. Therefore, in this situation the capacity gives directly the maximum
depth in a subtree.

Then using the previously defined variables, the hop indexed formulation is as follows:

16

Min

Q∑
t=1

∑
(i∈V

∑
j∈V +

cijuijt (2.6)

s.t.

Q∑
t=1

∑
(i,j)∈A

uijt = 1 j ∈ V + (2.7)

∑
i∈V

zijt −
∑
i∈V

zji,t+1 =
∑
i∈V

Q∑
t=1

uijt j ∈ V +, t = 1, ..., Q− 1 (2.8)

uijt ≤ zijt ≤ (Q− t+ 1)uijt (i, j) ∈ A, j ∈ V +, t = 1, ..., Q− 1 (2.9)

uijt ∈ {0, 1}, zijt ∈ 0, .., Q (i, j) ∈ A, t ∈ 1, ..., Q (2.10)

Constraints (2.7) are the classical ones that require there is exactly one incoming arc to
every terminal and they are equivalent to (2.3) for the directed formulation. Constraints
(2.8) are a generalization of the flow balance equations and also state that, if an arc (l, j)
with depth t enters j, any outgoing flow would use some arc with depth t + 1. Finally
constraints (2.9) link variables and limit capacity.

This formulation has 2Qn2 variables. As in the directed formulation, there are variables
which is possible to eliminate based on optimality criteria.

2.2 Well-known valid inequalities

Many valid inequalities have been proposed for the different formulations for the CMST.
Among the most important ones, we can mention the bin-packing inequalities (Hall 1996),
multistar inequalities (Hall 1996; Gouveia and Lopes 2005), rootcutset inequalities (Araque,
Hall, and Magnanti 1990), other based on the GSE inequalities (Gouveia and Martins 2005),
and extended capacity cuts (Uchoa, Fukasawa, Lysgaard, Pessoa, de Aragao, and Andrade
2008). We will use the directed formulation to present these inequalities, except for the
ones derived from another type of formulation. It is important to notice that many of these
inequalities can be extended to different formulations. Let P and Pd denote the convex hull
of feasible solutions to the undirected and directed CMST formulations respectively.

2.2.1 Bin-packing inequalities

Bin-packing inequalities apply both to the general and UD cases, and can be expressed
as connectivity constraints, or as subtour elimination constraints. These inequalities have
been widely used in vehicle routing and network design problems. An example of these
inequalities is presented in Figure 2.2 considering Q = 5. Their expression for the general
case as connectivity constraints, was given in (2.4) for the directed formulation. Their
expression as a subtour elimination constraint is:∑

i∈S

∑
j∈S

xij ≤ d(S)−MT (S) S ⊆ V +, |S| ≥ 2 (2.11)

17

where S ⊆ V + is a subset of terminals and MT (S) =
⌈
d(S)
Q

⌉
represents the minimum number

of s-trees (or the minimum number of incoming arcs) required to accommodate the demand
of the vertices contained in subset S, taking into account the capacity constraint. For the

UD case we have that MT (S) =
⌈
|S|
Q

⌉
as d(S) = |S|. For the same case, these inequalities

are facet defining for P and Pd whenever |S| is not a multiple of Q (Hall 1996), and (2.11)
can be rewritten as:

∑
i∈S

∑
j∈S

xij ≤ |S| −MT (S) S ⊆ V +, |S| ≥ 2 (2.12)

or alternatively as a connectivity constraints:∑
i/∈S

∑
j∈S

xij ≥MT (S) S ⊆ V +, |S| ≥ 2 (2.13)

0

123

456

78

91011

15

1617

12

131418

violated bin-packing
inequality

violated bin-packing
inequality

0.5
 1

Q =5

Figure 2.2: Example of violated bin-packing inequalities with UD and Q=5

Note that in the UD case MT (S) =
⌈
|S|
Q

⌉
, because we have unitary demands. However,

in the general case, computing MT (S) resorts to solving a bin-packing problem, which is
itself a NP-hard problem. The separation problem of this type of inequalities was solved
heuristically by Hall (1996) using a vertex contraction procedure over the graph induced by
the fractional solution.

2.2.2 Multistar inequalities

The multistar inequalities were first introduced by Araque, Hall, and Magnanti (1990) for ca-
pacitated tree and capacitated routing problems. These inequalities are capacity-connectivity
constraints, that have different expressions depending on the type of demand considered on
the terminals (UD case or general). In Figure 2.3, an example of this family of inequalities
is presented. The example considers a capacity parameter of Q = 5. For the UD case these

18

inequalities are facet defining under certain conditions (Hall 1996) and have the following
form: ∑

i∈S

∑
j∈S

Qxij +
∑
i∈S
i 6=0

∑
j /∈S
i6=0

(xij + xji) ≤ |S|(Q− 1) S ⊆ V +, |S| ≥ 2 (2.14)

0

123

456

78

91011

15

1617

12

131418 violated
multistar
inequality

violated
multistar
inequality 0.5

 1
Q =5

Figure 2.3: Example of violated multistar inequalities with UD and Q=5

The right hand side of (2.14) represents the maximum potential number of arcs between
vertices in S and leaving/entering S. The first term in the left hand side considers the arcs
between vertices in S and the second term refers to arcs leaving/entering S that do not come
from the root. In total, if all the vertices in S are subroots, then at most |S|(Q− 1) arcs can
leave S. If two vertices in S are connected by one arc, it is clear that one of such vertices
is not a subroot. Therefore the number of potential outgoing arcs from S is reduced by Q.
For the general demand case, Hall (1996) proposed a generalization based on the weighted
version of (2.14). Gouveia and Lopes (2005) proposed another version of these inequalities
as well as a reinforcement procedure to improve them. They are expressed as follows:∑

i/∈S

∑
j∈S

(Q− di)xij −
∑
i/∈S

∑
j∈S

dixji ≥ d(S)

The left side of these inequalities represents the available capacity entering the set of
vertices in S. This capacity has to be enough so as to satisfy the sum of the demands of the
vertices in S plus the demand of the vertices outside S directly connected with an outgoing
arc from S.

To separate these inequalities, Hall (1996) used a vertex contraction procedure over the
graph induced by the fractional solution. Letchford and Salazar-González (2006) presented
an exact separation procedure for these inequalities. The exact separation is achieved by
creating an auxiliary graph and then solving a maximum flow-minimum cut problem.

2.2.3 Rootcutset inequalities

The rootcutset inequalities were first proposed by Araque, Hall, and Magnanti (1990). Hall
(1996) developed the version of these inequalities for the UD case while Zhang (1993) pre-
sented them for the general case. These inequalities help to enforce the connectivity of the

19

subtrees to the root. For a given set S ⊆ V +, two types of incoming arcs (or edges) to S
are considered: subroot arcs between the root and any subroot, and arcs between terminals.
The version of these constraints for the UD case considers a set of vertices |S| ≥ Q, MT (S)
that as before represents the minimum number of s-trees needed to contain the vertices in
S, and b = max{0, |S| −MT (S)(Q − 1)} the maximum number of saturated s-trees in S.
Their expression is as follows:∑

i∈S

∑
j∈S

bxij ≤ b(|S| −MT (S)− 1) +
∑
j∈S

x0j (2.15)

The constant on the right hand side of inequalities (2.15), represents the maximum
number of arcs (or edges) that can link vertices in subset S assuming that there are no
subroots in S. For each subroot contained in S, the number of potential arcs linking vertices
in S is increased in one unit (variable part of the right hand side).

For the general case inequalities (2.15) can be extended to:

MT (S) + 1

MT (S)

∑
i∈B̄

∑
j∈S

xij +
∑
i∈B

∑
j∈S

xij ≥MT (S) + 1 (2.16)

0

123

456

78

91011

15

1617

12

131418

violated
rootcutset
inequality

violated
rootcutset
inequality

0.5
 1

Q =5

Figure 2.4: Example of violated rootcutset inequalities with UD and Q=5

where B =
{
i /∈ S |

⌈
d(S)+di

Q

⌉
> MT (S)

}
is the set of vertices not in S, that if included in S,

would require an additional s-tree, and B = V + \ {S ∪B} the set of vertices that would not.
As in the UD case, the connectivity to the root is enforced with this family of inequalities.

These inequalities can be separated heuristically using a vertex contraction procedure
over the graph induced by the fractional solution (Hall 1996). To the best of our knowledge,
no exact separation method is available for these inequalities. An example for this family of
inequalities is presented in Figure 2.4 considering Q = 5.

2.2.4 GSEh inequalities

Another set of valid inequalities are the GSEh inequalities from Gouveia and Martins (2005)
that are based on the well known GSE inequalities. These inequalities only apply to the
hop indexed formulation by Gouveia and Martins (2000) presented in Section 2.1.2. Their

20

expression is the following:∑
t≥h+1

∑
i∈S

∑
j∈S

uijt ≤ |S| −
⌈

|S|
Q− h+ 1

⌉
S ⊆ V +, |S| ≥ 2, 1 ≤ h ≤ Q− 1 (2.17)

0

123

4

5

6

78

91011

15

1617

12

131418

violated
GSEh (h=3)
inequality

violated
GSEh (h=2)
inequality

0.5
 1

Q =5

Figure 2.5: Example of violated GSEh inequalities with UD and Q=5

Since variables in (2.17) indicate the depth of the arc, we can use these inequalities for
finding GSE inequalities at different depths h, and consequently, enhance the connectivity
in the solution. The right hand side of the expression represents the maximum number of
arcs considering the cardinality of S (|S|) at a fixed depth h. In Figure 2.5, an example of
this family of inequalities is presented.

Gouveia and Martins (2005) separate heuristically inequalities GSEh using a drop strat-
egy.

Hop ordering are a type of inequalities specially designed for the hop indexed formulation
of Gouveia and Martins (2005). These inequalities state that an arc (i, j) can be at depth
t+ 1 only if there is an entering arc (m, i) at depth t. They are expressed as follows:

∑
m∈V
m 6=j

xmit ≥ uij,t+1 (i, j) ∈ A, t = 1, .., Q− 1 (2.18)

and they can be separated by enumeration using the graph induced by the fractional solution.

Finally, we will mention that Uchoa, Fukasawa, Lysgaard, Pessoa, de Aragao, and An-
drade (2008) introduced a new family of inequalities called extended capacity cuts (ECC).
They use the capacity indexed variables proposed by Gouveia (1995a). The rootcutset in-
equalities are a subset of the ECC. Another subset of this family of inequalities are the
homogeneous extended capacity cuts (HECC). The HECC only consider entering variables
with the same capacity having the same coefficient.

21

Chapter 3

New formulations for the CMST

In this chapter we present two new formulations for the CMST which are based on the iden-
tification of subroots (vertices directly connected to the root). One way of characterizing
CMST solutions is by identifying the subroots and the vertices assigned to them. Both
formulations use binary decision variables y to identify the subroots. Additional decision
variables x are used to represent the elements (arcs) of the tree. In the second formulation
the set of x variables is extended to indicate the depth of the arcs in the tree. For each
formulation we present families of valid inequalities and address the separation problem in
each case. Also a solution algorithm is proposed.

The type of variables used in both formulations are easy to understand and the identi-
fication of subroot gives to both formulations the capacity of building stronger inequalities
which can lead to improved lower bounds. Additionally, this type of variables have similari-
ties with the ones used in location-assigment problems, since they identify the subroots and
the vertices assigned to those subroots.

3.1 The subroot formulation

This formulation is based on the subroots and the s-trees which are subtrees rooted at a
subroot. Assignment variables y help us to identify which vertices belong to each s-tree,
and link each terminal j ∈ V + to a subroot k ∈ V +. Additionally, variables x, related to
the arcs, specify whether an arc is part of an s-tree rooted at a given subroot. Because it
is assumed that the graph of the problem is a network without loops, variables x are not
defined when i = j. Also, since we consider that flow goes from the root to the terminals,
arcs going from terminal to the root are not defined either. Now we can define the following
variables for the subroot formulation:

yjk =

{
1, if vertex j belongs to the s-tree rooted at vertex k, j, k ∈ V +

0, otherwise.

xijk =

{
1, if arc (i, j) is part of the s-tree rooted at vertex k, (i, j) ∈ A, j, k ∈ V +

0, otherwise.

22

Then the CMST can be formulated as follows:

Min
∑
k∈V +

∑
i∈V

∑
j∈V +\{k}

cijxijk (3.1)

s.t.
∑
k∈V +

yjk = 1 j ∈ V + (3.2)

∑
(i,j)∈A

xijk = yjk j, k ∈ V + (3.3)

ykk = x0kk k ∈ V + (3.4)∑
j∈V +,j\{k}

djyjk ≤ (Q− dk)ykkk ∈ V + (3.5)

∑
k∈V +

∑
i/∈S

∑
j∈S

xijk ≥

⌈
d(S)

Q

⌉
S ⊆ V + (3.6)

yjk ∈ {0, 1} j ∈ V + , k ∈ V + (3.7)

xijk ∈ {0, 1} (i, j) ∈ A, k ∈ V + (3.8)

With (3.2) we assign each vertex to a subroot, while with equation (3.3) we impose that
each vertex has an entering arc part of the s-tree that the vertex is assigned to. Constraints
(3.4) require a subroot to be directly connected to the root. In fact such constraints can
be removed by replacing variables x0kk by variables ykk. The capacity is controlled by
constraints (3.5) and the connectivity of the solution is guaranteed by (3.6), the extended
version of the generalized connectivity constraints (2.4) presented in Section 2.1.1.

3.2 Valid inequalities for the subroot formulation

Many families of the valid inequalities presented in Section 2.2 are valid for the directed
formulation by Gavish (1985). Since the subroot formulation (3.1)- (3.8) is based on that
formulation, those families can be extended to this new formulation. In this section we
present the extended versions of the multistar and rootcutset families. Additionally, a new
reinforced version of the multistar family is presented and its validity is proved.

3.2.1 Subroot multistar inequalities

For the CMST we consider that each vertex has a demand, and the sum of these demands is
produced at the root which is the only production vertex. The total production at the root
is given by d(V +). The demand for each vertex j travels through the arcs in the only path
that connects j to the root. The flow through each arc (i, j) is the sum of the demands of
the vertices in the tree that have arc (i, j) in the only path connecting them to the root.

The family of multistar inequalities, which was presented in Section 2.2, has shown to
be important for the solution of the CMST and CVRP (Letchford, Eglese, and Lysgaard

23

2002). In this section we present a new family of inequalities which go beyond adapting the
multistar inequalities to the subroot variables. The new inequalities have an additional term
which considers extra demand associated to s-trees not considered in the original ones.

Notice that the multistar inequalities are a particular case of the inequalities presented
in the paper by Letchford and Salazar-González (2006):∑

i∈S

∑
j∈V \S

(dijxij − dijxij) ≥ d(S), (3.9)

where d̄ and d, respectively denote a lower and an upper bound of the flow entering j.

Proposition 1. For any given set S ⊂ V + the following subroot multistar inequality is valid
for the CMST:∑

k∈S
Qykk +

∑
k/∈S

∑
j∈S

(Q− dk)xkjk +
∑
k/∈S

∑
i/∈S
i6=k

∑
j∈S

(Q− dk − di)xijk

−
∑
k/∈S

∑
i∈S

∑
j /∈S

djxijk −
∑
k∈S

∑
i/∈S

diyik ≥ d(S) (3.10)

Proof:

To prove validity we use auxiliary variables zij, associated with binary variables xij, rep-
resenting the flow passing through the arc (i, j). We first present the flow balance equation
for each terminal i ∈ V + using variables zij and then we substitute variables zij by lower and
upper bounds defined in terms of variables xijk of the subroot formulation. For each vertex,
the flow balance equation is: “incoming flow = outgoing flow + demand”. That is:

∑
i 6=j

zij = dj +
∑
i6=j

zji (3.11)

Given a feasible solution (x, y) for formulation (3.1)- (3.8), let K = {k ∈ V +|x0k = 1}
be the set of subroot vertices and R = V + \K be the set of non-subroot vertices. We further
partition the set of non-subroot vertices R = R1 ∪R2, into R1 = {i ∈ R|

∑
k∈K

xkik = 1} which

contains the vertices directly connected to a subroot, and R2 = {i ∈ R|
∑
k∈K

xkik = 0}, which

contains the vertices with no connection to a subroot.

1. From (3.11), the flow balance equation for any subroot k ∈ K is:

z0k = dk +
∑
i 6=k

zki (3.12)

Variables z0k in the previous equation are bounded above by Q. Additionally, for the flow
variables associated with arcs leaving from a subroot k, the upper bound is given by (Q−dk).
The lower bound of the flow leaving a subroot to a vertex i is given by di (the demand of the

24

destination vertex i). Then, we have the following inequality for the flow entering a subroot
k ∈ S:

z0k ≤ Qykk (3.13)

2. Now, let us consider the flow balance equation for the non subroot vertices j ∈ R:∑
i6=0,i 6=j,

zij = dj +
∑
i6=j

zji (3.14)

When j ∈ R1, an upper bound on zij is Q − dk, and when j ∈ R2 an upper bound on zij
is (Q − dk − di). For variables zji for j ∈ R (the flow leaving j), a lower bound is di, the
demand of the destination vertex i .

3. Now, adding up all the constraints (3.11) associated with a subset of vertices S ⊂ V +,
|S| ≥ 2 we have that:

∑
i/∈S

∑
j∈S

zij =
∑
j∈S

dj +
∑
j∈S

∑
i/∈S

zji (3.15)

Considering that the vertices included in S belong to only one of the subsets K, R1 or R2,
it is possible to separate the flow entering S and the flow leaving S depending on the type of
vertex where the flow comes from. First, we split the flow entering S using equations (3.12)
and (3.14), and obtain:∑

j∈K∩S
z0j +

∑
i∈R1\S

∑
j∈S

zij +
∑

i∈R2\S

∑
j∈S

zij =
∑
j∈S

dj +
∑
i/∈S

∑
j∈S

zji (3.16)

Then we split the flow leaving S according to the type of source vertex (whether or not it is
a subroot) using (3.13) and (3.14):

∑
k∈K∩S

z0k +
∑

i∈R1\S

∑
j∈S

zij +
∑

i∈R2\S

∑
j∈S

zij =
∑
j∈S

dj +
∑

j∈K∩S

∑
i/∈S

diyij +
∑

j∈R∩S

∑
i/∈S

zji (3.17)

Finally, we replace variables zij with variables yjk and xijk, using the upper bounds as
coefficients for the terms on the left hand side of the equation, and using the lower bounds
as coefficients in the the terms on the right hand side of the equation, and we obtain the
following valid inequality:

∑
k∈S

Qykk +
∑

i∈R1\S

∑
j∈S

∑
k∈K\S

(Q− dk)xijk +
∑

k∈K\S

∑
i∈R2\S

∑
j∈S

(Q− di − dk)xijk

≥
∑
j∈S

dj +
∑

k∈K∩S

∑
j /∈S

djyjk +
∑

j∈R∩S

∑
i/∈S

∑
k∈K\S

dixjik (3.18)

which can be rewritten as (3.10). �

25

Enhancing the subroot multistar inequalities

Proposition 2. For any given set S ⊂ V + the following enhanced subroot multistar inequal-
ity is valid for the CMST:∑
k∈S

∑
j∈S

djyjk +
∑
k/∈S

∑
j∈S

(Q− dk)xkjk +
∑
k/∈S

∑
i/∈S
i6=k

∑
j∈S

(Q− dk − di)xijk −
∑
k/∈S

∑
i∈S

∑
j /∈S

djxijk ≥ d(S)

(3.19)

Proof:

The proof of the validity of these inequalities is similar to that of inequalities (3.10). We
only have to replace inequality (3.13), the flow entering the subroots in S, by the equality:

z0k =
∑
j∈V +

djyjk (3.20)

since the flow entering a subroot k ∈ K should be equal to the demand of k plus the sum of
the demands of the non-subroot vertices assigned to k. The resulting inequality is:

∑
k∈S

∑
j∈V +

djyjk +
∑

i∈R1\S

∑
j∈S

∑
k∈K\S

(Q− dk)xijk +
∑

k∈K\S

∑
i∈R2\S

∑
j∈S

(Q− di − dk)xijk

≥
∑
j∈S

dj +
∑

k∈K∩S

∑
j /∈S

djyjk +
∑

j∈R∩S

∑
i/∈S

∑
k∈K\S

dixjik (3.21)

which after some manipulation leads to:

∑
k∈S

∑
j∈S

djyjk +
∑

i∈R1\S

∑
j∈S

∑
k∈K\S

(Q− dk)xijk +
∑

k∈K\S

∑
i∈R2\S

∑
j∈S

(Q− di − dk)xijk

≥
∑
j∈S

dj +
∑

j∈R∩S

∑
i/∈S

∑
k∈K\S

dixjik (3.22)

that is equivalent to (3.19). �

Note that we can derive inequalities (3.19) from inequalities (3.10) by replacing∑
k∈S

Qykk with
∑
k∈S

∑
j∈V +

djyjk

and since, ∑
j∈V +

djyjk ≤ Qykk

it is clear that (3.19) is stronger than (3.10).

26

3.2.2 s-tree multistar inequalities

Using variables of the subroot formulation, another family of valid inequalities associated
with s-trees can be derived. This family of inequalities arises from the disaggregation of
inequalities (3.10).

Proposition 3. For any given set S ⊂ V + and k ∈ V + \ S, the following s-tree multistar
inequality is valid for the CMST:∑

j∈S
(Q− dk)xkjk +

∑
i/∈S
i6=k

∑
j∈S

(Q− dk − di)xijk −
∑
i∈S

∑
j /∈S

djxijk ≥
∑
j∈S

djyjk (3.23)

Proof: The result follows since for any s-tree rooted in k the overall capacity Q must cover
the demand of k, of all vertices directly connected to k and at a distance 2 or more from k.
These are respectively the terms in the left hand side of inequalities (3.23).

�

3.2.3 Subroot rootcutset inequalities

Using subroot variables a modified version of the rootcutset inequalities (2.16) is obtained
and has the following form:

MT (S) + 1

MT (S)

∑
k∈S

ykk +
MT (S) + 1

MT (S)

∑
k/∈S

∑
i∈B̄

∑
j∈S

xijk S ⊂ V +, |S| ≥ 2 (3.24)

+
∑
k/∈S

∑
i∈B

∑
j∈S

xijk ≥MT (S) + 1

where MT (S) is the minimum number of subroot vertices required to handle the accumu-

lated demand of the vertices in S, B =
{
i /∈ S |

⌈
d(S)+di

Q

⌉
> MT (S)

}
is the set of vertices

outside S that if included in S would require the inclusion of an extra subroot arc, and
B = V + \ {S ∪B}.

3.2.4 Other inequalities

There are also other sets of valid inequalities for the subroot formulation. Here, we present
a list of them, as well as a brief description:

• Minimum number of subroots constraint. Proposed by Elias and Ferguson (1974)
this inequality imposes the minimum number of subroots required to handle the total
demand of all vertices. ∑

k∈V +

ykk ≥

⌈
d(V +)

Q

⌉
(3.25)

• Inequalities to restrict the values of variables yjk, using the upper bound defined by
variables ykk.

yjk ≤ ykk k ∈ V +, j ∈ V +, j 6= k (3.26)

27

• Inequalities to restrict values of variables xijk, using the upper bound defined by vari-
ables yik and yjk. They state that arc (i, j) can only be part of the s-tree s-Tk only if
both vertices are assigned to the s-tree in k.

xijk + xjik ≤ yik (i, j) ∈ A, i ∈ V +, k ∈ V +, i 6= k (3.27)

xijk + xjik ≤ yjk (i, j) ∈ A, j ∈ V +, k ∈ V +, j 6= k (3.28)

• Constraints that relate the values of variables yjk with those of variables associated
with arcs leaving the subroot.

yjk ≤
∑
i∈V +

xkik k ∈ V +, j ∈ V +, j 6= k (3.29)

3.2.5 Solution algorithm for the subroot formulation

Next we propose a cutting plane algorithm to for the CMST. It is an iterative algorithm in
which each iteration considers a subproblem with only a subset of the constraints of formu-
lation (3.1)-(3.8), and solves its linear programming (LP) relaxation. In addition, at each
iteration of the algorithm, separation procedures are applied to identify inequalities of for-
mulation (3.1)-(3.8), which are violated by the current LP solution. All violated inequalities
found are incorporated into the current subproblem. When the separation procedures do
not detect any violated inequalities, then a variable elimination procedure is applied. The
algorithm stops when no cuts are found and no variable is eliminated, or after a certain
number of iterations without improvement. A pseudocode for the algorithm is presented in
Algorithm 1.
The initial subproblem includes constraints (3.2), (3.3), (3.5) and (3.25). Constraints (3.27)
and (3.28) are not considered because they are dominated by s-tree inequalities (3.23). At
each iteration we try to separate violated inequalities of types (3.10), (3.23) and (3.24).

Variables Elimination

The algorithm includes a two variable elimination procedures. The first is based on optimality
criteria, while the second is based on a lower bound (LB), an upper bound (UB) and reduced
costs. The LB is obtained computing a MST with the minimum subroot vertices constraint
(3.25). The UB is obtained by using a heuristic method (UB = h(V,A, d, c)). Let TLB and
TUB denote the trees which produce the bounds LB and UB, respectively.
Using an optimality criterion, variables xijk, i ∈ V, j ∈ V +, k ∈ V + such that cij ≥ c0j
are eliminated. The reason is that, if the arc (i, j) is part of an optimal solution, there is
an alternative optimal solution that does not include this arc (Gouveia and Martins 2000).
In other words, the arc (i, j) can be always replaced by the arc (0, j) without deteriorating
the objective function value, since there is no limit on the number of subtrees. Also based
on a optimality criteron, variables xijk i ∈ V, j ∈ V +, k ∈ V + such that cij ≥ ckj , can
be eliminated for the same reason as in the previous case. This time the rationale is applied
to the arcs associated with the s-tree rooted in k. If in an optimal solution, the arc (i, j)
is part of the s-tree rooted in k, arc (i, j) can be always replaced by the arc (k, j), without
deteriorating the objective function value. Finally using the LB and UB, we can eliminate

28

the variables xijk with i ∈ V, j ∈ V +, k ∈ V + such that LB + cij − cpj > UB, where
p = pLB(j) is the predecessor of vertex j in TLB.

For non-UD instances there is a third elimination procedure which eliminates variables
xijk, i ∈ V, j ∈ V +, k ∈ V + with di + dj >= Q or dk + di + dj >= Q

Auxiliary network for the separation of inequalities

Before presenting the separation procedures for inequalities (3.19), (3.23) and (3.24) we
introduce some additional notation. In each case N(x̄, ȳ) = (V ,A) denotes the auxiliary
graph which is used for the separation procedure. It always contains all the vertices and arcs
of the subgraph induced by the fractional solution (x̄, ȳ). It also always contains two pseudo-
vertices, a source vertex s′ and a sink vertex u′. Depending on the case, N(x̄, ȳ) will contain
additional vertices and arcs. In most cases the separation resorts to finding a minimum cut
between s′ and u′ in the corresponding network.

Separation of subroot multistar inequalities

As stated in Theorem 3 in Letchford and Salazar-González (2006) there is an exact separa-
tion algorithm for inequalities (3.9), based on the solution of a maximum flow problem on an
auxiliary network induced by the fractional solution. Extending this theorem, subroot mul-
tistar inequalities can also be separated exactly in a similar way, using the auxiliary network
N(x̄, ȳ). For this family of inequalities we include in V , the original set of terminals V +,
a source vertex s′, a sink vertex u′, and a set of artificial vertices V j associated with each
vertex j ∈ V +. For a given j, V j contains a copy kj of each subroot k such that ȳjk > 0,
j 6= k. That is, V j = {kj : yjk > 0}. Then, V = V + ∪ {s′, u′} ∪ {V j , j ∈ V +}. A contains
arcs of the following types: (i) arcs (s′, k), with k ∈ V +; (ii) arcs (k, u′) , with k ∈ V +; (iii)
arcs linking two original vertices i, j ∈ V +; (iv) arcs (j, kj) linking original vertices j ∈ V +

with artificial vertices kj ∈ Vj ; and, arcs (kj , i) connecting artificial vertices kj ∈ Vj and
original vertices i ∈ V +(i 6= j).

The weight wij associated with each arc a ∈ A depends on the type of arc. The
weight of the arcs between the source s′ and the original vertices k ∈ V + is given by
ȳkk+

∑
i∈V +

∑
j∈V +

dj x̄ijk+
∑

i∈V +

dkȳki. The weight of the arcs linking original vertices k ∈ V +

with the sink u′ is defined as dk +
∑

j∈V +

dj ȳjk. The weight of the arcs linking two original

vertices i ∈ V +, j ∈ V + is given by (Q − di)x̄kik +
∑

j∈V +

dix̄jik − diȳik. The arcs linking

original vertices j ∈ V + with artificial vertices kj ∈ V j have a weight of Q. Finally, the
weight of the arcs between artificial vertices kj ∈ V j and original vertices i ∈ V + (i 6= j)
is defined as (Q − dk − di)x̄ijk − dj x̄ijk. Figure 3.1 illustrates how the weights of the arcs
(i, j) ∈ A are defined.

On this network we find the minimum cut S ⊆ V with u′ ∈ S and s′ /∈ S. Then, there is
a multistar inequality violated by the fractional solution (x̄, ȳ), if and only if, the capacity
of S, W (S), is smaller than:

L =
∑
i∈V +

di +
∑
k∈V +

∑
i∈V +

∑
j∈V +

dj x̄ijk +
∑
k∈V +

∑
j∈V +

ȳjk

.

29

���� ���� ����

����
����

����

s′ k u′

i

kj

j

-

?

-

Q
Q
Q
Q

Q
Q
Qs�

�
�
�
�
�

�3

-

�
�
�
�

�
�
�>

ȳkk +
∑
i∈V +

∑
j∈V +

dj x̄ijk +
∑
i∈V +

dkȳki dk +
∑
j∈V +

dj ȳjk

(Q− di)x̄kik +
∑
j∈V +

dix̄jik − diȳik

∑
j∈V +

dj x̄ijk

(Q− dk − di)x̄ijk − dj x̄ijk

Q

Figure 3.1: Auxiliary network for the exact separation of subroot multistar inequalities

The subset of vertices S ⊆ V + which produces a violated inequality (3.19) is given by
S = S ∩ V +.

Separation of the s-tree multistar inequalities

The separation for the family of inequalities (3.23) is solved exactly in a similar way to the
subroot multistar ones (3.19). In this case we generate a different network Nk(x̄, ȳ) = (V ,A)
for each vertex k with ȳkk > 0 in the fractional solution (x̄, ȳ). For this family of inequalities
we include in V , the subroot k, the terminals V k = {j : yjk > 0, j ∈ V +}, a source vertex
s′, and a sink vertex u′. Then, V = V k ∪ {k, s′, u′}. A contains arcs of the following types:
(i) arcs (s′, k), where k ∈ V + is a subroot; (ii) arcs (k, j) connecting subroot k and terminal
j ∈ Vk; (iii) arcs (j, u

′) linking terminal vertices j ∈ Vk for some subroot k with the sink u′;
and, (iv) arcs (i, j) linking two original vertices i, j ∈ Vk for some subroot k.

The weight wij associated with each arc (i, j) ∈ A depends on the arc. The weight of
the arcs between the source s′ and subroot k is given by Q. For arcs between k and vertices
j ∈ V k, wkj is defined as (Q − dk)xkjk. For the arcs linking vertices j ∈ V k with the sink
u′ their weight is defined as

∑
j∈V +

dj x̄ijk. The weight of the arcs linking two vertices i ∈ V k,

j ∈ V k is (Q− dk − di)x̄ijk − dj x̄ijk. Figure 3.2 shows how the weights for arcs (i, j) ∈ A on
the auxiliary network N(x̄, ȳ) are defined.

Then for every vertex k with ȳkk > 0 we find the minimum cut S ⊆ V with u′ ∈ S
and s′ /∈ S using the auxiliary graph Nk(x̄, ȳ). Then, there is a s-tree multistar inequality
violated by the fractional solution (x̄, ȳ), if and only if, the capacity of S, W (S), is smaller
than:

L =
∑
j∈S

djyjk

.
In this case, the subset of vertices S ⊆ V + which produces a violated inequality (3.23). is
given by S = S \ u′.

30

���� ���� ����

����
����

s′ k u′

i

j

-

?

-

�
�
�
�

�
�
�3

�
�

�
�
�
�

�>

Q dk +
∑
j∈V +

dj ȳjk

(Q− dk)x̄kik

∑
j∈V +

dj x̄ijk

(Q− dk − di)x̄ijk − dj x̄ijk

Figure 3.2: Auxiliary network for the exact separation of s-tree multistar inequalities

Separation of the subroot rootcutset inequalities

The separation problem for the subroot rootcutset inequalities is solved heuristically using
the network N(x̄, ȳ) = (V ,A) induced by the fractional solution x̄, ȳ. The set of vertices V
includes the terminals V +, a source vertex s′, and a sink vertex u′ (V = V + ∪ {s′, u′}). A
contains arcs of the following types: (i) arcs (s′, k), where k ∈ V + is a subroot; (ii) arcs
(i, j) connecting terminal i ∈ V + with terminal j ∈ V +; and (iii) arcs (j, u′) linking terminal
vertices j ∈ V + with the sink u′. Weights wij are defined using

∑
k

xijk, (i, j) ∈ A. In this

case we apply a vertex shrinking procedure to N(x̄, ȳ), to find violated subroot rootcutset
inequalities. It is important to notice that in any feasible solution of the CMST, every vertex
in V + has only one predecessor (Figure 1) since we assume that the root is the origin. Vertices
are shrunk with their predecessor and the shrinking starts by the leaves (vertices with no
successors) and continues until all non subroot vertices have been shrunk. Every time two
vertices are shrunk, a new artificial vertex containing a list of the shrunk vertices and its
accumulated demand is created. Using the list of vertices and the accumulated demand in
the artificial vertex we check for violated subroot rootcutset inequalities. Since in fractional
solutions is common to find vertices with two or more predecessors, the shrinking is done
with the vertex with greater wij value (Figure 3.3).

0

12
3

5

4

6
5

0.67

0.33

0.33

0.34

0.67

0.33

0.66

0.34

0.33

0

1,2
3

4,5

6

1

0.67

0.67

0.33

0.34

0.33

Figure 3.3: Vertex shrinking for the separation of subroot rootcutset inequalities

31

3.3 Subroot hop indexed formulation.

This new formulation results from the combination of subroot and hop indexed variables
(described in Section 2.1.2) and is designed to solve the UD case. It has two types of
variables, y variables which are the same as in the subroot formulation, and x variables,
which are arc variables that take into account the subroot of the s-tree they belong to and
its depth relative to the root. The new model has an increased number of variables Q·n3+n2

and we will refer to this new formulation as Subroot Hop Indexed Formulation (SRHIF).
The subroot hop indexed variables are defined as follows:

yjk =

{
1, if vertex j belongs to the s-tree rooted at vertex k,
0, otherwise.

xtijk =

{
1, if arc (i, j) is in depth t in the subtree rooted at vertex k,
0, otherwise.

min

Q∑
t=1

∑
k∈V +

∑
(i∈V

∑
j∈V +

cijx
t
ijk (3.30)

s.t.
∑
k∈V +

yjk = 1 j ∈ V + (3.31)

Q∑
t=1

∑
k∈V +

∑
i∈V +

xijk = yjk j, k ∈ V + (3.32)

ykk = x10kk j ∈ V + (3.33)

Q∑
t=1

xtijk +
∑

t=1,..,Q

xtjik ≤ yik (i, j, k) ∈ V +i 6= j, j 6= k (3.34)

Q∑
t=1

xtijk +
∑

t=1,..,Q

xtjik ≤ yjk (i, j, k) ∈ V +i 6= j, j 6= k (3.35)

∑
j∈V +

j 6=k

djyjk ≤ (Q− dk)ykk k ∈ V + (3.36)

Q∑
t=1

∑
k∈V +

∑
i/∈S∪{0}

∑
j∈S

xtijk ≥

⌈
d(S)

Q

⌉
S ⊆ V + (3.37)

∑
k∈V +

ykk ≥

⌈
d(V +)

Q

⌉
(3.38)

yjk ∈ {0, 1} j ∈ V +, k ∈ V + (3.39)

xtijk ∈ {0, 1} a = (i, j) ∈ A, k ∈ V +, t ∈ 1, .., Q (3.40)

With equation (3.31) we assign each vertex to a subroot and with (3.32) we guarantee
that there is one incoming arc for each vertex. Equations (3.33) imposes subroot vertices to

32

be directly connected to the root. Inequalities (3.34) and (3.35) state that an arc can only
be used only if both, its origin and end vertices, belong to the same s-tree. The capacity is
controlled by constraints (3.36) and the connectivity of the solution is guaranteed by (3.37).

For this new formulation we can adapt the different families of inequalities which we have
already presented for the subroot formulation in the previous section. The coefficients of the
multistar (3.19), s-tree multistar (3.23) and rootcutset (3.24) inequalities are improved with
this new formulation. Additionally, a modified version of the GSEh inequalities (2.17) from
Gouveia and Martins (2005) using the subroot hop indexed variables, is shown.

Using subroot hop indexed variables, adapted multistar inequalities derived from (3.19)
are expressed as follows:

∑
k∈S

∑
j∈S

yjk +

Q∑
t≥2

∑
k/∈S

∑
i/∈S

∑
j∈S

(Q− t+ 1)xtijk −
∑
t≥3

∑
k/∈S

∑
i∈S

∑
j /∈S

xtijk ≥ |S| S ⊂ V +, |S| ≥ 2

(3.41)

Using subroot hop indexed variables, s-tree multistar inequalities (3.23) have the follow-
ing expression:

∑
j∈S

(Q− dk)x2kjk +

Q∑
t≥3

∑
i/∈S

∑
j∈S

(Q− t+ 1)xtijk −
∑
i∈S

∑
j /∈S

djx
t
ijk ≥

∑
j∈S

djyjk S ⊂ V +, |S| ≥ 2

(3.42)

Another family of inequalities that can be expressed using the subroot hop indexed
variables are subroot rootcutset inequalities (3.24), that have the following expression:

MT + 1

MT

∑
k∈S

ykk +
MT + 1

MT

Q∑
t≥2

∑
k/∈S

∑
i∈A

∑
j∈S

xtijk S ⊂ V +, |S| ≥ Q (3.43)

+

Q∑
t≥2

∑
k/∈S

∑
i∈B

∑
j∈S

xtijk ≥MT + 1

GSEh inequalities (2.17) can also be rewritten using the subroot hop indexed variables.
The subroot GSEh inequalities have the following expression:∑

t≥h+1

∑
k∈V +

∑
i∈S

∑
j∈S

xtijk ≤ |S| −
⌈

|S|
Q− h+ 1

⌉
S ⊆ V +, |S| ≥ 2, 1 ≤ h ≤ Q− 1 (3.44)

As in the original inequalities (2.17), the right hand side of the equation represents the
maximum number of arcs considering the cardinality of S (|S|) and a fixed depth h. They
are used to enhance the connectivity of the solution by finding GSE inequalities at different
depths h.

If we compare the previous inequalities (3.44) with (2.15), is easy to see that the last ones
are a special case of the GSEh inequalities for h = 1. As the modified subroot rootcutset
inequalities (3.43) are a modified version of (2.15), we can conclude that (3.43) are also
a special case of the GSEh inequalities for h = 1, which have been subjected to a lifting
procedure.

33

Hop ordering inequalities from Gouveia and Martins (2005) can also be expressed in
terms of the subroot hop indexed variables. They have the following form:

∑
k∈V +

∑
m∈V
m 6=j

xtmik ≥
∑
k∈V +

xt+1
ijk (i, j) ∈ V +, t = 1, .., Q− 1 (3.45)

As mentioned in Section 2.2, these inequalities state that an arc (i, j) can be in depth
t+ 1 only if there is an entering arc (m, i) in depth t.

3.3.1 Solution algorithm for the subroot hop indexed formulation

We also propose a cutting plane algorithm for the CMST. It is an iterative algorithm in which
each iteration considers a subproblem with only a a subset of constraints of formulation
(3.30)-(3.40), and solves its linear programming (LP) relaxation. The initial subproblem
includes constraints (3.31), (3.32), (3.36) and (3.38). Constraints (3.34) and (3.35) are not
considered because they are dominated by s-tree inequalities (3.42). In addition, at each
iteration, we try to separate violated inequalities of types (3.41), (3.42), (3.44), (3.43) and
(3.45), violated by the current LP solution. All violated inequalities found are incorporated
to the current subproblem. When the separation procedures do not detect any violated
inequalities then a variable elimination procedure is applied. The algorithm stops when no
cuts are found and no variable is eliminated, or after a certain number of iterations without
improvement. The pseudocode for the algorithm is almost the same as the one for the
subroot formulation, we just need to replace line 17 from Algorithm 1 by:

“Separate violated extended subroot multistar, extended subroot rootcutset, extended
s-tree multistar, extended GSEh and extended hop ordering inequalities”

Variables Elimination

As in the the subroot formulation, the algorithm includes two procedures to reduce the num-
ber of variables for the subroot hop indexed formulation. The procedures are a slight adap-
tation of the ones for the subroot formulation. The UB and LB are calculated as mentioned
in Section 3.2.5. Again, using an optimality criterion, variables xijkt, i ∈ V, j ∈ V +, k ∈
V + , t ∈ {1, ..., Q} such that cij ≥ c0j are eliminated as well as variables xijkt i ∈ V, j ∈
V +, k ∈ V + such that cij ≥ ckj . The reasons for these eliminations follow are the same
ones stated in Section 3.2.5. Additionally, variables xkjkt, k ∈ V, j ∈ V + , t 6= 2 are elim-
inated, since the arcs leaving a subroot can be only at depth 2. the previous case. This time
the rationale is applied to the arcs associated with the s-tree rooted in k. If in an optimal
solution, the arc (i, j) is part of the s-tree rooted in k, arc (i, j) can be always replaced by
the arc (k, j), without deteriorating the objective function value. Finally using the LB and
UB, we can eliminate the variables xijkt with i ∈ V, j ∈ V +, k ∈ V + , t ∈ {1, ..., Q} such
that LB + cij − cpj > UB, where p = pLB(j) is the predecessor of vertex j in TLB.

For non-UD instances there is a third elimination procedure which eliminates variables
xijk, i ∈ V, j ∈ V +, k ∈ V + with di + dj >= Q or dk + di + dj >= Q

The initial subproblem includes constraints (3.31), (3.32), (3.36) and (3.38). At each
iteration we try to separate violated inequalities of types (3.41), (3.42) and (3.43).

34

���� ���� ����

����
����

����

0 k u′

i

kj

j

-

?

-

Q
Q
Q
Q
Q

Q
Qs�

�
�

�
�
�
�3

�
�
�
�
�

�
�>

ȳkk +
∑
j∈V +

ȳjk +
∑
t>=2

∑
i∈V +

∑
j∈V +

x̄t
ijk +

∑
i∈V +

ȳki 1 + ȳkk +
∑
j∈V +

ȳjk +
∑
j∈V +

x̄2kjk

(Q− 2)x̄2kik +
∑
t>=3

∑
j∈V +

x̄tjik − ȳik

∑
t>=3

∑
j∈V +

x̄tijk

∑
t>=3

(Q− t+ 1)x̄tijk −
∑
t

x̄tijk

Q

Figure 3.4: Auxiliary network for the exact separation of extended subroot multistar in-
equalities

The separation procedures for inequalities (3.41) is similar to the one used for (3.19). For
this family we also use the network induced by the fractional solution N(x̄, ȳ) = (V ,A). The
set of vertices V and the set of arcs A are the same as the ones defined for the network to
separate inequalities (3.19). Remember that V = V + ∪ {s′, u′} ∪ {V j , j ∈ V +}. The weight
wij associated to each arc a ∈ A, is defined using the customized graph presented in Figure
3.4. On this network we find the minimum cut S ⊆ V + with u′ ∈ S and s′ /∈ S. Then, there
is a multistar inequality violated by the fractional solution (x̄, ȳ), if and only if, the capacity
of S, W (S), is smaller than:

L =
∑
i∈V

di +
∑
k∈V +

∑
i∈V +

∑
j∈V +

dj x̄ijk +
∑
k∈V +

∑
j∈V +

ȳjk

.

Again, in this case, the subset of vertices S ⊆ V + which produces a violated inequality
(3.41). is given by S = S ∩ V +.

The separation problem for the adapted s-tree multistar inequalities (3.42) is solved
exactly in a similar way to inequalities (3.23). In this case we also generate a network
Nk(x̄, ȳ) = (V ,A) for each vertex k with ȳkk > 0 in the fractional solution (x̄, ȳ). The set
of vertices V and the set of arcs A are the same as the ones used for inequalities (3.23).
Remember that V = Vk + ∪{k, s′, u′}. The weight wij associated with each arc (i, j) ∈ A is
defined using the auxiliary graph presented in Figure 3.5.

For every vertex k with ȳkk > 0, we find the minimum cut S ⊆ V with u′ ∈ S and
s′ /∈ S using the corresponding auxiliary graph Nk(x̄, ȳ). Then, there is a s-tree multistar
inequality violated by the fractional solution (x̄, ȳ), if and only if, the capacity of S, W (S),
is smaller than

L =
∑
j∈S

djyjk

35

���� ���� ����

����
����

s′ k u′

i

j

-

?

-

�
�

�
�
�
�

�3

�
�
�
�

�
�
�>

Q dk +
∑
j∈V +

dj ȳjk

(Q− dk)x̄
2
kik

Q∑
t≥3

∑
j∈V +

dj x̄ijk

Q∑
t≥3

(Q− dk − di)x̄
t
ijk − dj x̄ijk

Figure 3.5: Auxiliary network for the exact separation of extended s-tree multistar inequal-
ities

���� ���� ����

����

0 i u′

j

-

?

-

Z
Z

Z
Z
Z
Z

Z
Z
Z

Z
Z
Z
Z

Z
Z
ZZ~ �

�
�
�
�
�

�
�
�
�

�
�
�
�

�
��>

2− 1

Q− h+ 1

2− 1

Q− h+ 1

1 +
∑

t≥h+1

∑
k∈V +

∑
j∈V +

x̄tjik

∑
t≥h+1

∑
k∈V +

x̄tijk

1 +
∑

t≥h+1

∑
k∈V +

∑
i∈V +

x̄tijk

Figure 3.6: Auxiliary network for the heuristic separation of GSEh inequalities

.
The subset of vertices S ⊆ V + which produces a violated inequality (3.23) is given by
S = S \ u′.

Subroot GSEh inequalities 3.44 can be separated heuristically by using the auxiliary
network Nh(x̄, ȳ) = (V ,A) for every value of h (1 ≤ h < Q). Remember that h represents
the depth of the arcs relative to the root. The set of vertices V includes the terminals V +,
a source vertex s′, and a sink vertex u′ (V = V + ∪ {s′, u′}). A contains arcs of the following
types: (i) arcs (s′, k), where k ∈ V + is a subroot; (ii) arcs (i, j) connecting terminal i ∈ V +

with terminal j ∈ V +; and (iii) arcs (j, u′) linking terminal vertices j ∈ V + with the sink u′.

The weight of the arcs linking the source s′ and a terminal j ∈ V + is wij = 2− 1
Q−h+1 . The

arcs linking terminals i ∈ V + and j ∈ V + have a weight of
∑

t≥h+1

∑
k∈V +

x̄tijk. Finally, the weight

of the arcs between terminals j ∈ V + and and sink s′ is defined as 1+
∑

t≥h+1

∑
k∈V +

∑
j∈V +

x̄tjik.

Figure 3.6 illustrates how the weights of the arcs (i, j) ∈ A are defined.

36

Finally the adapted rootcutset inequalities (3.43) are separated using the network used
for the GSEh inequalities (3.44) when h = 1. This separation heuristic is different to the one
proposed for inequalities (3.24). As this family of inequalities is known to be facet defining
for other formulations, improving the effectiveness of its separation is important. Most of
the methods for separating these inequalities are usually based on shrinking procedures on
the graph induced by a fractional solution. The drawback of such methods is that during
contraction good inequalities can be avoided. However, using the auxiliary network defined
for inequalities (3.44) when h = 1 in practice leads to finding more subsets S violating
inequalities (3.43).

37

Cutting Plane algorithm
Input: V,A, d, c.
Output: Z and X∗

1 Compute upper bound (UB) using a heuristic method;
2 Using UB perform initial variable elimination procedures;
3 Build initial subproblem; Z:=0; STOP = false;
4 Define Z ′as the objective function of the current LP subproblem; while
not STOP do

5 Solve LP;
6 if Z < F(LP) then
7 Update Z:= F (LP);
8 Iterations without improvement:=0;

9 end
10 else
11 Increase the counter for the number of iterations without

improvement;
12 end
13 if Z = UB then
14 STOP := true;
15 end
16 else
17 Apply the corresponding separation procedure to the following

types of inequalities:
18 - subroot multistar (3.19);
19 - subroot rootcutset (3.24);
20 - s-tree multistar inequalities (3.23);
21 if No cuts found then
22 Perform variable elimination procedure;
23 if No variable eliminated then
24 STOP := true;
25 end

26 end

27 end
28 if Iterations with out improvement > M then
29 STOP := true;
30 end

31 end
32 return

Algorithm 1: Pseudo-code of the solution algorithm of subroot formulation.

38

Chapter 4

A BRKGA heuristic for the CMST

In this chapter we present a biased random-key genetic algorithm (BRKGA) for the CMST.
BRKGA is a well known population-based metaheuristic, that has been used for combina-
torial optimization (Gonçalves and Resende 2011). The BRKGA evolves a population of
random vectors that encode solutions of the problem being addressed. As mentioned in Sec-
tion 1.3, finding a suitable representation of solutions for crossover is one of main difficulties
for designing population-based heuristics for the CMST. As it was mentioned, the widely
used predecessor coding may lead to infeasible solutions after crossover. The alternative
encoding presented (Zhou, Cao, Cao, and Meng 2007) is rather complex and feasibility is
only guaranteed for some mutation operations, not for any kind of crossover. Thus, by pre-
senting a BRKGA for the CMST we also face the challenge of finding an efficient solution
representation for crossover.

In the first section of this chapter we give a brief description of the BRKGA. Then we
present alternative coding/decoding representations. We continue with the description of
the improvement phase, which is applied to the solutions after decoding and that has led
to interesting computational results. The chapter ends with the presentation of the overall
BRKGA that we propose.

4.1 Biased random-key genetic algorithms

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA), were
first introduced by Bean (1994) for solving combinatorial optimization problems involving
sequencing. In a RKGA, problem solutions are represented as vectors of randomly generated
real numbers in the interval [0, 1], called chromosomes. A decoder is a deterministic algorithm
that takes as input a chromosome and associates with it a solution to the problem for which
an objective value or fitness can be computed.

A RKGA evolves a population of random-key vectors over a number of iterations, called
generations. The initial population is made up of p vectors of random-keys. Each component
of the solution vector is generated independently at random in the real interval [0, 1]. In
generation g the fitness of each individual is computed by the decoder and then the population
is partitioned into two groups of individuals: a small group of pe elite individuals, i.e. those
with the best fitness values, and the remaining set of p− pe non-elite individuals. To evolve
the population, a new generation of individuals must be produced. All elite individuals of the
population of generation g are copied without modification to the population of generation

39

g + 1. RKGAs implement mutation by introducing mutants into the population. A mutant
is simply a vector of random keys generated in the same way as the elements of the initial
population. At each generation, a small number (pm) of mutants is introduced into the
population. With the pe elite individuals and the pm mutants accounted for, in population
g + 1, p− pe − pm additional individuals need to be produced to complete the p individuals
that make up the new population. This is done by producing p− pe− pm offsprings through
the process of mating or crossover. Bean (1994) selects two parents at random from the
entire population to implement mating in a RKGA.

A biased random-key genetic algorithm, or BRKGAGonçalves and Resende (2011), differs
from a RKGA in the way parents are selected for mating. In a BRKGA, each element is
generated combining one element selected at random from the elite partition in the current
population and one from the non-elite partition. Repetition in the selection of a mate
is allowed and therefore an individual can produce more than one offspring in the same
generation. Parameterized uniform crossover (Spears and DeJong 1991) is used to implement
mating in BRKGAs. Let ρe > 0.5 be the probability that an offspring inherits the vector
component of its elite parent. Let n denote the number of components in the solution vector
of an individual. For i = 1, . . . , n, the i-th component c(i) of the offspring vector c takes on
the value of the i-th component e(i) of the elite parent e with probability ρe and the value
of the i-th component ē(i) of the non-elite parent ē with probability 1− ρe.

When the next population is complete, i.e. when it has p individuals, fitness values are
computed by the decoder for all of the newly created random-key vectors and the population
is partitioned into elite and non-elite individuals to start a new generation.

A BRKGA explores the solution space of the combinatorial optimization problem indi-
rectly by searching over the continuous n-dimensional hypercube, using the decoder to map
points in the hypercube to solutions in the solution space of the combinatorial optimization
problem where the fitness is evaluated. The termination criteria for the BRKGA can be
defined either in terms of total iterations, iterations without improvement, time or a set
objective function. Depending on the problem one of these criteria is chosen.

4.2 Encoding and decoding

As mentioned before, encoding and decoding solutions is one of the most important issues
when using genetic algorithms for the CMST. For the algorithm we propose, CMST solutions
are encoded as vectors X of n random keys, where n = |V | − 1. The i-th random key
corresponds to the i-th terminal vertex. A decoder for a BRKGA for the CMST takes as
input a vector X of n random keys and outputs a capacitated spanning tree and its cost.

For our algorithm we have developed three different decoding procedures. Two of them
always produce feasible solutions after crossover, whereas one does not. The difference
between the decoders lies in how the vectors X of random keys are interpreted. For the first
two decoders, vectors X are used to sort the vertices and then an assignment procedure is
performed. For the third decoder the i-th random key in vector X represents the predecessor
of vertex i in the solution rooted tree.

For all three decoders we use a modified graph we use the undirected graph GU =
(V,E), where each arc a = (i, j) ∈ A of the original graph G = (V,A) is substituted by its
corresponding undirected edge e = {i, j}. Each decoder has an assignment phase and an
improvement phase. The first decoder, called direct assignment, does not use arc costs,

40

whereas the second one , called cost-based assignment, does. The predecessor decoder,
called predecessor assignment, makes use of predecessor lists that are previously defined.
In the improvement phase, neighborhoods of solutions are explored for improvements. Next
the three decoders are described as well as the improvement phase.

4.2.1 Direct assignment decoder

The first decoding procedure described in this section takes as input the random-key vector
X , the graph structure GU = (V,E) and demands d, and returns an n-dimensional integer
assignment vector a, where ai = k indicates that vertex i is assigned to the s-tree s-Tk and
ak = k indicates that vertex k is a subroot. We remind the reader, that a subtree Ti, is a
subgraph of a tree rooted at vertex i, whereas an s-tree s-Tk, is a subtree rooted at subroot
k. The algorithm uses a vector, s, to keep the residual capacities of the partial s-trees; it
is such that sk = q indicates that the s-tree s-Tk can still accommodate q units of demand
before its Q units are fully used.

In this decoder vertices are considered, one at a time, in increasing order of their cor-
responding key. For each vertex i, the algorithm first tries to fit it to an already existing
partial s-tree with enough residual capacity. If no such s-tree exists, the algorithm sets a
new subroot k, and initializes a new s-tree s-Tk covering only k and i. Algorithm 2 shows
the pseudo-code for direct assignment.

In line 1, the assignment vector a and the available capacity vector s are initialized. The
procedure makes use of lists VERTICES, CANDIDATE, and SUBROOT. List VERTICES is used
to scan the vertices in increasing order of the random keys in vector X . It is initialized
in line 2. List CANDIDATE determines the order in which vertices are considered to become
subroot vertices. It is initialized in line 3 and is also ordered according to the random keys
in vector X . List SUBROOT stores the subroot vertices with nonzero available capacity. It is
initialized empty in line 4.

The loop from line 6 to line 34 scans each vertex and assigns it to an appropriate s-tree.
Line 5 selects the first vertex in VERTICES as the vertex i to be assigned. The loop from
line 8 to line 15 attempts to assign i to an already created s-tree if it is possible. To do this
it traverses the list SUBROOT, in the order subroots have been created, seeking an existing
subroot with available capacity. If vertex k is the subroot of an s-tree with enough capacity
to accommodate i, i.e. sk ≥ di, then i is assigned to k in line 10 and it is removed from the
list of candidate subroot vertices (CANDIDATE) in line 12. The capacity of s-Tk is updated
in line 11. If i was successfully assigned, the while loop 8–15 is broken because the second
condition in line 8 is no longer met. Otherwise, the next available subroot is assigned to k
in line 14 and the loop restarts.

Line 16 assigns to k, the first candidate subroot in list CANDIDATE. If there is no available
s-tree with sufficient residual capacity to accommodate vertex i, then i is assigned to a new
subroot in lines 17 to 32. Loop 17 to 32 is repeated until i is assigned. In case i and k are
identical, a new subroot is produced in line 19. If the s-tree s-Tk has enough capacity to
accommodate vertices i and k, i.e. sk ≥ di + dk, then k is made a subroot and i is assigned
to s-tree s-Tk in lines 24 to 29. That is, k is set as a subroot in line 24, and inserted at
the end of list SUBROOT in line 27. It is also removed from lists VERTICES and CANDIDATE in
line 28. The assignment vector a is updated in line 25. In line 29 i is also removed from list
CANDIDATE. In line 26 the available capacity of the s-tree s-Tk is updated. If an assignment
of i to k is made, then the while loop 17 to 32 is broken since the second condition in line 17

41

is no longer met. Otherwise, in line 31 the next candidate vertex is considered to become a
subroot.

procedure direct assignment

Input: X , V, E,Q, d, c
Output: Assignment array a

1 ai ← 0, si ← Q, for i = 1, . . . , n;
2 Initialize VERTICES with vertices 1, . . . , n sorted in increasing order of X ;
3 Initialize CANDIDATE with vertices 1, . . . , n sorted in increasing order of X ;
4 Initialize empty list SUBROOT;
5 i← FIRST (VERTICES);
6 while i 6= nil do

/* Try to assign i to an existing subroot */

7 k ← FIRST (SUBROOT);
8 while k 6= nil and ai == 0 do
9 if sk ≥ di then

10 ai ← k;
11 sk ← sk − wi;
12 Remove i from CANDIDATE list;

13 end
14 k ← NEXT (SUBROOT);

15 end
16 k ← FIRST (CANDIDATE);
17 while ai == 0 do

/* Set a new subroot k and assign i to it */

18 if k == i then
19 ai ← i;
20 si ← Q− di;
21 Add i to end of SUBROOT list;
22 Remove i from CANDIDATE and VERTICES lists;

23 else if sk ≥ di + dk then
24 ak ← k;
25 ai ← k;
26 sk ← Q− dk − di;
27 Add k to end of SUBROOT list;
28 Remove k from CANDIDATE and VERTICES lists;
29 Remove i from CANDIDATE list;

30 end
31 k ← NEXT (CANDIDATE);

32 end
33 i← NEXT (VERTICES);

34 end
35 return

Algorithm 2: Pseudo-code for direct assignment decoder.

If doubly linked lists are used for implementing VERTICES, CANDIDATE, and SUBROOT,
assuming all list insertion and deletion operations can be done in O(1) time, the runtime
complexity of assignment-1 is O(n2). The efficiency of this algorithm is improved by
eliminating from list SUBROOT the subroots whose residual capacity becomes smaller than
the smallest demand of all the vertices, after lines 11, 20, and 26.

42

4.2.2 Cost-based assignment decoder

The direct assignment decoder described above focuses mostly on the capacity constraints,
and makes no use of arc costs for making assignments. We now describe an alternative
procedure, cost-based assignment, which does. The central idea in this decoder is to scan
the vertices in increasing order of the random keys in vector X and try to assign the scanned
vertex i to its closest s-tree among the already existing ones with enough available capacity.
Here, the distance from a vertex i to an s-tree s-Tk is defined by the least cij value for
j ∈ V (s-Tk).

procedure cost-based assignment

Input: X , V, E,Q, d, c
Output: Assignment array a

1 ai ← 0, si ← Q, for i = 1, . . . , n;
2 Initialize list VERTICES with vertices 1, . . . , n in increasing order of X ;
3 Initialize empty list ASSIGNED;
4 i← FIRST (VERTICES);
5 while i 6= nil do

/* Try to assign i to an existing subtree */

6 Sort vertices j in ASSIGNED in increasing order of cij ;
7 j ← FIRST (ASSIGNED);
8 while j 6= nil and ai == 0 do
9 k ← aj ;

10 if sk ≥ di then
11 ai ← k;
12 sk ← sk − dk;
13 Remove i from CANDIDATE list;
14 Add i to ASSIGNED list;

15 end
16 j ← NEXT(ASSIGNED);

17 end
18 if ai == 0 then

/* Set i as a new subroot */

19 ai ← i;
20 si ← si − di;
21 Add i to ASSIGNED list;

22 end
23 i← NEXT(VERTICES);

24 end
25 return

Algorithm 3: Pseudo-code for cost-based assignment decoder.

Algorithm 3 gives the pseudo-code of assignment-2, the cost-based assignment pro-
cedure. In line 1, the assignment vector a and available capacity vector s are initialized.

43

Vectors a and s are similar to those used in assignment-1. The lists are initialized in lines 2
and 3.

The vertices to be assigned are scanned in the loop in lines 5 to 24. At each iteration, i
denotes the vertex to be assigned (initialized in line 4). In line 7 an ordered list is built using
the vertices already assigned which are stored in list ASSIGNED. The loop in lines 9 to 16
assigns vertex i to the s-tree s-Tk containing the closest vertex j. In line 11 the available
capacity at s-Tk is checked and in case sk ≥ di, vertex i is assigned to s-tree s-Tk (line 12).
sk is updated in line 13 and i is removed from list VERTICES and included in list ASSIGNED
in lines 13 and 14. If there is no s-tree with available capacity to accommodate i, then i is
set as a new subroot and included in list ASSIGNED (lines 20 to 23).

Sorting the list of already assigned vertices according to their distance to the vertex being
currently scanned (line 6) is computationally expensive. For this reason, in our implemen-
tation of this algorithm, one heap is kept for each vertex, containing the distances from that
vertex to all already assigned vertices. However, for clarity, we present here the basic version
of the algorithm, since it allows a simpler comparison with Algorithm 2.

4.2.3 Predecessor assignment decoder

As in the previously described assignment procedures, the predecessor assignment de-
coder takes as input a random-key vector X , the graph structure GU = (V,E) and demands
d, and returns an n-dimensional integer assignment vector a and predecessor vector p. In
this procedure the central idea is to use the key to define the predecessor vertex of each
terminal. For a given a tree T , the predecessor pj of a terminal j ∈ V + is the vertex i ∈ V ,
if the edge (i, j) is part of T ((i, j) ∈ T) and i is in the only path from the root to j.

This decoder has a preprocessing phase in which the possible predecessors of each vertex
j ∈ V + are stored in a predecessor list for j (lj). This list does not consider the vertices
which have a cost greater than or equal to the cost of connecting vertex j to the root (i.e.
lj = {i : cij < c0j}). Then we divide the interval [0, 1] into |lj | small subintervals, each of
which is assigned to a member of the list lj .

Algorithm 4 shows the pseudo-code for the predecessor assignment. In line 1, the
assignment vector a is initialized and in line 2 the predecessor pj for each terminal j is
defined using the list lj and the random-key vector X (pj = f(lj ,Xj)). Predecessor vector
p is used to build the tree T (line 3), which might be infeasible by two causes. The first is
that a given s-tree s-Tk with pk = 0, has an accumulated demand that violates the capacity
constraint (d(s-Tk) > Q). The second one is that a given subtree Ti violates the connectivity
constraint (no connection to the root and containing a loop). In both cases, a feasibility
recovery phase “R()” is applied to make s-Tk or Ti a feasible s-tree or subtree respectively.
In the loop in lines 4 to 7 we check vertex subtree Ti for infeasibility. If necessary, feasibility
of Ti is recovered in line 6, and in line 7 we update tree T ′ using Ti. Finally assignment list
a and predecessor vector p are defined using T ′ in line 8 to 9.

4.2.4 Feasibility recovery procedure for the predecessor assignment de-
coder

Once the decoding has ended for the predecessor assignment, we check every subtree
Tj for possible feasibility violations. Infeasible subtrees Tj either violate the connectivity

44

procedure Predecessor-assignment

Input: X , V, E,Q,w, c
Output: Assignment array a,predecessor vector p

1 aj ← 0, for j = 1, . . . , n;
2 pj ← f(lj ,Xj) for j = 1, . . . , n;
3 Build T using predecessor vector p ;
4 for i = 1, . . . , n do
5 if (Ti) is infeasible then
6 Execute feasibility recovery procedure R(Ti);
7 end
8 T ′ ← Ti;

9 end
10 a← T ′;
11 p← T ′;
12 return

Algorithm 4: Pseudo-code for predecessor assignment decoder.

constraint, the capacity constraint, or both. First we check if Tj violates the connectivity
constraint. If so, we connect Tj to the root and Tj becomes the s-tree s-Tj . Then we check
if s-Tj violates the capacity constraint (d(s-Tj) > Q). If so, we remove subtrees Ti from s-Tj

(Ti ⊂ s-Tj ,d(Ti) ≤ Q) until d(s-Tj) ≤ Q. Every removed subtree Ti is either connected to
the root or to the closest s-tree s-Tk (k 6= j) with enough capacity to accommodate Ti. The
distance of Ti to an s-tree s-Tk, is defined as the minimum distance between any vertex of
Ti and any vertex of s− Tk. That is: dist(Ti, s-Tk) = min{clm | l ∈ V (s− Tk),m ∈ V (Ti)}.
We connect Ti to s-Tk, if dist(Ti, s-Tk) ≤ c0i and d(s-Tk)+d(Ti) ≤ Q, or to the root otherwise.

Algorithm 5 shows the pseudocode for this procedure. In line 1 we check if the subtree
Tj is an s-tree. If not we connect Tj to the root in line 2. Then if the s-tree s-Tj violates
the capacity constraint, the algorithm enters the loop in lines 4 to 15 to make s-Tj become
feasible according to capacity. Inside the loop, in line 5, we find a subtree Ti and an s-tree
s-Tk with the minimum dist(Ti, s-Tk) (i ∈ V (s-Tj), k 6= j, k ∈ V +). If dist(Ti, s-Tk) ≤ c0i
(line 8) we connect Ti to s-Tk (line 9) and update the accumulated demand of s-Tk (line 10).
If not, we connect Ti to the root in line 13.

4.3 Improvement phase

Since decoding is a crucial part of the BRKGA algorithm, some tests were carried out to
evaluate the performance of the three different decoders. The complete results and other
important details will be presented in Chapter 5. As it will become evident from the nu-
merical results, all decoders required an improvement phase to enhance their performance.
Therefore, after decoding, changes are introduced into the solution to look for improvements.
The proposed improvement phase considers the use of reoptimization and local search. Since
the set of vertices associated with a given s-tree s-Tk satisfies the capacity constraint we can

45

procedure Feasibility Recovery R()

Input: Infeasible subtree Tj , V,E,Q, d, c, T
Output: Feasible subtree Tj

1 if pj 6= 0 then
2 pj ← 0;
3 end
4 while d(Tj) > Q do
5 Find Ti and s-Tk such that argmin{dist(Ti, s-

Tk) : Ti ⊂ Tj , k ∈ V +subrootwithd(s-Tk) + d(Ti) ≤ Q)};
6 Remove Ti from Tj ;
7 d(Tj) := d(Tj)− d(Ti) ;
8 if dist(Ti, s-Tk) ≤ c0i then
9 Add Ti to s-Tk ;

10 d(s-Tk) := d(s-Tk) + d(Ti) ;

11 end
12 else
13 pi ← 0;
14 end

15 end
16 return

Algorithm 5: Pseudo-code for feasibility recovery procedure.

reoptimize every s-tree s-Tk computing the MST in V (s-Tk) ∪ {0}. This reoptimization will
be used in two different ways during the improvement phase. We can also modify the s-trees
applying local search within different neighborhoods. In particular, the improvement phase
consists of two stages: in the first one each s-tree is reoptimized whereas the second stage is
a local search that explores several neighborhoods.

4.3.1 Minimum spanning tree stage (MST-stage)

As mentioned, in this stage every s-tree s-Tk in the solution is subject to a reoptimization
process. In the output from the decoding phase, the array a = [a1, . . . , an], vertices are
partitioned in subsets, which are used to build s-trees. For each s-tree s-Tk, the MST-stage
computes a MST. All arcs connecting the root 0 to each subroot are added to the minimum
cost spanning trees to jointly produce the capacitated minimum spanning tree. The cost of
the tree is the sum of the costs of the s-trees plus the cost of the arcs connecting the subroot
vertices to the root. To reoptimize an s-tree we use the set of vertices V (s-Tk) associated
with the s-tree s-Tk plus the root 0. Then, using Kruskal’s algorithm we compute the MST
for V (s-Tk) ∪ {0}, which gives as result an s-tree with its associated cost plus the cost of
connecting it to the root. Typically Kruskal’s algorithm uses a list of the arcs which is sorted
by increasing values of their costs. To avoid such sorting we created a data structure using
linked lists which reduces significantly the time for computing the MST for each s-tree.

46

Figure 4.1: Neighborhood N1 , exchange of vertices.

4.3.2 Local search stage

Once the solution has been reoptimized, a local search stage is used to improve it. In the
local search phase neighborhoods are defined as well as exploration policies. In this section
we describe the chosen neighborhoods and how they are explored.
We have considered four different neighborhoods. Every neighborhood is explored using a
first improvement policy. The first proposed neighborhood N1, involves the swap of two
vertices i and j. Vertices i and j involved in the swapping, belong to different s-trees, s-
Tk and s-Tm respectively. Swaps are only allowed if capacity restrictions are not violated
d(s-Tk) − di + dj ≤ Q and d(s-Tm) + di − dj ≤ Q. A second neighborhood N2, is a move
neighborhood, where a vertex i assigned to s-tree s-Tk is reassigned to another s-tree, say
s-Tm. Such a move can only be made if s-Tm has sufficient available capacity to accommo-
date vertex i (d(s-Tm) + di ≤ Q).

The third neighborhood N3 also corresponds to a move. In this case instead of reassign-
ing a vertex i, we reassign the subtree Ti with origin in the non-subroot vertex i which is
part of the s-tree s-Tk, to another s-tree s-Tm. The move is done only when the s-tree s-Tm

has enough capacity to include the subtree Ti without violating capacity constraints (d(s-
Tm)+d(Ti) ≤ Q). Finally the fourth neighborhood considers the merging of two s-trees, s-Tk

Figure 4.2: Neighborhood N2 , vertex reassignment.

47

Figure 4.3: Neighborhood N3 , sub-tree reassignment.

and s-Tm, into one s-tree s-Tr. The merging is allowed when the sum of the accumulated
demand of both s-trees does not exceeds capacity parameter Q (d(s-Tk)+d(s-Tm) ≤ Q). For
every move in any neighborhood, the residual capacity (array s) used during the assignment
phase and accumulated demands, are updated for the vertices and subtrees involved in the
move. Figures 4.1- 4.4 allow to visualize neighborhoods N1−N4 described above.

A variable neighborhood search (VNS) (Mladenović and Hansen 1997) strategy was used
to search for improved solutions in the different proposed neighborhoods. VNS is a meta-
heuristic which systematically changes neighborhoods, to avoid local optima. We used the
most simple version of VNS in which neighborhoods are explored sequentially in a given
order. The neighborhoods are explored in the order (N1, N2, N3, N4) until no further im-
provement is reached in any neighborhood. The pseudocode for VNS is shown in Algorithm
6. The VNS receives the solution tree T and returns the improved solution tree. In line 1 the
algorithm computes the tree cost (Z) and in line 2 an the auxiliary variable Z ′ is initialized.
Then the algorithm enters the loop in lines 3 to 9 where the 4 neighborhoods are explored
sequentially. After exploring each neighborhood, the cost (Z) of the tree is updated. The
algorithm leaves the loop when the solution cost Z is not improved.

Figure 4.4: Neighborhood N4 , s-tree merging.

48

procedure VNS

Input: Solution tree T , V,E,Q, d, c
Output: Updated solution tree T

1 Compute solution value Z using solution tree T
2 end=false;
3 while end==false do
4 Explore Neighborhood N1;
5 Explore Neighborhood N2;
6 Explore Neighborhood N3;
7 Explore Neighborhood N4;
8 if T has not been updated then
9 end=true;

10 end

11 end
12 return

Algorithm 6: Pseudocode for Variable Neighborhood search

4.3.3 Impact of MST computations

To explore each of the neighborhoods we have presented above, we propose three different
strategies. In the first one we apply a MST-stage if no further improvement is found after
exploring a neighborhood. If the solution is improved, we continue exploring the neighbor-
hood, if not we jump to the next neighborhood. We will refer to this strategy as MST-at-end.
In the second strategy that we will call MST-at-change, when an improvement is found a
MST-stage is executed for the s-trees involved in such improvement. This is done in all
explored neighborhoods. In the third strategy every time a movement is considered, we run
a MST-stage for the subtrees involved in the movement. In other words, to evaluate each
movement we tentatively make the movement and then the resulting subtrees are reopti-
mized. If the movement improves the solution cost, the movement is kept, otherwise it is
discarded. As this strategy requires the computation of two MSTs to evaluate every move-
ment, it is much more time consuming than the two other strategies. We refer to this third
strategy as All-MST.

4.3.4 Strategic oscillation

Strategic oscillation has shown to be helpful to improve the results of heuristic methods,
so we have used it in our BRKGA algorithm. Strategic oscillation allows the local search
procedure to alternatively cross the border between the feasible and unfeasible regions. The
idea is to use strategic oscillation to prevent the local search stage to get trapped at a local
optima. In our case we propose the relaxation of capacity constraints using a penalty term
and a maximum value of capacity violation MaxQ. The maximum violation allowed is set
using the average weight of the vertices d(V +)/n and is computed using the following formula
MaxQ = 1.1d(V +)/n. Initially, for updating the penalty term, we only considered a descent
policy (Descent-SO), but later we also considered two other oscillation strategies. All three
are explained next.

49

TheDescent-SO strategy, uses a fixed starting value for the penalty term which is updated
until it reaches the zero value. After reaching this value, no further update is done to the
penalty term. The second approach, Descent-ascent-SO, uses an upper and a lower limit
for the penalty term, which decreases when the upper limit is reached and increases when
it is equal to the lower limit. The initial value for the penalty is the upper limit. The
third approach, Alternate-SO, starts as Descent-SO but when it reaches the zero value, the
penalty term is set to either +α or −α. The value of α is close to zero, and the idea of
having a negative value is to encourage the solutions to move in the infeasible area to avoid
local optima.

4.3.5 Neighborhood reduction

As mentioned previously, strategy All-MST is more time consuming than the other two. For
this reason we applied a neighborhood reduction for this strategy. To apply this reduction we
made some tests and observed the time spent by the algorithm in each of the neighborhoods.
We found out that the most time consuming ones were N1 and N2. For those two neighbor-
hoods we implemented a neighborhood reduction policy considering two factors: Distance
between vertices, and the number of times that the movement was successful in improving
the solution in the history of the search. If the distance between a pair of vertices (i, j)
multiplied by a certain factor β, is smaller than or equal to the sum of the distances between
such vertices and the root (βcij ≤ c0i + c0j), then the move (interchange or reassignment)
is explored. Otherwise the move is not considered for exploration. The complete results are
presented in the next chapter.

4.4 BRKGA algorithm for the CMST

A framework designed for the BRKGA with the capability of handling parallel populations
was used with the 2-phase predecessor decoder (see Section 4.2.3). In the first phase keys
are decoded and the resulting solutions are then subjected to an improvement phase. The
improvement phase has two stages, in the first one each s-tree is reoptimized computing
its MST (see 4.3.1). In the second one local search is applied using the VNS of Algorithm
6 with the All-MST exploration strategy of Section 4.3.3, the Neighborhood Reduction of
Section 4.3.5 and the Strategic Oscillation Alternate-SO of section 4.3.4 (see Algorithm 7).
For each population a set of elite solutions is kept. After a certain number of generations a
exchange of these elite sets is made among the different populations. After initial testing a
set of parameters was chosen to run the algorithm in the different sets of test instances.

After testing different combinations of the features and options proposed in the previous
sections for the decoder and improvement phase, we arrived to a final version for the algo-
rithm. Based on preliminary computational testing we selected the following alternatives.
For the decoding phase we chose the predecessor assignment decoder. In the improvement
phase we apply VNS, exhaustive exploring strategies (All-MST), neighborhood reduction
and strategic oscillation. The pseudocode is presented in Algorithm 7 and details are given
next.

50

Algorithm BRKGACMST

Input: V,E, c, d,Q,H,L, ItEx, StopCriterion
Output: Best solution tree T ∗, Z∗

1 Z∗ :=∞; it := 0;
2 Generate first generation of L populations containing M random keys;
3 while StopCriterion == FALSE do
4 it := it+ 1;
5 for l = 1, . . . , L do
6 for h = 1, . . . , H do
7 Obtain tree T using predecessor decoder on key h;
8 Apply MST-stage to T ;
9 Apply VNS search to T ;

10 Compute Zh using T ;
11 if Zh < Z∗ then
12 Z∗ := Zh; T

∗ ← T ;
13 end
14 Recode key h using T ;

15 end
16 Sort elements of population l according to their fitness value Zh

17 Execute Crossover;
18 Add pm mutants to population l

19 end
20 if it mod ItEx == 0 then
21 Interchange elite solutions between populations;
22 end

23 end
24 return

Algorithm 7: Pseudocode for the final algorithm

The input of the algorithm includes the set of vertices V , the set of edges E, the cost
matrix c, the demand vector d, the capacity parameter Q, the number of populations L, the
number of elements in each population H, the number of iterations between interchange of
elite elements of populations ItEX, and the stopping rule StopCriterion.

First, the algorithm introduces L populations, each one with H random keys (line 2),
which are part of the first generation. Each random key h of each population l is decoded
to obtain a solution T for the CMST (line 7). If T is infeasible, it is modified to make it
feasible and then is subject of an improvement phase that stops when it is not possible to
improve it. In the improvement phase, T is first reoptimized applying to it a MST-stage
(line 8). Then it enters into the local search stage (Section 4.3.2), where VNS is used to
search sequentially in neighborhoods, N1, N2, N3 and N4, which are explored using the
All-MST strategy (line 9). For N1 and N2 a neighborhood reduction policy is additionally
used in order to reduce the computational time (Section 4.3.3). At a certain point, when is
difficult to improve the best solution, strategic oscillation is use within the VNS search. The
strategic oscillation is performed using the alternate-SO policy (Section 4.3.4)

51

When no further improvement can be found, the solution value Zh is computed using T
(line 10), which is recoded and stored in key h (line 15). If Zh is smaller than the current best
solution value Z∗, the current best solution T ∗ is updated (line 12). When all the keys of the
current population have been decoded, then it is divided into two groups; the elite and the
regular population. To produce the next generation, children are created after the crossover
of one elite parent with a non elite parent (line 17). Additionally a group of mutants (new
random keys) is included in the new generation (line 18). The resulting population is then
subjected to decoding, improvement and crossover to produce the next generation. Every
certain number of iterations ItEx, the elite solutions of the L populations are interchanged
(line 21). The process is repeated until a stop criterion is reached. In this algorithm the stop
criterion is the number of generations passes without improving the overall best solution.

This final version was used to solve with all the test instances (explained in Chapter 5)
and the results are presented in Section 5.2.

52

Chapter 5

Numerical Experience

In the two previous chapters three solution methods for the CMST were described. The
first two are cutting plane algorithms based in two different formulations, the third one is a
heuristic procedure that obtains upper bounds for the problem. In this chapter we will start
by introducing the different sets of test instances that we have used for the CMST, to continue
describing how the BRKGA heuristic algorithm was developed and the results obtained. In
the last part, we present and analyze the results for the cutting plane algorithms.

5.1 Benchmark instances

In the experiments with the proposed algorithms we use different sets of well-known CMST
benchmark instances available at http://people.brunel.ac.uk/~mastjjb/jeb/jeb.html.
These test instances are divided into two main classes according to the type of demand at
the vertices. The first class contains test instances with unitary demands (UD), whereas
instances in the second class have non-unitary demands (non-UD). Instances labeled as tc,
te and td are in the first class, while instances of type cm are in the second one.
Instances in sets tc and te have Euclidean distances (E). The difference between them is
that in tc instances the root is located at the center of a rectangular region, whereas in te
instances the root is located at a corner of a rectangular region. Instances in set td have
Euclidean distances for edges connecting terminals, i.e. (i, j) with i ∈ V + and j ∈ V +, and
non-Euclidean (non-E) distances for edges connecting the root with terminals, i.e. (0, j)
with j ∈ V +. The root of these instances is located at the center of a rectangular region.
The number of vertices in instances of sets tc and te ranges in {80, 120, 160}, whereas all
instances in td have 80 vertices. Instances in tc, td and te have capacity valuesQ ∈ {5, 10, 20}.
Each of these sets contains 5 instances for each combination (n,Q) with n ∈ {80, 120} and
Q ∈ {5, 10, 20}, whereas they only contain one instance for each combination (n,Q) with
n = 160 and Q ∈ {5, 10, 20}. As opposite to the other groups, the number of vertices of the
test instances in tc does not include the root (i.e. |V | = 81 and |V +| = 80).
Set cm contains instances with non-Euclidean distances (i.e., triangle inequality does not hold
in many cases) and a number of vertices n ∈ {50, 100, 200}. The capacity values for these
instances are Q ∈ {200, 400, 800}. Demands are non-unitary with values ranging from 1 to
100. There are five instances for each combination (n,Q). A summary of the characteristics
of the 126 test instances can be found in Table 5.1.

53

Table 5.1: Summary of instances characteristics

Set n type of type of location Q number of
demand distances of root instances

tc80 81 UD E Center 5 5
10 5
20 5

tc120 121 UD E Center 5 5
10 5
20 5

tc160 161 UD E Center 5 1
10 1
20 1

te80 80 UD E Corner 5 5
10 5
20 5

te120 120 UD E Corner 5 5
10 5
20 5

te160 160 UD E Corner 5 1
10 1
20 1

td80 80 UD non-E Center 5 5
10 5
20 5

cm50 50 non-UD non- E Center 200 5
400 5
800 5

cm100 100 non-UD non- E Center 200 5
400 5
800 5

cm200 200 non-UD non- E Center 200 5
400 5
800 5

5.2 BRKGA experimental results

As explained in Chapter 4, several alternatives were considered at each stage of the design
of the BRKGA algorithm, and choices were made according to preliminary computational
experiments. The first stage comprised the development of three different decoders, while in
the second one an improvement phase was developed. In the third stage, we incorporated
two additional features to the improvement phase; strategic oscillation and neighborhood
reduction. During this development, several tests were made. In this section we present the
results of such tests as well as their analysis. To perform such tests, we chose two sets of
instances from the benchmarks described in Section 5.1. The first one was group tc80 with
capacity Q = 5. The second group selected was cm50 with Q = 200. As mentioned before,
the first group complies with the triangular inequality and has unitary demands, while the
second does not satisfy the triangular inequality and has non-unitary demands.

Since solution encoding/decoding is a vital part of the BRKGA, we decided to test the
performance of three different decoders. In genetic algorithms it is important to obtain
a balance between the decoder efficiency (CPU time spent) and the genetic information

54

Table 5.2: Decoders comparison

Direct Cost Predecessor
Assignment Assignment Assignment

Group vertices Avg gap CPU Avg gap CPU Avg gap CPU

tc80 80 68.50 0.50 8.78 2.13 9.38 1.59
cm50 50 26.33 0.61 3.50 2.52 5.27 2.26

transmission. Table 5.2 compares the results obtained with three basic implementations of
BRKGA, using the three decoders presented in Chapter 4, for the selected sets of instances.
In particular, we have compared the direct assignment decoder of Section 4.2.1 (see Algorithm
2), the cost-based assignment decoder of Section 4.2.2 (see Algorithm 3), and the predecessor
assignment decoder of Section 4.2.3 (see Algorithm 4).
In each case, column Avg gap refers to the average percentage deviation from the optimal
or the best known solution. Column CPU refers to the average CPU time in seconds. The
entries in each case are the averages over the five instances in the corresponding group after
3 runs.

In general terms, the presented results indicate that cost assignment and predecessor
decoders perform better than the direct assignment decoder. The performance of all the
decoders was far from the best known results, demanding the implementation of a improve-
ment phase to enhance the performance of all of them. While the predecessor decoder may
be more demanding than the cost assignment one in terms of CPU time, it has the advantage
of transmitting better the genetic information, since similar keys yield similar solutions. On
the other hand, the cost and direct assignment decoders perform faster but have the disad-
vantage that genetic information is not very well transmitted, since small changes in the key
may modify substantially the solution.

Since the addition of an improvement phase in the algorithm had potential for improving
any of the tested decoders, we decided to test them all with the improvement phase. In our
experiments we have explored the neighborhoods presented in Section 4.3.2, using VNS as
indicated in Algorithm 6. These neighborhoods are: vertices exchange (N1), vertex reas-
signment (N2), subtree reassignment (N3) and s-tree merging (N4). The results obtained
with the addition of the improvement phase are summarized in Table 5.3 following the same
structure as the previous table. These results show that the gap (average of all five instances
in the group after 3 runs) is significantly reduced for all the decoders using the improvement
phase. The smallest gaps are now obtained when using the predecessor assignment decoder.
We attribute this fact to the ability of the predecessor assignment decoder of transmitting
genetic information to the offspring. As can be seen, the inclusion of the improvement phase
to all decoders has increased the computational requirements to solve the instances, giving
raise to similar CPU times for the three decoders.

The best results are obtained by the predecessor decoder and the average CPU time is
quite similar to all of them. Therefore, we decided to discard the two first decoders and con-
tinue the enhancement of the local search procedure using only the predecessor assignment
decoder.

55

Table 5.3: Decoders comparison with improvement phase

Direct Cost Predecessor
Assignment Assignment Assignment

Group vertices Avg gap CPU Avg gap CPU Avg gap CPU

tc80 80 5.49 12.82 3.52 17.96 0.29 17.82
cm50 50 2.90 14.90 1.33 16.54 0.53 12.10

Table 5.4: Results with local search using different neighborhood exploring strategies

MST-at-end MST-at-change All-MST

Group vertices Avg gap CPU Avg gap CPU Avg gap CPU

tc80 80 0.29 17.82 0.34 38.10 0.00 341.92
cm50 50 0.53 12.10 0.63 28.18 0.10 335.05

During the local search, MST computations can be done with different intensities in the
neighborhood exploration. In particular, we compared three different stragegies (see Section
4.3.3): MST-at-end, MST-at-change, All-MST. All three strategies imply the reoptimization
of the solution at different levels. The obtained results are summarized in Table 5.4 in which
the entries give the average percentage deviation from the optimal or best-known solution.
Again, averages are taken over all the instances in each group after 3 runs for each instance.

From the results in Table 5.4, it is clear , as it could be expected, that the All-MST
strategy produces the best results although it requires larger CPU times in comparison with
the two other strategies. The larger CPU times are due to the large amount of MSTs that
are computed (for every considered move, two MSTs are computed). The MST-at-change
strategy performs the worst in terms of average gap and the times are greater than those
of the MST-at-end strategy, which showed a good balance between time consumption and
solutions quality. In view of the above results we decided to explore two possible further
improvements. The first one was to improve the results by introducing a strategic oscillation
procedure in the local search. The second one was to reduce the number of moves considered
in the exploration of the different neighborhoods.

Among the three different strategic oscillation policies presented in Section 4.3.4, we
initially considered the Descent-SO in order to have a first impression of the effect of strategic
oscillation in the behavior of the algorithm. This strategic oscillation policy was tested with
the three different neighborhood exploring strategies. The results are shown in Table 5.5.
As can be seen, strategic oscillation lead to improved gaps for strategies MST-at-change
and MST-at-end, without a significant increase of their CPU times. Nevertheless, even with
the improvement, these results are still worse than those of the All-MST, even if with this
strategy the strategic oscillation did not show any improvement. However, as we mentioned
before, the CPU times of All-MST strategy are larger, and therefore reducing the size of

56

Table 5.5: Results with local search including strategic oscillation

MST-at-end MST-at-change All-MST

Group vertices Avg gap CPU Avg gap CPU Avg gap CPU

tc80 80 0.22 17.98 0.28 37.93 0.00 361.05
cm50 50 0.42 14.62 0.51 32.18 0.10 345.59

Table 5.6: Results including neighborhood reduction

MST-at-end MST-at-change All-MST

Group vertices Avg gap CPU Avg gap CPU Avg gap CPU

tc80 80 0.22 17.98 0.28 37.93 0.00 99.05
cm50 50 0.42 14.62 0.51 32.18 0.10 103.21

the neighborhoods to be explored seemed a promising tool to improve the overall algorithm
behavior.

Using the neighborhood reduction presented in Section 4.3.5 the CPU times for All-MST
strategy were reduced significantly without compromising the quality of the solutions. Table
5.6 shows a comparison between the All-MST strategy with neighborhood reduction and the
other two other strategies without neighborhood reduction. As in previous tables, entries
indicate percentage average gaps over all the instances in each group after 3 runs. These
results show that times are still larger than those of the other two exploring strategies, al-
though they are considerably better in terms of average gap. For that reason we decided to
continue working using only All-MST neighborhood exploring strategy with the neighbor-
hood reduction.
The gaps obtained with this strategy in the two sets of instances used during the algorithm
design were already very small before testing the strategic oscillation. This fact might ex-
plain why the strategic oscillation did not show a significant effect on the All-MST strategy.
For this reason, we decided to further analyze the potential effect of the strategic oscillation
in larger instances. In particular, we compared the three types of strategic oscillation and
compared the results with the algorithm without strategic oscillation in instances cm100
with Q = 200 and in the set of the largest instances, cm200 with Q = 400.

For all the policies the penalty term takes values in the interval [2.5, 0] and its initial value
is 2.5. For SO-descent and, Alternate-SO policies the penalty is updated with steps of −β,
while for Descent-ascent-SO, it is updated with steps of ±β. In the case of the Alternate-SO
policy, when the penalty reaches 0, the term oscillates taking the values ±α. β values are
defined considering the cost of the current best solution. If such cost is greater than 800,
β = 0.1. If the solution cost is between 550 and 799 β = 0.05, while for costs smaller than
550 β = 0.03. Values for alpha are close to zero.

A summary of the results is shown in Table 5.7 where it can be appreciated that Alternate-
SO produces the best results for both groups of instances in terms of solution quality, with ap-

57

Table 5.7: Strategic oscillation results for cm100 with Q = 200 and cm200 with Q = 400

Strategic Without Descent Descent Alternate
Oscillation type -ascent
Group vertices Avg gap CPU Avg gap CPU Avg gap CPU Avg gap CPU

cm100 100 1.04 365.16 0.98 365.13 1.08 368.12 0.95 366.68
Q = 200

cm200 200 0.54 3580.03 0.84 3468.41 0.78 3548.88 0.42 3501.86
Q = 400

proximately the same computational effort. Surprisingly, Without-SO algorithm performed
better than Descent-ascent-SO and SO-descent for the instances in set cm200 with Q = 400.
This is due to the magnitude of the penalty term, which sometimes is too big in relation to
account the cost of the tree. This also explains why Alternate-SO performs better, because
in this procedure the penalty term oscillates between (−α, α) and takes small values more
often.

5.2.1 BRKGA implementation details

The BRKGA algorithm for the CMST was implemented in C++. All the testing and the
results presented in this section were obtained using a PC with an Intel core 2 at 3.1 GHZ
processor and 2 GB of RAM.

The BRKGA framework requires the setting of 7 parameters:

• L, the number of populations to use.

• pe, the percentage of elite elements in each population.

• pm, the percentage of mutants introduced in each population after crossover.

• ItEx, the number of iterations between exchanges of elite solutions among populations.

• ElitetoEx, the number of elite solutions to exchange.

• ρ, the probability that an offspring inherits the vector component of its elite parent.

• ItStop, the number of iterations without improvement in the stopping criterion.

The values used for each parameter are presented in Table 5.8. Since non-UD instances
are considered to be more difficult than UD instances, in this case we allowed for larger
numbers of iterations both, between population exchanges and without improvement before
termination.

In particular, the initial experiments showed that, in the case of UD instances, the
difficulty of an instance was related both, to the size of the instance and to the capacity
parameter. As opposite, in the case of non-UD instances the main source of complexity was
the capacity, and the effect of the instance size was smaller. This evidence led us to the
development of the expressions used for setting the parameter itStop.

58

Table 5.8: Parameter settings for the BRKGA framework

Parameter UD Non-UD

L 5
pe 0.25
pm 0.10
ElitetoEx 1
ρ 0.65

ItEx 5 40

ItStop n−20
Q

45Q
Q−100

5.2.2 BRKGA numerical results analysis

To evaluate the performance of Algorithm 7, taking into account that it is not deterministic,
it was executed 7 times for each test instance. The solutions obtained were compared with
the values of the best solutions known so far for the benchmark instances.

Algorithm 7 was executed 7 times for each test instance to evaluate the performance of
the algorithm. The values of best known solutions for instances in sets tc80 and te80 were
taken from (Ahuja, Orlin, and Sharma 2001), for sets tc120, te120, tc160 and te160 from
Martins (2007) and Uchoa, Fukasawa, Lysgaard, Pessoa, de Aragao, and Andrade (2008).
For instances of sets td80 from Martins (2007) and Uchoa, Fukasawa, Lysgaard, Pessoa,
de Aragao, and Andrade (2008). Finally, for sets cm50, cm100, and cm200, best known
solutions are taken from Ahuja, Orlin, and Sharma (2003), Ahuja, Orlin, and Sharma (2001),
Ahuja, Orlin, and Sharma (2003) and Uchoa, Fukasawa, Lysgaard, Pessoa, de Aragao, and
Andrade (2008). The values of those best known solutions are given for each instance in
Tables 5.13, 5.14 and 5.15, under the heading best/opt. Known optima are highlighted in
bold.

Table 5.9 summarizes the results obtained with BRKGA for the different groups of in-
stances. Entries are averages taken over all the instances in the same group. Columns
Average mean gap, Minimum mean gap and Maximum mean gap give, respectively, the
average, the minimum and the maximum, over the instances in the same group, of the av-
erage of deviations with respect to the best known solution taken over the 7 runs of the
algorithm. Instead, columns Average best gap, Minimum best gap and Maximum best gap
give results related to the best of the seven runs of each instance. That is, Average best gap,
Minimum best gap and Maximum best gap give the values of the average, minimum and
maximum percentage deviation of the solution obtained in the best of the 7 runs of each
instance, respectively. Column Mean avg. CPU shows the average CPU time until termi-
nation for the seven runs in seconds, while column CPU to best gives the average CPU time
until the best solution was found. The difference between these two last columns, gives the
average CPU time spent to fulfill the stopping criterion after the algorithm has found the
best UB (for each run).

More detailed results for all the test instances are given in Tables 5.13, 5.14 and 5.15.
In particular, columns Best BRKGA and Worst BRKGA show, respectively, the best UB

59

and the worst UB obtained by the algorithm for each of the instances after the seven runs.

As can be seen, the obtained results are good. Our BRKGA found the best-known
solution for 77 out of the 81 UD instances and for 34 out of the 45 non-UD instances.
Furthermore, for 7 instances, the algorithm found a solution improving the currently best-
known solution. The specific instances and the value of the new best solution we found
are given in Table 5.10. In general, our algorithm was robust in the sense that there are
small variations in the output of different runs on the same instances. This can be appre-
ciated by comparing columns Best BRKGA and Worst BRKGA in Tables 5.13-5.15 and
also in Figure 5.1 where an histogram is given for the values of the percent deviations of the
worst solution found among the seven runs with respect to the best one, for all the instances.

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

[0,�0.25) [0.25,�0.5) [0.5,�0.75) [0.75,�1) [1,�1.25) [1.25,�1.5) [1.5,�1.75) [1.75,�2)

Figure 5.1: Histogram of percent deviations of best with respect to worst solution found in
the seven runs.

In fact, there is a considerable number of instances for which BRKGA found the best-
known solution in each of the 7 executions. For the UD instances this happens in 38 out
of the 45 instances with 80 vertices, 11 out of the 30 instances with 120 vertices and in
1 out of 6 for the 160 vertices instances. The performance of the algorithm is however
less predictable with the non-UD instances. The algorithm works remarkably well for the
instances with larger capacities (Q = 800) where it always produces a best-known solution
for all instances with 50 and 100 vertices, and it improves the best-known solution in 2 out of
the 5 instances with 200 vertices. Similar results are obtained for the instances with medium
capacities (Q = 400), where it finds a best-known solution for all instances with up to 100
vertices except one, and it improves the value of the best-known solution for 3 out of the 5
instances with 200 vertices, although for the other 2 instances in this group, it was not able
to find a solution with the best-known value. The performance of the algorithm somehow
decreases with some of the instances with smaller capacities (Q = 200). Now, BRKGA finds
an optimal solution for all the small 50 vertex instances, and 2 out of the 5 instances with
100 vertices, but it fails in finding a best known solution for the remaining 8 instances. In
fact, we could improve the performance of our algorithm for this specific subset of instances
by further fine-tuning the values of the parameters of the BRKGA heuristic, but we preferred
to use the same parameters values for all the instances in the same class at the expense of

60

T
a
b
le

5
.9
:
S
u
m
m
a
ry

B
R
K
G
A

re
su
lt
s

n
A
ve
ra
ge

M
in
im

u
m

M
ax

im
u
m

A
v
er
ag

e
M
in
im

u
m

M
ax

im
u
m

M
ea
n
av

g.
C
P
U

to
G
ro
u
p

m
ea
n
ga

p
m
ea
n
ga

p
m
ea
n
ga

p
b
es
t
ga

p
b
es
t
ga

p
b
es
t
ga

p
C
P
U
(s
ec
s.
)

b
es
t
(s
ec
s.
)

tc
80

80
0.
00

4
0.
00

5
0.
06

9
0.
00

0
0.
00

0
0.
00

0
99

.7
7

24
.4
5

td
80

80
0.
00

4
0.
00

0
0.
02

2
0.
00

0
0.
00

0
0.
00

0
25

9.
01

12
5.
76

te
80

80
0.
00

5
0.
00

5
0.
03

5
0.
00

0
0.
00

0
0.
00

0
21

7.
88

76
.7
6

tc
12

0
12

0
0.
03

9
0.
00

0
0.
22

4
0.
00

0
0.
00

0
0.
00

0
32

4.
55

14
7.
31

te
12

0
12

0
0.
09

1
-0
.1
29

0.
45

7
0.
01

3
-0
.2
59

0.
24

5
69

4.
73

42
2.
37

tc
16

0
16

0
0.
16

8
0.
11

5
0.
19

7
-0
.0
25

-0
.0
76

0.
00

0
17

53
.7
0

12
10

.4
7

te
16

0
16

0
0.
01

1
0.
00

0
0.
02

5
0.
00

0
0.
00

0
0.
00

0
15

87
.3
0

94
1.
33

cm
50

50
0.
07

2
0.
00

0
0.
52

4
0.
00

0
0.
00

0
0.
00

0
98

.9
7

6.
23

cm
10

0
10

0
0.
35

4
0.
00

0
2.
07

2
0.
17

1
0.
17

1
1.
54

1
45

9.
50

12
2.
18

cm
20

0
20

0
0.
82

0
-0
.7
81

2.
89

4
0.
41

2
0.
33

6
2.
66

6
32

75
.2
6

20
92

.9
5

61

Table 5.10: New best-known solutions

Instance Q Previous UB New UB

te120− 4 20 773 771

tc160− 1 10 1319 1318

cm200− 2 400 476 475

cm200− 3 400 559 557

cm200− 4 400 389 388

cm200− 2 800 294 293

cm200− 3 800 361 360

not obtaining the best possible results.
The times required by the BRKGA algorithm to obtain the above results are quite modest.
All UD instances with Euclidean distances and 80 vertices (te80, td80, te80) terminated in
less than 5 minutes. The average CPU time to termination for instances in the same class
with more than 80 vertices (tc120, te120, tc160 and te160) was less than haf an hour; indeed
the most time consuming instances in this group where te160 that took an average of 1753.70
seconds. In total, the most demanding instances were, non-UD instances cm200 where the
average computing time is 3275.26 seconds (less than an hour). Additionally, in Table 5.9
there is a comparison for each set of instances, between the average CPU times (in seconds)
and the average CPU times when the best solution was found. It is clear from the results
that many CPU time is spend to fulfill the stopping criterion, as many of the best UB’s are
found in early iterations. It is important to remember that the stopping criterion was set
using the information obtained in the initial experiments which led to the formulas presented
in section 5.2.1.

Since the stopping criterion was defined in function of the capacity Q, it was expected
that Q will have an effect over the CPU times. Figure 5.2 shows the average CPU times over
instances of the same size and with the same capacity. Here, for an easier comparison of the
behavior of the algorithm for UD and non-UD instances, capacities are presented in terms of
the average number of vertices that fit in a tree (r in the figure). In the case of UD instances
r = Q, whereas, in the case of non-UD instances r = Q/50, since 50 is approximately the
average demand of the vertices in the non-UD instances. The figure shows clearly how the
time taken by BRKGA to solve the instances increases with the instance size in a similar way
for UD and non-UD instances. As opposite, as already noticed in the preliminary tests carried
out for tunning the algorithm, the effect of the instance capacities on the computational effort
required for their solution is different depending on the type of instance, being much more
relevant in the case of UD instances. Nonetheless, in both cases, the instances that seem to

62

1500

2000

2500

3000

3500
nonrUD

r=4

r=8

r=16

1500

2000

2500

3000

3500
UD

r=5

r=10

r=20

0

500

1000

1500

2000

50 100 150 200

n

r=16

0

500

1000

1500

2000

50 100 150 200

n

r 10

r=20

0

50 100 150 200

0

50 100 150 200

Figure 5.2: CPU time increase with instance size for different values of r, the average number
of terminals per tree

require the smallest times are those where capacity constraints are either the tightest or the
loosest, while situations in between appear to be the most difficult ones.

150

200

250

300

350

tc80

td80

0

50

100

150

200

Q=5 Q=10 Q=20

0

Q=5 Q=10 Q=20

Figure 5.3: Average CPU times Euclidean between sets tc80 and td80

In order to evaluate the sensitivity of BRKGA to the type of distances we have concen-
trated in instance sets tc80 and td80, containing UD instances of the same sizes and the same
type of location of the root. The only difference between those sets is the type of distances;
they are Euclidean in set tc80 and non Euclidean in set td80. Figure 5.3 shows the average
CPU times taken to solve the problem for the different capacities considered in these sets.
The figure shows very different behaviors in the two sets. In particular, the computational
effort required to solve instances with non-Euclidean distances is much higher than what
is needed for solving instances with Euclidean distances with the same characteristics. As
for the effect of the capacity in the instances difficulty, the observed behavior coincides with
what was observed in general, solving instances with extreme capacities tends to be a bit less
demanding than for moderate capacities, and this effect is larger for non-Euclidean instances.

We close this section by comparing our results with those of other heuristics for the

63

CMST. For the comparison we have chosen the VLNS heuristic of Ahuja, Orlin, and Sharma
(2003) which, in our opinion, is so far the heuristic which has produced the best results, the
more recent ant colony heuristic (ACO) of Reimann and Laumanns (2006), the enhanced
second order (ESO) algorithm by Martins (2007) and the RAMP heuristic of Rego, Mathew,
and Glover (2010).

For instances tc and te with 80 vertices and UD the best results are obtained by the
VLNS algorithm, although the results of the BRKGA are also very good since the average
mean gaps are really close to zero. The ACO, ESO and RAMP algorithms perform worse
than the BRKGA and VLNS. For instances of type td and 80 vertices, the results of the
BRKGA are better than those of the ESO in terms of average mean gap. For instances of
tc120, te120, tc160 and te160 vertices and UD, the best average mean gaps are obtained by
the BRKGA with values below 2% for the set te160 and below 1% for the other three sets.
For the non-UD set with 50 vertices, again, the VLNS performs better than the BRKGA and
the other algorithms. For non-UD instances with 100 and 200 vertices, the RAMP algorithm
obtains the best average gap, although only instances with Q = 200 are considered in that
work. The BRKGA obtains very close results in instances with Q = 200, and improves the
results obtained by VLNS in instances with Q = 400 and Q = 800. Notice that for this
set of instances, the average CPU times of the RAMP algorithm are very large. Finally,
for non-UD instances with 200 vertices, the BRKGA obtains better results than the other
algorithms in terms of the average mean gap.
Comparing the VLNS with the BRKGA in terms of the mean average gap, we can see that
the BRKGA performs better for the instances with larger number of vertices (100, 120, 160
and 200) and slightly worse for the sets with 80 vertices. If compared with the ACO, the
BRKGA always performs better in terms of the mean average gap. This is explained by the
fact that ACO was designed to obtain fairly good results using a small computation effort
(small CPU times). It is important to mention that the results of the ACO for non-UD
instances were not published for reasons related to its performance, which are explained in
the original article. If compared with the ESO, the BRKGA mean average gaps are also
better. Finally, the BRKGA results are also better in terms of the average mean gap for all
test instances, when compared to those of the RAMP, except for the cm100 as it has been
explained. In fact, in general terms, the BRKGA obtains good results without regard of the
type of test instance.
Since it is hard to compare the CPU times of the different algorithms, we decided to compile
the BRKGA with the previously mentioned compiling options (g++ with the the flags “-c”
and “-O3”), on a pentium IV machine with 712 MB of RAM, and solved some of the test
instances. The results showed that the pentium core2 was about 10 times faster than the
Pentium IV. Therefore, the 1/10 of a second of CPU time on the pentium core2 represents
approximately one second of CPU timee on a pentium IV. No test were performed on ma-
chines with pentium M or Athlon processors.

In table 5.12 the best results obtained by each algorithm for the different sets of instances
are presented. The results shows that the BRKGA obtains the best results among the
different algorithms. For the UD sets, the BRKGA found the best know solutions for 77 of
the 81 test instances. For the non-UD sets, the algorithm found the best known solution for
33 out of the 45 instances.

64

T
ab

le
5.
11
:
C
om

p
ar
is
on

of
av
er
ag
e
m
ea
n
G
A
P

a
n
d
C
P
U

ti
m
e
b
y
in
st
a
n
ce

g
ro
u
p
w
it
h
st
a
te

o
f
th
e
a
rt

h
eu
ri
st
ic
s

V
L
N
S

A
C
O

E
S
O

R
A
M
P

B
R
K
G
A

n
A
v
er
ag

e
M
ea
n
av

g.
A
v
er
ag

e
M
ea
n
av

g.
A
v
er
ag

e
M
ea
n
av

g.
A
v
er
ag

e
M
ea
n
av

g.
A
v
er
ag

e
M
ea
n
av

g
.

G
ro
u
p

m
ea
n
ga

p
C
P
U
(s
ec
s.
)

m
ea
n
ga

p
C
P
U
(s
ec
s.
)

m
ea
n
ga

p
C
P
U
(s
ec
s.
)

m
ea
n
ga

p
C
P
U
(s
ec
s.
)

m
ea
n
ga

p
C
P
U
(s
ec
s.
)

tc
80

80
0.
00

0
18

00
0.
20

5
6.
52

0.
07

8
36

00
0.
01

8
26

7.
33

0.
00

4
9
9
.7
7

td
80

80
N
A

N
A

N
A

N
A

0.
07

5
36

00
N
A

N
A

0.
00

4
2
5
9
.0
1

te
80

80
0.
00

0
18

00
0.
08

5
18

.8
1

0.
17

9
36

00
0.
21

7
18

42
.6
7

0.
00

5
2
1
7
.8
8

tc
12

0
12

0
0.
28

1
N
A

0.
07

4*
66

.0
0

0.
47

4
54

00
N
A

N
A

0.
03

9
3
2
4
.5
5

te
12

0
12

0
0.
24

0
N
A

0.
76

6*
17

8.
00

0.
45

8
54

00
N
A

N
A

0.
09

1
6
9
4
.7
3

tc
16

0
16

0
0.
71

6
N
A

0.
86

7
54

3.
33

0.
41

2
72

00
N
A

N
A

0.
16

8
1
7
5
3
.7
0

te
16

0
16

0
0.
58

3
N
A

0.
35

8
54

5.
00

0.
21

6
72

00
N
A

N
A

0.
01

1
1
5
8
7
.3
0

cm
50

50
0.
02

0
10

00
N
A

N
A

N
A

N
A

0.
14

6
85

0.
53

0.
07

2
9
8
.9
7

cm
10

0
10

0
0.
40

7
18

00
N
A

N
A

N
A

N
A

0.
31

4*
*

35
80

0.
00

0.
35

4
4
5
9
.5
0

cm
20

0
20

0
1.
02

1
36

00
N
A

N
A

N
A

N
A

N
A

N
A

0.
82

0
3
2
7
5
.2
6

C
om

p
u
te
r
u
se
d

P
en
ti
u
m

4
P
en
ti
u
m

M
A
M
D

A
th
lo
n

P
en
ti
u
m

P
4

P
en
ti
u
m

C
o
re
2

*O
n
ly

tc
12

0-
1
an

d
te
12

0-
1
in
st
an

ce
s
w
er
e
te
st
ed

.
**

O
n
ly

in
st
an

ce
s
w
it
h
Q

=
20

0
w
er
e
so
lv
ed

.
N
A
,
n
o
in
fo
rm

at
io
n
w
as

fo
u
n
d
/a
va
il
ab

le
fo
r
th
e
al
go

ri
th
m

an
d
th
e
se
t
of

in
st
an

ce
s.

65

Table 5.12: Number of best known solutions found by instance group for each state of the
art heuristic

Group n total number VLNS ACO ESO RAMP BRKGA
of instances

tc80 80 15 15 8 11 13 15

td80 80 15 NA NA 5 NA 15

te80 80 15 15 10 7 6 15

tc120 120 15 5 2* 7 NA 15

te120 120 15 3 1* 1 NA 11

tc160 160 3 0 0 0 NA 3

te160 160 3 0 0 0 NA 3

cm50 50 15 14 NA NA 11 15

cm100 100 15 9 NA NA 3** 11

cm200 200 15 5 NA NA NA 8

*Only tc120-1 and te120-1 instances were tested.
** Only instances with Q = 200 were solved.
NA, no information was found/available for the algorithm and the set of instances.

66

Table 5.13: Results for UD instances with n = 80 vertices

Instance Average CPU Best/Opt* Best Worst
Group Q number gap (seconds) Solution BRKGA BRKGA

tc80 5 1 0.00 38.84 1099 1099 1099
2 0.00 99.04 1100 1100 1100
3 0.00 106.49 1073 1073 1073
4 0.00 105.53 1080 1080 1080
5 0.00 119.08 1287 1287 1287

10 1 0.00 53.06 888 888 888
2 0.00 105.36 877 877 877
3 0.00 112.78 878 878 878
4 0.07 121.26 868 868 872
5 0.00 126.02 1002 1002 1002

20 1 0.00 61.63 834 834 834
2 0.00 117.17 820 820 820
3 0.00 102.85 828 828 828
4 0.00 103.56 820 820 820
5 0.00 123.88 916 916 916

td80 5 1 0.00 279.23 6068 6068 6070
2 0.00 266.01 6019 6019 6019
3 0.01 285.57 5994 5994 5997
4 0.00 206.99 6012 6012 6012
5 0.00 197.89 5977 5977 5977

10 1 0.00 341.31 3223 3223 3223
2 0.00 228.83 3205 3205 3205
3 0.00 317.28 3212 3212 3212
4 0.00 323.99 3203 3203 3203
5 0.00 237.86 3180 3180 3180

20 1 0.00 196.10 1832 1832 1832
2 0.02 262.74 1829 1829 1830
3 0.00 230.66 1839 1839 1839
4 0.02 243.12 1834 1834 1835
5 0.00 267.65 1826 1826 1826

te80 5 1 0.00 180.05 2544 2544 2544
2 0.03 341.61 2551 2551 2556
3 0.01 270.51 2612 2612 2614
4 0.03 277.84 2558 2558 2560
5 0.00 199.06 2469 2469 2469

10 1 0.00 186.13 1657 1657 1657
2 0.00 215.17 1639 1639 1639
3 0.00 221.18 1687 1687 1687
4 0.00 218.45 1629 1629 1629
5 0.00 201.22 1603 1603 1603

20 1 0.00 185.14 1275 1275 1275
2 0.00 190.74 1224 1224 1224
3 0.00 187.42 1267 1267 1267
4 0.00 216.44 1265 1265 1265
5 0.00 177.27 1240 1240 1240

* Marked in bold are the values that have been proven to be optimal.
67

Table 5.14: Results for UD instances with n = 120 and n = 160 vertices

Instance Average CPU Best/Opt* Best Worst
Group Q number gap (seconds) Solution BRKGA BRKGA

tc120 5 1 0.00 128.07 1291 1291 1291
2 0.00 189.76 1189 1189 1189
3 0.03 274.47 1124 1124 1126
4 0.03 250.22 1126 1126 1128
5 0.02 235.08 1158 1158 1159

10 1 0.00 168.30 904 904 904
2 0.00 355.37 756 756 756
3 0.00 372.05 722 722 722
4 0.00 276.17 722 722 722
5 0.17 355.59 761 761 765

20 1 0.00 298.73 768 768 768
2 0.00 420.21 569 569 569
3 0.00 442.56 536 536 536
4 0.13 549.16 571 571 572
5 0.22 552.47 581 581 585

te120 5 1 0.03 413.70 2197 2197 2201
2 0.06 520.85 2134 2134 2137
3 0.03 343.81 2079 2079 2080
4 0.05 464.19 2158 2159 2159
5 0.04 532.96 2017 2017 2021

10 1 0.00 575.22 1329 1329 1329
2 0.45 659.87 1225 1228 1235
3 0.17 809.37 1195 1195 1200
4 0.23 702.35 1230 1231 1237
5 0.26 767.34 1164 1165 1171

20 1 0.00 632.49 920 920 920
2 0.09 1034.26 785 785 787
3 0.02 1058.64 749 749 750
4 -0.13 920.74 773 771 773
5 0.08 985.22 746 746 747

tc160 5 1 0.20 1034.13 2077 2077 2084
10 1 0.18 2197.84 1319 1318 1327
20 1 0.12 2029.13 960 960 964

te160 5 1 0.03 1211.09 2789 2789 2790
10 1 0.01 2141.96 1645 1645 1646
20 1 0.00 1408.86 1098 1098 1098

* Marked in bold are the values that have been proven to be optimal.

68

Table 5.15: Results for non-UD instances with n = 50, n = 100 and n = 200 vertices

Instance Average CPU Best/Opt* Best Worst
Group Q number gap (seconds) Solution BRKGA BRKGA

cm50r 200 1 0.00 88.78 1098 1098 1098
2 0.53 108.15 974 974 980
3 0.00 102.22 1186 1186 1186
4 0.00 121.37 800 800 800
5 0.00 101.38 928 928 928

400 1 0.13 106.54 679 679 681
2 0.00 62.16 631 631 631
3 0.35 74.30 732 732 735
4 0.08 124.69 564 564 567
5 0.00 91.65 611 611 611

800 1 0.00 131.13 495 495 495
2 0.00 108.15 513 513 513
3 0.00 90.67 532 532 532
4 0.00 81.30 471 471 471
5 0.00 92.04 492 492 492

cm100r 200 1 1.04 439.57 509 509 517
2 2.08 368.24 584 593 597
3 0.26 484.89 540 541 542
4 0.33 383.76 435 435 437
5 0.89 428.98 418 420 425

400 1 0.17 439.19 252 252 253
2 0.36 397.48 277 278 278
3 0.18 457.12 236 236 237
4 0.00 523.62 219 219 219
5 0.00 495.37 223 223 223

800 1 0.00 489.72 182 182 182
2 0.00 479.85 179 179 179
3 0.00 466.91 175 175 175
4 0.00 485.28 183 183 183
5 0.00 552.53 186 186 186

cm200r 200 1 1.67 3122.37 994 1003 1015
2 1.96 3007.78 1188 1202 1225
3 2.89 3061.93 1313 1348 1355
4 1.34 3561.27 917 919 937
5 2.11 3236.41 948 964 974

400 1 0.91 3097.51 391 392 397
2 0.30 3186.94 476 475 480
3 -0.10 4040.28 559 557 560
4 0.29 3447.51 389 388 392
5 0.85 4046.50 418 421 423

800 1 0.00 2778.14 254 254 254
2 -0.05 3133.56 294 293 294
3 -0.08 3187.92 361 360 361
4 0.00 3043.11 275 275 275
5 0.20 3177.69 292 292 293

* Marked in bold are the values that have been proven to be optimal.
69

5.3 Experimental results with the cutting plane algorithms

The two cutting plane algorithms based on the formulations proposed in Section 3.1 and
Section 3.3, were implemented in C++ and compiled with g++. The software used to solve
the LP relaxation during the cutting plane algorithm was CPLEX 12.1. The tests were
executed in a PC with an intel Dual Core 3.1 GHz processor and 2 GB of RAM. Due to
memory limitations in the equipment no tests were performed for instances of more than
100 vertices. As mentioned in Section 3.2.5, both algorithms require the use of an upper
bound (UB) to perform some variable elimination tests. In our experiments we have used
the outcome of the BRKGA heuristic to obtain the UB. We remind the reader that the LB
is obtained computing a MST with the minimum subroots constraint (3.25). In Table 5.16,
column Avg, gap shows the average deviation of the LB with respect to the optimal solution
by group of instances.

Table 5.16: Average percentage deviation for the obtained LB’s

Group vertices Q Avg gap

tc80 80 5 12.43
10 3.52
20 0.64

Average 5.53

td80 80 5 8.31
10 7.14
20 3.82

Average 6.42

te80 80 5 32.83
10 22.80
20 8.74

Average 21.45

cm50 50 200 32.72
400 23.43
800 9.30

Average 21.82

cm100 100 200 17.56
400 8.46
800 6.45

Average 10.82

From the results of Table 5.16 it is clear that better LB’s are obtained for higher values of
Q, which is something expected, since solutions with big values of Q have more common el-

70

ements with the solution of the MST with the minimum subroots constraint. Also the type
of distances (euclidean and non-euclidean) have an important effect, since instances with
non-euclidean distances (td) have better gaps than those instances with euclidean distances
(tc, te). The location of the root also has an effect since tc and te instances have closer gaps
than the te ones. Finally, it is also clear that for non-UD instances the gap between the LB
and the UB increases.

5.3.1 Variable elimination

Special attention was put on the variable elimination procedure because the two formulations
presented in Chapter 3 have an important number of variables. For both formulations a large
number of variables could be eliminated using the variable elimination procedure presented
in Sections 3.3.1 and 3.2.5. Hence, the size of the instances could be initially reduced. In
Table 5.17 we present the percentage of variables eliminated for each formulation for the
groups of UD instances tc80, td80 and te80. Column Original shows the original number
of variables by group of instance, while columns Left and %Eliminated show, respectively,
the average number of variables left and the percentage of eliminated variables after the
variable elimination procedure. From this table it is easy to see that an important reduction
on the number of variables could be obtained. In particular, for the subroot formulation,
the percentage reduction on the number of variables ranges in 80− 83% for the te instances,
in 79− 96% for the td instances and in 92− 99% for the tc instances. For the hop indexed
subroot formulation, the percentage reduction on the number of variables ranges in 84−86%
for the te instances, in 89− 97% for the td instances and in 95− 99% for the tc instances.

Broadly speaking the percentage reduction was somehow bigger for the hop indexed
subroot formulation. However, the number of variables after the elimination procedure is
still large for the hop indexed subroot formulation and instances of set te. For both types of
formulations, it is clear that the reduction of variables for instances of set te is not as good
as for the set tc and td. For instances of set td most of the variables are eliminated using the
LB and UB criterion (many vertices are discarded as subroots), while for tc (with Q 6= 20)
and te instances, variables are mostly eliminated using the optimality criteria. For instances
of set tc with Q = 20, variables are eliminated by both of the elimination criteria.

The results in Table 5.17 also show that for the subroot formulation, the percentage of
eliminated variables for instances tc, td and te increases as Q grows. This is due to the
reduction of the gap between the LB and the UB which allows the elimination of more
variables. However, for the subroot hop indexed formulation, this only happens for tc and
td instances. Remember that in this formulation, the number of variables increases as Q
grows. For tc and td instances the variable elimination procedures, are able to compensate
the augmentation in the number of variables due to the reduction on the gap between the
LB and UB. Nevertheless, for te instances, the gap reduction between the LB and UB is
not enough to make the elimination procedures compensate the augmentation in the number
of variables when Q increases from 5 to 10.

Since the hop indexed subroot formulation is a specialized formulation for the UD case,
in Table 5.18 we present the results of the variables elimination procedure for the non-UD
instances only for the subroot formulation. The percentage reduction was somehow bigger
for the cm100 instances than for cm50. Again, this might be explained by the fact that the
gaps between the LB and UB are tighter for the cm100 instances. Most of the elimination of

71

Table 5.17: Variable Elimination Comparison for UD instances

Subroot Hop Indexed Subroot
Formulation Formulation

Group vertices Q Original Left %Eliminated Original Left %Eliminated

tc80 5 518400 40116 92.26 2566400 103901 95.95
80 10 518400 30276 94.16 5126400 204977 96.00

20 518400 4187 99.19 10246400 59823 99.42

td80 5 518400 107519 79.26 2566400 267982 89.56
80 10 518400 31962 93.83 5126400 231556 95.48

20 518400 16691 96.78 10246400 289130 97.18

te80 5 518400 101477 80.43 2566400 345016 86.56
80 10 518400 101477 80.43 5126400 808980 84.22

20 518400 84253 83.75 10246400 1456716 85.78

variables in cm50 sets is performed based on the optimality criteria, since there are important
gaps between the LB and the UB. The same happens for cm100 instances with Q = 200.
For the other two groups of cm100 instances, the optimality and LB criteria help reduce the
number of variables importantly.

Table 5.18: Variable elimination of subroot formulation for non-UD instances

Group vertices Q Original Left %Eliminated

cm50 50 200 120050 10428 91.31
400 120050 12889 89.26
800 120050 10289 91.43

cm100 100 200 980100 73820 92.47
400 980100 28528 97.12
800 980100 7936 99.19

5.3.2 Results obtained with the subroot formulation

The final design of Algorithm 1, presented in Section 3.2.5, is the result of a series of pre-
liminary experiments testing alternative configurations. We first analyzed the effect of the
different inequalities proposed for the subroot formulation. To carry out this analysis, each of
the proposed families of valid inequalities (bin-packing, subroot multistar, s-tree multistar,
and subroot rootcutset was considered alone, together with the basic formulation (3.2)-(3.8).

72

Table 5.19 shows the average LP gaps of the resulting formulations, together with the CPU
times taken to find them.

For separating bin-packing and subroot rootcutset the heuristic vertex contraction pro-
cedure described in Section 3.2.5 was used. For subroot multistar inequalities and s-tree
multistar the exact separation procedures presented in Section 3.2.5 and 3.2.5, respectively,
were used. For this test, the stopping criterion was that no new cuts were found by the
separation procedures.

The results in Table 5.19, show the impact of the different inequalities on the improvement
of the LP lower bound. In all cases, column Avg gap shows the average percent deviation by
group of instances, of the obtained LP lower bounds from the optimal solution. Note that,
as shown in Table 5.13-5.15, optimal solutions are known for all the instances considered in
this test. Finally, column Avg CPU shows average CPU time by group of instances. It is
clear from Table 5.19 that using s-tree multistar inequalities requires sensibly larger CPU
times, but results in much better lower bounds, than using any of the other families alone.
One of the reasons for having large CPU times, is that at, some point, although we find
violated inequalities from this family, the gap does not decrease significantly. The poorest
results are for the bin-packing inequalities mainly due to two causes; the first is that the
heuristic separation procedure is not able to find many violated inequalities, and the second
is that the cuts generated have less effect on increasing the bound. Subroot rootcutset
have a more relevant effect on the lower bound, with the inconvenient that the separation
procedure is neither very effective for finding violated inequalities. The effect of subroot
multistar inequalities on the lower bound is stronger than that of the subroot rootcutset
inequalities, at the cost of larger CPU times. Moreover, CPU times are also smaller for the
formulation with the subroot rootcutset inequalities.

Using the above results we decided to discard the use of bin-packing inequalities. Then,
we developed two algorithms. The first one, solalg1 separated inequalities subroot multistar
and subroot rootcutset, while the second one, solalg2 separateds-tree multistar and subroot
rootcutset. The separation procedures for each family of inequalities suffered no changes.
The results in Table 5.20 show that both algorithms improved the previous results. This is
explained by the fact subroot multistar and s-tree multistar are designed to improve the con-
nectivity between terminals, while the subroot rootcutset, help to improve the connectivity
of the terminals with the root.

Given that the above results indicate that contributions of multistar and s-tree multistar
inequalities to the gap reduction seem to be different, we considered the separation of all
three remaining families of valid inequalities (all except bin-packing), giving rise to the final
algorithm.

The summary results are presented in Table 5.21 and they show that in terms of gap
there was a minimal improvement, but CPU times improved importantly. The reason for
the CPU time improvement is that some sets of subroot multistar inequalities help to avoid
the separation of many s-tree multistar inequalities for candidate subroots that are not
connected to the root in the current solution and therefore the size of the problem does
not grows excessively. Complete results are presented in Tables 5.23 and 5.24 for UD and
non-UD instances respectively. The column opt refers to the value of the optimal solution
of the instance. Columns Bound and gap refer, respectively, to the LP lower bound and
percentage deviation gap of the solution obtained by the algorithm. Columns CPU denotes
the CPU time in seconds that the algorithm used to find the LP lower bound.

73

T
a
b
le

5.1
9
:
In
d
iv
id
u
al

eff
ect

of
ea
ch

fa
m
ily

o
f
va
lid

in
eq
u
alities

L
P

B
in
-p
ack

in
g

M
u
ltista

r
s-tree

m
u
ltistar

R
o
otcu

tset
rela

x
ation

in
eq
u
alities

in
eq
u
a
lities

in
eq
u
alities

in
eq
u
alities

G
rou

p
A
v
g
g
a
p

C
P
U

A
v
g
ga
p

A
v
g
C
P
U

A
v
g
gap

A
v
g
C
P
U

A
v
g
g
a
p

A
v
g
C
P
U

A
v
g
gap

A
v
g
C
P
U

cm
5
0

3
4.07

0.1
2

20.3
0

7
.3
7

7.18
8
.9
2

5
.6
1

21.56
9.71

5.37

cm
1
0
0

12
.5
5

5.2
2

6
.54

2
9
9.68

4.54
2
5
2
.7
4

4
.1
0

917.58
7.99

139.01

tc80
6
.64

0.2
7

5
.36

46
.83

1.78
1
1
.2
4

1
.2
0

27.06
4.09

11.02

td
8
0

1
5
.18

2
.2
8

10
.2
3

1
28.3

5
3.26

2
1
6
.5
8

2
.9
5

985.60
2.52

98.37

te80
28
.2
7

1
.33

2
0
.85

14
3
.11

4.85
2
9
7
.0
2

3
.1
0

1790.10
7.55

78.62

74

Table 5.20: Inequalities combination, effect on the gap by groups of test instances

solalg1 solalg2

Group Avg gap CPU Avg gap Avg CPU

cm50 6.08 38.65 4.06 91.25

cm100 3.95 347.02 3.68 1517.93

tc80 1.53 17.64 1.13 327.06

td80 2.03 480.24 1.78 2100.87

te80 3.89 590.55 2.85 3290.10

Table 5.21: Summary results for subroot formulation algorithm

Group Avg gap Avg CPU

tc80 1.12 30.86

td80 1.60 607.99

te80 2.84 2765.40

cm50 4.01 30.23

cm100 3.43 683.48

The results show that the location of the root node and the type of distances have an
important effect on the gaps and CPU times on the UD instances. For tc (root in the center
and euclidean distances) the average gap is close to one percent and the CPU time is close to
30 seconds. For td instances (root in the center and euclidean distances), the change in the
CPU time and the gap reflect the effect of having non euclidean distances. The difference
between the results for tc and te instances, reflect the effect produced by the location of
the root node. Somehow this was expected, since the number of variables for te instances is
greater than for those for the tc and td ones, except for td with Q = 5.

For non-UD instances, we can observe in the average gaps the effect of having non unitary
demands and non euclidean distances. The gaps increase significantly if compared with the
UD instances, although the initial number of variables usually are greater than those for tc
instances but smaller than for td and te ones.

The effect generated by the number of vertices, is observed when comparing the results of
cm50 and cm100 instances. The results show that CPU times are significantly greater when

75

Table 5.22: Comparison with other formulations

Group Subroot q − arb HIF
Avg gap Avg CPU Avg gap Avg CPU Avg gap Avg CPU

tc80 1.12 30.86 0.00 30.42 0.31* 554.5

td80 1.60 607.99 0.00 15480.65 NA NA

te80 3.13 2765.40 0.00 3562.17 0.55* 2273

cm50 4.01 30.23 0.00 150.77 ** **

cm100 3.43 683.48 0.00 23241.27 ** **

* Instances with Q = 20 were not solved. **The formulation is designed to solve only UD
instances NA, no information was found/available for the algorithm and the set of instances.

the number of vertices increases. Surprisingly, the average gap is greater for cm50 instances
than for cm100. This behavior is explained if we look at the percentage of eliminated
variables, which is greater for cm50 than for cm100 (See Table 5.18) We can conclude that
the type of demand (UD and non-UD), the location of the root(centered or not), and the
type of distances (euclidean and non-euclidean) have influence over the initial number of
variables, which have an effect on the gaps and CPU times.

We close this section by comparing the obtained results with the ones obtained by other
formulations. We use for comparison the q-arb formulation by Uchoa, Fukasawa, Lysgaard,
Pessoa, de Aragao, and Andrade (2008) and the hop indexed formulation (HIF) by Gouveia
and Martins (2005) which are the more recent works. Table 5.22 presents the above men-
tioned comparison. Columns Subroot, q − arb and HIF show, respectively, the results for
the subroot, q-arb and hop indexed formulations.

The best results in terms of gap are obtained by the q-arb formulation, which finds the
optimal solution of all the instances with significantly higher CPU times than for the other
two formulations. The hop indexed formulation gaps for UD instances are between those of
the q-arb and subroot formualtion. In general the subroot formulation obtains small gaps
at small CPU times.

5.3.3 Results obtained with the subroot hop indexed formulation

To developed the subroot hop indexed formulation the solution algorithm presented we used
the information already obtained for the subroot formulation. Therefore, the algorithm
included the separation of the extensions of the three families of valid inequalities used
above: subroot multistar, s-tree multistar and subroot rootcutset. Additionally, GSEh and
hop ordering inequalities are separated. The separation problem for GSEh inequalities is
solved heuristically by solving a maximum flow problem over a customized graph (see Section
3.3), while hop ordering inequalities are separated by inspection. A complete description of
the algorithm and the separation problems can be found in Section 3.3.1.

76

Table 5.23: Complete results for UD instances with 80 vertices using subroot formulation

Group Q Instance Bound gap CPU

tc80 5 1 1099 1.78 123.91
2 1100 1.81 62.70
3 1073 1.99 38.39
4 1080 2.69 42.78
5 1287 2.31 44.75

10 1 888 1.20 75.39
2 877 0.54 16.80
3 878 1.59 12.66
4 868 0.81 7.13
5 1002 0.97 28.50

20 1 834 0.48 2.84
2 820 0.49 1.17
3 828 0.00 1.50
4 820 0.00 0.87
5 916 0.27 3.44

td80 5 1 6068 1.93 771.95
2 6019 1.78 772.16
3 5994 1.77 623.85
4 6012 1.46 726.30
5 5977 1.22 651.66

10 1 3223 2.11 637.90
2 3205 1.47 745.45
3 3212 2.12 610.59
4 3203 1.12 471.11
5 3180 1.26 642.07

20 1 1832 1.20 131.51
2 1829 1.53 838.03
3 1839 1.85 383.67
4 1834 1.31 542.67
5 1826 1.92 570.90

te80 5 1 2544 1.43 3522.47
2 2551 2.28 2738.87
3 2612 2.34 3730.89
4 2558 2.45 2110.47
5 2469 2.22 1987.83

10 1 1657 5.51 5693.27
2 1639 5.66 5802.42
3 1687 4.63 5631.63
4 1629 4.66 4482.54
5 1603 3.35 4206.96

20 1 1275 2.46 205.40
2 1224 2.52 679.20
3 1267 2.64 268.73
4 1265 2.76 309.87
5 1240 2.05 111.28

77

Table 5.24: Complete results for non-UD instances of up to 100 vertices using subroot
formulation

Group Q Instance Bound gap CPU

cm50 200 1 1098 5.49 24.78
2 974 5.38 25.23
3 1186 5.86 27.17
4 800 5.08 4.44
5 928 6.41 15.02

400 1 679 4.40 142.09
2 631 2.23 42.92
3 732 6.85 56.61
4 564 4.79 5.73
5 611 4.76 17.52

800 1 495 3.16 18.61
2 513 1.77 36.34
3 532 1.72 29.84
4 471 0.90 1.09
5 492 2.16 6.05

cm100 200 1 509 7.51 444.76
2 252 2.37 443.31
3 182 0.38 77.19
4 584 6.03 1444.55
5 277 1.47 1079.74

400 1 179 0.98 47.72
2 540 6.97 964.04
3 236 2.75 439.06
4 175 1.61 30.59
5 435 8.70 739.28

800 1 219 3.49 2443.41
2 183 0.41 120.94
3 418 8.50 576.32
4 223 2.56 1372.34
5 186 1.46 29.02

78

Table 5.25: Summary results for UD instances for subroot hop indexed formulation

Group vertices Q Avg gap Avg CPU

5 0.31 1927.03
tc80 80 10 0.41 3082.80

20 0.19 276.39
Average 0.30 1762.07

5 0.23 3896.18
td80 80 10 0.29 6959.28

20 0.60 3773.71
Average 0.37 4876.39

5 0.58 116799.80
te80 80 10 4.64 10783.19

20 2.07 4248.50
Average 2.43 43943.39

Since the subroot hop indexed formulation is specially designed for solving the UD case
of the problem, the algorithm was tested for the groups of instances tc80, td80 and te80. A
summary of the results are presented in Table 5.25. The complete results are shown in Table
5.27

From the results in Table 5.25 we can observe that the average gaps by group of instance
obtained by the subroot hop indexed formulation are better for the tc80 instances as these
are less difficult than the two other groups of instances. Also the CPU times for tc80 group,
are smaller because the initial number of variables is smaller than for the two other groups
(see Table 5.17).
The results for td instances are not far from those of tc ones, since an important part of
the cost of the tree is due to the arcs linking the root with the subroots and somehow the
formulation puts special emphasis on these vertices. From Table 5.25 we can see that the
gap increases as Q increases (the number of subroots decreases as Q increases). Remember
that the proposed formulation focuses on the connectivity of the subroots.
Finally instances of type te obtain not so good results as they are the most difficult ones.
However, the algorithm obtained small gaps for te instances with Q = 5, although the CPU
times are larger. For this group of instances, the algorithm is capable of finding violated
inequalities with the inconvenient that such cuts only represent a small increase in the
objective function, thus explaining the large CPU times.
The complete results of the algorithm are shown is Table 5.27. Notice that for 11 of the 45
instances an optimal solution was found.

We close this section by comparing the results of the subroot hop indexed formulation
with the subroot formulation, the q-arb and hop indexed formulations. From Table 5.26
we can see that subroot hop indexed formulation obtains better results than those of the
subroot formulation but still not as good as the ones by Uchoa, Fukasawa, Lysgaard, Pessoa,

79

de Aragao, and Andrade (2008) and Gouveia and Martins (2005). The gaps obtained for UD
instances with the subroot hop indexed formulation are a bit larger than those obtained by
Uchoa, Fukasawa, Lysgaard, Pessoa, de Aragao, and Andrade (2008) but the computational
burden for obtaining them is, in general, much smaller. The comparison with the results
from Gouveia and Martins (2005) is rather poor, since that work does not report experiments
on many of the instance groups tested in thi thesis. However, in the groups for which data is
available their results are slightly better than those obtained with the subroot hop indexed
formulation, specially in what refers to the CPU times. This is probably due to the fact that
subroot formulations have a larger number of variables and it requires larger times to solve
the LP subproblems.

80

T
ab

le
5.
26
:
C
om

p
ar
is
on

of
su
b
ro
ot

h
op

in
d
ex
ed

fo
rm

u
la
ti
o
n
re
su
lt
s
fo
r
U
D

in
st
a
n
ce
s
w
it
h
o
th
er

fo
rm

u
la
ti
o
n
s

S
R
H
IF

S
R

q
-a
rb

H
o
p
In
d
ex
ed

G
ro
u
p

v
er
ti
ce
s

Q
A
v
g
ga
p

A
v
g
C
P
U

A
v
g
g
a
p

A
v
g
C
P
U

A
v
g
g
a
p

A
v
g
C
P
U

A
v
g
g
a
p

A
v
g
C
P
U

tc
80

80
5

0.
31

1
92
7.
0
3

2
.1
1

6
2
.4
6

0
.0
0

6
7
.4
6

0
.2
5
6

2
7
6
.0
0

10
0.
41

3
08
2.
8
0

1
.0
2

2
8
.0
7

0
.0
0

2
3
.5
0

0
.3
6
3

8
3
3
.0
0

20
0.
19

27
6.
3
9

0
.2
5

1
.9
6

0
.0
0

0
.3
2

N
A

N
A

A
ve
ra
ge

0.
3
0

17
62
.0
7

1
.1
2

3
0
.8
3

0
.0
0

3
0
.4
2

0
.3
1

5
5
4
.5
0

td
80

80
5

0.
2
3

38
96
.1
8

1
.6
3

7
0
9
.1
8

0
.0
0

1
0
6
.3
0

N
A

N
A

10
0.
2
9

69
59
.2
8

1
.6
1

6
2
1
.4
2

0
.0
0

4
5
8
8
3
.3
0

N
A

N
A

20
0.
6
0

37
73
.7
1

1
.5
6

4
9
3
.3
6

0
.0
0

4
5
1
.8
6

N
A

N
A

A
ve
ra
ge

0.
3
7

48
76
.3
9

1
.6
0

6
0
7
.9
9

0
.0
0

1
5
4
8
0
.6
5

N
A

N
A

te
80

80
5

0.
58

1
16
79
9.
8
0

2
.1
4

2
8
1
8
.0
4

0
.0
0

1
8
8
.8
4

0
.2
8
8

7
8
6
.0
0

10
4.
64

10
78
3.
1
9

4
.7
6

5
1
6
3
.3
2

0
.0
0

1
0
4
5
2
.9
6

0
.8
1
1

3
7
6
0
.0
0

20
2.
07

4
24
8.
5
0

2
.4
9

3
1
4
.9
0

0
.0
0

4
4
.7
2

N
A

N
A

A
ve
ra
ge

2.
4
3

4
39
43
.3
9

3
.1
3

2
7
6
5
.4
2

0
.0
0

3
5
6
2
.1
7

0
.5
5

2
2
7
3
.0
0

81

Table 5.27: Complete results UD instances for the subroot hop indexed cutting plane algo-
rithm

Group Q Instance number Bound gap CPU

tc80 5 1 1099 0.00 797.48
2 1100 0.00 454.76
3 1073 0.00 1140.99
4 1080 0.83 3632.92
5 1287 0.70 3609.00

10 1 888 0.90 4838.04
2 877 0.00 93.79
3 878 1.14 3247.60
4 868 0.00 3776.59
5 1002 0.00 3457.97

20 1 834 0.48 650.07
2 820 0.49 391.94
3 828 0.00 34.59
4 820 0.00 39.75
5 916 0.00 265.60

td80 5 1 6068 0.33 4531.67
2 6019 0.22 3989.07
3 5994 0.28 3652.14
4 6012 0.17 3665.81
5 5977 0.17 3642.23

10 1 3223 0.37 4912.60
2 3205 0.00 3718.04
3 3212 0.50 4683.27
4 3203 0.03 18451.66
5 3180 0.53 3030.85

20 1 1832 0.33 628.78
2 1829 0.98 5242.27
3 1839 0.49 6303.54
4 1834 0.60 4064.32
5 1826 0.60 2629.65

te80 5 1 2544 0.00 32714.59
2 2551 0.94 5522.19
3 2612 0.69 5074.56
4 2558 0.90 5521.12
5 2469 0.36 5083.48

10 1 1657 5.37 26899.64
2 1639 5.86 223545.99
3 1687 4.80 57644.98
4 1629 3.93 233945.16
5 1603 3.24 41963.21

20 1 1275 2.82 4510.92
2 1224 2.37 4206.50
3 1267 2.29 4175.73
4 1265 1.74 4156.61
5 1240 1.13 4192.7582

Chapter 6

Conclusions and future research

The CMST is one of the most interesting problems in combinatorial optimization and network
design. Along with the TSP, the CMST is considered to be the core of network systems design
and a wide variety of scheduling and routing applications. In this thesis we focus on the
CMST, for which we develop a heuristic method and present two alternative formulations.
Both formulations are enhanced with a series of valid inequalities and different procedures
are proposed for their separation.

The subroot formulation is the first of the proposed formulations that we have presented.
This formulation is based on identifying a special type of vertices on the network;the sub-
roots, which are the vertices directly connected to the root. This type of formulation is aimed
at tackling problems in which the location of special equipments in a special type of vertices
is of relevance for the design of the network and can be extended in a straight-forward way
to situations where there are fixed costs for locating these equipements or different subroot
locations have associated different capacities.

Using this formulation, some of the already known valid inequalities are extended. Also
new stronger inequalities are presented. These new families of inequalities include the subroot
multistar inequalities, the s-tree multistar inequalities and the subroot rootcutset inequali-
ties. The first two families are separated exactly by solving a maximun flow problem. For
the third family the subroot rootcutset, a heuristic separation procedure is used.

The cutting plane algorithm for this formulation founds good results, although the gap
from the optimal value is not closed in general. A strong point of this algorithm is the
variable elimination procedure, which importantly reduces the number of variables of the
test instances (95.2% and 81.5% for tc and te instances respectively)

The second proposed formulation is the subroot hop indexed formulation, which is able
to obtain better results for the test instances with unitary demands. Extended versions
of the subroot multistar, s-tree multistar and subroot rootcutset inequalities are shown.
Additionally, GSEh and hop ordering inequalities are included for this formulation. We
present exact separation methods for the multistar and s-tree inequalities and heuristic
separation methods for the GSEh and subroot rootcutset inequalities.

The solution algorithm for this formulation also implements a variable elimination pro-
cedure that yields dramatic reductions on the number of variables. Better lower bounds are
obtained using the solution algorithm and for some of the test instances the gap was closed
arriving to the optimal solution.

83

The heuristic method introduced in this thesis, showed to be efficient and robust for
solving instances with both UD and non-UD demands, and Euclidean or non Euclidean
distances, without practically changing the setup parameters.

By comparing several decoders we have seen that way solutions are encoded has an
important effect on the quality of the offspring after crossover. The transmission of genetic
information from parents to their offspring showed to be crucial to obtain good quality results,
although offsprings may represent infeasible solutions, so a feasibility recovery procedure is
needed.

The numerical results presented showed that the BRKGA algorithm is robust, since it
obtains good results either for UD and non-UD, euclidean and non euclidean instances.
These results are obtained in fairly good CPU times (average CPU times are of less than an
hour for the most difficult set of instances).

There are several research opportunities that arise from the results obtained on this thesis
that result of interest for future research. For the BRKGA heuristic, reducing the time of
MST computations is an issue that could lead to important improvements over the CPU
times. The implementation of the BRKGA heuristic to extensions of the problem like the
multilevel capacitated minimum spanning tree, also results of interest for future research.

For the two proposed formulations many interesting possibilities for future arise, like
the adaptation of the subroot hop indexed formulation to work with the general case and
the improvement of the separation methods for the rootcutset and GSEh inequalities. The
improvement of the variable elimination procedure, the inclusion of a customized branch and
bound algorithm to both of the proposed formulations or the use of column generation or
variable aggregation, are interesting issues for future research.

84

References

Ahuja, R. K., J. B. Orlin, and D. Sharma (2001). Multi-exchange neighborhood struc-
tures for the capacitated minimum spanning tree problem. Mathematical Program-
ming 91 (1), 71–97.

Ahuja, R. K., J. B. Orlin, and D. Sharma (2003). A composite very large-scale neigh-
borhood structure for the capacitated minimum spanning tree problem. Operations
Research Letters 31 (3), 185 – 194.

Altinkemer, K. and B. Gavish (1988). Heuristics with constant error guarantees for the
design of tree networks. Management Sci. 34 (3), 331–341. Focussed issue on heuristics.

Amberg, A., W. Domeschke, and S. Vob (1996). Capacitated minimum spanning trees: al-
gorithms using intelligent search. Combinatorial Optimization: Theory and Practice 1,
9–33.

Amberg, A., W. Domeschke, and S. Voß (2000). Multiple center capacitated arc rout-
ing problems: A tabu search algorithm using capacitated trees. European Journal of
Operational Research 124 (2), 360–376.

Araque, J., L. Hall, and T. Magnanti (1990). Capacitated trees, capacitated routing, and
associated polyhedra, technical report sor-90-12. Master’s thesis, Program in Statistics
and Operations Research,Princeton University, Princeton, NJ.

Balakrishnan, A. and K. Altinkemer (1992). Using a hop-constrained model to generate
alternative communication network design. ORSA Journal on Computing 4 (2), 192–
205.

Battarra, M., T. Öncan, I. Altinel, B. Golden, D. Vigo, and E. Phillips (2011). An evo-
lutionary approach for tuning parametric esau and williams heuristics. Journal of the
Operational Research Society 63 (3), 368–378.

Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and optimization.
ORSA journal on computing 6 (2), 154–160.

Chandy, K. M. and T. Lo (1973). The capacitated minimum spanning tree. Networks 3 (2),
173–181.

Chandy, K. M. and R. A. Russell (1972, oct.). The design of multipoint linkages in a
teleprocessing tree network. Computers, IEEE Transactions on C-21 (10), 1062 – 1066.

Christofides, A. (1976). Worst case analysis of a new heuristic for the travelling salesman
problem report 388. Master’s thesis, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA.

85

de Almeida, A., P. Martins, and M. de Souza (2012). Min-degree constrained minimum
spanning tree problem: complexity, properties, and formulations. International Trans-
actions in Operational Research.

de Lacerda, E. and M. de Medeiros (2006). A genetic algorithm for the capacitated min-
imum spanning tree problem. In Evolutionary Computation, 2006. CEC 2006. IEEE
Congress on, pp. 725–729.

Elias, D. and M. Ferguson (1974, nov). Topological design of multipoint teleprocessing
networks. Communications, IEEE Transactions on 22 (11), 1753 – 1762.

Esau, L. and K. Williams (1966). On teleprocessing system design, part ii: A method for
approximating the optimal network. IBM Systems Journal 5 (3), 142–147.

Fernández, E., J. Dı́az, and E. Ruiz (2005). Búsqueda tabú y búsqueda dispersa para el
árbol de expansión capacitado de coste mı́nimo. CEDI 2005 9, 265–279.

Frangioni, A., D. Pretolani, and M. Scutellà (1999). Fast lower bounds for the capaci-
tated minimum spanning tree problem. Technical Report TR-99-05, Dipartamento di
informática, Università di Pisa.

Frederickson, G. N., M. S. Hecht, and C. E. Kim (1976, oct.). Approximation algorithms
for some routing problems. In Foundations of Computer Science, 1976., 17th Annual
Symposium on, pp. 216 –227.

Gamvros, I., B. Golden, and S. Raghavan (2006). The multilevel capacitated minimum
spanning tree problem. INFORMS Journal on Computing 18 (3), 348–365.

Gavish, B. (1982). Topological design of centralized computer networks formulations and
algorithms. Networks 12 (4), 355–377.

Gavish, B. (1983). Formulations and algorithms for the capacitated minimal directed tree
problem. Journal of the Association for Computing Machinery 30 (1), 118–132.

Gavish, B. (1985, dec). Augmented lagrangean based algorithms for centralized network
design. Communications, IEEE Transactions on 33 (12), 1247 – 1257.

Gavish, B. (1989, jan). Topological design of computer communication networks. In System
Sciences, 1989. Vol.III: Decision Support and Knowledge Based Systems Track, Pro-
ceedings of the Twenty-Second Annual Hawaii International Conference on, Volume 3,
pp. 770 –779 vol.3.

Gavish, B. (1991). Topological design of telecommunication networks-local access design
methods. Annals of Operations Research 33, 17–71. 10.1007/BF02061657.

Gavish, B. and K. Altinkemer (1986). Parallel savings heuristics for the topological design
of local access tree networks. In Proceedings of the IEEE Conference on Communica-
tions, pp. 130–139.

Gonçalves, J. and M. Resende (2011). Biased random-key genetic algorithms for combi-
natorial optimization. Journal of Heuristics 17 (5), 487–525.

Gouveia, L. (1993). A comparison of directed formulations for the capacitated minimal
spanning tree problem. Telecommunication Systems 1, 51–76. 10.1007/BF02136155.

Gouveia, L. (1995a). A 2n-constraint formulation for the capacitated minimal spanning
tree problem. Operations Research 43 (1), 130–141.

86

Gouveia, L. (1995b). Using the miller-tucker-zemlin constraints to formulate a minimal
spanning tree problem with hop constraints. Computers & Operations Research 22 (9),
959–970.

Gouveia, L. and M. Lopes (2005). The capacitated minimum spanning tree problem: On
improved multistar constraints. European Journal of Operational Research 160 (1), 47–
62.

Gouveia, L. and P. Martins (2000). A hierarchy of hop-indexed models for the capacitated
minimal spanning tree problem. Networks 35 (1), 1–16.

Gouveia, L. and P. Martins (2005). The capacitated minimum spanning tree problem:
revisiting hop-indexed formulations. Computers & Operations Research 32 (9), 2435–
2452.

Gouveia, L. and J. Paixão (1991). Dynamic programming based heuristics for the topo-
logical design of local access networks. Annals of Operations Research 33 (4), 305–327.

Hall, L. (1996). Experience with a cutting plane algorithm for the capacitated spanning
tree problem. INFORMS Journal on Computing 8 (3), 219–234.

Han, J., G. McMahon, and S. Sugden (2002). A branch and bound algorithm for ca-
pacitated minimum spanning tree problem. In B. Monien and R. Feldmann (Eds.),
Euro-Par 2002 Parallel Processing, Volume 2400 of Lecture Notes in Computer Sci-
ence, pp. 404–407. Springer Berlin / Heidelberg. 10.1007/3-540-45706-2 54.

Karnaugh, M. (1976, may). A new class of algorithms for multipoint network optimization.
Communications, IEEE Transactions on 24 (5), 500 – 505.

Katoh, N., T. Ibaraki, and H. Mine (1981). An algorithm for finding k minimum spanning
trees. SIAM Journal on Computing 10 (2), 247–255.

Kershenbaum, A. (1974). Computing capacitated minimal spanning trees efficiently. Net-
works 4 (4), 299–310.

Kershenbaum, A. and R. R. Boorstyn (1983). Centralized teleprocessing network design.
Networks 13 (2), 279–293.

Kruskal, J. (1956). On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society 7 (1), 48–50.

Laporte., G. and Y. Nobert (1983). A branch and bound algorithm for the capacitated
vehicle routing problem. OR Spectrum 5, 77–85. 10.1007/BF01720015.

Lee, Y. and M. Atiquzzaman (2005). Least cost multicast spanning tree algorithm for local
computer network. Networking and Mobile Computing , 268–275.

Letchford, A., R. Eglese, and J. Lysgaard (2002). Multistars, partial multistars and the
capacitated vehicle routing problem. Mathematical Programming 94 (1), 21–40.

Letchford, A. and J. Salazar-González (2006). Projection results for vehicle routing. Math-
ematical Programming 105, 251–274. 10.1007/s10107-005-0652-x.

Little, J., K. Murty, D. Sweeney, and C. Karel (1963). An algorithm for the traveling
salesman problem. Operations research 11 (6), 972–989.

Malik, K. and G. Yu (1993). A branch and bound algorithm for the capacitated minimum
spanning tree problem. Networks 23 (6), 525–532.

87

Malone, M. and J. C. Bellmore (1971). Pathology of travelling salesman subtour-
elimination algorithms. Operations Research 19 (2), 278–307.

Martins, P. (2007). Enhanced second order algorithm applied to the capacitated minimum
spanning tree problem. Computers & Operations Research 34 (8), 2495–2519.

McGregor, P. and D. Shen (1977, jan). Network design: An algorithm for the access facility
location problem. Communications, IEEE Transactions on 25 (1), 61 – 73.

Mladenović, N. and P. Hansen (1997). Variable neighborhood search. Computers & Oper-
ations Research 24 (11), 1097–1100.

Narula, S. and C. Ho (1980). Degree-constrained minimum spanning tree. Computers &
Operations Research 7 (4), 239–249.

Öncan, T. (2007, oct). Design of capacitated minimum spanning tree with uncertain cost
and demand parameters. Inf. Sci. 177 (20), 4354–4367.

Papadimitriou, C. (1978). The complexity of the capacitated tree problem. Networks 8,
217–230.

Patterson, R., H. Pirkul, , and E. Rolland (1999). A memory adaptive reasoning tech-
nique for solving the capacitated minimum spanning tree problem. Journal of Heuris-
tics 5 (2), 159–180.

Prim, R. (1957). Shortest connection matrix network and some generalizations. Bell system
Tech. J 36, 1389–1401.

Raidl, G. and C. Drexel (2000). A predecessor coding in an evolutionary algorithm for
the capacitated minimum spanning tree problem. In Late Breaking Papers at the 2000
Genetic and Evolutionary Computation Conference, pp. 309–316.

Rego, C. and F. Mathew (2011). A filter-and-fan algorithm for the capacitated minimum
spanning tree problem. Computers & Industrial Engineering 60 (2), 187–194.

Rego, C., F. Mathew, and F. Glover (2010). Ramp for the capacitated minimum spanning
tree problem. Annals of Operations Research 181 (1), 661–681.

Reimann, M. and M. Laumanns (2006). Savings based ant colony optimization for the
capacitated minimum spanning tree problem. Computers & Operations Research 33 (6),
1794–1822.

Sharaiha, Y., M. Gendreau, G. Laporte, and I. Osman (1997). A tabu search algorithm
for the capacitated shortest spanning tree problem. Networks 29 (3), 161–171.

Sharma, R. and M. El-Bardai (1970). Suboptimal communications network synthesis. In
Proceedings of the IEEE International Conference on Communications, Volume 19, pp.
11–16.

Souza, M., C. Duhamel, and C. Ribeiro (2003). A grasp heuristic for the capacitated
minimum spannig tree problem using memory-based local search strategy. Applied
Optimization 86, 627–658.

Spears, W. and K. DeJong (1991). On the virtues of parameterized uniform crossover. In
Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 230–
236.

88

Toth, P. and D. Vigo (1995). An exact algorithm for the capacitated shortest spanning
arborescence. Annals of Operations Research 61, 121–141. 10.1007/BF02098285.

Uchoa, E., R. Fukasawa, J. Lysgaard, A. Pessoa, M. P. de Aragao, and D. Andrade
(2008). Robust branch-cut-and-price algorithm for the capacitated minimum spanning
tree problem over a large extended formulation. Mathematical Programming 112 (2),
443–472.

Uchoa, E., T. A. M. Toffolo, M. C. de Souza, A. X. Martins, and R. Fukasawa (2012).
Branch-and-cut and hybrid local search for the multi-level capacitated minimum span-
ning tree problem. Networks 59 (1), 148–160.

Whitney, V. K. M. (1970). A study of optimal file assignment and communication net-
work configuration in remote-access computer message processing and communication
systems.

Zhang, N. (1993). Facet-defining inequalities for capacitated spanning trees. Master’s the-
sis, Princeton University.

Zhang, R., S. Kabadi, and A. Punnen (2011). The minimum spanning tree problem with
conflict constraints and its variations. Discrete Optimization 8 (2), 191–205.

Zhou, G., Z. Cao, J. Cao, and Z. Meng (2007). A centralized network design problem with
genetic algorithm approach. Computational Intelligence and Security , 123–132.

89

90

Notation and Abbreviations

Notation

b The maximum number of saturated s-trees in S i ∈ I.

c Cost matrix.

cij Distance between vertex i and vertex j

c(T) Cost of T .

d Demand vector.

di Demand associated to terminal i ∈ V +.

d(S) Sum of the demands of the vertices in set S ⊆ V +.

d(Ti) Sum of the demands of the vertices in subtree Ti.

dist(Ti, s-Tk) Minimum distance between subtree Ti and s-tree s-Tk.

n Number of components in the solution vector of an individual.

lj Predecessor list for j.

pe Number of elite individuals.

pm Number of mutants.

s′ Source vertex.

s-Tk s-tree rooted at k.

u′ Sink vertex.

v0 Root vertex.

ρe Probability that an offspring inherits the vector component of its elite parent.

A Set of arcs.

A Set of arcs in auxiliary graph N(x̄, ȳ).

91

E Set of edges in graph GU .

ElitetoEx Number of elite solutions to exchange.

G = (V,A) Directed network without loops.

GU = (V,E) Undirected graph for BRKGA.

ItEX Number of iterations between interchange of elite elements of populations.

ItStop Number of iterations without improvement in the stopping criterion.

L Number of populations.

MaxQ Maximum Value of Capacity Violation for strategic oscillation.

MT (S) Minimum number of s-trees required to accommodate the demand of the vertices
contained in subset S.

N1 Local search neighborhood 1.

N(x̄, ȳ) Auxiliary graph used for inequalities separation procedures.

Q Capacity parameter.

“R()” Feasibility recovery phase for predecessor decoder.

S Subset of vertices.

StopCriterion Stopping rule for BRKGA algorithm.

T Spanning tree subset of A.

Ti Subtree rooted at vertex i.

V Set of vertices.

V Set of vertices in auxiliary graph N(x̄, ȳ).

V+ Set of terminals.

V (Ti) Set of terminals connected by subtree Ti.

X Vector of n random keys.

Z Tree cost.

92

Abbreviations

ACO Ant Colony Optimization

CMST Capacitated Minimum Spanning Tree

CVRP Capacitated Vehicle Routing Problem

ECC Extended Capacity Cuts

ESO Enhance Second Order algorithm

GSE Generalized Subtour Elimination

CPLP Capacitated Plant Location Problem

BRKGA Biased Random Key Genetic Algorithm

HECC Homogeneous Extended Capacity Cuts

LIFO Last Input First Output

LB Lower Bound

LP Linear Programming

LIFO Last Input First Output

MST Minimum Spanning Tree

MIP Mixed Integer Programming

NP-Hard Non Polynomial Hard

Non-UD Non Unitary Demands

GRASP Greedy Randomized Adaptive Search Procedure

LS Local Search

RKGA Random Key Genetic Algorithm

SRHIF Subroot Hop Indexed Formulation

TSP Traveling Salesman Problem

UB Upper Bound

UD Unitary Demands

VLNS Very Large Neighborhood Search heuristic

VNS Variable Neighborhood Search

VRP Vehicle Routing Problem

93

94

List of Figures

1 MST and CMST solution comparison . 3

1.1 Tree T rooted at vertex 0. 6

2.1 Example of hop indexed variables . 16
2.2 Example of violated bin-packing inequalities with UD and Q=5 18
2.3 Example of violated multistar inequalities with UD and Q=5 19
2.4 Example of violated rootcutset inequalities with UD and Q=5 20
2.5 Example of violated GSEh inequalities with UD and Q=5 21

3.1 Auxiliary network for the exact separation of subroot multistar inequalities . 30
3.2 Auxiliary network for the exact separation of s-tree multistar inequalities . . 31
3.3 Vertex shrinking for the separation of subroot rootcutset inequalities 31
3.4 Auxiliary network for the exact separation of extended subroot multistar in-

equalities . 35
3.5 Auxiliary network for the exact separation of extended s-tree multistar in-

equalities . 36
3.6 Auxiliary network for the heuristic separation of GSEh inequalities 36

4.1 Neighborhood N1 , exchange of vertices. 47
4.2 Neighborhood N2 , vertex reassignment. 47
4.3 Neighborhood N3 , sub-tree reassignment. 48
4.4 Neighborhood N4 , s-tree merging. 48

5.1 Histogram of percent deviations of best with respect to worst solution found
in the seven runs. 60

5.2 CPU time increase with instance size for different values of r, the average
number of terminals per tree . 63

5.3 Average CPU times Euclidean between sets tc80 and td80 63

95

96

List of Tables

5.1 Summary of instances characteristics . 54
5.2 Decoders comparison . 55
5.3 Decoders comparison with improvement phase 56
5.4 Results with local search using different neighborhood exploring strategies . . 56
5.5 Results with local search including strategic oscillation 57
5.6 Results including neighborhood reduction . 57
5.7 Strategic oscillation results for cm100 with Q = 200 and cm200 with Q = 400 58
5.8 Parameter settings for the BRKGA framework 59
5.9 Summary BRKGA results . 61
5.10 New best-known solutions . 62
5.11 Comparison of average mean GAP and CPU time by instance group with

state of the art heuristics . 65
5.12 Number of best known solutions found by instance group for each state of the

art heuristic . 66
5.13 Results for UD instances with n = 80 vertices 67
5.14 Results for UD instances with n = 120 and n = 160 vertices 68
5.15 Results for non-UD instances with n = 50, n = 100 and n = 200 vertices . . . 69
5.16 Average percentage deviation for the obtained LB’s 70
5.17 Variable Elimination Comparison for UD instances 72
5.18 Variable elimination of subroot formulation for non-UD instances 72
5.19 Individual effect of each family of valid inequalities 74
5.20 Inequalities combination, effect on the gap by groups of test instances 75
5.21 Summary results for subroot formulation algorithm 75
5.22 Comparison with other formulations . 76
5.23 Complete results for UD instances with 80 vertices using subroot formulation 77
5.24 Complete results for non-UD instances of up to 100 vertices using subroot

formulation . 78
5.25 Summary results for UD instances for subroot hop indexed formulation . . . 79
5.26 Comparison of subroot hop indexed formulation results for UD instances with

other formulations . 81
5.27 Complete results UD instances for the subroot hop indexed cutting plane

algorithm . 82

97

98

List of Algorithms

1 Pseudo-code of the solution algorithm of subroot formulation. 38

2 Pseudo-code for direct assignment decoder. 42
3 Pseudo-code for cost-based assignment decoder. 43
4 Pseudo-code for predecessor assignment decoder. 45
5 Pseudo-code for feasibility recovery procedure. 46
6 Pseudocode for Variable Neighborhood search 49
7 Pseudocode for the final algorithm . 51

99

