937 research outputs found

    Enhanced robot learning using Fuzzy Q-Learning & context-aware middleware

    Get PDF

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Enhanced Living Environments

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area

    Survey Paper Artificial and Computational Intelligence in the Internet of Things and Wireless Sensor Network

    Get PDF
    In this modern age, Internet of Things (IoT) and Wireless Sensor Network (WSN) as its derivatives have become one of the most popular and important technological advancements. In IoT, all things and services in the real world are digitalized and it continues to grow exponentially every year. This growth in number of IoT device in the end has created a tremendous amount of data and new data services such as big data systems. These new technologies can be managed to produce additional value to the existing business model. It also can provide a forecasting service and is capable to produce decision-making support using computational intelligence methods. In this survey paper, we provide detailed research activities concerning Computational Intelligence methods application in IoT WSN. To build a good understanding, in this paper we also present various challenges and issues for Computational Intelligence in IoT WSN. In the last presentation, we discuss the future direction of Computational Intelligence applications in IoT WSN such as Self-Organizing Network (dynamic network) concept

    A COGNITIVE ARCHITECTURE FOR AMBIENT INTELLIGENCE

    Get PDF
    L’Ambient Intelligence (AmI) è caratterizzata dall’uso di sistemi pervasivi per monitorare l’ambiente e modificarlo secondo le esigenze degli utenti e rispettando vincoli definiti globalmente. Questi sistemi non possono prescindere da requisiti come la scalabilità e la trasparenza per l’utente. Una tecnologia che consente di raggiungere questi obiettivi è rappresentata dalle reti di sensori wireless (WSN), caratterizzate da bassi costi e bassa intrusività. Tuttavia, sebbene in grado di effettuare elaborazioni a bordo dei singoli nodi, le WSN non hanno da sole le capacità di elaborazione necessarie a supportare un sistema intelligente; d’altra parte senza questa attività di pre-elaborazione la mole di dati sensoriali può facilmente sopraffare un sistema centralizzato con un’eccessiva quantità di dettagli superflui. Questo lavoro presenta un’architettura cognitiva in grado di percepire e controllare l’ambiente di cui fa parte, basata su un nuovo approccio per l’estrazione di conoscenza a partire dai dati grezzi, attraverso livelli crescenti di astrazione. Le WSN sono utilizzate come strumento sensoriale pervasivo, le cui capacità computazionali vengono utilizzate per pre-elaborare i dati rilevati, in modo da consentire ad un sistema centralizzato intelligente di effettuare ragionamenti di alto livello. L’architettura proposta è stata utilizzata per sviluppare un testbed dotato degli strumenti hardware e software necessari allo sviluppo e alla gestione di applicazioni di AmI basate su WSN, il cui obiettivo principale sia il risparmio energetico. Per fare in modo che le applicazioni di AmI siano in grado di comunicare con il mondo esterno in maniera affidabile, per richiedere servizi ad agenti esterni, l’architettura è stata arricchita con un protocollo di gestione distribuita della reputazione. È stata inoltre sviluppata un’applicazione di esempio che sfrutta le caratteristiche del testbed, con l’obiettivo di controllare la temperatura in un ambiente lavorativo. Quest’applicazione rileva la presenza dell’utente attraverso un modulo per la fusione di dati multi-sensoriali basato su reti bayesiane, e sfrutta questa informazione in un controllore fuzzy multi-obiettivo che controlla gli attuatori sulla base delle preferenze dell’utente e del risparmio energetico.Ambient Intelligence (AmI) systems are characterized by the use of pervasive equipments for monitoring and modifying the environment according to users’ needs, and to globally defined constraints. Furthermore, such systems cannot ignore requirements about ubiquity, scalability, and transparency to the user. An enabling technology capable of accomplishing these goals is represented by Wireless Sensor Networks (WSNs), characterized by low-costs and unintrusiveness. However, although provided of in-network processing capabilities, WSNs do not exhibit processing features able to support comprehensive intelligent systems; on the other hand, without this pre-processing activities the wealth of sensory data may easily overwhelm a centralized AmI system, clogging it with superfluous details. This work proposes a cognitive architecture able to perceive, decide upon, and control the environment of which the system is part, based on a new approach to knowledge extraction from raw data, that addresses this issue at different abstraction levels. WSNs are used as the pervasive sensory tool, and their computational capabilities are exploited to remotely perform preliminary data processing. A central intelligent unit subsequently extracts higher-level concepts in order to carry on symbolic reasoning. The aim of the reasoning is to plan a sequence of actions that will lead the environment to a state as close as possible to the users’ desires, taking into account both implicit and explicit feedbacks from the users, while considering global system-driven goals, such as energy saving. The proposed conceptual architecture was exploited to develop a testbed providing the hardware and software tools for the development and management of AmI applications based on WSNs, whose main goal is energy saving for global sustainability. In order to make the AmI system able to communicate with the external world in a reliable way, when some services are required to external agents, the architecture was enriched with a distributed reputation management protocol. A sample application exploiting the testbed features was implemented for addressing temperature control in a work environment. Knowledge about the user’s presence is obtained through a multi-sensor data fusion module based on Bayesian networks, and this information is exploited by a multi-objective fuzzy controller that operates on actuators taking into account users’ preference and energy consumption constraints

    Ami-deu : un cadre sémantique pour des applications adaptables dans des environnements intelligents

    Get PDF
    Cette thèse vise à étendre l’utilisation de l'Internet des objets (IdO) en facilitant le développement d’applications par des personnes non experts en développement logiciel. La thèse propose une nouvelle approche pour augmenter la sémantique des applications d’IdO et l’implication des experts du domaine dans le développement d’applications sensibles au contexte. Notre approche permet de gérer le contexte changeant de l’environnement et de générer des applications qui s’exécutent dans plusieurs environnements intelligents pour fournir des actions requises dans divers contextes. Notre approche est mise en œuvre dans un cadriciel (AmI-DEU) qui inclut les composants pour le développement d’applications IdO. AmI-DEU intègre les services d’environnement, favorise l’interaction de l’utilisateur et fournit les moyens de représenter le domaine d’application, le profil de l’utilisateur et les intentions de l’utilisateur. Le cadriciel permet la définition d’applications IoT avec une intention d’activité autodécrite qui contient les connaissances requises pour réaliser l’activité. Ensuite, le cadriciel génère Intention as a Context (IaaC), qui comprend une intention d’activité autodécrite avec des connaissances colligées à évaluer pour une meilleure adaptation dans des environnements intelligents. La sémantique de l’AmI-DEU est basée sur celle du ContextAA (Context-Aware Agents) – une plateforme pour fournir une connaissance du contexte dans plusieurs environnements. Le cadriciel effectue une compilation des connaissances par des règles et l'appariement sémantique pour produire des applications IdO autonomes capables de s’exécuter en ContextAA. AmI- DEU inclut également un outil de développement visuel pour le développement et le déploiement rapide d'applications sur ContextAA. L'interface graphique d’AmI-DEU adopte la métaphore du flux avec des aides visuelles pour simplifier le développement d'applications en permettant des définitions de règles étape par étape. Dans le cadre de l’expérimentation, AmI-DEU comprend un banc d’essai pour le développement d’applications IdO. Les résultats expérimentaux montrent une optimisation sémantique potentielle des ressources pour les applications IoT dynamiques dans les maisons intelligentes et les villes intelligentes. Notre approche favorise l'adoption de la technologie pour améliorer le bienêtre et la qualité de vie des personnes. Cette thèse se termine par des orientations de recherche que le cadriciel AmI-DEU dévoile pour réaliser des environnements intelligents omniprésents fournissant des adaptations appropriées pour soutenir les intentions des personnes.Abstract: This thesis aims at expanding the use of the Internet of Things (IoT) by facilitating the development of applications by people who are not experts in software development. The thesis proposes a new approach to augment IoT applications’ semantics and domain expert involvement in context-aware application development. Our approach enables us to manage the changing environment context and generate applications that run in multiple smart environments to provide required actions in diverse settings. Our approach is implemented in a framework (AmI-DEU) that includes the components for IoT application development. AmI- DEU integrates environment services, promotes end-user interaction, and provides the means to represent the application domain, end-user profile, and end-user intentions. The framework enables the definition of IoT applications with a self-described activity intention that contains the required knowledge to achieve the activity. Then, the framework generates Intention as a Context (IaaC), which includes a self-described activity intention with compiled knowledge to be assessed for augmented adaptations in smart environments. AmI-DEU framework semantics adopts ContextAA (Context-Aware Agents) – a platform to provide context-awareness in multiple environments. The framework performs a knowledge compilation by rules and semantic matching to produce autonomic IoT applications to run in ContextAA. AmI-DEU also includes a visual tool for quick application development and deployment to ContextAA. The AmI-DEU GUI adopts the flow metaphor with visual aids to simplify developing applications by allowing step-by-step rule definitions. As part of the experimentation, AmI-DEU includes a testbed for IoT application development. Experimental results show a potential semantic optimization for dynamic IoT applications in smart homes and smart cities. Our approach promotes technology adoption to improve people’s well-being and quality of life. This thesis concludes with research directions that the AmI-DEU framework uncovers to achieve pervasive smart environments providing suitable adaptations to support people’s intentions

    The Internet of Robotic Things:A review of concept, added value and applications

    Get PDF
    The Internet of Robotic Things is an emerging vision that brings together pervasive sensors and objects with robotic and autonomous systems. This survey examines how the merger of robotic and Internet of Things technologies will advance the abilities of both the current Internet of Things and the current robotic systems, thus enabling the creation of new, potentially disruptive services. We discuss some of the new technological challenges created by this merger and conclude that a truly holistic view is needed but currently lacking.Funding Agency:imec ACTHINGS High Impact initiative</p

    User centered neuro-fuzzy energy management through semantic-based optimization

    Get PDF
    This paper presents a cloud-based building energy management system, underpinned by semantic middleware, that integrates an enhanced sensor network with advanced analytics, accessible through an intuitive Web-based user interface. The proposed solution is described in terms of its three key layers: 1) user interface; 2) intelligence; and 3) interoperability. The system’s intelligence is derived from simulation-based optimized rules, historical sensor data mining, and a fuzzy reasoner. The solution enables interoperability through a semantic knowledge base, which also contributes intelligence through reasoning and inference abilities, and which are enhanced through intelligent rules. Finally, building energy performance monitoring is delivered alongside optimized rule suggestions and a negotiation process in a 3-D Web-based interface using WebGL. The solution has been validated in a real pilot building to illustrate the strength of the approach, where it has shown over 25% energy savings. The relevance of this paper in the field is discussed, and it is argued that the proposed solution is mature enough for testing across further buildings
    corecore