2,174 research outputs found

    New Challenges in the Design of Microgrid Systems:Communication Networks, Cyberattacks, and Resilience

    Get PDF

    XSACd—Cross-domain resource sharing & access control for smart environments

    Get PDF
    Computing devices permeate working and living environments, affecting all aspects of modern everyday lives; a trend which is expected to intensify in the coming years. In the residential setting, the enhanced features and services provided by said computing devices constitute what is typically referred to as a “smart home”. However, the direct interaction smart devices often have with the physical world, along with the processing, storage and communication of data pertaining to users’ lives, i.e. private sensitive in nature, bring security concerns into the limelight. The resource-constraints of the platforms being integrated into a smart home environment, and their heterogeneity in hardware, network and overlaying technologies, only exacerbate the above issues. This paper presents XSACd, a cross-domain resource sharing & access control framework for smart environments, combining the well-studied fine-grained access control provided by the eXtensible Access Control Markup Language (XACML) with the benefits of Service Oriented Architectures, through the use of the Devices Profile for Web Services (DPWS). Based on standardized technologies, it enables seamless interactions and fine-grained policy-based management of heterogeneous smart devices, including support for communication between distributed networks, via the associated MQ Telemetry Transport protocol (MQTT)–based proxies. The framework is implemented in full, and its performance is evaluated on a test bed featuring relatively resource-constrained smart platforms and embedded devices, verifying the feasibility of the proposed approac

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms

    Access Control for IoT: Problems and Solutions in the Smart Home

    Get PDF
    The Internet of Things (IoT) is receiving considerable amount of attention from both industry and academia due to the business models that it enables and the radical changes it introduced in the way people interact with technology. The widespread adaption of IoT in our everyday life generates new security and privacy challenges. In this thesis, we focus on "access control in IoT": one of the key security services that ensures the correct functioning of the entire IoT system. We highlight the key differences with access control in traditional systems (such as databases, operating systems, or web services) and describe a set of requirements that any access control system for IoT should fulfill. We demonstrate that the requirements are adaptable to a wide range of IoT use case scenarios by validating the requirements for access control elicited when analyzing the smart lock system as sample use case from smart home scenario. We also utilize the CAP theorem for reasoning about access control systems designed for the IoT. We introduce MQTT Security Assistant (MQTTSA), a tool that automatically detects misconfigurations in MQTT-based IoT deployments. To assist IoT system developers, MQTTSA produces a report outlining detected vulnerabilities, together with (high level) hints and code snippets to implement adequate mitigations. The effectiveness of the tool is assessed by a thorough experimental evaluation. Then, we propose a lazy approach to Access Control as a Service (ACaaS) that allows the specification and management of policies independently of the Cloud Service Providers (CSPs) while leveraging its enforcement mechanisms. We demonstrate the approach by investigating (also experimentally) alternative deployments in the IoT platform offered by Amazon Web Services on a realistic smart lock solution

    Security in Internet of Things: networked smart objects.

    Get PDF
    Internet of Things (IoT) is an innovative paradigm approaching both industries and humans every-day life. It refers to the networked interconnection of every-day objects, which are equipped with ubiquitous intelligence. It not only aims at increasing the ubiquity of the Internet, but also at leading towards a highly distributed network of devices communicating with human beings as well as with other devices. Thanks to rapid advances in underlying technologies, IoT is opening valuable opportunities for a large number of novel applications, that promise to improve the quality of humans lives, facilitating the exchange of services. In this scenario, security represents a crucial aspect to be addressed, due to the high level of heterogeneity of the involved devices and to the sensibility of the managed information. Moreover, a system architecture should be established, before the IoT is fully operable in an efficient, scalable and interoperable manner. The main goal of this PhD thesis concerns the design and the implementation of a secure and distributed middleware platform tailored to IoT application domains. The effectiveness of the proposed solution is evaluated by means of a prototype and real case studies

    Real Time Control for Intelligent 6G Networks

    Get PDF
    The benefits of telemetry for optical networking have been shown in the literature, and several telemetry architectures have been defined. In general, telemetry data is collected from observation points in the devices and sent to a central system running besides the Software Defined Networking (SDN) controller. In this project, we try to develop a telemetry architecture that supports intelligent data aggregation and nearby data collection. Several frameworks and technologies have been explored to ensure that they fit well into the architecture's composition. A description of these different technologies is presented in this work, along with a comparison between their main features and downsides. Some intelligent techniques, aka. Algorithms have been stated and tested within architecture, showing their benefits by reducing the amount of data processed. In the design of this architecture, the main issues related to distributed systems have been faced, and some initial solutions have been proposed. In particular, several security solutions have been explored to deal with threats but also with scalability and performance issues, trying to find a balance between performance and security. Finally, two use cases are presented, showing a real implementation of the architecture that has been presented at conferences and validated within the project's development

    Dependable IPTV Hosting

    Get PDF
    This research focuses on the challenges of hosting 3rd party RESTful applications that have to meet specific dependability standards. To provide a proof of concept I have implemented an architecture and framework for the use case of internet protocol television. Delivering TV services via internet protocols over high-speed connections is commonly referred to as IPTV (internet protocol television). Similar to the app-stores of smartphones, IPTV platforms enable the emergence of IPTV services in which 3rd party developers provide services to consumer that add value to the IPTV experience. A key issue in the IPTV ecosystem is that currently telecommunications IPTV providers do not have a system that allows 3rd party developers to create applications that meet their standards. The main challenges are that the 3rd party applications must be dependable, scalable and adhere to service level agreements. This research provides an architecture and framework to overcome these challenges
    • …
    corecore