
id178086

REAL TIME CONTROL FOR INTELLIGENT 6G
NETWORKS

POL GONZÁLEZ PACHECO

Thesis supervisor: LUIS DOMINGO VELASCO ESTEBAN (Department of Computer Architecture)

Thesis co-supervisor: MARC RUIZ RAMÍREZ (Department of Computer Architecture)

Degree: Master Degree in Innovation and Research in Informatics (Computer Networks and Distributed
Systems)

Thesis report

Facultat d'Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

27/06/2023

Acknowledgements

The research leading to these results has received funding from the
H2020 B5G-OPEN (G.A. 101016663), the European Commission thought
the HORIZON SNS JU DESIRE6G (G.A. 101096466) and the MICINN
IBON (PID2020-114135RB-I00) projects, and from ICREA.

Abstract

The benefits of telemetry for optical networking have been shown in
the literature, and several telemetry architectures have been defined.
In general, telemetry data is collected from observation points in the
devices and sent to a central system running besides the Software De-
fined Networking (SDN) controller. In this project, we try to develop
a telemetry architecture that supports intelligent data aggregation and
nearby data collection. Several frameworks and technologies have been
explored to ensure that they fit well into the architecture’s composi-
tion. A description of these different technologies is presented in this
work, along with a comparison between their main features and down-
sides. Some intelligent techniques, aka. Algorithms have been stated
and tested within architecture, showing their benefits by reducing the
amount of data processed. In the design of this architecture, the main
issues related to distributed systems have been faced, and some initial
solutions have been proposed. In particular, several security solutions
have been explored to deal with threats but also with scalability and
performance issues, trying to find a balance between performance and
security. Finally, two use cases are presented, showing a real imple-
mentation of the architecture that has been presented at conferences
and validated within the project’s development.

Contents

1 Introduction 1

2 Background on Telemetry Systems 5
2.1 SNMP and Telemetry . 5
2.2 Telemetry in B5G and 6G Networks 7
2.3 Telemetry Architectures . 8

2.3.1 Centralized . 8
2.3.2 Distributed . 9
2.3.3 Hierarchical . 9
2.3.4 Comparison . 10

2.4 Communication Technologies . 11
2.4.1 gRPC and gNMI . 11
2.4.2 Apache Kafka . 12
2.4.3 Redis . 13

2.5 Comparison . 15
2.5.1 Purpose . 15
2.5.2 Communication Protocol . 15
2.5.3 Flexibility . 16
2.5.4 Data Types . 16
2.5.5 Extensibility . 16

2.6 Summary . 16

3 Proposed Architecture 17
3.1 Motivation . 17
3.2 Problem Statement . 19
3.3 The network architecture . 21
3.4 The GODAI framework . 22

3.4.1 GODAI node . 23
3.4.2 Data Sources . 32

3.5 Requirements . 32

4 Security in Telemetry Systems 34
4.1 General security requirements . 34
4.2 Security in GODAI . 36

i

CONTENTS ii

5 Use Cases 40
5.1 Intelligent Optical Measurement Aggregation and Streaming Event

Telemetry . 40
5.2 Pervasive Monitoring and Distributed Intelligence for 6G Near Real-

Time Operation . 44

6 Conclusions 48
6.1 Contributions and publications . 49
6.2 Future Work . 49

A Appendix 1: Configuration files 50

Bibliography 53

List of Figures

1.1 Services and use-cases for 6G [2] . 2

2.1 SNMP architecture [5] . 6
2.2 gRPC architecture [6] . 11
2.3 Apache Kafka messaging model [10] 12
2.4 Redis Pub/Sub [13] . 14

3.1 Network Architecture [18] . 21
3.2 GODAI node architecture . 23
3.3 GODAI Web-UI Dashboard . 30
3.4 GODAI Web-UI Topology details . 31
3.5 GODAI Web-UI Nodes configuration 31

4.1 Proposed solution for Secure MAS. [19] 37

5.1 Proposed Telemetry Architecture [24] 42
5.2 Constellation sample (a), autoencoders (b) and supervised features

extraction (c) [18] . 43
5.3 Illustrative scenario supporting en e2e 6G service. [27] 46
5.4 Proposed telemetry and distributed intelligence solution. [27] 47

iii

List of Tables

2.1 Centralized, Distributed and Hierarchical Architectures 10

iv

Acronyms

2FA Two-Factor Authentication. 34

5G Fifth-generation wireless. 1

6G Sixth-generation wireless. i–iii, 1–3, 7, 37, 44, 48, 49

ABAC Attribute-Based Access Control. 35

ACL Access Control List. 35

AE Auto Encoders. 43, 45

AI Artificial Intelligence. 2

AR/VR Augmented/Virtual Reality. 45

B5G Beyond 5G. i, 7, 8, 49

BER Bit Error Rate. 18

BFT Byzantine Fault-Torent. 35

DDoS Distributed Denial of Service. 35, 36

DLT Distributed Ledger Technology. 28, 36–39, 48, 49

DoS Denial of Service. 35

E2E End-to-End. 35, 44, 48

FT Free Text Search. 21

GMM Gaussian Mixture Models. 43

gNMI gRPC Network Management Interface. 11, 12, 15, 16

GODAI Generic mOdule for Distributed Artificial Intelligence. iii, 22–26, 28–33,
36, 40, 44, 48, 49

gRPC Google Remote Procedure Calls. 7, 11, 12, 15, 16, 36, 40–43

v

Acronyms vi

IDE Integrated Development Environment. 32

IDS Intrusion Detection system. 35

IETF Internet Engineering Task Force. 6

INT In-band Network Telemetry. 44

IoT Internet of Things. 7, 9, 34

IP Internet Protocol. 5, 28

IPS Intrusion Prevention Systems. 35

JSON JavaScript Object Notation. 6, 18, 24, 42

LSP Label-Switched Path. 21

MAS Multi-Agent System. iii, 37, 39, 44–46, 48

MB MultiBand. 40

MIB Management Information Base. 5, 6

ML Machine Learning. 20, 41

NOS Network Operating System. 32

OA Optical Amplifiers. 17

OID Object Identifier. 5

OSA Optical Spectrum Analyzer. 17, 18, 21, 41

PKI Public Key Infraestructure. 35

Pub/Sub Publish/Subscribe. iii, 13–16, 22, 24

QAM Quadrature Amplitude Modulation. 43

QoS Quality of Service. 1–3

RAN Radio Access Network. 44, 46

RBAC Role-Based Access Control. 34

REST API Representational State Transfer API. 23–25, 36

ROADM Re-configurable Optical Add-drop Multiplexers. 21

Acronyms vii

RPC Remote Procedure Calls. 11

Rx Receivers. 17, 18

SDN Software Defined Networks. 20, 21, 40–42, 45, 48

SLA Service Level Agreement. 46

SMO Service Management and Orchestration. 46

SNMP Simple Network Management Protocol. iii, 5, 6, 15, 16, 32

SSL/TLS Secure Sockets Layer/Transport Layer Security. 34, 36

TAPI Transport API. 20, 40

TCP Transmission Control Protocol. 7, 15

TS Time Series. 21

Tx Transmitters. 17, 18

UAV Unmanned Aerial Vehicle. 45

UDP User Datagram Protocol. 7, 15

VNF Virtual Network Functions. 44, 45

VXLAN Virtual Extensible Local Area Network. 37, 39

Web-UI Web User Interface. iii, 25, 30, 31, 49

XML eXtensible Markup Language. 6

YANG Yet Another Next Generation. 7, 12, 16

Chapter 1

Introduction

Real-time control will play a crucial role in shaping the intelligence and capabilities
of Sixth-generation wireless (6G) networks, which are set to revolutionize the way
we communicate and interact with technology. As the next generation of wireless
technology, 6G aims to surpass its predecessor, Fifth-generation wireless (5G), in
terms of data speeds, capacity, latency, and connectivity. However, to fully real-
ize the potential of 6G networks and enable innovative applications, sophisticated
real-time control mechanisms are essential. [1] This thesis explores the significance
of real-time control in intelligent 6G networks and examines its key aspects and
implications for the future of communications.

• Resource Management: Real-time control mechanisms in intelligent 6G net-
works facilitate efficient resource management. With the exponential growth
of data and connected devices, the allocation and optimization of network
resources become paramount. Real-time control enables dynamic resource
allocation based on changing network conditions, user demands, and appli-
cation requirements. This ensures that resources such as bandwidth, spec-
trum, and computing power are allocated in an optimal manner, maximizing
network efficiency and delivering a seamless user experience.

• Latency Reduction: One of the defining characteristics of 6G is its ultra-low
latency, enabling near real-time communication. Real-time control mecha-
nisms play a crucial role in reducing latency by optimizing network routing,
minimizing packet loss, and prioritizing critical traffic. These mechanisms
enable mission-critical applications such as remote surgery, autonomous ve-
hicles, and industrial automation, where even milliseconds of latency can
have significant consequences.

• Network Slicing and QoS: Real-time control facilitates network slicing, a
technique that partitions the network into multiple virtual networks tailored
to specific applications or user groups. Each network slice can have its Qual-
ity of Service (QoS) characteristics, allowing for customized service delivery
based on specific requirements. Real-time control enables the dynamic cre-

1

Introduction 2

ation, management, and optimization of network slices, ensuring the appro-
priate allocation of resources and QoS guarantees for diverse applications.

• AI-Driven Control: The integration of Artificial Intelligence (AI) into real-
time control mechanisms further enhances the intelligence of 6G networks.
AI algorithms can analyze vast amounts of data in real-time, enabling predic-
tive and proactive decision-making. AI-driven control mechanisms can dy-
namically adapt to changing network conditions, predict network demands,
and optimize resource allocation. By leveraging AI, real-time control in 6G
networks becomes more autonomous, self-optimizing, and capable of pro-
viding personalized services to users.

• Security and Privacy: Real-time control also plays a vital role in ensuring the
security and privacy of 6G networks. As the number of connected devices
and the volume of sensitive data increases, the network must be capable
of identifying and mitigating security threats in real-time. Real-time con-
trol mechanisms can monitor network traffic, detect anomalies, and initiate
prompt security measures to safeguard the network and user data.

• Energy Efficiency: Intelligent real-time control mechanisms contribute to the
energy efficiency of 6G networks. By monitoring and managing network re-
sources in real-time, power consumption can be optimized based on demand
and network conditions. Real-time control enables intelligent sleep modes,
adaptive transmission power control, and efficient resource utilization, re-
sulting in reduced energy consumption and environmental impact.

Figure 1.1: Services and use-cases for 6G [2]

Telemetry is a key element in 6G networks by enabling the collection, monitoring,
and analysis of data from various network components and devices.[3] It provides

Introduction 3

real-time insights into network performance, resource utilization, and user behav-
ior, allowing for intelligent decision-making and optimization. In the context of
6G networks, telemetry holds significant importance in several areas:

• Network Performance Monitoring: Telemetry allows network operators to
continuously monitor and assess the performance of 6G networks. It pro-
vides real-time visibility into metrics such as latency, throughput, packet loss,
and network congestion. By collecting and analyzing this data, operators can
identify bottlenecks, optimize network configurations, and ensure optimal
performance for various applications and services.

• QoS Management: Telemetry enables the measurement and monitoring of
QoS parameters in 6G networks. It helps ensure that specific performance
requirements, such as latency, jitter, and reliability, are met for different appli-
cations and services. By actively monitoring QoS metrics, network operators
can proactively detect and address issues that may impact user experience
and take corrective actions to maintain desired service levels.

• Security and Anomaly Detection: Telemetry plays a critical role in network
security by providing real-time insights into potential threats and anomalies.
By monitoring network traffic and behavior, telemetry can identify patterns
indicative of security breaches, unauthorized access attempts, or abnormal
activities. This early detection enables rapid response, allowing network op-
erators to mitigate risks, safeguard sensitive data, and ensure the integrity of
6G networks.

• Network Planning and Optimization: Telemetry data is instrumental in net-
work planning and optimization for 6G deployments. It provides valuable
information about coverage, signal strength, and user density, helping op-
erators identify areas for network expansion, capacity upgrades, and infras-
tructure optimization. By analyzing telemetry data, operators can make in-
formed decisions regarding the placement of base stations, antenna config-
urations, and network densification, ensuring optimal coverage and perfor-
mance.

In conclusion, telemetry plays a vital role in 6G networks by enabling real-time
monitoring, analysis, and optimization. It empowers network operators to proac-
tively manage network performance, allocate resources efficiently, detect security
threats, enhance user experiences, and optimize network planning. By harnessing
telemetry data, 6G networks can deliver superior performance, adapt to dynamic
requirements, and support the diverse range of applications and services envi-
sioned for the future.

In this project, we try to analyze the existing telemetry technologies in modern
networks as well as the already defined architectures for telemetry in networks.
With this knowledge, we will try to build a novel distributed telemetry architec-
ture enabling real-time control in 6G networks. Furthermore, this architecture has

Introduction 4

to be flexible to be suitable for numerous types of scenarios, depending on the re-
quirements and the available resources. For this reason, not only an architecture
has to be designed, but also a framework has to be available to anyone wanting
to build their own architecture based on their needs. This framework/architecture
should include the new technologies available right now, such as machine learning
algorithms, distributed system patterns, containerization, etc.

This is a summary of the main objectives or contributions to be achieved in this
work:

• Analyze the existing telemetry technologies and their architectures.

• Analyze the needs of 6G services in future networks and the key enablers of
them.

• Design, build, and test a new telemetry architecture enabling the previously
studied requirements.

• Build use cases to validate this novel architecture.

The remainder of the document is organized as follows: In Chapter 2, several
telemetry technologies and architectures are analyzed and compared to witness
their main benefits and disadvantages. In Chapter 3, the problem statement is pre-
sented, as well as the network architecture and the proposed architecture to solve
this problem. Chapter 4 focuses on the security aspects of telemetry systems, in
particular the one developed in this work. In Chapter 5, two use cases where the
new architecture is used are presented to showcase the main benefits and capabil-
ities of the newly developed architecture. Finally, in Chapter 6, some conclusions
and final thoughts are shared to summarize the whole work done.

Chapter 2

Background on Telemetry Systems

2.1 SNMP and Telemetry

Simple Network Management Protocol (SNMP) is an application-layer protocol
that facilitates the exchange of management information between network devices
and a central management system.[4] It operates on the Internet Protocol (IP) suite
and allows administrators to monitor and control network devices, such as routers,
switches, and servers, regardless of their geographical location.

SNMP utilizes a client-server model, where SNMP agents reside on managed de-
vices, and SNMP managers control and monitor these agents. Agents collect and
store management information, which can be accessed by managers through re-
quests and notifications.

The SNMP architecture comprises three main components:

• SNMP Managers: SNMP managers are the centralized control systems re-
sponsible for monitoring and managing network devices. They send requests
to SNMP agents and receive responses containing management data. Man-
agers can retrieve information, configure device settings, and receive event
notifications from agents.

• SNMP Agents: SNMP agents are software modules residing on managed
devices, such as routers, switches, or servers. They collect and store man-
agement information, respond to SNMP manager requests, and send notifi-
cations known as traps or informs. Agents maintain a Management Infor-
mation Base (MIB), which is a hierarchical database that organizes the data
accessible through SNMP.

• MIB: The MIB is a structured collection of managed objects that represent
various aspects of a network device. It organizes information into a tree-like
structure, with each object having a unique identifier called an Object Identi-
fier (OID). The MIB defines the available parameters and their corresponding
data types that can be accessed through SNMP. Standard MIBs are defined

5

2.1. SNMP AND TELEMETRY 6

by organizations such as the Internet Engineering Task Force (IETF), while
device vendors can also provide custom MIBs.

Figure 2.1: SNMP architecture [5]

SNMP operations involve the exchange of messages between SNMP managers and
agents. The most common SNMP operations are:

• Get: The SNMP manager sends a Get request to an agent to retrieve the value
of one or more specific variables in the MIB. The agent responds with a Get
Response message containing the requested values.

• Set: The SNMP manager uses the Set operation to modify the value of one
or more variables in the agent’s MIB. The agent processes the request and
returns a Set Response message indicating the success or failure of the oper-
ation.

• GetNext: The GetNext operation allows the SNMP manager to retrieve the
next variable in the MIB, relative to a specified variable. This operation is
useful for traversing the MIB tree and retrieving multiple variables.

• Trap/Inform: Agents can proactively send unsolicited notifications to man-
agers using traps or informs. Traps are one-way notifications that do not
require a response, while informs are similar but expect an acknowledgment
from the manager. Traps and informs are typically sent to alert managers
about critical events, such as device failures or excessive network traffic.

On the other hand, we find streaming network telemetry which uses a push model
instead of the pull model used by SNMP. This push model enables continuous
high resolution device operational data sent to a network management system.
This method allows sending data at a higher rate and lower impact, as it does not
need to create a request each time the data wants to be retrieved. Then data is con-
figured to be streamed with a periodic cadence that could be sub-second if needed.

The data can be encoded in different formats including eXtensible Markup Lan-
guage (XML), JavaScript Object Notation (JSON) or Google protocol buffers (also

2.2. TELEMETRY IN AND NETWORKS 7

known as protobuf). In the case of the transport protocol it can be either Transmis-
sion Control Protocol (TCP) or User Datagram Protocol (UDP), it is frequently used
with Google Remote Procedure Calls (gRPC) [6] which efficiently conveys data
from one device to another. Model-driven telemetry is based on Yet Another Next
Generation (YANG) models that can simplify the selection of data to stream. The
definition and implementation of these models is held by the OpenConfig working
group that is standardizing models to access a bunch of different network devices.

This new methodology of retrieving data also has new implications, as the data
streamed from a moderately sized network can be huge. Such quantity of data
may require big data storage and processing mechanisms to aggregate or extract
valuable information of it. A proper configuration in terms of cadence and volume
is required by network managers to not overwhelm the capabilities of the network
itself.

2.2 Telemetry in B5G and 6G Networks

As the demand for faster and more reliable wireless communication continues to
grow, the development of Beyond 5G (B5G) networks has emerged. These net-
works aim to provide unprecedented levels of connectivity and performance, en-
abling a wide range of applications and services. Central to the success of B5G net-
works is the implementation of robust telemetry architectures. Telemetry refers to
the automated collection and transmission of data from remote devices or systems.
In the context of B5G networks, telemetry architectures play a vital role in mon-
itoring and managing network infrastructure, optimizing performance, and en-
hancing the overall user experience. These architectures leverage advanced tech-
nologies and techniques to enable real-time data gathering, analysis, and decision-
making. [7]

One of the key features of telemetry architectures in B5G networks is their abil-
ity to collect data from a multitude of network elements and devices. These can
include base stations, access points, edge servers, Internet of Things (IoT) devices,
and even user equipment. This comprehensive data collection allows network
operators and administrators to have a holistic view of the network’s health, per-
formance, and utilization. In B5G networks, telemetry architectures often rely on
a combination of sensors, probes, and monitoring agents deployed throughout the
network infrastructure. These components continuously gather various metrics,
such as signal quality, traffic load, latency, packet loss, and energy consumption.
The collected data is then aggregated and transmitted to a centralized manage-
ment system for analysis and processing.

To facilitate the transmission of telemetry data, B5G networks utilize high-speed
and low-latency communication technologies. These can include advanced wire-
less protocols like millimeter-wave (mmWave) and terahertz (THz) bands, as well

2.3. TELEMETRY ARCHITECTURES 8

as optical fiber networks. By leveraging these technologies, telemetry architectures
can ensure timely and efficient data delivery, enabling near real-time monitoring
and decision-making.

Moreover, telemetry architectures in B5G networks often incorporate advanced
analytics and machine learning algorithms. These technologies enable the identifi-
cation of patterns, anomalies, and performance trends within the collected teleme-
try data. By leveraging such insights, network operators can proactively detect
and mitigate issues, optimize resource allocation, and deliver enhanced quality of
service to end-users. Another important aspect of telemetry architectures in B5G
networks is their scalability and flexibility. As B5G networks are designed to sup-
port a massive number of devices and applications, telemetry systems must be
capable of handling large volumes of data and dynamically adapting to changing
network conditions. This scalability allows operators to effectively monitor and
manage networks with diverse requirements and traffic patterns.

2.3 Telemetry Architectures

Telemetry architectures define how to collect, process and analyze data from vari-
ous sources in a systematic and efficient manner. Different telemetry architectures
are designed to meet specific requirements and address different use cases.[8]

2.3.1 Centralized

A centralized telemetry architecture involves a monitoring system where teleme-
try data from diverse network elements is collected, processed, and analyzed in
a centralized location. This architecture centralizes the telemetry data collection
from base stations, routers, switches, and core network elements, ensuring a com-
prehensive view of the network. The collected data is transmitted to a central
telemetry server, where it is stored and processed.

The centralized telemetry server employs sophisticated analytics tools and algo-
rithms to extract valuable insights from the collected data. This allows for efficient
network optimization, proactive troubleshooting, and performance monitoring.
Network administrators and operators can access a unified dashboard or interface
to visualize and analyze the telemetry data in real-time, enabling them to make
informed decisions and take necessary actions promptly.

By utilizing a centralized telemetry architecture, network operators can gain a
holistic understanding of their network’s health and performance. This facilitates
the identification and resolution of issues quickly, optimizes network efficiency,
and aids in effective network planning and expansion. Additionally, centralized
telemetry architecture enables efficient resource allocation, load balancing, and ca-
pacity management across the network, leading to improved reliability and overall

2.3. TELEMETRY ARCHITECTURES 9

user experience.

2.3.2 Distributed

A distributed telemetry architecture is a monitoring and management system that
decentralizes the collection, processing, and analysis of telemetry data across mul-
tiple network elements. Unlike centralized architecture, where data is aggregated
in a single location, distributed telemetry architecture distributes these tasks closer
to the data sources. Telemetry data is collected from individual network devices,
such as base stations, routers, switches, and core network elements, and processed
locally within each device or at edge computing nodes. This approach reduces the
amount of data transmitted across the network and minimizes latency.

By distributing telemetry data processing, distributed telemetry architecture en-
ables real-time monitoring and decision-making at the edge of the network. Local-
ized analytics tools and algorithms extract insights from the telemetry data, allow-
ing for faster detection of anomalies and immediate response to network events.
The distributed nature of the architecture also improves fault tolerance and re-
silience, as the failure of a single component does not disrupt the entire monitoring
system. Operators and administrators can still access a centralized management
system to oversee the distributed telemetry architecture. This system provides a
unified view of the network, consolidating information from various distributed
nodes. It allows for centralized configuration management, policy enforcement,
and reporting.

A distributed telemetry architecture offers advantages such as reduced network
congestion, lower latency, improved scalability, and enhanced resilience. It en-
ables efficient monitoring and management of large-scale networks, particularly
in scenarios where real-time decision-making and rapid response are critical, such
as in autonomous vehicles, industrial IoT deployments, and mission-critical appli-
cations.

2.3.3 Hierarchical

A hierarchical telemetry architecture is a monitoring and management system that
organizes telemetry data collection, processing, and analysis in a hierarchical struc-
ture. This architecture divides the network into multiple tiers or levels, each re-
sponsible for specific data aggregation and analysis tasks.

At the lower tier, telemetry data is collected from individual network devices such
as base stations, routers, switches, and core network elements. These devices lo-
cally process and aggregate the data before transmitting it to a higher-level aggre-
gation point or node in the hierarchy. This aggregation helps reduce the amount
of data transmitted and enhances efficiency.

2.3. TELEMETRY ARCHITECTURES 10

The intermediate tiers in the hierarchy further aggregate and analyze the teleme-
try data from lower-level nodes. They perform additional processing, filtering, and
correlation to derive meaningful insights and detect anomalies or performance is-
sues. This hierarchical approach enables a scalable and distributed telemetry in-
frastructure.

Finally, at the top tier, a centralized management system receives the aggregated
telemetry data from all lower levels. The centralized systems employ advanced an-
alytics tools and algorithms to generate comprehensive reports, perform in-depth
analysis, and visualize the network’s overall performance. Network operators and
administrators can access a unified dashboard or interface to monitor and manage
the entire network.

The hierarchical telemetry architecture offers several benefits, including scalabil-
ity, efficient data aggregation, and optimized resource utilization. It allows for
localized processing and analysis, reducing network congestion and latency. Fur-
thermore, the hierarchical structure enables fault isolation and resilience, as issues
can be detected and resolved at different levels of the architecture without impact-
ing the entire system.

2.3.4 Comparison

The table defined in [8] summarizes the main features, strengths and weaknesses
of the three previous described architectures.

Table 2.1: Centralized, Distributed and Hierarchical Architectures

2.4. COMMUNICATION TECHNOLOGIES 11

2.4 Communication Technologies

The choice of transport protocol depends on factors such as data volume, real-time
requirements, reliability, and security considerations. It’s worth noting that the
choice of transport protocol may vary depending on the specific telemetry appli-
cation, network requirements, and interoperability considerations. The selection
of the appropriate transport protocol ensures efficient and reliable transmission of
telemetry data.

2.4.1 gRPC and gNMI

gRPC and gNMI are two interconnected technologies that play significant roles in
network applications, particularly in network management and communication.

gRPC, short for Google Remote Procedure Call, is an open-source Remote Pro-
cedure Calls (RPC) framework developed by Google.[6] It facilitates communica-
tion between different systems and services by defining the structure of messages
and methods exchanged between them. gRPC supports multiple programming
languages such as C++, Java, Python, and Go, allowing developers to create in-
teroperable applications across different platforms. It utilizes HTTP/2 as the un-
derlying transport protocol, which brings several advantages including high per-
formance, multiplexing, header compression, and server-side streaming. This en-
ables efficient and scalable communication between clients and servers. gRPC also
offers bidirectional streaming, allowing both the client and server to send multi-
ple messages asynchronously, making it well-suited for real-time communication
scenarios. Additionally, gRPC provides built-in support for authentication mecha-
nisms and load balancing strategies, ensuring secure and reliable communication
between systems.

Figure 2.2: gRPC architecture [6]

gNMI, which stands for gRPC Network Management Interface, is a protocol
that leverages gRPC as the transport mechanism for network management and
telemetry operations.[9] It aims to simplify the management and monitoring of
network devices by providing a standardized interface for accessing operational

2.4. COMMUNICATION TECHNOLOGIES 12

state, configuration, and telemetry data. gNMI follows a model-driven approach
using the Yet Another Next Generation (YANG) modeling language, which allows
for the definition of data models and schemes for network resources. This enables
a standardized representation of network configurations and operational states
across different devices and vendors. With gNMI, network management systems
can easily retrieve and modify configuration parameters of network devices, en-
suring consistency and ease of management. It also supports streaming telemetry,
where network devices can continuously send operational data and statistics to
management systems in real-time. This facilitates advanced monitoring, analysis,
and troubleshooting capabilities for network administrators.

By combining the power of gRPC and gNMI, network applications can benefit
from efficient and standardized communication between systems. gRPC provides
a robust and flexible framework for inter-service communication, while gNMI en-
ables simplified network management and telemetry operations. Together, they
offer a comprehensive solution for building scalable, interoperable, and manage-
able network applications.

2.4.2 Apache Kafka

Apache Kafka is an open-source distributed event streaming platform that has
gained significant popularity in recent years.[10] It was originally developed at
LinkedIn to address the challenges of handling large-scale real-time data process-
ing. Kafka provides a highly scalable, fault-tolerant, and durable messaging sys-
tem that enables the efficient and reliable transfer of data between different sys-
tems and applications.

At its core, Kafka follows a publish-subscribe messaging model, where data is or-
ganized into topics. Producers, also known as publishers, write messages to these
topics, and consumers, or subscribers, read and process these messages. Kafka
ensures that messages are stored in an append-only log, retaining the order of
arrival and guaranteeing durability. This log-based architecture makes Kafka an
ideal choice for real-time streaming applications, where high-throughput and low-
latency data processing are essential.

Figure 2.3: Apache Kafka messaging model [10]

2.4. COMMUNICATION TECHNOLOGIES 13

One of the key features of Kafka is its ability to handle massive volumes of
data. It is designed to be horizontally scalable, allowing it to handle high traffic
loads and seamlessly distribute data across multiple brokers, which are the nodes
in a Kafka cluster. Kafka clusters can be easily expanded or contracted to accom-
modate changing data demands, making it an ideal choice for dynamic and rapidly
growing data environments.

Another important aspect of Kafka is its fault tolerance and resilience. Data in
Kafka is replicated across multiple brokers, providing high availability and pre-
venting data loss in the event of failures. Kafka also supports automatic leader
election, ensuring that data continues to be available for consumption even if a
broker goes down. This fault-tolerant design makes Kafka a robust and reliable
platform for mission-critical applications.

Kafka also offers strong durability guarantees. Once data is written to a topic, it is
persisted to disk, making it durable and allowing for efficient replay of messages.
This durability is especially important in scenarios where data needs to be stored
and retained for long periods, such as compliance and audit requirements. In ad-
dition to its core messaging capabilities, Kafka provides a rich set of features and
integration options. It supports stream processing with Kafka Streams, allowing
developers to build real-time applications that process and transform data streams
in a scalable and fault-tolerant manner. Kafka Connect provides a framework for
easily integrating Kafka with external systems, enabling seamless data pipelines
between different applications and data sources.

Overall, Apache Kafka has emerged as a leading technology for building scalable,
real-time data pipelines and event-driven architectures.[11] Its high throughput,
fault tolerance, durability, and versatility make it well-suited for a wide range of
use cases, including real-time analytics, log aggregation, data integration, and mes-
saging systems. With a vibrant community and strong ecosystem support, Kafka
continues to evolve and innovate, empowering organizations to harness the power
of data and build robust, scalable, and event-driven applications.

2.4.3 Redis

Redis is an open-source, in-memory data structure store that serves as a highly ef-
ficient and versatile tool for caching, messaging, and real-time data processing.[12]
It is designed for high performance and low latency, making it a popular choice for
various use cases where speed and scalability are crucial. Redis utilizes key-value
pairs to store data in memory, allowing for lightning-fast access and retrieval. It
supports a wide range of data structures, including strings, lists, sets, sorted sets,
hashes, and more, enabling developers to model complex data and perform ad-
vanced operations.

One of Redis’s notable features is its Publish/Subscribe (Pub/Sub) messaging sys-

2.4. COMMUNICATION TECHNOLOGIES 14

tem. Redis Pub/Sub allows for asynchronous communication between different
components of an application, or even separate applications altogether. It operates
based on the Pub/Sub, where publishers send messages to specific channels, and
subscribers receive those messages from the subscribed channels. Channels serve
as communication pathways, acting as intermediaries for message broadcasting.

With Redis Pub/Sub, publishers and subscribers can decouple their interactions,
creating a highly flexible and scalable architecture. Publishers can send messages
to channels without needing to know who or how many subscribers exist. Sub-
scribers, on the other hand, can subscribe to multiple channels, allowing them to
receive relevant messages based on their interests. This loose coupling enables a
high degree of flexibility and extensibility, making it easy to add new publishers
or subscribers without impacting the existing components.

Figure 2.4: Redis Pub/Sub [13]

Redis Pub/Sub supports both one-to-one and one-to-many messaging scenar-
ios. In a one-to-one scenario, a publisher sends a message to a specific channel,
and only the subscriber(s) listening to that channel will receive the message. In
a one-to-many scenario, a publisher sends a message to a channel, and multiple
subscribers listening to the same channel will all receive the message concurrently.
This allows for efficient broadcasting of messages to a group of subscribers with
minimal overhead.

In addition to the basic publish and subscribe operations, Redis Pub/Sub offers
additional functionality to enhance the messaging system. This includes the ability
to pattern subscribe, where subscribers can use wildcard patterns to match multi-
ple channels for receiving messages. It also supports unsubscribing from channels,
enabling dynamic subscription management based on changing requirements. Re-
dis Pub/Sub also provides the capability to persist messages by leveraging Redis’
persistence mechanisms, allowing subscribers to retrieve missed messages upon
re-connection.

Overall, Redis and its Pub/Sub messaging system provide a powerful and effi-
cient solution for building scalable and real-time applications. Its in-memory na-
ture, extensive data structures, and the ability to handle high volumes of concur-
rent operations make Redis a popular choice for caching, session management,

2.5. COMPARISON 15

and more. With Redis Pub/Sub, developers can create loosely coupled and flexi-
ble systems, enabling efficient message broadcasting and real-time communication
between various components of an application or even different applications in a
distributed environment.

2.5 Comparison

In order to compare the different features and downsides of each proposed tech-
nology, a comparison is presented in terms of: purpose, communication protocols,
flexibility, data types and extensibility.

2.5.1 Purpose

While SNMP and gNMI are also used for managing and configuring network de-
vices, Apache Kafka and Redis Pub/Sub feature are completely focused on mes-
saging offering real-time streaming communications between publishers and sub-
scribers. In this sense, gRPC it is not just the communication framework used
by gNMI, but a great option to take into consideration while building distributed
systems with heterogeneous requirements. For this reason, we can clearly differ-
entiate the technologies that could be more useful for exchanging information be-
tween different agents and which technologies could be more useful to configure
network devices or get their operational status.

Said that, it is known that the actual paradigm of telemetry relies more on stream-
ing telemetry than pull based telemetry, which is the one used in SNMP and gNMI
primarily. For that, Apache Kafka and gRPC are becoming more and more rele-
vant as most telemetry architectures are based in this second premise.

Finally, Redis is seen as multipurpose software in this specific use case, as it can be
used for different purposes. His principal commitment is to be an in-memory key-
based database, and it is frequently used as a cache behind databases. However,
its Pub/Sub feature allows us to use Redis as message broker, keeping at the same
time the other features that include. For this reason, Redis is being used widely
thanks to its flexibility, performance and reduced resource requirements.

2.5.2 Communication Protocol

In general, all available options offer Transmission Control Protocol (TCP) or User
Datagram Protocol (UDP) as available transport protocol. gRPC features HTTP/2
protocol for communication enabling to set up several TCP connections at the same
time, increasing the data rate the data could be sent.

2.6. SUMMARY 16

2.5.3 Flexibility

In terms of flexibility, gRPC supports various programming languages and pro-
vides code generation capabilities for client and server stubs, making it easier to
integrate different services. gNMI provides a standardized interface for network
management, making it easier to configure and monitor network devices from dif-
ferent vendors. Redis and Apache Kafka both support many programming lan-
guages, and client libraries are available and documented to be used in almost any
device.

2.5.4 Data Types

gRPC uses Protocol Buffers (protobufs) for defining service interfaces and data
serialization. It supports structured data and message passing between services.
However, a static definition of the data exchanged has to be setup and any further
change implies recompiling the model. gNMI uses YANG data models for defin-
ing the structure and semantics of configuration and operational data exchanged
between the network management system and devices. These YANG models can
add complexity, but also offers a standard and general way to access the data con-
veyed by different network devices belonging to different vendors. Redis Pub/Sub
and Apache Kafka support various data types, including strings, hashes, lists, sets,
and more, allowing flexibility in message content.

2.5.5 Extensibility

gRPC allows for defining service methods, error handling, and custom metadata
for advanced functionality. gNMI extends its capabilities by defining custom YANG
data models for specific device configurations and monitoring requirements. Kafka
offers an ecosystem of connectors and client libraries for integration with various
data sources, sinks, and processing frameworks. Redis Pub/Sub can be extended
with Redis Lua scripting and other Redis features for more advanced Pub/Sub
functionalities.

2.6 Summary

In summary, SNMP is primarily used for network management and monitoring,
gRPC and gNMI are focused on efficient communication and management of dis-
tributed systems and network devices, Apache Kafka is designed for real-time data
pipelines and streaming applications, and Redis Pub/Sub provides a lightweight
messaging system for Pub/Sub communication.

Chapter 3

Proposed Architecture

3.1 Motivation

The concept of the 5 V’s in big data pertains to five essential qualities that aid in
describing and comprehending the attributes of extensive and intricate datasets.
These 5 V’s serve as a framework for comprehending the distinctive features of
big data and the difficulties linked to it. To fully utilize the immense potential of
big data for their business goals, organizations must effectively tackle these as-
pects.

Let’s provide the example in [14] of the optical core network for a national tele-
com operator to illustrate each of the 5 V’s. We will consider a core mesh network
consisting of 50 optical nodes, where the average number of connections per node
is 3. In this scenario, each node is connected to every other node in the network
through a single optical connection, or lightpath. Consequently, the network sup-
ports a total of 2,450 unidirectional lightpaths, requiring an equal number of Trans-
mitters (Tx) and Receivers (Rx) to facilitate communication.

Furthermore, we assume that we can gather telemetry data from various com-
ponents within the network. This includes the Tx, Rx, Optical Amplifiers (OA)
located in the nodes, which compensate for filtering and fiber attenuation (total-
ing 300 OAs), and Optical Spectrum Analyzer (OSA) installed in each optical link
throughout the network (totaling 150 OSAs).

• Volume: Suppose we gather measurements every second. In that case, the
mentioned network produces 15.64 terabytes (TB) of data per day, which
amounts to 5.58 petabytes (PB) per year. This data must be gathered, trans-
mitted to the central telemetry system, stored in a data lake, and analyzed.

• Velocity: Collecting measurements at a frequency of one per second neces-
sitates additional prerequisites concerning data collection from devices and
its transfer to the centralized telemetry system. For instance, when consid-
ering optical devices that produce substantial measurements (such as OSAs

17

3.1. MOTIVATION 18

and optical receivers), high-speed data interfaces are required. For instance,
OSAs would necessitate 150 kilobits per second (kb/s) interfaces, while Rx
would require 640 kb/s interfaces. These speeds are based on the assumption
that measurements are generated as a continuous stream of floating-point
numbers. However, once collected, these measurements are usually format-
ted, such as into a JSON object, which increases their size. In this particu-
lar scenario, each node agent responsible for gathering local telemetry data,
formatting it, and transmitting it to the centralized telemetry system would
generate approximately 40 megabits per second (Mb/s). As a result, the cen-
tralized system would receive a total of 1.9 gigabits per second (Gb/s) of
telemetry data.

• Variety: There are six defined measurements that involve combinations of in-
dividual magnitudes and related value vectors. Furthermore, unstructured
data from various systems, including events, is gathered, necessitating dis-
tinct processing methods. All of these diverse data types must be promptly
processed, analyzed, and interconnected. For example, by examining spec-
trum measurements taken from nodes along a light path and analyzing IQ
constellations in the Rx, it becomes possible to identify and locate the source
of a sudden increase in the Bit Error Rate (BER) observed in the Rx.

• Veracity: Making informed and sound choices requires having comprehen-
sive and accurate information. Data, in order to be beneficial, must possess
certain qualities, such as accuracy, freedom from errors, reliability, consis-
tency, lack of bias, and completeness. There are various factors that can taint
data, including: i) irrelevant information that distorts the data; ii) outliers
that cause the dataset to deviate from its usual patterns; iii) software vul-
nerabilities that could lead to data manipulation; and iv) statistical data that
misrepresents a specific network resource.

• Value: Converting telemetry data into meaningful insights is crucial to fully
harness the advantages it offers for network automation. There are various
ways in which operators can derive value from telemetry data, including: i)
decreasing network margins; ii) automating service provisioning; iii) enhanc-
ing resource utilization and minimizing operational expenses; iv) prolonging
the lifespan of network equipment; v) identifying soft-failures before they es-
calate into hard failures; vi) simplifying maintenance by finding root cause
of failures and scheduling works; and many others.

Let us challenge some of the previous assumptions aiming at bringing require-
ments to the telemetry architecture:

1. Various measurements require distinct collection frequencies, which may vary
or occur asynchronously. For example, Tx settings are established during
connection setup or triggered by specific events, whereas the laser’s temper-
ature does not undergo rapid changes.

3.2. PROBLEM STATEMENT 19

2. Typically, storing every measurement without significant changes is not ben-
eficial. Nevertheless, in order to identify noteworthy variations in a specific
measurement, an analysis must be conducted. This analysis should ideally
take place early in the telemetry pipeline, such as at the node level, in or-
der to minimize the amount of data transmitted to the centralized telemetry
system.

3. Compression techniques, which can be either lossy or lossless, can be ex-
plored to reduce bandwidth requirements.

4. Based on the previous two problems, it is advisable to introduce decentraliza-
tion in telemetry systems. It would be beneficial to conduct certain data pro-
cessing and analysis at the individual nodes. However, this analysis could be
coordinated by a centralized entity operating at a higher level, which would
have a comprehensive perspective of the entire network.

5. It is important to ensure the accuracy of data throughout the telemetry pipeline
and remove any data that appears to be contaminated. This can be done by
identifying samples that deviate from the statistical trends observed in previ-
ous measurements. Such deviations may indicate outliers or anomalies. The
point of detection can be either localized, such as identifying an issue with
the gain of an amplifier, or centralized, where correlation with other measure-
ments is necessary. An example of centralized detection is when spectrum
measurements along a lightpath route need to be analyzed together.

6. The extraction of value from data in the telemetry pipeline should be priori-
tized without delay. For instance, it is preferable to identify any degradation
issues directly within the network node itself rather than waiting for the cen-
tralized telemetry system to detect them from the data collected. Neverthe-
less, there are situations where it becomes essential to analyze and correlate
data from various network nodes in order to derive meaningful insights and
extract value from the data.

In conclusion, to reduce the impact of the 5 V’s, intelligence can be applied along
the telemetry pipeline, which needs to be extended with new elements where
telemetry measurements can be processed.

3.2 Problem Statement

The automation and management of optical networks necessitate the monitoring
of network devices to detect potential issues and guarantee the reliability of ser-
vices, particularly optical connectivity. To achieve this, extensive telemetry data
must be collected from various sources, providing detailed measurements and
events. However, due to the abundance and diversity of telemetry sources, as well
as the size of each data point, meeting these requirements becomes challenging
without significant investments. In this study, we examine the primary drawbacks

3.2. PROBLEM STATEMENT 20

of centralized data analysis systems in telemetry architectures and propose an al-
ternative approach: a distributed intelligence architecture.

Telemetry is a significant area of study, and as a result, there is a wealth of research
available on the subject [15], uncovering its advantages in optical networking, such
as network automation and failure management. Similarly to Big Data, telemetry
data in optical networks consist of a compilation of data from various sources and
can be characterized using the 5 V’s, which represent volume, velocity, variety, ve-
racity, and value. [14] These characteristics can be visualized as different levels of
a pyramid:

1. At the base of the pyramid, volume pertains to the size and quantity of data
that must be gathered and analyzed.

2. Velocity denotes the speed at which data are collected, stored, and managed.
Volume and velocity together impose requirements that require careful con-
sideration. For instance, in some cases, it may be preferable to have a limited
amount of real-time data rather than a large amount of data at a slow speed.

3. Variety encompasses the diversity and range of different data types and sources.

4. Veracity is associated with the quality, accuracy, and reliability of data and
data sources, and it holds the utmost importance among the 5 V’s for achiev-
ing business success.

5. Value, positioned at the pinnacle of the pyramid, signifies the capacity to
convert data into valuable insights.

Numerous telemetry frameworks have been described in the available literature
[16]. Generally, telemetry measurements are obtained from various points of ob-
servation within network devices and transmitted to a central system that operates
alongside the SDN controller. This setup establishes a telemetry pipeline that con-
sists of two primary components: data collectors responsible for gathering mea-
surements from observation points in devices, and a centralized telemetry system
that stores and processes the received data. The underlying concept of this design
is to collect and store as much data as possible, with the expectation that it can be
utilized by network automation systems, such as those based on Machine Learn-
ing (ML) [17].

Simultaneously, events produced by applications and platforms such as SDN con-
trollers and management systems can be employed to maintain consistency across
systems. Rather than using traditional notifications, an event streaming mecha-
nism is offered as an alternative. This streaming capability, separate from Trans-
port API (TAPI) notifications, is specifically designed to handle large volumes of
data and offer an enhanced operational method. Within this framework, any part
of the SDN control plane can serve as a source of event telemetry, which must
be transported and distributed without any modifications to other systems in the
control and management planes.

3.3. THE NETWORK ARCHITECTURE 21

3.3 The network architecture

Figure 3.1 illustrates the reference network scenario, where a SDN architecture is
responsible for controlling various optical nodes, including optical transponders
(TP) and Re-configurable Optical Add-drop Multiplexers (ROADM), within the
data plane. It is important to note that the SDN architecture can have a hierarchical
structure, consisting of different controllers such as optical line systems and parent
SDN controllers. To manage the telemetry aspects, there is a centralized telemetry
manager that handles the reception, processing, and storage of telemetry data in
a telemetry database (telemetry DB). This database comprises two repositories: i)
The measurements DB, which is a Time Series (TS) database, stores measurement
data. ii) The events DB, which functions as a Free Text Search (FT) engine.

Furthermore, the telemetry data can be exported to other external systems, such
as through Kafka. Some data exchange is required between the SDN control and
the telemetry manager. For example, the telemetry manager needs access to the
topology database (topology DB), which describes the optical network’s topology,
and the Label-Switched Path (LSP) database (LSP DB), which describes the optical
connections. It is important to note that these databases are not shown in Figure
3.1 for simplicity.

Each individual node in the data plane is under the local management of a node
agent, as depicted in Figure 3.1. The node agent is responsible for converting
control messages received from the corresponding SDN controller into actions
within the local node. Furthermore, the node agent contains data source adaptors,
which gather measurements from observation points (labeled as M) found in op-
tical nodes or specific optical devices such as OSAs. It also consists of a telemetry
agent that handles and exports telemetry data to the telemetry manager. Addition-
ally, events labeled as E can be gathered from applications and controllers.

Figure 3.1: Network Architecture [18]

3.4. THE GODAI FRAMEWORK 22

3.4 The GODAI framework

Generic mOdule for Distributed Artificial Intelligence (GODAI) is a framework
allowing to run distributed systems and integrating intelligence in them offering
a flexible and Plug-and-Play experience. This framework has been developed in
Python, and it can be run in a Docker container, using any of the deployment tools
available such as Kubernetes, Docker Swarm or Docker-Compose. Some of the
main features that GODAI offers are:

• Decoupled architecture: The framework allows building hierarchical and/or
distributed architectures as all the nodes can communicate with each other.

• High modularity: Any piece of code running in a GODAI node can be seen
as a component which can be inserted or removed from the node as needed.

• Easy to integrate: Existing code in Python can be easily integrated in a GO-
DAI component.

• Flexible communications: Internal and external communications can be re-
configured dynamically to enable or disable streaming telemetry in real-time.

• Portability:The nodes forming the GODAI architecture can be deployed us-
ing Docker containers and can be ported to any environment with Docker
installed.

• Lightweight: A GODAI node needs few resources in terms of CPU and RAM
(a standalone node consumes around 50 MB and 100 MB).

This framework is intended to be suitable in different scenarios where distributed
computing is needed. This can include several use cases, as the trend right now
is to move towards a more distributed and closer to the edge computing. With
this new trend, decisions can be taken faster, and we could potentially make bet-
ter decisions based on collaborative work between the different agents joining the
system. This implies many applications such as federated learning, distributed
telemetry architectures, multi agents systems, etc. Developers could use this frame-
work to integrate their own algorithms and interfaces to create their own edge
computing agents.

These architecture uses the different communication patters to exchange informa-
tion. Firstly, we have what we call the internal communication, which is the one
that is done between the different elements inside a GODAI node. This communi-
cation uses a Pub/Sub pattern where publishers push messages to a topic where
subscribers will receive their messages. Secondly, there is the external communi-
cation that is done through a gRPC interface with a common schema that sends all
the information as a stream of bytes, enabling interoperability and compression.
This communication is done between the GODAI nodes while exchanging infor-
mation that has to be processed. This framework allows running more interfaces

3.4. THE GODAI FRAMEWORK 23

if needed, enabling communication with a many types of external services. For
instance, the Management Interface is a Representational State Transfer API (REST
API) exposing methods to interact with a GODAI node to change its operational
state and retrieve information about it.

In the context of the next generation of communications, such frameworks will
enable new technologies that now are limited but the existing architectures and
the connectivity required to run distributed computational workloads with high
requirements in terms of flexibility. Also, it is mandatory to take into account the
portability and integration ease to made it available to any operator willing to use
this framework in their environments.

3.4.1 GODAI node

A GODAI node can be seen as the unit working piece of software of the frame-
work, several GODAI nodes can be instantiated and connected to build distributed
systems architectures. Each of these nodes is built with different microservices in-
terconnected that are in charge of the different functionalities offered. These nodes
are highly configurable and can be instantiated easily with Docker.

The main purpose of these GODAI nodes is to offer a common environment where
algorithms and services can be deployed to process incoming data and to com-
municate with other nodes if needed. Following, there is an explanation of the
microservices conforming the GODAI node.

Figure 3.2: GODAI node architecture

Redis DB

One Redis DB is deployed for each GODAI node, as the main purpose of it is to
enable the internal communication between the different components and services

3.4. THE GODAI FRAMEWORK 24

in the GODAI node. For this reason, the Pub/Sub feature included in Redis is used
to expose topics where components can subscribe and where other components
can send messages. In Redis Pub/Sub, there are two main entities: publishers and
subscribers.

• Publishers: Publishers are responsible for sending messages to Redis chan-
nels. A channel is a logical grouping or topic to which messages are pub-
lished. Publishers don’t receive any feedback or acknowledgment about the
delivery of messages. They simply publish messages to specific channels
without any knowledge of who, if anyone, is listening.

• Subscribers: Subscribers express their interest in receiving messages from
one or more channels. They subscribe to the channels they want to listen to
and Redis delivers messages published to those channels to the subscribers.
Subscribers can listen to multiple channels simultaneously.

It’s important to note that Redis Pub/Sub does not provide durability or persis-
tence for messages. Once a message is published and delivered to subscribers,
Redis does not retain a copy of the message. If a subscriber is not actively listen-
ing at the time of message publication, the message will not be received. Redis
Pub/Sub is commonly used for real-time messaging, event-driven architectures,
and building scalable systems where different components need to communicate
asynchronously.

Manager

The manager service is the main service of the GODAI node, which oversees the
rest of the services running inside the node. This service reads a configuration file
in JSON format and starts the configuration of the rest of the services and tries
to deploy and configure the demanded components defined in the configuration.
The configuration is done in three steps:

1. Deployment of the Management Interface: A REST API allowing the inter-
action with the GODAI node from the outside.

2. Deployment of the Security Manager: Service managing all the security pro-
cedures done inside the GODAI node.

3. Deployment of the components: Every module defined inside the configu-
ration file is deployed and configured. This may include algorithms as well
as services or interfaces.

Once the deployment and configuration is finished, the GODAI node connects to
the Redis DB and subscribes to some of the available topics. This enables the inter-
nal communication between the different services and the manager. At this point
the manager is ready to receive any further action that could include reconfigura-
tion of any component, deployment of new components or receiving a signal to
stop its operation. An example of a configuration file is provided in the Appendix
1.

3.4. THE GODAI FRAMEWORK 25

Management Interface

The Management Interface is a REST API using the Flask framework that exposes
several methods to interact with the GODAI node from the outside. The purpose
of this interface is to enable communication from external systems to a GODAI
node to perform an action related to the state and configuration of the different
modules. The also available Web User Interface (Web-UI) interacts with this REST
API in order to perform actions and to retrieve information about the operational
state of the different nodes in the system. In particular, the following methods are
available:

GET /ping
ping a GODAI node

Response application/json
200 ok

1 {
2 "message": "\acrshort{godai} node running"
3 }
4

404 Connection error
1 {
2 "message": "\acrshort{godai} node unreachable"
3 }
4

3.4. THE GODAI FRAMEWORK 26

GET /getComponents
Retrieve information of the running components from a GODAI node

Response application/json
200 ok

1 {
2 "components": {
3 "component-1": {
4 "state": "running"
5 }
6 }
7 }
8

404 Connection error
1 {
2 "message": "Cannot retrieve components from the \

acrshort{godai} node"
3 }
4

GET /getKeys
Retrieve keys from the Manager Node

Response application/json
200 ok

1 {
2 "keys": {
3 "godai-node-1": {
4 "key": "asdlfLfYX!02343412"
5 }
6 }
7 }
8

404 Connection error
1 {
2 "message": "Cannot retrieve keys from the Manager"
3 }
4

3.4. THE GODAI FRAMEWORK 27

POST /component/{action}
perform an action in the selected component

Parameter
action action to be performed in a component: includes deploy,

reconfigure, start and stop
componentName name of the component

Response application/json
200 ok

1 {
2 "state": deployed,
3 }
4

404 error: action could not be performed
1 {
2 "message": "start on component-1 failed!"
3 }
4

POST /postKey
Post a key to the Manager node

Parameter
no parameter

Body application/json

1 {
2 "godai-node-1": {
3 "key": "asdlfLfYX!02343412"
4 }
5 }
6

Response application/json
200 ok

1 {
2 "message": Key received successfully
3 }
4

3.4. THE GODAI FRAMEWORK 28

More methods are still in a development phase and include the option to up-
load packages to a GODAI node to be executed.

Security Manager

The Security Manager is the main service in charge of the security in a GODAI
node. Its main purpose is to handle the key management of the node and to re-
ceive the keys of the other nodes. With this key exchange, we can establish secure
communication between the different GODAI nodes. However, this implies the
existence of a central Manager Node that has to store all the keys from the rest of
the nodes and distribute them. The standalone operation in a normal deployment
include the following steps:

1. The GODAI nodes sends their keys to the Manager GODAI node. The Man-
ager stores all the keys matching with the name and IP address of the node.

2. The GODAI nodes schedule every X seconds a call to the Manager to get all
the keys.

3. The GODAI nodes receive the DB of keys and are able to encrypt/decrypt
messages to send/receive messages from the other nodes.

Even though this practically works, it implies that one of the GODAI nodes has to
perform the role of a central Manager, which can lead to performance issues and
includes an overhead associated to all the messages sent to achieve a consensus.
For this reason, a new procedure to secure the GODAI nodes has to be explored.
In this case the use of a Distributed Ledger Technology (DLT) can suit well as we
can have a distributed authority that is in charge of the key distribution and for
this the Manager role is no longer needed. An initial proposal on how to achieve
this has been described in [19] and it is longer explained in the security chapter.

Components

The components or modules are the computational units running inside the GO-
DAI node. These can be described as algorithms, interfaces or services processing
data or offering more capabilities to a node. In fact, we can see a module as any
package/class that can be run. The existing limitations on which type of code
can be run inside a GODAI node are based on the programming language. In the
time when this thesis has been written, only code written in Python is compatible
with a GODAI node. However, existing libraries providing bindings from other
programming languages can be implemented and more of these of programming
language could be used in the future.

To write a module of GODAI and avoid the complexity of setting up all the en-
vironment, a base class has been provided. This base class named "Component"
takes care of all the configuration and initialization of the communication inside

3.4. THE GODAI FRAMEWORK 29

the GODAI node and provides functions that can be overwritten to suit the needs
of the application. Here is a description of the three most important functions of
the Component class:

• run: This function is not usually overwritten, as its purpose is to connect to
the Redis DB and subscribe to a topic. Incoming data is then conveyed into
the module calling the process_data function.

1 def run(self):
2 sub = self.redis_client.pubsub(ignore_subscribe_messages=

True)
3 sub.subscribe(self.topic)
4 self.initialization()
5 self.logger.info(self.logheader + " subscribed to topic:" +

self.topic)
6 while True:
7 message = sub.get_message()
8 if message is not None and isinstance(message, dict):
9 self.process_data(json.loads(message["data"]))

10 time.sleep(0.001)
11

• process_data: The process_data function receives the data and is the entry
function to the module where the actual functionality can be implemented.
To send the data to any other module, the send_data can be called.

1 def process_data(self, data):
2 msg = self.logheader + "Component is an abstract class"
3 self.logger.critical(msg)
4 raise GodaiException(msg)
5

• send_data: The send_data function receives the processed data and checks
the recipients where to send the data based in already defined workflows.
The data is published in the selected topics.

1 def send_data(self, data):
2 data_json = json.dumps(data)
3 if data["header"]["workflow"] in self.workflows:
4 recipients = self.workflows[data["header"]["workflow"]]
5 for output in recipients:
6 output = self.nodeName+"/"+output
7 self.logger.debug(self.logheader + "sending message

to " + str(output))
8 self.redis_client.publish(output, data_json)
9

As stated before, any user willing to use its own module inside a GODAI node has
to inherit the Component class and overwrite the mentioned functions. At this mo-
ment this only applies to code written in Python, but further compatibility could

3.4. THE GODAI FRAMEWORK 30

be provided in the future. An example of the configuration of some components is
provided in the Appendix 1.

Web-UI

A web interface has been developed to enhance the interactivity with the GODAI
nodes and bring a graphical interface to display the operational status. This web
interface has been developed using the Django framework, which a web frame-
work written in Python that is widely used and includes many features as tem-
plates, high scalability and a fast development.

This graphical include several views with operational information regarding the
GODAI nodes deployed. It also may include information about the data sources
that inject data to the GODAI nodes. Several actions can be performed in this
GODAI nodes as stated in the Management Interface definition done before. The
main dashboard shows a summary of the elements running in the system and their
relation, as well as a diagram showing graphically the relation between the data
sources and the GODAI nodes deployed. A notification system is implemented to
show the user any change produced in the system as well as failure management
messages to inform in the case of any malfunctioning.

Figure 3.3: GODAI Web-UI Dashboard

The topology can be seen in detail as well as the GODAI node configuration
that can edited if needed.

3.4. THE GODAI FRAMEWORK 31

Figure 3.4: GODAI Web-UI Topology details

Figure 3.5: GODAI Web-UI Nodes configuration

The web interface is still in an early stage of development, and few function-
alities are available at this moment. However, as more complex scenarios and re-
quirements appear, new functionalities have to be developed. Some of them may
include: GODAI node deployment, connection establishment, data source deploy-
ment, more complex workflows’ definition, among others.

3.5. REQUIREMENTS 32

3.4.2 Data Sources

In telemetry on network devices, data sources play a vital role in providing valu-
able insights into the performance, health, and behavior of network infrastructure.
These sources encompass a multitude of components and systems within a net-
work environment. One of the primary data sources is network equipment itself,
such as routers, switches, and firewalls. These devices generate telemetry data
that includes network traffic statistics, interface utilization, error rates, packet loss,
and other performance metrics. They offer granular visibility into the network’s
behavior and help identify bottlenecks, congestion, or potential security issues.

In addition to network equipment, monitoring agents or probes deployed strate-
gically across the network serve as another critical data source. These agents col-
lect data on network latency, round-trip times, network topology, and protocol-
level details. They continuously monitor network traffic, capture packets, and ex-
tract relevant information for analysis. These agents can also provide real-time
alerts and notifications when anomalies or performance deviations are detected.
Moreover, network telemetry data can be derived from Network Operating Sys-
tem (NOS) and management platforms. These systems aggregate data from vari-
ous network devices, providing a centralized view of network health and perfor-
mance. They collect and consolidate data from network device logs, SNMP traps,
flow data, and other sources, offering a comprehensive picture of the network en-
vironment.

In this context, GODAI offers a general schema to allow data sources to export data
easily to a GODAI node. Besides this flexibility GODAI also includes security fea-
tures that control the flow of data of the different data sources. Only verified data
sources are allowed to convey data to a selected GODAI node. Periodical checks
are done on data sources to ensure the trustworthiness of the data conveyed.

In summary, data sources in telemetry on network devices encompass a diverse
range of components, systems, and external sources. By harnessing these sources,
network administrators and analysts can gain comprehensive visibility into net-
work performance, security, and user experience, enabling them to proactively
monitor, troubleshoot, and optimize network infrastructure.

3.5 Requirements

There exists two main ways to deploy a GODAI node, with different requirements
and purposes. In both cases, a Redis DB must be deployed alongside to enable the
communication between the internal components.

The first way is to run a GODAI node as a single script directly from the com-
mand line or using any Integrated Development Environment (IDE) that is able

3.5. REQUIREMENTS 33

to run Python scripts. In this case, the only requirement is to have the Python in-
terpreter installed, as well as needed packages within the code. Essentially, Redis
and Flask are the minimum requirements to run a GODAI node without using any
other external package in any of the modules. This first method is intended to be
used while debugging the functionality of the GODAI node as well as the new de-
veloped and integrated modules. This can allow the developer to set breakpoints
as needed to debug any issue that may occur.

The second way to run a GODAI node is inside a Docker container (among other
containerization solutions) to be deployed then in an environment with Docker in-
stalled or a Kubernetes cluster. To do so, a Docker image is provided including all
the required packages to be installed and containing the source code of the GODAI
node code. Any additional module or file can be mounted as a directory to be then
consumed by the GODAI node. This second way of deploying a GODAI node
targets production environments where we may want to deploy several GODAI
nodes at the same time. Having the application containerized allows us to scale
up or scale down the number of GODAI nodes easily and to issue new deploy-
ments easily. In this case, the only requirements are to have installed the Docker
container engine, which is installable in almost every modern operating system.

Chapter 4

Security in Telemetry Systems

4.1 General security requirements

Distributed systems are a fundamental part of modern computing, encompassing
networks of interconnected computers or nodes that work together to achieve a
common goal. These systems are widely used in various domains, including cloud
computing, IoT, and large-scale data processing. However, the distributed nature
of these systems introduces unique security challenges that must be addressed to
ensure the integrity, confidentiality, and availability of data and resources. This
chapter explores the importance of security in distributed systems, examines po-
tential vulnerabilities, and presents best practices for securing these complex envi-
ronments. Some of the existing security challenges in distributed systems are:

1. Network Communication: Distributed systems rely on network communi-
cation for data exchange among nodes. This introduces the risk of eavesdrop-
ping, data interception, and unauthorized access. Ensuring secure communi-
cation through encryption protocols, such as Secure Sockets Layer/Transport
Layer Security (SSL/TLS), can mitigate these risks and protect data confiden-
tiality.

2. Authentication and Authorization: In a distributed system, it is essential to
establish the identity of nodes and users and grant appropriate access priv-
ileges. Robust authentication mechanisms, such as mutual authentication,
Two-Factor Authentication (2FA), or digital certificates, are crucial for veri-
fying the identities of communicating entities. Access control mechanisms,
such as Role-Based Access Control (RBAC), should be implemented to au-
thorize and restrict actions based on predefined policies.

3. Data Integrity and Consistency: Maintaining data integrity and consistency
in distributed systems is challenging due to the potential for concurrent up-
dates and network delays. Techniques such as cryptographic hashing, digital
signatures, and consensus algorithms (e.g., Paxos or Raft) can be employed
to ensure the integrity and consistency of data across distributed nodes.

34

4.1. GENERAL SECURITY REQUIREMENTS 35

4. Fault Tolerance and Availability: Distributed systems are designed to be
fault-tolerant and provide high availability. However, malicious actors can
exploit vulnerabilities to disrupt system operation, resulting in Denial of Ser-
vice (DoS) attacks or compromising data availability. Implementing redun-
dancy, load balancing, and Distributed Denial of Service (DDoS) mitigation
techniques can help mitigate these risks and ensure system availability.

5. Scalability and Trust Management: As distributed systems grow in scale,
managing trust becomes a significant challenge. Nodes may join or leave
the system dynamically, making it crucial to establish trust relationships and
handle trust management effectively. Public Key Infraestructure (PKI), de-
centralized identity management, and reputation-based systems can aid in
managing trust in large-scale distributed environments.

With this security requirements [20], we can also describe the technologies and
techniques ensuring that none of this security threatens can happen in distributed
systems.

1. Encryption and Secure Communication: Implementing End-to-End (E2E)
encryption using strong encryption algorithms and secure communication
protocols is crucial to protect data confidentiality and integrity. Encryption
should be applied not only to data in transit, but also to data at rest within
distributed storage systems.

2. Secure Access Control: Applying granular access control policies based on
the principle of least privilege helps prevent unauthorized access and re-
duces the attack surface. Access Control List (ACL), capabilities-based se-
curity models, and Attribute-Based Access Control (ABAC) mechanisms can
be employed to enforce access control in distributed systems.

3. Intrusion Detection and Monitoring: Deploying Intrusion Detection system
(IDS) and Intrusion Prevention Systems (IPS) within distributed systems al-
lows for the timely detection and mitigation of security breaches. Real-time
monitoring of system logs, network traffic, and application-level events can
provide insights into potential security incidents.

4. Data Replication and Backup: Data replication across distributed nodes en-
hances fault tolerance and data availability. However, it is essential to ensure
that replicated data remains consistent and secure. Employing secure replica-
tion techniques, such as Byzantine Fault-Torent (BFT) algorithms or erasure
coding, along with regular data backups, can mitigate the risk of data loss or
compromise.

5. Secure Software Development: The distributed nature of systems intro-
duces additional complexities in software development. Following secure
coding practices, conducting regular code reviews, and performing compre-
hensive security testing, including penetration testing and vulnerability as-
sessments, are essential to identify and remediate software vulnerabilities.

4.2. SECURITY IN GODAI 36

Security is a vital aspect of distributed systems, given their complex and intercon-
nected nature. By implementing encryption and secure communication, robust
authentication and access control mechanisms, intrusion detection and monitor-
ing systems, and resilient data replication and backup strategies, organizations
can enhance the security posture of their distributed systems. Furthermore, adher-
ing to secure software development practices, preparing incident response plans,
and complying with industry regulations contribute to a comprehensive security
framework for distributed systems, safeguarding data and ensuring the reliability
and availability of these critical computing environments.

4.2 Security in GODAI

Security in GODAI is defined in all the different aspects that implies running a dis-
tributed system. Following there is a description of the different security measures
applied and which type of threatens tries to avoid:

• Secure REST API: The REST API for managing the nodes is running a web
server with SSL/TLS enabled in order to secure all the communications done
through this interface. Credentials has to be provided in order to execute any
action inside a GODAI node.

• Secure broker in gRPC interface: A security broker is deployed in each
gRPC interface that is exposed in order to ensure that the receiving data is
coming from trusted data sources or nodes. All data coming from not veri-
fied sources is automatically discarded, however a banning system has to be
developed to avoid DDoS attacks on the interfaces. As well as the REST API
the communication is encrypted using SSL/TLS.

• Protected internal communication: The internal communication is as well
protected using the same procedures in the two methods explained before.
Authentication and SSL/TLS is ensured so just the internal components of
the GODAI node are available to exchange messages.

These measures ensure the secure communication between all the elements in the
infrastructure. However, the certificate and key management implies having a
central authority or manager in charge of this. As we want to be as distributed
as possible some alternatives has been studied to avoid a central point of failure.
In this sense, DLT had acquired notoriety due its features and its distributed na-
ture.[21]

Secure distributed systems leverage distributed ledger technology, such as blockchain,
to establish trust, transparency, and immutability across a network of participants.
These systems operate on a decentralized architecture, eliminating the need for a
central authority and relying on a consensus mechanism to validate transactions
and maintain the integrity of the data. The distributed ledger serves as a shared

4.2. SECURITY IN GODAI 37

and synchronized record of all transactions or information within the network.
Each transaction is recorded in a block, which is then cryptographically linked
to the previous block, creating a chain of blocks that form the blockchain. This
chaining mechanism makes it exceedingly difficult for malicious actors to alter or
tamper with the data since any modifications would require changing the entire
chain, which would be computationally infeasible.

Secure distributed systems using distributed ledger technology find applications
across various industries. In finance, blockchain-based systems enable secure and
transparent peer-to-peer transactions, reducing the reliance on traditional interme-
diaries. In supply chain management, distributed ledgers enable traceability and
provenance, helping to prevent counterfeiting and ensuring product authenticity.
In healthcare, these systems enhance the security and privacy of patient data, facil-
itating secure sharing of medical records and streamlining processes. Overall, the
integration of secure distributed systems with distributed ledger technology offers
a robust and resilient infrastructure that promotes trust, security, and efficiency in
diverse domains.

The work presented in [19] tries to define a series of measures to secure Multi-
Agent System (MAS) in the context of real-time control of 6G services. The pro-
posed improvements in terms of security are the following: secure execution mon-
itoring, DLT for non-real-time secure MAS management, Virtual Extensible Local
Area Network (VXLAN) for near real-time secure MAS operation. The following
figure shows how these measures fits in the already described architecture.

Figure 4.1: Proposed solution for Secure MAS. [19]

Secure Execution Monitoring

In order to enhance their ability to withstand different attacks and build trust in
a timely manner, it is necessary to strengthen agents and closely monitor their

4.2. SECURITY IN GODAI 38

activities. For this purpose, we propose implementing a set of initial measures
based on well-established evidence, including:

1. Assessing the agents’ actual performance to determine their effectiveness.

2. Verifying the authentication process of agents during their startup phase to
ensure their legitimacy.

3. Conducting integrity checks on the agents’ most recent execution to ensure
their reliability.

These methods can also be utilized to explicitly indicate any deviations from the
normal control flow of the agents. As a result, some modifications to the agents’
software are required to implement these changes.

In figure 5.4(A) we can whiteness the process of loading original agents into a bi-
nary hardening tool and converting them into protected versions. These protected
variants are designed to withstand attempts to compromise their confidentiality
and integrity. Additionally, they are continuously monitored by connecting them
to a ledger.

To ensure the overall integrity of the global agent, several criteria are evaluated.
Firstly, it checks whether the agent has been tampered with through interception
before being loaded. Secondly, it verifies that the agent has not been tampered
with through local memory introspection during its execution. Lastly, it confirms
that the agent is actively running. This last criterion helps detect denial of service
attacks on the agent or its platform by monitoring resource depletion. The moni-
toring process provides regular updates on the integrity and activity status of the
agents to an application running in the service orchestrator (labeled as B in Figure
5.4).

DLT for Non-Real-Time Secure MAS Management

We depend on a lightweight application-based DLT overlay to ensure a high level
of trust among agents. This involves receiving and processing new software marks
that determine trustworthiness, delivered by a binary hardening tool. The DLT
reflects the health status of the agents. DLTs possess characteristics that make
them well-suited for facilitating dynamic associations and exchanging keys/se-
crets among multiple agents. Alongside the service orchestrator, agents can dy-
namically join the DLT (represented as "C" in Figure 1), and smart contracts can
be utilized to govern and monitor each dynamic association between agents. For
effective communication, a service level agreement can be established for each as-
sociation to monitor the required service level. When a newly created agent is
discovered, its enrollment and retirement from the group of consensus-validated
agents are initiated. Additionally, any changes to the trustworthiness elements of
an agent are handled in a desynchronized manner to avoid delays in establishing
communication links between agents.

4.2. SECURITY IN GODAI 39

VXLAN for Near Real-Time Secure MAS Operation

Using a DLT-based solution for communication between agents would introduce
a delay in message exchange, which would hinder the ability to operate services in
near real-time. To address this issue, we suggest combining DLT with VXLAN [22]
to minimize any additional delay. The DLT exchange would be kept offline, while
VXLANs would be utilized for communication in real-time among the agents (rep-
resented as D in Figure 1). VXLAN is a technology that encapsulates network traf-
fic, allowing the creation of an overlay network on top of a physical network, thus
providing a virtualized environment with a service abstraction layer. This solution
offers fast deployment and the ability to create numerous networks concurrently
(simultaneous segments).

Simultaneously, VXLAN raises security issues, including the potential for unau-
thorized devices to join multicast groups and introduce counterfeit data. Encryp-
tion protocols like IPsec offer a solution by encrypting both the content and the in-
ner headers, mitigating the risk of rogue activities when compared to application-
level encryption protocols in real-time scenarios. To minimize encryption-related
delays and facilitate verification and tracking of communications by other MAS
agents, our implementation incorporates the use of pre-shared secrets. However,
this approach necessitates an authentication infrastructure to enable authorized
agents to acquire and distribute these secrets.

We depend on DLT for this objective. Specifically, the inherent security charac-
teristics of DLTs can be utilized to securely oversee VXLANs as communication
channels among agents, once the agreement between them is reached. It should be
noted that the choice of consensus mechanism only affects the initial setup phase
of dynamic associations between agents and does not affect the actual exchanges
between them once the associations are established.

The before mentioned techniques are still in development and they downsides
are still being explored. As a future work a novel implementation of this secu-
rity architecture will be deployed and tested to be compared with the previous
techniques used to secure the MAS.

Chapter 5

Use Cases

In this chapter, some use cases will be presented showing already published novel
architectures taking advantage of this developed framework. These two use cases
show how useful and flexible GODAI can be while monitoring networking devices
and processing the data extracted.

5.1 Intelligent Optical Measurement Aggregation and
Streaming Event Telemetry

In this first use case, a demonstration shows how GODAI can be useful while
conveying data from observation points that may include heterogeneous mea-
surements and also being able to handle two type of measurements: events and
telemetry. This demonstration was presented in the Optical Fiber Communication
Conference held in San Diego this year and includes a full functional demonstra-
tion. This demonstration was proposed in the context of the research project H2020
B5G-OPEN (G.A. 101016663) that targets the design, prototyping and demonstra-
tion of a novel end-to-end integrated packet-optical transport architecture based
on MultiBand (MB) optical transmission and switching networks.[23]

The information gathered from monitoring points on the devices is usually trans-
mitted to a central system for additional analysis. While protocols designed for
telemetry, such as Google Remote Procedure Calls (gRPC), can help decrease the
amount of data transmitted, scalability remains a challenge due to the large vol-
umes of measurement data that need to be collected frequently.

Moreover, applications/platforms such as SDN controllers and management sys-
tems can generate events that help maintain consistency across systems. These
events can be utilized as an alternative to traditional notifications through an event
streaming mechanism. Unlike TAPI notifications, this streaming capability is specif-
ically designed to handle large-scale operations and offer an enhanced operational
approach. Within the SDN control plane, any component has the potential to serve
as a source of event telemetry, which must be transmitted and distributed without

40

5.1. INTELLIGENT OPTICAL MEASUREMENT AGGREGATION AND
STREAMING EVENT TELEMETRY 41

any alterations to other systems in the control and management planes.

In this demonstration, a telemetry architecture developed within the H2020 B5G-
OPEN project is shown. This architecture supports two types of telemetry: mea-
surements and events. For measurements, intelligent data aggregation and fea-
ture extraction techniques are applied near the data collection point to reduce the
amount of data. On the other hand, event telemetry is transported seamlessly
without any modifications. The demo will specifically showcase the integration
of the following: i) Heterogeneous measurements obtained from an OSA collected
from the Nokia Bell Labs test bed located close to Paris (France) and from commer-
cial ADVA optical transponders (TP) in a test bed situated in the Fraunhofer HHI
premises in Berlin (Germany). ii) Connection set-up and teardown events originat-
ing from an SDN controller situated at the CTTC premises near Barcelona (Spain).

The need for data availability is crucial for various network automation purposes,
such as training ML models, detecting degradation and anomalies, and maintain-
ing consistency in distributed control and management systems. To enable these
functionalities, telemetry solutions play a vital role by facilitating the collection
of large volumes of data and enabling on-site data processing or seamless data
streaming. However, there are still uncertainties regarding the frequency of col-
lecting telemetry data, the processing locations, and methods to reduce data vol-
ume.

Figure 5.1 presents a detailed architecture of the telemetry system, illustrating
the internal structure of telemetry agents and the telemetry manager. Telemetry
agents can be integrated with node agents for measurement telemetry or deployed
separately for event telemetry. Internally, both telemetry agents and the telemetry
manager rely on three main components: i) A manager module that configures and
oversees the operation of other modules; ii) Several components encompassing al-
gorithms for data processing, aggregation, etc., as well as interfaces like gRPC; iii)
A Redis DB that facilitates communication among the different modules.

This solution offers an adaptable and dependable environment that simplifies com-
munication and allows for the integration of new modules. The telemetry agents
utilize a gRPC interface to export telemetry data to the telemetry manager, while
the telemetry manager can adjust the behavior of algorithms in the agents through
this interface.

5.1. INTELLIGENT OPTICAL MEASUREMENT AGGREGATION AND
STREAMING EVENT TELEMETRY 42

Figure 5.1: Proposed Telemetry Architecture [24]

The node agent in charge of measurement telemetry incorporates modules,
known as data sources, which collect measurements from observation points within
the optical nodes. To facilitate the transfer of collected data to the telemetry sys-
tem, a telemetry adaptor has been created. This adaptor receives raw data from
the data source and converts it into a structured JSON object. The JSON object is
then published in a local Redis DB (designated as 1 in Figure 2), which serves as
a boundary point. Various algorithms can subscribe to these collected measure-
ments. For instance, let’s consider a scenario where only one algorithm is sub-
scribed, responsible for processing the measurements locally. This processing can
involve three possibilities: i) no transformation of the data (null algorithm), ii) data
aggregation, feature extraction, or data compression, or iii) inference for tasks such
as degradation detection. The resulting data, whether transformed or unchanged,
are sent to a gRPC interface module (via the Redis DB) (2), which transmits the
data to the telemetry manager.

Regarding event telemetry, events generated within an SDN controller or another
system are generated and injected into the telemetry agent. These events are then
transparently transported through the gRPC interface to the telemetry manager.
Within the telemetry manager, data received by a gRPC interface module is pub-
lished in the local Redis DB so that subscribed algorithms can access it. Once pro-
cessed, the output data are published in the local Redis DB (4) and can be stored
in either the Measurements DB (utilizing InfluxDB) or the events DB (employing
Elasticsearch) (5). Additionally, the data can be exported to external systems like
Apache Kafka (6).

We now focus on introducing several techniques to greatly reduce the data volume

5.1. INTELLIGENT OPTICAL MEASUREMENT AGGREGATION AND
STREAMING EVENT TELEMETRY 43

that needs to be conveyed through the gRPC interface connecting telemetry agents
to the manager. In particular, we analyze: i) data compression using autoencoders;
ii) supervised feature extraction; and iii) data summarization using the arithmetic
mean of a number of observations. For this example, let us assume the case where
the observation point is in a TP, which gathers the received optical symbols of a m-
Quadrature Amplitude Modulation (QAM) signal. The related data source then,
periodically retrieves a constellation sample X (a sequence of k IQ symbols as rep-
resented in Fig. 5.2a for a 16-QAM signal) and publish it in the local Redis DB.

Let us start with the use of Auto Encoders (AE), a type of neural network with
two components: the encoder, which maps input data into a lower-dimensional
latent space, and the decoder, which gets data in the latent space and reconstructs
the original data back. Once trained, the autoencoder takes as input 2×k values,
i.e., [x1I, x1Q,. . . xkI, xkQ], from the received constellation sample and generates
the latent space Z=[z1, . . . , zL], where the size of Z is significantly lower than that
of X (Fig. 5.2b). In this case, the encoder runs as an algorithm module in the teleme-
try agent and exchanges Z for every input sample X with the decoder running in
the telemetry manager through the gRPC interface. The algorithm in the telemetry
manager uses the decoder to reconstruct the constellation sample and it stores the
result in the telemetry DB.

Figure 5.2: Constellation sample
(a), autoencoders (b) and super-
vised features extraction (c) [18]

Let us now explore the concept of super-
vised feature extraction. In a previous study
[25], Gaussian Mixture Models (GMM) [26]
were utilized to describe each point in an
optical constellation sample as a bivariate
Gaussian distribution (Fig. 5.2c). Conse-
quently, each point in the constellation, de-
noted as i, is characterized by five features:
the mean position in the I and Q axes [µI,
µQ], as well as the variance in I and Q,
and the symmetric covariance terms repre-
senting the variations experienced by symbols
belonging to point i around the mean [σI,
σQ, σIQ]. Consequently, for an m-QAM sig-
nal, a total of m*5 features must be trans-
mitted from the telemetry agent to the man-
ager.

Using the aforementioned intelligent data aggregation methods, telemetry data
is transferred from the observation point to the telemetry manager at the same
frequency. This means that every time a new constellation sample is obtained, a
subset of data representing it is created and transmitted to the telemetry manager.
Assuming a high collection frequency, this approach results in a substantial vol-
ume of data being conveyed. However, under normal circumstances, this level of

5.2. PERVASIVE MONITORING AND DISTRIBUTED INTELLIGENCE FOR
NEAR REAL-TIME OPERATION 44

data transmission is generally unnecessary. Therefore, we can determine whether
a representation of the new sample needs to be sent to the telemetry manager by
measuring variations in the computed features. If there are no significant varia-
tions, the telemetry agent can transmit averaged values of the features at a much
lower frequency, effectively reducing the volume of telemetry data being transmit-
ted.

A video explaining in more detail the demo setup and demonstrating the
main functionalities can be found in: https://www.youtube.com/watch?v=
1KYikyztsCA

5.2 Pervasive Monitoring and Distributed Intelligence
for 6G Near Real-Time Operation

The second use case involves suggesting a telemetry solution for monitoring the
end-to-end delay to ensure the delay requirements for 6G services are met. It is
crucial to have near real-time control and operation to meet the strict performance
demands of 6G services. Rather than relying on reactive approaches, proactive
network adaptation that can anticipate specific events and take proactive mea-
sures is preferred. These events include handovers causing additional delays,
overloaded edge nodes leading to poor performance, dynamic steering and pri-
ority, Virtual Network Functions (VNF) activation/deactivation/replication, and
slice reconfiguration. To achieve near real-time operation and control, intelligent
decision-making should be located as close as possible to the data plane resources.
Additionally, pervasive monitoring is required to anticipate signal degradation,
queue congestions, and other issues. This paper proposes a solution that incor-
porates E2E In-band Network Telemetry (INT) across different network segments,
such as the user equipment, Radio Access Network (RAN), transport packet, and
datacenter networks. The telemetry agents and the deployed MAS incorporate the
GODAI framework.

In traditional approaches that rely on centralized data lakes, cloud-based big data
analytics often fail to provide timely feedback to orchestrators and controllers.
However, by leveraging network telemetry through technologies like INT and
postcard, it becomes possible to achieve accurate monitoring using distributed
and federated agents. This requires the introduction of new entities that gather
measurements from various sources such as the RAN, programmable devices, the
cloud, and application entities. INT solutions enable per-packet telemetry by in-
corporating network state information into each packet or cloned copies, which is
then conveyed through INT/postcard reports. Nonetheless, the extensive collec-
tion and processing of telemetry data pose challenges to scalability. To address
this, a two-stage P4 telemetry collector was proposed in [16]. These collectors
are responsible for processing and aggregating postcard telemetry reports at wire

https://www.youtube.com/watch?v=1KYikyztsCA
https://www.youtube.com/watch?v=1KYikyztsCA

5.2. PERVASIVE MONITORING AND DISTRIBUTED INTELLIGENCE FOR
NEAR REAL-TIME OPERATION 45

speed. However, there is a need to enhance this solution so that the collected mea-
surements can be processed and utilized locally by node agents, enabling a high
level of network awareness within the specified segment.

Encoding per-hop information on a per-packet basis results in a linear increase
in the size of packet headers with each hop. This not only wastes bandwidth but
can also cause packet fragmentation if the maximum transmission unit (MTU) is
exceeded. To illustrate, a path trace can be obtained by including a unique hop ID
in each packet. The path is formed by combining the individual hops stored in the
flow packets. The reconstruction of the path occurs at a telemetry processor. While
this approach necessitates storing some network state in the network nodes, it en-
ables the collection of telemetry data without encountering scalability problems at
the collectors or compromising network performance.

Telemetry measurements can be further combined by telemetry processors that
aim to reduce dimensionality and decrease the data rate at the control plane. This
can be achieved through various methods, such as compressing individual mea-
surements and aggregating time series data. Both approaches utilize statistical
techniques, machine learning algorithms like AE, and data stream mining. More-
over, intelligence in this context involves several aspects: i) adapting the aggrega-
tion process dynamically by determining when and how it should be performed;
ii) consolidating and correlating different types of measurements; and iii) enhanc-
ing the value of measurements, for instance, by utilizing AEs to assess the rele-
vance of metrics in the latent feature space and input in both forward and back-
ward directions.

Distributed decision making has been suggested as a way to handle network and
service operation. Its purpose is not only to reduce the workload on the SDN con-
troller and improve scalability but also to enable near real-time control. In this
approach, agent nodes are equipped with intelligent algorithms, such as reinforce-
ment learning, which enable them to make independent decisions based on the
observed conditions gathered through telemetry. Furthermore, agents can commu-
nicate with one another, even if they have varying capabilities, to form distributed
control systems known as multi-agent systems (MAS). These systems collaborate
to achieve a common objective, such as ensuring end-to-end delay for services de-
spite changing conditions.

We can illustrate an example that integrates the solutions mentioned earlier in the
previous section for the near real-time management of end-to-end 6G services. Fig-
ure 5.3 showcases the situation where a particular service enables communication
between an Unmanned Aerial Vehicle (UAV) and a VNF that offers computational
and storage capabilities for the real-time reconstruction of high-quality Augment-
ed/Virtual Reality (AR/VR) videos. The application imposes strict demands on
end-to-end and segment latency as well as jitter, necessitating ongoing monitoring
of numerous stream flows. This monitoring allows for dynamic decision-making

5.2. PERVASIVE MONITORING AND DISTRIBUTED INTELLIGENCE FOR
NEAR REAL-TIME OPERATION 46

regarding routing and edge computing resource allocation to meet the promised
performance requirements.

Figure 5.3: Illustrative scenario supporting en e2e 6G service. [27]

Service agents, as shown in Figure 5.4, can be comprised of the following com-
ponents: i) A telemetry processor that gathers and handles telemetry data from the
local node, incorporating intelligent data aggregation; ii) An inter-agent commu-
nication module that facilitates the distribution of telemetry data and the sharing
of states and models among agents; iii) Technology-specific intelligence (such as
RAN, packet, etc.) that enables autonomous decision-making based on both local
and remote observations. Meanwhile, the Service Management and Orchestration
(SMO) system offers guidelines to the MAS while allowing the MAS the flexibility
to operate on the resources assigned to the service.

In Fig. 5.4., this operation is depicted, showing how agents receive resources and
the maximum end-to-end delay (dmaxe2e) from the SMO for the connectivity ser-
vice. To meet the required performance, each segment is initially allocated a bud-
get delay (dmaxDi) (labeled 1 in Fig. 5.4.). Once operational, the end-to-end delay
and other performance indicators are measured and shared among the agents in
the MAS (2). For the radio segment, measurements and predicted metrics are uti-
lized to adjust the resource block group adaptation with a time buffer, minimizing
service Service Level Agreement (SLA) violations. However, suppose the radio
segment is unable to maintain the promised delay within its domain at a certain
point in time. In that case, the RAN agent communicates the new delay budget
for its segment to the other service agents (3), enabling packet agents to make de-
cisions such as altering routing to ensure the new budget delay within their do-
mains.

5.2. PERVASIVE MONITORING AND DISTRIBUTED INTELLIGENCE FOR
NEAR REAL-TIME OPERATION 47

Figure 5.4: Proposed telemetry and distributed intelligence solution. [27]

This architecture was proposed and presented in the EUCNC & 6G Summit
conference held in Goteborg in June 2023. This work has been developed in the
context of the HORIZON SNS JU DESIRE6G (G.A. 101096466) project. The primary
goal of the DESIRE6G project is to design, develop, and demonstrate a new wire-
less communication system that will provide near real-time autonomic network-
ing and support extreme ultra-reliable low-latency communication (eURLLC) ap-
plication requirements. In simpler terms, DESIRE6G is working to create a new
network that is even faster, more reliable, and efficient than current 5G networks
to meet the demands of new applications.[28]

Chapter 6

Conclusions

This work presents the GODAI architecture, a distributed system framework in-
tended to bring intelligence to the edges in a flexible, scalable, and secure way.
The state of the art is presented to take into account the many solutions already
available and their capabilities. Several technologies and techniques are explored
and compared to find the ones that are more suitable for the problem statement.
Knowing this information, a novel architecture has been developed to address all
the known issues.

The benefits of telemetry in operation and automation in networks have been
widely demonstrated in the literature, and the existing need to build efficient teleme-
try architectures is shown. In particular, novel telemetry architectures should be
able to address security, scalability, and reliability issues to enable near real-time
operation in future networks.

The architecture has been defined, and all its components have been implemented
and tested. A complete description of all the existing components inside GODAI
is given to showcase how it works. The main capabilities and features of GODAI
have been listed, as have the future work improvements that will be addressed to
improve the overall operation of the architecture.

Security in GODAI is explored to show the security techniques that are already
applied. DLT is presented as an improvement to be implemented in the future to
solve some of the performance issues with the existing architecture.

Finally, two real use cases have been presented, showing the implementation and
operation of the architecture in different scenarios. The first one focuses on build-
ing a distributed telemetry architecture that can process telemetry measurements
from different data sources as well as telemetry events coming from an SDN con-
troller. The second one presents a monitoring system in combination with a MAS
that will enable near-real-time control of 6G services by monitoring and configur-
ing the network based on E2E delay requirements.

48

6.1. CONTRIBUTIONS AND PUBLICATIONS 49

6.1 Contributions and publications

Participation in different national and European projects developing software to
support B5G and 6G future networks. Specifically, I have been involved in the
following projects:

• HORIZON-HORIZON-SNS SElf-mAnaged Sustainable high-capacity Optical
Networks (SEASON).

• HORIZON-SNS Deep Programmability and Secure Distributed Intelligence
for Real-Time End- to-End 6G Networks (DESIRE6G).

• HORIZON-SNS PRogrammable AI-Enabled DeterminIstiC neTworking for
6G (PREDICT-6G).

• H2020 Beyond 5G - OPtical nEtwork coNtinuum (B5G-OPEN).

• MINECO AI-Powered Intent-Based Packet and Optical Transport Networks
and Edge and Cloud Computing for Beyond 5G (IBON)

Several publications presented in international conferences:

• An Intelligent Optical Telemetry Architecture presented at OFC 2023.

• Distributed Architecture Supporting Intelligent Optical Measurement Aggregation
and Streaming Event Telemetry presented at OFC 2023.

• Securing a Multi-Agent System for near Real-Time Control of 6G Services pre-
sented at EUCNC 2023 & 6G Summit.

• Pervasive Monitoring and Distributed Intelligence for 6G near Real-Time Operation
presented at EUCNC 2023 & 6G Summit.

• Distributed Intelligence for Pervasive Optical Network Telemetry, under revision
in IEEE/OPTICA J. Opt. Comm. and Netw., 2023.

6.2 Future Work

As this framework is in continuous development, there are several features and
improvement that may arise in the future. Here there is a list of the main features
to be implemented:

• Use a DLT to secure the GODAI nodes instead of having one node as a Man-
ager of the keys.

• Improve the Web-UI to offer more functionalities and insights.

• Provide bindings to other programming languages to allow compatibility
with more modules.

Appendix A

Appendix 1: Configuration files

1 {
2 "manager": {
3 "name": "manager",
4 "type": "manager",
5 "input": "input",
6 "loglevel": "INFO",
7 "redis": {
8 "host": "localhost",
9 "port": 6379

10 },
11 "Mng_If": {
12 "host": "0.0.0.0",
13 "port": 7001
14 },
15 "SecManager": {
16 "key_size": 4096
17 },
18 "Agents": {
19 "node-1": {"ip": "localhost", "port": 5001},
20 "node-2": {"ip": "localhost", "port": 5002}
21 }
22 },
23 "Components": {
24 }
25 }

Listing A.1: Manager node configuration file

1 {
2 "manager": {
3 "name": "node-1",
4 "type": "agent",

50

Appendix 1: Configuration files 51

5 "input": "input",
6 "loglevel": "INFO",
7 "redis": {
8 "host": "localhost",
9 "port": 6379

10 },
11 "Mng_If": {
12 "host": "0.0.0.0",
13 "port": 5001
14 },
15 "SecManager": {
16 "key_size": 4096,
17 "trusted_peers": {
18 }
19 },
20 "Manager": {
21 "manager": {"ip": "localhost", "port": 7001}
22 }
23 },
24 "Components": {
25 }
26 }

Listing A.2: Agent node configuration file

1 "Components": {
2 "gRPC_If": {
3 "class": "gRPC",
4 "package": "Services.gRPC",
5 "instance": {
6 "workflows": {
7 "AE/Evolution": [{"ip": "localhost", "port": 50051

}],
8 "FeX/Evolution": [{"ip": "localhost", "port": 5005

1}]
9 }

10 },
11 "config": null,
12 "running": true
13 },
14 "AE": {
15 "class": "AE",
16 "package": "Algorithms.AE",
17 "instance": {
18 "workflows": {

Appendix 1: Configuration files 52

19 "AE/Evolution": ["gRPC_If"]
20 },
21 "mode": "compress"
22 },
23 "config": null,
24 "running": true
25 },
26 "FeX": {
27 "class": "FeX_Constellation",
28 "package": "Algorithms.FeX_Constellation",
29 "instance": {
30 "workflows": {
31 "FeX/Evolution": ["Aggregator"]
32 }
33 },
34 "config": null,
35 "running": true
36 },
37 "Aggregator": {
38 "class": "Aggregator",
39 "package": "Algorithms.Aggregator",
40 "instance": {
41 "workflows": {
42 "FeX/Evolution": ["gRPC_If"]
43 }
44 },
45 "config": "Aggregator/FeX_Constellation.json",
46 "running": true
47 }
48 }

Listing A.3: Components configuration

References

[1] Tarik Taleb et al. “White Paper on 6G Networking”. In: 6G Research Visions,
No. 6 (2020).

[2] Amin Shahraki et al. “A Comprehensive Survey on 6G Networks:Applications,
Core Services, Enabling Technologies, and Future Challenges”. In: (Jan. 2021).

[3] Luis Velasco et al. “Introduction to the JOCN Special Issue on Advanced
Monitoring and Telemetry in Optical Networks”. In: Journal of Optical Com-
munications and Networking 13 (10 Oct. 2021), AMTON1. ISSN: 1943-0620. DOI:
10.1364/JOCN.442735.

[4] Peter Murray and Paul Stalvig. “SNMP: Simplified”. In: ().

[5] Chunjin Zhang and Shujuan Ji. “A SNMP-base broadcast storm identifica-
tion method in VLAN”. In: Atlantis Press, 2013. ISBN: 978-90-78677-67-3. DOI:
10.2991/iccnce.2013.11.

[6] gRPC: A high performance, open source universal RPC framework. https://
grpc.io/.

[7] Francesco Paolucci et al. “Network Telemetry Streaming Services in SDN-
Based Disaggregated Optical Networks”. In: Journal of Lightwave Technology
36 (15 Aug. 2018), pp. 3142–3149. ISSN: 0733-8724. DOI: 10.1109/JLT.
2018.2795345.

[8] D. King et al. “The dichotomy of distributed and centralized control: METRO-
HAUL, when control planes collide for 5G networks”. In: Optical Switching
and Networking 33 (July 2019), pp. 49–55. ISSN: 15734277. DOI: 10.1016/j.
osn.2018.11.002.

[9] Claus Töpke. Network Programming and Automation Essentials. Packt Publish-
ing, 2023.

[10] Apache Kafka. https://kafka.apache.org/.

[11] Andrea Sgambelluri et al. “Reliable and scalable Kafka-based framework for
optical network telemetry”. In: Journal of Optical Communications and Net-
working 13 (10 Oct. 2021), E42. ISSN: 1943-0620. DOI: 10.1364/JOCN.424639.

[12] Redis. https://redis.io/.

[13] Ercan Erdogan. Redis Pub/Sub with .net Core. https : / / medium . com /
innoviletech/redis-pub-sub-with-net-core-758c1d3c7a98.

53

https://doi.org/10.1364/JOCN.442735
https://doi.org/10.2991/iccnce.2013.11
https://grpc.io/
https://grpc.io/
https://doi.org/10.1109/JLT.2018.2795345
https://doi.org/10.1109/JLT.2018.2795345
https://doi.org/10.1016/j.osn.2018.11.002
https://doi.org/10.1016/j.osn.2018.11.002
https://kafka.apache.org/
https://doi.org/10.1364/JOCN.424639
https://redis.io/
https://medium.com/innoviletech/redis-pub-sub-with-net-core-758c1d3c7a98
https://medium.com/innoviletech/redis-pub-sub-with-net-core-758c1d3c7a98

REFERENCES 54

[14] L. Velasco, S. Barzegar, and M. Ruiz. “Is Intelligence the Answer to Deal with
the 5 V’s of Telemetry Data?” In: IEEE, Mar. 2023, pp. 1–3. DOI: 10.23919/
OFC49934.2023.10116324.

[15] L. Velasco et al. “Monitoring and Data Analytics for Optical Networking:
Benefits, Architectures, and Use Cases”. In: IEEE Network 33 (6 Nov. 2019),
pp. 100–108. ISSN: 0890-8044. DOI: 10.1109/MNET.2019.1800341.

[16] F. Alhamed et al. “P4 Postcard Telemetry Collector in Packet-Optical Net-
works”. In: IEEE, May 2022, pp. 1–3. ISBN: 978-3-903176-44-7. DOI: 10.23919/
ONDM54585.2022.9782868.

[17] N. Williams and S. Zander. Evaluating machine learning algorithms for auto-
mated network application identification. eng. Melbourne, VIC, 2006.

[18] Luis Velasco, Pol González, and Marc Ruiz. “An Intelligent Optical Teleme-
try Architecture”. In: Optica Publishing Group, 2023, M3G.1. ISBN: 978-1-
957171-18-0. DOI: 10.1364/OFC.2023.M3G.1.

[19] Luis Velasco et al. “Securing Multi-Agent Systems for Near Real-Time Con-
trol of 6G Services”. In: June 2023.

[20] Distributed Systems Security. https://pk.org/417/notes/crypto.
html.

[21] Kiril Antevski and Carlos J. Bernardos. “Federation of 5G services using dis-
tributed ledger technologies”. In: Internet Technology Letters 3 (6 Nov. 2020).
ISSN: 2476-1508. DOI: 10.1002/itl2.193.

[22] Mallik Mahalingam et al. Virtual eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks.
RFC 7348. Aug. 2014. DOI: 10.17487/RFC7348. URL: https://www.rfc-
editor.org/info/rfc7348.

[23] B5G-OPEN. https://www.b5g-open.eu/project/.

[24] Pol González et al. “Distributed Architecture Supporting Intelligent Optical
Measurement Aggregation and Streaming Event Telemetry”. In: Optica Pub-
lishing Group, 2023, M3Z.4. ISBN: 978-1-957171-18-0. DOI: 10.1364/OFC.
2023.M3Z.4.

[25] M. Ruiz, D. Sequeira, and L. Velasco. “Deep learning-based real-time anal-
ysis of lightpath optical constellations [Invited]”. In: Journal of Optical Com-
munications and Networking 14 (6 June 2022), p. C70. ISSN: 1943-0620. DOI:
10.1364/JOCN.451315.

[26] Nizar Bouguila and Wentao Fan, eds. Mixture Models and Applications. Springer
International Publishing, 2020. ISBN: 978-3-030-23875-9. DOI: 10.1007/978-
3-030-23876-6.

[27] Luis Velasco et al. “Pervasive Monitoring and Distributed Intelligence for 6G
Near Real-Time Operation”. In: June 2023.

[28] DESIRE6G. https://desire6g.eu/project/.

https://doi.org/10.23919/OFC49934.2023.10116324
https://doi.org/10.23919/OFC49934.2023.10116324
https://doi.org/10.1109/MNET.2019.1800341
https://doi.org/10.23919/ONDM54585.2022.9782868
https://doi.org/10.23919/ONDM54585.2022.9782868
https://doi.org/10.1364/OFC.2023.M3G.1
https://pk.org/417/notes/crypto.html
https://pk.org/417/notes/crypto.html
https://doi.org/10.1002/itl2.193
https://doi.org/10.17487/RFC7348
https://www.rfc-editor.org/info/rfc7348
https://www.rfc-editor.org/info/rfc7348
https://www.b5g-open.eu/project/
https://doi.org/10.1364/OFC.2023.M3Z.4
https://doi.org/10.1364/OFC.2023.M3Z.4
https://doi.org/10.1364/JOCN.451315
https://doi.org/10.1007/978-3-030-23876-6
https://doi.org/10.1007/978-3-030-23876-6
https://desire6g.eu/project/

	Introduction
	Background on Telemetry Systems
	SNMP and Telemetry
	Telemetry in b5g and 6g Networks
	Telemetry Architectures
	Centralized
	Distributed
	Hierarchical
	Comparison

	Communication Technologies
	gRPC and gNMI
	Apache Kafka
	Redis

	Comparison
	Purpose
	Communication Protocol
	Flexibility
	Data Types
	Extensibility

	Summary

	Proposed Architecture
	Motivation
	Problem Statement
	The network architecture
	The GODAI framework
	GODAI node
	Data Sources

	Requirements

	Security in Telemetry Systems
	General security requirements
	Security in GODAI

	Use Cases
	Intelligent Optical Measurement Aggregation and Streaming Event Telemetry
	Pervasive Monitoring and Distributed Intelligence for 6g Near Real-Time Operation

	Conclusions
	Contributions and publications
	Future Work

	Appendix 1: Configuration files
	Bibliography

