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“Sometimes it’s the very people who no one imagines anything of who do the things
no one can imagine”

Alan Turing - The Imitation Game
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Abstract

Internet of Things (IoT) is an innovative paradigm approaching both indus-
tries and humans every-day life. It refers to the networked interconnection
of every-day objects, which are equipped with ubiquitous intelligence. It
not only aims at increasing the ubiquity of the Internet, but also at lead-
ing towards a highly distributed network of devices communicating with
human beings as well as with other devices. Thanks to rapid advances in
underlying technologies, IoT is opening valuable opportunities for a large
number of novel applications, that promise to improve the quality of hu-
mans lives, facilitating the exchange of services.

In this scenario, security represents a crucial aspect to be addressed, due
to the high level of heterogeneity of the involved devices and to the sensi-
bility of the managed information. Moreover, a system architecture should
be established, before the IoT is fully operable in an efficient, scalable and
interoperable manner.

The main goal of this PhD thesis concerns the design and the imple-
mentation of a secure and distributed middleware platform tailored to IoT
application domains. The effectiveness of the proposed solution is evalu-
ated by means of a prototype and real case studies.
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Chapter 1

Introduction

1.1 Internet of Things

Internet of Things (IoT) is an emerging paradigm that includes a large num-
ber of technologies and research disciplines, aimed at enabling the Internet
to reach out into the real world of physical objects. The result is an in-
terconnected smart world, where humans and devices interact with each
other, establishing a smart environment in which the exchange of data and
services is continuous.

During the last decade, IoT approached our lives silently and gradually,
thanks to the availability of wireless communication systems (e.g., RFID,
WiFi, 4G, IEEE 802.15.x), which have been increasingly employed as tech-
nology drivers for crucial smart monitoring and control applications [11]
[149].

An encouraging factor for the spread of the IoT paradigm is that many
industry-leading manufacturers, service providers, and software and sys-
tems developers are making investments in the IoT future world vision. In
fact, Forbes market estimatesd that 2015 has been the year of changing direc-
tion of IoT from a purely theoretical design to more anchored development
[63]. Figure 1.1 shows the 2015 hype cycle for emerging technologies iden-
tified by Gartner society [65].

Cisco predicts that the global IoT market will be $14.4 trillion by 2022,
with the majority invested in improving customer experience, as shown in
Figure 1.2. Additional areas of investment include: reducing the time-to-
market ($3T), improving supply chain and logistics ($2.7T), cost reduction
strategies ($2.5T) and increasing employee productivity ($2.5T). Cisco also
found that 50% of IoT activity today is in manufacturing, transformation,
smart cities and consumer markets [41].

Moreover, software and services are expected to be a $600B market by
2019, attaining a 44% CAGR (Compounded Average Growth Rate) from 2015
to 2019. BI Intelligence also predicts the number of devices connected via
IoT technologies will grow at a 35% CAGR from 2014 to 2019, as shown in
Figure 1.3.

Analysts at McKinsey institutes [128] expect that the installed base for
IoT devices will grow from around 10 billion connected devices today to
as many as 30 billion devices by 2020, which corresponds to an uptick of
about 3 billion new devices per year, as Figure 1.4 shows.

Nowadays, as can be seen from the analysis presented above, the con-
cept of IoT is multi-dimensional, since it embraces many different technolo-
gies, services, and standards. Furthermore, it is widely perceived as the cor-
nerstone of the ICT market in the next ten years, as also advocated in [26]
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FIGURE 1.1: Gartner 2015 hype cycle for IoT emerging tech-
nologies

[53] [81]. In fact, IoT deployments may adopt different processing and com-
munication architectures, technologies, and design methodologies, based
on the target context. Examples of IoT scenarios include health equipment
for patient monitoring, connected cars in vehicular networks, surveillance
devices, wearable sensors, smart home systems, and so on. In such con-
texts, it is fundamental to define how the involved things could efficiently
communicate and exchange information among themselves and with re-
mote servers.

The term “Internet of Things” is becoming widely used for broadly defin-
ing a future in which objects equipped with sensing and actuation capabil-
ities get connected to a global networked infrastructure, able to bridge the
gap between the physical and digital realms [130]. An IoT system can be
depicted as a collection of smart devices which interact on a collaborative
basis to fulfill a common goal, acquiring data from and acting upon the
environment in which they are.

From a technological point of view, the term things refers to various
physical everyday objects that embed the enabling IoT technologies (e.g.,
wireless sensor nodes, actuators, RFIDs, and so on) to make them smart and
suitable to support the provisioning of innovative and customized services
to individuals and businesses in different application domains.

The IoT revolution is properly turning everyday objects into smart ones.
All these devices are able to acquire data from the environment in which
they are placed and/or to provide different types of information to other
devices belonging to the network. Such a behavior generates a distributed
network, in which heterogeneous sources of data can cooperate by query-
ing the different information, retrieved both from the environment and
from the users, in order to satisfy the user needs. Note that some recent in-
terpretations of IoT extend the term things to the individuals that, through
the adoption of appropriate devices, can broadcast the status of the context
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FIGURE 1.2: Cisco IoT market predictions

in which they are at a specific time. Therefore, users become sensors able to
provide useful and usable data.

1.2 Open challenges

From the presented scenario, several issues naturally emerge. In particu-
lar, IoT deployments are characterized by large heterogeneity in terms of
adopted technologies and communication protocols; some of them may in-
clude a huge number of devices, introducing scalability and interoperabil-
ity issues. Therefore, one of the most crucial challenge in building an IoT
system lies in the lack of a common and standardised software framework,
able to manage all the involved entities in an efficient manner.

Of course, this high level of heterogeneity, along with the wide scale of
IoT systems, is expected to magnify the security threats of the current Inter-
net, which is being increasingly used to let humans, machines, and robots
interact, in any combination. In more detail, traditional security counter-
measures cannot be directly applied to IoT technologies due to their lim-
ited computing power; moreover, the high number of interconneted de-
vices raises scalability issues. At the same time, to reach full acceptance
by users, it is mandatory to define valid security, privacy and trust models
suitable for the IoT application context [207] [59] [170] [10].

As far as security and privacy are concerned, data anonymity, confiden-
tiality and integrity need to be guaranteed, as well as authentication and
authorization mechanisms, in order to prevent unauthorized users (i.e., hu-
mans and devices) from accessing the system. In particular, both data pro-
tection and the confidentiality of users’ personal information must be en-
sured, since devices may manage personal and/or sensitive information
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FIGURE 1.3: Software and services vs hardware IoT growth

(e.g., user habits). Finally, trust is a fundamental issue since the IoT en-
vironment is characterized by different devices that have to process and
handle the data in compliance with user needs and rights.

Note that adaptation and self-healing play a key role in IoT infrastruc-
tures, which must be able to face normal and unexpected changes of the tar-
get environment. Accordingly, security issues should be treated with a high
degree of flexibility, as advocated in [16] [38]. Together with the conven-
tional security solutions, there is also the need to provide built-in security
in the devices themselves (i.e., embedded) in order to pursue dynamic pre-
vention, detection, diagnosis, isolation and countermeasures against suc-
cessful breaches, as underlined in [12].

An IoT-based environment may suffer of different kinds of attack,
which can be distinguished into three groups: (i) attacks against the IoT
devices (including tampering or physical attacks); (ii) attacks against the
communications (including monitoring and altering messages or routing
attacks); (iii) attacks against the masters of the devices (i.e., the platform
that manages the IoT data provided by the IoT devices). Proper counter-
measures must be put in place to address each of them.

Along with security, a second fundamental aspect that needs to be taken
into account, for ensuring the effectiveness of IoT services, is data quality.
IoT services should provide correct, complete and updated information; in
fact, in some scenarios, errors or missing values might have a critical impact
on actions or decisions.

As IoT-enabled services and applications may make use of different
data sources, the user (or the application itself) has to be aware of the secu-
rity and quality level of the data being accessed, in order to take informed
decisions about their usage.

Figure 1.5 summarizes the open challenges in the IoT field.



1.3. Proposed solution 5

FIGURE 1.4: McKinsey IoT devices growth prediction

1.3 Proposed solution

In order to address the aforementioned issues, a system able to deal with
heterogeneous data sources and to evaluate security and quality of infor-
mation being collected, processed and transmitted should be defined.

Therefore, the main goal of this thesis is the design and development of
a flexible and distributed IoT architecture. It should be based on the idea
of bringing processing, security and data qualification closer to the actual
data sources, in order to face scalability issues as well as to perform an
assessment of the managed information.

As a result, a middleware, named NOS (NetwOrked Smart Object), is
presented. The main innovative contribution concerns the implementation
of NOS highly modular, cross-domain and lightweight system architecture
conceived for IoT applications, with the following functionalities:

• Provision of proper interfaces towards heterogeneous data sources, in
order to cope with interoperability issues

• Methods for the distributed and autonomic management and run-
time optimization of NOS middleware platform itself

• Key management systems for the key distribution and replacement
towards the entities involved in secure interactions with NOS plat-
form
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FIGURE 1.5: Open challenges in IoT field

• Mechanisms for the automatic assessment of data quality and secu-
rity by means of well-defined algorithms, along with the provision of
standardized interfaces and data models for applications/services to
access qualified IoT information, where raw data are enriched with
metadata specifying their security and quality levels

• Capability for users and applications to dynamically specify, for the
required services, the level of security and data quality suitable for
their own needs

• Integration with a policy enforcement framework, able to manage the
rules defined by NOS middleware and/or by the specific application
domains, in order to regulate the access to resources, and to handle
violation attemps

• A lightweight and secure publish/subscribe messaging protocol, ex-
tended by means of key management and policy enforcement frame-
work, in order to guarantee the authentication and identification of
entities and the authorization controls over the available resources

• A synchronization system for guaranteeing the correct application of
the policies across different realms in real-time

NOS middleware, along with the functionalities listed above, is im-
plemented in a real prototype, whose code is openly accessible as
open source under a permissive license at https://bitbucket.org/
alessandrarizzardi/nos.git.

Note that, in real application scenarios, multiple NOSs are deployed in
a distributed manner, managing a different number of sources and users,
depending on their proximity.

The thesis is organized as follows:

• Chapter 2 provides a detailed overview of the state of the art about
security in IoT

• Chapter 3 presents the high-level definition of NOS architecture, start-
ing from a UML general conceptual model, the modules and the in-
terfaces which compose NOS prototype

https://bitbucket.org/alessandrarizzardi/nos.git
https://bitbucket.org/alessandrarizzardi/nos.git
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• Chapter 4 discusses NOS functionalities in detail, including the key
management systems, the algorithms for the data assessment, the
policy enforcement framework, the authenticated publish/subscribe
mechanism, and the synchronization system

• Chapter 5 shows the performance evaluation of NOS middleware, in
order to validate the proposed solution in a real IoT application con-
text

• Chapter 6 ends the thesis and provides hints for future work.
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Chapter 2

State of the Art

2.1 Internet of Things Security Open Issues

In order to better clarify the innovative contribution of this thesis, a deep
analysis of the state of the art regarding IoT and, in particular, the available
solutions existing in literature about security (i.e., integrity, confidentiality,
authentication), privacy, and trust is conducted. Also proposals regarding
security middleware and secure solutions for mobile devices, as well as
ongoing international projects on this subject are studied. The main topics
are shown in Figure 2.1. The results of this investigation were published in
a survey paper [187] and are presented in the following, for motivating the
choices and the solutions proposed in Chapters 3 and 4.

FIGURE 2.1: Main security issues in IoT field

In literature, other surveys deal with issues related to the IoT paradigm:
[11] analyzes the IoT enabling technologies and existing middleware, also
from an application point of view, and presents open issues in security
and privacy together with those from standardization, addressing, and net-
working; [207] considers the security and privacy challenges from a specif-
ically legislative point of view, with particular attention to the European
Commission directives; [130] discusses the main research contexts (i.e., im-
pact areas, projects, and standardization activities) and challenges in IoT,
dealing also with data confidentiality, privacy, and trust as regards the se-
curity requirements; [47] is on Internet of Underwater Things and presents
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TABLE 2.1: Contribution of available surveys on IoT secu-
rity

[11] [207] [130] [47] [170] [75] [216] [187]

Security yes no yes yes yes yes no yes
Privacy yes yes yes no yes yes no yes
Trust no yes yes no yes no yes yes
Middleware yes no no no no no no yes
Mobile no no no no no no no yes
Projects no no yes no no no no yes

only few hints about security issues; [170] investigates the advantages and
disadvantages of centralized and distributed architectures in terms of se-
curity and privacy in IoT with an analysis of the main attack models and
threats; [75] provides a general overview on various IoT aspects, such as
the technologies involved, the applications, the cloud platforms, the archi-
tectures, the energy consumption and security issues, the quality of service
and data mining implications; [216] focuses only on the specific issue of
trust management in IoT.

A comparison of the aforementioned surveys with [187] is given in Table
2.1. [187] clearly addresses the full breadth of security issues in this field.

The following paragraphs are organized as follows: Paragraph 2.1.1 an-
alyzes the available approaches regarding confidentiality and access control
in IoT; Paragraphs 2.1.2 and 2.1.3 deal with privacy and trust issues, respec-
tively; Paragraph 2.1.4 shows the security and privacy policies enforcement
in IoT applications; security frameworks and middlewares are discussed in
Paragraph 2.1.5; Paragraph 2.1.6 addresses security in mobile IoT devices;
finally, Paragraph 2.1.7 refers to the ongoing international projects on IoT
security.

2.1.1 Authentication, confidentiality and access control require-
ments in IoT

This paragraph analyzes in depth three main security requirements: au-
thentication, confidentiality, and access control, with a special focus on IoT
systems. IoT, in fact, enables a constant transfer and sharing of data among
things and users in order to achieve particular goals. In such a sharing envi-
ronment, authentication, authorization, access control and non-repudiation
are important to ensure secure communications. New approaches should
be introduced or existing techniques should be tailored to the new IoT en-
vironment. In the following, the seminal contributions in such a field are
illustrated together with a critical review of open issues that deserve further
investigation.
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Authentication and confidentiality

As regards authentication, some preliminary works adopt lightweight en-
cryption mechanisms. For example, the approach presented in [223] makes
use of a custom encapsulation mechanism, combining cross-platform com-
munications with encryption, signature, and authentication, in order to im-
prove IoT application development capabilities by establishing a secure
communication system among different things. Likewise, [109] adopts
a lightweight encryption method based on XOR manipulation for anti-
counterfeiting and privacy protection, in order to cope with constrained IoT
devices. Also exploiting XOR and hash computations, particularly suitable
for resource-constrained architectures, [197] proposes an user authentica-
tion and key agreement scheme for Wireless Sensor Network (WSN). It en-
ables a remote user to securely negotiate a session key with a sensor node,
using a lean key agreement protocol. In this way, it ensures mutual authen-
tication among users, sensor nodes, and gateway nodes, although the lat-
ters are never contacted by the user. Instead, the authentication and access
control method presented in [218] aims at establishing the session key on
the basis of Elliptic Curve Cryptography (ECC). This scheme defines attribute-
based access control policies, managed by an attribute authority, enhancing
mutual authentication among the users and the sensor nodes, as well as
solving the resource-constrained issue at the application level. Such works
only represent starting points towards the development of more complex
and robust schemes. More structured solutions are presented in the remain-
der of this paragraph.

In [102] the first fully implemented two-way authentication security
scheme for IoT is introduced; it is based on existing Internet standards,
specifically the Datagram Transport Layer Security (DTLS) protocol, which
is placed between transport and application layer. This scheme is based
on RSA and it is designed for IPv6 over Low power Wireless Personal Area
Networks (6LoWPANs) [149]. Although, the extensive evaluation, based on
real IoT systems, shows that such an architecture provides a certain level of
message integrity, confidentiality, and authenticity with enough affordable
energy, end-to-end latency, and memory overhead.

As regards confidentiality and integrity, [171] analyzes how existing key
management systems could be applied to the IoT context. Key Management
System (KMS) protocols can be classified into four major categories: key
pool framework, mathematical framework, negotiation framework, and
public key framework. In [171] the authors argue that most of the KMS
protocols are not suitable for IoT. In fact:

• Key pool approaches suffer insufficient connectivity

• Mathematical approaches make use of the deployment knowledge to
optimize the construction of their data structures, but such an ap-
proach cannot be used in IoT since client and server nodes are usually
located in different physical locations

• Combinatorics-based KMS protocols suffer both connectivity and
scalability/authentication issues

• Negotiation approaches make use of the wireless channel and its in-
herent features to negotiate a common key; however, they cannot be
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suitable for IoT because client and server nodes usually belong to dif-
ferent networks and they should route the information through the
Internet in order to be able to talk with each other.

Hence, the KMS protocols that might be suitable for some IoT scenar-
ios are the Blom [49] and the polynomial schema [116], whose computa-
tional overhead is quite low in comparison to Public Key Cryptography (PKC)
operations (i.e., public key framework). However, for such schemes, sev-
eral countermeasures are required in order to manage device authentication
and face man-in-the-middle attacks. For example, [143] and [164] present a
framework for IoT based on Public Key Infrastructure (PKI), but much work
needs to be done yet to obtain a secure and efficient solution.

In general, what emerges is that a robust KMS should further secure the
communications among data sources and IoT middleware.

Several approaches have been designed for WSN scenarios. In particu-
lar, many solutions have been proposed aiming to overcome traditional pre-
distribution approaches, such as [175] [54] [36] [213] [189]. Among them,
the algorithms proposed by Dini et al. [44] and Di Pietro et al. [162] gained
popularity due to their efficiency in terms of resource consumption and
resilience towards malicious attacks, with respect to the aforementioned
approaches (i.e., key pool, mathematical, combinatorics, negotiation). For
such reasons, they will be detailed in Paragraph 4.2, since they are adopted
in the solution proposed in this thesis for securing the communications
among IoT entities.

As regards IoT context, a limited contribution in the key management
field actually exists.

[141] provides a classification of existing protocols relying on key dis-
tribution mechanisms to establish a secure communication channel among
the nodes belonging to the network, underlining security requirements and
open challenges. [141] concludes that symmetric approaches are still not
the default choice for IoT. Instead, public key cryptography is likely to be
increasingly recommended, provided that the associated asymmetric tech-
niques are properly optimized. In [141] opinion, a trusted third party will
take a more active role to secure IoT and to adapt to its heterogeneous na-
ture. Additionally, security protocols should take into account the resource-
constrained feature of the devices involved in the IoT scenarios.

[3] proposes a lightweight key management protocol for e-health ap-
plications. It is based on collaboration to establish a secure end-to-end
communication channel among highly resource-constrained nodes and re-
mote entities. To achieve this goal without affecting in a relevant way the
network consumption, third parties are in charge of executing the crypto-
graphic primitives. However, the evaluation showed that high overhead
and the use of third parties and of a certificate authority heavily impacts
scalability and efficiency.

[201] and [82] adopt a group key management distribution scheme for
WSN in a IoT scenario in which the sensor nodes are organized in a hierar-
chical structure. Note that, it is preferable to not assume a hierarchy among
the sources since, in typical IoT scenarios, each device is independent from
the others.
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A more practical approach [210] proposes a transmission model based
on signature-encryption schemes, which addresses several IoT security re-
quirements (i.e., anonymity, trustworthy and attack-resistance) by means
of Object Naming Service (ONS) queries. Root ONS is able to authenticate
the identities and platform creditability of Local ONS servers (L-ONS) by a
Trusted Authentication Server (TAS). The TAS gives a temporary certificate to
validated L-ONS, which can apply for inquiry services many times, using
the certificate in the validated time. A security ONS query with anonymous
authentication provides credentials only to authorized and trusted L-ONS,
preventing the illegal ONS to enquire information from things. In the trans-
mission process, a Remote Information Server of Things (R-TIS) wraps the in-
formation of things into multiple encryption layers with the routing node
public key. The encrypted data are decrypted at each routing node, until the
Local Information Server of Things (L-TIS) receives the plain text. Meanwhile,
the nodes can check the integrity of the received data and the creditability
of routing path in the transmitting procedure. Such a transmission model
is very weak in terms of attack-resistance, mainly due to the adoption of a
hop-by-hop encryption/decryption approach.

From the work discussed above, it appears that a unique and well-
defined solution able to guarantee confidentiality in a IoT context is still
missing, as also asserted in [163]. It is worth noting that many efforts have
been conducted in the WSN field [6] [35] [74] [111] [219] [222] , but several
questions arise, such as:

• Are the WSN proposals adaptable to the IoT environment, consider-
ing both the heterogeneity of the involved devices and the different
application contexts? Some of the solutions presented are specifically
targeted to the problem of lightweight ciphering in pervasive envi-
ronments, but are these proposals enough secure and efficient?

• How and at which network layer to handle authentication?

• Is it feasible to reuse the traditional security mechanisms (e.g., encryp-
tion algorithms) or it is better to start from new solutions?

• How to handle the different keys?

• Which kind of key distribution mechanism is the most suitable?

• How to ensure an end-to-end integrity verification mechanism in or-
der to make the system more resilient to malicious attacks?

Therefore, further efforts are required to complement the existing lean
mechanisms with standardized protocols for authentication and a clear def-
inition of one or more authorities, aimed at guaranteeing the expected con-
fidentiality within the IoT infrastructure.

Access control - stream data

Access control refers to the permissions in the usage of resources, assigned
to the different actors of a wide IoT network. The two subjects identified in
[7] are the data holders and the data collectors. Users and things, as data
holders, must be able to feed data collectors only with the data regarding
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a specific target. At the same time, data collectors must be able to identify
or authenticate users and things as legitimate data holders, from which the
information are collected.

In IoT, is usually necessary to deal with processing of streaming data
and not, as in traditional database systems, with discrete data. The main
critical issues in this context refer to performance and temporal constraints,
since access control for a data stream is more computationally intensive
than in traditional DBMS (DataBase Management System). In fact, queries
have to be directly executed on incoming streams, which can be made of
large volumes of data that might arrive at unpredictable rates. Several
works deal with these aspects in database management field.

For example, [8] develops an architecture that aims at ensuring data
integrity and confidentiality, starting from a prototype query processing
engine for data streams, called Nile [80]. Such a mechanism is based on
FT-RC4, an extension of the RC4 algorithm, which represents a stream ci-
pher encryption scheme, to overcome possible decryption fails due to de-
synchronization problems. [80] is focussed on shared processing of win-
dow joins over data streams, in order to enhance the performance and the
scalability of the DBMS.

An approach that addresses the authentication problem of outsourced
data streams can be found in [151] and in [152] with CADS (Continuous
Authentication on Data Streams). In this scenario, the presence of a service
provider that collects data from one or more data owners is assumed, to-
gether with authentication information, and, at the same time, that pro-
cesses queries originating from many clients. The service provider returns
the query results to the clients, as well as verification information, which
allow them to verify the authenticity and the completeness of the received
results, on the basis of the authentication information provided by the data
owner.

[153] also focuses on data outsourcing. In particular, due to the large
amout of streaming data, companies may not acquire the resources for de-
ploying a Data Stream Management System (DSMS). Therefore they could
outsource the stream storage and delegate its processing to a specialized
third-party with a stronger DSMS infrastructure. Naturally, this gives rise
to a trust issue: the third-party may act maliciously to increase profit. The
solution is to adopt a method for stream authentication, in order to en-
able clients to verify the integrity and the freshness of the streaming results
received from the server. Such a solution should be very lightweight for
all parties involved (e.g., WSN applications). To this end, [153] represents
streams as linear algebraic queries, allowing to authenticate dynamic vec-
tor sums and dot products, as well as dynamic matrix products, by means
of hash operations, modular additions/multiplications and cryptographic
security functions. Such techniques may be very suitable for IoT entities,
which are characterized by resource constraints in terms of energy con-
sumption, computation and storage.

[114] proposes a semi-distributed approach, in which a framework and
an access control model to secure the DSMS are proposed. They extend
the Borealis data stream engine [2] with some security requirements. The
framework exploits an owner-extended version of RBAC (Role Based Access
Control) [177], called OxRBAC. Users have to prove their identity through
a login process, consequently a session is created and a role is established
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for the user to perform authorized tasks. As a result, the authorization is
checked by analyzing the user-session couple. The system itself provides
each user with the access permissions to objects; therefore users can see
only the catalogue of the objects they are allowed to view. Since there can
be many output streams, the system filters the tuples in order to give to the
users only permitted results. Such an approach does not consider the adop-
tion of any encryption algorithms for data streams. Note that this frame-
work uses a single node system and not a totally distributed data stream
engine. Clearly, a distributed approach would create new issues: the output
streams might be on different nodes and the use of identifiers to uniquely
recognize and filter the tuples to be managed might create conflicts.

Two works, [138] and [139], exploit metadata in order to guarantee the
security of the tuples in the stream. In [138] a stream-centric approach is
proposed, in which the security constraints are directly embedded into data
streams and not stored on the DSMS server. In more detail, security meta-
data tuples are interleaved with the data tuples in the streams, in order to
reduce the overhead. In [138], no new access control model is defined, but
there is an enforcement mechanism suitable for streaming data, exploiting
query processing. Note that, either RBAC, DAC (Discretionary Access Con-
trol) or MAC (Mandatory Access Control) can be cast in such a solution. In
[138] policies on data streams are stated by the user owning the device
producing the data streams itself. This makes a user able to specify how
the DSMS has to access his/her personal information (e.g., location, health
conditions).

In [139], an extended approach is proposed, which enriches data
streams with metadata called streaming tags. In this way, users are able
to use a free vocabulary to add information to reported events. It supports
a variety of tagging granularities; therefore, users could tag streams, tu-
ples, attributes or specific data values. A framework based on the CAPE
engine [225] is implemented and tested, after the definition of a proper and
novel tag query language, but this solution may present some overhead
and memory issues, as reported by simulation results.

The work in [33] presents an extension of the solution provided in
[34] as regards access control of streaming data, based on the Aurora data
model [1]. This framework supports two types of privileges, named “read”
and “aggregate”, and also two temporal constraints, named “general” and
“window”. The subjects (i.e., the users) are specified according to a role-
based approach, therefore permissions are associated with roles and not
directly with subjects, as in RDBMS (Relational DataBase Management Sys-
tem). Another idea, taken from RDBMS, is the definition of an independent
representation language for the managed object, similar to the concept of
“view”, in order to model the high granularity levels required by IoT ap-
plications. Queries are registered in the stream engine and continuously
executed on the incoming tuples. Whenever a user submits a query, a spe-
cific component, called Query Rewriter, checks the authorization catalogues,
where permissions are specified, to verify whether the query can be par-
tially or totally executed or should be denied. In case of partially autho-
rized queries, it is rewritten in such a way that it only contains authorized
data. In order to support the query rewriting task, a set of secure operators
is defined, which filter out from the results of the corresponding non secure
operators those tuples/attributes that are not accessible, according to the
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specified access control policies.
In [32] the authors extend the two previous works, just presented ([33]

and [34]), in order to make the solution independent from the stream en-
gine. Note that, in general, each DSMS adopts its own language; to over-
come such an issue and to allow the interaction among different DSMS, in
[32] a common query model is defined and then the most used operations
are translated by the Deployment Module into the specific engine query lan-
guage. The results have been compared with other proposals. For example,
with respect to [114], which has the drawback of wasting computation time
when unauthorized queries are performed, it represents a better solution.
[138], as [32], focuses on access control requirement for data streams; how-
ever, in [138] access control is considered from a different point of view: the
privacy protection. This is due to the fact that in [138] the privacy policies
on data streams are stated by the users themselves; while, in [32], policies
are specified by the system administrator. Moreover, in [138] access control
policies are not stored in the DSMS, but they are encoded via security con-
straints and directly embedded into the data streams; this also represents
an important difference with respect to [32]. In [139] a set of operators is
defined, able to enforce security constraints, but it implements them only
in the CAPE engine [225]; in contrast, [32] proposes a framework able to
work across a wide range of DSMSs.

While the previous works propose extended versions or acquire some
features of RBAC, in [77] the authors affirm that authorization frameworks
like RBAC and ABAC (Attribute Based Access Control) do not provide suf-
ficiently scalable, manageable, and effective mechanisms to support dis-
tributed systems with many interacting services and the dynamic and scal-
ing needs of IoT context. According to the authors of [77], a problem, com-
mon to ACLs (Access Control Lists), RBAC and ABAC is that, in these sys-
tems, the principle of least privilege access is hard to enforce. In order to
overcome such a limit, Capability Based Access Control (CapBAC) has been
developed, within the European FP7 IoT@Work project [57]. CapBAC is able
to manage the access control processes to services and information with
least-privilege operations. In CapBAC, the user has to present his/her au-
thorization capability (and demonstrate he/she is the owner of it) to the
service provider, while in a traditional ACL system the service provider has
to check if the user is, directly or indirectly (e.g., via a role owned by the
user), authorized to perform the requested operation on the resource. The
authorizations are given by the owner of a certain resource/service to the
desired users, which, as a consequence, can prove their capability to ac-
cess to the resource or benefit of the service. However, it is not clear how
to make possible to revoke capabilities and to set validity conditions un-
der which the authorization is available or not; such actions are, instead,
supported by RBAC and ABAC. Note that ABAC is adopted in this thesis,
showing its capability to manage the dynamic needs of IoT domain. An-
other crucial point is how to establish the degree of independence for users
and data owners in taking autonomous decisions on the rules and negoti-
ation activities; then, a middleware entity should be introduced to better
regulate such interactions, as this thesis does.
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Access control - specific contexts

Besides solutions based on DSMS, other work tries to address the access
control issue in various contexts.

For example, in [121] the attention is focused on the layer responsible for
data acquisition, which is the direct responsible for the collection of infor-
mation. In such a layer, a large number of nodes is required to sense a wide
range of different data types for authorized users, possibly in accordance
with privacy and security levels. Therefore, [121] presents a hierarchical
access control scheme for this layer, which considers the limited computa-
tional and storage capacity of the nodes. In fact, only a single key is given
to each user and node; the other necessary keys are derived by using a de-
terministic key derivation algorithm, thus increasing the security (since the
key exchange is limited) and reducing the node storage costs. However,
the presented approach seems not to be sufficiently robust for large-scale
IoT environments.

Instead, focusing on emergency situations, note that the location of a
user should be made available, while under normal circumstances, the user
location information is confidential. In this scenario, [83] presents an iden-
tity framework, consisting of the following primitives: registration, user
authentication, policy, and client subsystems. The system evaluates the
identity of the user through the user authentication subsystem and gets the
level of the emergency through the policy subsystem. Then it can make sure
that user location information can be accessed only by authorized users and
only when it is needed.

Multicast communication is secured in [201] by adopting a common se-
cret key, denoted the group key, shared by multiple communication end-
points. Such keys are managed and distributed with a centralized batch-
based approach. Note that such a mechanism reduces the computational
overhead and network traffic due to group membership changes, caused by
user joins and leaves, as happens in a typical IoT context. Such a protocol
can be applied to two several relevant scenarios: (i) secure data aggrega-
tion in IoT and (ii) Vehicle-to-Vehicle (V2V) communications in Vehicular Ad
hoc Networks (VANETs). However, it is not suitable, at this stage, to wide
IoT environments, since the actual solution requires the presence of a cen-
tralized server provider, thus compromising the scalability, for example,
in presence of multiple application scenarios with heterogeneous data and
different policies to be managed.

Other works again couple different kinds of authentication mechanims
with lightweight protocols for information dissemination. In fact, concern-
ing access control in publish/subscribe environments, several solutions ad-
dress such an issue by means of: hierarchical role-based rules based on
subscriber privileges [23]; attribute-level policies concerning multi-domain
environments and involving the use of shared keys for the interaction with
untrusted brokers [161]; policy integration and distribution along with per-
formance implications [211].

[192] and [191] investigate secure information sharing in the healthcare
context; since medical data are sensitive, they must be protected and re-
leased only to authorized parties. The solution proposed by the authors in-
volves a publish/subscribe middleware, which is in charge of handling the
access control policies on the data transmitted by the healthcare structures
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by customizing policies depending on the actual events. The defined pol-
icy rules are local to each administrative domain and proper mechanisms
are provided to assist administrators to maintain a consistent policy set.
However, the data disclosure and policy management are centralized, thus
compromising the scalability of the whole system. Moreover, automatic
updates and revocation of policies are not considered.

Another work targeted to the medical sector is [108]. It presents a tool
developed for the expression of security policy controls aimed at governing
electronic healthcare records. In particular, the authors introduce the the-
ory behind the use of knowledge management for automatic and consistent
security policy assertion, using a new formalism, called Secutype. Integra-
tion with an existing medical record system (EHR Standards) is proposed,
in order to efficiently provide protection for discrete and sensitive medical
data. Many open issues remain, such as: (i) how to formally define rules
tailored to a clinical purpose; (ii) how to model the security concepts; (iii)
how to enable interoperability among different collaborators.

The work in [97] describes a context-aware access control architecture
for the provision of e-services based on an end-to-end web services infras-
tructure. The proposed architecture is able to control access permissions to
distributed Web services through an intermediary server in a completely
transparent way both to clients and resources. The access control mecha-
nism is based on RBAC model, in order to enable the enforcement of com-
plex rules and the inclusion of context information in the authorization de-
cisions. Contexts are classified on the basis of the requirements imposed
by the provision of e-services to the industrial domain. The architecture
is entirely based on open Web standards: HTTP, XML, SOAP and WSDL.
What is missing is the effective portability of such a mechanism in a more
general IoT context, taking into account the data sources management and
user interactions with the system.

A scheme for the asynchronous discovery of topics in distributed pub-
lish/subscribe settings, based on Java Message Service, WS-Eventing and WS-
Notification infrastructures, is presented in [150]. Every interaction within
the system is secured and requires the presence of credentials before any
actions can take place. A topic advertisement is secured by encrypting the
advertisement with a symmetric key and by securing this advertisement
key with the creator’s public key. In this work, no platform is defined, able
to assess the behaviour of the presented mechanism in a wide IoT scenario,
with a proper threat model.

[64] aims to demonstrate that a standardized federated, dynamic, user-
directed authentication and authorization model can be adapted from the
web to be used in IoT, while preserving privacy for information and de-
vices. The authors explore the use of OAuth, built on top of HTTPS, for
IoT systems that, instead, use the lightweight MQTT protocol. In particu-
lar, they use OAuth 2.0 to enable access control to information shared via
MQTT. Nevertheless, this work does not clarify how to allow the re-use
and the integration of the proposed mechanism with IoT devices and the
standard protocols.

In [24], a category-based metamodel for access control in distributed
(federated) environments is presented. A framework for the specification
and the enforcement of global access control policies that take into account
the local policies specified by each member of the federation is described.
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Such a framework provides mechanisms for specifying heterogeneous lo-
cal access control policies, for defining policy composition operators, and
for using them to define conflict-free access authorisation decisions. In
this framework, distributed access control policies can be easily specified
and manipulated by means of local policy specification mechanisms and
definitions of policy composition operators. Anyway, no real application
case-studies or implemented tools have been proposed by the authors, thus
limiting the contribution to a theoretical approach.

In [202] an architecture for open networks is proposed, aiming to al-
low “things”, with limited or no user interfaces, to provide a high level of
data security by delegating trust to a trusted third party (i.e., a provision-
ing server). Such a third party helps the device to determine which users,
devices or services are authorized to perform a given operation on the de-
vice itself in a secure manner. Such a solution uses an existing, open and
standardized transport protocol for communication, named Extensible Mes-
saging and Presence Protocol (XMPP), for guaranteeing interoperability and
scalability. XMPP supports the most commonly communication patterns
necessary for IoT, such as request/response, asynchronous messaging and
publish/subscribe. It is based on message brokers to solve the security is-
sues concerning user identities, enforcing secure user authentication, and
message authorization. The architecture requires zero-configuration for op-
erators and manufacturers, without compromising security or ease-of-use
for end-users. It is also scalable and can be used both in local environments
such as cars, homes, offices, buildings, industry plants, with local provi-
sioning servers and local message brokers, as well as in global environ-
ments, with global provisioning servers connected to global message bro-
kers. An implementation of the provisioning server is also provided. Note
that the authors have chosen to use XMPP protocol rather than MQTT or
CoaP, as explained in [99]. However, the scalability claimed by the authors
is not clear, since most of the operations are brought to external entities and
devices seem unaware about what they are or are not allowed to do. More-
over, no performance analysis is provided to verify the overhead on devices
of such a solution.

Two theoretical approaches are presented in [39] and [148], which ad-
dress secure data sharing among different applications domains. In par-
ticular, [39] proposes a knowledge access control policy language model
able to identify the knowledge access control and sharing rules across en-
terprises members. Such a language is based on an ontology, which aims to
solve knowledge heterogeneity issues within companies and workers be-
longing to different areas. This is achieved by establishing relationships
among the topics of interest of the parties involved, thus allowing a timely
response to access authorization requests, also in case of changes in the
business environment. Instead, in the IoT and big data fields, [148] pro-
poses the policy-carrying data mechanism, with the aim of establishing ac-
cess control rules for data consumers. Several drawbacks of such a work
are the following: (i) the introduction of a complex language for policy def-
inition; (ii) the need to a centralized entity able to evaluate the behavior of
producers and consumers (which may represent a bottleneck); (iii) solely a
theoretical presentation of the proposed solution.



20 Chapter 2. State of the Art

Access control - hardware solutions

In order to provide a complete overview, it is important to present a sketch
of the hardware solutions, conceived for access control in IoT applications.

The authors of [96] propose the use of Sensor PUFs to address the chal-
lenge of data provenance and integrity. Note that traditional PUF pro-
duces the response based on the challenge, while Sensor PUF produces
the response based on the challenge as well as the sensed physical quan-
tity. Sensor PUFs and PUFs can be used for identity management; along
with hardware performance counters, they can be used for trust manage-
ment. Lightweight encryption algorithms can be further used to provide
confidentiality and privacy to the users.

[40] and [201] solutions are also tailored to IoT. In particular, [40] pro-
poses an authorization scheme for constrained devices, combining Physical
Unclonable Functions (PUF) with Embedded Subscriber Identity Module (eSIM).
The former provides cheap, secure, tamper-proof secret keys to authen-
ticate constrained devices; while the latter provides mobile connectivity
guaranteeing scalability, interoperability and compliance with security pro-
tocols. The main drawback of this mechanism is that IoT devices have to be
physically equipped with an eSIM card, which, at the moment, is not yet a
standard technology.

Also the authors of [5] utilizes PUF for guaranteeing a higher level of
privacy and, at the same time, a constant identification time for things. PUF
is exploited as a secure storage to keep secrets of the tag and defend against
compromising attacks (i.e., an adversary compromising one tag can reveal
the secrets of other tags). The target of this work is that of RFID systems,
which play an important role in the IoT scenarios for solving the identifica-
tion issues of things cost-effectively.

An overview of PUF-based hardware security solutions for IoT is given
in [79], pointing out open security challenges in this field.

[180] develops a secure and efficient user search engine, named SecDS
based on EPC Discovery Services (EPCDS) for EPCglobal networks. In more
detail, the authors analyzed the requirements of access control for EPCDS
and proposed an extended ABAC model to meet the requirements of en-
forcing the access control on resources; to achieve this goal, ABAC policies
have been transformed to FGAC (Fine-Grained Access Control) policies. The
final aim is to provide a bridge among different partners of supply chains to
share information while enabling them to quickly find who is in possession
of an item.

Finally, few hardware solutions are based on Field Programmable Gate
Array (FPGA). For example, [165] couples FPGA with the Blowfish algo-
rithm with the scope of reducing the encryption time and achieve greater
throughput for data transmissions among IoT devices; while [68] proposes
an FPGA-based edge device, which uses FPGA technology to offload criti-
cal features of the communication stack to the dedicated hardware, aiming
to increase the overall system performance.

Access control - summary

Starting from this discussion, the cited solutions can be grouped to a num-
ber of macro-categories, which are summarized in Table 2.2: (i) methods
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TABLE 2.2: Summary of related works on access control

Kind of approach Works

DBMS/DSMS [8] [80] [151] [152] [153] [114] [138] [139] [33] [34] [32] [77]
Specific application contexts [121] [83] [40] [201] [108]

Publish/subscribe [23] [161] [211] [202] [97] [150] [192] [191]
Federation [64] [24]

Theoretical solutions [39] [148]

targeted to stream data in database management systems; (ii) access con-
trol frameworks tailored to specific application contexts; (iii-iv) works con-
ceived for web service platforms and adopting publish/subscribe or feder-
ation mechanisms; (v) theoretical approaches.

The major challenges that emerge from this analysis, related to access
control in an IoT scenario, are:

• How to guarantee the access permission in an environment where not
only users, but also “things” could be authorized to interact with the
system?

• It is more effective to adopt a centralized or distributed approach or
a semi-distributed one (e.g., in which some tasks are performed in a
distributed way and others by means of a centralized entity) in order
to manage the scalable IoT architecture?

• How to handle the huge amount of transmitted data (i.e., in the form
of stream data) in a common recognized representation?

• What are the access control features to be specifically tailored for dis-
tributed systems in order to bring proper decision regarding the de-
velopment of an authentication system?

• How to support the identification of entities?

In fact, as regards identification, today one of the main changes is the
increase in mobility of portable and powerful wireless devices. Identity re-
quirement is not yet adequately met in networks, especially given the emer-
gence of ubiquitous computing devices. Addressing identity issue requires
to reformulate the architecture for naming, addressing and discovery, and
the development of specific identity management framework for IoT [123].
Rather few solutions have been proposed, that relate to such an issue. Fur-
thermore:

• To manage access control, how could an IoT system deal with the
registration of users and “things” and the consequent issuance of cre-
dentials or certificates by authorities?

• Could the users/things present these credentials/certificates to the
IoT system in order to be allowed to interact with the other authorized
devices?
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• Could a further step be the definition of specific roles and functions
within the IoT context, in order to manage the authorization pro-
cesses?

2.1.2 Privacy

IoT finds application in many different fields, for example: remote pa-
tient monitoring, energy consumption control, traffic control, smart park-
ing systems, inventory management, production chains, customization of
the shopping at the supermarket, civil protection. For all of them, users
require the protection of their personal information related to their move-
ments, habits and interactions with other people. In a single term, their
privacy should be guaranteed. In literature, there are some attempts to ad-
dress such an issue.

In [58] data tagging for managing privacy in IoT is proposed. Using
techniques taken from information flow control, data representing network
events can be tagged with several privacy properties; such tags allow the
system to reason about the flows of data and preserve the privacy of indi-
viduals. Exploiting tagging within resource-constrained sensor nodes may
not be a viable solution because tags may be too large with respect to the
data size and sensitivity; therefore they generate an excessive overhead.
Clearly, in this case it is not suitable for IoT.

In [85] a user-controlled privacy-preserving access control protocol is
proposed, based on context-aware k-anonymity privacy policies. Note that
privacy protection mechanisms are investigated: users can control which of
their personal data are being collected and accessed, who is collecting and
accessing them, and when this happens.

In [158] privacy protection of location-based services is addressed by
proposing UniLO. It is an obfuscation operator, also able to provide ser-
vice differentiation by means of three UniLO-based obfuscation algorithms,
which offer multiple contemporaneous levels of privacy. In more detail,
each user, before sending his/her location to a service provider, applies the
obfuscation operator, in order to reduce the precision of the measurements
and guarantee a certain privacy level. Such a precision is defined by the
user according to his/her requirements in terms of privacy. Moreover, a
user may require different privacy levels for different services.

The same authors of [158] present, in [45], a middleware architecture,
named LbSprint, for location-based services, which integrates different pri-
vacy mechanisms by means of the standard XACML language. In fact, the
first assumption of [45] is that a single privacy mechanism is not sufficient
for meeting privacy requirements for heterogeneous services. To cope with
such issues, LbSprint secures all communications in terms of confidential-
ity, authenticity and integrity, supporting various localization technologies
(e.g., GPS, WiFi positioning, RFID). Every location receiver first authen-
ticates to LbSprint, and then asks for and receives location notifications.
Note that different receivers have different rights for accessing location
data. The related rules are managed by a filter engine, on the basis of user-
customizable policies, written in XACML, aimed at protecting user privacy.
The LbSprint protocol is built over SOAP and is a centralized architecture.

In [30] Continuously Anonymizing STreaming data via adaptive cLustEring
(CASTLE) is presented. It is a cluster-based scheme that ensures anonymity,
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freshness, and delay constraints on data streams, thus enhancing those
privacy preserving techniques (e.g., k-anonymity) that are designed for
static data sets and not for continuous, unbounded, and transient streams.
In more detail, [30] models k-anonymity on data streams and defines k-
anonymized clusters exploiting the quasi-identifier attributes of tuples in
order to preserve the sensitive data privacy.

In [217], the traditional privacy mechanisms are divided into two cate-
gories: discretionary access and limited access. The former addresses the
minimum privacy risks, in order to prevent the disclosure or the cloning
of sensitive data; whereas the latter aims at limiting the security access to
avoid malicious unauthorized attacks.

[205] analyzes the privacy risk that occurs when a static domain name
is assigned to a specified IoT node. In this work, the authors propose a
privacy protection enhanced DNS (Domain Name System) for smart devices,
which can authenticate the original users’ identity and reject illegal access
to the smart device. The scheme is compatible with widely used DNS and
DNSSEC (Domain Name System Security Extensions) protocols.

In [7] a fully decentralized anonymous authentication protocol for
privacy-preserving target-driven IoT applications is presented. Such a pro-
posal is based on a multi-show credential system, where different show-
ings of the same credential cannot be linked together, therefore avoiding
the discovering of the generating keys. The system defines two possible
roles for participant nodes: (i) users, which represent the nodes originat-
ing the data and (ii) data collectors, which are responsible for gathering
the data from authorized users. Users can anonymously and unlinkably
authenticate themselves in front of data collectors proving the owning of
a valid Anonymous Access Credential (AAC) encoding a particular set of at-
tributes, established by the system itself. The protocol is divided into three
phases: set-up; user registration, during which users obtain Anonymous Ac-
cess Credentials; credential proving, during which users prove the posses-
sion of valid AAC to a data collector. Such a protocol guarantees: user
anonymity, AAC unlinkability (no data collector or set of colluding data
collectors can link two transactions to the same user), resistance to user im-
personation, faulty and selfish nodes, nodes hindering the efficiency, and
adversary controlling the data collectors. Moreover, such a system relies
on a fully distributed approach, thus avoiding single point of failure issues.
This work represents a valuable starting point for the development of a se-
cure IoT distributed architecture; however, at this stage, no solution about
to disseminate and protect the available resources is provided. Further-
more, the data should be distinguished as sensitive/identifiable and “nor-
mal”, in order to guarantee both a certain level of information availability
and privacy for users.

In this direction, [198], starting from the privacy preserving data min-
ing techniques, aims at minimizing the sensitive data disclosure probability
and the sensitive content analysis. In such a work, the user privacy aware-
ness issue is addressed, proposing a privacy management scheme that en-
ables the user to estimate the risk of sharing sensitive data. It also aims at
developing a robust sensitivity detection system, able to quantify the pri-
vacy content of the information.

[22] focuses on e-commerce applications (e.g., eBay). In particular, it
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claims that there exist two main paradigms to protect the customer pri-
vacy: one relies on the customer trustworthiness; the other one insists on
the customer anonymity. The proposed paradigm hides the customer’s real
identity and only data that cover the actual resources he/she is looking for
are allowed to circulate. Such data will be orchestrated through the net-
work to raise potential matches, and each node will use a certified email to
send the customer a matching offer in a standardized format.

Other works handle the privacy issues with the use of various mecha-
nisms based on encryption schemes.

For example, [204] analyzes in depth the performances of the two major
types of Attribute-Based Encryption (ABE): Key-Policy Attribute-Based Encryp-
tion (KP-ABE) and Ciphertext-Policy Attribute-Based Encryption (CP-ABE).
Simulations are carried out on different classes of mobile devices, includ-
ing a laptop and a smartphone, in order to establish under what conditions
ABE is better suited for IoT. ABE potentially provides a public key encryp-
tion scheme which enables fine-grained access control, scalable key man-
agement, and flexible data distribution.

Another approach that uses an attribute-based signature scheme to
guarantee privacy in IoT is presented in [194]. Here, a novel Attribute-Based
Signature (ABS) scheme, named ePASS, uses an attribute-tree and expresses
any policy consisting of AND/OR operators, which are unforgeable for the
computational Diffie-Hellman assumption. In fact, users cannot forge sig-
natures with attributes they do not own, and the signature provides assur-
ance that only a user with appropriate attributes satisfying the policy can
endorse the message. Moreover, the legitimate signers remain anonymous
and are indistinguishable among all users whose attributes satisfy the pol-
icy, which provides attribute privacy for the signer.

Focusing on the privacy protection in IoT, [157] puts forward a key-
changed mutual authentication protocol for WSN and RFID systems. Such
a protocol integrates a random number generator in the tag and the reader,
and adopts a one-way hash function, key refresh in real time, and key
backup as mechanisms to reduce the risks of replay, replication, denial of
service, spoofing and tag tracking.

To summarize, privacy requirements in IoT are currently only partially
covered and there is a wide space of research issues to be investigated.
Those include to the need to define privacy policies starting from a well-
defined model and the corresponding development, dealing with scala-
bility and the dynamic environment that characterizes IoT scenarios, and
allowing different management for sensitive or identifiable data. In fact,
capturing privacy requirements in the very early stages of development is
essential for creating sufficient public confidence and facilitating the adop-
tion of novel IoT systems.

2.1.3 Trust

The trust concept is used in various contexts and with different meanings.
Trust is a complex notion about which no definitive consensus exists in
the scientific literature, although its importance is widely recognized. One
significant problem with many approaches towards trust definition is that
they do not lend themselves to the establishment of metrics and evaluation
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methodologies. Moreover, the satisfaction of trust requirements are strictly
related to the identity management and access control issues.

[18] and [19] focus on trust level assessment of IoT entities. The authors
assume that most smart objects are human-carried or human-related de-
vices, so they are often exposed to public areas and communicate through
wireless, hence are vulnerable to malicious attacks. Smart objects have het-
erogeneous features and need to work together cooperatively. The social
relationships considered are: friendship, ownership and community, since
users are friends among themeselves (i.e., friendship), users own the de-
vices (i.e., ownership) and the devices belong to some communities (i.e.,
community). Malicious nodes aim to disrupt the basic functionality of IoT
by means of trust-related attacks: self-promoting, bad-mouthing and good-
mouthing. The trust management protocol for IoT proposed in [18] is dis-
tributed, encounter-based, and activity-based: two nodes that come into
contact with each other or are involved in a mutual interaction can directly
rate each other and exchange trust evaluation about the other nodes, so
they perform an indirect rate which seems like a recommendation. The ref-
erence parameters to trust evaluation are: honesty, cooperativeness, and
community-interest. Therefore such a dynamic trust management proto-
col is capable of adaptively adjusting the best trust parameter setting in
response to dynamically changing environments, in order to maximize ap-
plication performance.

A similar approach to provision of a trustworthiness evaluation is
carried out in [144] in the so called Social Internet of Things (SIoT). This
paradigm derives from the integration of social networking concepts into
IoT, due to the fact that the objects belonging to the IoT infrastructure are
capable of establishing social relationships in an autonomous way with
respect to their owners. The challenge addressed in [144] is to build a
reputation-based trust mechanism for the SIoT which can effectively deal
with certain types of malicious behaviors aimed at misleading other nodes,
in order to drive the use of services and information delivery only towards
trusted nodes. A subjective model for the management of trustworthi-
ness is defined, and built upon the solutions proposed for peer-to-peer net-
works, such as those proposed in [94] [214] [179] [220] [113]. Each node
computes the trustworthiness of its friends on the basis of its own experi-
ence and on the opinion of the common friends. As a consequence, a node
chooses the provider of the service it needs on the basis of the highest com-
puted trustworthiness level.

In relation to the social network context, in [105] the authors propose
a secure distributed ad-hoc network; it is based on direct peer-to-peer in-
teractions and communities creation in order to grant a quick, easy and
secure access to users to surf the Web; thus it is close to the social network
concept. Each node (i.e., device) and community have an identity in the
network and modify the trust of other nodes on the basis of their behavior,
thus establishing a trust chain among users. The analyzed parameters are:
physical proximity, fulfillment and consistency of answer, hierarchy on the
trusted chain, similar properties (e.g., age, gender, type of sensor), common
goals and warrants, history of interaction, availability, interactions. Chains
of confidence will allow the establishment of groups or communities and
unique identities (for the communities) for the access to services as well as
for the spreading of group information. Therefore, security is established
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when the users access the network through the trust chain, generated by
nodes, which he/she crosses.

In [124] the traditional access control models are considered as unsuit-
able for the decentralized and dynamic IoT scenarios, where identities are
not known in advance. A trust relationship between two devices helps in
influencing the future behaviors of their interactions. When devices trust
each other, they prefer to share services and resources. This is the same as
the idea that emerged in [144] and [18]. [124] presents a Fuzzy approach to
the Trust Based Access Control (FTBAC). The trust scores are calculated by
the FTBAC framework from factors like experience, knowledge and recom-
mendation. Such trust scores are then mapped to permissions, and access
requests are accompanied by a set of credentials which together constitute
a proof for allowing the access or not.

FTBAC framework is composed of three layers:

• Device Layer, which includes all IoT devices and communication
among these devices

• Request Layer, which is mainly responsible for collecting experience,
knowledge and recommendation information and calculating fuzzy
trust values

• Access Control Layer, which is involved in the decision making process
and maps the calculated fuzzy trust value to the access permissions,
with the principle of least privilege.

The simulation results show that this framework guarantees flexibility
and scalability and it is energy efficient. In fact, a solution based on crypto-
graphic protection can achieve access control by increasing the trust level,
but it creates extra overhead in terms of time and energy consumption;
instead, according to authors, the fuzzy approach is easier to integrate in
utility-based decision making.

In [93] another fuzzy approach to trust evaluation, based on three layers,
is presented: sensor layer, core layer, and application layer. The sensor layer
includes physical devices (e.g., RFID, WSN and base stations); the core layer
mainly includes access network and Internet; the application layer includes
various distributed networks (e.g., peer-to-peer, grid, cloud computing),
application systems and interfaces. From the users’ point of view, the IoT
system is regarded as a Service Provider (SP) and the trust management aims
to provide an auxiliary service that assists the IoT to provide more qualified
service to any Service Requester (SR). The relationship is bidirectional as the
trust mechanism has effects both on the SR (for privacy protection) and SP.
Such a trust management model includes three steps: trust extraction, trust
transmission, and trust decision-making. Requested information service
and trust based service coexist in this model. Trust management should act
as a self-organizing component in order to deal with the information flow
and preventing the privacy information from leaking to un-trusted SR. The
authors in [93] make use of fuzzy set theory and a formal semantics-based
language to perform the layered trust mechanism, evaluated by using spe-
cific layer attributes (i.e., efficiency, risk, history). The user has access to
the IoT only if security credential satisfies security policies, which are de-
fined by means of a decision-making function according to user trust value.
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Note that, such a work discusses no concrete trust models, but establishes
only a general framework, in which the well-defined trust models could be
integrated.

[119] and [118] propose a trust model to protect the user security by
combining location-aware and identity-aware information and authentica-
tion history; as a consequence, the users can obtain the trustworthiness for
the requested services. Three trust regions are considered, each one having
high, medium, and low ranks, respectively. For each rank, the authentica-
tion approach is different. In the high rank case, no extra key is needed.
For medium rank, users have to offer their PIN for login. Low rank means
that users need to provide biometric information, such as face image, fin-
gerprint or iris scan, which may be not convenient for its complexity and
hardware constraints. The goal is to make a classification of the provided
services, in order to evaluate the sensitivity of the trasmitted information
(i.e., on the basis of the type of application or the host in which the applica-
tion is executed); to achieve this, a fuzzy approach is used.

Other proposals are not based either on the social networking concept
nor on fuzzy methods. For example, in [208] the authors propose a hierar-
chical trust model for IoT, able to effectively detect malicious organizations
from the behavior of their neighboring nodes. A Verifiable Caching Inter-
action Digest (VCID) scheme is introduced for the purposes of monitoring
object-reader interaction, and a long-term reputation mechanism is used to
manage the trust of organizations.

[176] proposes a trust management system for IoT, able to assess the
trust level of a node from its past behavior, in distinct cooperative services.
The main goal of this solution is to manage cooperation in a heterogeneous
IoT architecture taking into account the different capabilities of nodes by ex-
ploiting a decentralized approach. Such a model considers both first-hand
information (i.e., direct observations and own experiences) and second-
hand information (i.e., indirect experiences and observations reported by
neighboring nodes) to update trust values. Different phases are involved,
in which the trust management system: (i) gathers information about the
trustworthiness of the available nodes; (ii) sets up a collaborative service
with the requesting nodes; (iii) learns from its past operation by perform-
ing self-updates aimed at improving its future operations; (iv) assigns a
quality recommendation score to each node after each interaction during
the learning phase.

In [48], the authors make an attempt to design an attack-resistant trust
management model for distributed routing strategy in IoT. Such a model
can evaluate and propagate reputation in distributed routing systems and it
is then proposed to establish reliable trust relations between self-organized
nodes and defeat possible attacks in distributed routing systems.

[117] starts from WSN and defines trust management for IoT, consist-
ing of an identity-based key agreement; this agreement occurs by means
of a distributed self-organizing key negotiation process. Such a protocol
aims at preventing attacks from outside the network and recognizing ma-
licious nodes. Thus it can reduce communications with malicious nodes to
improve security and extend network lifetime.

[126] presents an identity-based network protocol aimed at identifying
network nodes, which move themselves from host to host during the han-
dover processes. Therefore, it needs to decouple identifiers and locators in
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order to separate the node identification from host addressing. The mutual
authentication of network nodes is achieved by the validation of the iden-
tity attributes and then by attaching a signature to each attribute, emitted
by a trusted signing entity. Access to non public identity information is
regulated by policies defined by the owner of the information. Thus, it is
only disclosed to the authorized subjects by using the same attribute-based
authorization method. Nodes and a domain trusted entity are connected to
each other to build a globally trusted infrastructure by the pre-sharing of
cryptographic certificates and ensuring the confidentiality and authentica-
tion of their exchanges by means of encryption and signature mechanisms.

As pointed out in [196], current trust and reputation management ap-
proaches usually offer rigid and inflexible mechanisms to compute reputa-
tion scores, which hinder their dynamic adaptation to the current environ-
ment where they are deployed. At most, they provide certain parameters
that are configurable or tunable. This seems not enough for the heteroge-
neous and dynamic IoT context. Therefore, [196] has designed and proto-
typed a flexible mechanism to select the most suitable trust and reputation
model in heterogeneous environments. Such a mechanism can be applied
on-the-fly, among a pool of predefined ones, considering the current system
conditions (e.g., number of users, allocated resources).

Another trust system is proposed in [120], based on node behavior de-
tection. The metrics periodically evaluated are recommended trust and his-
tory statistical trust. They are calculated by evidence combination and Bayes
algorithm, respectively.

This overview shows that the available solutions exploit different tech-
niques in order to handle the trust issue in the IoT scenario. Proposals
include hierarchical models, reputation mechanisms, approaches derived
from social networking, fuzzy techniques, mechanisms based on nodes
past behavior or on routing strategies (a scheme concerning the analyzed
works is shown in Table 2.3). Literature seems mature enough in the field
of trust management, but the definition of a fully distributed and dynamic
approach suitable for the scalable and flexible IoT context is still missing,
as confirmed in a complete survey on trust management in IoT, provided
in [216]. Further missing items are the definition of globally accepted certi-
fication authorities and of a common-accepted trust negotiation language.
To sum up, the following issues are still open in IoT-trust management:

• The introduction of a well-defined trust negotiation language sup-
porting the semantic interoperabilty of IoT context

• The definition of a proper object identity management system

• The development of a trust negotiation mechanism in order to handle
data stream access control.

2.1.4 Enforcement in IoT

The definition of security and data quality policies on data may be not suf-
ficient for satisfying the requirements of an IoT system, because violation
attempts should also be considered. This requires the inclusion of policy
enforcement mechanisms, which define how the system shall react in such
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TABLE 2.3: Summary of related works on trust assessment

Adopted technique Works

Social networking [18] [19] [144] [105]
Fuzzy technique [124] [93] [119] [118]

Cooperative approach [208] [176] [48] [120]
Identity-based method [117] [126]

cases. In more detail, policies are operating rules that need to be enforced
for the purpose of maintaining data order, security, and consistency. The
policy enforcement assures that the security tasks can only be fulfilled if
they are in accordance with the underlying security policies, as determined
by consulting the policy decision component and deciding whether to al-
low an entity to perform an operation on a system resource. This aspect
is poorly covered in existing literature, which mostly focuses on how to
manage policy enforcement.

[209] presents a simulation environment for various policy languages,
such as WS-Policy (Web Services-Policy) and XACML (eXtensible Access Con-
trol Markup Language), used in different systems. In fact, low-level enforce-
ment mechanisms can vary from system to system. Thus, it is difficult to
enforce a policy across domain boundaries or over multiple domains. Be-
fore applying policies across domain boundaries, it is desirable to know
which policies can be supported by other domains, which are partially sup-
ported, and which are not supported. For example, in a healthcare envi-
ronment, the cooperation and communication among pharmacy, hospital
and medical schools are essential. They have their own policy enforcement
mechanisms to protect their own proprietary data and patient records. The
problem is that there are many collaborations and communications among
these domains; therefore, cross-domain policy enforcement becomes an es-
sential component. However, in most cases, these domains use different
policy languages to define the rules that are executed on their own plat-
forms. When a new cooperation or communication is required between
two separate domains, we do not know how many rules from one domain
can be enforced by current enforcement mechanisms. Then, in most cases,
the technical departments from these two domains have to work together
to evaluate whether or not it is possible to make their systems interoperate.
The same problem also exists in social networking environment (e.g., Face-
book, MySpace, LinkedIn). Most existing social networking sites have pri-
vacy configurations based on their own enforcement mechanisms. When
two social networking sites or two healthcare domains need to commu-
nicate or collaborate with each other, they have to rebuild or reconfigure
their systems to make sure these activities are consistent with their own
and their partners’ policies. To cope with such issues, [209] includes, in a
proper simulation environment, a semantic model mapping and translation
mechanism for policy enforcement across domain boundaries by means of
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Web Ontology Language (OWL), which can be used to model both policy lan-
guages and enforcement mechanisms. Therefore, a configurable middle-
level component is provided for the mapping process among such different
domains. The main disadvantage of the approach presented in [209], in
comparison with our solution, is two-fold. On the one side, the aim of our
work is to propose a unifying language to be adopted in IoT applications,
able to interoperate with different data sources and technologies and, at
the same time, acting as a cross-domain middleware, without the need of
a translation system, as the one proposed in [209], which could also lead
to scalability issues. On the other side, the translated/mapped languages
(e.g., WS-Policy, XACML), besides being supported by most Web service
platforms, are complex and, with their central rule processing engine, may
be a bottleneck for a potentially large amount of authorization requests.
Note that XACML also requires a cache system for improving its efficiency.

Also regarding policy definition languages, in [52] they are classified
into two categories. On the one hand, there are policy enforcement lan-
guages, which generally simplify the specification and interpretation of
policies; however, they lack the formal semantics needed to allow the veri-
fication of the policies themselves by means of formal proofs. On the other
hand, there are policy analysis languages, which allow the formal policies
analysis and the expression of a large variety of obligations. In [52], the
authors introduce a policy language that aims to combine the advantages
of both approaches. Then, policies are enforced using reference monitors,
and a set of active rules specifies the set of actions that should be executed
after the detection of particular events, if some conditions are met. How-
ever, such a language does not provide the operational semantics needed to
dynamically enforce and handle obligations in a policy managed system.

As just emerged, expressing security policies to govern distributed sys-
tems, like IoT, is a complex and error-prone task. Because of their complex-
ity and of the different degrees of trust among locations in which code is de-
ployed and executed, it is challenging to make these systems secure. More-
over, policies are hard to understand, often expressed with unfriendly syn-
tax, making it difficult for security administrators and for business analysts
to create intelligible specifications. In [43] a Hierarchical Policy Language for
Distributed Systems (HiPoLDS) is introduced; it has been designed to enable
the specification of policies in distributed systems in a concise, readable and
extensible way. HiPoLDS design focuses on decentralized execution envi-
ronments under the control of multiple stakeholders. It represents policy
enforcement through the use of distributed reference monitors, which con-
trol the flow of information among services (i.e., SOA) and have the duty to
put into action the directives, output by the decision engines. But, it gives
only the main implementation directions, conceived for service-oriented ar-
chitectures, not reasoning about the scalability and the robustness towards
malicious attacks of the proposed solution.

A theoretical approach is presented in [107]. It introduces a formal and
modular framework allowing one to enforce policies on a given concurrent
system. In fact, one of the important goals of the software development
process is to prove that the system always meets its requirements. To deal
with this problem, two different approaches are proposed. The former is a
conservative enforcement: the program should be terminated as soon as it
violates the policy even if the current run could be partially completed. The
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latter is a liberal enforcement: the execution of the process is not aborted
if it could be partially satisfied. With this approach, more properties are
enforced than with the conservative one, but the program may terminate
without fully satisfying the policy. Therefore the conservative enforcement
will generate false negatives, while the liberal enforcement will generate
false positives, and neither of them will reach the desired result. In [107]
the liberal enforcement is developed, which can be further extended to han-
dle the conservative one. In more detail, an extended version of Algebra for
Communicating Process (ACP) [13], designed for specifying concurrent sys-
tems behavior, and Basic Process Algebra (BPA) language for policy specifi-
cation are adopted. ACP is further enhanced with an enforcement operator,
whose actions run in parallel within the system, in order to monitor the
requests and the satisfaction of the related policies.

Further theoretical systems are the following. [122] provides an
overview of network security, security policies, policy enforcement and
firewall policy management systems. As far as policy enforcement is con-
cerned, it proposes to use security services such as authentication, encryp-
tion, antivirus software and firewalls in order to protect data confidentiality,
integrity, and availability. In contrast, the authors of [155] present a frame-
work able to prove whether the code implementing access control respects
access control policy specifications. Furthermore, the authors of [190] state
that the application logic, embodied in the system components, should be
separated from the related policies. Therefore, they propose an infrastruc-
ture that can enable policy, representing high-level (i.e., users) or systems
entities, able to drive the system functionality in a distributed environment.
To this end, a middleware, able to support a secure and dynamic reconfigu-
ration and to provide a policy enforcement mechanism across system com-
ponents, is introduced. Nevertheless, neither a case study nor a working
implementation is provided.

In [60] a novel access control framework, named Policy Machine (PM), is
proposed. It is composed by the following basic entities: authorized users,
objects, system operations, and processes. Users may be either human be-
ings or system users; objects specify system entities which are controlled
under one or more policies (e.g., records, files, e-mails); operations iden-
tify the actions that can be performed on the contents of objects (e.g., read,
write, delete); finally, users submit access requests through processes. Poli-
cies are grouped into classes according to their attributes and, therefore, an
object may be protected under more than one policy class, and, similarly,
a user may belong to more than one policy class. PM is able to configure
many types of access control policies, and it is independent from the dif-
ferent operating systems and applications; users need only to login to PM
in order to interact with the secure framework. [60] demonstrates the PM
ability to express and enforce the policy objectives of RBAC [177], Chinese
Wall [28], MAC and DAC models [25]. Moreover, PM is able to face many
Trojan horse attacks, to which DAC and RBAC are vulnerable.

Similarly, [166] introduces a semantic web framework and a meta-
control model to orchestrate policy reasoning with the identification and ac-
cess of the information sources. In fact, in open domains, enforcing context-
sensitive policies requires the ability to opportunistically interleave policy
reasoning with the dynamic identification, selection, and access of relevant
sources of contextual information. Each entity (i.e., user, sensor, application
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or organization) relies on one or more policy enforcing agents responsible
for applying relevant policies in response to incoming requests. The frame-
work is suitable to a number of domains where policy reasoning requires
the automatic discovery and access of external sources.

Note that [60] and [166] only enforce access control policies and do not
refer to a distributed nature of the proposed solutions, which is a pivotal
requirement in IoT applications.

Another aspect to be considered is how information and policy sharing
is regulated within distributed systems. In fact, in the IoT context, multiple
application domains may be involved with heterogeneous data and differ-
ent required policies. Therefore, an efficient and effective IoT architecture
should be able to manage both the data acquisition and provision and the
synchronization of policies belonging to the actual realms. In this direction,
the approaches of [101] and [71] are presented below.

[101] developed an information security policy process model, based
on a methodology involving qualitative techniques, able to evaluate the ex-
ternal and internal influences that can impact on organizational security
against cyber threats. Such a model uses a data-centered approach that
allows to identify the primary policy processes, the main environmental
and organization influences, and the relevant linkages among them. Note
that such a process model represents a generalized framework rather than a
specific model for a single company. Therefore, it does not consider the pe-
culiar aspects of each organization in a way that the model may not equally
apply to all organizations. Moreover, it does not address exceptional situa-
tions that may warrant a temporary violation of predefined policies. How-
ever, it would be better to to go beyond such limitations by means of a dis-
tributed middleware, able to manage the information of heterogeneous ap-
plication domains and update the policies in real time, in accordance with
the organizational or users’ actual requirements.

Also, the work presented in [71] highlights that security mechanisms are
often enforced in a separated way from each other (e.g., no interactions or
integrations among different companies or organizations), thus limiting the
kinds of policies that can be enforced in distributed and heterogeneous set-
tings. To cope with such an issue, [71] introduces the concept of a Security
Service Bus (SSB), representing a dedicated communication channel among
the applications and the different security mechanisms. It allows the en-
forcement of advanced policies by providing uniform access to application-
level information. Nevertheless, such a security infrastructure is not flexi-
ble and scalable enough for the breadth of IoT scenarios, since the dedicated
channel may become a bottleneck for the interactions among security ser-
vices and bounded applications.

Finally, the enforcement solution presented in [140] is based on a model-
based security toolkit, named SecKit, which is integrated with the MQTT
protocol layer, a widely adopted technology to enable lightweight com-
munications among constrained IoT devices. In this work, authorizations
and obligations are identified and a specific module acts as a connector to
intercept the messages exchanged in the broker with a publish/subscribe
mechanism. The main drawbacks of such an approach are that: (i) the en-
forcement operations are executed at the broker level, thus hindering the
efficiency of the whole system; (ii) the broker is also vulnerable to viola-
tion attempts, which could compromise all the activites taking part into the
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TABLE 2.4: Summary of related works on policy enforce-
ment

Target Works

Cross-domain policy issues [209] [103] [190]
Policy language definition [52] [43]

Access control [60] [166]
Formal proof [107] [122]
Policy sharing [101] [71]

system itself.
Summarizing the state of the art, except for the work presented in [140],

there are no specific solutions addressing policy enforcement in IoT appli-
cations, although they are essential to ensure a safe deployment of IoT sys-
tems.

In fact, [209], [103] and [190] mainly address cross-domain policy issues,
[52] and [43] focus on a policy language definition, [60], as well as [166], en-
forces only access control policies, [107] and [122] are about a formal proof
of the correct behavior of a system with poorly defined security rules, [101]
and [71] cope with policy sharing issue. Such considerations are summa-
rized in Table 2.4.

The identification of the enforcement mechanisms suitable for the IoT
context is fundamental, finding an equilibrium between the guarantee of
proper security requirements and the computing efforts. Some attempts
have already been made to define the proper languages for the specifica-
tion of policies, but a standard that addresses the IoT paradigm specifically
is still missing. Note that an efficient and secure solution is expected to
be suitable for integration in existing IoT architectures, such as OneM2M1,
OpenIoT2, FIWARE3, and MOBIUS4, already adopted by a multitude of
companies. In particular, an enforcement framework should be conceived
as an orthogonal secure extension of such architectures. A first attempt
in this direction has been made in [185], a work orthogonal to this thesis,
where a security plugin for managing access operations has been added to
the original OneM2M system.

2.1.5 Secure middlewares for IoT

One of the main factors limiting the growth and take-up of IoT is the lack
of a set of standardised tools, platforms and interfaces able to provide in-
teroperability across different vendors of hardware and software solutions
as well as across diverse vertical domains.

1http://www.onem2m.org
2http://www.openiot.eu
3https://www.fiware.org
4http://iotmobius.com
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In the last few years, many initiatives tried to bridge this gap, reusing
concepts, techniques and protocols from the Internet domain. For exam-
ple, in recent years, the widespread adoption of web services has pro-
vided a standard framework to enable systems interoperability according to
the principles of SOA. Service-Oriented Communications (SOC) technologies
manage web services by creating a virtual network and adapting applica-
tions to the specific needs of users rather than users being forced to adapt
to the available functionality of applications [154] [221]. Although the trend
towards the adoption of SOA architectural paradigm in the IoT domain is
shared by the majority of the scientific community, at the moment the state
of the art in this area is still somehow limited [156] [159].

Due to the very large number of heterogeneous technologies normally
in place within the IoT paradigm, several types of middleware layer are
employed to enforce the integration and the security of devices and data
within the same information network. Typically, they enforce data to be ex-
changed according to strict protection constraints. Heterogeneity of devices
and communication technologies in IoT has to be accounted for in the de-
sign of such a middleware architecture. In fact, while many smart devices
can natively support IPv6 communications [149] [14], existing deployments
might not support the IP protocol within the local area scope, thus requiring
ad hoc gateways and middlewares [26].

Both the networking and security issues have driven the design and
the development of VIRTUS [42], an IoT middleware relying on the open
eXtensible Messaging and Presence Protocol (XMPP) to provide secure event-
driven communications within an IoT scenario. Leveraging the standard
security features provided by XMPP, the middleware offers a reliable and
secure communication channel for distributed applications, protected with
both authentication (through TLS protocol) and encryption (SASL protocol)
mechanisms. For client-to-server based communications, it is not clear from
the description which method is actually implemented; while for server-to-
server communications the use of SASL is specified to ensure full server
federation. The VIRTUS model does not describe the challenges of im-
plementing a personal instance of middleware for single users or devices;
however a concept of edge computing is presented, where some interac-
tions may happen within an edge domain (e.g., within a house) and lower
security is required. The main drawback is that the capability to process
and/or filter data from the edge network before sharing it is not discussed,
except in very granular terms.

[69] proposes an AmI framework, called Otsopack. This solution pro-
vides two core features: (i) it is designed to be simple, modular and ex-
tensible and (ii) it runs in different computational platforms, including Java
SE and Android. The underlying interface is based on HTTP and uses a
REpresentational State Transfer (REST) interface. Different implementations
can provide only certain features (e.g., data access) and still interact with
each other. In this way, it is possible to embed it in other devices. This
gateway platform only supports Python and requires a partial ad hoc imple-
mentation. Note that such aspects represent a limitation of the proposed
solution in [69]. It uses a TSC (Triple Space Computing), that is a coordina-
tion paradigm which promotes the indirect communication style and uses
semantic data. The way it works is simple: each application writes seman-
tically annotated information in a shared space, and other applications or
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nodes can query for it. As regards security, given the data-centric nature
of the framework, there are two core requirements: (i) a data provider may
only grant access to data to a certain set of users and (ii) a data consumer
may trust only a set of providers for certain set of acquired data. A de-
rived issue is how to authenticate each other in such a dynamic scenario. In
order to support the first requirement, an OpenID-based solution has been
built. An identity provider securely identifies data consumers to the data
providers. Data providers can establish which graphs can be accessed by
which users. Therefore, the provider will return a restricted graph only if
the valid user is requesting it. In other words, the same application can get
different amounts of information depending on whether it provides creden-
tials or not. As far as security is concerned, [69] is not yet mature work. In
this thesis, the goal is to go beyond actual implementations towards the def-
inition of a middleware able not only to guarantee an efficient access control
system, but also a complete and accurate assessment of the managed data.
In this direction, Otsopack is far from being portable and security-aware.

In [90], a framework for enhancing security, privacy and trust in em-
bedded system infrastructures is proposed. The authors suggest the use
of lightweight symmetric encryption (for data) and asymmetric encryption
protocols (for key exchange) in Trivial File Transfer Protocol (TFTP). To this
end, two schemes are implied: AES, for protecting personal and sensitive
data, and DHKE (Diffie-Hellman Key Exchange), for exchanging cryptograph-
ics keys between two entities that do not know each other. The target imple-
mentation of TFTP is the embedded devices such as WiFi Access Points (AP)
and remote Base Stations (BS), which should be attacked by malicious users
or malwares with the installation of malicious code (e.g., backdoors). [90]
emphasizes finding a solution for strengthening the communication proto-
col among AP and BS. To verify this proposal, the authors decided to use
UBOOT (Universal Boot loader). As a result, the solution proposed in [90]
has a limited target, without concerning scalability issues.

In [115] a Naming, Addressing and Profile Server (NAPS) as a middle-
ware to bridge different platforms in IoT environments is presented. Given
a large number of heterogeneous devices deployed across different plat-
forms, NAPS serves as key module at the back-end data center to aid the
upstream, the content-based data filtering and matching and the down-
stream from applications. [115] proposes a novel naming convention for
devices and device groups. While previous research efforts only focus on
a specific standard or protocol, the authors aim to design a middleware
component serving dynamic application needs. Therefore, an IoT Applica-
tion Infrastructure (IoT-AI) was designed, the technical components of which
are: application gateway, service registration portal, Real-time Operational
DataBase (RODB), and protocols like Universal Plug and Play (UPnP). The
interfaces provided are based on the RESTful design style where standard
HTTP request/response is used for data transport. When device profile
information is registered either manually or automatically from each IoT
platform, an identifier is automatically generated. The system deals with
Authentication, Authorization and Accounting (AAA). Although it is not the
focus of this work, the design can largely leverage the Network SEcurity Ca-
pability (NSEC) SC in ETSI M2M service architecture. Note that the device
domain is organized on a tree structure. It uses a key hierarchy, composed
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of root key, service key and application keys. The root key is used to de-
rive service keys through authentication, and key agreement between the
device or gateway and the M2M SCs at the M2M Core. The application
key, derived from the service key, is unique for every M2M applications.
Nevertheless, security aspects are not deeply investigated, and neither is
energy consumption. Moreover, it is not clear if the reference architecure is
conceived as a centralized or distributed one.

OneM2M [147] proposes a global service layer platform for M2M com-
munications. It aims at unifying the Global M2M Community, by enabling
the interoperability of different M2M systems, across multiple networks
and topologies on top of IP. The presented middleware is able to support a
sort of secure end-to-end data transmissions among the M2M devices and
the customer applications. Such a goal is obtained by means of authentica-
tion, encryption, connectivity setup, buffering, synchronization, aggrega-
tion and device management, but it does not represent a complete solution.
As discussed in Paragraph 2.1.4, as an orthogonal work of this thesis, a
secure extention of OneM2M architecture is provided in [185], in order to
deeply cope with security issues.

[66] deals with the problem of task allocation in IoT. In more detail, the
cooperation among nodes must be performed in an interoperable way to-
wards collaborative deployment of applications, able to take into account
the available resources, such as energy, memory, processing, and object ca-
pability to execute a given task. In order to address such an issue, a resource
allocation middleware for the deployment of distributed applications in IoT
is proposed. Starting from this component, a consensus protocol for the co-
operation among network objects in performing the target application is
added, which aims to distribute the burden of the application execution,
so that resources are adequately shared. Such a work exploits a distributed
mechanism and demonstrates better performance than its centralized coun-
terpart. Note that this solution presents an orthogonal aspect of IoT system
management, where data sources, besides acquiring data, have an active
role in executing some functionalities, depending on the specific applica-
tion domain.

Finally, the theorical work presented in [206] defines a method to de-
duce the process for the systematic construction of a general-purpose mid-
dleware for IoT. The middleware is generated starting from high level alge-
braic structures, which are then mapped into building components depend-
ing on the underlying computing infrastructure. Therefore, it is supposed
to be adaptable to heterogeneous systems.

What emerges from this paragraph is that middleware currently lacks a
unified vision, able to respond to all the IoT requirements, both in terms of
security and network performance. Moreover, interoperability is becoming
a fundamental challenge, in order to allow an independent development of
distributed components, able to interact and cooperate with each other and
also to exchange data on the basis of standards. It should be borne in mind
that IoT involves not only data provided by devices/machines, but also
by users, and so the interactions are machine-to-machine and also among
users and machines and among users and users. Therefore, the design and
development of a middleware have an impact on the system architecture
(i.e., scalability, coupling among components). To design an effective solu-
tion, it is necessary to deal with several important questions:
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• How heterogeneous devices and users can dynamically interact and
agree on the same communication protocols, ensuring also security
and privacy?

• How to make the solution suitable for different platforms and there-
fore not dependent either on the exploited interfaces or protocols?

2.1.6 Mobile security in IoT

Mobile nodes in IoT often move from one cluster to another, in which cryp-
tography based protocols are required to provide rapid identification, au-
thentication, and privacy protection. An ad-hoc protocol is presented in
[125] that is activated when a mobile node joins a new cluster. Such a
protocol contains a valid request message and an answer authentication
message, which rapidly implements identification, authentication, and pri-
vacy protection. It could be robust towards replay attack, eavesdropping,
and tracking or location privacy attacks. Compared to other similar proto-
cols such as a basic hash protocol, it has less communication overhead, and
more security and privacy protection properties.

[91] analyzes the security challenges for the HIMALIS (Heterogeneity In-
clusion and Mobility Adaptation through Locator ID Separation) architecture re-
garding features from IoT and the id/locator management messages, vul-
nerable to attacks. This work proposes a secure and scalable mobility man-
agement scheme that considers the IoT constraints, solving the possible se-
curity and privacy vulnerabilities of the HIMALIS architecture. The pro-
posed scheme supports scalable interdomain authentication, secure loca-
tion update, and binding transfer for the mobility process.

Furthermore, RFID systems, which are one of the enabling IoT tech-
nologies and are based on EPC (Electronic Product Code) Network Environ-
ment, automatically identify tagged objects, using RF signals without direct
contact. In [215], a mobile RFID network based on EPC is explained and
the threats of the mobile RFID system are analyzed. Such an architecture
guarantees certain levels of security and efficiency.

Moreover, for the security and privacy of mobile RFID systems, another
security and privacy model is proposed about IoT in [224]. The model does
not only take into account the privacy of tags and readers, but also supports
tags corruption, reader corruption, multiple readers and mutual authenti-
cated key exchange protocols.

Powered by location based services, IoT systems have the potential to
enable systematic mass surveillance and to violate the personal privacy of
users, especially their location privacy. [51] overviews some of the existing
location privacy issues found in mobile devices. Particular attention is paid
to the current access permission mechanisms used on the Android, iPhone,
and Windows Mobile platforms. Note that the actual privacy issues in mo-
bile platforms should be inherited by IoT and integrated with other static
platforms.

In [112] a secure handshake scheme among mobile nodes is proposed in
an intelligent transportation system. In more detail, a mobile node verifies,
over an insecure communication channel, the legitimacy of an ordinary sen-
sor node by a private negotiation of the handshake attributes; in this way,
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a mobile hierarchy is established in order to query a deployed WSN in a
secure manner.

[95] points out that a secure healthcare service creates new demands for
mobile solutions. To protect the privacy and security of patients in a health-
care context using an IoT infrastructure, a proper mechanism is proposed.
From a trustworthiness point of view, service providers must get authenti-
cation from a public authority, which is also responsible for handover cryp-
tography credentials to each actor, in order to allow secure communication
among the end-devices and the application brokers; the goal is to establish
trusted IoT application market, where information on end-devices can be
exchanged to establish a secure connections between market and users.

In [70], a security architecture deployable on mobile platforms is de-
fined for mobile e-health applications. In particular, RFID tag identification
in medical context and structured and secured IoT solutions are combined,
in order to enable ubiquitous and easy access to medical related records,
while providing control and security to all interactions.

Also, in [224] and [145], the mobile RFID technology is exploited to
solve the following security and privacy issues: not all existing tags support
hash functions in designing RFID protocols and channels between readers
and servers are not always secure in a mobile context. Therefore, an ul-
tralightweight and privacy-preserving authentication protocol for mobile
RFID systems is defined, using only bitwise XOR and several special con-
structed pseudo-random number generators. This approach provides sev-
eral privacy properties (e.g., tag anonymity, tag location privacy, reader pri-
vacy, mutual authentication) and avoids suffering from a number of attacks
(e.g., replay attacks, desynchronization attacks).

In [92] an efficient and secure mobile-Intrusion Prevention Systems (m-IPS)
is proposed for business activities using mobile devices for human-centric
computing. This system checks user temporal and spatial information, pro-
files and role information to provide precise access control.

[67] designs a mobile information collection system based on IoT, im-
plementing an access gateway by smart mobile devices. Moreover, besides
the authentication of the mobile terminals through the gateway, a pivotal
role is played by the collection strategy, which exploits the historical data
movement paths, in order to reduce the problem of over long device con-
nections, improving the efficiency of information transmission.

In [104] special attention is paid to security and mobility in IoT. In fact,
people and companies want to secure their data using firewalls, which in-
evitably leads to a challenging conflict between data security and usability.
Since lots of products are becoming increasingly mobile, the authors of [104]
design a Quantum Lifecycle Management (QLM) messaging standard in order
to provide generic and standardized application-level interfaces to guaran-
tee a two-way communications through any type of firewall, for example
to perform real-time control.

A Mobile Sensor Data Processing Engine (MOSDEN) is presented in [160],
which is a plug-in-based IoT middleware for resource-constrained mobile
devices (until now built on the Android platform), which allows one to col-
lect and process sensor data without programming efforts. It supports both
push and pull data streaming mechanisms as well as centralized and de-
centralized (e.g., peer-to-peer) data communication.
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[46] focuses on security for mobile devices, which adopt various permis-
sion systems for installing the applications. In more detail, the defintion of
proper contracts, able to regulate the actions performed by such applica-
tions towards the user data, is addressed. In fact, probability aspects are in-
troduced into the workflow of two contract-based approaches, specifically
developed for mobile devices, namely Security-by Contract and Security-by-
Contract-with-Trust frameworks. Such approaches integrate several security
techniques to build a chain of trust, in order to ensure that the downloaded
applications will execute only security actions allowed by user policy. Note
that current models only permit the definition of a set of allowed actions,
but more expressive policies are required, able to take in account a pos-
sible action history. To this end, a probabilistic automata-based model is
proposed; in this way, developers/users can define more expressive con-
tracts/policies through probabilistic clauses.

Hence, since a large number of IoT devices is likely to be mobile, a mo-
bility management protocol is required in order to maintain IP connectivity,
for example through the 6LoWPAN standard, as proposed in [133]. Other
works, such as [173], deal with the efficient video dissemination in mo-
bile multimedia IoT applications, while [55] studies the interaction of smart
things with the traditional web technologies by means of a mobile Blue-
tooth platform. Social relationships are investigated in [9] by means of a
cognitive model, in IoT mobile nodes; while the use of NFC (Near Field Com-
munication) for payments with mobile devices in the so called Web of Things
(WoT) is studied in [73], which proposes a lightweight architecture based
on RESTful approach.

Summarizing, also if the security issues of mobile devices (i.e., devices
identification and authentication, key and credential storage and exchange)
are under investigation by the scientific community, the available solutions
partially address these needs, thus requiring further efforts in order to al-
low the integration with the other IoT technologies.

2.1.7 Ongoing projects

Security and privacy in IoT are an object of interest to the European Commis-
sion. In fact, there are many projects addressing such issues in IoT field.

Butler [29] is European Union FP7 project; its purpose is to enable the
development of secure and smart life assistant applications by means of a
context and location-aware, pervasive information system. It focuses on the
following scenarios: smart-cities, smart-health, smart-home/smart-office,
smart-shopping, smart-mobility/smart-transport. As regards security and
privacy requirements, the Butler project aims to allow users to manage their
distributed profile; this implies the control of data duplication and of iden-
tity sharing over distributed applications. The final purpose is to imple-
ment a framework able to integrate user dynamic data (i.e., location, be-
havior) in privacy and security protocols.

[98] presents an Intrusion Detection System (IDS) framework for IoT sys-
tems empowered by IPv6 over low-power personal area network (6LoW-
PAN) devices, which is a protocol suitable for resource constrained IoT en-
vironments. 6LoWPAN devices are vulnerable to attacks inherited from
both the wireless networks and Internet protocols. The proposed IDS
framework, which includes a monitoring system and a detection engine,
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has been integrated into the network framework developed within the EU
FP7 project EBBITS [57].

The Hydra project [86] develops a middleware for networked embed-
ded systems, based on a SOA. It is co-funded by the European Commission.
Hydra contemplates distributed security issues and social trust among the
middleware components. Such a middleware allows developers to incor-
porate heterogeneous physical devices into their applications by offering
easy-to-use web service interfaces for controlling any type of physical de-
vice without relying on the various network technology involved, such as
Bluetooth, RF, ZigBee, RFID, WiFi, etc. Hydra incorporates the means for
device and service discovery, semantic model driven architecture, peer-to-
peer communication and diagnostics.

The uTRUSTit (Usable Trust in the Internet of Things) [200], EU-funded FP7
project, aims at creating a trust feedback toolkit in order to enhance the user
trust perception in a IoT context. uTRUSTit enables system manufacturers
and system integrators to express underlying security concepts to users in a
comprehensible way, allowing them to make valid judgments on the trust-
worthiness of such systems.

iCore project [88] provides a management framework as a wider IoT
eco-system, able to be used by different kinds of users and stakeholders
and across different applications domains. The iCore proposed solution is
a cognitive framework including three levels of functionality: virtual ob-
jects (VOs), composite virtual objects (CVOs), and functional blocks, for
representing the user/stakeholder perspectives. Of particular importance
are VOs, which are cognitive virtual representations of real-world objects
(i.e., sensors, devices, everyday objects) and hide the underlying technolog-
ical heterogeneity. Whereas CVOs are cognitive mashups of semantically
interoperable VOs, delivering services in accordance with the user/stake-
holder requirements. The difference between a real or digital object and a
virtual object is that the former may be owned or controlled by a partic-
ular stakeholder, whereas the latter can be owned or controlled by partic-
ular service providers. CVOs may be owned or controlled by yet another
provider who adds value by combining different virtual objects and pro-
viding these combinations to users. This leads to a hierarchical structure
and therefore to a complex eco-system, which is hidden from the differ-
ent stakeholders and opens new opportunities. The iCore solution shall be
equipped with essential security protocols/functionalities, which span all
levels of the framework and take into account the ownership and privacy of
data and the access to objects. It will guarantee the secure distribution and
aggregation of information exchanged among the architecture components,
as well as between physical and virtual world. To test the effectiveness of
such proposals, iCore addresses the following use-cases: ambient-assisted
living, smart-office, smart-transportation and supply chain management.

Beyond Europe, other countries concur with several projects to deal
with security issues in IoT. In US, in 2012 DARPA announced the High
Assurance Cyber Military Systems program (HACMS) [78], which is trying
to patch the security vulnerabilities of IoT. The agency wants to make
sure that military vehicles, medical equipment, and even drones cannot be
hacked from the outside. HACMS aims at providing the seeds for future
security protocols, allowing IoT to get off the ground, achieveing sufficient
standardization and security. In the future, some of the software tools that
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emerge from the HACMS program could be used in a civilian context. An-
other institute interested in security in the cyber-physical systems is the Na-
tional Science Foundation (NSF) [135]. It financed the Roseline project [174],
which aims to find robustness solutions for cyber-physical systems to ac-
curately and securely interact with time; in fact, the coordination of the
activities within the infrastructure, the control of communications and the
knowledge of time to infer location emerge as being critical issues for real-
time security. The Roseline project is targeted to a variety of sectors, such as
smart grids, aerospace systems, safety systems and autonomous vehicles.
Other multi-institutional projects, included in the NSF Future Internet Archi-
tectures (FIA) program, are: XIA-NP (Deployment-Driven Evaluation and Evo-
lution of the eXpressive Internet Architecture) [212], NDN-NP (Named Data Net-
working Next Phase) [136], NEBULA [137], and MobilityFirst-NP (Next-Phase
MobilityFirst-NP Project) [131]. They aim at exploring novel network archi-
tectures and networking concepts, such as new communications protocols,
able to extend beyond current networking components, mechanisms and
application requirements. They also consider the larger societal, economic
and legal issues that arise from the interplay between Internet and society,
providing support for mobility and enhancing the cyber-security. In more
detail, XIA-NP [212] addresses the growing diversity of network models,
the need for trustworthy communication, and the growing set of stakehold-
ers who coordinate their activities to provide Internet services. XIA-NP de-
fines the application programming interface (API) for communication and
the network communication mechanisms, guaranteeing the integrity and
the authentication of the communication itself. In fact, XIA-NP enables
flexible context-dependent mechanisms for establishing trust among the
communicating devices. NDN-NP [136] addresses the technical challenges,
including routing scalability, fast forwarding, trust models, network secu-
rity, content protection and privacy. NEBULA [137] provides an architecture
dealing with cloud computing; in such a project the data centers are con-
nected by a high-speed, extremely reliable and secure backbone network,
aiming at developing new trustworthy data, control and core networking
approaches to support the emerging cloud computing model of always-
available network services. The architecture proposed by MobilityFirst-NP
[131] uses generalized delay-tolerant networking (GDTN) to provide ro-
bustness even in presence of link/network disconnections. GDNT is in-
tegrated with self-certifying public key addresses, providing a trustworthy
network. Dealing with mobility, MobilityFirst-NP allows functionalities like
context and location-aware services to naturally fit into the network. Such a
project focuses on the tradeoffs between mobility and scalability and on op-
portunistic use of network resources to achieve effective communications
among mobile endpoints.

The National Basic Research Program of China [84] raises the problem of
security protection during the interaction process among the network en-
tities, focusing on the information representation and balancing between
efficiency and energy consumption. Europe collaborates both with China
and Korea in the realization of an IoT architecture within the Future Internet
Research and Experimentation (FIRE) project [61] [62], which aims at finding
solutions for the deployment of IoT technologies in several application ar-
eas (e.g., public safety, social security, medical and health services, urban
management, people’s livelihood) with particular attention to information
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TABLE 2.5: Contribution of ongoing projects in IoT security
field

Butler EBBITS Hydra uTRUSTit iCore HACMS NSF FIRE EUJapan

Authentication x x x x x x
Confidentiality x x x x x x x x
Access Control x x x x x x x
Privacy x x x x x
Trust x x x
Enforcement
Middleware x x x
Mobile x x

security, privacy and intellectual property rights. Likewise, the EU-Japan
ICT Cooperation [56] carries on a collaboration between Europe and Japan
as regards the so called Future Internet. Its main drivers are: the establish-
ment of common global standards to ensure seamless communications and
common ways to store and access information, the guarantee of highest se-
curity, and energy efficiency standards.

As regards worldwide projects, there are several attempts that address
IoT requirements in terms of security, privacy and trust in order to develop
a unified framework or middleware. The open IoT security issues faced by
each project are summarized in Table 2.5. At the moment the efforts are
aimed at specific application contexts and the impact of these proposals on
a mass-scale market still needs to be checked.

It is worth remarking that other projects exist, which do not explicitly
deal with security issues. Among them, the FP7 COMPOSE (Collaborative
Open Market to Place Objects at your Service) project [57] aims to design and
develop an open marketplace for IoT data and services. The basic concept
underpinning such an approach is to treat smart objects as services, which
can be managed using standard service-oriented computing approaches
and can be dynamically composed to provide value-added applications to
end users.

A dynamic architecture for service orchestration and self-adaptation is
proposed in IoT.EST (Internet of Things Environment for Service Creation and
Testing) [89]. The project defines a dynamic service creation environment
that gathers and exploits data from sensors and actuators making use of
different communication technologies and formats. Such an architecture
deals with issues such as the composition of business services based on re-
usable IoT service components, the automated configuration and testing of
services for “things” and the abstraction of the heterogeneity of underlying
technologies to ensure interoperability.

The Ebbits project [50] designs a SOA platform based on open protocols
and middleware, effectively transforming IoT subsystems or devices into
web services with semantic resolution. The goal is to allow businesses to
integrate IoT into mainstream enterprise systems and to support interoper-
able end-to-end business applications.
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2.2 Research directions to secure IoT applications

The broad overview provided in Paragraph 2.1 raises many open issues,
and sheds some light on research directions in the IoT security field. A uni-
fied vision regarding the satisfaction of security and privacy requirements
in such a heterogeneous environment, involving different technologies and
communication standards is still missing.

Suitable solutions need to be designed and deployed, which should be
able to guarantee: confidentiality, access control, and privacy for users and
things, trustworthiness among devices and users, compliance with defined
security and privacy policies. Research efforts are also required to achieve
the integration of IoT and communication technologies in a secure middle-
ware, able to cope with the defined protection constraints. Another research
field focuses on IoT security in mobile devices, increasingly widespread to-
day.

Much effort is spent by the worldwide scientific community to address
the aforementioned topics, but there are still many open issues to be faced.
This thesis aims to cope with some of them. In particular, the solutions
proposed in the next chapters concern:

• The modelling of a system architecture able to include all the entities
involved in the IoT environment along with their relationships, as ex-
pressed in the requirements specified in Paragraphs 2.1.1 and 2.1.2,
which would represent a starting point for the other steps towards
the realization of a real and complete IoT platform

• The design and development of a secure distributed middleware con-
ceived for the general-purpose IoT domain and able to manage secure
interactions among heterogeneous devices and users, in response to
the questions pointed out in Paragraph 2.1.5

• The definition of proper methods for evaluating the security level
(e.g., confidentiality, integrity, privacy) of the transmitted/processed
information, as underlined in Paragraphs 2.1.1 and 2.1.2, to improve
the resilience of the system in the presence of malicious attacks or dis-
allowed accesses, as well as to guarantee end-to-end security

• The adoption of an effective key management system in order to im-
prove the system resilience to external or malicious attacks, as pointed
out in Paragraph 2.1.1

• The integration of a policy enforcement framework tailored for IoT
applications, as specified in Paragraph 2.1.4

• The definition of an authentication mechanism in order to control ac-
cess to resources in a secure and efficient way, as required in Para-
graph 2.1.1

2.3 Data quality issues

Finally, a brief discussion has also to be made as regards data quality issues.
As far as data quality is concerned, it is not the main focus of this thesis, the
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primary goal of which is related to security. However, some details are
also provided in order to better understand the capabilities of the solutions
proposed in the following chapters. Note that several scientific publications
recognize the pivotal role of data quality in the IoT research landscape.

In fact, the volume of data and the variety of the information sources
lead to new challenges, besides security, in the data quality field. In partic-
ular, the aim of researchers and practitioners is the evaluation of the “fitness
for use” of data sets [203].

Traditional data quality approaches mainly focus on the following ac-
tivities:

• The definition and the assessment of proper metrics, capable of rele-
vating the fitness of specific structured or semi-structured data for its
intended use

• The identification of the objects, in order to recognize whether data
from one source or another represent the same objects in the real
world [21]

• The definition of improvement methods, such as data cleaning, ora a
process of analysis for the detection of the root causes of poor data
quality.

Most of the existing methods and techniques are based on two main
assumptions: (i) data are structured and (ii) the purposes for which data
are used are known. Clearly, these two assumptions are not valid in the IoT
environment, where heterogeneous sources are available and the data are
not related to a predefined set of processes, but they can be used to satisfy
various requirements.

In such a scenario, new assessment techniques should be investigated
and additional data quality metrics should be defined. Data quality may
be affected by both intrinsic metrics or by the data provenance, such as the
credibility and/or reputation of the sources themselves.

The former ones describe the gathered values by evaluating the follow-
ing metrics:

• Accuracy, which is conceived as the extent to which data are correct
(i.e., the gathered values stored, for example, in a database corre-
spond to real-world values [203] [15])

• Completeness, which is defined as the degree to which a given collec-
tion includes data describing the corresponding set of real-world ob-
jects

• Timeliness, which corresponds to the extent to which the age of data
is appropriate for the actual task. In more detail, the temporal va-
lidity associated to the data is defined by two components: age and
volatility. Age or currency is a measure of how old the information is,
based on how long ago it was recorded. Volatility is a measure of in-
formation instability intended as the frequency of change of its values
[27].
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As regards the latter ones, a feature to be considered is the concept of
trust, which, as regards data quality, is associated with source reputation
and, thus, reliability. In particular, trust can be defined as the probability
for data to be suitable for inclusion in a specific process. The source or the
sources, used to gather the information, may influence the data reliability;
for example, information extracted from the web have, in general, a de-
gree of trustworthiness lower than the information provided by a certified
source.

This all argues for the importance of enriching data with information
about their quality emerges. As an example, in [76], authors claim the need
for control over data sources to ensure their validity, accuracy and credi-
bility. Data accuracy is also covered in [129], where the authors observe
that the presence of many data sources raises the need to understand the
quality of such data. In particular, they state that the data quality dimen-
sions to consider are accuracy, timeliness and the trustworthiness of the
data providers. Moreover, anomaly detection techniques are widely em-
ployed in various scenarios to remove noise and inaccurate data in order to
improve data quality.

Also data integration is a relevant issue in IoT. In order to support data
fusion, data quality plays a fundamental role, addressing issues related to
object identification. Note that data fusion may be also driven by the as-
sessment of the data values, together with other techniques able to manage
the, possibly, huge data volume. In this way, it should be possible to pro-
vide support for the selection of the suitable sources, which can satisfy a
specific request.

Note that the huge number of data sources in IoT is considered a pos-
itive aspect for data fusion and for the extraction and provisioning of ad-
vanced services. Besides temporal aspects (i.e., currency) and data validity,
a related work adds another important dimension such as availability [110].
The authors of this work define new metrics for the aforementioned quality
dimensions in IoT context and evaluate the quality of the real-world data
available on the open IoT platform Cosm. In particular, they show that data
quality problems are frequent and they should be adequately tackled or, at
least, users should be aware of the poor quality of the data sources they use.
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Chapter 3

Internet of Things Middleware

3.1 Introduction

Open issues related to both security and data quality may hinder the large-
scale adoption and diffusion of IoT applications, as can be seen from the
state of the art in Chapter 2. Furthermore, as discussed in the preceeding
chapters, IoT deployments include a large heterogeneity of technologies
and communication protocols, leading to scalability issues. Hence, the most
crucial challenge in building a dynamic and efficient IoT system lies in the
definition of a cross-domain and interoperable software framework, which
is still missing. In order to fill this gap, the following steps have been carried
out during this thesis:

• The modeling of an IoT platform by means of the definition of a UML
(Unified Modeling Language) general conceptual model, including
all the entities involved in the IoT context, their relationships and the
Non Functional (NF) properties related to security and data quality

• The definition of a high-level reference architecture, named NOS, rep-
resenting the modules and the interfaces that compose the new IoT
middleware

• The development of a real working prototype of NOS, by means of
the state of the art technologies emerging in the IoT scenario.

The three aspects presented above will be detailed in Paragraphs 3.2, 3.3
and 3.4, respectively. Figure 3.1 sketches the steps towards the development
of a general-purpose IoT middleware.

FIGURE 3.1: Steps towards IoT middleware development

3.2 Non functional property model

As a starting point for the development of IoT privacy-aware solutions, ex-
ploiting data with a well-defined quality, a UML conceptual model of a
general-purpose IoT platform is defined hereby and published in [181].
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It aims to support the other phases towards the development of an IoT
secure middleware, which are: (i) the architecure design, described in Para-
graph 3.3 and (ii) the real prototype, presented in Paragraph 3.4. To this
end, it is important to identify all the entities involved and consider the re-
lationships among them. In particular, the following elements have been
identified:

• The nodes, intended as data sources that provide information from the
environment into which they are placed

• The services, made available by the IoT platform integrating the data
received from the nodes

• The users, interested in exploiting the services provided by the IoT
platform.

Due to the heterogeneity of such entities and of the possible IoT do-
mains, the model has to be suitable for general-purpose contexts with a
variable number of entities, thus not limiting its application to single case
studies. Along with this feature, the model has also to deal with the follow-
ing main NF properties:

• A Quality of Protection (QoP) property, embracing the requirements of
security, such as data integrity, confidentiality, privacy, and authenti-
cation (Figure 3.2)

• A Data Quality (DQ) property, regarding the accuracy, the precision,
the timeliness and the completeness of the information handled by
the IoT platform itself (Figure 3.3).

FIGURE 3.2: Quality of Protection (QoP) requirements

Such requirements arise for two reasons. On the one hand, the IoT
system may manage both environmental and personal information; thus
preserving a user’s private life becomes a pivotal goal. The IoT platform
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FIGURE 3.3: Data Quality (DQ) requirements

should guarantee that only authorized devices or users are allowed to ac-
cess the different types of information. The risk of violation is further in-
creased by the use of wireless communications, which may lead to mali-
cious attacks such as eavesdropping and masking. On the other hand, there
is the need to evaluate the quality of the data coming from different, and
sometimes unknown, sources, for which there is no a priori knowledge on
the accuracy or on the rate of updates. Hence, the services made available
by the IoT platform should provide data with well-defined quality levels.
In fact, in many scenarios, errors or missing values might have a critical im-
pact on actions or decisions. An efficient and robust IoT system should al-
low the users to be aware of the reliability of the accessed information. This
is an innovative aspect since, as pointed out in [20], current available ser-
vices provide the same information to each requesting user, often without
considering his/her requirements and without specifying the level of QoP
and DQ of the data themselves. Indeed, the services must be customized
according to users’ preferences and habits.

A further specification is due with regards to QoP properties. In partic-
ular, integrity represents the maintenance of the consistency and the trust-
worthiness of the data from the time when they are acquired to the time
when they are received by the final user; in more detail, data must not be
changed during their transmissions and proper countermeasures have to be
taken to ensure that data are not altered by unauthorized users or devices
(e.g., by means of verification systems). In this context, authentication is the
act of verifying a claim of identity. Lots of mechanisms are available for this
scope, with different degrees of strength, such as the username/password
based systems, identification documents, biometrics, and so on. Hence,
confidentiality involves the measures undertaken for preventing informa-
tion from reaching unauthorized users or devices; note that this not implies
that information are modified in any way (as for integrity checks). Data
encryption is a common method of ensuring confidentiality. Finally, pri-
vacy is formally the right of a person to keep his/her data anonymous and
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to determine whether, when, how, and to whom, his/her personal or or-
ganizational information are to be revealed. Therefore, privacy is referred,
for example, to the protection of personally identifiable information (e.g.,
name, address, telephone number), which can be used to identify a person
as an individual.

Bearing in mind the entities and the NF properties introduced above,
in the following paragraphs the components of the conceptual model are
detailed by means of UML diagrams.

3.2.1 Node component

The different adopted technologies involved in the acquisition of informa-
tion from the environment, such as WSN, RFID, nanotechnologies, actua-
tors and so on, are represented, in the UML diagram of Figure 3.4, by class
Node.

Such a class is extended by the sub-classes representing the individu-
ated technologies (the note incomplete means that there are other types of
such nodes which have not been mentioned). Each instance of class Node is
characterized by a pair function-role, identified by NodeRole and NodeFunc-
tion classes. NodeRole [142] is a concept strictly related to the privacy issue.
Therefore, three classes extending NodeRole are introduced:

• nSubject represents the node that senses or generates the data

• nProcessor represents the node that processes data by executing some
actions on them (i.e., forwarding, aggregation)

• nController represents the node that verifies that the actions perfomed
on data satisfy the defined policies.

NodeFunction represents the tasks performed by a node in the network
in which it operates; the UML model does not specify any sub-class for
NodeFunction, since the functions depend on the specific application context
in which the system is employed (e.g., shopping retail, health-care, univer-
sity, factories, building automation).

Class NodeAction is associated with the pair function-role, which speci-
fies the set of actions that can be undertaken by the node itself. The iden-
tified actions are: Processing, when a node performs some elaborations on
data; Trasmission or Reception, when the node sends or receives data to/from
another node. An action is executed under nPurpose that specifies the rea-
son under which it is possible to handle the data (i.e., marketing purpose,
research purpose, health purpose). NodeAction is also associated with one
or more nObligations, in order to model the fact that the execution of a set of
actions is guaranteed by the processor and/or the controller at the end of
the elaboration activities (e.g., whenever an inconsistency or a privacy vio-
lation is found, some countermeasures, such as generation of an error/alert
message, have to be taken). In order to guarantee integrity, confidential-
ity and non repudiation, two kinds of keys, named NodeSignatureKey and
NodeActionKey are associated with NodeAction.

Communications among nodes happen by exchanging instances of class
NodeMessage. A message is composed of several heterogeneous types of
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FIGURE 3.4: Node component - Conceptual Model



52 Chapter 3. Internet of Things Middleware

data (e.g., numbers, text, multimedia), which can contain different informa-
tion depending on the generating source; therefore, the instances of abstract
class NodeData may be distinguished, as:

• SystemData, which represents the data generated by the IoT system
(e.g., the information provided by sensor nodes or by locator tags re-
lated to the activities of users or devices)

• HumanData, which includes the data produced by users themselves,
for example by means of a social network.

Both system and human data are classified into three different cate-
gories, represented in the UML diagram as extensions of SystemData and
HumanData classes:

• sIdentifiable and hIdentifiable represent the information used to
uniquely identify the nodes (e.g., identifiers)

• sSensitive and hSensitive include information that should not be freely
accessible, because they may reveal private data

• sGeneric and hGeneric represent other generic information, not in-
cluded in the two previous classes.

Each instance of SystemData or HumanData is associated with nQoP and
nDQ information, which represent the NF properties regarding the level of
QoP and DQ associated with the data.

3.2.2 User component

Besides nodes, another fundamental actor is represented by class User,
shown in the UML diagram of Figure 3.5.

Such a class concerns all humans that could interact with the IoT sys-
tem, for example by means of their personal devices (e.g., smartphones,
NFC, tablet) or interested applications. Note that users are distinguished
from nodes due to the fact that the former require one or more services
from the infrastructure, while the latter acquire the necessary information
to provide such services. In addition, in order to provide each user with the
best services, a personal Profile is required. Profile includes the following
information:

• An aggregation of ConsentData, which represents the acceptance of
the agreement established with the service provider (i.e., the consent
to handle user personal data for specific purposes and under proper
obligations)

• An aggregation of PreferenceOnService, used to customize the services
on the basis of user requirements

• The keys exploited to address QoP issues, distinguished in UserSigna-
tureKey and UserActionKey.

Profile also concerns UserData, which can be further classified as:
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FIGURE 3.5: User component - Conceptual Model
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• Identifiable, including data that refers to the user identity (i.e., first and
last name)

• Sensitive, containing information related to user private life and
habits, such as health conditions, food intolerances, religious beliefs
and so on

• Generic, regarding general information not belonging to the two pre-
vious classes.

Each user is associated with a pair function-role. Class UserRole is ex-
tended in a similar way as class NodeRole, because a user could represent
uSubject, uProcessor or uController of the transmitted or provided data. In
detail:

• uSubject is the owner of the data

• uProcessor is the subject who handles uSubject data

• uController represents the subject who verifies the compliance with
the defined policies, related to the user profile.

As regards UserFunction, it strictly depends on the application context.
Each pair function-role is also associated with the respective UserAction,
which includes a set of actions. In fact, a user, before interacting with the
IoT system, has first to register himself/herself (Registration class). Ser-
viceRequest represents the user’s requests in terms of the information of
interest. UpdatePreference represents the capability of the users to change
at any time their preferences, expressed in their own profile. As for nodes,
specific uPurpose and several uObligations are associated with each action;
for example, users, before requesting services, must register themselves.
Furthermore, the communications among users and IoT platform occur by
means of packets, which are instances of UserMessage class. Note that, in a
typical IoT scenario, the number of nodes and the users varies over time.

3.2.3 IoT Platform

IoTPlatform, presented in the UML diagram of Figure 3.6, has a crucial role
and performs different tasks described by class IoTPlatformAction. Like
the nodes and the users, IoTPlatform also plays different roles, represented
by IoTPlatformRole class, and functions, represented by IoTPlatformFunction
class, in relation to the current action and the application domain. IoTPlat-
formRole is extended by the iSubject, iProcessor and iController classes, which
represent, respectively, the owner of the data, the processor that executes
some actions on data, and the verifier of the performed actions. As far as
IoTPlatformAction is concerned, the main IoTPlatform tasks are:

• UserProfileDefinition, which models the acquisition of the user data
and preferences, required for the execution of the best suited services

• ConsentAcquisition, which represents both the user acceptance of the
agreement with the requested service, and the user data management,
according to the established policies
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• AccessControl, which represents the execution of the access control op-
erations towards the users registered within the IoT system. Note that
such an action allows the access to the system to be restricted only to
authorized and pre-registered users

• PolicyDefinition, which represents the definition of policies in order to
ensure user privacy (in particular, anonymity), and, in general, the
satisfaction of security and data quality requirements

• PolicyEnforcement, which is required in order to force the compliance
with the defined policies, under which the user has given the consent
to handle his/her data.

For IoTPlatform, several iPurposes and iObligations may be specified to
guarantee that the proper actions are performed only when particular con-
ditions are verified. In particular, IoTPlatform deals with encryption and
decryption keys; in fact, when a node (i.e., a device) or a user enters the
system, IoTPlatform has to provide the credentials and the keys to allow fu-
ture secured interactions with the offered services. IoTPlatform owns both
IoTPlatformSignatureKey and IoTPlatformActionKey required to perform the
access control, authentication and privacy control operations, and the sig-
nature and action keys belonging to the nodes and the users, as described
in Paragraph 3.2.1 and 3.2.2, respectively.

On the basis of the action to be performed, nodes and users may ex-
ploit a defined encryption mechanism on the transmitted data. When a
new node or user begins to interact with the IoT system, IoTPlatform sends
the proper signature and action keys that will be used for securing the com-
munications. Note that the transmission of such keys is performed in a se-
cure way, for example by means of HTTPS protocol. Each user/node has
a unique signature key, which represents an access credential; while the
action key is directly related to the pair function-role, currently played by
the user/node and it is used to exchange message and to encrypt sensitive
data referring to the instances of sIdentifiable/nIdentifiable data. Such a be-
havior ensures the privacy compliance of the transmitted information, both
from users/nodes towards IoTPlatform and from IoTPlatform towards the
requesting users. Each user/node encrypts its data with its proper action
key. When IoTPlatform receives a request of data from a user, it performs
some queries in order to establish, firstly, if the user is authorized to get
such data and, secondly, which are the user preferences in relation to the
NF properties of the requested services. The defined solution supports any
kind of encryption technique and any key distribution mechanism.

3.2.4 Service component

After processing the data received by nodes, IoTPlatform may provide
atomic or composite services. The former ones simply provide users with
the access to one source; while the latter ones integrate information gath-
ered by multiple sources and allow users to access data by using advanced
queries. Service is one of the core class of the model, since all the IoT sys-
tem activities turn around the request and provision of services. In fact,
the users give information related to their identity, life style, interests and
preferences in general, under well-defined QoP and DQ policies, in order
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FIGURE 3.6: IoT Platform - Conceptual Model
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to obtain customized services, accordingly. Such services have to guarantee
the required NF properties, represented in the UML diagram of Figure 3.7.

FIGURE 3.7: Service component - Conceptual Model

An overall representation of the UML class diagram, including all the
entities involved in the model, is given in Figure 3.9. Note that IoTPlatform
is directly connected to: (i) Service class; (ii) NodeMessage on the node side;
(iii) UserMessage on the user side. Such a solution points out the middle-
ware role of IoTPlatform, as sketched in Figure 3.8.

FIGURE 3.8: IoT Platform interactions

A detalied case study regarding the application of the aforementioned
model is provided in Appendix A.

3.3 Networked Smart Object architecture

From the general conceptual model including the entities, the actions and
the QoP and DQ requirements involved in a general-purpose IoT applica-
tion domain, a reference system architecture has been derived [182] and is
presented in this paragraph. The outcomes of this stage have been pub-
lished in [169].
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FIGURE 3.9: IoT general conceptual model - UML class di-
agram
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3.3.1 High-level IoT reference architecture

Data are provided from the environment in which the IoT system is de-
ployed by a set of heterogeneous technologies that are referred to with the
term E-Nodes. Such technologies may require different communication sys-
tems (e.g., NFC, UWB, IEEE802.15.x, Bluetooth) and include nodes that
generate data automatically (i.e., WSN, RFID, smart tags and so on), re-
ferred to System Data, and nodes providing data by user devices (i.e., social
networks), referred to Human Data.

In order to handle such a heterogeneous and huge amount of informa-
tion, the NOS layer is introduced, which corresponds to IoTPlatform defined
in Paragraph 3.2. NOSs are conceived as computationally powerful smart
devices, without strict constraints in terms of resources and computational
capabilities, connected to create a distributed processing and storage layer,
able to process the data acquired from large-scale IoT deployments close to
the actual data sources. NOSs act as a middleware for collecting the data
generated by nearby IoT devices (i.e., E-Nodes) and processing them. Such
a middleware includes provisionings for users and applications to dynami-
cally specify the levels of QoP and DQ suitable for their own purposes. The
distributed architecture automates the deployment of adequate filters to en-
sure that only qualified data is being used by the actual services. This rep-
resents a clear innovation over conventional one-size-fits-all approaches,
which provide the same information to all consumers, often without con-
sidering their requirements in terms of QoP and DQ.

NOSs are structured as the following three internal phases:

• Analysis

• Data Normalization

• Integration.

In more detail, NOSs acquire the raw data provided by E-Nodes and
process them according to Analysis and Data Normalization phases shown
in Figure 3.10, in order to provide in output a normalized representation
of the gathered information, called IoT Data. For each incoming data, the
following information can be extracted:

• Data source, that, due to its possible heterogeneity, is classified as Sys-
tem Data and Human Data, as previously described; note that NOSs is
able to derive the type of node

• Data communication mode, that is the way in which data are collected
(e.g., discrete or streaming communication)

• Data schema, that consists of the type (e.g., text, numbers, multimedia),
the format and the metric of the data attributes (if available and if
needed - on the basis of the application context)

• QoP metadata, that specifies the nature of data (sensitive or not) and
which QoP properties are guaranteed. In particular, QoP metadata
provide details about confidentiality, authentication, integrity and
privacy
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FIGURE 3.10: Reference system architecture

• DQ metadata, that provides information about the DQ level of the data
and the related sources. Data trustworthiness can be measured in
terms of timeliness (that depends on the data volatility and currency),
data completeness, data accuracy and precision

• Timestamp, that describes when the data have been received by NOS.

The Analysis phase is responsible for the assessment of QoP and DQ
levels, which will be detailed in Paragraph 4.3, along with the function of
the Event Monitor component. The Data Normalization phase represents the
information obtained from the Analysis phase according to a well-specified
syntax and includes also a semantic description of the data content. In par-
ticular, the data are annotated with a set of metadata, including a score in
the range [0:1] for each QoP and DQ requirement, as shown in Figure 3.11.
Note that the choice to provide a score for each QoP and DQ requirement
makes NOSs flexible for smart integration in different application scenar-
ios. In fact, a solution in which only general security and quality scores are
considered, without details about all the different QoP and DQ dimensions,
would not allow the system to precisely identify weaknesses and strengths
of the different input data sources. For example, there may be application
scenarios in which it is necessary to use data that have a high level of accu-
racy and timeliness, but there is no interest to satisfy privacy requirements.
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After Data Normalization phase, the processed information may be in-
tegrated according to the application needs within a specific IoT context.
In fact, the Integration phase permits data coming from different sources to
be merged according to the services provided by the IoT platform. Such a
phase takes into account the QoP and DQ levels offered by Data Normal-
ization phase, in order to choose the data that better satisfy user needs in
the different application scenarios. In more detail, the Integration phase is
aware of the characteristics of the sources and related data, thus the associ-
ated metadata could be used for two different purposes: knowledge level
and/or operating level. The former refers to the possibility of providing
the integrated information annotated with the QoP and DQ scores in order
to let the users be aware of data trustworthiness. The latter refers to some
integration procedures, which might be affected by the data provided by
different levels. For example, QoP and DQ levels can be used for the selec-
tion of sources (if there are alternatives) to be integrated. In particular, if
the application domain aims at providing a service characterized by error-
free data and high confidentiality scores, the Integration phase should select
sources that are able to satisfy these requirements. Summarizing, the fi-
nal goal of NOS layer is enabling access to IoT Data through a properly
engineered lightweight data discovery mechanism. Note that NOSs may
be connected to IP-based networks (i.e., Internet, Intranet), allowing nodes
and end-users to access the offered services, provided at the end of Integra-
tion phase. A service may be:

• Atomic, if the users are enabled to access to the information belonging
to one source

• Composite, if data coming from multiple sources are integrated.

Such a set of services, made available by NOSs, may be directly and
dynamically configured by a network administrator and may be orches-
trated by a remote server through standard Web services approaches. Since
NOSs include self-organizing features, they can be deployed where and
when needed. In fact, NOSs, through their interfaces with both enterprise
platforms and IoT enabling technologies, can be used to enrich software
platforms, making them able to interact in a standardised way with the
physical world.
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FIGURE 3.11: IoT annotated data
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3.3.2 Modular IoT middleware

The reference architecture presented in Paragraph 3.3.1 is just a high-level
representation of NOS structure and points out its middleware position be-
tween E-Nodes, services, and users. The workflow of information is bottom-
up, from the data sources to the processing phases within NOS and, then,
to the service provision, as shown in Figure 3.12. More in depth, each NOS
exposes interfaces both towards data sources and user service provision
(highlighted with green boxes in Figure 3.12). In the remainder of this para-
graph, through a bottom-up analysis, the specific modules composing NOS
are detailed. The description includes:

• The southbound interfaces, which are used to interact with the data
sources

• The processing units, which are in charge of performing QoP and DQ
evaluation

• The northbound interfaces, which include the mechanism used for shar-
ing the information through services.

The next discussion will show the modular nature of NOS, which makes
it flexible and extensible, allowing the easily addition of new modules or
removing/updating the existing ones. In general, NOS would act as a gate-
way with built-in processing capabilities, able to manage a dynamic num-
ber of data sources. Multiple NOSs may co-exist, each of them serving a
subset of the devices belonging to the environment.

Southbound interfaces

NOSs are able to collect data transmitted by different kinds of devices. The
system has been designed to support both registered sources as well as non
registered (i.e., anonymous) ones, each of which characterized by different
communication technologies and providing different QoP and DQ levels
for the gathered data. NOSs know, for all the sources, the kinds of the
data provided. As regards the registered nodes, NOSs provide a service
for source registration by means of HTTP protocol; the related information
are stored in Sources data structure and, in particular, registered sources are
associated with:

• An identifier

• Optionally, a geographical position

• Optionally, an encryption scheme, including the proper keys for inter-
actions with NOSs.

The HTTP communication protocol is also used among NOSs and the
sources for the data transmission, thus also including the non registered
ones. As regards them, NOSs can only keep track by assigning pseudo-
random identifiers after the first interaction, but no encryption scheme can
be shared.

Since received data are highly heterogeneous, each NOS initially stores
them in Raw Data collection, and, periodically, processes them, in a batch
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way, according to the two-phase structure shown in Figure 3.12, which in-
cludes Data Normalization and Analysis. These two phases have been in-
vestigated in Paragraph 3.3 and have the final goal to obtain an uniform
representation of information, enriched with relevant metadata.

Initially, the data stored in Raw Data are converted according to the for-
mat, specified in Figure 3.11 by Data Normalization module, which stores
them in Normalized Data collection. This represents a sort of pre-processing
phase in which the unnecessary information are removed, so that later pro-
cessing stages can access the information in a unified way. At this stage,
QoP and DQ metadata fields are still empty. Then, a second module, con-
sisting of a set of Analyzers (i.e., Security Analyzer and Quality Analyzer),
periodically extracts the normalized data from the storage unit Normalized
Data and elaborates them, computing relevant QoP and DQ indicators (de-
tailed in Paragraph 4.3). Within such a step, as shown in Figure 3.11, data
are annotated with a set of metadata in the form of a score for each QoP
and DQ property. The processed data are used for providing services to the
target users, as described in Paragraph 3.3.2.

FIGURE 3.12: NOS architecture
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Northbound interfaces

While NOS southbound interfaces are based on the HTTP protocol, the
northbound interface is based on the Message Queue Telemetry Transport
(MQTT) protocol [87]. MQTT is a lightweight publish/subscribe protocol
specifically designed for resource constrained devices. In the IoT context,
it is widely used to enable communication among devices using a pub-
lish/subscribe messaging approach. In particular, it aims at making the
processed data available for interested applications and/or users. In fact,
the system allows the subscription of both users and external applications,
which authenticate to NOS and may then make requests to the services
made available. In case of application registration, multiple users may reg-
ister to such an application, instead of registering to NOS.

An MQTT client, like that contained in NOSs, exchanges messages with
an MQTT broker by means of publications and subscriptions to topics.
Such a mechanism is adopted to support interactions among services and
IoT devices. NOSs include a module, named Topics Assignment, in charge
of assigning data items to the corresponding topic and to publish them
on an MQTT broker, as depicted in Figure 3.12. The mapping of data to
a specific topic depends on the application domain and may require the
usage of an ontology able to represent the semantic of the managed re-
sources. In general, topics are multi-level structures separated by a for-
ward slash, similar to a directory structure. An example of a topic for pub-
lishing temperature information of a sensor with identifier sensorId could
be sensor/temperature/sensorId. Note that subscribers may register
for specific topics at runtime and NOSs provide a mechanism for dynamic
subscription and unsubscription to topics. The publish/subscribe mecha-
nism adopted by NOSs will be further detailed in Paragraph 4.5.

Configuration

So far the NOS system has been introduced as a set of interfaces and run-
ning modules without specifying how such modules behave. Actually, the
actions undertaken by NOSs are regulated by well-defined rules; among
them, the most important concerns are:

• How to assess the QoP and DQ levels of the incoming information
and, in particular, which features about data and/or sources to con-
sider in performing such an evaluation

• The policies to be applied to control the access to data

• The topic assignment strategy.

The whole set of rules is stored in a proper format in the storage unit,
named Config, also represented in Figure 3.12. Config contains all the config-
uration required for the correct management of NOS system. Rules in the
Config store can be dynamically configured at run time by system adminis-
trators connecting remotely to NOS over a secure connection (e.g., HTTPS,
SSL) without the need to re-start NOS services. The usage of a secure com-
munication protocol is required in this case, as the policy adopted by NOS
for processing IoT data has to be protected against external attacks.

sensor/temperature/sensorId
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As regards access control policies and topic assignment, they will be dis-
cussed in Paragraphs 4.4 and 4.5, respectively. Instead, concerning QoP and
DQ assessment, Security Analyzer and Quality Analyzer practically query
Config store to retrieve a list of the operations they are intended to carry out.
However, it is worth remarking that the assignment of QoP and DQ scores
provides a handle for letting the users filter the data processed by NOS, ac-
cording to their personal preferences. In fact, as pointed out in Paragraph
3.3, the choice to provide an evaluation for each QoP and DQ dimension
makes an NOS-based approach extremely flexible and able to adapt to very
different application scenario requirements. For example, there exist appli-
cation scenarios (e.g., factory floor automation) in which only data with a
high level of privacy and confidentiality can be used, but there is no need
to satisfy integrity requirements. Another application domain may aim to
provide a service characterized by error-free data and high confidentiality
scores; therefore the data to be selected are those provided by sources able
to satisfy these requirements. In many situations, in fact, no description, ei-
ther about the sources or the acquired data, may be available a priori; at the
moment this requires labour-intensive search and selection of which data
sources to use. The NOS approach automates such a task, leaving the sys-
tem administrators to define scoring policies and to the service provider to
specify the requirements on the data to be used. The ability to support au-
tomatic reasoning about QoP and DQ is what makes the NOS system able
to deal properly with the scale and heterogeneity of IoT contexts. Note that
the QoP and DQ assessment rules will be discussed in Paragraph 4.3.

3.4 Prototype

NOS system, presented in Paragraph 3.3, has been implemented as a pro-
totypical service middleware platform, able to manage a large amount of
data from heterogeneous devices with lightweight modules and interfaces
working in a non-blocking manner to perform data analysis, discovery, and
query. In a real scenario, one or more NOSs can be deployed in a distributed
manner. This represents an important step beyond conventional ad-hoc cen-
tralized IoT solutions. Note that, from an analysis of NOS functionalities,
there is no need for a peer-to-peer management of NOSs. In fact, NOSs are
able to:

• Independently handle the connected data sources, without the need
to inform other NOSs of their active and past interactions

• Be independently re-configured by IoT system administrators
through Config interface

• Independently assign topics and publish data on the basis of the de-
fined rules.

The existing IoT deployments are often barely reconfigurable [127],
since they are conceived for very specific applications, based on a vertical
silo-based approach. NOS middleware supports dynamic reconfiguration
and can be remote orchestrated through Internet/Intranet protocols, which
are based on open standards (see Paragraphs 3.3.2 and 3.3.2).
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Besides being compliant to the architecture presented in Paragraph 3.3,
the NOS implementation is based on the following components/technolo-
gies/libraries:

• Node.JS platform [146] for NOS core functionalities

• MongoDB [132] for the data management part

• Mosquitto [134] as open-source MQTT broker.

The code is accessible as open source under a permissive license
at https://bitbucket.org/alessandrarizzardi/nos.git. NOS
modules interact among themselves through RESTful services, allowing the
addition of new modules or modification/removal of the existing ones at
runtime, since they are able to work in a parallel manner. The non-relational
nature of MongoDB also allows the data model to evolve dynamically over
the time. Consequently, such an implementation is independent both from
the data model and from the application domain. Data and rules han-
dled by NOS are formatted in JSON (JavaScript Object Notation) language,
which was chosen due to its flexibility as lightweight data-interchange for-
mat.

In more detail, NOS modules can be divided into: node interfaces, pro-
cessing modules, and service interfaces. The node interfaces include a spe-
cific REST endpoint for handling source registration and acquire data from
IoT devices. As described in Paragraph 3.3.2, these correspond to the south-
bound NOS interfaces. The following endpoints are exposed:

• POST data/, used for handling transmission of data from the nodes
to NOS. Messages shall be formatted as valid JSON nodes

• POST registration/, used by nodes for registering to NOS. Mes-
sages shall be formatted as valid JSON nodes. The following fields
are mandatory: NodeId, NodeType, CommunicationMode. Op-
tional field: EncryptionScheme. The response includes node cre-
dentials.

The NOS system also includes additional modules, namely Data Nor-
malization and Analyzers. Such processing modules are daemons that start
along with NOS and periodically extract data from Raw Data or Normal-
ized Data storage units. Since they are internal to NOS, no specific APIs are
provided.

As far as northbound interfaces are concerned, the following endpoint
is exposed:

• mqtt.Client#publish(topic,payload,[options]), used by NOS for pub-
lishing processed data to the MQTT broker. Mandatory parameters:
topic (channel on which the message is to be published), payload
(message to be published). Optional parameters (see Paragraph 4.5):
[options] (QoS, retain flag, callback). The address of the broker is
specified at client initialization time.

Notice that the broker is a module that runs separately from the NOS
system, therefore it acts as an intermediary among NOS and the sub-
scribers.

https://bitbucket.org/alessandrarizzardi/nos.git
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TABLE 3.1: NOS storage collections

Collection Type

Raw Data Non-Persistent
Normalized Data Non-Persistent

Sources Persistent
Config Persistent

Given the overall system architecture, it is worth remarking that NOS
does not require data persistence for IoT-generated data. Rather, data is
temporarily cached on NOS while being processed and before being sub-
mitted to the MQTT broker. Accordingly, NOS uses the in-memory capabil-
ity of MongoDB for two of its databases, namely Raw Data and Normalized
Data, whereas the databases Config and Sources must be persistent. Table 3.1
summarizes the nature of the storage collections used. A routine runs on
NOS in order to remove from Raw Data the data already normalized and
from Normalized Data the data already published. Such an approach greatly
improves NOS performance, significantly lowering the effort for query and
read/write operations.

3.5 Security threats

Once the NOS system has been presented, a more detalied analysis can be
done with regards to the security threats that may occur. As introduced in
Paragraph 1.2, multiple kinds of attack may be put in place in an IoT en-
vironment. They mainly include attacks against the IoT devices, attacks
against the communications among IoT devices and NOSs, and attacks
against NOSs themselves.

Attacks against the IoT devices concern physical disruption, tampering
or information theft (e.g., certificates or encryption keys). To cope with such
issues, an authentication system is necessary, which would allow NOSs to
recognize the authorized devices from the misbehaving ones.

Attacks against the communications can be addressed by means of en-
cryption mechanisms. Note that, such threats can be represented by any
kind of DoS, routing or man-in-the-middle (e.g., spoofing, sniffing) attack.
In this case, not only can the data content be compromised, but the iden-
tities of the IoT devices are also at risk. Moreover, network resources are
wasted, thus causing serious damage to the supply of services.

In the following chapters, some solutions will be provided in order to,
at least partially, deal with the aforementioned threats.

Finally, in this thesis, attacks against NOSs are not considered, since
NOSs are assumed to be trustworthy. If this is not true, the information
they managed and data received by the IoT devices would be insecure; fur-
thermore, the tasks performed by NOSs would also be unreliable, thus dis-
couraging the use of the services provided by NOSs by the users. In the
case in which a single NOS is compromised, actions could be undertaken
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in order to: (i) recognize that a NOS is under attack; (ii) isolate the com-
promised NOS and restore the communications with the IoT devices that it
managed. Such aspects are left as a future extension.
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Chapter 4

Security Solutions

4.1 Introduction

NOS architecture and components were described in Chapter 3 along with
their prototypical implementation. In particular, the following aspects were
specified:

• The middleware role performed by NOS in the IoT context

• The presence of two other entities interacting with NOS, namely the
nodes (i.e., data sources) and the users

• NOS main functionalities (i.e., processing units), which are data Anal-
ysis, Data Normalization and service Integration

• NOS southbound interfaces towards the nodes and northbound inter-
faces towards the users.

NOS is conceived as a modular architecture, in order to ease the integra-
tion with new modules. Moreover, NOS has to operate in the dynamic and
heterogeneous IoT environment, thus requiring the adoption of strict se-
curity measures, in particular to guarantee wide acceptance by people and
industries of IoT service paradigm. In order to improve NOS behavior in
terms of security features (e.g., resilience towards malicious attacks, secure
data assessment, policy enforcement), NOS has naturally evolved with the
following functionalities:

• Use of a key distribution and management system, in order to im-
prove the robustness of the adopted encryption mechanisms for in-
formation exchanges among NOS and nodes/users

• Introduction of new algorithms for the automatic reasoning about the
security (QoP) and the quality (DQ) levels, associated with the data
received by IoT devices, in order to make users aware of the reliability
of the services made available by the IoT system

• Adoption of policy enforcement mechanisms able to handle violation
attempts

• Integration of the aforementioned policy enforcement mechanisms
with a lightweight authenticated publish/subscribe system for secur-
ing the data provided to users

• Establishment of a synchronization system for ensuring the correct
application of policies across different application domains, since an
IoT system may include various stakeholders.
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The NOS functionalities just presented are summarized in Figure 4.1
and will be detailed in the following paragraphs.

FIGURE 4.1: NOS functionalities

4.2 Key distribution and management

A secure system includes the use of keys for encrypting the transmitted in-
formation and/or authenticating an entity with respect to another. Starting
from this assumption, within each secure system, a key management sys-
tem should be integrated. In this way, a clever control over key distribution,
replacement and revocation can be put in place, improving the resilience of
the system and of the involved entities towards malicious attacks either on
transmitted data or on sensitive information.

As pointed out in the state of the art in Chapter 2, the key management
in IoT is not a mature field at all, even though many solutions have been
proposed for the WSN context. In this thesis, two popular and robust key
management systems, named Dini et al. [44] and Di Pietro et al. [162],
conceived for WSN, have been integrated into the NOS architecture. The
results obtained are published in [183].

As a first insight, the algorithm proposed by Dini et al. includes the gen-
eration of the keys and their subsequent propagation, in order to create a
secure communication channel; while Di Pietro et al. adopts a different ap-
proach, in which each node belonging to the network generates its session
keys, by means of values (i.e., initial seeds) assigned by NOS in the initial
registration phase.

Since NOSs support both registered and non registered sources (see
Paragraph 3.3.2), note that only the former are interested in the mechanism
of key distribution. The latter may send their data to NOSs in clear (or
otherwise they are discarded, if ciphered with an unknown mechanism),
because no agreement has been taken through the proper HTTP source reg-
istration interface, about key exchange or the encryption scheme (e.g., RSA,
AES) to be adopted. In particular, registered sources are associated with a
unique identifier, that allows NOSs to recognize one source with respect to
another. In addition, during the registration phase, some credentials may
be provided by NOS to the interested source. In Chapter 3, the concepts
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of SignatureKey and ActionKey were introduced in a general way. In this
paragraph, the generation and the use of such keys will be investigated.

In fact, the key management algorithms proposed by Dini et al. [44] and
Di Pietro et al. [162] will be detailed along with their integration into NOS
functionalities in paragraphs 4.2.1 and 4.2.2, respectively.

4.2.1 Key management system by Dini et. al

The distribution system of the cryptographic keys presented by Dini et al.
[44] responds to the requirements of dynamism and mobility of the large
scale IoTenvironment. This approach does not assume a fixed network
topology, but considers the possibility that the nodes may dynamically join
and leave the network. Moreover, the resource constraints of the nodes are
taken into account, thus reducing the network traffic and the processing op-
erations. The approach of Dini et al. represents a node-to-node distributed
key agreement, which supports the creation of secure communication chan-
nels among the nodes. Such channels connect sequences of adjacent nodes
sharing the same keys. This result is achieved by propagating the key con-
necting the start node and the first subsequent node to all the other nodes
in the channel. Note that all the communication channels are bidirectional,
allowing one to deliver reply messages as well as to transmit a message
from/to any intermediate node. Once a secure channel has been estab-
lished, no hop-by-hop encryption/decryption is required, thus improving
the algorithm performance in terms of overhead and reliability.

Two set of keys are stored in each node (source):

• The global keys, which are assigned by NOS during the initial registra-
tion phase and are used to legitimate the encrypted communications
among the sources within the IoT system

• The local keys, which are also directly assigned by NOS to a source
or indirectly by a source to another one (just owning the same global
key) and are used for encrypting the data transmitted to NOSs.

In particular, global keys are only aimed at the propagation of the local
keys, as specified in the following, where each key is denoted by a name
and a value. The name K of a local key consists of two components:

• Knode, which is coded in the d most significant bits of K, and is equal
to the name of the NOS that generated the key

• An incremental number Kincr, which is coded in the least significant
bits of K.

Since the name of a local key corresponds to the name (i.e., the identifier)
of the generating NOS, it is always possible to identify, by means of the
component Knode, the NOS belonging to the communication channel that
established the local key for a pool of sources.

In a similar way, the global keys have a value and a name. The latter is
the order number of that key in the pool of key values generated by each
NOS by means of the algorithm of Eschenauer and Gligor [54]. In fact, as
regards the initialization phase of Dini et al., the algorithm of Eschenauer
and Gligor [54] is adopted; it implies a random key pre-generation scheme
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before any source can start to send or receive data to or from NOS. During
the registration phase, each incoming source receives from NOS a global
key, from the large pool of keys generated by NOS itself after this prelimi-
nary task.

Bearing in mind that multiple NOSs could act in the same IoT envi-
ronment, each NOS N stores three tables aimed at preserving information
about keys and connections with registered sources:

• The connection table CTN , which contains one entry for each source
S connected to the NOS N; in more detail, the entry CTN,S contains
the list of the local keys Ki generated by N (i.e., Knode is equal to N)
shared with S, which allows multiple connections (N,S)Ki

• The global key table GTN , including one entry for each global key Gi
generated by NOS N (i.e., Knode is equal to N)

• The local key table KTN , containing an entry for each local key K
generated by another NOS (Knode is not equal to N). The information
included in KTN are required in case a source begins to send its data
to another NOS, which does not correspond to the NOS to which it
was registered before.

Figure 4.2 provides an example with two NOS, namely NOSA and
NOSB , and three data sources (i.e., S1, S2, S3). Sources S1 and S2 send data
to NOSA, while S3 provides data both to NOSA and NOSB . Figure 4.2
also shows the contents of the three aforementioned tables for NOSA and
NOSB , along with the global and local keys owned by the three sources.

FIGURE 4.2: Key management in Dini et al.

Note that, in the case of a single NOS, no local key table is required.
Instead, since data sources do not generate local keys by themselves, they
store only two local tables: the connection table, including their active con-
nections with NOS and other sources, and the global key table, containing
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the global keys received by NOS. The number of global keys stored by a
source depends on the specific application domain, due to the fact that a
source could provide data belonging to different contexts and, therefore,
register to NOS with multiple credentials. Such a case is not considered
yet, but the potentialities of the algorithm of Dini et al. are not be limited to
a single application scenario.

Algorithm 4.1 outlines the steps of the key generation and distribution
proposed by Dini et al. Steps 1-3 point out that an entry CTN,S already
exists; therefore, the source S and the NOS N are connected and can use
the local key K for encrypting and decrypting the data D to be exchanged.
In contrast, if such an entry does not exist, N searches for a global key G
shared with S (steps 4-5). If such a global key exists, then N generates a
new local key K, thus establishing the connection between S and N (steps
36-41). Whereas, if the global key is not found, but S communicates with an
adjacent node M, connected to NOS N and sharing the local key K, then M
could act as an intermediate source for setting a new connection between
S and N (steps 6-13). Instead, if a connection between M and N exists by
means of the local key K’ (steps 15-19), different from K, or the global key G
(steps 21-25), then a connection between S and N could also be created with
M as an intermediate source. Otherwise, if no global key G is shared by M
and N, another source M’ could be used as intermediary (steps 27-32). If
no connection succeds through neighboring sources (i.e., no key is valid), S
cannot take part in secure communcations with NOS, since no registration
has been performed.

Dini et al. also provides a mechanism for the local key replacement. The
new key value has to be updated in the connection key table of each node
which shares this key. This is achieved by propagating a key replacement
message to all the sources directly connected to NOS. Such a procedure is
periodically started by NOSs for the local keys, in order to improve the ro-
bustness of the communications with the registered sources, or in case of
malicious node detection; in fact, if a network attack is recognized by one
or more NOSs, as explained in Paragraph 4.3, then it/they immediatly ini-
tiates/initiate the key replacement algorithm. For further detail about the
procedure, refer to [44], but, in general, it exploits the correspondence be-
tween the actual name of the local key and the identifier of the generating
NOS. If, otherwise, a global key has been compromised, then it should
be discarded from the network and further updated. In this case, NOS
will send an invalidation message containing the name of the compromised
global key; therefore, the sources will discard such a key to prevent its use
in establishing other connections (e.g., with possible malicious nodes). Fi-
nally, a new global key must be established.

4.2.2 Key management system by Di Pietro et. al

The Di Pietro et al. [162] scheme is composed of two main phases:

• First phase: the new session key is autonomously generated by each
source

• Second phase: the new session key is synchronized among all the
registered sources.
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Algorithm 4.1 Dini et al. key distribution algorithm
1: if (N, S)K exists in CTS then
2: S sends D to N encr with K
3: N decrypts D with K
4: else
5: G = findGlobalKey(N, S)
6: if (G == “) then
7: S communicates with N through adjacent node M with connection (S,M)K
8: S sends D to M encr with K
9: if (M,N)K exists then

10: M sends D to N encr with K
11: N decrypts D with K
12: S and N update their CT
13: connection (S,M,N)K set
14: else
15: if (M,N)K’ exists, where K ! = K’ then
16: M sends D to N with couple K = (Knode, Kincr) received by S encr with K’
17: N sends an ack to M
18: M, S and N update their CT
19: connection (S,M,N)K set
20: else
21: if (M,N)G exists then
22: M sends D to N with couple K = (Knode, Kincr) received by S encr with G
23: N sends an ack to M
24: M, S and N update their CT
25: connection (S,M,N)K set
26: else
27: does not exist any G shared by M and N
28: M communicates with N through adjacent nodes
29: while connection with N set or adjacent nodes available do
30: execute searchAdjacentNodes()
31: end while
32: comment: if such procedure fails, S is disconnected from the network
33: end if
34: end if
35: end if
36: else
37: N generates a new local key K
38: S sends to N the couple K = (Knode, Kincr) encr with G
39: S sends an ack to N
40: N and S update their CT
41: S can send D, encr with K, to N and can decrypt messages from N with G
42: end if
43: end if

In fact, the algorithm guarantees that each source generates and shares
the same key. The following definitions are required:

• MSG denotes a message that a source wants to send

• Ek(MSG) indicates the encryption algorithm E employing the key k

• Ek−1(MSG) represents the decryption of MSG

• q denotes he length in bits of key k

• H and G are one-way hash functions (e.g., SHA-1 or MD5), which do
not need to be kept secret.

Each source is provided by NOS, during the registration phase, with
two random seeds, S1 and S2, each q bits long. These two seeds are the only
critical secrets that the tamper-resistance property has to preserve. Further-
more, each source can store an integer counter representing the sequence
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number of the current session key, and has enough memory to store a lim-
ited, constant number of session keys. The final value of the key is rep-
resented by the XOR boolean function applied to the results of the hash
operations on the two seeds S1 and S2.

Figure 4.3 clarifies that NOSA stores the information related to the seed
pairs (in this example, the couple i, j), while each data source (i.e., N1 and
N2) stores a seed pair, the current session identifier, the current key and the
previous key (whose role is explained in the following). Note that N2 can
send a message MSG1 to N1, and, then, N1 can both decrypt the message
and/or forward it to NOSA, always encrypted with the current key.

FIGURE 4.3: Key management Di Pietro et al.

Algorithm 4.2 outlines the steps of the solution proposed by Di Pietro et
al. for the key generation and distribution; while Algorithm 4.3 defines the
key update function.

There exist two different scenarios for the application of this scheme.
The former requires a single central entity acting as a synchronizer for
performing the re-keying of the sources; while the latter is a completely
distributed approach, in which the sources should rely on themselves to
achieve synchronization in the re-keying process. A distributed approach
fits better NOS’s aims. In particular, a scenario in which multiple NOSs
manage the configuration activities among the registered sources, which,
in turn, do not directly initiate any re-keying process. Note that this differs
from the original Di Pietro et al. approach, in which each node could ini-
tiate the re-keying activity. In more detail, each NOS has to interact with
its managed sources in order to invoke the command to generate the new
keys.

With regards to the re-keying commands, NOS invokes them periodi-
cally. When a source receives from NOS a message that requires to update
the current session key, it first saves the current value of the key, and then
updates the session key. The source must save the value of the previous key,
since it could receive messages that have been previously encrypted with
the old key (for instance the session key has been updated while some mes-
sages were still on the fly). NOS encrypts the command to generate the new
key with the last key generated by the sources themselves. Note that such
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Algorithm 4.2 Di Pietro et al. key generation algorithm

1: Initialization
2: currentSession = 0
3: S1’ = H(S1)
4: S2’ = G(S2)
5: k = S1’ XOR S2’
6: while true do
7: MSG reception
8: if MSG.session == currentSession then
9: M = Ek−1(MSG)

10: else
11: M = Eoldk−1(MSG)
12: end if
13: if MSG.type == updateSession then
14: execute updateKey() see Algorithm 4.3
15: end if
16: continue with normal execution
17: end while

Algorithm 4.3 Di Pietro et al. key update function

1: updateKey()
2: S1’ = H(S1)
3: S2’ = G(S2)
4: kold = k;
5: k = S1’ XOR S2’
6: currentSession = currentSession + 1

a key could be compromised by a malicious entity; therefore, a more re-
silient mechanism, such as DHKE (Diffie-Hellman Key Exchange) [90], should
be adopted in order to secure the just mentioned operation and counteract
the man-in-the-middle attack.

In Paragraph 5.3, the performance of Dini et al. and Di Pietro et al. key
management systems is evaluated in terms of storage occupancy, overhead,
delay, and robustness towards malicious attacks.

4.3 QoP and DQ assessment

The adoption of an efficient and robust key management system is only
one of the steps required for the development of a secure IoT middleware.
Since the final goal of NOS is to provide security and quality aware services
to the end-users, a number of supporting algorithms for the evaluation of
the information as well as of the data sources should also be integrated. The
final result is published in [193].

Security and privacy are widely acknowledged to represent crucial is-
sues in the IoT heterogeneous context, as explained in Chapter 1. On the
one hand, the confidentiality and the integrity of the transmitted and stored
information has to be guaranteed, and authentication and authorization
mechanisms have to be provided to prevent unauthorized users or devices
to improperly access the system. On the other hand, privacy of users, in
terms of ability to support data protection and users anonymity, has to be
ensured, which represents a critical aspect in particular in the presence of
personal and/or sensitive information. Beyond security, also data quality
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represents an essential requirement for a large adoption of IoT services. The
information provided should be accurate, timely and complete, since, in
some scenarios, errors or missing values might have a critical impact on the
actions or decisions upon the IoT system itself. Indeed, since IoT-enabled
services and applications may make use of different data sources, the user
(or the application itself) has to be aware of the security and quality level
of the data being accessed, in order to take informed decisions about their
usage. Such features have been presented as NF properties in Chapter 3,
namely, QoP and DQ requirements.

What emerged is the need for a system able to deal with heterogeneous
data sources and to assess both the QoP and the DQ of the information be-
ing collected, processed and transmitted, possibly in real-time and in an
automatic manner. Furthermore, such a system must be able to work in
the absence of a priori complete knowledge of the sources themselves, since
IoT environments are highly dynamic and different kinds of attack may oc-
cur. In fact, in such a scenario, data may be compromised by rogue devices,
hindering the correctness and confidentiality of the information (e.g., data
integrity violation, man-in-the-middle attacks, packet sniffing). Source au-
thentication issues (e.g., compromised keys, session violation) shall also be
accounted for.

In order to deal with such threats, novel mechanisms for the assessment
of DQ and QoP have been integrated into NOS, aimed at analyzing the
data sources as well as the data they generate over the time. Paragraphs
4.3.1 and 4.3.2 provide more insights about the features and the behavior of
the algorithms for the data quality and security evaluation, respectively.

4.3.1 Data quality evaluation

As regards the data quality analysis, a score in the range [0, 1] is assigned
to timeliness, completeness, accuracy and precision levels [31] [100] by the
Quality Analyzer (see Paragraph 3.3.2). In particular:

• Timeliness is defined as the temporal validity of data and is calculated
on the basis of the freshness of data and on the frequency of data up-
dates; it is usually measured as a function of two variables: currency
and volatility:

Timeliness = max

(
1− Currency

V olatility
, 0

)
, (4.1)

where Currency is defined as the interval from the time when the
value was sampled to the time instant at which data are received by
NOS

• V olatility is static information that indicates the amount of time units
(e.g., seconds) during which data remains valid; it is usually associ-
ated with the type of phenomena that the system has to monitor and
depends on the timescale of its dynamics
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• Completeness is calculated as the number of collected values over a
given time interval divided by the number of expected values:

Completeness =
collectedV alues

expectedV alues
. (4.2)

Note that missing values can be caused by sensor inefficiencies or
communication issues

• Accuracy is usually defined as the degree of similarity of a measured
quantity to its true value; it is also related to precision, which is the
degree to which further measurement or calculations return the same
or similar results. Ideally, a sensor shall be both accurate and precise,
with all the measurements close to a reference value representing the
true figure. In continuous value monitoring, accuracy and precision
can be used as the features able to reveal errors or changes in the mon-
itored process. Moreover, precision is often specified in terms of the
standard deviation of the measured values: the smaller the standard
deviation, the higher the precision. Formally, the accuracy of a value
can be retrieved by calculating the error resulting from the difference
between the sensed value vn and a reference value vref . The accept-
able measurement error can be defined as εacc and the measure is con-
sidered accurate if:

|vn − vref | < εacc (4.3)

Considering such a constraint, each value is associated with boolean
metadata: the value 1 is assigned to accurate values while the value 0
is assigned to inaccurate values. In this way, considering the stream-
ing of values, the accuracy of the received values can be calculated
as the ratio of the number of inaccurate values over the number of
collected values:

Accuracy = 1− wrongV alues

collectedV alues
. (4.4)

• Precision can be defined as the inverse of variance. A measure is con-
sidered precise if:

1/n ·
N∑
n=1

(vn − µ)2 < εprec (4.5)

where µ is the average of the sequence vn of sensed values, while N
is the maximum number of measurements considered in a specific
time interval. Accordingly, an aggregate measure of precision can be
computed as:

Precision = 1− notPreciseV alues

collectedV alues
. (4.6)
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Precision is a value that is mainly used to better understand the ac-
curacy measure. Indeed, situations in which values are incorrect but
precise should be thorough analyzed since inaccuracy can be caused
by changes in the monitored phenomenon or by faulty sensors [31] .

Quality assessment is performed periodically on the basis of a window-
based approach [100].

4.3.2 Security evaluation

For security purposes, data sources are allowed to register with NOS, as al-
ready explained. The registration gives various advantages, since it allows
NOS to have a complete knowledge of the source itself and to establish an
encryption scheme along with the proper keys and identifiers to be used.
Some registered sources may use neither authentication credentials nor en-
cryption. NOS also accepts data from anonymous sources; also in this case
a security evaluation has to be performed.

The Security Analyzer (see Paragraph 3.3.2) must be able to access to the
Sources storage unit since, in order to analyze the received data, it may need
information regarding the sources registered to NOS. To this end, NOS ex-
ploits an algorithm valid for both registered and anonymous sources, which
aims to associate a score in the range [0, 1] with the security metrics (i.e.,
confidentiality, integrity, privacy, authentication), detailed in Paragraph 3.2.
As in the IoT context, NOS may have to manage sensitive data. Such secu-
rity scores are intended to represent levels of confidentiality and integrity of
the information transmitted to NOS, privacy of the transmitting source (i.e.,
idenfiable information related to data sources) and authentication (i.e., the
robustness of the source authentication towards NOS). Note that malicious
devices may be represented both by registered (for example, compromised)
and non registered sources, thus sending corrupted data to NOS or execut-
ing malicious actions on data transmitted by non malicious sources (e.g.,
spoofing, sniffing).

The proposed security assessment algorithm takes into account two sets
of parameters:

• A set of threats/attacks an, which includes the attacks that may be
carried out towards the sources or the data transmitted to NOS (e.g.,
data violation, unauthorized access, masking, impersonation)

• A set of security countermeasures cm, which regards the countermea-
sures made available by NOS in order to face the attacks included in
an (i.e., encryption, authentication, key pre-distribution).

The security model considered by the algorithm links the attacks of an
with the corresponding countermeasures in cm. The taxonomy of the secu-
rity attacks and the related countermeasures is retrieved from [172]. This
work is appropriate as a mean of identifying a set of attacks and coun-
termeasures for the IoT environment. In fact, it is not closely related to
computers and networks threats, as are most of the existing works on tax-
onomies, but focuses on embedded devices, which are strictly related to the
IoT technologies. It refers to:
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• Data confidentiality

• Authentication and integrity

• Key management protocols

• Reputation schemes.

In detail, it considers each countermeasure to present a degree of re-
sistance to a violation or to an attack attempt. The relationship among at-
tacks and countermeasures is many-to-many, because an attack can be tack-
led through a plurality of countermeasures and a countermeasure can face
more than one attack.

Each relationship is associated with a weight wai,cj in the range [0 :
1], which represents the level of robustness of the countermeasure cj with
respect to the attack ai (see Figure 4.4). It is worth to remark that there only
exists a couple ai/cj with the associated weight wai,cj ; such information
have a general meaning, therefore they are not established on a per source
basis. Furthermore, the same couple ai/cj can be used in different contexts,
with the same security levels.

FIGURE 4.4: Weighed relationships among attacks and
countermeasures

The identified relationships are clustered into four groups, one for each
security metric to be analysed (i.e., confidentiality, integrity, privacy, au-
thentication). The assignment of each attack-countermeasure pair to a
group is made by NOS administrators in an early phase of system con-
figuration, but it can be updated at runtime. Hence, at this initial stage,
there are four groups of sets of attacks-countermeasures, which are named
as follows:

• gconf for attacks-countermeasures related to data confidentiality

• gint for the pairs related to data integrity

• gpri for privacy issues

• gauth for the pairs concerning source authentication.
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TABLE 4.1: Pairs attack-countermeasure

Attack Countermeasure Group

1) Packet sniffing Data content encryption gconf , gpri
2) Password attack Complex password generation gconf , gauth, gpri
3) Man-in-the-middle attack Authentication gauth
4) Session hijacking attack Secure session establishment gint, gauth
5) Identity spoofing Identity encryption gauth
6) Key impairment Secure key distribution scheme gconf , gauth, gpri

Note that such groups are not necessarily disjoint, since a pair may be-
long to one or more groups, as shown in Figure 4.5. The information related
to the groups are put in the storage unit named Config, just presented in
Paragraph 3.3.2.
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FIGURE 4.5: Attacks-countermeasures groups

Table 4.1 shows some examples of attack-countermeasure pairs derived
from the used taxonomy and classified into the groups described above.
Note that in Table 4.1 the countermeasures are presented in a generic way,
since, as regards, for example, data encryption, a source can adopt differ-
ent encryption schemes (e.g., RSA, AES), and, as a consequence, the cor-
responding robustness level varies over the time. In more detail, there is a
weight for each relationship among, for example, the man-in-the-middle at-
tack and the different encryption schemes which can be adopted (e.g., man-
in-the-middle attack and RSA, and attack man-in-the-middle and AES). The
same considerations apply to password generation and secure session es-
tablishment techniques.

Once the groups are defined, NOSs can update the weight correspond-
ing to the relationships among attacks and countermeasures depending on
the sources’ behaviour and, consequently, on the basis of the received data.
In this way, the system is able to evaluate the robustness of the countermea-
sures to particular kinds of attack during the normal IoT system operations,
since NOS recognizes the possible malicious activities that can occur within
the IoT system.

When the NOS platform is deployed in an IoT context, the initial
weights are all conservatively set to 1. During operations, NOS should be



82 Chapter 4. Security Solutions

able to detect the following events, for example by means of a proper intru-
sion detection system, which corresponds to the Event Monitor component
in Figure 3.10:

• Data confidentiality and/or integrity violations; for example, a source
may share some proper keys with NOS in order to encrypt its data;
then, NOS may verify the integrity of received data, for example using
a hashing technique, as [188]; if the data is recognized as corrupted,
then an integrity attack on the encryption technique adopted by the
source has been successful

• Source privacy violations

• Unauthorized access to the system (e.g., password violation, so an
unauthorized device has accessed the system)

• Robustness of key management protocols in relation to key length
(bits), deterministic or probabilistic generation of keys, encryption
scheme adopted

• Replay or routing attacks which can hinder the freshness and the
availability of the data received from the different sources.

Weights can vary over time in a dynamic way; such variations depend
on the events described above or on context changes such as a source chang-
ing the length of its keys or the adopted encryption scheme. Such a process
of automatic adjustment is performed by means of a well-known learning
approach, namely difference temporal learning [195]. It is suitable for the
learning in dynamic environments and is able to make predictions about
specific features on the basis of temporal differences observed during sys-
tem activity. In this way, the weights may decrease over the time with the
observations of system or data violations, but they may also increase if a
certain countermeasure turns out to be more resilient or if an attack is no
longer performed.

The following equation regulates the update of weights:

∆wt = α ·
∑
k=1,t

5w · wt (4.7)

Where the weight variation ∆wt at time t depends on: (i) the learn-
ing rate α, which is a linear decreasing function of time; (ii) the sum
(
∑

k=1,t5w · wt), which is the sum of the gradients taking into account all
the previous predictions until the time t.

After the update, performed at time t on the i-th pair attack/counter-
measure, the corresponding weight wti,ci is updated according to Equation
4.8 (note that w corresponds to a weight wti,ci). ∆wt could assume negative
values, but the resulting weights must be values in the range [0 : 1].

wt+1 = wt + ∆wt (4.8)

Once the attack/countermeasure model is defined, the algorithm com-
putes, for each incoming data, the related security scores, on the basis of the
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actual weights and of the data source src. Equations 4.9, 4.10, 4.11 and 4.12
show how the score corresponding to the level of confidentiality (secconf ),
integrity (secint), privacy (secpri) and authentication (secauth), respectively,
is determined. Note that a score for each QoP property is calculated for
every source.

secconf =
aconf,src
agconf

·

∑
iεaconf,src,jεcconf,src

wi,j

cconf,src
(4.9)

Where: aconf,src is the number of confidentiality attacks to which the
source src could suffer; agconf

is the total number of attacks included in the
model in the group gconf for any kind of sources (not only those related to
src); cconf,src is the number of countermeasures adopted by src in relation to
the attacks on confidentiality included in aconf,src. The sum of the weights
considers only the weights between the attacks in aconf,src and the coun-
termeasures in cconf,src. For example, suppose that the source src adopts
AES for encrypting its data; moreover, it also adopts an 8-bit length pass-
word as a credential for ensuring both confidentiality and authentication.
As shown in Table 4.1 (points 1 and 2), AES is a countermeasure associ-
ated with the gconf group; while the password is associated with both gconf
and gauth groups. The steps performed by NOS to assess the confidentiality
score secconf are the following:

• The initial weights corresponding to the two pairs attack-
countermeasure (i.e., AES-packet sniffing, 8-bit password-credential
violation) are set to 1; therefore, the corresponding confidentiality
score secconf is 1. Equation 4.9 is initially evaluated as shown in Fig-
ure 4.6. For simplicity, aconf,src is considered, in this example, equal to
agconf

. aconf,src is composed of two elements (i.e., packet sniffing and
credential violation), and also aconf,src (i.e., AES and 8-bit password)

FIGURE 4.6: Confidentiality score assessment - initial stage

• During the system operations, NOS recognizes no violated pack-
ets from the source src, but its password has been intercepted (e.g,
through brute-force attack) several times, as detected by the Event
Monitor

• As a consequence, the weight related to the pair 8-bit password-
credential violation decreases; for example, it is updated to 0.3 by the
learning algorithm (Equations 4.7 and 4.8)
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• The new data obtained from the source src will receive a lower con-
fidentiality score secconf , which is recomputed to 0.65, as shown in
Figure 4.7.

FIGURE 4.7: Confidentiality score assessment - update

As a consequence, a user who wants to receive data from the source src
will be aware that they have a level of confidentiality not greater than 0.65,
so there is a 35% risk of a confidentiality attack.

Instead, considering a malicious device which tries to execute a man-in-
the-middle attack among two registered sources src1 and src2, the scope of
the proposed security algorithm is to evaluate the robustness of the coun-
termeasures, adopted by such sources (i.e., the robustness of the data con-
tent encryption scheme adopted, as shown in Table 4.1), are. For example,
in this case, the affected score is that of integrity secint. Therefore, NOS
executes the following steps:

• The initial weights corresponding to the attack-countermeasure pair
for the two sources, src1 and src2, are both set to 1, but src1 adopts a
128-bit key for encrypting its data, while src2 uses a 256-bit key

• If NOS analyzes the level of robustness of such a countermeasure in
terms of integrity against a possible man-in-the-middle attack, then it
considers the difference in the bit-length of the keys used, and, follow-
ing Equation 4.10, the result will be that secintsrc1 is less than secintsrc2 .

Therefore, a user may choose to receive data only from the source src2,
since it presents a greater level of integrity with respect to the source src1.

secint =
aint,src
agint

·
∑

iεaint,src,jεcint,src
wi,j

cint,src
(4.10)

The same considerations apply to the following metrics:

secpri =
apri,src
agpri

·
∑

iεapri,src,jεcpri,src
wi,j

cpri,src
(4.11)

secauth =
aauth,src
agauth

·
∑

iεaauth,src,jεcauth,src
wi,j

cauth,src
(4.12)
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Note that, as stated above, the algorithm presented is suitable for both
registered and non registered sources. It is very remarkable that the pro-
posed algorithm allows one to perform a security analysis and obtain a
valid score (not trivially set to 0 or to “undefined”) also for non regis-
tered sources, with which NOS does not share, for example, any encryption
scheme. This result is achieved by analysing the data they provide over
time and the node behaviour within the IoT system. Obviously, non reg-
istered sources will be associated with low scores, thus the data provided
will be filtered accordingly, and a user who requires reliable information,
will be prevented from receiving the data obtained from such sources.

Concluding the discussion about the security evaluation, Algorithm 4.4
summarizes the steps performed by the security assessment scheme. Note
that NOS is conceived as a modular architecture, therefore such a mech-
anism can be enabled or disabled on the basis of the current application
needs.

Algorithm 4.4 Security assessment algorithm
Require: Relationships among an, cn from the taxonomy

1: for all ai, ci do
2: Assigment to groups gconf , gint, gpri, gauth
3: Initialization of the weight wai,ci to 1
4: end for
5: while Learning is enabled do
6: Events monitoring
7: Weights adjustment (Eqs 4.7 and 4.8)
8: Scores update (Eqs 4.9, 4.10, 4.11, 4.12)
9: end while

The rules, just presented for the assessment of the QoP and DQ scores
of data, are stored in a proper format in Config storage unit. Such a col-
lection, as introduced in Paragraph 3.3.2, contains all the configuration pa-
rameters required for the correct management of the IoT system (e.g., how
to calculate quality properties, which attacks or security countermeasures
to consider), represented in JSON format. It can also be configured at any
time by an IoT system administrator through a secure connection (e.g., via
HTTPS) depending on the requirements of the specific deployment, with-
out the need to re-start NOS system. The communication protocol to be
used is HTTPS, since the policy adopted by NOS for processing IoT data
must be protected against external attacks. Analyzers periodically query the
Config storage unit in order to know which rules to use.

Summarizing, NOS architecture has been designed to provide a score
for each QoP and DQ requirement; in this way, a possible application sce-
nario can be easily integrated depending on its purposes and on the spe-
cific context, and can benefit from high level of flexibility. For example,
some applications require the use of data with a high level of privacy and
confidentiality, but there is no interest in integrity issues. Other applica-
tion domains, on the contrary, may aim to provide a service characterized
by error-free data and high confidentiality scores, therefore the data to be
selected are those provided by sources able to satisfy these requirements.

Note that searching and selecting data sources when there is no descrip-
tion, either about the sources or the acquired data, is a very challenging
task. Although NOS is not able to directly counteract malicious devices
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(e.g., if NOS recognizes that a set of sources are being violated for a cer-
tain period, it only lowers the scores associated, but no other action is per-
formed), it is able to recognize that the data provided by a source is cor-
rupted or it presents a poor level of confidentiality or privacy and discard it
as unsuitable. However, after repeatedly receiving bad data from the same
source, NOS could even block it.

As a further remark, the scope of the algorithm presented is to assign
a level of robustness to each data source according to the aforementioned
security features (i.e., integrity, confidentiality, authentication system, and
privacy). Therefore, this solution does not directly tackle the security at-
tacks, but aims at minimizing the associated risks by letting users and ap-
plications be aware of the QoP level of the requested data.

By means of the algorithms presented above, NOS is able to perform
automatic reasoning about QoP and DQ and, then, allow the users to filter
information and deal properly with the massive amount of data received by
IoT services, as shown in Paragraph 5.4, along with an example of applica-
tion in a real context, by means of NOS prototype, presented in Paragraph
3.4.

4.4 Policy enforcement

The security and data quality assessment algorithms are based on rules,
stored in Config collection, as specified in Paragraph 4.3.2. Such rules can
be translated into the form of policies to be applied in an automatic manner
within the IoT system along with other kinds of policy.

As pointed out in Chapter 2, traditional security countermeasures and
privacy solutions cannot be directly applied to IoT scenarios for various
reasons, including, but not limited to, energy and computing constraints,
scalability etc. Moreover, adaptation and self-healing play an important
role in IoT infrastructures, which must be able to face sudden and unex-
pected changes in the operational environment. Accordingly, privacy and
security issues should be treated with a high degree of flexibility [16] [38].
Together with the conventional security solutions, there is also the need to
provide built-in security in the devices themselves (i.e., embedded) in order
to pursue dynamic prevention, detection, diagnosis, isolation and counter-
measures against successful breaches [12].

Note that, one instrumental aspect concerns the ability of the system to
preserve QoP and DQ in presence of external attacks. It is important to
remark that in the IoT context, the number of violation attempts is high.
In such a scenario, the integration of the flexible NOS middleware, able
to handle a large number of data streams and of interconnected devices,
with a flexible policy enforcement framework is needed. In this direction,
the solution proposed hereby aims to ease the management of interactions
across different realms and policy conflicts.

In other words, in order to deal with the huge amount of critical situ-
ations typical of the sharing approach of IoT paradigm, it is fundamental
to adopt well-defined enforcement mechanisms able to successfully tackle
them. Furthermore, IoT deployments are characterized by a high degree of
heterogeneity in terms of architectures and technologies, so that a suitable
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security framework should be highly flexible in order to adapt to various
deployment features.

The NOS middleware presented in foregoing paragraphs does not de-
fine supporting mechanisms for: (i) controlling the access of both users and
data sources; (ii) the data provision to users. An enforcement system would
allow to overcome such limitations. To address this shortcoming, NOS is
integrated with a policy enforcement system specifically tailored to IoT,
able to manage the interactions among the involved entities, as presented in
Paragraph 3.2, under well-defined policies. The proposed solution is able
to guarantee adequate QoP and DQ. Such an approach automates this task,
leaving to the system administrator to define scoring policies for QoP and
DQ assessment, and to the service provider to specify the requirements on
the data to be used, as will be clarified in the next paragraphs. The out-
comes of the solution presented are published in [186].

4.4.1 Policy enforcement integration

In order to effectively manage the available resources and to handle possi-
ble violation attempts, NOSs are provided with a set of well-defined poli-
cies, specifying the behavior and the actions to be taken in a given situation.
Accordingly, a fundamental role is played by the enforcement framework
integrated in the NOS system, as it guarantees that the specified policies are
correctly applied. In the case of NOS, policies refer, in particular, to the con-
trol of access to IoT data and manage communications. This comes from the
requirement to protect both data resources and user sensitive information.

Security among the involved components (i.e., NOS, users, nodes) is
guaranteed through the adoption of suitable encryption mechanisms, as
presented in Paragraph 4.2.

Technically, the main challenge to be faced is how to integrate an en-
forcement mechanism in the existing NOS architecture, without affecting
the existing functionalities. As specified in Paragraph 3.4, NOS is conceived
as a modular architecture, but, in this case, the enforcement mechanism is
not limited to the integration of one decoupled component; instead, it con-
cerns all the interactions that happen during NOS activities and processing
operations. For such reasons, the enforcement functionality is embedded
in a wrapper layer, as shown in Figure 4.8, able to control NOS operations,
but without requiring major system-level modifications.

Another challenge is represented by the identification of a minimal set
of primitives, able to specify and enforce a large variety of attribute-based
QoP and DQ policies.

An important feature of the presented policy framework is that it also
supports the loading of new policies at runtime, without disrupting service
operations. Such a feature increases the flexibility of the framework and
makes it particularly suitable for IoT applications, which require a high de-
gree of availability.

Another advantage of the adopted policy-based control is that the con-
trolling unit of the system (i.e., the enforcement framework) is kept de-
coupled from other management components (i.e., Data Normalization and
Analysis phases). As a consequence, the system administrator can manage
and change the system behaviour without modifying the software or the
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FIGURE 4.8: NOS policy enforcement integration

user/node interfaces. Furthermore, the entire system is controlled by poli-
cies that specify the rules interpreted and enforced by the proper frame-
work. Hence, if the conditions change or if new services or applications
are added, only the corresponding policy rules have to be adapted. Within
NOS, all the security related tasks are executed seamlessly so that services
are not required to have explicit knowledge of the security policies.

In the remainder of this paragraph the enforcement functionality is anal-
ysed in detail.

Enforcement components and policy language

The enforcement framework is in charge of handling access control and
service provisioning under well-defined QoP and DQ requirements. The
framework is defined so as to represent a redefinition of access control and
data exchange in terms of a common set of functions and roles suitable for
IoT applications. Functions and roles are dynamically configurable in or-
der to provide the required level of flexibility to cover different application
scenarios.

Conventional access control enforcement frameworks include a Policy
Enforcement Point (PEP), a Policy Decision Point (PDP), and a Policy Ad-
ministration Point (PAP) [199]. In more detail:

• PEP is in charge of intercepting any request for access to resources
from users, and of making a decision request to PDP in order to obtain
the access decision (i.e., approve or reject). Whenever a user or an
application requests access to data, this is routed through a PEP and
transferred to a PDP for evaluation and an authorization decision
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• PDP evaluates the access requests against the authorization policies in
order to decide whether the request should be accepted. To this end,
the PDP refers to, and queries, a policies store. When the PDP com-
pletes the evaluation, it returns a response to the PEP. Based on such
a decision, PEP either permits or denies access to the user/resource

• The authorization policies are finally administered through a “cen-
tralized” PAP.

The functions just described are usually performed by application soft-
ware. In the NOS case, where communication is based on the MQTT proto-
col (see Paragraph 3.3.2), all requests are handled via the MQTT broker.

The architecture underlying the framework may comprise one or more
NOS and a huge number of nodes, which act as data sources, and users,
who act as data consumers (either directly or mediated by applications/ser-
vices), as clarified in Paragraph 3.4. In particular:

• Each NOS includes a PEP, a PDP and a PAP

• Each user has an application representing an interface for the user’s
personal device and NOS. Users may be directly registered to NOS or
to another application, which is further registered to NOS. In the lat-
ter case, the application itself manages all the interactions with NOS
and establishes the levels of security and quality for the data to be
provided to the interested users. While, in the former case, a user,
besides logs on the application running on his/her device using the
GUI provided, opens a session, during which he/she can request for
the services provided by NOS on the basis of the accessible resources.

• As far as nodes are concerned, a separate discussion has to be made,
since the system has to be able to deal both with registered and non
registered nodes (i.e., data sources).

All the introduced components interact with the underlying PEP on
NOS.

The structure of the enforcement framework is sketched in Figure 4.9,
where the collection, named Policies, may correspond to Config storage unit.
Although the figure shows only one NOS, the framework may be executed
in a distributed manner on multiple NOSs, whereby each NOS runs its own
framework and a single application/service may interact with a plurality of
NOSs.

Therefore, the distribution of policies, their update and synchronization
have to be considered (this means, roughly speaking, to synchronize the
content of the various instances of Config store on multiple NOSs). It is as-
sumed that, in the case of multiple NOSs interacting with each other, all
NOSs within the same administrative domain share the same security poli-
cies and each of them has its own policy enforcement component. More
insights about policy synchronization will be provided in Paragraph 4.6.

The approach adopted follows the ABAC model [72]. In such a mech-
anism, both the subject who wants to access or to provide the resources,
and the objects (i.e., data), which represent the resources themselves, are
described by means of specific attributes, which are used for the policy def-
inition. Attributes can be based on the metadata fields natively supported
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FIGURE 4.9: NOS enforcement framework

in the data representation, presented in Paragraph 3.3, and control rules
can be defined according to the specific needs of the application domain.
As widely acknowledged in the relevant literature, ABAC presents better
scalability and flexibility than RBAC [178].

To ease interoperability and to enable the implementation of a policy
enforcement system, a policy representation language has to be chosen.
Given the large number of IoT domain applications, such a language has
to be flexible enough to represent the analyzed contexts both in a general-
purpose and in a customizable way. The policy language proposed hereby
is specifically tailored to the management of enforcement, and is written
in JSON syntax, being therefore suitable for integration with the database
management system, used in the implementation, introduced in Paragraph
3.4 (i.e., MongoDB). It allows the expression of the whole set of policies for
each entity involved (i.e., nodes and users). Each of them has specific at-
tributes, as described in the following. According to the defined attributes,
each entity can be allowed to perform different actions. It is worth remark-
ing that the system allows the runtime change of policies, which can be
dynamically loaded into the system through the aforementioned PAP.

4.4.2 Enforcement framework

The enforcement framework introduced above is in charge of ensuring that
the system satisfies the QoP and DQ requirements of authorized users/n-
odes. Policies are applied to two types of entities:

• Data producers (IoT devices or nodes)
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• Data consumers (users or applications).

In the following, some sample policy specifications will be investigated.
Users and applications consume data and they must be registered. Nodes
generate data and, as explained in detail in Paragraph 3.3.2, the system also
accepts data generated by non registed nodes.

The user/application registration phase takes place through an ex-
change of credentials between the user/application and NOS (see Para-
graph 3.3.2). In order to perform registration operations, a user/applica-
tion must be authenticated with admin privileges. From the operational
perspective, it is expected that entities consuming data (i.e., users/applica-
tions) will, in most cases, be registered by a system administrator.

When registering, an identifier is assigned by the system to each reg-
istered user/application, along with a function, conceived as a set of at-
tributes used for filtering access to resources . Note that such attributes and
the related access permissions are established by a system administrator,
decoupled from NOS.

On the other hand, nodes can optionally self-register with NOS. Note
that NOS also assigns an identifier to the registered nodes, which, in the
registration phase, is specified as being the signature key, used for signing
the data they send. Such credentials are eventually exchanged between the
node and NOS through the proper source registration interface. For details
about signature key use and definition, refer to Paragraphs 3.2.1 and 4.2.

Six fundamental actions, for which policies are specified, have been
identified and formally described:

• Node access control

• Node data transmission

• Node data processing

• User/application access control

• User/application service request

• Service provision.

In line with the ABAC approach, policies are specified as a set of key-
value pairs, each pair representing an attribute of the corresponding policy.

A policy is composed of three main building blocks:

• The first (input) defines the values that NOS expects to receive in input
from the requesting entity (nodes or users/applications) and that are
used for evaluating the policy for a specific action

• The second (security) defines the functions to be executed on the in-
puts provided to assess the policy

• Each function returns a value; such values are composed by means of
the logic specified in the third block (response) to define whether the
request shall be accepted or not.

The policies are represented in JSON format and are stored in the Config
storage unit. The character @ is used to indicate the value taken by the
corresponding field.
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Node access control policy

Listing B.7 describes a sample version of the NodeAccessControl policy,
which covers nodes wanting to send data to NOS. This policy is invoked
by NOS before inserting the data into the Raw Data storage unit. The en-
forcement framework verifies whether the node is transmitting, along with
the data, the node identifier and a signature key (specified as node inputs in
Listing B.7).

The verification process is split into two branches:

• If the source is registered, NOS receives in input the node identifier
and the signature key and can perform a registrationCheck (i.e., check-
ing whether the identifier is known and valid) and the signaturekey-
Check (i.e, checking that the identifier and key are compliant for the
requesting node). Conversely, if the source is unknown, the key is
marked as undefined by the function signaturekeyUndefinedMark for the
corresponding node

• In case of a non registered node, NOS keeps track of the source by
assigning a pseudo-random identifier at the first communication ex-
change; such an identifier will be used in the following interactions.
This approach allows NOS to verify whether the node is a new or a
known one just by looking up its identifier.

If registrationCheck and/or signaturekeyCheck reveal that the credentials
are not compliant with the requesting source, then the enforcement frame-
work prevents such a node from interacting with NOS.

Once these checks have been passed and the node is allowed to send
data to NOS, a pseudo-random session identifier is created and assigned by
the sessionAssignment function. QoP and DQ are assessed on a per-session
basis.

1 { " NodeAccessControl " : {
2 " po l i cy " : " NodeAccessControl " ,
3 " input " : {
4 " node " : {
5 " i d e n t i f i e r " : "@NodeID" ,
6 " s ignaturekey " : "@Key"
7 }
8 } ,
9 " s e c u r i t y " : [ {

10 " v e r i f i c a t i o n R e g i s t r a t i o n " : [ {
11 " r e g i s t r a t i o n C h e c k " : "@NodeID" ,
12 " signaturekeyCheck " : "@NodeID , @Key"
13 } ] ,
14 " verif icationUnknownSource " : [ {
15 " signaturekeyUndefinedMark " : " undefined " ,
16 " i d e n t i f i e r C h e c k " : "@NodeID"
17 } ]
18 } ] ,
19 " response " : [ {
20 " v e r i f i c a t i o n R e g i s t r a t i o n " : [ {
21 " r e g i s t r a t i o n C h e c k " : true ,
22 " signaturekeyCheck " : true ,
23 " sessionAssignment " : "@NodeID , timestamp "
24 } ,
25 {
26 " signaturekeyCheck " : f a l s e ,
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27 " accessDenied " : "@NodeID"
28 } ] ,
29 " verif icationUnknownSource " : [ {
30 " sessionAssignment " : "@NodeID , timestamp "
31 } ]
32 } ]
33 } }

LISTING 4.1: Node access control sample policy

Node data transmission policy

Once the node has completed the access control phase, then it can send data
to NOS. Listing B.9 highlights the requested inputs for the corresponding
policy, named NodeDataTransmission, which are: the session identifier, pre-
viously assigned by NOS to the node during the access control phase; the
node identifier; the data itself and the data type.

Note that, at this stage, no security operations have yet been performed:
if all the requested inputs are present (i.e., requiredInformation action is true),
the data are stored in the Raw Data storage unit (i.e., storeData action is acti-
vated for the actual node). Data gets discarded only if the transmitting node
fails to provide the required information to NOS (i.e., discardData action is
undertaken).

1 { " NodeDataTransmission " : {
2 " po l i cy " : " NodeDataTransmission " ,
3 " input " : {
4 " message " : {
5 " s e s s i o n " : " @Session " ,
6 " i d e n t i f i e r " : "@NodeID" ,
7 " data " : "@d" ,
8 " datatype " : " @dt "
9 }

10 } ,
11 " response " : [ {
12 " v e r i f i c a t i o n I n p u t " : [ {
13 " requiredInformat ion " : true ,
14 " s toreData " : "@NodeID , @d, @dt "
15 } ,
16 {
17 " requiredInformat ion " : f a l s e ,
18 " discardData " : "@NodeID , @d, @dt "
19 } ]
20 } }

LISTING 4.2: Node data transmission sample policy

Node data processing policy

NOSs own processing modules that periodically fetch data from Raw Data
or Normalized Data storage units and elaborate them, as detailed in Para-
graph 3.3. The policy invoked at this step is called NodeDataProcessing and,
as shown in Listing B.10, receives in input the same values of the Node-
DataTransmission policy, but the action of data evaluation is enforced, before
sending processed data to the publish/subscribe system.

For registered sources, NOS performs decryptionData and decryption-
Datatype operations, thus decrypting the data and the corresponding data
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type using the key of the actual node. Hence, for both registered and non
registered sources, scoreAssessment is executed and a score for each security
and quality property is assigned to the data, using the algorithms defined
in Paragraph 4.3.

1 { " NodeDataProcessing " : {
2 " po l i cy " : " NodeDataProcessing " ,
3 " input " : {
4 " message " : {
5 " s e s s i o n " : " @Session " ,
6 " i d e n t i f i e r " : "@NodeID" ,
7 " data " : "@d" ,
8 " datatype " : " @dt "
9 }

10 } ,
11 " response " : [ {
12 " eva luat ionRegis teredSource " : [ {
13 " decryptionData " : "@d, @NodeID" ,
14 " decryptionDatatype " : " @dt , @NodeID" ,
15 " scoreAssessment " : "@d, @NodeID"
16 } ] ,
17 " evaluationNonRegisteredSource " : [ {
18 " scoreAssessment " : "@d, @NodeID"
19 } ]
20 } ]
21 } }

LISTING 4.3: Node data processing sample policy

User access control policy

Listing B.11 refers to the access request from a user/application who/which
wants to receive data from NOS; such a request is sent to the MQTT broker,
which performs an access request to the enforcement framework.

The corresponding policy, named UserAccessControl, is invoked before
sending any data to the requesting entity. It verifies whether the user/ap-
plication is registered, using for such a purpose the following parameters:
username, user/application identifier, signature key and a function, previ-
ously specified during the registration phase.

The policy verification process includes the following cases:

• If the user/application is registered, NOS receives in input the
user/application identifier, the function and the signature key and
can perform registrationCheck (i.e., the identifier is known and valid
for the specified function) and signaturekeyCheck (i.e, identifier, func-
tion and key are compliant for the requesting user/application)

• If the user/application is unknown, then the key is marked as unde-
fined by the action signaturekeyUndefinedMark and the user/applica-
tion is not authorized by the enforcement framework to access the
system

• If a user/application tries to register with wrong credentials, for ex-
ample with a function different from the one declared during the reg-
istration phase or with a different key, then the enforcement frame-
work generates a negative response, alerts the user/application and
does not allow any interaction with the IoT system
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• Otherwise, in the case that the checks have been passed, the user/ap-
plication is allowed to interact with NOS and a pseudo-random ses-
sion identifier is assigned by the sessionAssignment function.

1 { " UserAccessControl " : {
2 " po l i cy " : " UserAccessControl " ,
3 " input " : {
4 " user " : {
5 " username " : " @Username " ,
6 " i d e n t i f i e r " : " @UserID " ,
7 " s ignaturekey " : "@Key" ,
8 " func t ion " : " @Function "
9 }

10 } ,
11 " s e c u r i t y " : [ {
12 " v e r i f i c a t i o n R e g i s t r a t i o n " : [ {
13 " r e g i s t r a t i o n C h e c k " : " @UserID , @Function " ,
14 " signaturekeyCheck " : " @UserID , @Key , @Function " ,
15 } ] ,
16 " verificationUnknownUser " : [ {
17 " signaturekeyUndefinedMark " : " undefined "
18 } ]
19 } ] ,
20 " response " : [ {
21 " v e r i f i c a t i o n R e g i s t r a t i o n " : [ {
22 " r e g i s t r a t i o n C h e c k " : true ,
23 " signaturekeyCheck " : true ,
24 " sessionAssignment " : " @UserID , @Function , timestamp "
25 } ,
26 {
27 " signaturekeyCheck " : f a l s e ,
28 " accessDenied " : " @UserID , @Function "
29 } ] ,
30 " verificationUnknownUser " : [ {
31 " accessDenied " : " @UserID , @Function "
32 } ]
33 } ]
34 } }

LISTING 4.4: User access control sample policy

User service request policy

Once the user/application has completed the access control phase and is
authenticated, then it can receive data from NOS by activating the corre-
sponding subscription to the MQTT broker. Listing B.12 highlights the re-
quested inputs for the corresponding policy, named ServiceRequest, which
are: (i) a session identifier, given by NOS to the user/application after the
access control phase (computed randomly at each access, as for the nodes);
(ii) the username and the identifier; (iii) the function; (iv) the requested ser-
vice, along with the user preferences in terms of QoP and DQ.

For the service invocation, as discussed in Paragraph 3.3.2, a resource
is treated as an object identified by a hierarchical name (e.g., a URI). A ser-
vice is conceived as software able to fulfill a specific task making use of
the available data. There is no direct interaction among users/applications
and NOS resources, but a well-defined programming interface is needed
through a software application. Resources can be accessed by users/appli-
cations only once they are published as object instances.
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Note that at this stage no security operations are performed: the request
is elaborated by the system if all the inputs are valid (i.e., requiredInformation
action is true); if not, the request is discarded by the enforcement framework
(i.e., requiredInformation action is false). The security and quality preferences
are not mandatory: if they are omitted, the enforcement framework does
not discard the request, but sets the corresponding constraints to the lowest
admissible values.

1 { " ServiceRequest " : {
2 " po l i cy " : " ServiceRequest " ,
3 " input " : {
4 " message " : {
5 " s e s s i o n " : " @Session " ,
6 " username " : " @Username " ,
7 " i d e n t i f i e r " : " @UserID " ,
8 " func t ion " : " @Function " ,
9 " s e r v i c e " : " @Service " ,

10 " s e c u r i t y P r e f e r e n c e s " : " @ c o n f i d e n t i a l i t y , @integr i ty ,
@privacy , @authent ica t ion " ,

11 " q u a l i t y P r e f e r e n c e s " : " @accuracy , @precision , @timeliness ,
@completeness "

12 }
13 } ,
14 " response " : [ {
15 " v e r i f i c a t i o n I n p u t " : [ {
16 " requiredInformat ion " : true ,
17 " processRequest " : " @Session , @Username , @UserID , @Function ,

@Service , @ c o n f i d e n t i a l i t y , @integr i ty , @privacy , @authentcation
, @accuracy , @precision , @timel iness , @completeness "

18 } ,
19 {
20 " requiredInformat ion " : f a l s e ,
21 " discardRequest " : " @Session , @Username , @UserID , @Function ,

@Service "
22 } ]
23 } ]
24 } }

LISTING 4.5: User service request sample policy

User service provision policy

Finally, ServiceProvision policy is activated after a data/service request, in
order to verify the matching between the request itself and the requesting
user/application, in terms of identifier and function, by performing ser-
viceAccessVerification action (Listing 4.6).

Such a policy receives in input the same values of the ServiceRequest
policy. Note that the parameters describing the requested data are sent en-
crypted by the requesting user/application. Therefore, NOS has to decrypt
it (i.e., decryptionRequest action). From the identifier, NOS derives the sig-
nature key of the authenticated user/application and uses it to decrypt the
message.

After the verification step, the retrieveResults action is performed. It
retrieves the data corresponding to the requested service, for which the
user/application is allowed to access. Before sending them back, the re-
trieved data are filtered on the basis of the QoP and DQ constraints. In case
there is no matching among the parameters described (i.e., the user with
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the specified identifier and function is not allowed to access the requested
service), the enforcement framework blocks the data/service provision pro-
cess and sends an error message to the requesting entity.

1 { " S e r v i c e P r o v i s i o n " : {
2 " po l i cy " : " S e r v i c e P r o v i s i o n " ,
3 " input " : {
4 " message " : {
5 " s e s s i o n " : " @Session " ,
6 " username " : " @Username " ,
7 " i d e n t i f i e r " : " @UserID " ,
8 " func t ion " : " @Function " ,
9 " s e r v i c e " : " @Service " ,

10 " s e c u r i t y P r e f e r e n c e s " : " @ c o n f i d e n t i a l i t y , @integr i ty ,
@privacy , @authent ica t ion " ,

11 " q u a l i t y P r e f e r e n c e s " : " @accuracy , @precision , @timeliness ,
@completeness "

12 }
13 } ,
14 " s e c u r i t y " : [ {
15 " decryptionRequest " : " @Service , @UserID " ,
16 " s e r v i c e A c c e s s V e r i f i c a t i o n " : " @Service , @UserID , @Function "
17 } ] ,
18 " response " : [ {
19 " s e r v i c e A c c e s s V e r i f i c a t i o n " : true ,
20 " r e t r i e v e R e s u l t s " : " @Service , @UserID , @Function ,

@ c o n f i d e n t i a l i t y , @integr i ty , @privacy , @authentcation ,
@accuracy , @precision , @timeliness , @completeness "

21 } ,
22 {
23 " s e r v i c e A c c e s s V e r i f i c a t i o n " : f a l s e ,
24 " accessDenied " : " @Session , @Username , @UserID , @Function ,

@Service "
25 } ]
26 } }

LISTING 4.6: Service provision sample policy

A real application scenario exploiting the policies presented will be pro-
vided in Paragraph 5.5.

4.5 Secure publish&subscribe protocol

Besides providing a robust key management system, data assessment
mechanisms, and policy enforcement, an efficient and secure communi-
cation mechanisms also represents a fundamental enabler for an effective
IoT system. In such contexts, it is fundamental to define how the involved
“things” could efficiently communicate and exchange information among
themselves and with remote servers. One important challenge relates to
the amount of generated data, which poses scalability issues. Furthermore,
some of such data may represent sensitive or personally identifiable infor-
mation. What emerges is that there are significant issues to be addressed
in order to efficiently and securely manage IoT systems. Such problems are
related to:

• The management of connections among the IoT system and the data
sources (e.g., the devices which acquire information from the IoT en-
vironment), which could be affected by resource constraints in terms
of energy and storage capacity
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• The possibility, for the users, to control the distribution of their sensi-
tive information through IoT connections as well as effective authen-
tication and authorization mechanisms both for users and devices in
order to prevent malicious access to resources.

As regards the first issue, several existing application-level protocols for
IoT and Machine-To-Machine (M2M) [26] [4] systems have been designed.
Such protocols are typically conceived to introduce little overhead and to
minimize battery consumption, as well as to have better performance in
the presence of many short messages. The most widely adopted commu-
nication protocols in such fields are MQTT (just introduced in Paragraph
3.3.2) and CoAP (Constrained Application Protocol) [167], which are based
on TCP and UDP, respectively.

For the NOS middleware, MQTT has been adopted, due to its maturity,
stability and the fact that, after the recent adoption by the OASIS Consor-
tium as an official standard1, it is likely to become the de facto standard for
IoT.

Regarding the second issue, adequate mechanisms have been defined
in Paragraph 4.4, in order to control the flow of information and to en-
force proper policies implementing specific rules for the management of
resources and for handling users’ preferences.

At this stage, NOS functionality is extended with AUPS (AUthenticated
Publish&Subscribe system), which represents a new secure MQTT mecha-
nism further integrated with the policy enforcement framework, presented
in Paragraph 4.4. In this way, the authentication and authorization of data
sources via MQTT is guaranteed. In more detail, a secure publish/sub-
scribe system extending MQTT by means of a key management framework
and a policy enforcement one is provided. Therefore, the flow of informa-
tion in MQTT-powered IoT systems can be efficiently controlled by means
of flexible policies. The AUPS approach is published in [168].

4.5.1 MQTT protocol

MQTT is a lightweight event- and message-oriented protocol, which allows
the devices to communicate asynchronously across constrained networks
to reach remote systems, as happens in the typical IoT/M2M scenarios.
It is also a broker-based messaging protocol, designed and developed for
constrained devices and bandwidth-limited communications by IBM/Eu-
rotech in 1999 [87].

MQTT is based on a publish/subscribe interaction paradigm, devel-
oped following an event-based architecture, in which publishers publish
structured events to an event service, usually called a broker, and sub-
scribers show their interest in a particular event through subscriptions.
These subscriptions can be custom patterns over the structured events.
Subscription notifications by publishers are sent to all the interested sub-
scribers, in order to prevent the publishers from needing to synchronize
with subscribers.

In particular, MQTT has been implemented for easily connecting the
“things” to the web and supporting unreliable networks with low band-
width and high latency. This protocol employs a client-server pattern in

1https://www.oasis-open.org/committees/mqtt

https://www.oasis-open.org/committees/mqtt
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which the server part is represented by a central broker that acts as in-
termediary among the clients (i.e., the entities that produce and consume
the messages). All the communications, which happen among server and
clients via a publish/subscribe mechanism, are based on the topic concept.
A topic is a mean for representing the resources (i.e., the information) ex-
changed within the system. Topics are used by clients for publishing mes-
sages and for subscribing to the updates from other clients.

Due to its simplicity and low overhead, MQTT is suitable for resource-
constrained environments and has found application in several domains,
including monitoring applications, applications with live feeds of real-time
data (e.g., RSS feeds), dissemination of events related to advertisements,
support for cooperative working where users/applications need to be in-
formed about events of interest, support for ubiquitous computing etc.

MQTT specifications are freely accessible. Open source MQTT imple-
mentations are available for all major IoT development platforms, for the
two major mobile platforms (i.e. Android and iOS), and for several pro-
gramming languages (Java, C, PHP, Python, Ruby, Javascript).

It is worth remarking that MQTT has been chosen in this thesis, since it
represents the de facto standard protocol used by a variety of IoT and M2M
systems. However, MQTT natively provides a very simple security model.
In particular, the current version of MQTT (3.1.1) does not natively support
either mutual authentication mechanisms or techniques able to guarantee
the integrity and the confidentiality of the transmitted information.

In fact, for authentication of clients by server, the current MQTT 3.1.1
protocol specification only allows the use of a username and, optionally, a
password. Developers can define customized authentication mechanisms
using AES and DES as cryptographic primitives. Nevertheless, this is not
sufficient to guarantee mutual authentication among clients and servers;
the integrity and the confidentiality of the transmitted information is also
left open. In more detail, for encryption and transport-level security, the
Transport Layer Security (TLS) standard is recommended, although this is
not always appropriate for resource constrained devices. Some implemen-
tations also support the use of a Pre-Shared Key (PSK) with TLS for au-
thentication as well as encryption. Such a solution is definitely not suitable
for highly dynamic IoT environments, since this strategy would require
frequent session re-negotiations to establish new cryptographic parame-
ters (i.e., change authentication credentials) among NOSs and the regis-
tered sources/users/applications. Therefore, a more lightweight credential
management solution should be introduced, also with respect to temporary
keys with the aim of improving the system resilience towards malicious at-
tacks. This is the aim of AUPS.

4.5.2 MQTT technical aspects

Some key features of MQTT are the following:

• It provides one-to-many message distribution and decoupling of in-
formation of sources and consumers

• It is agnostic about the content of the payload

• It is built over TCP/IP protocols
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TABLE 4.2: MQTT operations set

Primitive Description

publish used by a publisher to disseminate an event
notify used by a subscriber to receive an

event notification (a topic update)
subscribe used by a client to subscribe to a specific topic
unsubscribe used by a client to unsubscribe from a specific topic

• It has a small transport overhead.

MQTT, as in general all the publish/subscribe models, consists of a
small set of operations, including the primitives pointed out in Table 4.2.

As discussed above, all these operations are mediated by a broker,
which is responsible for dispatching the events from the publishers to the
interested subscribers. Both centralized and distributed architecture imple-
mentations are available. Obviously, the simplest approach is the central-
ized one: in this case, every communication (i.e., from publishers to broker
or from broker to subscribers) takes place through a series of point to point
messages. However, the broker could become a bottleneck. To prevent such
a situation, the broker can be replaced with a network of brokers that co-
operate to offer their services. In the solution proposed in the dissertation,
for the sake of simplicity, consideration is restricted to the case of multiple
NOSs connected to one broker. This can easily be replaced by a plurality of
brokers in larger scenarios.

As far as MQTT topics are concerned, they present the following fea-
tures:

• They are represented as UTF-8 strings used by the broker to filter mes-
sages for each connected client

• They consist of one or more topic levels separated by a forward slash,
forming a logical tree structure (e.g., a topic for publishing the tem-
perature information of a sensor with identifier sensorId could be
sensor/sensorId/temperature)

• They are used by clients for publishing messages and for subscribing
to the updates from other clients, thus avoiding a continuous polling
between producers and consumers

• It is possible to subscribe to an exact topic or to multiple topics at
once by using the wildcards, which are represented by the following
symbols:

– +, for a single-level wildcard (i.e., exactly one topic level)

– #, for a multi-level wildcard (i.e., an arbitrary number of topic
levels)

Table 4.3 shows the MQTT message format, consisting of three parts: a
fixed and a variable header, and a payload. For further details, refer to [17].

sensor/sensorId/temperature
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TABLE 4.3: MQTT message format

Component Information

fixed header message type, Quality of Service (QoS) level, some flags,
message length

variable header it depends on the application domain (information type)
payload the data value referred to the topic

TABLE 4.4: MQTT QoS

Component Information

at most once messages are delivered according to the best effort of TCP/IP
networks, so message loss can occur

at least once messages are assured to arrive, but duplicates may occur
exactly once messages are assured to arrive exactly one time

Concerning reliability, MQTT is based on TCP, so it provides standard
TCP delivery reliability.

Furthermore, three levels of QoS are supported, as summarized in Ta-
ble 4.4.

MQTT also supports persistence of messages (depending on the specific
use case) to be delivered to future clients that subscribe to a topic, and may
be configured to send messages of specific topics when the subscriber con-
nection is abruptly closed. Such a configuration is established by the IoT
system administrator on the basis of the IoT application requirements, and,
regarding the NOS architecture, it is specified in the Config storage unit.

4.5.3 AUPS - AUthenticated Publish&Subscribe

Given the background about MQTT technical aspects and motivations, it
becomes possible to detail AUPS behavior and functionality.

Note that, NOS southbound interfaces are based on the HTTP proto-
col, which offers in-built authorization and authentication functionalities,
thus generating no noticeable security issues. The problems arises with
the northbound MQTT interfaces, as specified above. An application/user
wanting to use data from NOS can access it through a subscription to the
relevant topic(s), handled by the MQTT broker. As expected, the resources
are accessible only on the basis of the policies defined within NOS enforce-
ment framework. Therefore, the MQTT broker has to interact with the un-
derlying PEP on NOS in order to accept or deny subscription requests.

In such a context, the AUPS solution aims to propose a new system
for the enforcement management of users/applications authentication and
authorization policies through integration with MQTT mechanisms. The
entities involved and the flow of information are shown in Figure 4.10. Four
relevant actors are present in the system:

• Data source, which communicates data to NOS using the HTTP proto-
col
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• NOS, which processes the data according to the procedures described
in Paragraph 3.3 and publishes them under the relevant topic(s) to the
MQTT broker

• MQTT broker, which notifies the interested subscribers of the new in-
coming data

• User (or, equivalently, service), which accesses IoT-generated data
through subscriptions to the MQTT broker.

FIGURE 4.10: NOS high-level information flow

In particular, two transactions, strictly related to MQTT, have to be han-
dled, for simplicity these are named PUB and REC: PUB represents the pub-
lication of new data to a topic by NOS; while REC represents the notification
and reception of new published data to the subscribers.

Before detailing such operations, a block, named Key Topics Manager
(KTM), has to be introduced. It is added as an external NOS component,
which is able to interact with NOS by means of a secure HTTPS/SSL con-
nection, in the same way as for the configurations contained in Config col-
lection (i.e., managed by an external administrator). The KTM is in charge
of managing temporary keys for topics access control. In particular, it han-
dles a table structure with the following fields:

• keyId: the identifier of the corresponding key

• keyT: the actual key
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• val: the expiration date of the key2

• atb: the attribute(s) owned by the users/applications allowed to ac-
cess the resource. The key is associated with the correct users/appli-
cations on the basis of the attributes by the corresponding policies, ex-
pressed in PAP component and defined by the system administrator.
In this way, the KTM is decoupled from the enforcement framework.

Note that the keys are not fixed, but they come with an expiration date,
which is expressed in the field val. Moreover, the expiration times are not
the same for all the generated keys. In this way, they are out-of-phase with
each others, thus smoothing the system load. Since, as explained in Para-
graph 4.4, the policies are global for all NOSs belonging to the IoT system,
the key topics management must be global due to the attribute configura-
tions. In this way, NOS synchronization in terms of active policies is also
guaranteed. Moreover, as just introduced in Paragraph 4.4, the access con-
trol is based on ABAC; in fact, each user/application has to pass a reg-
istration phase before interacting with the IoT system, in which a set of
attributes is assigned on the basis of the specific application domain (e.g.,
a manager and an employee of a financial company should have different
attributes for accessing the resources of the company itself).

As regards operations, a PUB transaction is composed of the following
steps, also represented in Figure 4.11. Note that, for the sake of simplicity,
in the rest of the paragraph, the word NOS replaces references to the NOS
Core functionalities, as shown in Figure 4.11. This is due to the fact that the
enforcement framework belongs to NOS as a running module, but, at the
same time, it is queried by proper NOS Core functionalities when needed.

1. NOS produces a new data item d, which has passed both the normal-
ization and the analyzers phases (Paragraph 3.3)

2. The data d is assigned to a specific topic t

3. NOS queries the PEP in order to obtain the information useful for
protecting the access to the resource represented by the data d relative
to the topic t

4. The PEP queries the PDP in order to know which attributes atb a
user/application has to own in order to access the resources repre-
sented by the topic t. The PDP returns to the PEP the information
related to the attributes atb in accordance with the policies specified
by PAP. Then, PEP can perform two actions:

(a) If it owns a valid key for the access of users/applications with
attributes atb to data published under topic t, then it sends keyT,
along with the corresponding keyId and val to NOS

(b) If it does not own a valid key for the access of users/applications
with attributes atb to data published under topic t, it asks the
KTM for a new valid key before sending to NOS keyT, keyId and
val.

2This clearly requires synchronization among hosts.
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Note that, once a PEP of a NOS has asked for a new valid key, it caches
it locally. When the PEP finds out that a key is no longer valid, then a
request to get a new one is triggered

5. NOS encrypts the data d with keyT, thus obtaining the encrypted data
denc (Equation 4.13):

denc = enc(d, keyT, keyId), (4.13)

where any existing encryption mechanism enc(·) can be used; also
keyId is used for the encryption operation in order to avoid the risk of
duplicate information

6. NOS prepares the message for publication in the format specified by
the following JSON syntax:

{
“keyId” : keyId,
“data” : denc

}

(4.14)

Note that the broker (or the brokers, in a totally distributed scenario)
are in charge of guaranteeing the proper matching between encrypted
data and assigned topic.

7. NOS MQTT client sends this information to the MQTT broker to be
published under the specific topic t and to notify the interested sub-
scribers

After the PUB transaction, the REC transaction takes place. Since the
data d has been published, in encrypted form (i.e., denc), under the proper
topic t, all the subscribers interested in the topic t have been notified about
it. Supposing that a user device u receives a new notification (the case of
an application is omitted, but analogous), the steps to be performed are the
following, as also represented in Figure 4.12:

1. The user device u can perform two actions:

(a) If it already owns a valid key for access to the resources specified
by the topic t, then it can go to the final step

(b) If it does not own a valid key for access to the resources specified
by the topic t:

i. u issues a request to NOS to access the information needed
for decrypting the data denc

ii. NOS queries the PEP, which in turn queries the PDP, in order
to establish if the requesting user u with its attributes atb, is
allowed to access to the resources of topic t; the response de-
pends on the policies activated within PAP (and established
on the basis of the attributes owned by the user as stated
during the preliminary registration phase)

iii. Then:
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FIGURE 4.11: AUPS PUB transaction

A. If the response of the PEP is positive, then the PEP sends
to NOS the information related to the key keyT, the iden-
tifier keyId and the validity val, which are then sent to u,
encrypted with the key obtained by the user during the
preliminary registration phase

B. If the response is negative, an error message is sent by
PEP to NOS and, then, by NOS to u.3

2. Once in possession of the key keyT and the identifier keyId, the user
(or service) u is able to decrypt the data denc. Note that a user does
not have to request the key at each notification, since the key has a
validity indicated by the timestamp val.

Summarizing, the adopted approach is able to effectively decouple as-
pects related to security from the usage of the MQTT publish/subscribe
protocol; at the same time, network and computing resources are used ef-
fectively. Furthermore, the use of temporary keys and of user/application
registration improves the system resilience to malicious attacks (e.g., man
in the middle attacks, replay attacks, password discovery).

3Note that, if the PEP has not a valid key for the data belonging to topic t, it has to ask
them to KTM, as described for PUB transaction. Moreover, the fields keyT, keyId and val are
not sent in clear by NOS to u, but they are also encrypted with the key of the device u itself,
established during the initial registration phase.
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FIGURE 4.12: AUPS REC transaction

Paragraph 5.6 will present the evaluation of the overhead, latency and
computational effort introduced by AUPS into NOS middleware.

4.6 Policy synchronization

Since, recently, information sharing has become a core requirement of the
modern IoT applications, the new networking systems should support the
management of data transmission across the boundaries of different do-
mains, in order to integrate heterogeneous information to fulfill user and
vendor needs, in terms of innovative services in real-time.

A crucial aspect still concerns the enforcement of the policies of the
whole IoT system, which may require sychronization across multiple NOSs
and heterogeneous application realms. Therefore, mechanisms should be
integrated into NOS middleware, in order to control the flow of informa-
tion and to enforce proper policies implementing specific rules for the man-
agement of resources, not limited to a single application scenario.

Such sychronization mechanisms should be flexible enough to support
the wide range of technologies forming part of IoT infrastructures and the
various application domains where users and devices could operate, as pre-
sented in Paragraph 4.4. Moreover, the aforementioned policies mainly reg-
ulate the access to resources, in order to deal with violation attempts. Note
that policies mainly involve access to resources and are usually established
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by system administrators in accordance with the rules of each specific do-
main.

The definition of how information may be shared is a complex task and
should be treated with a distributed approach because of the high number
and the heterogeneity of entities (e.g., devices and users) and information
involved in the IoT scenario.

In contrast, a centralized solution might not be sufficiently scalable
[170]. In more detail, the main drawbacks of existing solutions are the fol-
lowings: (i) they do not consider temporary changes during the activity of
the system; (ii) they are not sufficiently flexible and scalable (i.e., they have
not the capability of avoiding bottlenecks in the information flow; (iii) they
do not adopt lightweight schemes for managing the various interactions.

In order to overcome such issues, NOS functionality is further extended
with a distributed schema able to ensure the interoperability of policies
in different application realms. Authorization and behavioral rules may
be specified and synchronized among multiple networked NOSs, in order
to determine conditions in which particular actions are permitted or must
be executed by the different entities involved (i.e., NOSs themselves, data
sources, users). The approach adopted is particularly relevant in certain
scenarios, which require strict control over data and access to confidential
resources, such as is found in healthcare applications, vehicular and mili-
tary systems. The final contribution is presented in [184].

4.6.1 Policy synchronization algorithm

In order to obtain data from NOSs, users and applications employ the
MQTT communication protocol mediated by a broker, as introduced in
Paragraph 3.3. In particular, a user/application logs on to a service pro-
vided by the IoT system itself (e.g., an application running on user devices -
smartphone, tablet, pc, etc.) and interacts through a proper GUI; as a conse-
quence, a session is opened, during which the user/application can request
the services provided by NOS on the basis of the accessible resources. The
resources are accessible in accordance with the policies defined within NOS
enforcement framework (see Paragraph 4.4). Moreover, the MQTT broker
has to interact with the underlying PEP on NOS in order to establish which
subscriptions to accept or deny, and enforce the current subscriptions them-
selves.

In the NOS system, policy distribution, update and synchronization
tasks may be done by runtime configurations through the Config storage
unit, which is in charge of dynamically updating the local PAP of each NOS.
As a consequence, each NOS applies the policies currently specified in Con-
fig to the incoming data and to the user/application requests, via the MQTT
broker (as shown in Figure 4.9).

Two main aspects have to be clarified: (i) which kinds of policies can be
defined within NOS system and (ii) which entities decide how and when
such policies have to be applied on data/requests. Firstly, as regards the set
of policies, we distinguish them into two groups:

• PNOS : policies related to NOS behavior, which includes, for example,
the methods used for assessing the security and data quality proper-
ties (i.e., the behavior of the Analyzers), the format established for the
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normalized data (i.e., the behavior of the Data Normalization phase),
the rate of data processing, etc

• Pdatan : policies concerning the access to the data themselves, which
are strictly related to the topic assignment (i.e., which users or appli-
cations are allowed to access some topic on the basis of their attributes
assigned during the NOS registration phase); such policies can be di-
vided into n groups, where n is the number of organizations or com-
panies in charge of managing the data provided by the sources. n
may vary over the time, since organizations or companies may join
or leave the IoT network. It is worth remarking that the scope of the
proposed policy distribution and synchronization schema is not only
tailored to a single scenario. Instead, it aims to be adopted by a multi-
tude of companies, each one owning customized and shared policies.
For these reasons we targeted our solution to more general organiza-
tions and we do not refer to user roles concerning a single application
domain.

Therefore, multiple entities are involved in the policy definition. All
of them are conceived as system administrators, but may be independent
from each other (for example, they may belong to different companies or
organizations). In more detail, we have:

• ANOS , which represents the administrator of the set of policies PNOS ;
such an administrator is unique and is responsible for the entire IoT
system administration, since NOS behavior cannot be managed by
parties involved in data provision (e.g., external companies could fos-
ter their business interests)

• Adatan , which represents the n administrators of the resources; they
define the policies to be applied to filter the access to the data pro-
cessed and published by NOSs. Note that each Adatan may belong to
a diverse company or organization and is independent in terms of the
resources provided and required policies. Also, hierarchy (e.g., sub-
sets of policies) is permitted for the policies belonging to the same
company or organization.

Once such distinctions among policies and administrators are clear, the
main challenge is how to manage policy distribution to each NOS in an
efficient way. The main issues to be faced regard the following aspects: (i)
each NOS belonging to the IoT system has to be synchronized with each
other in order to have the same behavior on the same data; (ii) policies may
need to be updated over the time due to the provision of new data to NOSs
or to changes in the company/organization resource disclosure.

The simplest solution would be the adoption of a central authority at
the head of both ANOS and Adatan , able to intercept all the requests to add,
update or remove policies and, then, propagate such changes to all NOSs,
for example via a secure HTTPS or SSL channel. However, this may repre-
sent a bottleneck and does not ensure the real sychronization of all NOSs.
In particular, a system of acknowledgments must be integrated in order to
inform the central authority of the correct reception of the changes by all
NOSs. Obviously, such a solution is not suitable for the wide IoT scenario,
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due to the huge amount of information and number of policies involved.
Note that the introduction of a central authority would prejudice the main
function of NOS, which is that of moving the data processing closer to the
data source without delegating the activities to a central entity in charge
of collecting and managing all the information transmitted within the IoT
system.

Hence, a totally distributed approach is adopted, which exploits the
MQTT connection protocol already integrated into NOS. The scope is to
create different virtual channels in order to separate the management of the
sets of policies PNOS and Pdatan and to allow efficient transmission among
NOSs and adminitrators. In particular, the following virtual channels are
introduced:

• Cdata, which is, in the previous version of NOS [193], the only MQTT
channel used for publishing and notifying the processed data to in-
terested users/applications

• Ctopic, which aims to allow the administrators of the group Adatan to
add/remove/update the policies related to the information belong-
ing to the topics under their authority. This channel is also based on
MQTT

• CNOS , which forms a sort of private channel among NOSs themselves
and ANOS used for security purposes, as clarified in the following. In
fact, such a channel is used for checking the policy synchronization
and is based on a secure HTTPS/SSL protocol.

Two aspects are worthy to remark: (i) Cdata and Ctopic coincides on a
practical level, since both exploit the existing publish/subscribe mecha-
nism, but they are separated from a conceptual point of view; (ii) all the
interactions are mediated by the broker; in this case it is assumed that there
is one broker to which a various number of networked NOSs are connected.

Figure 4.13 outlines the proposed schema including all the involved en-
tities. Blue indicates the communications that happen within the virtual
channel Cdata; in fact the blue uni-directional arrows represent the route
of the information processed by NOSs from their publication to the MQTT
broker towards the final notification to the end users/applications. The ac-
cess to such data is regulated by the policies applied to the topics associated
with the information themselves, which are managed by the enforcement
framework running on each NOS (see Paragraph 4.4).

How the policies are propagated to NOSs is handled by the Ctopic
virtual channel. In detail, all NOSs agree, in a preliminary phase (i.e.,
before NOSs deployment), with the ANOS administrator on a particular
topic t (e.g., NOS/policy); this is used for publishing the policies related to
the adding/removing/updating operations, both by ANOS itself or by the
Adatan administrators. Access to t, which may be structured in a proper
hierarchy in order to obtain full expressiveness and flexibility, is restricted
to NOSs, which are the only entities notified of this kind of information
and able to know its content (which is transmitted in an encrypted form,
by means of a proper algorithm agreed by NOSs and ANOS). Therefore,
users and applications are prevented from accessing the policies, despite
the same “physical” channel (Cdata correspond to Ctopic) being used for the
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FIGURE 4.13: Policy sychronization management schema

notification of the data to which they are subscribed. In Figure 4.13, the
orange arrows show the propagation of policies, which consists of the fol-
lowing steps:

1. ANOS , for the PNOS policies, and Adatan , for the Pdatan policies, com-
municate to one NOS (chosen randomly at each time or on the basis of
information about NOS locations), via a secure HTTPS/SSL channel,
the existence of a new policy for a certain resource or the update of an
existing one. Note that such administrators may also expose RESTful
services to NOS for policy transmission

2. NOS stores or updates such a policy in the Config storage unit. As
a consequence, the enforcement framework automatically starts to
modify its behavior towards the specified resource accordingly. Note
that this is an important feature of the proposed NOS modular archi-
tecture, which allows time and computational effort to be saved, since
the system is able to be re-configured without re-starting or modify-
ing the modules themselves

3. NOS has to publish the new policy or the update to the MQTT broker
under the agreed topic t

4. All other NOSs are allowed to access the information under the topic
t and, then, are able to store or update the policy.

From a practical point of view, all NOSs are subscribed to the topic t;
therefore they are notified at each new incoming event related to t. In fact,
the orange arrows are bi-directional, since a NOS may either publish an
information to the MQTT broker or be notified about a new information.
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Obviously, such data are not transmitted in clear over the network, but
are ciphered by means of a proper encryption schema (e.g., RSA, PKI, etc.)
shared by all NOSs and established, for example, before NOS deployment,
as discussed above.

Summarizing, exploiting the MQTT publish/subscribe protocol poten-
tialities, NOSs are able to manage and update the policies of heterogeneous
companies or organizations in a distributed and lightweight way, without
the need for a central coordinator, which may represent a single point of
failure. Moreover, no additional modules have to be added to the previous
NOS version, since the existing MQTT mechanism is used directly.

The last aspect to be considered is that of policy synchronization, be-
cause the IoT system, and, in particular, the ANOS administrator, has to be
able to know if all NOSs share the same policies at a certain interval of time.
To this end, the CNOS channel is introduced. Periodically, ANOS selects a
NOS as a leader. This choice can be made by means of one of the well-
known algorithms available in literature for leader selection [106], which
represent a well-investigated subject in distributed systems. In this thesis,
the case in which ANOS directly selects the leader (i.e., as a central server)
is consider, and the case of NOS leader election is left as a future extension.

Examining the synchronization process, one finds the following steps,
highlighted in Figure 4.13 with green arrows:

1. ANOS elects a leader LNOS among the networked NOS by sending a
message mleader only to the selected NOS via the secure HTTPS/SSL
channel, just previously presented; the leader should change period-
ically in order to increase the robustness of the IoT system in case of
link failure

2. When the leader LNOS receives a policy notification, besides perform-
ing the publication to the MQTT broker, it sends an advertising mes-
sage mid to the other NOSs through the secure CNOS channel, where
id represents a progressive identifier chosen by LNOS to identify the
policy currently under the synchronization process:

{
“NOS” : LNOS ,
“policyId” : id

}

(4.15)

3. All NOSs must reply to such an advertisement with a simple acknowl-
edgement message rid, using the secure CNOS channel:

{
“NOS” : NOSid,
“policyId” : id

}

(4.16)

4. LNOS verifies the reception of rid from all NOSs; if one or more re-
sponses are missing, then LNOS sends a report to ANOS , which could
take some actions (e.g., send other advertisements or do not consider
the unsynchronized NOS for leader selection).
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Note that some important parameters of the synchronization process
have to be considered and customized depending on the number of NOSs
and connected sources and on the data load. Such parameters include: (i)
the rate of leader selection; (ii) the time waited by the leader for the re-
sponses by NOSs. These fall into the issue of determining the global state
of a system in a certain interval time, which is also a well-investigated field
in distributed environments [37].

The performance of the synchronization system will be investigated in
Paragraph 5.7 in terms of execution time and computational load.
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Chapter 5

Validation and Evaluation

5.1 Introduction

NOS functionalities were extensively presented in Chapter 4. They include
the following features, which are validated during this chapter:

• Two key distribution and management systems originally conceived
for WSN have been adapted for NOS to allow more secure commu-
nications among NOS and users/data sources; in Paragraph 5.3 such
approaches are compared in terms of storage occupancy, overhead,
delay, and robustness towards malicious attacks to reveal which is
the most suitable for IoT applications

• A new algorithm for the assessment of QoP properties was intro-
duced and formalized; in Paragraph 5.4, it is validated, along with
DQ aspects, in order to demonstrate its capabilities fro performing an
effective evaluation on data incoming to NOS

• A policy enforcement framework has been integrated into NOS archi-
tecture aiming to regulate and control the behavior of the IoT system,
in response to actions and/or unexpected changes of the target envi-
ronment; Paragraph 5.5 provides a real application scenario in which
the behavior of the enforcement framework itself is clarified, also con-
sidering a variety of possible attacks

• In order to secure the information sharing, a lightweight authenti-
cated publish/subscribe system, named AUPS, was added to NOS
and further integrated with the aforementioned policy enforcement
mechanism; the evaluation of performance metrics such as overhead,
latency and computational effort is presented in Paragraph 5.6

• Policy across different application domains are efficiently synchro-
nized by means of a proper system, whose performance is shown in
Paragraph 5.7.

The forthcoming paragraphs are dedicated to the description of the out-
comes of the experiments carried out in order to validate the proposed so-
lutions in the field of security in IoT. Before presenting the measures and
the use case examples, the experimental setup is detailed in Paragraph 5.2.

5.2 Experimental setup

NOS has been implemented as an IoT middleware, resulting in a real proto-
type, by means of Node.JS platform for NOS core functionalities, MongoDB
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for storage management, and Mosquitto for the publish/subscribe broker
mechanism, as outlined in Paragraph 3.4.

In the experimental setup, NOS platform is deployed on a Raspberry Pi,
which provides the computational and resources capabilities for running
the NOS functionalities. To simulate the behavior in a real-world setting,
it is connected to a number of open data feeds. Then, in order to verify
the effectiveness of the proposed solution, simple use cases are developed
and presented in the next paragraphs, on the basis of the usage of such IoT
feeds.

In particular, these data are provided in real time from six
sensors, measuring weather-relevant parameters and co-located
within the meteorological station in the small town of Campo-
denno (Trentino, Italy); they can be accessed through the Trentino
Open Data portal (http://dati.trentino.it/dataset/
raw-data-in-near-realtime-stazione-cmd001). The mea-
surements cover temperature, humidity, wind speed, energy consumption
and air quality parameters.

In more detail, a laptop is used to emulate the behaviour of a set of
nodes, basically reading data from the aforementioned feeds and sending
them to the NOS, as if they came from six different nodes. Laptop and Rasp-
berry Pi communicate via a WiFi network. A web service exposes them in
JSON format, and NOS retrieves them through HTTP GET requests. Pro-
cessed data are then transmitted to an MQTT broker.

The laptop also runs a simple visualization service, which fetches, ac-
cording to user-defined constraints, data from NOS and displays them. The
user can express constraints in terms of the required QoP and DQ levels,
including aspects such as confidentiality, integrity, privacy, authentication,
completeness, timeliness, and accuracy, as shown in the dashboard in Fig-
ure 5.1.

5.3 Key management system comparison

As regards the two key management approaches by Dini et al. and Di Pietro
et al., presented in Paragraph 4.2, they have both been implemented in the
NOS prototype, in order to make a performance comparison.

To this end, besides distinguishing the data sources as registered and
non registered, two different scenarios are considered. The former includes
two registered and four non registered sources; while the latter includes
three registered sources and three non registered ones.

The overhead, the delay and the degree of robustness towards malicious
attacks are analyzed in the following paragraphs.

5.3.1 Overhead

The overhead analysis takes into account three crucial metrics regarding:

• Execution time

• Storage capacity

http://dati.trentino.it/dataset/raw-data-in-near-realtime-stazione-cmd001
http://dati.trentino.it/dataset/raw-data-in-near-realtime-stazione-cmd001
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FIGURE 5.1: User dashboard

• Processing effort required by the two algorithms for the management
of the registered sources (i.e., key distribution, information storage,
update messages).

As regards the average execution time T(s, z) of Dini et al. and Di Pietro
et al., where s is the number of sources and z represents the number of
parallelizable operations to be performed, refer to Equation 5.1:

T (s, z) = Tseq +
Tc(z)

s
+ T0(s) (5.1)

Where:

• Tseq corresponds to the execution time of the non-parallelizable sec-
tions of the algorithm

• Tc(z)
s is the execution time of the parallelizable sections of the algo-

rithm (i.e., executable in parallel by all the sources)

• T0(s) represents the communication time spent among the sources for
the information exchange.

For the first scenario, s is equal to two. In Dini et al. there are no paral-
lelizable operations, therefore z is equal to zero. Hence:

• Tseq has been evaluated to be equal to 28 ms

• Tc(0)
2 is equal to zero, since no operation can be executed in parallel
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• T0(2) has been evaluated to be equal to 4 ms.

The final execution time T(2, 0) is, then:

T (2, 0) = 28 + 4 = 32ms (5.2)

A similar result is obtained for the second scenario, with s equal to three.
In general, the overhead depends on the number of hops required for

the key propagation from NOS towards the most distant source.
Regarding the storage capacity required from the sources to execute the

algorithm of Dini et al., the information stored in the connection and global
key tables CT and GT are the following:

• Two bytes for the global key name

• Eight bytes for the global key value

• One byte for Kincr for each local key

• In the first scenario, Knode is equal to one byte, therefore the name
of the local key requires two bytes of memory; while, in the second
scenario, the name of the local key requires three bytes of memory
(one byte for Kincr and two byte for Knode)

• Eight bytes for the value of the local keys.

Summarizing, with two registered sources, 20 bytes of storage are re-
quired; while, with three registered sources, this increases to 21 bytes. Note
that this metric is relevant, especially in case of constrained devices.

Concerning the size of the messages transmitted during the execution of
the algorithm, each message for the initial local key generation is 10 bytes
in length, for the first scenario, and 11 bytes in length for the second; while
each message generated by the re-keying operation requires 18 and 19 bytes
for the first and the second scenario, respectively. Note that, the execution
of re-keying is expected to generate a response message, in order to verify
the correct key replacement; such a packet has a size of one byte.

Finally, as regards the computational overhead, NOS performs the fol-
lowing operations:

• Two concatenations, in order to establish the name of the key (i.e., by
concatenating Knode and Kincr)

• Computation of the key value (which depends on the adopted en-
cryption scheme).

Each source, upon receiving a new local key, has to perform:

• Two decryption operations, in order to know the encrypted content
of the message containing the new key sent by NOS (i.e., Knode and
Kincr).

Referring to the same overhead metrics in the algorithm of Di Pietro et
al., the session key generation is a parallelizable operation, therefore:
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• Tseq has been evaluated to be equal to 4 ms and 8 ms for the first and
second scenario, respectively; this is the time required for the update
of the source information in the local NOS storage unit, named Sources
(see Paragraph 3.3.2)

• Tc(1)
2 has been evaluated to be equal to 3 ms for both the scenarios

• T0(2) is equal to zero, since no message exchange is performed.

The final execution time T(2, 0) and T(3, 0) are, then:

T (2, 1) = 4 + 3 = 7ms (5.3)

T (3, 1) = 8 + 3 = 11ms (5.4)

Concerning the storage required by Di Pietro et al., the two seeds (which
can be arbitrarily long q bits) and the two keys of 8 bytes have to be stored at
execution time (the actual key and the previous one, due to the time taken
by the update phase, as discussed in Paragraph 4.2.2).

At the computational level, the required operation are:

• One decryption, in order to know the encrypted content of the initial-
ization message sent by NOS

• Two hash functions, in order to generate the key value

• One XOR operation.

From such an analysis, it can be concluded that the algorithm of Di
Pietro et al. presents better perfomance with respect to Dini et al., because:

• Some operations can be executed in parallel, thus reducing the execu-
tion time

• No message is exchanged among the sources, but the communica-
tions only take place with NOS (without intermediate sources), thus
limiting the traffic in the IoT system

• The storage required by Dini et al. is influenced by the number of
registered sources, therefore it may be more affected by scalability
issues then Di Pietro et al.

5.3.2 Delay

The delay introduced by the algorithms of Dini et al. and Di Pietro et al. has
been evaluated as the time required for the key generation, propagation and
update.

Figure 5.2 shows the comparison between the two algorithms. In Dini
et al., the key generation is more expensive (about 7 ms for the global keys,
10 ms for the local keys) than in Di Pietro et al. (about 3 ms), due to the
more complex operations to be executed. However, such a delay, for Dini
et al., will remain unchanged with respect to the increase of the number of
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sources, since the initial keys are assigned to the sources only once, during
the registration, by NOS. Instead, for Di Pietro et al., the result will increase
depending on the number of registered sources, since they are directly re-
sponsible for key generation.

FIGURE 5.2: Delay of key generation of Dini et al. and Di
Pietro et al.

As regards the key propagation, only the Dini et al. approach is consid-
ered, since Di Pietro et al. does not include any key communication among
the data sources. The results are shown in Figures 5.3 and 5.4 in the two
scenarios and take into account three different situations, respectively:

• The key propagation happens with a direct connection between the
sources, by means of a shared global or local key

• The key propagation happens through adjacent nodes, also by means
of a shared global or local key

• The last analysis concerns the case of unreachable sources (i.e., the
key propagation does not succeed).

Finally, the delay in key replacement has been studied. In both the algo-
rithms, the results depend on the number of registered sources (see Figure
5.5). Dini et al. approach presents a higher delay with respect to Di Pietro
et al., due to the time required for key propagation; while in Di Pietro et al.
the sources independently generate the new keys.

5.3.3 Robustness towards malicious attacks

It is worth remarking that, in Dini et al., NOS is responsible for the global
and local key generation and for their replacement; while, in Di Pietro et al.,
the keys are independently generated by the sources after the initialization
and distribution of the seeds, made by NOS during the registration phase.
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FIGURE 5.3: Delay of key propagation in Dini et al. with
direct connections

FIGURE 5.4: Delay of key propagation in Dini et al. through
adjacent nodes
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FIGURE 5.5: Delay of key replacement of Dini et al. and Di
Pietro et al.

In order to compare the robustness of the two key management methods
towards malicious attacks, it is important to distinguish between:

• External attacks, performed by entities acting outside the IoT secure
network (e.g., non registered sources)

• Internal attacks, performed by the sources involved in the secure com-
munications within the IoT infrastructure (e.g., registered sources).

In the remainder of this paragraph, such threats will be investigated.

External attacks

Examples of external attacks are man-in-the-middle, identity spoofing, De-
nial of Service (DoS) and so on. Concerning the algorithm of Di Pietro et
al., the session keys are not exchanged among the registered sources and
NOS; in this way, they are prevented from being discovered by an external
node. Therefore, the only way to succeed with such a kind of attack would
consist of: (i) discovering the seeds and (ii) computing the current session
key. As regards the seeds, they are sent in clear by NOS to the sources dur-
ing the registration phase. This aspect represents the main drawback of the
Di Pietro et al. approach. In fact, if the seeds exchange is eavesdropped by
a malicious entity, then the communications with the source may be effec-
tively compromised. Computing the session key is a more complex task,
since it continuously changes over time. Analyzing the traffic within the
network, a malicious entity may recognize the frequency of re-keying, but
it is not useful for obtaining the current session key.

As regards the Dini et al. approach, the algorithm of Eschenauer and
Gligor [54] was adopted for the key initialization phase; this implies the
use of a random key pre-generation scheme before any source can start to
send or receive data to or from NOS. Then, during the registration phase,
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each incoming source receives a global key from NOS, from the large pool
of keys generated by NOS after the aforementioned initialization phase. In
this context, it should be pointed out that the value of a global key cannot
easily be derived from the value of another global key, but if one of them is
eavesdropped, then a part of the network may be compromised. In order to
partially cover this issue, Dini et al. introduce the use of the local keys as a
second level of security to the whole system; such a solution should reduce
the possibility of compromising numerous sources as a consequence of the
same attack. All these aspects make the approach of Dini et al. more robust
than that of Di Pietro et al., which is only based on a single key level.

Furthermore, in Dini et al., an external source could eavesdrop a packet
(i.e., a sort of packet sniffing attack) containing the frequency of re-keying
and the name of the local key (without its value). However, in order to
obtain the value of the local key, the attacker should know the encryption
algorithm, used for ciphering the key itself, and the value of the global key.
The only way to obtain such information is compromising NOS itself, but
this case is not considered.

Note that, while a non registered source may be easily compromised
(i.e., data integrity violation, confidentiality) and cannot interact in a secure
way with the other sources, a registered one, with the adoption of the algo-
rithms of Di Pietro et al. or Dini et al., should provide more reliable data to
NOS, thus improving the robustness of the whole IoT system.

Several drawbacks are still open. In fact, both the approaches do not
consider possible physical attacks on the data sources. In this case, in Di
Pietro et al., a malicious node could access the seeds and the session num-
ber, thus allowing the generation of valid session keys; this action allows
the attacker to decrypt all the data transmitted by the compromised sources;
while, in Dini et al., an attacker could directly steal the global and local keys,
thus hindering all the communications in a certain area.

Internal attacks

So far, attacks from entities acting outside the IoT network have been con-
sidered. The last analysis presented addresses the resilience of the two al-
gorithms towards internal attacks carried out by a registered (i.e., internal)
source. In their work, Dini et al. and Di Pietro et al. do not directly cover
key revocation in response to an insider attack, and also in NOS implemen-
tation, the case of internal attack is not considered.

However, a preliminary analysis suggests viable solutions, which could
be counted as a future extenstion for further evaluation. In general, if NOS
recognizes misbehavior from a registered source, then it must be isolated
from the system, by revoking its keys. Concerning the solution proposed
by Di Pietro et al., the only way to prevent a source communicating in a
secure manner with the IoT system may consist of revoking the two seeds.
Obviously, it is an error-prone task, since it implies that NOS updates the
seeds of all the other sources which share the same seeds of the misbehav-
ing one (and then re-synchronize the generated keys). Another issue is that
the data transmitted during the key update, and encrypted with the com-
promised key, may be freely accessible by malicious sources. Instead, in
Dini et al. the isolation of a source by revoking the keys it uses (either local
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TABLE 5.1: Validation of QoP and DQ assessment algo-
rithms - Sources parameters

Sources Authentication Encryption technique

Source 1 IPSec RSA
Source 2 16-bit password logon AES
Source 3 none MD5
Source 4 8-bit password logon SHA-1
Source 5 none none
Source 6 8-bit password logon none

and global) is simpler, since NOS itself starts the key replacement proce-
dure and could inform the involved sources to not share the new keys with
the misbehaving ones.

Summarizing, the algorithm of Dini et al. presents better robustness
against network traffic and internal attacks with respect to Di Pietro et al.
Both the approaches are vulnerable to physical attacks to the sources. In
general, the two solutions ensure a high level of confidentiality and in-
tegrity to the data transmitted by registered sources. Note that the overall
resilience of the IoT system may vary depending on the number of sources
and the robustness of the encryption schemes adopted by Dini et al. and Di
Pietro et al. for ciphering the information, respectively.

5.4 Validation of QoP and DQ assessment algorithms

According to the algorithms presented in Paragraph 4.3, NOS processes
incoming data by assessing their reliability in terms of QoP and DQ prop-
erties.

Since meteorological data are obtained from six different sources in real
time, as previously specified (see Paragraph 5.2), it is assumed that each
of them adopts different authentication and encryption methods for com-
municating with NOS (eventually agreed during the registration phase), as
summarized in Table 5.1.

The evaluation of the data provided, both in terms of security and qual-
ity, is performed by NOS system following, for DQ assessment, the meth-
ods presented in Paragraph 4.3.1; while, for QoP assessment, the ones pro-
vided in Paragraph 4.3.2, returning a score for each metric.

For testing the effectiveness of the proposed mechanisms, the system
was observed for a period of a week. Figures 5.6 (for QoP) and 5.7 (for
DQ) show the day-by-day evaluation regarding the data provided by the
six sources.

For security assessment, the outcomes are consistent with the expected
robustness of the authentication and encryption techniques adopted by the
monitored sources. Note that each score is initially set to the maximum
value (i.e., 1), as specified in Paragraphs 4.3.1 and 4.3.2, and that a source
may change its communication agreement with NOS, thus modifying the
corresponding security assessment scores.

From the figures, it can be observed that NOS can interact with sources
characterized, for example, by a good level of authentication, but, at the
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same time, by a low level of reliability in terms of confidentiality, integrity
and privacy (e.g., source 6 in Figure 5.6) and vice versa (e.g., source 3 in Fig-
ure 5.6). This could happen if the data, acquired by a source, are corrupted
during their transmission to NOS. Another case is that the data provided
by a source may present good levels of completeness and timeliness, but
poor accuracy and precision levels (e.g., source 4 in Figure 5.7).

The just presented evaluation confirms the potential of NOS approach
in empowering the user with the ability to choose the requirements to be
met by the data used by a given IoT-enabled service.

In order to better clarify the effectiveness of the new security evaluation
algorithm, proposed in Paragraph 4.3.2, Figure 5.8 shows an analysis of the
behaviour of source number 6 with respect to the integrity score in partic-
ular conditions. From Figure 5.6 it emerges that such a source obtains low
values for data integrity (at day 7 the integrity score is equal to 0.2).

Now, the whole set of attack-countermeasure pairs, referring to the in-
tegrity of data of source number 6, are considered and remain constant for
the whole observation period, except for one pair, which correspond to a
man-in-the-middle-attack, able to modify the data content and, therefore,
to violate the integrity of the information transmitted by the source itself.

As reported in Table 5.1, source number 6 does not adopt any encryp-
tion technique, therefore the man-in-the middle attack simulated within the
network is successful. As a consequence, the integrity score reduces. How-
ever, if at day 2 the source decides to adopt AES for encrypting its data,
sharing the proper keys with NOS, it is expected that the security algo-
rithm changes the integrity evaluation accordingly. Figure 5.8 represents
the integrity score assessment in the “normal” case (i.e., the source does not
change its communication agreements with NOS) and in the “modified”
case. Note that, at day 6, source number 6 revokes the use of the encryption
scheme with NOS again sending the data in clear; as shown in Figure 5.8,
the integrity score again starts to reduce.

These results represent an example of how NOS may interact with IoT
data sources, classifying the received information accordingly. Moreover, it
shows how NOS, although it does not directly tackle attacks able to com-
promise the IoT devices, recognizes the possible threats for each data source
during a live attack and, consequently, estimates the corresponding levels
of QoP. In this way, users can select the data with a deep level of awareness
about the services offered by the IoT system.

5.5 Policy enforcement framework evaluation

The behavior of the enforcement framework has been evaluated in terms of
memory occupancy, latency due to the execution of the enforcement opera-
tions, and, finally, with respect to the application of the policies themselves,
even in case of violation attempts.

For such an analysis, the six data sources are associated with the QoP
and DQ scores reported in Table 5.2, which were obtained by means of the
algorithms presented in Paragraph 4.3.
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FIGURE 5.6: QoP score assessment
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FIGURE 5.7: DQ score assessment
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FIGURE 5.8: Attack-countermeasure analysis - source in-
tegrity

TABLE 5.2: Policy enforcement framework evaluation -
sources parameters

Parameters Source 1 Source 2 Source 3 Source 4 Source 5 Source 6

Authentication 0.8 0.4 0 0.2 0 0.2
Security schema score 1 0.6 0 0.2 0 0
Privacy schema score 1 0.6 0 0.2 0 0
Timeliness 0.9 0.8 0.6 0.3 0.9 0.7
Completeness 0.9 1 0.8 0.6 0.7 1
Accuracy 0.9 0.7 0.5 0.6 0.7 1
Precision 0.9 0.8 0.4 0.5 0.8 0.9
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5.5.1 Storage

A first carried out analysis concerns the storage capacity required by the
system for carrying out its operations. In this respect, it is worth recalling
that NOSs do not support persistent storage of IoT-generated data. Rather,
data are temporarily cached on NOS itself while being processed, before
being submitted to the MQTT broker. Therefore NOS has to provide only
temporary storage. When data are further pushed to or pulled from the
server that handles the topic notification to subscribers, data can be safely
flushed from NOS.

In this prototypical implementation, the in-memory capability of Mon-
goDB for Raw Data and Normalized Data collections has been used; the Con-
fig and Sources databases are persistently stored on the local hard disk (see
Paragraph 3.4).

Since NOS runs on a Raspberry Pi, the maximum storage capacity for IoT
data with the actual technology corresponds to 1 gigabyte (i.e., the RAM
provided by Raspberry Pi 2 and 3). In the presented implementation, a rou-
tine in charge of removing, from Raw Data, the data already normalized
and, from Normalized Data, the data already published has been included.

The memory occupancy of NOS during operations has been measured,
which resulted in an average slightly less than 7 megabyte. Such a value is
only indicative, as the memory occupancy depends on a number of factors,
notably:

• The frequency of data fetching from sources (in this example 10 pack-
ets per second)

• The frequency of execution of the routines for removing data from
non-persistent collections (in this example every 5 minutes)

• The number of sources.

5.5.2 Latency

A further evaluation is performed in order to estimate the latency intro-
duced by the policy enforcement framework into NOS architecture.

Figure 5.9 shows the results obtained from one run of one NOS proto-
type with the six data sources described above, over a period of one hour for
two different sampling rates (i.e., how often NOS queries the data sources
to fetch data): 10 and 20 packets per second, respectively.

The graph shows that the mean delay is almost constant over time. Fur-
thermore, the latency introduced does not exceed 6.5 ms in the presented
test case, which is a promising result in terms of the ability of this solution
to deal with near real-time analysis of IoT data.

5.5.3 Policy behavior

As regards the enforcement actions undertaken by NOS, the following poli-
cies, formally described in Paragraph 4.4, are exemplified below:

• Node access control, for a registered source

• Node access control, for a non registered source
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FIGURE 5.9: Latency introduced by the policy enforcement
framework into NOS architecture

• Data transmission, for a registered source

• Data processing, for a registered source

• User access control, along with a violation attempt

• User service request, along with a violation attempt

• User service provision.

Before sending their data to NOS, the registered sources perform the
access control operation. For example, in Listing 5.1 the policy activated for
Source 1 is represented: the request is valid if the signature key is compliant
with that owned by NOS. The session identifier is supposed to be randomly
generated by the node identifier and the actual timestamp is 2016-03-24
09:15:00 (as shown in Listings 5.2 and 5.3).

1 { " NodeAccessControl " : {
2 " po l i cy " : " NodeAccessControl " ,
3 " input " : {
4 " node " : {
5 " i d e n t i f i e r " : " 1 " ,
6 " s ignaturekey " : " ∗∗∗∗∗ "
7 }
8 } ,
9 " s e c u r i t y " : [ {

10 " v e r i f i c a t i o n R e g i s t r a t i o n " : [ {
11 " r e g i s t r a t i o n C h e c k " : " 1 " ,
12 " signaturekeyCheck " : " 1 ,∗∗∗∗∗ "
13 } ]
14 } ] ,
15 " response " : [ {
16 " v e r i f i c a t i o n R e g i s t r a t i o n " : [ {
17 " r e g i s t r a t i o n C h e c k " : true ,
18 " signaturekeyCheck " : true ,
19 " sessionAssignment " : " 1 , 2016−03−24 09 : 1 5 : 0 0 "
20 } ]
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21 } ]
22 } }

LISTING 5.1: Node access control - registered source

In Listing 5.2 the same action is presented for the non registered Source
3; in this case the enforced action is the tracking of the node.

1 { " NodeAccessControl " : {
2 " po l i cy " : " NodeAccessControl " ,
3 " input " : {
4 " node " : {
5 " i d e n t i f i e r " : " 3 "
6 }
7 } ,
8 " s e c u r i t y " : [ {
9 " verif icationUnknownSource " : [ {

10 " signaturekeyUndefinedMark " : " undefined " ,
11 " i d e n t i f i e r C h e c k " : " 3 "
12 } ]
13 } ] ,
14 " response " : [ {
15 " verif icationUnknownSource " : [ {
16 " sessionAssignment " : " 1 , 2016−03−24 09 : 1 5 : 0 0 "
17 } ]
18 } ]
19 } }

LISTING 5.2: Node access control - non-registered source

Now the registered Source 1 is supposed to transmit data to NOS (List-
ing 5.3). Function encr specifies that the parameters of the message are en-
crypted. The only difference between this node and a non registered one
is that, in the latter case, the parameters of the message would not be en-
crypted. The enforcement framework verifies whether the four requested
values (i.e., session, identifier, data, datatype) are present in the message
received by NOS. If this is not the case, NOS discards the message and,
possibly, prevents other communication with the same source.

Note that a message sent from a node may include, besides that re-
quested by the policy, also other data (such as a timestamp or a location,
depending on the specific device): the policy only specifies conditions on
the mandatory data.

1 { " NodeDataTransmission " : {
2 " po l i cy " : " NodeDataTransmission " ,
3 " input " : {
4 " message " : {
5 " s e s s i o n " : " 12345 " ,
6 " i d e n t i f i e r " : " 1 " ,
7 " data " : " encr ( 1 0 . 7 ) " ,
8 " datatype " : " encr ( double wind speed ) "
9 }

10 } ,
11 " response " : [ {
12 " v e r i f i c a t i o n I n p u t " : [ {
13 " requiredInformat ion " : true ,
14 " s toreData " : " 1 , encr ( 1 0 . 7 ) , encr ( double wind speed ) "
15 }
16 } ]
17 } ]
18 } }

LISTING 5.3: Node data transmission
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After validating such data, NOS can process them. Listing 5.4 shows
the corresponding processing policy.

1 { " NodeDataProcessing " : {
2 " po l i cy " : " NodeDataProcessing " ,
3 " input " : {
4 " message " : {
5 " s e s s i o n " : " 12345 " ,
6 " i d e n t i f i e r " : " 1 " ,
7 " data " : " encr ( 1 0 . 7 ) " ,
8 " datatype " : " encr ( double wind speed ) "
9 }

10 } ,
11 " response " : [ {
12 " eva luat ionRegis teredSource " : [ {
13 " decryptionData " : " encr ( 1 0 . 7 ) , 1 " ,
14 " decryptionDatatype " : " encr (km/h wind speed ) , 1 " ,
15 " scoreAssessment " : " 1 0 . 7 , 1 "
16 } ]
17 } ]
18 } }

LISTING 5.4: Node data processing

Now, supposing that the user Bob had registered himself to the weather
service exposed by NOS, with username Bob and 473 as identifier, he wants
to be notified about the measurements acquired for some monitoring ac-
tions he has to do for his employer. Therefore, he registers himself with the
role of Monitor. Firstly, he has to perform the access control: Listing 5.5 de-
scribes the activated policy. The generated session identifier is 13240. If the
credentials are not valid, it could be a violation attempt. In this case, the en-
forcement framework forces NOS to prevent user interactions, as illustrated
in Figure 5.10.

1 { " UserAccessControl " : {
2 " po l i cy " : " UserAccessControl " ,
3 " input " : {
4 " user " : {
5 " username " : " Bob " ,
6 " i d e n t i f i e r " : " 473 " ,
7 " s ignaturekey " : " ∗∗∗∗∗ " ,
8 " func t ion " : " Monitor "
9 }

10 } ,
11 " s e c u r i t y " : [ {
12 " v e r i f i c a t i o n R e g i s t r a t i o n " : [ {
13 " r e g i s t r a t i o n C h e c k " : " 473 , Monitor " ,
14 " signaturekeyCheck " : " 473 ,∗∗∗∗∗ , Monitor "
15 } ]
16 } ] ,
17 " response " : [ {
18 " v e r i f i c a t i o n R e g i s t r a t i o n " : [ {
19 " r e g i s t r a t i o n C h e c k " : true ,
20 " signaturekeyCheck " : true ,
21 " sessionAssignment " : " 473 , Monitor , 2016−03−24 09 : 2 0 : 0 0 "
22 } ]
23 } ]
24 } }

LISTING 5.5: User access control

If the credentials are correctly verified, the user is allowed to make the
desired service requests. Listing 5.6 shows an example of the corresponding
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FIGURE 5.10: Violation attempts of user access control pol-
icy

policy, invoked for requesting the service, named Humidity and Wind Speed
Real Time Measurements, along with the security and quality constraints.

1 { " ServiceRequest " : {
2 " po l i cy " : " ServiceRequest " ,
3 " input " : {
4 " message " : {
5 " s e s s i o n " : " 13240 " ,
6 " username " : " Bob " ,
7 " i d e n t i f i e r " : " 473 " ,
8 " func t ion " : " Monitor " ,
9 " s e r v i c e " : " Humidity and Wind Speed Real Time Measurements " ,

10 " s e c u r i t y P r e f e r e n c e s " : " 0 . 2 , 0 , 0 . 2 , 0 . 1 " ,
11 " q u a l i t y P r e f e r e n c e s " : " 0 . 4 , 0 . 4 , 0 . 4 , 0 . 4 "
12 }
13 } ,
14 " response " : [ {
15 " v e r i f i c a t i o n I n p u t " : [ {
16 " requiredInformat ion " : true ,
17 " processRequest " : " 13240 ,Bob , 4 7 3 , Monitor , Humidity and Wind

Speed Real Time Measurements , 0 . 2 , 0 , 0 . 2 , 0 . 1 , 0 . 4 , 0 . 4 , 0 . 4 ,
0 . 4 "

18 }
19 } ]
20 } }

LISTING 5.6: User service request

At this point, such a request has to be analyzed in order to establish if
the user is entitled to receive the data corresponding to the service (Listing
5.7 represents a user which has access to the requested data).

1 { " S e r v i c e P r o v i s i o n " : {
2 " po l i cy " : " S e r v i c e P r o v i s i o n " ,
3 " input " : {
4 " message " : {
5 " s e s s i o n " : " 13240 " ,
6 " username " : " Bob " ,
7 " i d e n t i f i e r " : " 473 " ,
8 " func t ion " : " Monitor " ,
9 " s e r v i c e " : " Humidity and Wind Speed Real Time Measurements " ,

10 " s e c u r i t y P r e f e r e n c e s " : " 0 . 2 , 0 , 0 . 2 , 0 . 1 " ,
11 " q u a l i t y P r e f e r e n c e s " : " 0 . 4 , 0 . 4 , 0 . 4 , 0 . 4 "
12 }
13 } ,
14 " s e c u r i t y " : [ {
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15 " decryptionRequest " : " Humidity and Wind Speed Real Time
Measurements , 4 7 3 " ,

16 " s e r v i c e A c c e s s V e r i f i c a t i o n " : " Humidity and Wind Speed Real
Time Measurements , 4 7 3 , Monitor "

17 } ] ,
18 " response " : [ {
19 " s e r v i c e A c c e s s V e r i f i c a t i o n " : true ,
20 " r e t r i e v e R e s u l t s " : " Humidity and Wind Speed Real Time

Measurements , 4 7 3 , Monitor , 0 . 2 , 0 , 0 . 2 , 0 . 1 , 0 . 4 , 0 . 4 , 0 . 4 , 0 . 4 "
21 } ]
22 } }

LISTING 5.7: Service provision

There are two possible outcomes:

• The user with the Monitor function is allowed by the sensor data ad-
ministrator to access the requested measurements for the monitoring
scope

• The user is not allowed to access these data for the declared scope.

FIGURE 5.11: User data selection - QoP and DQ filters

In the former case, the dashboard shown to the user is that represented
in Figure 5.11; from here, the user can also change the QoP and DQ settings.
If no security or quality constraint is specified, all data is considered valid
and the resulting graphs for wind speed (in Km/h) and humidity (in %)
look as in Figure 5.12.

In Figure 5.13 some QoP filters are applied; in particular, the system
shows to the user only the data (i) provided by authenticated sources, (ii)
for which the integrity is verified, (iii), for which the level of privacy and
confidentiality is equal to or higher than 0.6. Obviously, in this case some
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FIGURE 5.12: User data selection - no filters

FIGURE 5.13: User data selection - QoP filters
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data are dropped, as they fail to meet the criteria specified by the user in
terms of QoP and DQ of the data to use.

The graph in Figure 5.14 is obtained without any constraint specified on
security, but considering valid only data scoring at least 0.6 in completeness
and timeliness, and 0.8 in accuracy and precision.

FIGURE 5.14: User data selection - DQ filters

In the latter case, there is a violation attempt, and the response of the
system is the one shown in Figure 5.15.

FIGURE 5.15: Violation attempt of user service request pol-
icy

One aspect that deserves some further clarification refers to the fact that,
in this example, one single NOS has been considered, whereas the final aim
is to deploy NOS middleware in a distributed environment. However, as
stated in Paragraph 3.4, no NOS-to-NOS coordination is strictly required. In
particular, each NOS is able to independently enforce the application of the
defined policies. Therefore, it is possible to safely conclude that considering
a single NOS scenario for validation purposes does not represent a limiting
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factor for the analysis just presented. With regards to scalability, further
investigation is needed dealing with a larger testing environment. As a fur-
ther step, Paragraph 5.7 shows an evaluation of performance about policy
sychronization in the presence of more than one NOS (i.e., two NOSs). An-
other aspect which deserves more study is the behavior of the enforcement
system in presence of multiple kinds of attack.

5.6 Publish&subscribe protocol performances

In this paragraph, the validation of AUPS (i.e., the secure pub-
lish&subscribe protocol described in Paragraph 4.5) is considered. In more
detail, in the following paragraphs, a comparison of AUPS with existing
mechanism, also based on MQTT, is presented, along with concrete perfor-
mance results in terms of overhead, latency, and computing effort.

In the example used for exploring the performance, NOS fetches the
data at two different rates: 10 packets per second and 20 packets per sec-
ond. This frequency obviously influcences the memory occupancy as well
as the computational effort. Other parameters that may affect the perfor-
mance of the whole system are represented by the number of sources and
of interacting users. As discussed above, six data sources are considered,
whereas the number of users is fixed to two. The term “fixed” mean that,
in a real application scenario, users may join (i.e., by means of NOS regis-
tration) or leave the IoT network at any time.

5.6.1 AUPS robustness evaluation

In order to further clarify the innovative contribution of the AUPS solution,
it has been compared with existing approach integrated into SecKit [140],
just briefly described in Paragraph 2.1.4. SecKit also aims to address the
lack of security policy enforcement capabilities in existing MQTT imple-
mentations, but it follows a different approach.

SecKit extends the implementation of the open source Mosquitto MQTT
broker with a security plugin, in a way that the PEP directly resides on the
broker. Instead, in AUPS, the PEP and the other enforcement components
reside on each NOS. Note that NOSs represent a real IoT middleware with
data processing and source management capabilities; while in [140] the de-
ployment of a large scale IoT middleware is deemed to be out of the scope.

Hence, [140] limits the presentation of the results to a restricted scenario,
in which all the load of policy enforcement is moved to the MQTT broker,
thus increasing its computational overhead. The major implication of port-
ing the PEP to the broker, as SecKit does, is that the native lightweight effi-
ciency of Mosquitto in terms of processing and memory capabilities may be
compromised, in particular in a large-scale application setting, by a huge
number of topics and adopted policies. For this reason, in the solution
presented in this thesis, the security enforcement management is kept on
NOSs, which have the necessary processing and storage resources.

Moreover, the usage of a uniform language for implementing PEP and
PDP (in NOS case: javascript, using the Node.JS platform) ensures easier
integration and maintenance than the mixed approach (PEP in C and PDP
in Java) used in SecKit.
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Furthermore, if the PEP resides on the MQTT broker, then the viola-
tion of the broker itself by malicious entities may compromise the whole
network, breaking access control by allowing non authorized users/appli-
cations to access restricted information. In AUPS, NOS itself would need
to be compromised, which is a more complex task and, in addition, the key
management is controlled by another external entity, the KTM, which is de-
coupled with respect to NOSs, thus increasing the robustness of the entire
system.

A further crucial difference between AUPS and SecKit is that NOS ac-
cess control acts at the topic level, while, in [140], the authors propose to
consider the delivery of individual messages and filter the access on the
basis of the content of the payload. To do this, SecKit has to include in the
model the concepts of context and situation, by means of which the PDP
is able to assign different policies to the same information depending on
the actual conditions. As a consequence, authorizations and obligations are
specified using an Event-Condition-Action (ECA) structure and, at any time,
before allowing the access to a resource, the system has to evaluate the ac-
tual events, which take place within the system. Such an approach may
seriously affect the system performance; in fact, not only does an ECA hier-
archy have to be defined for each new resource, but also the related events,
to be executed in response to particular scenarios, need to be specified, thus
requiring considerable computational effort. Therefore, in NOS, access con-
trol is performed at a coarser level of granularity, using ABAC (instead of
ECA) and without requiring the access control operations at each notifica-
tion event by introducing the concept of temporary keys, thus reducing the
computational and storage overhead.

Another advantage of the adoption of KTM and temporary keys on
NOSs is represented by robustness against violation attempts. In fact, the
mechanism used by NOSs allows them to preserve the system from cre-
dential discovery and replay attacks, since the keys, used for decrypting
the information, have a limited temporal scope.

Also as regards man in the middle attacks, even if a malicious entity
listens to the communications between broker and user devices (or exter-
nal application), it will not be able to intercept the clear content, since the
encryption varies over time, without a fixed or predictable pattern.

If a malicious device obtains one or more keyT (e.g., by means of an ex-
haustion attack), then it may perform a DoS attack, for example, entering
valid packets into the network, thus hindering the correctness of the spread
information; this action is also mitigated since, in AUPS, when the key ex-
pires, the device will not own the correct credentials for authenticating itself
to NOS, therefore it will not obtain new valid key and it will not continue
to execute the attack. It is important to remark that the authors of SecKit do
not specify possible countermeasures to address DoS attacks.

Finally, both the approaches, AUPS and SecKit, do not explicitly face
physical attacks to the data sources or the devices used by the users for
interacting with NOSs.
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5.6.2 Overhead

The overhead in terms of storage capacity and computational effort is now
analyzed. In the test-bed presented in Paragraph 5.2, NOS runs on a Rasp-
berry Pi with 1 gigabyte of RAM and a variable physical memory, which
depends on the capacity of the microSD card used. In the scenario under
consideration, the microSD has 8 gigabyte of memory.

An important premise is that, as pointed out for the policy enforcement
framework analysis (see Paragraph 5.5), NOS exploits the in-memory capa-
bility of MongoDB to flush the data from non persistent collections.

Hence, the memory occupancy was on average slightly less than 7.5
megabyte, where 8% is used for AUPS. In more detail, NOS has always to
maintain the set of tuples T in the form keyId, keyT, val, atb for each combina-
tion of attributes associated with the topics and established by the policies
themselves.

In this example, there are six topics (i.e., one for each kind of data pro-
vided by the sources). At this stage, the number of possible combinations of
topics for access to resources depends on the granularity of the policies re-
quired by the system administrator. The system administrator may decide
to associate a different attribute with access to each topic or, instead, group
them, so that access is allowed to a subset of the data. Note that ABAC is
adopted, as explained in Paragraph 4.4.

Two users are considered for the validation: the former with access to
topics 1 (campodenno/sensor1/temperature) and 2 (campodenno/
sensor2/humidity); the latter with only access to topic 2. Such poli-
cies may be replicated for each of the six kinds of data provided by the
sources. As a consequence, the amount of memory required on NOS is
strictly related to the structure and granularity of access permissions and,
more generally, to the specific application domain.

In the case study presented, the physical memory needed is very low
(the 8% of the memory occupancy, as mentioned), since few information
sources are provided to the system by the meteorological sensors. More-
over, note that the dimension of each tuple T varies on the basis of the
length of the fields keyT and atb. Hence, the application of the proposed ap-
proach in a wide real scenario has to take into account such aspects related
to memory occupancy in the definition of attributes and access permissions.

As regards the computational overhead with respect to the original NOS
MQTT version, it is worth remarking that, for each incoming data message,
the following operations are executed (in brackets, the measured average
execution time):

• Three database queries to obtain the access permissions to be associ-
ated with the new data (2.4 ms)

• One operation of encryption (0.5 ms)

• One HTTP call to the KTM, only in case of an expired key (3.2 ms).

When new data is notified to a user, then it is the user device that is in
charge of executing the decryption operation; NOS receives a request for a
new valid key, only when one expired on the user device. Such an activity
requires:

campodenno/sensor1/temperature
campodenno/sensor2/humidity
campodenno/sensor2/humidity
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• Three database queries to obtain the access permissions to be associ-
ated with the user (2.4 ms)

• One HTTP call to the KTM (3.2 ms).

Finally, an important remark has to be made about the KTM. Being an
external entity, the KTM does not delegate the key and attribute manage-
ment to NOS, thus saving memory and processing capacity. Moreover,
KTM cannot be considered a bottleneck, besides it serves all NOSs, since
its operations (i.e., the temporary key generation) are asynchronous with
respect to NOSs’ activity. In fact, the key expiration time is not supposed
to be the same for all the generated keys, thus allowing a balanced load of
HTTP calls, made by NOSs to the KTM during system operation. Obvi-
ously, a large scale evaluation should be done in order to better assess the
KTM performance.

5.6.3 Latency

The next performance analysis of AUPS investigates the end-to-end latency
introduced by the adoption of the proposed secure mechanism to the native
MQTT transactions, executed in the previous version of NOS (i.e., with this
secure extension disabled).

Latency is computed as the distribution of the elapsed time from the
data reception at NOS until it is sent to the broker. It is evaluated for two
different settings: with and without AUPS. For AUPS, the key expiration
timeout is set to 5 minutes.

Figure 5.16 shows the distribution of the latency for one NOS and the
six data sources, measured over a period of 24 hours and with two different
data fetch rates: 10 packets per second and 20 packets per second.

In the original configuration (i.e., without AUPS) the average measured
latency is approximately 3.5 ms and 4 ms for 10 and 20 packets per second,
respectively. With the secure extension, the average time increases by 2 ms.
What emerges is that the new operations add a stable increase to the delay,
which remains under an acceptable threshold.

5.6.4 Computing effort

Using the same parameters as for the latency performance evaluation, Fig-
ure 5.17 shows the distribution of the CPU load on NOS with and without
AUPS. In this case the computational effort is also stable during system op-
eration and the results are very promising for encouraging the adoption of
AUPS in a large-scale environment.

It is important to note that both latency and computing performances
are affected by the number of users subscribed to the topics provided by
NOS. In fact, such parameters influence the number of keys to be gener-
ated and, therefore, the overall resources required by AUPS. An evaluation
concerning a large number of data/topics and users would allow to per-
form a proper analysis about the scalability of AUPS, in a more complex
context, requiring the generation and update of many keys.
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FIGURE 5.16: Latency - whiskers-box diagram for a system
with and without AUPS with two different data fetch rate

(10 and 20 pkt/s)
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FIGURE 5.17: CPU load - whiskers-box diagram for a sys-
tem with and without AUPS with two different data fetch

rate (10 and 20 pkt/s)
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5.7 Policy synchronization validation

The last analysis regards the execution time and computational load re-
quired by the sychronization system, presented in Paragraph 4.6. In this
case, two NOSs are connected, as shown in the experimental setup in Fig-
ure 5.18.

FIGURE 5.18: Experimental setup for policy synchroniza-
tion validation

The meteorological information, sent as open data to NOS, are mapped
to proper topics, such as campodenno/sensor1/temperature, campodenno/sen-
sor2/humidity, and so on, as for AUPS validation, detailed in Paragraph 5.6.
A set of policies is defined accordingly. The data rate is fixed, as before, to
10 and 20 packets per second.

In this case, the test-bed also simulates the behavior of an ANOS admin-
istrator; while one Adata1 administrator is considered, since the data belong
to a unique application contex. Finally, the rate of policy update varies in a
random range from one to five minutes.

The execution time and CPU load, spent on each policy update and
synchronization, were evaluated by means of a six-hours experiment. Fig-
ures 5.19 and 5.20 show, through a box-whisker plot, the results obtained
from the two NOSs used for the test-bed. Both Figures 5.19 and 5.20 reveal
promising outcomes, since both execution time and computational effort
are low and stable over the time. The example presented is a very sim-
ple application involving only two NOSs in a context characterised by the
analysis of real-time data, but it demonstrated the viability of the proposed
schema in meeting its requirements.

Finally, it is worth remarking that other useful analysis of NOSs could
be carried out, concerning how to make the techniques presented for data
assessment, policy enforcement, authentication, and synchronization work
effectively in situations in which the IoT data sources are power constrained
or, for example, if part of the network is unavailable due to a malicious
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FIGURE 5.19: Latency - sychronization system with two dif-
ferent data fetch rate (10 and 20 pkt/s)

FIGURE 5.20: Computational load - sychronization system
with two different data fetch rate (10 and 20 pkt/s)
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attack. Clarifying such aspects would be a further advance in making NOS
prototype more reliable and resilient in a large scale scenario.
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Chapter 6

Conclusions

The lack of a comprehensive security solution represents a major threat to
the growth and market take-up of IoT systems across a variety of vertical
application domains. In order to fill this gap, the main goal of this PhD
thesis concerned the design and development of a secure and distributed
middleware platform, named NOS (NetwOrked Smart Object), targeted to
IoT environments. The aims of NOS are many-fold, since they embrace the
pivotal open issues in the definition of a scalable, interoperable, energy-
saving and secure and data quality aware architecture for IoT applications.

From the analysis of the state of the art in the field of IoT security, many
questions arose about how to improve the robustness towards malicious
attacks of a typical IoT system, which comprises heterogeneous technolo-
gies and different communication protocols. This thesis addressed some of
these questions. In particular:

• Authentication and confidentiality requirements have been met; on
the one hand, by re-using traditional security mechanisms for key
management, in order to ensure end-to-end integrity to the transmit-
ted data; on the other hand, providing a source registration system,
through which sources are allowed to agree, with the IoT platform,
on an encryption mechanism for data exchange

• As far as access control is concerned, a scalable and distributed sys-
tem for controlling the access to resources has been implemented,
conceived both for users and “things”; entities and roles have been
specified, in order to define proper authorization rules; moreover, a
uniform data representation has been formalized along with a topic
structure for efficient information sharing

• A complete enforcement framework as well as a policy language have
been proposed

• A cross-domain secure middleware for the management of IoT data,
provided by heterogeneous devices, has been defined.

Moreover, since the scope of IoT applications is the provision of ser-
vices to the interested users, the processed and transmitted information
have to be evaluated to make the users aware of their level of reliability,
both in terms of security properties and data quality. With regards to such
features, some important requirements have been identified. In particular,
concerning security, the following QoP properties have been considered:
confidentiality, integrity, privacy, and authentication; while, regarding DQ,
the following have been analyzed: accuracy, precision, timeliness, and com-
pleteness.
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The just presented QoP and DQ requirements have been included in the
definition of a UML general conceptual model, representing the starting
point of this work towards the development of the final NOS middleware.
In more detail, the UML model aimed to include the entities involved in the
IoT scenario along with their relationships. At this stage, the main goal was
to obtain a model suitable for general-purpose contexts, which could po-
tentially be adapted to various IoT domains and not only targeted at single
case study. The main entities identified were:

• The nodes, which represent the sources of the information provided
to the IoT platform

• The users, who make use of the services provided by the IoT platform

• The services, which act as a bridge from the raw data transmitted by
the nodes and the processed data received by the users.

From this model, a high-level reference architecture of NOS was de-
rived. In more detail, the following activities, performed by NOS on the
data incoming from heterogeneous sources, have been specified:

• Analysis, which is responsible of the assessment of the data with re-
spect to the defined QoP and DQ levels

• Data Normalization, which is in charge of putting the processed infor-
mation in a uniform format, also adding the proper set of metadata
related to the QoP and DQ evaluation, made after the analysis phase

• Integration, which may merge information obtained from different
sources in order to provide more complex services.

The result obtained was a modular architecture, which exposes:

• Specific southbound interfaces, based on the HTTP protocol, towards
the nodes, also allowing the registration of the nodes themselves to
NOS

• The processing units described above

• Northbound interfaces, based on MQTT protocol, aimed at managing
the sharing of information by means of a lightweight publish/sub-
scribe mechanism.

NOS system has been implemented in a real prototype running on a
Raspberry Pi and using the following components/technologies/libraries:
(i) Node.JS platform for NOS modules; (ii) MongoDB for storage; (iii)
Mosquitto for the MQTT broker.

As a further step, a variety of new modules have been developed for
NOS, each one with different capabilities and addressing a specific security
issue. In particular, the added functionality is:

• The adoption of two key management systems by Dini et al. and Di
Pietro et al., for securing the communications among NOS and user-
s/nodes with the distribution of well-defined keys; they also provide
mechanisms for key replacement, which allow the improvement of
the reliability of the system towards malicious attacks
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• The definition of a new algorithm for QoP level assessment, able to
perform an evaluation of the information with respect to data sources
behavior

• The introduction of a policy enforcement framework, which provides
a set of general-purpose rules aimed at regulating and controlling the
actions performed by NOS and reacting towards possible violation
attempts

• The integration of the enforcement mechanism with AUPS, which
is able to effectively manage publications and subscriptions through
MQTT interactions, securing the information sharing with users

• The development of a mechanism for allowing the propagation and
synchronization of policies among multiple NOSs and/or belonging
to different application domains.

All the proposed solutions were evaluated by means of a NOS proto-
type and real use cases. Relevant performance metrics were investigated,
in order to clarify the effectiveness of NOS functionality in real conditions.
Nevertheless, this thesis also leaves several open issues.

First of all, it would be useful to carry out an analysis of NOSs’ function-
ality in presence of power constrained data sources and/or in situations in-
cluding multiple live attacks to both NOSs and data sources. Furthermore,
a wider and more complex case study would allow to better investigate the
scalability of the proposed solutions.

The key management systems have shown good results, with some dif-
ferences among the evaluated metrics. In fact, the outcomes of the exper-
imental comparison between the two algorithms shows a lower overhead
and key replacement delay for Di Pietro et al., but better robustness for Dini
et al. A further improvement of these actual solutions relies on the adop-
tion of a more robust key replacement and revocation schema, for example
based on DHKE, which would allow a secure exchanging of cryptographic
keys among entities that do not know each other (as is the case in lots of IoT
applications).

With regards to the algorithm for the assessment of QoP property, it
succeeded in representing correctly the trustworthiness of registered and
non registered IoT data sources. Perhaps, it would be interesting to test this
solution in a wider IoT scenario, consisting of a large number of hetero-
geneous nodes, providing data with various QoP as well as DQ features.
Another point resides in the capability of NOS to directly counteract mali-
cious activities, which still remains, at the moment, an open challenge.

In the actual prototype implementation, event reporting to the adminis-
trators is not considered, but, in a real application scenario there should
be support for system monitoring (e.g., information regarding the ser-
vice utilization, the storage, the malicious activities, and the NOS per-
formance in general), including notifications and alerts to the system ad-
ministrators. Given the distributed nature of NOS, a viable solution is
represented by the popular ELK (Elastic, Logstash, Kibana) stack (https:
//www.elastic.co/webinars/introduction-elk-stack).

Such considerations are also strictly related to the policy enforcement
framework, the purpose of which is just the tracking of normal and unex-
pected events happening during NOS operation. Note that its feasibility

https://www.elastic.co/webinars/introduction-elk-stack
https://www.elastic.co/webinars/introduction-elk-stack
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and performance have been proven by means of the development of a sim-
ple, yet real-world, use case. Since the framework supports, in a general-
purpose way, security, privacy and data quality enforcement policies, it is
re-usable across different domains.

A valuable extension would improve the defintion of ad hoc mechanisms
in order to addresses the privacy issue more thoroughly.

The enforcement approach described above was enriched with AUPS,
consisting of a set of methods for adding security to MQTT-based IoT sys-
tems. Its robustness was compared with existing mechanism, showing bet-
ter performance for AUPS in terms of resilience towards malicious attacks,
besides promising results in terms of overhead, latency, and computing ef-
fort. Future extensions include testing in a larger and more complex setting,
possibly characterised by the presence of a plurality of networked brokers
and NOSs, in order to better assess the KTM performance and the scalabil-
ity of the whole system.

The same remarks also apply to the policy synchronization system,
which should be tested in an IoT scenario, including more NOSs and data
sources and different application domains (i.e., moreAdatan administrators)
and, consequently, more complex policies (e.g., hierarchical structures).

Finally, the data processed by NOS may be exploited in a mobile ap-
plication context. To this end, possible applications of NOS middleware in-
clude: energy management in a smart home/smart building scenario; mon-
itoring of business processes and productive activities in real time; smart
retail experiences services and, more in general, any application/service
where decisions (either manual or automated) have to be taken based on
IoT-generated data. This class of applications is expected to play a key role
in the adoption of IoT technologies across a variety of vertical domains.

At the moment, ongoing work consists of the application and testing of
NOS features inside the University of Insubria campus in Varese.
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Appendix A

Application case study

An application example related to a university campus domain is presented
in this appendix, in order to clarify the viability and the effectiveness of the
conceptual model, presented in Paragraph 3.2.

In such a scenario, a student, a professor, an employee or a simple vis-
itor may take advantage of an ad hoc advanced application, able to guide
them through the campus, in order to interact with physical objects and
obtain specific digital services in relation to their profile. A specific applica-
tion running on the users’ personal smartphones is in charge of providing
the expected personalized content. A sketch of the scenario is shown in
Figure A.1.
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FIGURE A.1: IoT university campus scenario - application
case study

Student, professor and employee represent instances of class User, and
each of them owns a personal profile (Profile). Clearly, a student is likely
to be interested in different services in comparison to the professor or em-
ployees. For example, a student may be interested in information related
to the classrooms for studying, the classrooms where lessons or exams will
take place, or the presence of the professor in a classroom, in order to es-
tablish whether she/he is early or late for a meeting or a lesson. An em-
ployee may instead want to monitor the state of classrooms’ occupancy.
Finally, a professor may want to be informed about his/her class sched-
ules or conferences. Consequently, each user personal profile is created to
reflect his/her role (UserRole) and function (UserFunction) within the IoT
infrastructure. In particular, students’, professors’ and employees’ profiles
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may be customized with information strictly related to their actions and
needs within the university campus (e.g., curriculum, faculty membership,
classroom preferences).

In order to exploit the services provided, each user has to be registered
with the IoTPlatform. During the registration phase, IoTPlatform requires
some personal information (e.g., first name, last name, age, role within the
university) and also provides the credentials to access the system itself in
the form of a SignatureKey. Information such as first/last name and phone
number are classified as identifiable data, whereas age and nationality are
classified as generic data, since they can be exploited, for example, for sta-
tistical purposes. An important step is that each user must give the consent
for the processing of personal information in order to let the system use
his/her preferences to customize the provided services. Such personal in-
formation will be used according to the established privacy policies (e.g.,
information can be used for a specific purpose and under particular con-
straints). All these data belong to the user profile and are stored by IoTPlat-
form.

Summarizing, the following attributes are considered, in order to define
the user profile:

• Username: is the nickname chosen by the user when he/she registers
himself/herself to IoTPlatform (it can be considered an attribute of Pro-
file); note that the username could be conceived as a pseudonym for
the users, thus improving their level of privacy

• UserIdentifier: is an identifier given by IoTPlatform to the users

• UserSession: is the session identifier currently owned by the user (i.e.,
the identifier of the last session in which the user interacted with IoT-
Platform)

• UserFunction: is the function assigned by IoTPlatform to the registered
user; for example, a user could be a consumer of the services (i.e.,
a simple customer) offered by IoTPlatform or an administrator of the
resources and information involved in the IoT infrastructure (e.g., for
statistical or monitoring purposes)

• UserSignatureKey: is the key chosen by the user during the registration
phase; the user will use such a key for future interactions with the IoT
system (i.e., login/logout operations)

• UserActionKey: is the key given to the user by IoTPlatform after the reg-
istration phase, which is used to encrypt the information exchanged
between user and IoTPlatform; note that a user could have more than
one action key, in relation to the function played at a specific moment
(e.g., a user may act both as a customer and an administrator in a
certain domain)

• UserAction: is the action currently executed by a user (e.g., registra-
tion, login, service request); each action is coupled with further at-
tributes:

– Registration (possible values yes/no): indicates whether the user
is regularly registered or not; if not, further interactions with the
IoT system must be prevented
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– Consent (possible values yes/no): indicates whether the user gave
consent to IoTPlatform to handle his/her personal data

– UpdatePreference (possible values not-specified/updated): indicates
whether the user has specified the preferences related to the IoT
services (in this case this attribute is set to updated) or not (in
this case the user does not specify any preferences, therefore no
customization is provided by IoTPlatform)

– ServiceRequest (possible values enabled/disabled): indicates
whether the user is permitted to request services of IoTPlatform
(e.g., a user may be disabled for the misuse of the services)

• PreferencesOnService: are divided in:

– PreferencesOnSecurity: specifies the security requirements and,
possibly, their priority, which is defined by means of the order
attribute, for example in the form of a decreasing scale from 1 to
4. The available properties are confidentiality, integrity, privacy,
and authentication; for each of these, user can specify a score in
the range [0:1]

– PreferencesOnQuality: specifies the required quality requirements
and, possibly their priority, which is defined by means of the or-
der attribute, as for PreferencesOnSecurity. The available proper-
ties are completeness, timeliness, accuracy, and source reputa-
tion. Note that, as well as for PreferencesOnSecurity, it is possible
to assign the same order to different properties and also a score.
The order will be used by IoTPlatform when a user makes a re-
quest for a service: the information provided by IoTPlatform will
be compliant with the desired order (e.g., the integrity of the in-
formation takes the priority with respect to privacy and confi-
dentiality).

After registration, the user downloads the application interface on
his/her smartphone, possibly equipped with technologies such as Blue-
tooth, ZigBee and/or NFC and connected to the Internet through WiFi or
3G. The service provider gives the necessary credentials to the smartphone,
which aim to guarantee access to the service itself by means of a secure
communication. Note that such credentials are instances of class UserAc-
tionKey. After the registration, the users can connect themselves to IoTPlat-
form through their smartphones or other personal devices (i.e., notebook,
tablet) using the credentials exchanged and can then communicate through
IoTPlatform with the nodes belonging to the network. The services are pro-
vided to the users taking into account both Profile and PreferenceOnService,
which can be specified by the user through the downloaded application
itself.

In this scenario, the installation of a number of nodes (i.e., locators) is
assumed; they are conceived as fixed devices to track people’s movement in
real-time. Locators are able to detect and process the signals from the users’
smartphones and, then, send data to the service provider or to other data
management infrastructures. At the same time, the data collected by the
system can be used for different purposes (i.e., performing analysis, mak-
ing decisions about the management of the university itself). For example,
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by means of classroom occupancy information, the employees may plan an
optimized distribution among courses. Another interesting analysis relates
to the use of the personal car to reach the university by both students and
other people, in order to design more efficient parking management; if the
campus provides a cafeteria service, users might express some preferences
in relation to personal tastes or intolerances, which can be taken into ac-
count in the menu definition.

Moreover, during his/her association with the university, the student or
professor may receive further information according to his/her preferences
(e.g., conferences on topics of interest). Therefore, the smartphones are also
able to interact with the smart objects; for example, they can retrieve infor-
mation from the tags placed on the shelves in the athenaeum library. In fact,
a student/professor may be guided within the campus library, in relation
to his/her topics of study or preferences, explicitly declared to the service
provider. In this case, the books or the bookshelves should be equipped
with tags, which may provide the user with information, such as the vol-
ume title, authors, year, a brief summary and so on. Moreover, the smart-
phone application may be connected with a social network, through which
users may share their own experiences or, vice versa, the administrators of
university social network page may communicate advice, university initia-
tives or other information. This scenario demonstrates the coexistence of
system and human data.

In general, nodes are referred to as the sources of the data provided to
IoTPlatform. A node is defined by the following properties and attributes:

• Registered (possible values yes/no): is an attribute which clarifies if the
node is registered or not to IoTPlatform; note that the system accepts
data both from registered and non registered sources, but it will man-
age the information provided in a different manner with respect to
user preferences

• Identifier: is an identifier given by IoTPlatform to the sources

• NodeSession: is the session identifier currently owned by the node (i.e.,
the identifier of the last session in which the node interacted with
IoTPlatform)

• Source: identifies the kind of source (e.g., sensor node, RFID, actuator)

• CommunicationMode: identifies the means of communication used in
order to transmit the data (e.g., WiFi, 3G, Ehternet)

• DataType: represents the kinds of data provided by the source; note
that a source may transmit multiple kinds of data (e.g., a double for a
temperature and a string for a reference area)

• EncryptionScheme: represents the encryption technique used by the
source for its communications with IoTPlatform; in the case of non
registered sources, the corresponding fields related to the encryption
scheme and keys are marked as undefined

• NodeSignatureKey: is the key given by the node to IoTPlatform during
the registration phase; the node will use such a key for the future
interactions with the IoT system (i.e., authentication operations)
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• NodeActionKey: is the key given to the node by IoTPlatform after
the registration phase, which is used to encrypt the information ex-
changed between node and IoTPlatform; note that a node could have
more than one action key, that relate to the function it plays at a spe-
cific moment (e.g., a node may acquire the transmitted data or only
forward a data received by another source)

• QoPmetadata: when the source sends data, IoTPlatform also begins to
perform an analysis of such information, in terms of confidentiality,
integrity, authentication, and privacy, taking into accout the kind of
source, the communication mode (e.g., a WiFi channel is considered
less secure than a wired one), and the adopted encryption scheme
(i.e., its level of robustness); as a result, a set of metadata is associated
with the information provided by each source (both registered and
non registered), which will allow the users to filter out the data they
want to receive

• DQmetadata: as for security features, IoTPlatform also analyzes the
data provided by each source in terms of completeness, accuracy,
timeliness, and reputation, considering both historical feedbacks
about the source behavior and the frequency of the information up-
dates.

In this context, the definition of specific policies, according to the users’
consesus, aims to guarantee the desired level of QoP and DQ. Such poli-
cies are stored in IoTPlatform, which provides access control, key man-
agement and enforcement capabilities. From the application scenario de-
scribed, many issues arise with regards to security, such as: how to guaran-
tee user privacy; how to ensure that information are kept confidential; how
to manage authorizations and prevent unauthorized entities from access-
ing forbidden information. A practical example of policies addressing the
emerged requirements is provided in Appendix B. Note that the case study
presented concerns all the entities defined in the model in Paragraph 3.2,
which interact among themselves in order to exchange useful information
for everyday life and long-term decisions.
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Appendix B

XML policy representation

A policy enforcement framework for NOS middleware was presented in
Paragraph 4.4. Its components and interactions have been detailed, along
with the specification of ABAC, as the adopted access control model, and
JSON, as the policy language.

However, this result has been derived from another preliminary work,
orthogonal to this thesis, in which all the policies, presented in Paragraph
4.4, for regulating the events of node/user/application access control, node
data transmission, node data processing, user/application service request,
service provision, were formalized by means of XML syntax.

In fact, policies were initially defined in XML and, later, translated into
JSON format, to allow their integration into NOS. At first sight, during
the design phase of the enforcement framework, XML was chosen due to
its wide adoption in actual interoperable systems. But, for implementation
purposes, JSON better fits to the adopted NOS technologies and libraries,
mainly in terms of efficiency.

In order to provide a complete picture of the thesis work, in the remain-
der of this appendix, the policies, formalized in Paragraph 4.4 and exempli-
fied in Paragraph 5.5 for the meteorological context, are hereby presented
in relation to the case study described in Appendix A.

B.0.1 User registration

Firstly, a student registers himself to IoTPlatform in order to exploit the ser-
vices provided, and chooses, for example, Nick as his username. The re-
quest for registration is an action performed by users and denoted by ”reg-
istration” in Listing B.1; it includes the following information as input: the
chosen username, the chosen key (i.e., UserSignatureKey), the function for
which he wants to register in order to exploit the provided services (e.g.,
Student), and the consent for handling his data.

1 < a c t i o n type== ’ r e g i s t r a t i o n ’>
2 <input>
3 <user>
4 <username>Nick</username>
5 <signaturekey>∗∗∗∗∗</signaturekey>
6 <funct ion>Student</funct ion>
7 <consent>yes</consent>
8 </user>
9 </input>

10 </ a c t i o n >

LISTING B.1: Student registration

IoTPlatform responds with a confirmation message (the action per-
formed is denoted by ”registration response”) to the requesting user, in
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which a summary of the registration is included (i.e., it confirms the re-
ceived username and function) and of the successful actions performed,
which are: the assignment of an identifier and a session, the request for the
consent for interacting with the IoT system (action ”consent acquisition”),
the registration within IoTPlatform and enabling the request for services.
Furthermore, IoTPlatform informs the user about the possibiliy of specify-
ing his preferences about the QoP and the DQ levels of the information pro-
vided to him in the future interactions (at this time, the preferences are set
to ”not specified”). Finally, IoTPlatform provides the user with the proper
UserActionKey (see Listing B.2). In other words, the service provider gives
the user smartphone the required credentials, which aim to guarantee ac-
cess to the service itself by means of secure communications.

1 < a c t i o n type== ’ r e g i s t r a t i o n response ’>
2 <user>
3 <username>Nick</username>
4 < i d e n t i f i e r >34567</ i d e n t i f i e r >
5 < s e s s i o n>11111</ s e s s i o n>
6 <funct ion>Student</funct ion>
7 < a c t i o n s consent= ’ yes ’ r e g i s t r a t i o n = ’ yes ’
8 p r e fe r e n c es= ’ not s p e c i f i e d ’
9 s e r v i c e r e q u e s t = ’ enabled ’>

10 </ a c t i o n s >
11 <act ionkey>∗∗∗∗∗</act ionkey>
12 </user>
13 </ a c t i o n >

LISTING B.2: Student registration response

After the registration phase, the user may specify his preferences, which
are elaborated by IoTPlatform in the way presented in Listing B.3 which is
an example of student profile. In this example, the student requires a high
level of confidentiality (order 1 and score equal or greater than 0.5), and
gives less importance to integrity (order 2 and score equal or greater than
0.6), privacy and authentication (order 3 and 4, and scores equal or greater
than 0.8); while, as regards data quality, he requires a high level of com-
pleteness (order 1 and score equal or greater than 0.8) and then timeliness
(order 2 and score equal or greater than 0.5), accuracy (order 3 and score
equal or greater than 0.8), and precision (order 4 and score equal or greater
than 0.6). Note that the attribute related to the preferences is set to ”up-
dated” and the user profile definition is the action performed by IoTPlat-
form. Summarizing, after the registration, the users can connect themselves
to IoTPlatform through their personal devices using the exchanged creden-
tials and can then communicate with IoTPlatform. The services are provided
to the users taking into account both Profile and PreferenceOnService, which
can always be modified by the user through the downloaded application
itself.

1 <users>
2 <user>
3 <username>Nick</username>
4 < i d e n t i f i e r >34567</ i d e n t i f i e r >
5 <funct ion>Student</funct ion>
6 < u n i v e r s i t y >
7 < f a c u l t y >Computer Sc ience</ f a c u l t y >
8 <department>Sc ience</department>
9 <classroom annex>Annex A1

10 </classroom annex>
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11 <classroom prefer red>Classroom 4
12 </classroom prefer red>
13 < t r a v e l >Bus</ t r a v e l >
14 </ u n i v e r s i t y >
15 < c a f e t e r i a s e r v i c e >
16 < i n t o l e r a n c e >gluten</ i n t o l e r a n c e >
17 < i n t o l e r a n c e >milk products</ i n t o l e r a n c e >
18 </ c a f e t e r i a s e r v i c e >
19 <act ionkey>∗∗∗∗∗</act ionkey>
20 <signaturekey>∗∗∗∗∗</signaturekey>
21 < a c t i o n s consent= ’ yes ’ r e g i s t r a t i o n = ’ yes ’
22 p r e fe r e n c es= ’ updated ’
23 s e r v i c e r e q u e s t = ’ enabled ’>
24 </ a c t i o n s >
25 < p r e f e r e n c e o n s e c u r i t y>
26 < c o n f i d e n t i a l i t y order= ’ 1 ’> 0 . 5 </ c o n f i d e n t i a l i t y >
27 < i n t e g r i t y order= ’ 2 ’> 0 . 6 </ i n t e g r i t y >
28 <privacy order= ’ 3 ’> 0 . 8 </privacy>
29 < a u t h e n t i c a t i o n order= ’ 4 ’> 0 . 8 </ a u t h e n t i c a t i o n >
30 </p r e f e r e n c e o n s e c u r i t y>
31 <pre ferenceonqual i ty>
32 <completeness order= ’ 1 ’> 0 . 8 </completeness>
33 < t i m e l i n e s s order= ’ 2 ’> 0 . 5 </ t i m e l i n e s s >
34 <accuracy order= ’ 3 ’> 0 . 8 </accuracy>
35 < p r e c i s i o n order= ’ 4 ’> 0 . 6
36 </ p r e c i s i o n >
37 </pre ferenceonqual i ty>
38 </user>
39 </ users>

LISTING B.3: Student profile definition within IoTPlatform

For each registered user, IoTPlatform stores the information just de-
scribed within the tags <user>; as a consequence, a block <user> is included
for all the registered users in the parent tag <users>.

B.0.2 Node registration

If a sensor node, in charge of tracing the number of students who enter
in/exit from a classroom, wants to register itself with IoTPlatform, it has to
send a request, as presented in Listing B.4. It has to specify what kind of
source it is, what type of communication mode it will use, the kinds of data
it will transmit, and, finally, the encryption scheme to be used for future
communication along with NodeSignatureKey owned by the node (e.g., in a
pre-shared key distribution). As regards NodeSignatureKey, it may be based
on a public-key algorithm, therefore the node sends to IoTPlatform its public
NodeSignatureKey, while it preserves the private NodeSignatureKey. Such a
system permits the verification of the node identity (see Listing B.7).

1 < a c t i o n type== ’ r e g i s t r a t i o n ’>
2 <input>
3 <node>
4 <source>sensor node</source>
5 <communicationmode> w i f i </communicationmode>
6 <datatype> i n t e g e r </datatype>
7 <encryptionscheme>RSA</encryptionscheme>
8 <signaturekey>∗∗∗∗∗</signaturekey>
9 </node>

10 </input>
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11 </ a c t i o n >

LISTING B.4: Sensor node registration

IoTPlatform replies to the node request by providing a message that con-
tains the session, NodeActionKey, and the node identifier, established by IoT-
Platform and encrypted with NodeSignatureKey (see Listing B.5).

1 < a c t i o n type== ’ node r e g i s t r a t i o n response ’>
2 <node>
3 < s e s s i o n>22222</ s e s s i o n>
4 < i d e n t i f i e r >encrypt (12345 , s ignaturekey ) </ i d e n t i f i e r >
5 <act ionkey>∗∗∗∗∗</act ionkey>
6 </node>
7 </ a c t i o n >

LISTING B.5: Sensor node registration response provided
by IoTPlatform

Within IoTPlatform, the registered and non registered nodes are stored
as presented in Listing B.6, in which a non registered RFID is also included,
besides the previous sensor node. As regards the non registered source,
an identifier is also assigned and stored (see Listing B.7), since IoTPlatform
is able to recognize a node that had already sent some data. QoPmetadata
and DQmetadata may be further assigned by IoTPlatform during its activity,
when sources start to send data. Note that, presumably, a registered source
will present higher levels of security and quality for its data with respect to
a non registered one.

1 <nodes>
2 <node r e g i s t e r e d = ’ yes ’>
3 < i d e n t i f i e r >12345</ i d e n t i f i e r >
4 <source>sensor node</source>
5 <communicationmode> w i f i </communicationmode>
6 <datatype> i n t e g e r </datatype>
7 <encryptionscheme>RSA</encryptionscheme>
8 <act ionkey>∗∗∗∗∗</act ionkey>
9 <signaturekey>∗∗∗∗∗</signaturekey>

10 <secur i tymetadata>
11 < c o n f i d e n t i a l i t y > 0 . 8 </ c o n f i d e n t i a l i t y >
12 < i n t e g r i t y > 0 . 8 </ i n t e g r i t y >
13 < a u t h e n t i c a t i o n > 0 . 6 </ a u t h e n t i c a t i o n >
14 <privacy> 0 . 4 </privacy>
15 </secur i tymetadata>
16 <qual i tymetadata>
17 <completeness> 0 . 7 </completeness>
18 <accuracy> 0 . 8 </accuracy>
19 < t i m e l i n e s s > 0 . 7 </ t i m e l i n e s s >
20 < p r e c i s i o n > 0 . 6 </ p r e c i s i o n >
21 </qual i tymetadata>
22 </node>
23

24 <node r e g i s t e r e d = ’ no ’>
25 < i d e n t i f i e r >12346</ i d e n t i f i e r >
26 <source>RFID</source>
27 <datatype>double</datatype>
28 <encryptionscheme>undefined</encryptionscheme>
29 <act ionkey>undefined</act ionkey>
30 <signaturekey>undefined</signaturekey>
31 <secur i tymetadata>
32 < c o n f i d e n t i a l i t y >0</ c o n f i d e n t i a l i t y >
33 < i n t e g r i t y >0</ i n t e g r i t y >
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34 < a u t h e n t i c a t i o n >0</ a u t h e n t i c a t i o n >
35 <privacy>0</privacy>
36 </secur i tymetadata>
37 <qual i tymetadata>
38 <completeness> 0 . 5 </completeness>
39 <accuracy> 0 . 4 </accuracy>
40 < t i m e l i n e s s > 0 . 8 </ t i m e l i n e s s >
41 < p r e c i s i o n > 0 . 4 </ p r e c i s i o n >
42 </qual i tymetadata>
43 </node>
44 </ nodes>

LISTING B.6: Node storage within IoTPlatform

For each node, IoTPlatform stores the information just described with the
tags <node>; as a consequence, a block <node> is included for all the nodes
in the parent tag <nodes>.

B.0.3 Node access control

When the interaction between node and IoTPlatform begins, the action is
classified as ”access control”. If the node is already registered, as in this
case, the task to be performed by IoTPlatform is the verification of NodeS-
ignatureKey by means of the public-key algorithm previously introduced;
in fact, the node sends its identifier encrypted along with its public NodeS-
ignatureKey. As stated, the registration phase is not mandatory for nodes,
therefore there would be one or more sources for which the system has no
information, but which are allowed to send data; such information will be
managed by IoTPlatform depending on the levels of QoP and DQ requested
by the users. If a source has already interacted with IoTPlatform, it will
be recognized by the identifier previously assigned; if instead, it is still an
unknown source, IoTPlatform assigns a new identifier in response (which
is stored in IoTPlatform, as described in Listing B.6). Listings B.7 and B.8
expresses this behavior in XML syntax, considering the registered sensor
node previously described. Note that the response includes the session for
all kinds of sources. In such a way, IoTPlatform knows at each time the nodes
currently connected to it, since in an IoT context the nodes continuosly join
and leave the network.

It is worth remarking that, in the XML code presented here, the tag <
input> identifies the information obtained, while the tags <security> and <
verification> highlight the security tasks performed.

1 < a c t i o n type= ’ a c c e s s c o n t r o l ’>
2 <input>
3 <node>
4 < i d e n t i f i e r > ’ ’ ||12345 || encrypt (12345 , s ignaturekey ) </

i d e n t i f i e r >
5 <signaturekey>∗∗∗∗∗</signaturekey>
6 </node>
7 </input>
8 < s e c u r i t y >
9 < v e r i f i c a t i o n >

10 < i f r e g i s t r a t i o n = ’ r e g i s t e r e d == ’ yes ’ ’>
11 <signaturekey>∗∗∗∗∗</signaturekey>
12 < i d e n t i f i e r >decrypt (12345 , s ignaturekey ) </ i d e n t i f i e r >
13 < e l s e />
14 <signaturekey>undefined</signaturekey>
15 < i d e n t i f i e r >12345</ i d e n t i f i e r >
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16 </ i f >
17 </ v e r i f i c a t i o n >
18 </ s e c u r i t y >
19 </ a c t i o n >

LISTING B.7: Sensor node access control

1 < a c t i o n type= ’ a c c e s s c o n t r o l response ’>
2 <node>
3 < s e s s i o n>33333</ s e s s i o n>
4 < i f r e g i s t r a t i o n = ’ r e g i s t e r e d == ’ yes ’ ’>
5 <a c c e s s>yes</a c c e s s>
6 < e l s e i f r e g i s t r a t i o n = ’ r e g i s t e r e d == ’ no ’ ’>
7 <a c c e s s>yes</a c c e s s>
8 < e l s e >
9 < i d e n t i f i e r >12346</ i d e n t i f i e r >

10 </ i f >
11 </node>
12 </ a c t i o n >

LISTING B.8: Sensor node access control response

B.0.4 Node data transmission

When the sensor node sends the data d relating to the classroom occupancy
to IoTPlatform, it is stored in a repository as a ”raw” data, waiting to be
analyzed. The kind of action performed is defined as ”transmission”. IoT-
Platform receives, as input from the node, its identifier, the data d and the
type of data dt which is being transmitted (e.g., integer). If the source is reg-
istered, as it is for the sensor node, d and dt are encrypted with the proper
NodeActionKey, while the identifier is encrypted with NodeSignatureKey. At
this stage, no data verification has to be performed, since the data is not yet
analyzed. Listing B.9 represents the XML syntax of the described behavior,
where the tag <message> identifies the content of the transmitted packet.

1 < a c t i o n type== ’ t ransmiss ion ’>
2 <input>
3 <message>
4 < s e s s i o n>33333</ s e s s i o n>
5 <node>
6 < i d e n t i f i e r >12345 || encrypt (12345 , s ignaturekey ) </

i d e n t i f i e r >
7 </node>
8 <data>d || encrypt ( d , act ionkey ) </data>
9 <datatype>dt || encrypt ( dt , act ionkey )

10 </datatype>
11 </message>
12 </input>
13 </ a c t i o n >

LISTING B.9: Sensor node data transmission

B.0.5 Data processing

Once the data are stored in the ”raw” data repository, they are sent to the
enforcement framework, which performs the ”data evaluation” task. For
registered sources, IoTPlatform decrypts the received encrypted data d and
the data type dt using NodeActionKey and the encryption algorithm is stored
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by IoTPlatform after the registration phase (Listing B.4). Then the data are
also the object of the ”score assessment” action and sent to specific modules
for QoP and DQ level evaluation. Score assessment is also performed for
the data received by non registered sources; they have no NodeActionKey,
therefore no decryption is performed on data. In such a situation the data is
not discarded, but the lower reputation of the source will influence the use
in the user service provision. The XML representation is shown in Listing
B.10.

1 < a c t i o n type== ’ data process ing ’>
2 <input>
3 <message>
4 < s e s s i o n>33333</ s e s s i o n>
5 <node>
6 < i d e n t i f i e r >12345 || encrypt (12345 , s ignaturekey ) </

i d e n t i f i e r >
7 </node>
8 <data>d || encrypt ( d , act ionkey ) </data>
9 <datatype>dt || encrypt ( dt , act ionkey )

10 </datatype>
11 </message>
12 </input>
13 <data evaluat ion>
14 < i f cond= ’ node . act ionkey != undefined ’>
15 <data>decrypt ( d , act ionkey ) </data>
16 <datatype>decrypt ( dt , node . act ionkey )
17 </datatype>
18 <score assessment><data>d</data></score assessment>
19 < e l s e i f cond= ’ act ionkey == undefined ’>
20 <score assessment><data>d</data></score assessment>
21 < e l s e />
22 <discard/>
23 </ i f >
24 </data evaluat ion>
25 </ a c t i o n >

LISTING B.10: Sensor node data processing

Summarizing, node interactions with IoTPlatform are represented in the
sequence diagram in Figure B.1.

B.0.6 User access control

Once the users are registred with IoTPlatform and have an associated profile,
then they can request the services provided by the IoT system, in compli-
ance with the owned function, defined during the registration phase.

For the users, the registration phase is mandatory (note that a user who
does not want to provide personal information can register with a minimal
profile). In fact, user interaction with IoTPlatform has to be controlled in
order to customize the services provided and also to protect the exchanged
information. The student accesses the IoT system through his username,
identifier and UserSignatureKey. Moreover, the student registers himself for
a session playing a specific function (in this case, a student), therefore the
credentials have to match the desired function, since further authorization
is derived by IoTPlatform from this information. Also in this case, the task
performed by IoTPlatform is the verification of credentials. For example, the
student previously described accesses the IoT system as presented in List-
ing B.11. The first action performed is the evaluation of the existence of the
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FIGURE B.1: Node interactions with IoT platform

user with username Nick with the specified student function and identi-
fier in the repository. Note that the service request and provision depend
on the function currently performed by the user himself, since a user may
be registered under different functions. In fact, for example, the university
dean can be also a professor, but, in comparison to the professor function,
the dean may access more information.

1 < a c t i o n type== ’ a c c e s s c o n t r o l ’>
2 <input>
3 <user>
4 <username>Nick</username>
5 < i d e n t i f i e r >encrypt (34567 , s ignaturekey ) </ i d e n t i f i e r >
6 <signaturekey>∗∗∗∗∗</signaturekey>
7 <funct ion>Student</funct ion>
8 </user>
9 </input>

10 < s e c u r i t y >
11 < v e r i f i c a t i o n >
12 <signaturekey>∗∗∗∗∗</signaturekey>
13 <funct ion>Student</funct ion>
14 < i d e n t i f i e r >decrypt (12345 , s ignaturekey ) </ i d e n t i f i e r >
15 </ v e r i f i c a t i o n >
16 </ s e c u r i t y >
17 </ a c t i o n >

LISTING B.11: Student access control
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B.0.7 User service request

A student, who has registered, can ask for the services made available by
IoTPlatform; for example, through the mobile application installed on his
personal devices, he wants to be aware about the classroom occupancy, in
order to find a place for studying. The request for this service is made in a
secure manner (i.e., the information are encrypted with UserActionKey sent
in the registration phase). IoTPlatform receives in input his username, his
function and the requested service ClassroomOccupancy. Listing B.12 shows
the corresponding XML representation.

In order to obtain remote services and resources, the user access at-
tempts are checked against the policies considering: the requester current
session id, the activated functions, and the available permissions. More-
over, as regards the service invocation, the services are treated as object
instances identified by a hierarchical name space (e.g. a URI). A service is
conceived as a piece of software able to fulfill a specific task managing the
available data. There is no direct interaction among users and services, but
a well-defined programming interface is needed through a software appli-
cation. Services can be accessed by users once they are published as object
instances.

1 < a c t i o n type== ’ s e r v i c e request ’>
2 <input>
3 <message>
4 < s e s s i o n>44444</ s e s s i o n>
5 <user><username>Nick</username>
6 < i d e n t i f i e r >34567</ i d e n t i f i e r >
7 <funct ion>Student</funct ion></user>
8 < s e r v i c e >encrypt ( ClassroomOccupancy , act ionkey ) </ s e r v i c e >
9 </message>

10 </input>
11 </ a c t i o n >

LISTING B.12: Student service request

B.0.8 Service provision

User interactions with the IoT system are complex, since the data manage-
ment must be customized depending on user functions and preferences in
terms of security and data quality. Two functions are considered, for two
kinds of users:

• A student, who wants to exploit the classroom occupancy service
ClassroomOccupancy provided by IoTPlatform through his mobile de-
vice.

The service request, previously encrypted with the proper UserAction-
Key, has to be decrypted, in order to verify that it is a valid request; if
not, the request is discarded by the system. In order to verify the va-
lidity of the request, IoTPlatform compares the function played by the
requesting user and the function provided by the system itself (i.e.,
the student): if the requesting user is not a student, then the request is
discarded (as indicated by the tag <discard>); whereas, if the request-
ing user corresponds to a student, then IoTPlatform proceeds with the
”service verification” action, in which the service ClassroomOccupancy
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request is decrypted with the proper UserActionKey. At this point,
the system retrieves (through the function ”getData”) the data cor-
responding to the requested service ClassroomOccupancy (temporarily
stored in the variable named ”listOfData”) and filters them on the ba-
sis of user preferences in terms of security and quality levels (specified
in Listing B.3). In Listing B.13, the XML code expresses this behav-
ior defining a function named ”dataComplianceForUser” with two
parameters (the source of the data and the username); this function
retrieves the QoP and DQ scores related to the source and compares
them with the user preferences; as a result, only the compliant data
are sent to the student (included in the tag <result>), the others are rep-
resented by an empty <result> tag. Note that the proposed language
is independent from the implementation of the presented functions
(e.g., ”verification”, ”dataComplianceForUser”).

1 < a c t i o n type== ’ s e r v i c e provis ion ’>
2 <input>
3 <message>
4 < s e s s i o n>44444</ s e s s i o n>
5 <user><username>Nick</username>
6 < i d e n t i f i e r >34567</ i d e n t i f i e r >
7 <funct ion>Student</funct ion></user>
8 < s e r v i c e >encrypt ( ClassroomOccupancy , act ionkey ) </

s e r v i c e >
9 </message>

10 </input>
11 < s e c u r i t y >
12 < i f cond= ’ user . funct ion != ’ Student ’ ’>
13 <discard/>
14 < e l s e />
15 < s e r v i c e v e r i f i c a t i o n >
16 < s e r v i c e >decrypt ( ClassroomOccupancy , act ionkey ) </ s e r v i c e >
17 </ s e r v i c e v e r i f i c a t i o n >
18 </ i f >
19 </ s e c u r i t y >
20 < r e s u l t s >
21 <dec lare name= ’ l i s t O f D a t a ’
22 func t ion= ’ getData ’ s e r v i c e = ’ ClassroomOccupancy ’/>
23 <foreach item= ’ data ’ i tems= ’ l i s t O f D a t a ’>
24 < i f funct ion= ’ dataComplianceForUser ’
25 data= ’ ClassroomOccupancy . data ’ user= ’ Nick ’>
26 < r e s u l t >data</ r e s u l t >
27 < e l s e />
28 < r e s u l t ></ r e s u l t >
29 </ i f >
30 </ r e s u l t s >
31 </ a c t i o n >

LISTING B.13: Service provision - Student

• An employee with username Bob, who wants to analyze the student
preferences and behaviors in terms of the times at which they occupy
the classrooms for studying.

With respect to the student, the employee can receive not only the
data related to the occupancy of the classrooms at the requesting time
(i.e., in real time), but all the data of a specific period of time (depend-
ing on the request). Listing B.14 describes the employee behavior; he
is able to access all data without filtering, in order to perform further
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analysis (e.g., statistics). As regards the information disclosed, the
employee should not be able to see data that could allow him to iden-
tify the students (classified as identifiable data). For statistical pur-
poses, he does not need to know the specific identity of the students,
in agreement with privacy law. Finally, note that, as for the case of the
student, it is only possible to access data that are compliant with the
function played.

1 < a c t i o n type== ’ s e r v i c e provis ion ’>
2 <input>
3 <message>
4 < s e s s i o n>55555</ s e s s i o n>
5 <user><username>Bob</username>
6 < i d e n t i f i e r >56789</ i d e n t i f i e r >
7 <funct ion>Employee</funct ion></user>
8 < s e r v i c e >encrypt ( ClassroomOccupancy , act ionkey ) </ s e r v i c e >
9 </message>

10 </input>
11 < s e c u r i t y >
12 < i f cond= ’ user . funct ion != ’ Employee ’ ’>
13 <discard/>
14 < e l s e />
15 < s e r v i c e v e r i f i c a t i o n >
16 < s e r v i c e >decrypt ( ClassroomOccupancy , +act ionkey ) </ s e r v i c e >
17 </ s e r v i c e v e r i f i c a t i o n >
18 </ i f >
19 </ s e c u r i t y >
20 < r e s u l t s >
21 <dec l are name= ’ l i s t O f D a t a ’ funct ion= ’ getData ’ s e r v i c e = ’

ClassroomOccupancy ’/>
22 <foreach item= ’ data ’ i tems= ’ l i s t O f D a t a ’>
23 < r e s u l t >data</ r e s u l t >
24 </ r e s u l t s >
25 </ a c t i o n >

LISTING B.14: Service provision - Employee

Summarizing, user interactions with IoTPlatform are represented in the
sequence diagram in Figure B.2.

B.0.9 Service request violation

Since the goal of an enforcement mechanism is to force the system to be
compliant with the policies defined, it then must initiate the proper coun-
termeausers when an attempt to attack the system is detected (e.g., a user
tries to request services or perform actions denied to him/her).

For example, if a user, registered with the function professor and user-
name Alice, attempts to access the information related to the food intoler-
ances of his/her students, the enforcement mechanism must prevent the
disclosure of the requested data, which are only available, for instance, to
the cafeteria service employees (presumably in anonymous form). Listing
B.15 shows the IoTPlatform behavior in such a situation. Note that, with re-
spect to Listing B.13, IoTPlatform does not proceed with the retrieval of the
data corresponding to the requested service, since the couple username-
function does not match the policy established for such a service. More-
over, the enforcement framework may log such kinds of events in order to
inform the system administrators of potential violations.



164 Appendix B. XML policy representation

FIGURE B.2: User interactions with IoT platform

1 < a c t i o n type== ’ s e r v i c e provis ion ’>
2 <input>
3 <message>
4 < s e s s i o n>666666</ s e s s i o n>
5 <user><username>Al ice</username>
6 < i d e n t i f i e r >45678</ i d e n t i f i e r >
7 <funct ion>P ro fes so r</funct ion></user>
8 < s e r v i c e >encrypt ( StudentFoodIntolerance , ∗∗∗∗∗)</ s e r v i c e >
9 </message>

10 </input>
11 < s e c u r i t y >
12 < i f cond= ’ user . funct ion != ’ Pro fe sso r ’ ’>
13 <discard/>
14 < e l s e />
15 < s e r v i c e v e r i f i c a t i o n >
16 < s e r v i c e >decrypt ( StudentFoodIntolerance , ∗∗∗∗∗)</ s e r v i c e >
17 </ s e r v i c e v e r i f i c a t i o n >
18 </ i f >
19 </ s e c u r i t y >
20 < r e s u l t s >
21 < r e s u l t >Requested data are not a v a i l a b l e f o r a user

r e g i s t e r e d as a p r o fe s so r</ r e s u l t >
22 </ r e s u l t s >
23 </ a c t i o n >

LISTING B.15: Service request violation
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