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Abstract

The Internet of Things (IoT) is receiving considerable amount of attention from both
industry and academia due to the business models that it enables and the radical
changes it introduced in the way people interact with technology. The widespread
adaption of IoT in our everyday life generates new security and privacy challenges.

In this thesis, we focus on ”access control in IoT”: one of the key security services
that ensures the correct functioning of the entire IoT system. We highlight the key
differences with access control in traditional systems (such as databases, operating
systems, or web services) and describe a set of requirements that any access control
system for IoT should fulfill. We demonstrate that the requirements are adaptable
to a wide range of IoT use case scenarios by validating the requirements for access
control elicited when analyzing the smart lock system as sample use case from smart
home scenario. We also utilize the CAP theorem for reasoning about access control
systems designed for the IoT.

We introduce MQTT Security Assistant (MQTTSA), a tool that automatically detects
misconfigurations in MQTT-based IoT deployments. To assist IoT system developers,
MQTTSA produces a report outlining detected vulnerabilities, together with (high
level) hints and code snippets to implement adequate mitigations. The effectiveness
of the tool is assessed by a thorough experimental evaluation.

Then, we propose a lazy approach to Access Control as a Service (ACaaS) that allows
the specification and management of policies independently of the Cloud Service
Providers (CSPs) while leveraging its enforcement mechanisms. We demonstrate the
approach by investigating (also experimentally) alternative deployments in the IoT
platform offered by Amazon Web Services on a realistic smart lock solution.
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Chapter 1

Introduction

The Internet of Things (IoT) is a wide ecosystem of interconnected services and devices that
collect, exchange and process data, transforming the physical world and the way we live as a
whole. It is a significant paradigm shift that offers many opportunities in different contexts ranging
from home automation to manufacturing. At the same time these technologies presents challenges
for security and privacy given the amount of potentially sensitive data such systems exchanged
and process over long periods of time. Indeed, the backbone of the IoT is supported by a set of
communication/messaging protocols that enable “Things” to exchange data among them or with
servers hosted at the Edge or at the Cloud level.

While IoT is already making an impact on the global economy, market forecasts note that both
IoT and the business models associated with it are not mature enough at this point [IEC16b]. It
is believed (see, e.g., [IEC16a]) that the true potential of the IoT will be achieved only if the
problems of today IoT solutions are solved or, at least, alleviated. The most important issues of
IoT implementations include interoperability, latency, safety, security, trust, and privacy. If the
problems related to guarantee these properties are not adequately addressed, Gartner predicts that
by 2020, 80% of all IoT projects will fail at the implementation stage [IEC16b].

The IoT holds the promise to bring huge benefits for users, industry, and society by combining
the capabilities of collecting large amount of data over long periods of time with substantial
processing capabilities and low-latency communication. It is a combination of heterogeneous
technologies, such as cloud, edge and mobile computing together with communication protocols
for resource constrained devices (e.g., MQTT [Loc10]). The convergence of these technologies
raises significant security and privacy concerns. To mitigate these concerns, access control plays a
key role for providing controlled information sharing — a necessary condition to build privacy in
IoT solutions and integrity guarantees — a crucial pre-requisite for the correct functioning of an
entire IoT system.

Traditional approaches to access control (see, e.g., [SDV00]) are not adequate for IoT due to
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several sources of complexity, including the heterogeneity and large number of connected devices
(e.g, different types of sensors distributed in many locations), resource constraints (on processing,
storage and communication), interaction patterns (from stable and long-lived to casual and short-
lived), and augmented context awareness (such as time, location, and mode of operation of a
system) [OMEO17a]. As a result, the management and enforcement of access control policies
become daunting tasks that prevent the deployment of secure and privacy-aware IoT solutions on
hinder their adoption by users because of a lack of trust.

One of the most important approaches to ensure suitable levels of service to fulfill the properties
above stems from cloud computing and its combination with edge computing. Edge-cloud IoT
solutions can be supported by

• Private Providers—owned and maintained by the private entities such as IoT solution’s
manufacturer to provide customized, use-case specific services to the customers.

• Public Providers—-owned and maintained by public cloud service providers (CSPs), such
as Amazon, Google, and Microsoft to offer a cornucopia of well-engineered and widely
tested security mechanisms (e.g., Identity and Access management).

Both present challenges for the security and privacy of data and resources. The lack of built in
security mechanisms in IoT devices, some of these challenges are discussed below (because they
are resources constrained) put more responsibility on the IoT platform service provider. Below
are the main challenges that lead to inadequate security posture for IoT platforms supported by
private providers.

• The fact that developers focus on functionalities and time-to-market rather than analyzing
the security implications of the design and implementation choices (e.g., it is frequent
that IoT prototypes whose security has not been assessed, find their way to production
environments).

• The lack of security warning and most importantly hints to patch potential vulnerabilities in
components deployed with insecure configuration.

Similarly, the IoT platforms offered by the public providers suffer serious drawbacks.

• They offer limited support for policy administration.

• They are based on proprietary policy languages (which increase the risk of vendor lock-in)
for policy specification and evaluation.

• They have limited expressiveness in specifying complex authorization conditions that
depend on a multitude of resources and contextual attributes [AMRZ18b].

10



To improve the security of communications in IoT deployments based on platforms offered by
private providers, we investigate the underlying publish and subscribe communication paradigm in
particular the MQTT (Message Queuing Telemetry Transport) protocol and introduce an MQTT
assessment tool, that is capable of (a) detecting potential vulnerabilities in MQTT brokers by
automatically instantiating a set of attack patterns to expose known vulnerabilities and (b) returning
a set of mitigation measures at different level of details from natural language descriptions to code
snippets that can be cut-and-paste in actual deployment. Similarly, to alleviate the drawback of
IoT platforms by public providers, we propose a lazy approach to Access Control as a Service
(ACaaS) tailored to IoT solutions and built on top of existing IoT platforms. ACaaS allows one to
outsource the administration and enforcement of access control policies to a trusted third party.
The advantages of ACaaS are several and include a comprehensive and uniform support for policy
administration together with an expressive and high-level (independent of a particular CSP) policy
specification language.

1.1 Contributions

The main contributions of this thesis are described below, grouped according to their thematic
target:

• Requirements for access control systems in IoT—access control has been traditionally used
to guarantee confidentiality and integrity, we have selected a smart lock system in the smart
home domain as the reference application to elicit the requirements of the access control
solutions for IoT.

• MQTTSA—An assessment tool for MQTT-based IoT deployment supported by private
providers. The idea is to improve the security posture of IoT deployments and increase the
security awareness of developers by providing accurate descriptions of the security issues
and related mitigation measures.

• A lazy approach to Access Control as a Service (ACaaS) tailored to IoT solutions supported
by public providers via outsourcing the administration and enforcement of access control
policies to a trusted third party.

• SECUREPG extension for IoT—a policy authoring framework that allows users to configure,
analyze and deploy their access control policies in public cloud service providers to assist
users in their configurations.

• The Validation and Verification of ACaaS. The validity of approach in several use case
scenarios of IoT and also with the help of the CAP Theorem. Similarly the verification of
the approach is performed by a thorough experimental evaluation.

11



1.2 Thesis Structure

The outline of the thesis are as follows.

Chapter 2 -presents some basic concepts, which are instrumental to the definition of the proposed
tools and the validation of the flexibility and adequacy of our approach,

1. CAP Theorem—used by distributed system designers to critique the design decisions.

2. MQTT Protocol—the most widely used IoT communication protocol

3. SECUREPG—a policy authoring framework for cloud environment

4. Amazon Web Services (AWS) IoT platform—a widely used cloud and edge IoT solution by
Amazon Web Services (AWS).

Chapter 3 - analyzes a realistic smart lock solution and identifies the main requirements that
access control systems for IoT should satisfy. The requirements are validated against a wide range
of IoT use case scenarios.

Chapter 4 - uses the CAP theorem to investigate different possible design decisions. The CAP
Theorem is typically used to identify the necessary trade-offs in the design and development
of distributed systems, mainly databases and web applications. We use the CAP theorem for
reasoning about access control systems designed for IoT.

Chapter 5 - presents the MQTT Security Assistant (MQTTSA)—a tool that automatically detects
misconfigurations in MQTT-based IoT deployments. The Message Queuing Telemetry Transport
(MQTT) protocol is one of the most widely used IoT communication protocols. To assist IoT
system developers while deploying IoT solutions on platforms offered by private providers,
MQTTSA produces a report outlining detected vulnerabilities, together with (high level) hints
and code snippets to implement adequate mitigations.

Chapter 6 - presents a thorough experimental evaluation of MQTTSA by first considering a
substantial number of MQTT brokers exposed to the Internet and then an MQTT broker under our
control featuring five different configurations.

Chapter 7- proposes a lazy approach to ACaaS that allows the specification and management of
policies independently of the provider while leveraging its enforcement mechanism. In case of
IoT platforms offered by public providers, the security mechanism available in the cloud have
been extended in IoT with shortcomings with respect to the management and enforcement of
access control policies. Access Control as a Service (ACaaS) is emerging as a service to overcome
these difficulties. We extend SECUREPG—a policy authoring framework that allows users to
configure, analyze and deploy their access control policies in public cloud service providers to
assist users in their configurations.
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Chapter 8 - identifies the possible deployment models that exploits the capabilities of cloud
and edge computing. However, selecting a deployment model is a complex task that requires
answering several research questions. To answer these questions, we present a realization of
the deployment models using the smart lock system introduced in Chapter 3. We present an
experimental evaluation of the deployment models to assess their impact on the performance of
the IoT system.

Chapter 9 -discusses related work to the access control solutions for smart lock systems and
smart home applications, the possible architectural choices, analysis of access control mechanism
for IoT and performance metrics to evaluate an access control mechanism for IoT.

Chapter 10 -draws some conclusions about the work done and discusses future developments.

1.3 Declaration

Most of the material in this thesis has already been published in scientific venues.

More in details, the work presented in Chap. 4 is co-authored with Silvio Ranise and Umberto
Morelli and is submitted in an upcoming conference.

The work presented in Chap. 5 and 6 is inspired by a collaboration with Andrea Palmieri and
Paolo Prem (University of Trento) and is based on [PPR+19], coauthored with Andrea Palmieri,
Paolo Prem, Silvio Ranise and Umberto Morelli.

Finally, the work presented in Chapter 3, 7 and 8 is coauthored with Umberto Morelli, Silvio
Ranise and Nicola Zannone and is currently under process for Journal publication and is based on
the our already published works [AMRZ18a], [AR18].

1.4 Publications

1. Tahir Ahmad, Umberto Morelli, Silvio Ranise, Nicola Zannone, ”A Lazy Approach to Ac-
cess Control as a Service (ACaaS) for IoT: An AWS Case Study.” In 23rd ACM Symposium
on Access Control Models and Technologies (SACMAT), Indianapolis, USA.

2. Tahir Ahmad, Silvio Ranise, “Validating requirements of access control for cloud-edge
IoT solutions (short paper)”, In International Symposium on Foundations and Practice of
Security, Montreal, Canada.

3. Andrea Palmieri, Paolo Prem, Silvio Ranise, Umberto Morelli, Tahir Ahmad, “MQTTSA: A
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Chapter 2

Background

In order to better understand our approach, this chapter provides an overview of main technologies
and concepts we use. In Sect. 2.1 we start with CAP Theorem that is later used for reasoning
about access control systems for IoT. Sect. 2.2 presents the survey on widely used implementation
of publish-subscribe system in cloud-edge IoT solutions i.e. MQTT. In Sect. 2.3, we present
SecurePG, a policy authoring framework for cloud environment. In this work, we have extended
SecurePG to support IoT deployments. and lastly in Sect. 2.4, we look at Amazon Web Services
(AWS) IoT platforms for cloud-edge IoT solutions, namely, AWS IoT and Greengrass. Since, it is
one of the more advanced solution available on the market and allows us to perform a thorough
validation of the flexibility and adequacy of our approach. We also discuss some limitations
encountered in using AWS IoT and Greengrass.

2.1 CAP Theorem

In theoretical computer science, the CAP theorem, asserts that it is impossible for a distributed
database system to simultaneously provide more than two out of the following three guarantees:
Consistency—every read receives the most recent write or an error, Availability—every request
receives a (non-error) response, without the guarantee that it contains the most recent write and
Partition tolerance—the system continues to operate despite an arbitrary number of messages
being dropped (or delayed) by the network between nodes [Bre12]. Table 2.1 shows the logi-
cal relationship between consistency, availability and partition tolerance as potential trade-offs
labelled as AP (Availability-Partition tolerance), CP (Consistency-Partition tolerance) and CA
(Consistency-Availability). Considering the distributed nature of access control systems for IoT,
partition is not really an option but rather a given, therefore, case (CA) is not realistic. The crucial
choice is between consistency (case CP) or availability (case AP). Therefore many authors prefers
the following formulation of CAP Theorem: if there is no network partition, a system can be both
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consistent and available; when a network partition occurs, a system must choose between either
consistency (case CP) or availability (case AP) [Kle15].

Table 2.1: Trade-offs in CAP theorem

Case Choice Potential Trade-off
1 Consistency - Availability (CA) Partition tolerance (P)
2 Consistency-Partition tolerance (CP) Availability (A)
3 Availability - Partition tolerance (AP) Consistency (C)

Despite theoretically the CAP theorem seems to be straightforward, its practical implications
may be quite complex. In both CP and AP cases, it is difficult to achieve 100% consistency or
availability [GL12]. The user is left with a choice depending upon the requirements of the use
case scenario.

2.1.1 Applying the CAP Theorem

In the hope that the CAP theorem helps to gain insights in designing better access control
mechanisms, we put its three properties in the context of enforcing policies in IoT systems.

Consistency means that the evaluation of an access request shall return a decision according to
the most recently updated values of both the attributes and the policies. An access control system
is consistent if an access request starts with the access control system in a consistent state and ends
with the access control system in a consistent state. A highly consistent access control system can
shift into an inconsistent state while evaluating access request but the entire transaction should
be rolled back if an error occurring any stage in the process (such as retrieving attributes values
or policies). The access requests are only processed when all the nodes are updated and during
updates the access control system is not available to process any access request.

Availability requires that the access control system remain operational all the time, i.e. every
access request gets a response regardless of the state in which any individual node in access control
system is. A high availability access control system is desirable for IoT real-time applications. In
such a system, sacrificing availability is not an option and an access control system is expected
to be responsive in all situations. However, the availability can degrade easily due to the latency
constraints of real-time IoT applications. The user of a smart lock has little patience and thus
a fast response is critical. The expectations of the smart lock owner imply the need to sacrifice
consistency to achieve sufficient availability and performance.

Partition Tolerance is a statement about the architecture of access control systems rather than
systems themselves. If the access control system is partitioned, then the communication among
the partitions is impossible. An access control system that is partition tolerant can sustain any
partition that does not result in a failure of the entire access control system. This requires the
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Figure 2.1: A typical smart home MQTT deployment

replication of the access control logic across combination of edge nodes and the cloud to keep the
access control system up through intermittent outages. In practice, partition tolerance is seldom
an option but it is a necessity.

2.2 Message Queuing Telemetry Transport (MQTT)

The publish-subscribe communication pattern follows a centralized architecture, wherein the
devices or data producers publish their data to a data broker using a human-readable topic string.
A typical publish/subscribe system comprises of one or more entities publishing messages, one
or more entities subscribing to messages of interest, and a central mediator or message bro-
ker [RCK+19]. Applications subscribe to the data by registering their interest to a topic. The
lightweight nature of publish/subscribe clients coupled with the broker’s ability to isolate the pub-
lishers and subscribers in space, time, and synchronization makes production-consumption of data
fully asynchronously for scalability and contrast it to client-server pattern. The implementation of
publish/subscribe pattern via MQTT have been used in a broad range of IoT use cases, namely,
smart homes, environmental control and building automation [SCW10].

MQTT is a lightweight messaging protocol that employs the publish-subscribe pattern: messages
sent by publishing clients to transitory messaging queues—called topics—are received and
(possibly) routed by a broker to topics-subscribed clients. Topics are specified by UTF8-type
strings and are hierarchically organized: each level is separated by a forward slash (/) similarly
to network paths and may contain two types of wildcards, namely “+” and “#”. Those match,
respectively, single and multiple levels in the hierarchy, and can be abused by a malicious client:
if it can subscribe to the “#” topic, for instance, it will be able to receive all the messages sent by
other clients. Topics specifications are used by the broker to filter messages.
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Table 2.2: MQTT control messages

Control message Description
CONNECT Sent by a client to the broker, defines the type of connection

to establish (parameters shown on the right)
CONNACK Sent by the broker in response to a client CONNECT packet,

it is used to acknowledge the connection request
PUBLISH Sent by a client to the broker, provides the details and pay-

load of the message to publish (e.g., the topic and QoS)
SUBSCRIBE Sent by a client to the broker, provides the details related to

one or more subscribing topics (e.g., QoS)
PINGREQ & PINGRESP A mechanism to inform the broker that a clients is still con-

nected; when receiving a PINGREQ, the broker replies with
a PINGRESP.

Table 2.3: Parameters for CONNECT message

CONNECT parameter Description
client id identifier of the client (can be empty)
clean session if false, an existing session will be used
username optional, used for authentication
password optional, used for authentication
will topic optional, topic where to publish the will message
will qos optional, quality of service for the will message
will message optional, payload of the will message
will retain optional, retain value for the will message
keep alive maximum time interval during which no messages

are exchanged between a broker and a client

Figure 2.1 presents a typical smart home use case scenario (based on MQTT) to better clarify
the interaction of the MQTT broker (in the middle) with user devices (on the left) acting as
publishers and smart home devices (on the right) acting as subscribers. For example, a resident of
the smart home can send a ”LOCK” or ”UNLOCK” values to topic home/front door/lock
on a lock installed at the front door of the smart home. The smart lock is subscribed to topic
home/front door/lock whereas the smart lock application on the smart phone can publish
on the same topic i.e., home/front door/lock.

For our work, the following facts about MQTT protocol are relevant.

• The publishers have no guarantees that messages will be delivered to intended subscribers
and, similarly, subscribers have no guarantees about the identity of publishers. MQTT
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Table 2.4: Return Codes

Return Code Connection Response Description
0 Accepted Successfully connected
1 Refused Unacceptable protocol version
2 Refused Identifier rejected
3 Refused Server unavailable
4 Refused Bad user name or password
5 Refused Not authorized

brokers are responsible to authenticate clients in terms of usernames and passwords or, if
supported by the broker, by requesting a valid certificate (e.g., X.509) or a Pre-Shared Key
(PSK).

• CONNACK, PUBLISH, and SUBSCRIBE include one or more topic names and a
quality of service (QoS) that can be set to 0, 1, and 2 to indicate that messages will
be sent/received by the broker at most once, at least once, and exactly once, respectively.
The value of return code indicates whether a connection attempt is successful or not
and, in the second case, the reason of failure (see Table 2.4).For CONNECT messages, the
clean session flag tells the broker whether the client wants to establish a persistent
session. If set to false, the broker will store the client session: i.e., all the subscribed
topics and, in case the client subscribed with a QoS level 1 or 2, all missed messages
(e.g., when the client was not connected). If set to true, the broker establishes a new
session with the client: saved subscriptions and messages (if present) are deleted. The
keep alive parameter specifies the longest period of time that the broker and clients can
endure without interacting; the parameters with prefix will (or last will in some
broker implementations) support the (last) “will message mechanism”. This is used to
notify other clients about an ungracefully disconnected client. When this happens, the
broker will publish the will message (set beforehand by the disconnected client) on the
will topic according to its QoS level will qos. This message can be retained by the
broker depending on the value of will retain. If retained, it will be also sent by the
broker to newly subscribing clients (on the will topic).

• For CONNECTmessages (see Table 2.3), the clean session flag tells the broker whether
the client wants to establish a persistent session. If set to false, the broker will store the client
session: i.e., all the subscribed topics and, in case the client subscribed with a QoS level 1
or 2, all missed messages (e.g., when the client was not connected). If set to true, the broker
establishes a new session with the client: saved subscriptions and messages (if present) are
deleted. The keep alive parameter specifies the longest period of time that the broker and
clients can endure without interacting; the parameters with prefix will (or last will
in some broker implementations) support the (last) “will message mechanism”. This is used

19



Authorization
Requirements

Policy
Extraction

High Level
Policy

Analysis

Enforcement
Policies DeploymentTranslation

Figure 2.2: SECUREPG Workflow

to notify other clients about an ungracefully disconnected client. When this happens, the
broker will publish the will message (set beforehand by the disconnected client) on the
will topic according to its QoS level will qos. This message can be retained by the
broker depending on the value of will retain. If retained, it will be also sent by the
broker to newly subscribing clients (on the will topic).

2.3 SECUREPG

SECUREPG [MR17] is a policy authoring framework for cloud environments that allows users
to configure, analyze and deploy their access control policies in public cloud service providers.
Figure 2.2 shows the workflow of SECUREPG, where rectangles represents artifacts and ovals
represents functionalities. SECUREPG allows users to specify their authorization requirements
in natural language, thus hiding the complexities of the particular access control model and
enforcement mechanism adopted by the cloud provider. These requirements are used to extract
high-level policies according to an abstract policy language. In addition, SECUREPG provides
support to analyze and verify these high-level policies and to translate them into enforceable
policies specified in the policy language adopted by the cloud platform. The tool also provides
facilities to deploy the obtained enforceable policies in a pre-existing cloud environment.

Figure 2.3 presents the architecture of SECUREPG, which consists of three main components.

Policy Specification This component provides a graphic user interface that allows users to specify
their authorization requirements in natural language. This component uses ANother Tool for
Language Recognition (ANTLR) framework1 to parse the authorization requirements and extract
permissions of the form 〈Effect , Subject ,Action,Resource,Condition〉 with the support of a
general-purpose grammar. It also provides a CPR (Content Protection and Release) Translator
that translates high-level policies into CPR policies based on the CPR language [ARTW16b].

Policy Analysis
1https://www.antlr.org/
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This component allows users to verify the correctness of policies before their deployment. For
instance, it can be used to verify whether only users with at least a certain clearance can access
resources with a given level of sensitivity. Interested readers may refer to [ARTW16b] for further
details.

Policy Deployment This component is responsible to deploy the specified policies into the cloud
platform. It comprises a policy translator that converts high-level policies into enforceable
platform-specific policies. The policy translator relies on a database containing a data model
and the entity names used by cloud providers to instantiate high-level policies into (platform-
dependent) policies that can be enforced by the cloud provider. These enforceable policies are
then deployed on the selected cloud platform.

2.4 AWS IoT and Greengrass

To realize an access control mechanism for the smart lock scenario that meets the requirements
for access control systems in IoT, we have investigated the use of commercial cloud and IoT
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platforms. In particular, we have used Amazon Web Services (AWS) and its extensions for IoT,
namely AWS IoT and Greengrass, as they provide a scalable and flexible IoT infrastructure. In
this section, we presents the main AWS components.

2.4.1 AWS IoT

AWS IoT is a managed cloud service that lets connected devices interact with cloud applications
and other devices. It can support a large number of devices, and can process and route messages
to AWS endpoints and to other devices reliably and securely. AWS IoT allows the use of AWS
services like AWS Lambda and AWS Relational Database Service (RDS) to build IoT applications
that gather, process, analyze and act on data generated by connected devices, without having to
manage any infrastructure.

Figure 2.4 shows the main components of AWS IoT that are instrumental to the definition of the
proposed access control mechanism. Below we briefly discuss these components.

• Device Gateway acts as an intermediary between connected devices and the cloud services,
which allows these devices to talk and interact with each other. It is built in a fully managed
and highly available environment in order to simplify the development of applications and
provide unified security measures to all users. Secure communication between IoT devices
and applications is guaranteed because messages are carried out over TLS (Transport Layer
Security).

• Message Broker transmits messages to and from IoT devices and applications with low
latency using the MQTT protocol. When communicating with AWS IoT, a client sends a
message addressed to a topic like home/front door/lock. The message broker, in turn, sends
the messages to all the clients that have registered to receive messages from that topic.

• AWS Lambda provides an infrastructure to run stateless programs, called Lambda functions.
These functions can be triggered by a wide range of sources, both internal and external to
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AWS like web and mobile applications without provisioning or managing servers. It can
scale instantly to hundreds of instances, with almost no platform maintenance. In this work,
Lambda functions will be used to extend the native access control mechanism of AWS IoT
and overcome some of its limitations.

• Custom Authorizer (CA) is a special Lambda function used to authenticate and/or autho-
rize a user before Lambda functions can be invoked. The use of CA allows centralizing the
authorization logic in a single function rather than packaging it up as a library into each
Lambda function. When an HTTP connection is established, the Device Gateway checks if
a CA is configured; if this is the case, it is used to authenticate the connection and authorize
the device. The CA must return policy documents that are used by the Device Gateway to
authorize MQTT operations.

• AWS Relational Database Services (RDS) provides a tool to set up and operate a relational
database in the cloud. It provides cost-efficient and resizable capacity while automating time-
consuming administration tasks such as hardware provisioning, database setup, patching
and backups.

AWS IoT provides an authorization mechanism to regulate access to IoT resources and devices.
Any device connected to AWS IoT is authenticated through X.509 certificates. AWS IoT requires
clients to provide their ID along with the corresponding X.509 certificate and checks the validity of
the certificate. It then challenges the client to prove the ownership of the private key corresponding
to the public key provided in the certificate. The digital certificates can be issued by a trusted
third party or by AWS itself. In particular, AWS provides a “one-click certificate” functionality to
generate a certificate, public key, and private key using AWS IoT’s certificate authority.

Access control is enforced by mapping policies to certificates. This means that only devices
or applications specified in the policies can have access to the corresponding device, which the
certificate belongs to. The use of AWS policies allows a user to control access to her own devices.
An AWS policy is a JSON file that is attached to the certificate of an entity and comprises three
main parts: Effect (allow or deny), Action (e.g., IoT:publish) and Resources (e.g., an AWS resource
name). A policy can also include a Condition that refines the scope of a permission and may
contain up to three attributes of the entity. Figure 2.5 shows an example of AWS access control
policy for the smart lock scenario. This policy allows operations “Connect” and “Subscribe”
on any resource (“*”) whereas it allows operations “Publish” and “Receive” only on the device
with ID “Thing ID 1” provided that it belongs to Alice (Owner) and is associated to “Room 1”
(Room).
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{
"Version": "2012-10-17",
"Statement":
[
{"Effect": "Allow",
"Action": ["iot:Connect","iot:Subscribe"],
"Resource": "*" },
{"Effect": "Allow",
"Action": ["iot:Publish","iot:Receive"],
"Resource":"arn:aws:iot:us-west-2:X:topic/Test",
"Condition": {
"StringEquals": {

"iot:Connection.Thing.Attributes[Owner]":"Alice",
"iot:Connection.Thing.Attributes[ID]":"Thing_ID_1",
"iot:Connection.Thing.Attributes[Room]":"Room_1"}}}

]
}

Figure 2.5: AWS IoT policy for the smart lock use case

2.4.2 AWS Greengrass

To overcome potential latency issues (that are typical of pure cloud platforms for IoT), new
trends are emerging to move part of the computational logic closer to the physical devices. In
particular, new computing paradigms like edge computing and fog computing propose to move
cloud capabilities towards the network edge to minimize the need to interact with the cloud
[XHF+17].

Amazon has embraced edge computing through the AWS Greengrass service, which integrates
edge computing capabilities in AWS IoT. Figure 2.6 shows the main components and services of
AWS Greengrass that are instrumental to the definition of the proposed access control mechanism.
Next, we discuss these components.

• Greengrass Core is an AWS IoT device that manages local processing and communication
among IoT devices and between IoT devices and AWS IoT and AWS Greengrass services.

• Message Broker enables messaging between the Greengrass Core and IoT devices on the
local network, facilitating communication even when there is no connection to the backend
AWS platform.

• AWS Lambda provides an infrastructure to run Lambda functions on the AWS Greengrass
core.
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• AWS Greengrass Group is a collection of settings and components, such as an AWS IoT
Greengrass core, devices and subscription. Groups are used to define the scope of the
interaction. For example, a group might represent the smart devices such as smart locks on
one floor of a hotel.

• Local MySQL provides the Greengrass Core with storage capabilities.

Greengrass is equipped with a rudimentary access control mechanism. It maintains a subscription
table defining the messages that can be exchanged within a Greengrass group, where each entry in
the subscription table specifies a source (message sender), a target (message recipient) and a topic
over which messages can be sent/received. Messages can be exchanged only if an entry exists in
the subscription table matching the source, target, and topic.

2.4.3 Limitations of AWS IoT and Greengrass

We discuss the limitations of AWS IoT and Greengrass identified in the litera-
ture [BPS17] [AMRZ18a].

• AWS IoT and Greengrass provides little support for policy administration, every service is
managed with a different administrative interface.

• AWS IoT and Greengrass does not provide any support for policy verification.

• AWS IoT does not allow the specification of fine-grained access control policies. It only
allow maximum of three attributes in policy specification.

• AWS IoT is based on a proprietary access control mechanism.
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• AWS Greengrass relies on a rudimentary access control mechanisms based on subscriptions,
which does not allow specification of fine-grained access control polices.

• AWS Greengrass limits the number of IoT devices that can be configured within a deployable
instance to 200 and restricts to 50 the number of those who can receive messages from
AWS IoT.
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Chapter 3

Requirements of Access Control for IoT

Coordinating access to heterogeneous devices, with different needs and capabilities, is a primary
concern in designing a secure IoT solution. Due to the lack of mutual compatibility between the
underlying IoT platform and technologies, identifying the requirements of access control for IoT
is complicated. We, therefore, performed a security analysis of a Smart Lock as a sample use case
scenario of IoT to identify these requirements and guide future development of smart locks and
similar IoT solutions. We describe a smart lock system as a realistic use case scenario, identify
the requirements that access control solutions for IoT should meet, and guide future developments
of similar solutions. In the end, we validate the identified requirements for other use cases of IoT
and argue that the set of requirements is complete in the sense that covers all the requirements
elicited in the scenarios of [SGS+16].

3.1 Use Case Scenario: Smart Lock System

Smart locks are cyber-physical devices that aim to replace traditional locks with smart cylinder
remotely controlled through a mobile application or a web portal. They can be deployed by
individuals (in homes) or enterprise customers (typically hotels) to reduce management costs
and improve service quality; they can also be used as a smart work enabler (in smart offices)
or to provide innovative services. Amazon Key in-home delivery service1 is one such innovative
service that is based on cloud-based Amazon camera and a smart door lock. Using this service,
the owner can authorize a delivery company to temporary gain access to his home and monitor
the activity using a cloud-based camera. The service can be expanded to include other in-home
services such as house cleaning, pet sitters, etc. Similarly, Sofia locks2 provides smart lock
solutions for residential, commercial, industrial and public buildings.

1https://www.amazon.com/key
2https://www.sofialocks.com/it/smartlocks/
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Figure 3.1: Architectural design of the smart lock system

Our use case is inspired to a vendor specific smart lock solution3 and its representative of many
other smart home solutions. The architectural design of most commercial smart lock systems is
based on a centralized IoT architecture in which the application logic is governed by a central
entity (deployed in a private cloud) that provides a limited set of well-known entry points (e.g.,
APIs). Figure 3.1 presents an abstract view of the architecture. The main components are an
electronically augmented deadbolt, which includes a smart cylinder lock and a controller, and a
user mobile phone acting as an Internet gateway. The smart lock lacks direct Internet connectivity
and, thus, relies on the user’s mobile phone to communicate with the manufacturer cloud when
the phone enters the Bluetooth range of the lock.

The smart lock employs an access management system, deployed in the manufacturer’s private
cloud, where smart lock owners can configure user permissions through an API. The access
management system is based on Group Based Access Control (GBAC) [FSG+01] in which the
access of users to resources is regulated using the notion of group, i.e. a logical collection of one
or more entities that have common properties. The owner can add/remove a person to one of
the groups predefined by the smart lock manufacturer (e.g., ”Owner”, ”Resident”, ”Recurring
Guest”, ”Temporary Guest”). Listing 3.1 shows a simple access rule of the smart lock system.
This access rule indicates that users belonging to persongroup ”Temporary Guest” can open
doors in doorgroup ”V3I6G5LSQGWL”. Field accessprofile indicates the time scheme
in which the rule is applicable (e.g., during office hours). A default accessprofile ”always”
is assigned if this field is not defined. Fields valid from and valid to denote the validity of the
permission. The list of authorized users is also maintained in the local database of the smart lock
(see below for the process used to update the smart lock database).

The smart lock system also provides an access logging mechanism. Whenever a user interacts with
the lock, it sends a log entry recording the action, the user who performed it and the timestamp
to the logging mechanism hosted in the manufacturer cloud. Sample access logs are shown in
Listing 3.2, where token uuid identifies the user and code refers to the action performed. In
the listing, code 1 corresponds to UNLOCK and code 2 to LOCK. Field timestamp records
the date-time when the action was performed, and field lockid indicates the specific lock on

3The name of the lock manufacturer cannot be provided due to a non-disclosure agreement.
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Listing 3.1: Access Control Policy
1 <xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8”>
2 <a c c e s s r u l e>
3 <d e s c r i p t i o n>d e s c r i p t i o n o f c u s t o m e r< / d e s c r i p t i o n>
4 <doorg roup >V3I6G5LSQGWL< / doo rg roup>
5 <a c c e s s p r o f i l e>18HLFPN293< / a c c e s s p r o f i l e>
6 <p e r s o n g r o u p>Temporary Gues t< / p e r s o n g r o u p>
7 <v a l i d f r o m>2018−01−06 00 : 0 0 : 0 0 +00 : 0 0< / v a l i d f r o m>
8 <v a l i d t o>2018−12−06 23 : 5 9 : 0 0 +00 : 0 0< / v a l i d t o>
9 < / a c c e s s r u l e>

Listing 3.2: Access Logs
1 <xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8”>
2 <a c c e s s l o g>
3 < t o k e n u u i d>2WSROEJSJ72R< / t o k e n u u i d>
4 <code>1< / code>
5 <t imes t amp>2018−01−03 12 : 2 7 : 0 3< / t imes t amp>
6 < l o c k i d>30EBG7RQG12R< / l o c k i d>
7 < / a c c e s s l o g>
8 <a c c e s s l o g>
9 < t o k e n u u i d>2WSROEJSJ72RP< / t o k e n u u i d>

10 <code>2< / code>
11 <t imes t amp>2018−01−03 12 : 2 8 : 1 7< / t imes t amp>
12 < l o c k i d>30EBG7RQG12R< / l o c k i d>
13 < / a c c e s s l o g>

which the action was performed.

Below we describe the key processes supported by the smart lock system.

• User Registration & Permission Configuration: The smart lock manufacturer provides
users with a mobile application and a unique authorization code along with the smart lock.
After installing the application, the owner pairs the application with the smart lock using
the provided unique authorization code. Then, the owner can generate short term and long
term digital keys for various types of users (family members, visiting friends, etc.) by
accessing the access management system in the manufacturer’s private cloud. The access to
the private cloud is controlled with the usage of One Time Password (OTP) generated by
the application on the owner’s mobile device.

• Locking and Unlocking Process: The smart lock is controlled through a smart lock
application provided by the manufacturer and installed on the user mobile device. A user
can LOCK or UNLOCK the lock through the smart lock’s mobile application. As shown
in Figure 3.1, when a user enters the Bluetooth range of the smart lock, his mobile phone
is authenticated and paired with the smart lock through the Bluetooth protocol. Once
connected, the smart lock receives the key status of the specific user from the remote
access management system via the user’s mobile device and uses the received key status
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to determine whether access should be granted. The key status is also stored in the local
database of the smart lock. In case the remote access management system cannot be reached,
the smart lock system ensures availability and maintains access by making a decision based
on the entries in its local database.

• Key Revocation Process: The owner is allowed to detach his or any other (authorized)
device from the smart lock by accessing the access management system. Specifically,
the owner can revoke access from a user by revoking the key assigned to that user and
updating the key status inside the key repository in the access management system on the
manufacturer cloud. The changes are then propagated to the local database of the smart
lock system when the user connect to the lock through his mobile device.

3.2 Analysis of the Use Case Scenario

We now analyze the smart lock system and discuss its limitations. First, we focus on the security
issues affecting the adopted access control mechanism and, then, we consider other aspects that
can influence the design of an access control solution for IoT. The access management system
provided within the smart lock system only allows smart lock’s owners to specify simple policies
in the GBAC model. Specifically, owners can assign users to predefined groups and define their
permissions with respect to group(s) they belong to. Although this model provides users with a
simple and intuitive approach for policy specification, it is rather limited in the policies that can
be specified and it is not suitable when fine grained control is needed or access should be granted
decision under certain contextual conditions. For example, it is not possible to specify that access
should be granted to a temporary guest only if a member of the ”Resident” group is at home.

3.2.1 Vulnerabilities

The smart lock system has intrinsic vulnerabilities and weaknesses in its design that can be
exploited by users to compromise the system:

V1: The smart lock lacks direct connectivity to the Internet and relies on the user’s smart phone
to interact with the manufacturer’s cloud. Therefore, the smart lock implicitly trusts the
user to behave faithfully.

V2: The smart lock receives key status updates from the remote access management system only
when a user interacts with the smart lock. Moreover, the received updates only concerns the
interacting user. Therefore, the smart lock remains unaware of changes in the policies while
it cannot connect to the manufacturer’s cloud (via the user’s smart phone).
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V3: The access control logic is implemented in the access management system hosted in the
manufacturer’s cloud whereas access control policies are enforced locally by the smart lock.
If the smart lock is unable to retrieve key status updates, it uses the policies stored in the
local database, which however can be outdated (V2).

V4: The smart lock owner can grant, update or revoke a digital key through the remote access
management system. However, these actions are subject to a final approval through the
mobile application on the owner’s mobile phone.

3.2.2 Threat Models

We hereby present two threat models that are typical for smart lock systems like the one described
in our scenario.

1. Control of a user’s mobile device: The adversary is assumed to be a legitimate user of
the system or to be in control of the mobile device of a legitimate user. Therefore, the
adversary can block the connectivity between the smart lock and the manufacturer’s cloud,
for instance, by turning ON airplane mode when interacting with the smart lock.

2. Control of the owner’s mobile device: The adversary is assumed to be in control of the
owner’s mobile device. Besides the capabilities described in the previous threat model, the
adversary is also in control of the application to configure the smart lock system installed
on the owner’s mobile device.

3.2.3 Attacks

Here, we discuss some attacks, also identified by [HLM+16], based on the aforementioned threat
models and the vulnerabilities of the access control mechanism adopted within the smart lock
system.

Revocation Evasion: An adversary can exploit the above mentioned vulnerabilities to retain
access to the smart lock when his permissions have been revoked by blocking the connectivity
between the smart lock and the access management system. Consider, for instance, a housekeeper
that has recently been relieved from duty. Accordingly, the owner revokes her permissions for
entering his house by performing the key revocation procedure described above. However, by
exploiting vulnerabilities V1, V2 and V3 of the smart lock system, the housekeeper can still
maintain (unauthorized) access. In particular, she can turn ON the airplane mode on his mobile
phone when interacting with the smart lock, thus preventing the smart lock from receiving key
status updates. Due to vulnerabilities V1 and V2, the smart lock remains unaware of the revoked
permissions. Since the smart lock makes decisions based on the policies in the local database
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when it is unable to contact the access management system (V3), the housekeeper is still able to
enter the apartment.

Logging Evasion: An adversary, who can block the connectivity between the smart lock and the
manufacturer’s cloud, can also hide his interaction with the smart lock by blocking log messages
from reaching the access management system by simply turning ON the airplane mode when
interacting with smart lock.

Update Evasion: In case the smart lock’s owner looses his mobile device or his mobile device
is stolen, he has to remove the device from the smart lock system. To this end, he can access
the access management system and revoke the digital key assigned to that device. However, if
the adversary posses the owner’s mobile device, he can ignore the request for approving the
revocation (V4) and, thus, he can access the lock system using the owner’s mobile device. In these
situations, a user often has no other option than returning the smart lock back to the manufacturer,
as happened in the case of Lockstate after sending users a wrong firmware update [Mon17].

3.2.4 Other Considerations

Besides the security considerations above, other orthogonal aspects should be considered when
designing an access control solution for IoT.

Management: Smart lock solutions not only can be deployed on small scale in homes and small
offices, as described in our scenario, but also on a larger scale, for instance, in industrial setups and
hotels. This requires an access control mechanism to be able to manage the access for a potentially
large number of smart locks. The analyzed smart lock system allows assigning a smart lock to a
single user account. This means, for instance, that a hotel manager has to manage a large number
of accounts, one for each smart locks. This solution is clearly impractical when deployed on
large scale. Moreover, policy specification is known to be difficult and error-prone [TdRZ17]. For
instance, when a policy is updated, it is difficult to determine whether the revised policy works as
intended. Even small errors can lead to unauthorized accesses. Ensuring the correctness of access
control policies is thus a crucial task to guarantee the security of the smart lock system. Finally,
the smart lock system provides very little support in the configuration of security mechanisms.
For instance, it does not allow the smart lock’s owner to configure the access logging system. This
can affect user privacy as he cannot prevent his or any other user’s interaction with the smart lock
to be recorded (recall that access logs are stored in the manufacturer’s cloud and, thus, he has not
control over them).

Latency: Users standing in front of a door typically expect a response from the smart lock in
the order of milliseconds. In our system, the smart lock has to retrieve the key status from the
access management system hosted on the manufacturer’s cloud to determine whether a user is
allowed to open the door. However, the response time from a cloud might vary from milliseconds
to seconds or even minutes depending on the geographic location of the cloud. This can affect the
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Table 3.1: Requirements of Access Control Systems for IoT

ID Requirement Description
AC1 Expressibility The access control system must allow users to specify fine-

grained access control policies.
AC2 Administration The access control system must provide an administration

point to easily configure policies for connected devices and
available resources.

AC3 Portability The access control system needs to be platform independent.
AC4 Extensibility The access control system must support the enforcement of

arbitrary security constraints.
AC5 Latency The access control system must be designed according to the

latency requirements of the IoT application.
AC6 Reliability The access control system must provide a reliable access

decision in every system state.
AC7 Scalability The access control system must be able to handle a grow-

ing number of devices and amount of data generated and
processed by those devices.

functioning of the system as well as user satisfaction in the smart lock solution. Therefore, it is
important to consider the response time required by the specific IoT application [Bye17] and to
guarantee that the access control solution does not introduce an intolerable delay for users.

Platform-Independence: The analyzed smart lock system is bounded to the manufacturer’s
private cloud. This, together with the employment of ad-hoc mechanisms, makes the portability
of smart lock configurations and policies to another cloud service provider difficult, if possible at
all. This is known as vendor lock-in and is one of the main issues to the widespread adoption of
cloud-based services and applications [FMPX15].

3.3 Requirements of Access Control for IoT

Based on the discussion above, we have identified a number of requirements to guide the develop-
ment of access control solutions for smart locks and similar IoT applications (cf. Table 3.1).

(AC1) Expressibility: An access control system for IoT should be applicable in all security
contexts by allowing the specification of policies that fit the desired level of granularity. In fact,
many IoT applications require enforcing access restrictions that depend on several attributes of
users, resources, and the environment. It is thus desirable from an access control policy to be
expressive enough to capture the access restrictions to be enforced. In the case of our smart lock
system, for instance, the smart lock owner should be able to specify that access should be denied
to temporary guests if no member of ”Resident” group is at home.
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(AC2) Administration: The way in which an access control system is configured and managed
is very critical to ensure security and privacy within IoT systems. The definition of access control
policies is far from being a trivial process due to the interpretation of complex and ambiguous
security policies that have to be translated into well-defined, unambiguous and enforceable rules.
This requires the access control system to provide users with an administration point for easy
translation of security requirements into enforceable access control policies and for the verification
of their correctness. The administration point should also provide users with capabilities for the
configuration of security mechanisms.

(AC3) Portability: Besides affecting the administration of access control policies, the inherent
difficulties in defining access control restrictions have also an impact on the migration of the smart
lock system across different cloud service providers (CSP), resulting in vendor lock-in. Consider,
for instance, a chain of hotels with branches in different parts of the world, where branches in
different countries rely on a different CSP, e.g. for legal and/or economic reasons. Each CSP can
adopt a different access control mechanism along with a different policy language, which makes
the management of smart locks across different branches difficult as policies have to be specified
with respect to each CSP. This raises the need of portability for access control policies so that a
user can specify policies that can be reused across different CSPs.

(AC4) Extensibility: To maximize its viability, an access control system should provide extensi-
bility points to customize policy evaluation with respect to the needs of the application domain.
The most noteworthy extensibility point is the possibility to augment the access control system
with event driven functions for the evaluation of custom constraints in access control policies
[KEdHZ15].

(AC5) Latency: Service provision in a cloud-centric IoT architecture might lead to congestion
and arbitrary delays due to the large number of requesting services and devices that generate and
consume data [SMG15]. Several IoT applications have stringent latency requirements, which
impose constraints also on data transfer and decision making processes. To address these concerns,
new trends are emerging to move part of the computational logic closer to the physical devices. In
particular, new computing paradigms like edge computing and fog computing propose to move
cloud capabilities towards network edge to minimize the need to interact with the cloud [XHF+17].
However, there is a gray scale between the two extremes – pure cloud and pure edge – that allows
a spectrum of possible architectures to distribute the access control logic and responsibilities. The
choice of the type of architecture should be driven by the requirements of the IoT application at
hand.

(AC6) Reliability: The use of cloud has also an impact on the security of the system and, in
particular, on the reliability of access decisions. As shown in our scenario, the lack of connectivity
between the smart lock and the access management system hosted in the manufacturer’s cloud
can be exploited by an adversary to maintain the access to the smart lock when his permissions
have been revoked (revocation evasion). We advocate that an access control mechanism should be
reliable in every system state.
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(AC7) Scalability: The exponential growth of IoT deployments is highly expected in terms of
new devices and amount of data generated and processed by these devices. In our scenario, each
smart lock is managed by a single account. However, in case of deployment on large scale (e.g.,
hotels or industrial setups), the management of smart locks might become a serious concern.
Therefore, we envision that an access control mechanism for IoT should be able to scale in size,
structure and number of users and resources.

3.4 Requirements Validation

In the previous section thorough analysis of a realistic smart-lock use case scenario, we identified
a minimum set of requirements that any access control system should satisfy for its effective use
with cloud-edge IoT solutions. However, the smart-lock scenario is one of the many possible
IoT use cases. The obvious question of the validity of the requirements naturally arises, in
particular their completeness, when considering the heterogeneity of the possible use cases
including transportation, health and well-being, home and building automation, smart metering,
and industrial control systems. To answer the question, we consider the IoT use case scenarios
in [SGS+16] whose main goal is to list the relevant authorization problems of heterogeneous IoT
deployments.

For the sake of brevity, we consider only two of the seven use cases from [SGS+16] (however,
our findings hold also for the other five use cases). Each use case description contains a table sum-
marizing the authorization problems by using the labels used in [SGS+16] for ease of reference, a
high level description, and the relationship with the requirements in Table 3.1. The latter will be
discussed in Section 3.5.

3.4.1 Container Monitoring for Food Transportation

Containers are used for storage and transportation of goods that need various types of climate
control such as cooling and freezing. Container monitoring is a challenging task and IoT provides
an opportunity for its simplification. The process involves various stakeholders such as food
vendors, transporters and the super market chains, each with different monitoring requirements.
The vendor packs food in sensor fitted boxes that communicate with a climate-control system.
Each container carries boxes of the same owner, however, adjacent containers might contain boxes
of different owners. Keeping in view, the environmental constraints on the way, the sensors might
need to communicate to the endpoints over the Internet via relay stations owned by the transport
company. The ownership of goods also changes on the way while they are handed over from one
stakeholder to the other. The main authorization problems are the following.

• U1.1: Each stakeholder have different authorization needs of resources and endpoints.
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• U1.2: Each stakeholder requires integrity and authenticity of relevant sensor data.

• U1.3: Each stakeholder requires the confidentiality of relevant sensor data.

• U1.4: Stakeholders require authorization enact without manual intervention.

• U1.5: The capability of stakeholders to grant and revoke authorization permission.

• U1.6: Ensure the reliability of authorization in presence of relay stations.

• U1.7: Ensure the reliability of authorization without access to remote authorization server.

Table 3.2: Container Monitoring use case

Authorization Problems Description Requirements
U1.1, U1.2, U1.3 The language used to express access control policies must

ensure the integrity/ confidentiality of sensor data and also
allow specification of fine-grained access control polices by
different stakeholders.

AC1: Expressibility

U1.4, U1.5 Pre-configured access control that require minimal or no
configuration at access time. The administration point must
allow user to grant and revoke authorization permissions.

AC2: Administration

U1.2 The access control must be extensible to ensure authenticity
of sensor data.

AC4: Extensibility

U1.6, U1.7 Reliability of authorization mechanism in every system state. AC6: Reliability

3.4.2 Smart Metering

Smart meters provide a reliable and secure source for real-time insight on energy consumption.
Consider an Advance Metering Infrastructure (AMI) as a use case scenario of smart metering
that measures, collects, analyzes usage, and interacts with metering devices either on request or
on predefined schedule. It allows consumers to control their utility consumption and aids utility
providers in accurate and timely billing. Smart meters deal with sensitive user related data and are
often installed in hostile locations. Which makes security assurance a concerns for users as well
as service providers. The main authorization problems are the following.

• U5.1 The utility providers want to make sure that an attacker can not use data from a
compromised meter to attack

• U5.2 The utility providers want to control the flow of data in their smart metering network.

• U5.3 The utility providers want to ensure the integrity and confidentiality of data.
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• U5.4 Consumers want to access own usage data and also prevention of unauthorized access
to such data.

• U5.5 The utility providers want the authorization policies enact even if the meters use
intermediaries for Internet connectivity.

• U5.6 Authorization mechanism must be enforced during all times without human interven-
tion.

• U5.7 Keeping in view the scale of the network, direct update of authorization policies on
each and every node is almost impossible.

• U5.8 Authentication and authorization must work even if messages are stored and forward
over multiple nodes.

• U5.9 Consumers want to preserve privacy by providing access to fine-grained level of
consumption data to the utility providers.

Table 3.3: Smart Metering

Authorization Problems Description Requirements
U5.1, U5.2, U5.3, U5.4, U5.5, U5.9 The language used to express access control policies must

be able to completely capture the security requirements of
an organization. The access control mechanism must ensure
integrity and confidentiality of user related data.

AC1: Expressibility

U5.4, U5.7 The access control system provide a single point of adminis-
tration. It must allow management of user related data.

AC2: Administration

U5.5, U5.6, U5.8 Correct enforcement of authorization policies. The access
control mechanism must be reliable in every system state.

AC6: Reliability

U5.7 The coherence of the access control system must be guaran-
teed as the network scales.

AC7: Scalability

3.5 Discussion

We argue why the authorization problems listed in Sections 3.4.1 and 3.4.2 are covered by the
requirements in Table 3.1 as shown in Tables 3.2 and 3.3. This validates the requirements for
the container monitoring and the smart metering scenarios. We make two observations. First,
similar results can be obtained for the other five use cases in [SGS+16]. Second, the only reason
for which (AC3) does not show up in the analysis is that the use cases do not consider the problem
of porting a solution to a different IoT platform.

(AC1): Expressibility. The language used to express access control policies must ensure the
integrity and confidentiality of data and allow specification of access rules for single entity as
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well as group of entities. These requirements are easily satisfied by the use of a language based
on ABAC which is well-known (see, e.g., [HFK+13]) to support the specification of complex
confidentiality and integrity goals by permitting the definition and combination of several policy
idioms for defining fine-grained and context dependent authorization conditions.

(AC2): Administration and (AC5): Latency. The single point of administration is important
mainly in two respects. First, it simplifies the specification of enforceable policies that result from
the reconciliation of possibly conflicting security goals by different stakeholders. Support for
this task comes from the precise semantics of the high-level specification language. Second, by
allowing the configuration of how the enforcement of policies is performed (e.g., authorization
requests are evaluated on the edge), the single point of administration permits to fine tune the
system to satisfy other crucial requirements, such as Latency.

(AC4): Extensibility. To guarantee the authenticity, integrity, and confidentiality of the widely
heterogeneous types of data acquired and processed by IoT devices, it is crucial to provide the
access control with points of extension that allow for the integration of the most appropriate,
with respect to to the type of device and use case scenario—code for data acquisition and
processing. This is fundamental in the presence of constrained environments in which devices
and protocols are limited and can support neither heavy computation (e.g., standard cryptography)
nor communication (e.g., TLS).

(AC6): Reliability. The distributed nature of cloud-edge IoT solutions gives rise to synchroniza-
tion and coherence problems that may adversely affect security; e.g., updates of access control
policies should be propagated as quickly as possible to avoid making the wrong decision when
the evaluation of authorization requests is distributed. To complicate the situation further is the
presence of some functionality of, for example, mobile computing (such as air mode), that can
be exploited to retain rights that have been revoked by presenting invalid access token to edge
devices.

(AC7): Scalability. When considering very large deployments, the number of IoT devices may
become so large and the topology of the network so complex to make the enforcement of evolving
policies very difficult, if possible at all. An access control system for IoT should be able to blend
with the elasticity of cloud-based IoT solutions to cope with a possibly exponential growth of IoT
devices and the associated communication overhead.
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Chapter 4

Requirements Validation Continuum with
the CAP Theorem

Any tool that could help designers to understand the trade-offs involved in creating an access
control system is beneficial. The CAP theorem, in particular, has been extremely useful in helping
designers in understanding a wider range of systems and trade-offs [Bre12]. The CAP theorem was
initially developed in the context of distributed databases and web services. However, considering
the architecture of IoT deployments and their reliance on the Internet, the CAP trade-offs are still
valid for IoT deployments and are even hard to tune. IoT deployments suffer from notoriously
unreliable communication and considerably varying message latency; in addition, they have
different properties than traditional web services. For example, security and privacy issues play
an even more important role than in other types of systems as they are tightly coupled with our
everyday lives. Similarly to a line of works (see, e.g., [GL12]) devoted to re-examine the CAP
theorem in a wide range of technological contexts, we use the CAP theorem to better understand
the unique trade-offs arising in the deployment of access control enforcement in distributed IoT
systems

4.1 Access Control for IoT and running example

The main roadblock to the wider adoption of cloud-edge IoT solutions is their complexity that
arises from the combination of heterogeneous techniques, including virtual machines, server-less
and mobile computing together with communication protocols for resource constrained devices.
This prevents the possibility of confining the core functionality of security mechanisms to a
trusted base as it is the case with more traditional systems. To illustrate, consider security policy
evaluation; it becomes unreliable when updates to the latest version of the policies are prevented
by some features of, e.g., mobile devices such as the so called air mode that aims to guarantee
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availability. It is thus no more possible to separate the concerns of validating and enforcing
policies as typically done in a long line of works in the literature (see, e.g., [SDV00]).

Below, we first present the three main architectures (derived from those in [AMRZ18a]) upon
which enforcement mechanisms can be implemented in Cloud-Edge IoT.

4.1.1 Architectural Choices

The architecture underlying an access control mechanism has a significant impact on its perfor-
mance [RLPZ19]. The cloud and IoT services offered by major public cloud service providers
such as Amazon’s AWS IoT and Microsoft’s Azure IoT are based on policy-based access control
mechanism [BPS17]. This leads us to consider policy-based access control mechanism as a
reference architecture for real-world cloud-enabled IoT platforms. A widely adopted policy-based
reference architecture is XACML (eXtensible Access Control Markup Language) which is the de
facto standard for specification and enforcement of access control policies [Sta13]. It implements
Attribute-Based Access Control (ABAC) that relies on attributes to identify an entity and also
regulate its access by using attributes in the policies.

Access
Requester PEP

PDP
1. Policy

 2. Access
Request

3. Request 5. Response

6. Obligations OS

PIPPAP
4. Attributes

Figure 4.1: Simplified XACML Framework

Figure 4.1 shows a simplified data flow model of the XACML framework [Sta13]. We briefly
explain the main components.

• The Policy Enforcement Point (PEP) intercepts authorization requests, sends them to the
PDP, and waits to receive the access decision (grant or deny) possibly complemented with
obligations.

• The Policy Decision Point (PDP) processes the authorization request, collects the attribute
values of the requester and resource in the request (possibly also the values of contextual
attributes, e.g., time of the day) by querying the Policy Information Point (PIP), evaluates
the information against the policies, and produces a decision that is sent back to the PEP.
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• The Policy Administration Point (PAP) allows an administrator to create and manage
policies that are then made available to the PDP.

• The Policy Information Point (PIP) allows for retrieving the values of the attributes associ-
ated to the requester, the resource, and contextual information such as the time of the day or
the location; it sends them to the PDP.

• The Obligation Service (OS) allows for processing directives that the PEP receives from the
PDP on what must be carried out before or after an access is approved. An example is that
each pair of access request and response must be timestamped and logged.

The flow for processing an access request is as follows. The PEP upon receiving an access request
forwards it to the PDP that asks the PIP to retrieve the necessary attribute values so that it can
evaluate the request against the policies made available by the PAP. Then, the PDP returns an
access decision to the PEP together with an obligation. In our case, we only consider obligations
for logging time-stamped pairs of access requests and responses.

We are now ready to present the three main architectures upon which enforcement mechanism for
IoT can be implemented in Cloud-Edge computing. For the sake of concreteness, we consider a
smart home scenarios in which besides an IoT device (such as a smart lock, described in more
details in Chapter 3), an important role is played by a client application running on a Mobile
Device (e.g., a smartphone) through which the user can interact with the IoT device. We focus on
how the client application and the various entities in the XACML standard discussed above (PAP,
PDP, PIP, and PEP) can be distributed among the various domains in a cloud-edge computing
environment (CSP, Edge, and Mobile Device).

Table 4.1 summarizes the three possible architectures that are explained in more details in the rest
of the section.

(Arch1) Cloud-based Architecture This architecture strongly depends on the cloud services
offered by the CSP. The IoT endpoint connects to the back-end cloud that is hosting the PDP
and PAP either via the User’s Mobile Device (Arch1-) or a Hub, an Internet bridge (Arch1+) that
connects the Internet with a Local Area Network created in the smart home (e.g., by a gateway
router and proxy). In case of (Arch1-), the PEP is placed in the user’s mobile device whereas
in case of (Arch1+), the PEP resides in the Hub. In both cases, the timestamped access logs
(stored in the OS of Figure 4.1) are maintained in a cloud hosted repository. In Figure 4.2, the
dotted rectangle with round corners in the upper part contains both (Arch1-) and (Arch1+). AWS
IoT Core—the IoT platform provided by Amazon Web Services [AWS19a]—is an example of
(Arch1+) whereas the smart-lock solutions considered in [HLM+16] are examples of (Arch1-);
for the latter, see Section 4.1.2.

(Arch2) Edge-based Architecture Considering the reduced capabilities of edge nodes, a simpli-
fied authorization mechanism is often deployed at the network edge. In case of (Arch2), the IoT
entity is directly connected to the Edge layer that is hosting (PEP), a constrained Policy Decision
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Figure 4.2: Architectures for enforcement of access control in cloud-edge based IoT

Point (PDP-) and also a constrained Policy Information Point (PIP-). For ease of administration
and ensuring high availability the PAP stay in the CSP (recall requirement (AC2) in Table 3.1).
Notice that access logs (in the OS) are only maintained in the Edge that becomes trusted to
maintain their integrity, the crucial property to permit auditing. In Figure 4.2, the dashed rectangle
with round corners in the lower part contains (Arch2). AWS IoT Greengrass—the IoT edge
platform provided by Amazon Web Services [AWS19b]—is an example of (Arch2) that uses
a simplified instance of ABAC based on subscriptions (roughly speaking, such a solution can
be seen as a secure deployment of an MQTT broker [PPR+19] based on a publish/subscribe
architecture in which producers and consumers of data should subscribe to channels created by
the broker).

(Arch3) Cloud-Edge Architecture Arch3 tries to combine the best of both cloud- and edge-based
architectures. For instance, when real-time IoT applications are needed, the policy evaluation
requires timely processing of access requests to make local processing decisions quickly and
not to tolerate the latency of fetching policies from a remote storage. This paves the way to the
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exploitation of the efficient integration of policy evaluation and enforcement mechanism available
as the combination of both edge and cloud computing that are crucial, for instance, to reduce
latency of IoT systems and at the same time streamlines separation of concerns and identification
of responsibilities. The constrained PDP at the Edge Node (i.e. PDP-) is backed by the fully
expressive PDP in the CSP (i.e. PDP+). In Figure 4.2, the solid rectangle with round corners
contain (Arch3). Notice that access logs (in the OS) are maintained both in the CSP and the Edge;
in this configuration, some synchronization mechanism between the copies of the stored logs is
necessary for consistency. The availability of two PDPs allow for higher flexibility in evaluating
access requests; e.g., it becomes possible to enhance a simplified access control mechanism in the
edge (e.g., the subscription-based one of AWS Greengrass) to a full-fledge policy-based one (e.g.,
that in AWS IoT Core). This is made possible by using AWS Lambda Functions [AWS19c].

4.1.2 Use Case: A Smart Lock System

Many commercial smart home lock system consist of three main components: 1) smart lock—
installed on the door, 2) mobile device—to operate (lock/ unlock) the smart lock and 3) remote
server—provides the management console and hosts the access control logic [HLM+16]. The
users are authorised with the credentials provided by the respective smart lock manufacturer. All
the access requests are logged and forwarded to the remote web server for evaluation. Upon
receiving the response from the remote web service, the smart lock before enforcement update the
local access matrix inside the (PEP). In case of no response from remote web server, the access
decision is taken based upon the key status in the access control matrix.

The architectural design of many commercial smart lock systems is based on a centralized IoT
architecture in which the application logic is governed by a central entity (deployed in a private
cloud) that provides a limited set of well-known entry points (e.g., APIs). Smart locks often lack
direct Internet connectivity and, thus, they rely on the user’s mobile phone or a hub (Internet
bridge) to communicate with the manufacturer cloud when the phone enters the Bluetooth range
of the lock [HLM+16]. Recall that Figure 4.2 shows both these possibilities as (Arch1-) and
(Arch1+), respectively.

4.1.3 Relationships of CAP Theorem with access control requirements for
IoT

We are now in the position to discuss the relationships between the CAP theorem and some of the
most closely related requirements of Table 3.1. We also observe that the root causes underlying
some violations of the requirements may be connected not only to faults but also to attackers,
i.e. to security issues that will be explored further in Section 4.2.
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• Latency (AC5) in IoT is influenced by many factors that range from network faults to
cyber-attacks. [Aba12] argues that availability and latency are necessarily the same, i.e. an
unavailable system essentially provides extremely high latency. Considering the low latency
requirement for real-time IoT deployments (in terms of milliseconds), a high latency makes
them unavailable. Therefore, the real trade-off is between consistency and latency. [Kle15]
further asserts that availability should be modeled in terms of operation latency, i.e. defining
the availability of a service as the proportion of requests that meet some latency bound; e.g.,
90% of the access requests should get responses in at most 50 ms, as defined in the Service
Level Agreement (SLA).

• The consistency guarantee is based on the reliability (AC6) of the underlying communication
and network infrastructure in an IoT deployment. For instance, policy evaluation becomes
unreliable when updates to the latest version of the policies are prevented by features
of mobile computing devices such as switching a mobile device to air mode in order to
guarantee availability. There is an obvious trade-off between (AC6) and availability via
its deep connection with latency (AC5) as explained above. Considering IoT, designers
have the option to sacrifice either availability (e.g., Best-effort availability that means to
be as responsive as is possible given the current network conditions), consistency (e.g.,
Best-effort consistency when users require (fast) responsiveness in all situations—as it is
the case of the smart lock use case—including when there are partitions and the only option
is to return possibly inconsistent answers) or at times both (e.g., balancing consistency and
availability). The reader interested in the details of these techniques and knowing some
examples is pointed to [GL12].

• The scalability (AC7) of IoT solutions is crucial to accommodate the present needs as well
as future growth. Intuitively, an IoT solution scales up if it can utilize efficiently the available
resources and handle a larger workload. CAP implies a trade-off between scalability and
consistency (and availability): maintaining consistency among more resources requires
more communication, which in turn is subject to CAP tradeoff [GL12].

4.2 Security Analysis & the CAP Theorem

We discuss how the CAP theorem can help in mitigating security issues that may arise in IoT
systems when attackers exploit vulnerabilities in access control enforcement as shown in a security
analysis (Section 4.2.1). The discussion (Section 4.2.2) is structured around the relationships
identified in Section 4.2.2 that allow us to characterize the trade-offs among the adoption of
(Arch1), (Arch2), and (Arch3). We do this by using the smart lock scenario in Section 4.1.2 since
it is representative of many smart home IoT deployments and is a good starting point to generalize
our findings as demonstrated by the fact that the requirements in Table 3.1 made explicit on this
scenario in [AMRZ18a] were shown to be more widely applicable in [AR18].
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4.2.1 Security Analysis

Following common practice (see, e.g., [HLM+16]), we structure the security analysis of (Arch1),
(Arch2), and (Arch3) by describing the vulnerabilities, the threat model, and two types of attacks.
For the sake of brevity and concreteness, we only consider the security issues directly related
to the choice of a particular architecture when deploying the smart lock use case as a running
example from Chapter 3.

Vulnerabilities: We identify the following three vulnerabilities of the enforcement mechanism
that may allow users to bypass the restrictions imposed by the access control policies.

V1: The smart lock lacks direct connectivity to the Internet and relies on the local infrastructure—
namely the mobile device or the Hub, see (Arch1-) and (Arch1+) respectively in Figure 4.2—
to interact with the manufacturer’s cloud. Thus, the smart lock implicitly trusts the local
infrastructure (i.e. the user of mobile device behave faithfully or the LAN which the Internet
bridge is using is not compromised).

V2: The smart lock owner can grant, update or revoke a digital key through the remote access
management system. However, the smart lock receives key status updates from the remote
access management system via the local infrastructure, which must not be compromised.

V3: The access control logic is implemented in the access management system hosted in the
manufacturer’s cloud. However, the access control policies are enforced by the (PEP) hosted
in the local infrastructure. If the smart lock fails to retrieve key status updates from the
remote manufacturer’s cloud, the (PEP) is bound to rely on an outdated access control list.

Threat Model: We present a threat model that is typical for smart lock systems. The key obser-
vation underlying it is that attackers usually find it easier to compromise the local infrastructure
that is close to the smart lock rather than the cloud service provider. We thus assume that the
attacker is in control of local infrastructure. This can happen in two ways; either the attacker is a
legitimate user of the system (Type-1) or can control the resources in the local infrastructure (e.g.,
mobile phone or hub) owned by a legitimate user (Type-2). For instance, a (Type-1) adversary
can block the connectivity between the smart lock and the manufacturer’s cloud in case of mobile
device, by turning ON airplane mode when interacting with the smart lock. Instead, an example
of (Type-2) adversary is a neighbor who was able to take control of the hub connecting the smart
lock to the Internet by, e.g., brute-forcing weak passwords for administrators or exploiting known
software vulnerabilities for which patches have not been applied.

Attacks: The adversaries can exploit vulnerabilities (V1), (V2), and (V3) performing so called
state consistency attacks. The idea, expressed from the viewpoint of the CAP theorem, is to
induce a partition so that consistency is sacrificed in favour of availability. There are mainly two
variants of this idea. Below, we illustrate the attacks for (Arch1-) but similar considerations can
be done for the other architectures in Figure 4.2.
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Revocation Evasion (RE): A Type-1 adversary can exploit (V1), (V2), and (V3) to retain access
to the smart lock when his/her permissions have been revoked by blocking the connectivity
between the smart lock and the remote access management system. Consider, for instance, a
housekeeper that has recently been relieved from duty. Accordingly, the owner revokes his/her
permissions for entering the house. However, by switching to airplane mode on his/her mobile
phone when interacting with the smart lock, he/she can prevent the smart lock from receiving
key status updates. Due to vulnerabilities (V1), and (V2), the smart lock remains unaware of the
revoked permissions. Since the smart lock makes decisions based on the outdated access control
matrix, when it is unable to contact the access management system (V3) and so the housekeeper
is still able to enter the apartment.

Logging Evasion (LE): Similar to RE, a Type-2 adversary can hide his interaction with the smart
lock by blocking log messages from reaching the remote access management system by again
switching to airplane mode when interacting with smart lock.

4.2.2 Architectures and Security

We now discuss the trade-offs in terms of security of deploying the smart lock use case scenario
in each one of the three architectures (Arch1), (Arch2), and (Arch3) of Figure 4.2. We structure
the discussion by relating requirements (AC1), (AC2), and (AC4) to the security analysis above.
The only reason for which (AC3) is not considered is that we are not considering the problem of
porting a solution to a different IoT platform.

Arch1: Cloud-based architecture is similar to the architecture used by most commercially used
smart home lock systems. This design can be exploited by both Type-1 and Type-2 adversaries to
launch both types of state consistency attacks, i.e. (RE) and (LE). The state consistency attack
is possible since the list of authorized users is saved on the smartphone (Arch1-) or the local
infrastructure (Arch1+) rather than a trusted component. Requirements (AC1) for expressibility
and (AC3) for extensibility are satisfied because of the capabilities of the CSP and the fact that
the PAP is placed in the cloud (see Figure 4.2).

Arch2: Edge-based architecture. With the addition of a trusted component (i.e., an edge Node),
the smart lock should be able to keep track of users that are allowed to access the smart lock or
not. Arch2 allows enforcement of administrative action (such as granting access or revoking of
key) not mediated by any user intervention as it was the case in (Arch1), thus eliminating the
possibility of state consistency attack for both Type-1 and Type-2 adversaries. On the negative
side, the constrained nature on the part of the enforcement mechanism deployed in the edge,
namely PDP- and PIP- in Figure 4.2, only allows for the specification of coarse grained access
control policies. This implies that both (AC1) and (AC3) cannot be satisfied while (AC2) is still
satisfied because the PAP is in the cloud.

Arch3: Cloud-Edge architecture. Similarly to (Arch2), also (Arch3) protects from state consis-
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tency attacks. At the same time, it overcomes the limitation concerning the limited expressiveness
of the policies by supporting the specification of fine-grained access control policies that are desir-
able in IoT applications. The idea to realize this is to leverage the edge to guarantee availability
when dealing with simple access control policies and resort to the CSP when more complex and
fine-grained access control policies are needed. This implies that both (AC1) and (AC3) can be
satisfied by allowing for a slight overhead of distributing access control requests according to the
characteristics of the policies.

Finally, we observe that requirement (AC2) for administration is satisfied for (Arch2) and (Arch3)
but not for (Arch1). Indeed, the PAP is always placed in the cloud (recall Figure 4.2) because
administrative operations are sensitive and only the cloud can provide adequate protection mecha-
nisms (such as multi-factor authentication and establishing secure communication channels by
means of computationally expensive cryptography). However, while (Arch2) and (Arch3) offer a
reasonable support for the distribution to the smart lock of updates to the policies defined in the
PAP, this is not the case for (Arch1) because of the ease of partitioning the system by attackers.

4.2.3 Architectures and the CAP Theorem

We now discuss the trade-offs in terms of the CAP theorem of deploying the smart lock use case
scenario in each one of the three architectures (Arch1), (Arch2), and (Arch3) of Figure 2. We
structure the discussion by relating requirements (AC5), (AC6), and (AC7) to the CAP theorem
as anticipated in Section 4.1.3. To contextualize the discussion, we briefly comment on the root
causes of partitions that may be due to faults or to the strategy put in place by an adversary.

The smart lock, remote server and user’s mobile device constitute the nodes of a distributed
system. To avoid state consistency attacks such as revocation evasion, logging evasion and update
evasion, the smart lock system requires a consistent access control list and access log. If partitions
do not occur, when a user interacts with a smart lock using his/her mobile device, he/she relies
on either a mobile phone itself or a Hub, (Arch1-) and (Arch1+) respectively, that connect the
smart lock with the remote (cloud) server. In that case, the smart lock can synchronize both the
access control list and the access log with the remote server (Consistency) to allow authorized
lock access (Availability).

When a fault occurs or an adversary interacts with the smart lock and intercepts the communication
between the smart lock and the remote server, the smart lock system suffers from a partition. To
tolerate partitions, a smart lock must choose between allowing interaction with the smart lock
(Availability) or rejecting requests until the smart lock can connect with the remote server and
receive updates (Consistency). We notice that a partition can happen for two types of reasons:
one is related to faults such as cellular outage or remote server outage and the other is the result of
the malicious activity of an attacker. As a consequence, the correct choice between availability
and consistency may not always be clear [HLM+16].
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We now discuss each architectural choice in the light of the CAP Theorem and argue which among
the requirements in Table 3.1 are satisfied.

Arch1: Cloud-based architecture. The access control logic resides in the cloud, thus ensuring
the reliability (AC6) of access control decisions. Due to the richness of cloud in terms of
computing and storage resources, the architecture ensures scalability (AC7). However, since each
request is forwarded to the (PDP) that is hosted in the cloud, this architecture is not suitable for
real-time IoT deployments (that typically requires a response in few milliseconds). When an
adversary interacts with the smart lock and intercept the communication between the PEP and
the PDP, the system is partitioned. This gives rise to the consistency and availability trade-off.
Depending on the use case requirement, it is to be decided to choose between reliability and
availability.

Arch2: Edge-based architecture. To meet the latency (AC5) requirements of real-time IoT
deployments, the access control logic is hosted inside an edge node closer to the smart lock
system. Due to the constrained nature of an edge node, the additions of IoT devices in the deploy-
ment results in reduced reliability (AC6) of the access control mechanism. In this deployment
segmentation of resources is done. All policy evaluation and enforcement components (the PDP
and the PEP) are closer to the IoT endpoint, however, the PAP stays in the back-end cloud to
guarantee (AC2). Due to Internet outage, the edge node might fail to interact with the back-end
cloud. During partition, the service will remain available but highly unreliable (inconsistent) as
any change made during that time by the administrator could not be updated on the edge node.

Arch3: Edge-Cloud architecture helps to balance consistency and availability. For example, the
owner of a smart lock may specify strong consistency during day time (as no family members are
home) and high availability at night time (as most of the family members are home). The work
in [YV00] proposes the TACT (Tunable Availability and Consistency trade-offs) toolkit that is
capable of doing this by allowing a distributed system to specify the desired level of availability
and consistency. Arch3 neither guarantees strong consistency nor high availability. Even in this
architecture, data can be inconsistent and a major network partitions can still render the service
unavailable. Nevertheless, this architecture can significantly increase the IoT solution’s robustness
to partition, before compromising availability.

4.3 Discussion

We now combine the analyses of the smart lock system from the viewpoint of security (Sec-
tion 4.2.2) and from the viewpoint of the CAP theorem (Section 4.2.3). Then, we present a
discussion of the trade-offs underlying the satisfaction of the requirements in Table 3.1 (except
for (AC3) that is outside the scope of this work). The results are presented by considering the
three architectures (Arch1), (Arch2), and (Arch3) in Figure 4.2.
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In the context of IoT solutions for smart homes, we are considering a CP system (with Availability
trade-off) to mitigate state consistency attack. Table 4.2 shows the comparison of (Arch1), (Arch2),
and (Arch3) with respect to the CAP Theorem and requirements (AC1), (AC2), (AC4)-(AC7).
The main findings can be summarized as follows.

• Architecture (Arch1) fails to provide partition tolerance and (as a CP system) trades Avail-
ability (A) to achieve Consistency (C) but is vulnerable to state consistency attacks.

• Architecture (Arch2) in the presence of partition ensures availability (A) at the cost of
consistency (C) by moving the access control logic (namely, the PDP and the PIP) closer to
the user. However, it fails to ensure consistency (C) because the PAP is in the cloud to satisfy
(AC2). On the positive side, (Arch2) makes consistency attacks a bit more difficult because
adversaries need to take control of the edge node where the PEP and the OS (managing the
log of pairs of access requests and responses) are running.

• The consistency (C) of an access control system in IoT (or any other network distributed sys-
tems) can be obtained by redundancy. In (Arch3), this is achieved by (partially) replicating
the PEP, PDP, and PIP components of the access control enforcement both in the cloud and
the edge. Architecture (Arch3) finds a balance between consistency (C) and availability (A)
in the presence of network partitions (P) by evaluating requests against ”simple” policies at
the edge and using the cloud for the more ”complex” ones. Additionally, (Arch3) mitigates
state consistency attacks provided that adequate synchronization mechanisms for policies
and attribute values are deployed between the cloud and the edge.

In the rest of the section, we provide an overview of the implications of the CAP theorem for the
satisfaction of the requirement in Table 3.1 together with state consistency attacks. Our findings
are summarized in Table 4.2.

Table 4.1: Architectural Choices

Cloud Mobile Device Edge
(Arch1-) PAP,PDP+,PIP+,OS Client App, PEP —
(Arch1+) PAP,PDP+,PIP+,OS Client App PEP
(Arch2) PAP Client App PEP, PDP-,PIP-,OS
(Arch3) PAP,PDP+,PIP+,OS Client App PEP,PDP-,PIP-,OS

(Arch1) is able to maintain consistency (C) only in absence of partitions. Availability is also an
issue because of the latency (AC5) in transmitting access control decisions from the cloud to the
smart lock. Since partitions happen and can even be the result of state consistency attacks, it
turns out that the administration (AC2) requirement is also not satisfied for the implied lack of
synchronization between the access control logic in the cloud (namely, the PDP, PIP, and IS) and
the PEP that is close to the smart lock.
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Table 4.2: Comparison of Architectural Choices. (3) means satisfied;(:) means partially satis-
fied;(7) means not satisfied.

(Arch1-) (Arch1+) (Arch2) (Arch3)

CAP Theorem
C 3 7 :

A 7 3 :

P 7 3 3

Requirements

AC1 3 7 3

AC2 7 : :

AC4 3 7 3

AC5 7 3 :

AC6 3 7 :

AC7 3 7 3

(Arch2) sacrifices consistency (C) for availability (A) and partition tolerance (P) by moving
a substantial part of access control enforcement closer to the smart lock. The requirements
of administration (AC2) and reliability (AC6) are partially satisfied as there may be a lack of
synchronization between the PAP in the cloud and the remaining components of the access control
enforcement mechanism (especially the PEP) as a result of a state consistency attacks. However,
such an adversarial activity is more difficult than in the case of (Arch1) because the edge (in
which the PEP runs) can put in place more robust protection mechanisms. Since the edge is
computationally constrained, the PDP and the PIP usually supports simpler access control policies.
As a result the requirements of expressibility (AC1), extensibility (AC4), and (AC7) cannot be
satisfied.

Finally, (Arch3) tries to find a compromise between consistency (C) and availability (A) in
presence of partitions by replicating all the components for access control enforcement but the
PAP in both the cloud and the edge. In this way, by using protocols for synchronizing the policies
(in the PAP) and the logs (in the OS), (Arch3) can evaluate access requests against coarse-grained
policies in the edge and invoking the components in the cloud when fine-grained policies are
involved. With this strategy, the requirements for expressibility (AC1), extensibility (AC4), and
scalability (AC7) are satisfied. However, (Arch3) can only partially satisfies the requirements
for administration (AC2), latency (AC5), and reliability (AC6). While it is true that the strategy
above can guarantee all the three requirements in absence of partitions, it is no more the case
when a partition occurs especially as a result of an attack. In fact, disconnecting the cloud and the
edge allows to guarantee the reliability of access control evaluation for simple policies under the
assumption that no updates to such policies has been performed. Since latency constraints are
also crucial in the smart lock scenario, a strategy that sacrifices consistency for availability can be
adopted in those situations in which someone is likely to be at home to double check. Instead, a
strategy that prefers consistency over availability can be adopted when none is at home.

50



Chapter 5

MQTTSA: A tool for security assessment
of MQTT-based IoT deployments

MQTT—a lightweight publish subscribe messaging protocol is one of the most widely used
protocol for message exchange in IoT deployments [CF18]. Major IoT service providers, such as
AWS IoT, Google Cloud and Microsoft Azure IoT Hub has helped MQTT become a dominant
IoT message protocol and method for enabling digital transformation. However, official MQTT
specifications include no mandatory requirements for any of the typical security related aspects
such as authentication, authorization, data integrity, confidentiality and the like. Following are the
factors that lead to the lack of security-related functionalities in MQTT protocol [PVPG17].

• It only focuses on message dispatching.

• The protocol is not historically developed for IoT environment.

• To keep the MQTT implementation as light as possible by reducing the overhead related to
security features while adopting to the constrained IoT environment.

• It is used in a very heterogeneous range of scenarios, from IoT devices to Facebook messen-
ger mobile application, that of course require significantly different security functionalities
to be rendered secure.

Similarly, the inadequate security posture of IoT systems has several root causes.

1. The lack of built-in security mechanisms and security standards for IoT devices because
they are mainly resource-constrained and are rarely released with out-of-the-box security
features.
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2. The vast majority of IoT platforms are deployed and configured (sometimes even designed)
without bearing security in mind. The developers mainly focus on functionalities and time-
to-market rather than analyzing the security implications of the design and implementation
choices (e.g., it is frequent that IoT prototypes whose security has not been assessed, find
their way to production environments).

3. The lack of security warnings and—most importantly—hints to patch potential vulnerabili-
ties in components deployed with insecure configurations.

While there are some work (e.g., [SRSB15]) aiming to alleviate point (1), points (2) and (3)
received much less attention, especially when considering assistance to developers in mitigating
well-known vulnerabilities in the context of stringent time constraints (typical of modern software
production and deployment processes).

5.1 MQTT Security Assistant (MQTTSA)

To alleviate this situation and improve the security of communications in IoT deployments, we
investigate the MQTT (Message Queuing Telemetry Transport) protocol and introduce a tool,
called MQTT Security Assistant (MQTTSA). The ultimate goal of the tool is to improve the
security posture of IoT deployments and increase the security awareness of developers with few
security skills by alleviating the burden of searching and identifying the necessary information
that is often scattered in several places and use different jargons; e.g., blog posts, technical and
scientific papers.

Below are the capabilities of MQTTSA.

• It detects potential vulnerabilities in MQTT brokers by automatically instantiating a set of
attack patterns to expose known vulnerabilities

• It returns a set of mitigation measures at different level of details—from natural language
descriptions to code snippets that can be cut-and-paste in actual deployments.

MQTTSA1 works in two steps: (Step-1) it detects potential vulnerabilities in MQTT brokers by
automatically instantiating a set of attack patterns to expose known vulnerabilities; then, (Step-2)
it generates a report describing a set of measures to mitigate detected vulnerabilities. The report
returned by MQTTSA contains actionable descriptions of mitigation strategies at a different level
of detail, either concise narratives in natural language or code snippets that can be cut-and-paste
in actual deployments.

1https://sites.google.com/fbk.eu/mqttsa
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Figure 5.1: The architecture of MQTTSA

The tool is developed in Python and uses two open-source libraries: Paho2—that provides an open-
source client implementation of the MQTT messaging protocol and pyshark3—that provides an
interface to the command line tool of Wireshark4 (one of the most widely used packet analyzers).
(Usage) Users can activate the available attack patterns by specifying options and parameters
through a command line interface; the only mandatory parameter is the IP address of the MQTT
broker that is going to be assessed.

5.1.1 Attack Patterns

The following attack patterns are used in this work, they are extensions to the exploits and
procedures described in [Lun17, HRVL18, ARH17, FBVI17].

2www.eclipse.org/paho
3kiminewt.github.io/pyshark
4www.wireshark.org
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• Data Exfiltration—combined with automated classification of potentially sensitive data.

• Data Tampering—based on a short list of test strings for fuzzing,

• Denial of Service (DoS)—performed by attempting to reduce service operation by exploiting
the MQTT will message and the size of regular publish messages.

• Credential Sniffing—integrated with data tampering and DoS attacks.

5.2 MQTTSA Architecture

Fig. 5.1 shows the architecture of the tool whose modules are described below.

• Connection attempts to connect to the specified MQTT broker as a client and records the
return code value (recall Table 2.4). According to this and the options and parameters
specified by the user, the modules below are invoked.

• Data Parsing and Exfiltration aims to intercept and analyse the MQTT packets exchanged
between the target broker and legitimate clients in the network (with Pyshark) and on
MQTT topics (with Paho). This enables MQTTSA to exploit client credentials (extracted
from MQTT CONNECT packets) and detects the leakage of sensitive data (such as credit
cards, phone numbers and emails) by using a pre-defined set of regular expressions. If
the return code is 0 (no authentication is required), it will disable the execution of
Authentication bruteforcing as it is not needed; otherwise, this module is invoked to guess
a valid password and allow the tool to connect with the broker. Notice that, to allow the
interception of credentials, the user is required to set the network interface parameter
(to, e.g., eth0) and run MQTTSA in the clients or broker network. If the broker implements
the certificate-based authentication, the analysis can still be performed from the perspective
of an insider attacker. This requires the tool to be launched with the parameters cert (the
path to a client certificate) and key (path to a client private key). Then, the module attempts
the subscription to the “#” and “$SYS/#” topics to intercept, respectively, messages from
clients and the internal control messages of the broker.

The internal control messages are particularly important to allow the Broker Fingerprinting
module to identify the broker type and version. By default, MQTTSA records data and
topics for 60 seconds (parameter listening time) and includes the list of topics in
the report. If the user does not enable the option “ni” (that restricts the tool to execute
non-intrusive attacks), the module will attempt to publish a default test message (that can be
modified by setting the text message parameter) in each of the topics discovered with
Paho; when publish succeed, the topic is added to a “writable topics” list that will be passed
to the Data Tampering module.
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• Authentication bruteforcing perform a classic password bruteforce attack in case the value
of return code is 4 and the tool is invoked with a username (parameter username) and
the path to a wordlist (parameter wordlist). We expect this parameter to be discovered
during the data parsing and exfiltration phase in non-TLS environments; provided by the
tester otherwise. To the best of our knowledge, no dictionary of credentials specific to
MQTT is currently available; we have thus derived one from Metasploit [Met07].

• Data Tampering is invoked when the user specifies the option “md” and the Data Parsing
and Exfiltration module was able to record at least one “writable” topic (see above). This
module tries to craft payloads for control packets (c.f. Table 2.2 - left) by using a pre-defined
list of values with the goal of crashing the service by triggering missing input validation
exceptions (with respect to the broker or the supported IoT service). It also tries to exploit
specific vulnerabilities, such as CVE-2017-7650. In the Mosquitto broker, it was possible
to bypass the authorisation mechanism by connecting with a wildcard username or client id,
however, the vulnerability is fixed in Mosquitto version 1.4.12.

• Denial of Service mounts a DoS attack by publishing considerably large files for a regular
IoT device (up to 10MB) and performing several concurrent requests from a single process
with multiple-threads (100 by default). The idea is to evaluate the delay in the target
MQTT broker upon receiving a substantial number of client requests (rather than inducing
a permanent failure). Notice that clients will be disconnected if the delay exceeds the
keep alive value configured in the broker: this accounts for the maximum time a broker
will wait before closing the connection with a non-reachable client. Interestingly, this
strategy can be exploited not only to mount DoS attacks but also to spoof the credentials
of an authenticated clients by forcing their disconnection and then listening for CONNECT
packets on the network.

• Report Generator is invoked when all other modules have terminated their execution and
it generates a report (in PDF format) collecting all the results of the attacks and a description
of the mitigation measures for the detected vulnerabilities. If the Broker fingerprinting
module was able to identify the broker type and version, the report also includes code
snippets that can be readily used in the actual deployment; thereby facilitating patching. As
of the current version, code snippets are generated only for Mosquitto (that resulted as the
most widely used broker in the analysis of Sec. 6.1).

Below is the example of a report resulting from the analysis of the first deployment (labelled
Config1) described in the following chapter.
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MQTTSA Report

Details of the assessment

Broker ip: 192.168.44.24
Listening time: 15
Text message: testtesttest
Denial of Service performed: False
Brute force performed: False

Authentication

[!] MQTTSA did not detect an authentication mechanism
The tool was able to connect to the broker without specifying any kind of credential information. This may cause remote
attackers to successfully connect to the broker. It is strongly advised to support authentication via X.509 client
certificates.
Moreover, it was able to intercept and use client credentials: please validate the brocker configuration.

Suggested mitigations

Please follow those guidelines and modify Mosquitto's configuration according to the official documentation. An
excerpt of a configuration file is provided below:
     listener 8883

     cafile /etc/mosquitto/certs/ca.crt

     certfile /etc/mosquitto/certs/hostname.crt

     keyfile /etc/mosquitto/certs/hostname.key

     require_certificate true

     use_identity_as_username true

     crlfile /etc/mosquitto/certs/ca.crl

Information disclosure

MQTTSA waited for 15 seconds after having subscribed to the '#' and '$SYS/#' topics. By default, clients who subscribe
to the '#' topic can read to all the messages exchanged between devices and the ones subscribed to '$SYS/#' can read all
the messages which includes statistics of the broker. Remote attackers could obtain specific information about the
version of the broker to carry on more specific attacks or read messages exchanged by clients. 

[!] MQTTSA successfully intercepted all the messages belonging to 52 topics, 1 of them non $SYS.
The non-SYS topics are: ['topic/user-due/']
The SYS topics are: ['$SYS/broker/load/bytes/sent/1min', '$SYS/broker/publish/bytes/sent', '$SYS/broker/bytes/sent',
'$SYS/broker/clients/expired', '$SYS/broker/load/connections/1min', '$SYS/broker/publish/messages/sent',
'$SYS/broker/load/publish/received/15min', '$SYS/broker/version', '$SYS/broker/uptime',
'$SYS/broker/publish/messages/received', '$SYS/broker/messages/sent', '$SYS/broker/load/messages/sent/15min',
'$SYS/broker/clients/maximum', '$SYS/broker/load/bytes/received/1min', '$SYS/broker/publish/bytes/received',
'$SYS/broker/load/messages/sent/5min', '$SYS/broker/load/publish/received/1min', '$SYS/broker/clients/connected',
'$SYS/broker/load/bytes/sent/5min', '$SYS/broker/load/messages/received/15min', '$SYS/broker/store/messages/bytes',
'$SYS/broker/load/publish/sent/15min', '$SYS/broker/clients/active', '$SYS/broker/publish/messages/dropped',
'$SYS/broker/load/sockets/15min', '$SYS/broker/load/bytes/received/15min', '$SYS/broker/clients/total',
'$SYS/broker/load/publish/received/5min', '$SYS/broker/load/publish/sent/5min', '$SYS/broker/load/publish/sent/1min',
'$SYS/broker/load/messages/received/5min', '$SYS/broker/messages/stored', '$SYS/broker/load/publish/dropped/15min',
'$SYS/broker/clients/inactive', '$SYS/broker/load/sockets/5min', '$SYS/broker/retained messages/count',



'$SYS/broker/log/M/subscribe', '$SYS/broker/messages/received', '$SYS/broker/load/bytes/received/5min',
'$SYS/broker/load/bytes/sent/15min', '$SYS/broker/load/sockets/1min', '$SYS/broker/store/messages/count',
'$SYS/broker/load/connections/5min', '$SYS/broker/load/messages/received/1min', '$SYS/broker/clients/disconnected',
'$SYS/broker/bytes/received', '$SYS/broker/load/publish/dropped/5min', '$SYS/broker/subscriptions/count',
'$SYS/broker/load/publish/dropped/1min', '$SYS/broker/load/connections/15min',
'$SYS/broker/load/messages/sent/1min']

Suggested mitigations

It is strongly recommended to enforce an authorization mechanism in order to grant the access to confidential resources
only to the specified users or devices. There are two possible approaches: Access Control List (ACL) and Role-based
Access Control (RBAC).
If restricting access via ACLs, please follow those guidelines and modify Mosquitto's configuration according to the 
official documentation. For instance, integrate the acl_file parameter (acl_file /mosquitto/config/acls) and restict a client
to interact only on topics with his clientname as prefix (ACL pattern readwrite topic/%c/#)

Tampering data

After having successfully intercepted some messages, MQTTSA automatically created a new message (having as a
payload the string 'testtesttest') and attempted sending it to every topic it was able to intercept. Remote attackers could
exploit it to write in specific topics pretending to be a client (by his ID); e.g., send tampered measures to a sensor. 

MQTTSA was not able to write in any topic.

Brocker Fingerprinting

MQTTSA detected the following MQTT brocker: mosquitto version 1.5.1. 
[!]Mosquitto version is not updated: please refer to the last Change log for bugs and security issues.

Sniffing

MQTTSA used the specified interface to sniff the channel for 15 seconds and try to intercept credential information,
such as client-id, usernames and passwords. 
 
[!] MQTTSA was able to intercept credential information.
1 usernames obtained: user-uno.
1 passwords obtained: password1.
1 client-ids obtained: MQTT_FX_Client.

Suggested mitigations

We strongly suggest to enforce TLS in MQTT (secure-MQTT). TLS provides a secure communication channel between
clients and server: assuming the correct configuration of TLS (secure version and cipher suites), the content of the
communication cannot be read or altered by third parties.
In Mosquitto it is possible to set the tls_version parameter (e.g. to tlsv1.2). Refer to the official documentation for details

Warning: using MQTT over TLS could lead to a communication overhead and an increase in CPU usage, especially
during the connection handshake. In devices with constrained resources, supporting TLS can have a severe impact. In
these cases there are other (but less secure) solutions that could be used to secure the communication, such as encrypting
only specific messages (for instance CONNECT and PUBLISH).

Additional information here:
MQTT security fundamentals: TLS / SSL



MQTT security fundamentals: how does TLS affect MQTT performance?
MQTT Security Fundamentals: MQTT Payload Encryption
MQTT Security Fundamentals: MQTT Message Data Integrity
DZone: Secure Communication With TLS and the Mosquitto Broker

Denial of service

MQTTSA was not configured or able to perform a Denial of Service attack on the broker.



Chapter 6

MQTTSA Evaluation

We measure the effectiveness of our tool by conducting an extensive experimental analysis on
a large set of MQTT brokers found online (performing non-intrusive attacks to avoid service
disruptions) and then running unrestricted security analysis on five deployments of a broker that
are representative of as many large classes of online brokers sharing similar configurations. In
the first set of experiments (Section 6.1), we perform only non-intrusive attacks (i.e. attempting a
connection and data ex-filtration) to avoid data loss and service disruptions to brokers that may be
part of real-world systems. In the second set (Section 6.2), instead, we run the full set of attacks
available in MQTTSA on five instances of an MQTT broker—that correspond to as many large
groups of configurations found online during the first set of experiments.

6.1 MQTT brokers in the wild

To discover MQTT brokers exposed to Internet we used Shodan1, a search engine for Internet-
connected devices. At the beginning of March 2019, MQTTSA was able to obtain a
return code between 0 and 5 (abbreviated RC below) from 40,346 online brokers as de-
tailed in Figure 6.1; for the meaning, see Table 2.4. These results confirm the alarming trend
described in [Lun17] and also highlighted in [MVQ18]: around 60% of the endpoints put message
confidentiality and integrity at risk by allowing anyone to connect, publish, and receive data. We
observed that, among the 10,150 brokers returning RC = 5, we were able to retrieve a server
certificate only from 4 brokers; this highlights the failure to adopt TLS to secure the messages
exchange. This is particularly troublesome if considering that all brokers using username and
password as the authentication mechanism (i.e. those returning RC = 4) are vulnerable because
passwords are transmitted as plaintext in the CONNECT messages (easily interceptable if listening

1https://www.shodan.io
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on the network of the clients or the broker).

60,3%

0,1%0,2%

0,5%

13,7%

25,1%

RC = 0 - Connection accepted (24,361)

RC = 1 - Unacceptable protocol version (1)

RC = 2 - Identifier rejected (98)

RC = 3 - Server unavailable (206)

RC = 4 - Bad username or password (5,530)

RC = 5 - Not authorised (10,150)

Figure 6.1: Return codes from the MQTT brokers under test

The data parsing and exfiltration module of MQTTSA (cf. Sec. 5.1) allowed us to gather additional
data about the endpoints returning RC = 0. Those include statistical information on the broker
(e.g., its version and the number of connected clients) and potentially sensitive data from the
messages exchanged by clients. The module did this by first subscribing to all the reserved
and user-defined topics (with wildcards $SYS/# and #, respectively). Then, by recording the
exchanged topics and messages for 60 seconds and, finally, running a pre-defined set of regular
expressions with the aim of classifying the types of messages (e.g., passwords, GPS data, MAC
addresses). MQTTSA was able to intercept 2,471,590 user messages (of which 1,473,970 are
unique), 803,345 user-defined topics, and 3,085,734 system messages (of which 2,999,722 are
unique) from 687,004 reserved topics; the classification of the intercepted messages is shown in
Table 6.1.

Table 6.1: Classification of intercepted MQTT messages automatically performed by MQTTSA

Emails Passwords PhoneNos IoT Status GPS API IPv4 MAC Domains Directories
Total 15,075 120,213 334 318,655 463,078 218,176 20,699 204,143 351,632 384,159 3,831,612
Uniques 1,796 59,272 132 304,987 432,905 182,298 19,043 71,472 57,771 60,666 1,147,107

It is important to observe that the lack of authentication paves the way to much more disturbing
possibilities, namely, injecting messages to induce actuators to perform undesirable or out-of-
context operations[MVQ18]. Since many of the messages that we have collected seem to be
produced from smart home scenarios, the possibility of publishing messages can be particularly
critical and may even lead to crimes as recently reported by newspapers in cases of domestic
abuse2. We investigate this kind of possibilities from a technical point of view in the second set of
experiments.

2https://www.nytimes.com/2018/06/23/technology/smart-home-devices-
domestic-abuse.html
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Following security concerns (also highlighted in [MVQ18]) are confirmed from the manual
investigation of the messages.

• The possibility to intercept and eventually tamper with Over-the-Air upgrades (we found
44,527 messages, of which 41 relates to device firmwares) in the context of Industrial IoT.

• The leakage of smart farming telemetry (e.g., from Senzagro sensors) and healthcare
sensitive data (such as patients history and various types of clinical data), references to local
SQL databases (URLs, logins and passwords).

• The leakage of chat and email messages from the groupware messaging app Bizbox.

From further analysis of the available data, we were able to derive additional pieces of
data. For instance, identify the version of 12,669 Mosquitto brokers (published on topic
$SYS/broker/version): 6% between version 1.3.1 and 1.3.5; 77% between 1.4 and 1.4.9;
14% between 1.5 and 1.5.7, and only 2% the latest 1.5.8. As reported in the official changelog
page3, older versions of Mosquitto are vulnerable to trivial attacks; for instance, it is possible to
perform a DoS on the versions between 1.5 to 1.5.2 as easily as publishing a message to a topic
prefixed by $ that is different from $SYS.4 This test is one of the tests performed by MQTTSA.

6.2 MQTT brokers in the lab

We decided to deploy five different instances of the Mosquitto MQTT broker5. Those are
representative of as many large groups of brokers with similar configurations that were found
during the first set of experiments (Sec. 6.1). We choose Mosquitto for its widespread adoption—
around 75% of the brokers that we were able to identify in the first set of experiments, i.e. that
provide identifiable information in $SYS topics. We selected version 1.4.8 as being the most
widely selected (also according to [MVQ18]). The first half of Table 6.2 (marked with Setup)
contains the details of the five configurations used in the second set of experiments, each one
deployed in a Docker container6 on a server configured with 1 Gigabit network connection, 16GB
RAM and 3.6GHz Intel Xeon E3 CPU. We observed that Mosquitto provides a mechanism to
restrict access to topics based on Access Control Lists (ACLs) that is not part of the MQTT
standard [BG14]. However, its implementation is quite useful to increase the security of a
deployment; e.g., to prevent that malicious clients subscribe to topics and exfiltrate sensitive data.

The results of running the full set of attacks available in MQTTSA (listenting time set to
60 seconds) are reported in the second half of Table 6.2 (marked with Results).

3https://mosquitto.org/ChangeLog.txt
4For details, see https://nvd.nist.gov/vuln/detail/CVE-2018-12543.
5https://mosquitto.org
6https://www.docker.com
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Table 6.2: Features of the five deployments and results of the analysis performed by MQTTSA.
(3) means Success;(-) means Not Required ;(:) means Partial Success;(7) means No Success

Setup Results
Deployment Protocol Authentication Authorization Sniffing Bruteforce Subscribe Publish DoS

Config1 TCP None None - - 3 3 :

Config2 TCP username/password None 3 3 3 3 :

Config3 TCP+TLS None None - - 3 3 :

Config4 TCP+TLS username/password None 7 3 3 3 :

Config5 TCP+TLS certificates ACL 7 7 7 7 7

6.3 Discussion

Our findings (cf. Section 6.1) clearly show the possibility of exfiltrating sensitive information
from a large number of deployed MQTT brokers without particular skills, as also observed in
preliminary work (e.g., [HBK18, Lun17]). One of the main goals of MQTTSA is precisely
to invert this troublesome trend by increasing the security awareness of IoT developers when
deploying their MQTT-based solution. Below, we discuss our experience in running MQTTSA on
deployments Config1–Config5 (cf. Section 6.2) and some considerations.

• Config1 runs the default Mosquitto configuration, i.e. the broker does not support any
authentication or authorization mechanism (as the majority of brokers reported in Sec. 6.1 -
RC = 0), and logs its statistics on the reserved $SYS topics.

Our tool was able to subscribe and publish to all the available topics (including $SYS ones),
intercepting the messages and classifying intercepted data. The DoS attack was performed
with partial success as the tool was not capable of disconnecting the clients but it was
able to induce delays of one order of magnitude when connecting. Similarly, the test for
malformed data (Data Tampering module) allowed MQTTSA to use unrestricted values
when publishing messages (including, e.g., ’\’ as client-id), but it was not capable
of exposing broker exceptions or errors. The Broker fingerprinting module was able to
extract the Mosquitto version from the $SYS topics and highlight the use of an outdated
broker. These results confirm the unacceptable security posture of the default Mosquitto
configuration: anyone is able to subscribe and publish to any topic. This, combined with the
possibility of sending malformed data, allows attackers to probe the broker and trigger error
conditions or crash in the supported IoT service; especially if not validating received data.

• Config2 enforces password-based authentication (as the brokers returning RC = 4 in the
experiments of Sec. 6.1) with a session expiry time of 60 minutes. The broker blocks
anonymous connections and, to offer improved performance, logs no data (locally or in
$SYS topics) and limits the payload of client messages to 5MB.
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MQTTSA was able to detect the presence of the authentication mechanism and tried to
intercept client credentials by sniffing CONNECT packets (remember that credentials are
transmitted unencrypted). If the tool was not able to intercept any CONNECT packet (since,
for instance, clients were already connected) and a wordlist of passwords was passed as
input, the Authentication Bruteforcing module attempted guessing valid credentials. Once
obtained a set of credentials, they were used to connect, read and publish on available
topics, and to perform the malformed data attack. Since MQTT does not support multiple
connections from the same client-id, instead of (in addition) from the same username,
the DoS attack was still possible although limited by the 5MB restriction on the size of the
messages. When connecting with the same username and client-id, e.g. when exploiting
intercepted credentials or if setting the parameter use username as clientid of the
Mosquitto configuration to true (enforce unique usernames), MQTTSA disconnected the
legitimate client; the disconnection can be detected, for instance, by verifying the number
of connected clients from the $SYS topics (not in Config2).

These results demonstrate that the adoption of an authentication mechanism based on
username and password does not improve the security level with respect to Config1. As
possible mitigations for DoS attacks, MQTTSA suggests to restrict the size of payload
messages and to enforce the uniqueness of usernames (if allowed by the broker); doing so, a
user may not (either inadvertently or maliciously) use his/her identity to damage the service
or crash the broker; e.g., by publishing multiple increasingly large messages.

• Config3 extends Config1 with TLS to encrypt the communication between the broker
and clients. Unfortunately, since the use of TLS is not combined with an authorisation
mechanism, it is still possible for anyone to publish and subscribe to available topics. As
a consequence, the attacks described for Config1 are still possible. Our tool was able to
confirm these observations.

• Config4 extends Config2 with TLS. MQTTSA was able to detect the presence of the
password-based authentication mechanism and automatically performed the authentication
bruteforcing and the credential sniffing attacks: only the former was effective due to the
non-possibility to extract credentials from encrypted CONNECT packets. However, once
guessing a valid set of credentials, the tool was able to connect and interact with the broker,
thereby confirming the possibility of mounting the same attacks discussed in Config2.
Similar to Config3, in Config4 any authenticated client is able to publish and subscribe
(unrestrictedly) on any topic.

These results show that the combination of TLS with password-based authentication does
not provide an adequate level of security in MQTT deployments.

• Config5 implements all the suggested security mechanisms, ranging from the use of TLS
with (X.509) certificate-based authentication to ACL-based restrictions on topics. None of
the attacks available in MQTTSA was successful for this deployment unless running the
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tool with a valid client certificate: we support this feature to test the broker configuration
against insider attackers (verifying, for instance, the resilience of the IoT service towards
malformed data or DoS attacks) and help understand the effectiveness of implemented
ACLs and the sensitivity of messages the tool was able to intercept.

While these results highlight that it is possible to secure an MQTT broker deployment with
a combination of security mechanisms, we are aware that this is not always feasible due
to, for instance, resource-constrained devices or specific use cases (e.g., latency-sensitive
ones). For this reason, we strongly believe that research in developing security mechanisms
that are less resource-intensive (e.g. [SRSB15]) is becoming of paramount importance.
In particularly hostile environments, we suggest (in addition) to complement the use of
MQTTSA with a complete fuzz testing (see, e.g., [FS15]) of the IoT service and possibly a
firewall and a load balancer (see, e.g., [CF18]).

• As a final remark, we run MQTT-PWN [AZ18] on Config1-Config5 to compare the tool
capabilities: MQTT-PWN was able to perform only data exfiltration in Config1 and authen-
tication bruteforcing in Config2. It was not possible to exfiltrate data from Config2 (as an
authenticated tester) and assess Config3-Config5 due to the implementation of TLS (and
password- or certificate-based authentication). Finally, MQTT-PWN is not able to provide
a report and the hints on possible mitigations as MQTTSA.
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Chapter 7

A Lazy Approach to Access Control as
Service (ACaaS)

The security concerns are one of the factors that impede the widespread adoption of IoT technology.
The security mechanisms offered by major cloud services providers are based on well-engineered
but generic, complex and proprietary access control mechanisms. Therefore, adaption process
requires the creation of complex protocols, provides minimal control to end-users over outsourced
data and often leading to complex problems and vendors ”lock-in” conditions [FMPX15].

In this chapter, we present an access control solution based on Access Control as a Service
(ACaaS)—a cloud computing paradigm that is based on the outsourcing of access control activities
to a trusted third party. ACaaS eliminates the need of developing complex adaptation protocols,
enhances end-users privacy and offers data owner the flexibility to switch among service providers.
to configure devices and specify access control policies with the interfaces provided by the
(ACaaS) service provider [FMPX15].

We first identify the limitations of existing IoT platforms, in particular, AWS IoT platform. Then
we propose a lazy approach to Access Control as a Service (ACaaS) and explain how to design an
effective access control mechanism that fulfills the requirements of access control for IoT and has
the ability to overcome the limitations of the AWS IoT platform.

7.1 Limitations of AWS IoT & Greengrass

In the following we will discuss the limitations encountered while using AWS IoT and Greengrass
to implement the smart lock system described in Chapter 3 with respect to the requirements listed
in Table 3.1:
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• AWS IoT does not allow the specification of fine-grained access control policies (AC1).
The dynamic nature of IoT might demand to express complex authorization conditions
involving a large number of attributes and/or refer to properties of the requested resource
and environment [HGP+18]. In contrast, AWS IoT restricts the number of attributes that
can be used for policy specification to three, resulting in a too coarse grained access control
for dynamic environments.

• AWS IoT provides limited support for policy administration (AC2). Every service has a
different administrative interface, making policy administration across services cumber-
some. Moreover, the policy specification interface provides very little assistance in policy
verification. In particular, it does not provide any mechanism to verify the correctness of the
specified policy before enforcement; it only warns the user in case of a syntactic problem.

• AWS IoT uses a proprietary access management system that employs an ad-hoc language
for policy specification, thus hindering the migration to other IoT platforms and resulting in
vendor lock-in (AC3).

• AWS IoT and Greengrass access control mechanisms can be extended by using Lambda
functions; unfortunately, the burden of doing this is entirely left on the shoulder of program-
mers with little or no assistance (AC4).

• The use of AWS Greengrass can potentially help meet latency (AC5) and reliability (AC6)
requirements by bringing the access logic closer to physical devices. However, Greengrass
relies on a rudimentary access control mechanisms based on subscriptions, which does not
allow for fine-grained control (AC1). Moreover, it limits the number of IoT devices that can
be configured within a deployable instance to 200 and restricts to 50 the number of those
who can receive messages from AWS IoT.

• To the best of our knowledge, AWS IoT has only been tested with small scale deployments
whereas large scale deployments (AC7) with different sets of requirements as the ones given
in Chapter 3, are still unclear [TCH16].

7.2 A Lazy Approach to ACaaS

First of all, we observe that the first four requirements in Tab. 3.1 are readily satisfied by adopting
ACaaS. In fact, by using standard policy specification languages (such as XACML) usually based
on the Attribute Based Access Control (ABAC) model [HFK+13], existing ACaaS solutions sup-
port the expressiveness necessary to specify fine grained access control policies (AC1), abstraction
from the details of the access control models available in different CSP platforms (AC2), portabil-
ity across different CSPs (AC3), and extensibility to enforce complex authorization constraints
(AC4). An in-depth discussion of how the proposed approach satisfies all the requirements in
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Tab. 3.1 is presented in Sec. 4.2 with particular attention to (AC5), (AC6), and (AC7). Here, we
introduce the main idea underlying our approach.

While most ACaaS frameworks (e.g., [AFMS17, KEdHZ15]) outsource activities pertaining to
policy specification, management, and evaluation, we follow [MR17] and choose to outsource
only policy specification and management while reusing the policy evaluation mechanism pro-
vided by the various CSPs. We do this by translating from the high-level policy specification
language used in the ACaaS tool to the proprietary specification language of the various CSPs.
Technically, we use a policy specification language with a formal semantics rooted in the ABAC
framework [HFK+13] that is independent of a particular CSP platform. This allows us to reuse au-
tomated tools for the security analysis of policies to understand whether the defined policies meet
designer expectations and perform automated policy analysis (see, e.g., [ARTW16a, TdRZ17]).

More importantly for this work, the formal semantics of the language of the ACaaS tool allows
us to design a translation to the language available in a given CSP that can be readily enforced
by the mechanisms provided by the CSP platform. Additionally, it is possible to argue the
correctness of the translation, i.e. an authorization query is allowed by the formal semantics
of the ACaaS tool if it is so by the access control system available in the CSP platform. This
paves the way to the exploitation of the efficient integration of policy evaluation and enforcement
mechanism available in CSP platforms (such as the combination of cloud and edge computing that
are crucial, for instance, to reduce latency in IoT systems) and streamlines separation of concerns
and identification of responsibilities.

7.3 Deployment Models for Cloud-Edge IoT solutions

Based on the architectural choices (cf. Chapter 4) and by building upon our experience with AWS
IoT and Greengrass, we identified seven different deployments that exploits the capabilities of
cloud-edge IoT. AWS IoT Core allows the possibility to deploy (Arch1) cloud-based architecture,
whereas AWS Greengrass allows the possibility to deploy both (Arch2) edge-based architecture
and (Arch3) cloud-edge architecture. In case of (Arch2), AWS Greengrass transfer messages
between clients on QoS-0, whereas for (Arch3), the messages are routed via back-end cloud that
supports QoS-1. Thus both edge involving architectures gives the flexibility to choose between
high availability or reliability. The deployment models in our work are mainly based on (Arch1)
and (Arch2) architectural choices.

Figure 7.1 provides an overview of these deployments. Red boxes highlight the delegation of
policy evaluation from the native access control mechanism to stateless functions.

DM1: Cloud-based Deployment This architecture resembles the access control mechanism
provided by AWS IoT (Section 2.4.1). The access control mechanism along with IoT entities’
configurations and permissions is deployed and managed in the cloud. When a user requests
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Figure 7.1: Seven Possible Deployment Models

access to a resource, his device connects with the device gateway (located in the cloud), which
forwards the request to the authorization mechanism for evaluation.

DM2: Cloud-based Deployment with attributes in access request As in DM1, device con-
figurations and permissions are stored and managed in the cloud. However, this architecture
extends the access control mechanism provided by the IoT platform through the use of stateless
functions (Lambda function in AWS IoT). When a user requests access to a resource, the request
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is intercepted by the device gateway, which forwards the request to the stateless function. The
stateless function retrieves attributes provided in the access request and the necessary policies
needed for policy evaluation are fetched from a cloud-based storage.

DM3: Cloud-based Deployment with Cloud Storage As for DM2, DM3 relies on a stateless
function for policy evaluation. However, DM3 differs from DM2 in the way the attributes required
for policy evaluation are provided to the access control mechanism. Specifically, attributes are
stored and retrieved from a repository deployed in the cloud. Once an access request is forwarded
to the stateless function, the function retrieves the necessary attributes from the repository and
uses them to make an authorization decision.

DM4: Edge-based Deployment The incapability of cloud-based architecture to meet the require-
ments of latency sensitive IoT applications has raised the need for a flexible multilevel architecture
in which heterogeneous devices at the edge of the network collect data, compute tasks with
minimal latency, and produce localized actions [PAG+18]. DM4 follows this computing paradigm
such that the access control logic along with devices’ configurations and permissions is deployed
and managed on the edge. This architecture resembles the native access control mechanism
provided by Greengrass (Section 2.4.2). When a user requests access to a resource, his device and
the one hosting the resource interact with the edge node, which evaluates the request using the
native access control mechanism (a subscription table in Greengrass).

DM5: Edge-based Deployment with Attributes in Access Request DM5 extends DM4 through
the use of stateless functions acting in the edge node. When the edge device receives an access
request, it triggers a stateless function for its evaluation against the defined policies. The stateless
function retrieves the attributes from the access request and uses those attributes to evaluate the
access request.

DM6: Edge-based Deployment with Cloud Storage This deployment is similar to DM5 in that
the access logic is deployed in the edge layer. However, in DM5 attributes are stored and retrieved
from a remote repository deployed in the edge node. When an access request is received at the
edge layer, the access control mechanism retrieves the attributed needed for policy evaluation
from the remote cloud-based repository and uses those attributes for the evaluation of the access
request.

DM7: Edge-based Deployment with Local Storage This deployment is similar to DM6 in that
the access logic is deployed in the edge layer. However, in DM7 attributes are stored and retrieved
from a local repository deployed in the edge node. When an access request is received at the edge
layer, the access control mechanism retrieves the attributed needed for policy evaluation from the
local repository and uses those attributes for the evaluation of the access request.
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7.4 Tool-supported Policy Configuration

While the enhanced capabilities of the access control mechanism provided by deployment models
DM2/DM3 and DM5/DM6/DM7 allow a more fine-grained control of IoT resources, it introduces
additional burden in the configuration and deployment of the infrastructure needed for policy
evaluation. To this end, we have extended SECUREPG [MR17], a policy authoring framework for
cloud environment, to support the configuration and deployment of the infrastructure necessary
to support policy evaluation and enforcement in IoT platforms. In this section, we discuss the
extension of SECUREPG for IoT.

7.4.1 SECUREPG Extension for IoT

To support the configuration of the access control mechanism in the possible deployment models
of cloud-edge IoT, we have extended SECUREPG to enable the configuration of an arbitrary
number of IoT entities with an unbounded number of attributes and their deployment in AWS
IoT and Greengrass. Figure 7.2 shows the modified components in light blue color and newly
added components in light green color. Figure 7.3 shows the configuration and deployment
procedure supported by the extended SECUREPG where red dashed rectangle denotes the extended
functionalities.

Entity and Policy Configuration We have provided SECUREPG with the capability to configure
IoT entities and their primary interactions (e.g., devices connection, subscriptions to topics,
publishing and receiving of messages). Table 7.1 presents the concepts that have been integrated
into SECUREPG, namely a representation of the physical devices, called clients, and their virtual
counterpart (in the cloud), called things. Things are organized in groups and possess a specific set
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of attributes. IoT resources are represented in terms of topics and topic filters. As in AWS, the
types of subjects and resources specified by policy administrators in their policies are bound to
specific actions.

Table 7.1: IoT Entities and Actions supported by SECUREPG

Entities Actions Description
IoT Subject Client Connect Support the IoT physical devices connec-

tion.
Things,
Things Type,
Things Group

Subscribe,
Publish,
Receive

Support the IoT virtual devices subscription
to Topics and, afterwards, the possibility to
publish and receive messages on the Topics.

IoT Resource Topic Publish,
Receive

Support the possibility to publish and re-
ceive messages on a Topic.

Topic Filter Subscribe Support the subscription to a set of Topics.

Policy Analysis The specified policies are analyzed and validated using the module already
available in SECUREPG, which analyzes the defined policies and reports possible policy miscon-
figurations before policies are deployed.

Deployment Model (DM) Selection We have extended SECUREPG with a new component that
assists users in the selection of the deployment model. This component analyzes the defined
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access control policies and, based on the granularity of permissions and the choice of the IoT
platform (i.e., cloud-based or edge-based), the tool suggests a possible deployment model. For
instance, in case the user wants to use a cloud-based solution, if the policies contain three or less
attributes (in Condition),1 the tool suggests DM1 in case of pure cloud architecture. Otherwise, if
policies contain more than three attributes, the tool suggests using DM2 or DM3.

Deployment Model Configuration & Deployment We have extended the component provided
by SECUREPG to support the configuration and deployment of policies and the necessary
infrastructure with respect to the selected deployment model. If a cloud-based deployment model
(DM1, DM2 or DM3) is selected, the tool configures the cloud-based IoT platform by triggering
the deployment of configurations on AWS IoT. In case DM1 is selected, all entities are configured
using AWS IoT native mechanisms. On the other hand, if DM2 or DM3 is selected, this
component creates and configures the Lambda function infrastructure necessary to support policy
evaluation; this requires configuring a Custom Authorizer that coordinates policy evaluation.

When an edge-based deployment model (DM4, DM5, DM6 or DM7) is selected, the component
configures the Greengrass environment in AWS IoT, which in turn deploys the configurations
(e.g., entities, topics) on a Greengrass core. In case DM4 is selected, all entities are configured
using the AWS Greengrass’ native mechanism. In case of DM5, DM6 or DM7, the component
also creates and deploys the Lambda function infrastructure to support policy evaluation on the
Greengrass core along with, if necessary, a local database for the storage of attributes and policies.

IoT entities’ configurations and policies are also deployed in the IoT platform. In particular, the
tool synchronizes the necessary data (e.g., certificates) by interacting with the cloud, invokes the
creation of AWS self-generated certificates and updates their local relations with the corresponding
things.

7.5 A prototype of the smart lock scenario

In this section, we present our realization of the smart lock scenario on AWS IoT and Greengrass
using the deployment models presented in the previous section.

7.5.1 Smart Lock System

We have realized a smart lock system following the possible deployment models for cloud-
edge IoT solutions. The system comprises a smart lock that users can open and close using an
application installed on their mobile device. The employed smart lock lacks direct connectivity to
the Internet and, thus, it relies on the user’s mobile device for Internet connectivity.

1Recall that AWS IoT supports the specification of up to three attributes in policies.
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smart_lock:
platform: mqtt
name: frontdoor
state_topic: "home/frontdoor/"
command_topic: "home/frontdoor/set"
payload_lock: "LOCK"
payload_unlock: "UNLOCK"
...

Figure 7.4: Message broker configuration

Access to the smart lock is regulated by a remote authorization mechanism. The interaction
between the smart lock and the remote authorization mechanism is managed by an IoT endpoint
via a MQTT message broker. The message broker uses topics to route messages from the
publishing entities (i.e., the mobile device) to the subscribed entities (i.e., the smart lock). The
subscription of IoT subjects to IoT resources is defined using topic filters. Figure 7.4 shows the
configuration of the MQTT-based smart lock installed on the front door of a home. The smart
lock has a state topic to publish state changes. The user can change the state of the lock (i.e.,
LOCK/ UNLOCK) by publishing on command topic.

Cloud-based Deployment We configured AWS IoT to realize the smart lock system according to
the cloud-based architectures. As shown in Figure 7.5a, AWS IoT relies on the Device Gateway
to enables the interaction between cloud-based applications and the smart lock, thus acting as the
IoT endpoint. Moreover, our smart lock system uses several services offered by AWS IoT such as
Lambda functions, message broker, AWS RDS and Custom Authorizer.

When connecting to the Device Gateway in AWS IoT, the smart lock has to provide its ID
and X.509 certificate. These are used by the Device Gateway to authenticate the smart lock.
Once connected (Figure 7.5b), the smart lock can publish messages on any authorized topic.
Additionally for DM2 and DM3, we extended the access control mechanism of AWS IoT by
configuring a Custom Authorizer that issues authentication tokens to clients. In order to connect
to the Device Gateway using the Custom Authorizer, the smart lock should provide a valid token
issued by the Custom Authorizer. The difference between DM2 and DM3 lies in the approach
used to retrieve the attributes needed for policy evaluation (Figure 7.5b). In DM2, the attributes are
retrieved from access requests and policies from AWS RDS, whereas, in DM3, both the attributes
and policies are fetched from a MySQL instance of AWS RDS (i.e. user-defined external storage).

Edge-based Deployment To deploy the access control logic in the edge (DM4, DM5, DM6 and
DM7), we configured a number of AWS Greengrass Cores on Raspberry Pi 3 Model B boards.
As shown in Figure 7.6a, the smart lock is configured to interact with Greengrass core on a local
network. The Greengrass core enables the local execution of Lambda functions, messaging (via
the message broker) and security (via subscription lists). In addition, it allows interaction with
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a remote AWS storage service, i.e. AWS RDS, or a local MySQL database deployed on the
Greengrass core.

To connect to the IoT endpoint (i.e., the Greengrass core), the smart lock has to provide its ID
and X.509 certificate configured with a reference to the Greengrass core, the sender and receiver
IoT things, and subscription rules. The Greengrass core authenticates the smart lock through the
certificate and authorizes it according to the subscription rules specified in the subscription table.
Subscription rules specify the topic on which a client can send messages and which clients are
subscribed to the topic.

In DM4, subscription rules have the form 〈sender,MQTT topic, IoT Cloud〉 and
〈IoT Cloud,MQTT topic, receiver〉 representing the permission to send and receive a message
respectively.

On the other hand, DM5, DM6 and DM7 use subscription
rules of the form 〈sender,MQTT topic, Lambda function〉 and
〈Lambda function,MQTT topic, receiver〉, where Lambda function is a reference to
the Lambda function used to make access decision (we refer to the next section for a description
of the implemented Lambda functions).

We implemented three variants of DM4 that differ for the way in which the attributes and policies
needed for policy evaluation are retrieved (Figure 7.6b). In one variant (i.e. DM5), the attributes
are retrieved from the access request and policies are fetched from the local mySQL database
deployed in the Greengrass core. In the other two variants (DM6 and DM7), the attributes and
policies are respectively fetched from the remote cloud-based storage i.e. AWS RDS and local
MySQL database deployed on the Greengrass core.

7.5.2 Lambda Functions

To extend the capabilities of pure cloud solutions in order to support the evaluation of policies with
an arbitrary number of attributes (DM2 and DM3) and to enable attribute-based access control in
AWS Greengrass (DM5, DM6 and DM7), we have implemented four Lambda functions, two for
AWS IoT (referred to as LF1 and LF2 in Figure 7.5b) and two for AWS Greengrass (referred to as
LF3 and LF4 in Figure 7.6b).

LF1 extends the capabilities of the native authorization mechanism of AWS IoT (DM1). The use
of this function requires configuring a Custom Authorizer that uses the attributes in the request to
configure the Lambda function and then to invoke it in order to determine whether the client is
allowed to publish and/or subscribe to a certain topic. It is worth noting that the size of the request
is fix and only allows the specification of a limited number of attributes (up to 30 in this case from
the smart home use case [HGP+18]).

LF2 extends LF1 by addressing the limitation on the number of attributes that can be used
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for policy evaluation. In particular, this function can be used to retrieve an arbitrary number
of attributes stored in a MySQL instance of AWS RDS. The MySQL instance comprises two
tables, one storing JSON policies (specified using the AWS syntax) and one storing attributes
characterizing AWS things.

LF3 extends the capabilities of the authorization mechanism provided by AWS Greengrass (DM4).
The functionality of LF3 is similar to LF1 but it is deployed on the Greengrass core. Similar to
LF1, it fetches attributes from the token inside the message field of the Publish request. However
the approach is restricted with a limit on the maximum number of specified attributes due to the
fixed header length of Custom Authorizer.

LF4 extends LF3 to address the bottleneck caused by the retrieval of attributes from the access
request. In particular, LF4 fetches attributes and policies from a remote storage deployed in the
back-end cloud (DM6) or local storage on the Greengrass core (DM7).

Implementation Lambda functions are configured by accessing the Lambda Service on the AWS
management console. The Lambda functions are implemented in Java8 and uploaded to the AWS
Lambda service.2

The Lambda management interface allows the specification of several Environment Variables as
key value pairs that are accessible by the Lambda functions.The Environment Variables are useful
to store configuration settings without the need to change function code and are specified on the
basis of the deployment model. For example, they are used to configure the connection with AWS
RDS in case of DM3 and with the MySQL database deployed on the Greengrass core in case of
DM6.

2The code is available as a Maven project at https://goo.gl/xybfGf.
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Chapter 8

ACaaS Evaluation

In this chapter, we would like to assess to what extent the deployment models presented in
Chapter 7 meet the requirements identified in Chapter 3. To this end we perform an extensive
experimental evaluation of these deployment models with respect to the latency (AC5), reliability
(AC6) and scalability (AC7) using our prototype implementation. We do so using our prototype
implementation of the smart lock system in different configurations – integrating cloud and edge
computing together with the defined Lambda functions (c.f. Section 7.5.2).

In this chapter we are particularly interested in answering the following research questions:

RQ1 Does the use of edge computing affect the performance of the authorization mechanism?

RQ2 Does the use of Lambda functions for access control influence the performance of the IoT
deployment?

RQ3 Does the approach adopted for attribute storage and retrieval affect the performance of the
authorization mechanism?

The use of edge computing provides substantial benefits (in terms of latency, reliability and
scalability) compared to cloud-based solutions [Bye17]. However, the impact of edge-based
solutions on the authorization mechanism is still unclear. The first research question (RQ1) aims
to investigate this aspect through a comparative analysis between cloud-based deployment models
(DM1, DM2 and DM3) and edge-based deployment models (DM4, DM5, DM6 and DM7) of the
smart lock deployment.

We have extended the capabilities of the native access control mechanism provided by AWS
IoT and Greengrass by exploiting the extensibility point (i.e., Lambda functions) provided by
AWS IoT and Greengrass. While achieving a high level of expressibility [AMRZ18a], the use
of Lambda functions for access control may impact the performance of the IoT ecosystem. The

78



second research question (RQ2) aims to quantify this impact through a comparative analysis
between the deployment models employing the AWS native access control mechanism (DM1 and
DM4) and deployment models employing the enhanced access control mechanism (DM2/DM3
and DM5/DM6/DM7).

Different approaches can be used to retrieve the attributes needed for policy evaluation, each
approach imposes different requirements on the underlying hardware and software. It is important
to balance the cost of hardware and software with efficiency based on the requirements of the
specific use case of IoT [HS12]. The third research question (RQ3) aims to investigate this aspect
through a comparative analysis of the mechanisms for attribute retrieval with respect to both
architectural approaches (i.e., DM1, DM2 and DM3 for cloud-based architectures and DM4,
DM5, DM6 and DM7 for edge-based architectures).

8.1 Settings

To answer the questions above we have performed two sets of experiments. The first set aims to
assess processing time and failure rate, whereas the second set aims to assess the throughput for
each deployment model. Next, we first present the general configuration of the experiments and,
then we present the configuration specific to each experiment.

8.1.1 Experiment setup – General

We performed our experiments using AWS IoT Greengrass Core Version 1.9.0 and a free-tier AWS
account deployed in the Europe (Frankfurt) eu-central-1 region.1 To evaluate the performance, we
used JMeter with MQTT JMeter Plugin [EMQ17], which extends JMeter’s capability to test the
functional behavior and measure performance against the MQTT protocol.

To evaluate the deployment models, we configured a fleet of policy-enabled IoT things in AWS
IoT, all belong to a single thing type named Lock and associated with an AWS IoT certificate.
Table 8.1 shows the configuration used for performance evaluation of each deployment model.

The experiments mainly relied on MQTT protocol with X.509 certificates on port 8883; however,
in case of DM2 and DM3, HTTPS with Custom Authorizer tokens on port 443 are used to invoke
Lambda functions (i.e., LF1 and LF2). Therefore, in case of DM2 and DM3, an HTTPS Post
request is used to Publish a message on the specified Topic, whereas in all other cases MQTT
Publish request is used to Publish a message on the specified Topic.

In both cases, we record the time a request to publish a message is sent and the time the request
is processed. The difference between these timestamps is used to determine the communication

1AWS Greengrass service is not available in every region.
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Protocol Identity Type Port Message Type TimeStamp 1 TimeStamp 2
DM1 MQTT X509 Certificate 8883 Publish Smart Lock (Publish

Message Send)
When PubACK is received by
the sender

DM2 (LF1) HTTPS Custom Authorizer Token 443 POST-Publish Smart Lock (Publish
Message Send)

Smart Lock (when HTTP
code 2xx is received)

DM3 (LF2) HTTPS Custom Authorizer Token 443 POST-Publish Smart Lock (Publish
Message Send)

Smart Lock (when HTTP
code 2xx is received)

DM4 MQTT X509 Certificate 8883 Publish Smart Lock (Publish
Message Send)

Message received by the sub-
scribed Clients

DM5 (LF3) MQTT X509 Certificate 8883 Publish Smart Lock (Publish
Message Send)

Greengrass Group (after LF
publish the authorized mes-
sage on the requested topic at
message broker)

DM6 (LF4) MQTT X509 Certificate 8883 Publish Smart Lock (Publish
Message Send)

Greengrass Group (after LF
publish the authorized mes-
sage on the requested topic at
message broker)

DM7 (LF4) MQTT X509 Certificate 8883 Publish Smart Lock (Publish
Message Send)

Greengrass Group (after LF
publish the authorized mes-
sage on the requested topic at
message broker)

Table 8.1: Experimental Configurations

and processing time for the evaluation of a IoT client’s request in AWS IoT and Greengrass.
Note that the difference in message protocol (MQTT and HTTPS) and involvement of additional
component at the edge level (i.e., Greengrass Core) used for deployment of cloud and edge-based
architectures do not allow to maintain a fixed criterion for time stamping. We discuss this point
further at the end of the section.

We configured a total of 100 sender clients that connects with their AWS certificate and private key
on the AWS IoT endpoint (using port 8883), publish and disconnect. The clients are configured
with 30 attributes. A total of five policies are created by varying the number of attributes in the
condition tag (i.e., 0, 5, 10, 20 and 30 attributes). The policies are associated to the certificate
of the specific client, one at a time, depending on the test. In DM2 and DM3, the connecting
clients publish with the Custom Authorizer headers on the AWS IoT endpoint (using HTTP on
port 443). The Custom Authorizer is triggered only if the signature of the token is made with the
Custom Authorizer private key and connects to RDS. All the components that support the custom
authorizer are configured in the AWS IoT, RDS and Lambda services.

Since Greengrass uses a rudimentary access control mechanism based on subscriptions (cf.
Section 2.4.2), we did not consider attributes for DM4. On the other hand, Lambda functions LF3
and LF4 allow the retrieval of a potentially unlimited number of attributes from MQTT messages.
Thus, we evaluated DM5 to DM7 up to 30 attributes to compare with cloud-based deployments.To
test deployment models DM5 to DM7, a total of 200 clients were configured to connect and
publish messages on the subscribed topics, where 100 acting as Publisher clients and 100 acting
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No. of Devices No. of Edge Nodes No. of Attributes
DM1 1,10,50,100 NA 0,5,10,20,30
DM2 1,10,50,100 NA 0,5,10,20,30
DM3 1,10,50,100 NA 0,5,10,20,30
DM4 1,10,50,100 1,5,8∗ 0
DM5 1,10,50,100 1,5,8∗ 0,5,10,20,30
DM6 1,10,50,100 1,5,8∗ 0,5,10,20,30
DM7 1,10,50,100 1,5,8∗ 0,5,10,20,30
∗ When 1 or 10 devices are used, we only consider 1 edge device. In case of 50, and
100 devices, we test the deployment model using 1, 5 and 8 edge devices.

Table 8.2: Experimental Setup - Single Request

as Subscriber clients.

8.1.2 Experimental Setup – Single Request

To measure processing time and failure rate, we evaluated the deployment models against single
request, where each connected device sends a single publish request at a time. The configuration
details are given in Table 8.2. The processing time and failure rate are computed for each
deployment model by varying the number of devices and policy size (i.e., the number of attributes
in the condition tag) with the exception of DM4. As seen in Table 8.2, eight Greengroups
(one on each Raspberry PI) are configured with subscriptions in the form <Client [sender],
TestingDM4/#, Client [receiver]>. The publish requests in edge-based deployments (i.e., DM4-
DM7) are evaluated by varying the number of edge nodes (i.e., 1, 5 and 8).

8.1.3 Experimental Setup – Parallel Request

To measure the throughput and failure rate of the deployment models, we evaluated the deployment
models against parallel request, where all connected devices send publish request continuously.
The configuration details are given in Table 8.3. The main configuration stays the same as for
single request test. However, by using a JMeter concurrency Thread Group, each connected client
in step size of 10 (from device 1 to 100) send a Publish request in parallel. A new batch of 10
clients is added each minute. The experiments are performed with 30 attributes except for DM4,
they are performed with zero attributes due to the limitations of the access control mechanism
provided by Greengrass (cf. Section 2.4.2). In the evaluation of edge-based deployments, the
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publish request are sequentially distributed on the available edge nodes (1-8) while maintaining a
maximum of 50 request per edge device.

8.1.4 Limitations

The deployment of the smart lock system in AWS required different configurations depending
on the deployment model (cf. Table 8.1). We now discuss how these differences can affect our
experiments and how we addressed them.

In all deployments, processing time was determined based on the time a message request is send
and the time a message response is received by the client. However, different architectural choices
required different approaches for recording these timestamps. As AWS IoT natively uses MQTT
with acknowledgement, for DM1 we recorded the time an MQTT publish request is sent by the
client and the time the MQTT acknowledge message (i.e., PubACK) is received by the client.
Similarly, in DM2 and DM3 we recorded the time the smart lock sends a HTTPS POST request
and the time the corresponding HTTP acknowledge is received by the smart lock. On the other
hand, Greengrass does not support acknowledgements for messages routed locally at the edge
node. To obtain results comparable to cloud-based deployments, we generated response messages
that mimic the acknowledgement messages used in cloud-based deployments. Accordingly, we
record the time the smart lock sends an MQTT publish request and the time the acknowledgment
message is received by the smart lock. It is worth noting that both the times in which the publish
request is sent and the acknowledgement is received are recorded on the client side and, therefore,
the computed processing time is comparable across the different deployments.

The differences in the messaging protocols used to realize the deployment models (HTTPS
for DM2 and DM3 and MQTT for the other deployment models) result in different request-
response patterns. MQTT is a asynchronous message protocol based on one-to-many relationship
whereas HTTPS is a synchronous message protocol based on one-to-one relationship.2 To obtain
comparable results across the deployment models, we configured MQTT to behave as a one-to-one
relationship.

In the second experiment (parallel requests), we were unable to reliably measure failure rate for
edge-based deployments. In DM4, no information on failed request is available as Greengrass
does not log messages routed locally or acknowledge them; therefore, we can not argue that all
published messages should have arrived at destination. In case of the edge-based deployments
using Lambda functions (DM5, DM6, DM7), an analysis of the logs recorded by the Lambda
infrastructure shows a failure rate of zero percent. This highlights that all messages intercepted
by Lambda functions are successfully processed. However, this approach does not allow tracing
requests that are not processed by the Lambda function. To this end, we did not consider failure

2https://www.hivemq.com/blog/mqtt5-essentials-part9-request-response-
pattern
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No. of Devices No. of Edge Nodes No. of Attributes
DM1 1-100 NA 30
DM2 1-100 NA 30
DM3 1-100 NA 30
DM4 1-100 1-8∗ 0
DM5 1-100 1-8∗ 30
DM6 1-100 1-8∗ 30
DM7 1-100 1-8∗ 30
∗ The request are sequentially distributed with a maximum of 50 request per edge
device.

Table 8.3: Experimental Setup - Parallel Request

rate for edge-based deployments in the discussion of the results.

8.2 Evaluation Metrics

We evaluated the results of our experiments using three evaluation metrics [BA13], namely
processing time, failure rate, and throughput. Table 8.4 shows how these metrics are related to the
latency, reliability and scalability requirements.

Table 8.4: Evaluation Metrics

Requirements Evaluation Metrics
Processing Time Failure Rate Throughput

Latency × — —
Reliability × × —
Scalability — — ×

Processing Time This metric measures the time needed to process a request. It can be expressed
as:

Processing T ime = TProcessed − TRequest (8.1)

where TRequest is the time in which a request is send by the client, and TProcessed is the time in
which the message broker completes the processing of the request.

Failure Rate This metric assesses the ability of the message broker to correctly process requests
within a maximum acceptable time. It is measured as the percentage of failed message requests
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over the total number of message requests attempted. It can be formally expressed as:

Failure Rate =
Message Requests Failed

Message Requests Attempted
(8.2)

where Message Requests Failed represents the number of requests that the message broker fails
to process within the maximum acceptable time and Message Requests Attempted represents the
total number of requests sent to the message broker.

Throughput This metric measures the number of requests successfully processed per time unit.
It can be formally expressed as:

Throughput =
Message Request Processed

Time
(8.3)

where Message Request Processed denotes the number of requests successfully processed by the
message broker and Time represents the time unit.

8.3 Results

We now present the results of our experimental evaluation of the deployment models presented
in Chapter 7 with respect to processing time, failure rate and throughput using our prototype
implementation.

8.3.1 Processing Times

Figure 8.1 shows the comparison of processing time between the native cloud-based solution
(DM1) and the native edge-based solution (DM4) in various configurations (i.e., 1, 5 and 8 edge
nodes). Although edge-based solutions are expected to outperform cloud-based solutions, we
found that DM1 only takes 21ms on average to Publish a message on a specified topic whereas
DM4 takes 50 ms. We further investigated this issue by repeating the experiments for DM1 in
a different AWS region (i.e., US Oregon Region). Figure 8.2 shows the performances of AWS
significantly differ from region to region. Figure 8.1 also shows that the processing time of the
edge-based deployment (DM4) decreases when the publish requests are distributed on multiple
edge nodes (i.e., 5 and 8 Raspberry PIs for 50 or more device requests) compared to the use of a
single edge node.

Figure 8.3 shows the processing time for cloud-based deployment models (DM1, DM2 and
DM3) with respect to the number of devices. We can observe that the performance of DM1 is
stable when the number of devices increases. In contrast, a high variation in processing time is
observed for the cloud-based deployment models involving Lambda functions (i.e., DM2 and
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DM3). The improvement in performance mainly due to how AWS IoT manages resources. The
first time a Lambda function is invoked, it connects to other services (such as storage) and loads
the necessary components (such as attributes) in the memory. For subsequent invocations of the
Lambda function, it relies on the pre-fetched components in the memory.

Figure 8.4 shows the processing time for edge-based deployments (DM4, DM5, DM6 and DM7).
We can observe that DM4, which uses the subscription-based mechanism provided by AWS
Greengrass, outperforms edge-based deployment models that employ Lambda functions to enable
attribute based access control (DM5, DM6 and DM7). The figure also shows the positive impact
of using multiple edge nodes.

We also investigated the processing time of the deployment models with respect to policy size.
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The results are reported in Figure 8.5 for the cloud-based deployment models (DM1, DM2 and
DM3) and in Figure 8.6 for the edge-based deployment models (DM4, DM5, DM6 and DM7). We
can observe that DM1 is more efficient compared to the cloud-based deployments using Lambda
functions (i.e., DM2 and DM3). However, there is not a significant difference among DM2 and
DM3, thus highlight that the methods in which attributes are provided to the policy decision point
(i.e., either provided in access request or fetched from AWS RDS) does not effect the performance
of the access control mechanism. On the other hand, from Figure 8.6 we can observe that DM4
outperforms the other deployment models that enable ABAC using Lambda functions. Moreover,
among those deployment models, the ones based on a local mySQL database (i.e., DM5 and
DM7) for storage and retrieval of attributes and policies perform slightly better than DM6, which
retrieves attributes and policies from AWS RDS.

8.3.2 Throughput

Figure 8.7 shows the results concerning throughput for DM1 and DM4. We can observe a steady
increase in throughput for DM1 with the increase in number of devices, supporting up to 2685
requests processed per second. We speculate that the high throughput in DM1 is due to the
scalable infrastructure offered by AWS. On the other hand, DM4 initially provides a very high
throughput (7122 requests per second), which reduces gradually with the increase in number of
devices that are continuously sending messages in parallel. However, due to limited number of
resources at the edge layer, once those resources are saturated the throughput stabilizes around
2000 requests per second.

Figure 8.8 shows the throughput of deployment models using Lambda functions (DM2, DM3,
DM5, DM6 and DM7). We can see a gradual increase in throughput for cloud-based deployments
(DM2 and DM3), whereas a gradual decrease in throughput can be seen for edge-based deploy-
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Figure 8.8: Throughput for cloud-based and
edge-based deployment models using Lambda
functions

ments (DM5, DM6, DM7). Factors such as the functioning and management of Lambda functions
contribute to the poor throughput of these deployment models as compared to their respective
cloud and edge counterparts (i.e., AWS IoT and Greengrass respectively) as shown in Figure 8.7.
Moreover, the constrained nature of edge devices also contribute to the poor performance of
Lambda functions deployed in those devices.

8.3.3 Failure Rate

The experiments using single requests shows a failure rate of zero percent for all deployment
models. However, as seen in Figures 8.3 and 8.4, this is achieved at the cost of higher processing
time for the deployment models using Lambda functions (DM2, DM3, DM5, DM6 and DM7)
compare to their cloud/edge native counterparts (i.e., DM1 and DM4 respectively).

Similarly, a failure rate of zero percent is noted in the test for parallel requests for cloud-based
deployments (DM1, DM2, DM3). However, as discussed in the limitations, we do not have an
adequate mechanism to measure the exact failure rate for the edge-based deployments.

8.4 Discussion

We now discuss the results of our experiments with respect to the research questions. Two remarks
are in order. First, Due to the limited insights that can be inferred from the results concerning
failure rate, therefore, we are only considering processing time and throughput in our discussion.
Second, AWS IoT and Greengrass support extensibility point that are used in this work for the
realization of access control mechanism using lambda function, therefore, (AC4) requirement is
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satisfied at both the cloud and edge level.

RQ1. This question aims to assess the impact of edge computing on the performance of the
authorization mechanism. Our experiments show that the processing time taken by the edge
based deployment (DM4) with multiple edge nodes is twice the processing time taken by the
cloud-based deployment (DM1). This can be attributed to the constrained nature of Greengrass
(i.e., software component) and the Raspberry PI (i.e., hardware component). For instance, within
Greengrass, we experienced an exponential growth in the processing time when a single device
was deployed, however, that was normalized when more Greengrass cores were deployed.

The pure cloud and edge-based solution (i.e., DM1 and DM4 respectively) strongly depends on
the cloud services offered by the Cloud Service Provider (CSP) and its access control capabilities.
In the following, we perform the comparison of these deployment model using our experience
with AWS IoT platform in the context of access control for IoT.

• (AC1) Recalling the limitation of AWS IoT & Greengrass as discussed in Section 2.4.3, we
can argue that DM1 fails to fully support expressiveness whereas the rudimentary access
control provided by AWS at the edge level fails to support this requirement. For instance in
DM1, when handling a fleet of smart locks and user devices, system administrator would
require more than three subject’s attributes and most importantly, resource’s attributes to
configure the polices. Similarly, Greengrass uses a simple subscription-based authorization
mechanism in which access rights are granted only considering the device’s identifiers.

• (AC2) Both AWS IoT (DM1) and Greengrass (DM4) provide user with very little, almost
no support for policy administration.

• (AC3) The use of a proprietary, ad-hoc access control mechanism in both DM1 and DM4
prevent the satisfaction of (AC3) and limit the portability of access control policies across
various IoT platform.

• (AC5) The performance of DM1 suffers from the propagation delay associated with the
offloading of access control to the cloud, whereas, the resources in edge computing are
strategically placed near the users do not incur any propagation delays. This lead to the
partial satisfaction of latency in case of DM1 as compare to the complete satisfaction in
DM4.

• (AC6) DM1 is not resilient in case of connection problems between users’ devices and
the cloud whereas the resources in DM4 being strategically close to the user satisfies this
requirement.

• (AC7) It is satisfied by DM1 due to the scalable infrastructure provided by AWS IoT
whereas, in DM4, it is subject to the management of resources at the edge-level.
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RQ2. To answer this question, we analyzed the impact of the use of Lambda functions for access
control on performance, compared to the deployment models relying on the native access access
control mechanisms provided by AWS.

AWS IoT allow the system administrator to customize and extended the native access control
mechanism, hence supporting expressiveness (AC1). This can be achieved by CSP’s specific
functionalities, e.g., a Custom Authorizer to execute lambda functions at the cloud level (DM2-3)
and the edge level (DM5-7). The increased empowerment corresponds to greater responsibilities
for administrator (AC2). Functionalities like AWS Custom Authorizer, which currently lack
clear documentation, need to be fully understood to avoid design flaws that could lead to the
unauthorized disclosure of sensitive resources. The use of lambda function for access control
enables the portability (AC3) of access control policies at both the cloud and edge level. Our
experiments shows that the performances of lambda extended cloud and edge deployments are
found suboptimal w.r.t. the deployment model based on native access control mechanism. We
experienced high processing times and low throughput rates as compared to their respective native
cloud and edge counterparts. Thus we can argue the failure of lambda extended cloud and edge
deployments to satisfy the latency (AC5), reliability (AC6) and scalability (AC7) requirements.

Lambda functions are utilized at the edge level to enable the best of pure cloud and edge-based
solutions i.e., support expressibility (AC1) as in DM1 and latency (AC5) as in DM4. In our work,
we extended the native mechanism using Lambda function to enable a more fine-grained access
control mechanism. However, the management and resource allocation concerns of Lambda
functions prevented us to exploit the intended potentials.

RQ3. To answer this question, we analyzed the impact of attribute storage and retrieval i.e., the
effect of policy size on the performance of the access control mechanism. The idea is to identify
an optimal configuration in which the attributes are provided to the policy decision point (PDP).
The possible configuration are, access request (e.g., DM2, DM5), internal storage service (e.g.,
DM3, DM6 and DM7) or external storage service. One remark is in place, the experiments in the
cloud based deployments are only performed with native cloud storage service (i.e., AWS RDS),
however, there is a possibility to fetch the attributes from an external storage service. We leave
that as part of our future work.

We enhanced the expressibility of access control mechanism by enabling ABAC using Lambda
functions. In cloud-based deployments, we found no impact on the performance of the access
control mechanism, whereas, a slight improvement in performance is seen for deployment models
in which attributes are provided from a local internal storage (local mySQL database) as compared
to the an remote internal storage (e.g. AWS RDS) to a policy decision point (PDP).
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Chapter 9

Related Work

In the area of access control mechanism for IoT many works have already been carried out
for ensuring the security and privacy of IoT applications (see, for instance, [OMEO17b] for a
compendium). However, many of these efforts have been devoted to the proposal of access control
models for IoT. Nonetheless, a recent research line targets the access control enforcement for
cloud-enabled IoT [CF19].

In the remainder of this section, we provide a comprehensive overview of the most relevant works
related to the current stature of MQTT based IoT deployments, existing access control solutions
for IoT, the analysis of the requirements of access control for IoT and metrics adapted for the
performance evaluation of access control system for IoT.

9.1 Securing MQTT based IoT Deployments

Although the interest in MQTT has increased only recently, there have been some efforts to
investigate its vulnerabilities and attacks; see, e.g., [ARH17, Lun17]. For the sake of brevity, we
focus on the works that develop frameworks or tools to automatically detect security issues in
MQTT deployments. The work in [HRVL18] describes a framework to perform template-based
fuzzing of the MQTT protocol. A commercial fuzzing tool is proposed by F-Secure [FS15], in
which payloads are randomly generated. While fully automated, such approaches usually require
a substantial amount of time to trigger broker exceptions. The work in [AALM18] proposes
IoTVerif, a tool for automatically verifying the certificates used by specific Android MQTT client
applications in case MQTT brokers use TLS protocol to secure the confidentiality and integrity of
exchanged messages. Our tool, MQTTSA, shares the goal of automatically identifying security
problems with all these works but differ in two significant ways.

1. It focuses on different, more general, security misconfigurations in MQTT brokers that are
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far from being adequately mitigated in current deployments; it is thus possible to combine
the approaches in [HRVL18, FS15, AALM18] to further enrich our tool.

2. MQTTSA provides hints (at various level of details) on how to mitigate the detected security
issues; this feature is not present in any other tool and we consider it as fundamental for
its successful use by developers who have little or no awareness of MQTT-related security
issues.

An approach closely related to ours is proposed with MQTT-PWN [AZ18]. This tool allows for
automated penetration testing of MQTT brokers, including credential brute-forcing (to bypass
authentication), enumeration of topics (for information gathering), the identification and extraction
of sensitive information (such as passwords and GPS data). The main difference with MQTTSA
are the following: MQTT-PWN does not work from the perspective of an insider attacker (i.e.,
when authenticating with username and password or certificates), or when the broker configured
TLS; does not perform data tampering or denial of service attacks, nor returns a report containing
the list of vulnerabilities and possible mitigations.

9.2 Access control solutions for smart home applications

The increasing popularity of IoT applications and, in particular, smart home applications has
attracted considerable attention from the research community and industry. A large body of
research has investigated the security offered by existing IoT solutions. For instance, Ur et
al. [UJS13] conducted three case studies (related to lighting system, bathroom scale and door
lock) to evaluate the access control systems supported by commercial smart devices. Fernandes et
al. [FJP16, FRJP17] present an empirical security analysis of a leading smart home programming
platform (i.e., Samsung SmartThings) that supports a broad range of devices including motion
sensors, fire alarms, and door locks. Ho et al. [HLM+16] examine the security of several
commercial smart lock solutions (i.e., Kevo, August, Dana, Okidokeys, Lockitron).

These studies reveal flaws in the architectural design and interaction models of commercially
available smart locks and other devices, which can be exploited by an adversary to learn private
information about the user and gain unauthorized access [FJP16, FRJP17, HMP+19, HLM+16],
leaving users at risk for remote attacks that can cause physical, financial, and psychological
harm. For instance, Ho et al. [HLM+16] show that smart locks often lack direct connectivity
to the Internet due to their constrained nature. To make access control decision, smart locks
typically rely on user’s smart phone to interact with the centralized access control mechanism.
This, however, makes smart locks vulnerable to state consistency attacks that allow an attacker to
evade revocation and access logging [AMRZ18a, HLM+16]. Moreover, existing access control
solutions adopted in IoT devices often fail to capture the user’s understanding of access control
[UJS13] and to provide usable access control specification [HGP+18]. These issues are partially

91



Table 9.1: Requirements for access control systems tailored to IoT environments

Ahmad et al. [AMRZ18a] Ravidas et al. [RLPZ19] Ouaddah et al. [OMEO17b] Alonso et al. [AFMS17] Tian et al. [TZL+17]

Policy Specification

Expressiveness 3 3 3 3 7

Extensibility 3 7 7 7 7

Dynamicity 7 3 7 7 7

Heterogeneity 7 7 3 7 7

Policy Management

Single admin point 3 3 7 7 7

Flexibility 3 7 3 3 7

Usability 7 3 3 3 3

User-centric 7 3 3 7 7

Revocation 7 7 3 7 7

Delegation 7 7 3 3 7

Policy Evaluation
& Enforcement

Latency 3 3 3 7 7

Reliability 3 3 3 7 7

Scalability 3 3 3 7 7

Automation 7 3 7 3 3

Interoperability 7 3 3 7 7

Lightweight 7 7 3 7 3

Compatibility 7 3 7 7 3

due to the limited technical understanding of smart homes and mismatch between the concerns
and power of the smart home administrator (owner) and other people in the home [ZMR17].

To address these issues, several access control mechanisms for IoT and smart home applications
have been proposed in the last years. These mechanisms can be broadly categorized in two
groups depending on where the access control logic is deployed, namely cloud-based and edge-
based. Among cloud-based solutions, Alsehri and colleagues propose in [AS16, AS17] an Access
Control Oriented (ACO) architecture that extends the traditional IoT architecture (comprising
object layer, middle layer, application layer) with a virtual object and a cloud service layer. Virtual
objects can uniformly communicate with each other regardless of heterogeneity and locality of
physical objects and the access control mechanism is used to regulate this communication as
well as the communication between virtual objects and physical objects. Bhatt et al. [BPS17]
propose a formal access control model for cloud-enabled IoT, called AWS-IoTAC. The feasibility
of the model is shown by mapping it to the ACO architecture. Neisse et al [NSB14] propose a
model-based security toolkit, called SecKit, for the enforcement of fine-grained security policies
in MQTT brokers.

Other works propose to deploy the access control logic on the edge. Kim et al. [KBY+12]
propose an access control solution for seamless integration of heterogeneous devices and access
control in smart homes by considering an extensible home gateway architecture. Specifically, the
policy enforcement point is deployed along with a policy decision point in the home gateway.
Heconsrnández-Ramos et al. [HRJMS13] propose a capability-based access control solution for
IoT applications that demand real-time decision. The use of access control based on capabilities
provides the security offered by cloud-based solutions in terms of validation of the issuer, subject
authentication and authorization validation process but at edge level.
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9.2.1 Access Control as a Service (ACaaS) for IoT

Access control mechanisms adopted by public Cloud Service Providers (CSPs) are typically
generic and, thus, are often unable to completely capture the specific security requirements of
the application domain. Moreover, they are based upon proprietary protocols leading to vendor
lock-in situations, which makes the concurrent usage of different CSPs or switching between
CSPs difficult for users. To address these issues, recent years have seen the emergence of several
solutions adhering the principles underlying the Access Control as a Service (ACaaS) paradigm.
Fitiou et al. [FMPX15] present access control as a third party service that gives data owner the
flexibility to move between CSPs or concurrent usage of multiple CSP. Kaluvuri et al. [KEdHZ15]
proposes SAFAX, a XACML-based authorization service provided by trusted third party and
designed to address challenges in multi-cloud environment. It provides users with a single point
of administration to specify access control policies in a standard format and augment policy
evaluation with information from user selectable trust services. Alonso et al. [AFMS17] propose
IoT Application-Scoped Access Control as a Service (IAACaaS) based on OAuth 2.0 protocol, an
IETF standard for authorizing access to resources over HTTP that requires the resource owner to
be online during the user authorizing procedure. Similarly, Fremantle et al. [FAKS14] makes use
of OAuth 2.0 protocol to enable access control to information using MQTT protocol.

Outsourcing access control to trusted third party has several advantages like relieving application
developers and CSPs of the burden of designing and maintaining the access control mechanism.
Moreover, it facilitates users in the configuration of their access control policies, since they can be
managed from a single, central point. However, this approach is subject to the willingness of a
CSP to allow the use of third party services to handle the protection of the data and resources.
To the best of our knowledge, none of the existing public CSPs supports such extension. This
motivated us to propose a lazy approach to ACaaS by only outsourcing activities pertaining to
the specification and configuration of access control policies. This allows the definition of fine
grained access control policies, employing an arbitrary number of attributes, along with dedicated
function for their evaluation, which can be enforced by the native access control mechanism of
the IoT platform.

9.2.2 Requirements of access control mechanisms for IoT

The definition of access control policies in IoT is far from being a trivial process. The difficulty lies
in the interpretation of complex IoT use-case specific security requirements and their translation
in unambiguous and well-defined enforceable security policies. Given the complexity of IoT
systems, there is a need for an access control system to accommodate all the necessary security
requirements (i.e. policy specification), while maintaining a balance in terms of usage (i.e. policy
management) and implementation (i.e. policy evaluation and enforcement).

A number of studies have investigated the requirements that access control solutions for IoT
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should meet and used these requirements as a baseline for the analysis of existing access control
mechanisms for IoT. These requirements aim to identify the main concepts and design principles
that have to be considered in the design and development of access control systems tailored to IoT
applications [RLPZ19]. Table 9.1 presents a summary of these requirements. An access control
system should be expressive enough to allow the specification of policies that can capture the
security requirements of dynamically changing contextual conditions of the IoT use case. The
management of policies i.e. the easiness of use and therefore applicability can be ensured by
providing a single point of administration. The correct enforcement of an access control decision
is always a critical issue and requires a simple and reliable access control decision in every system
state.

9.3 Performance Metrics

An access control mechanism usually comes with a variety of features and administrative capa-
bilities and, thus, their operational impact on the IoT system can be significant. NIST [HS12]
provides detailed guidelines for the evaluation of access control systems. In this work, we study
two of the performance properties proposed by NIST, namely response time, which measures
the ability of an access control system to process subject requests for access within a time that is
consistent with the operational needs of the use case scenario, and policy repository and retrieval,
which aims to find a balance between hardware and software costs required for the storage of
policies and attributes with efficiency based on the use case requirements.

To measure these properties, we have employed performance evaluation metrics typically used
for the evaluation of cloud-based and edge-based systems. For example, Scoca et al. [SAB+18]
compare edge computing with state of cloud computing solutions within the context of latency-
sensitive and data-intensive applications. In their study, the quality of service (QoS) metrics
experienced by the end users are evaluated in terms of network delay, processing time and service
time. Bauer et al. [BA13] assess service quality of cloud-based applications from the end-user
perspective by considering standards and recommendations from NIST, ISO and several other
governing bodies. In particular, service quality is measured in terms of availability, latency,
reliability, accessibility, retainability, throughput and timestamp accuracy. In our study, we have
measured the responsiveness of access control mechanisms for IoT in various deployment models
with respect latency, reliability and throughput.
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Chapter 10

Conclusion

Security services for IoT ecosystem represent a key feature instrumental to foster the trust of the
users and ensures the security and privacy of IoT applications. This work has focused on one
of the key security service, that is, access control, by discussing the requirements that an access
control solution for IoT should address, also with reference to possible deployment scenarios (i.e.,
Cloud and Edge based deployment models). Moreover, the requirements are validated on several
use-cases of IoT and the proposed approaches (MQTTSA and ACaaS) are quantitatively verified.

We analyzed a realistic smart lock solution and identified the main requirements that access
control systems for IoT should satisfy (Chap. 3). We have validated the requirements on access
control (c.f. Table 3.1) for IoT solutions that we have elicited in [AMRZ18b] from the analysis of
a realistic smart-lock use case scenario. We have done this by considering the variety of use case
scenarios (such as container monitoring and smart metering) presented in [SGS+16], a document
whose main goal is to identify authorization problems. We have successfully shown that each
authorization problem is covered by one (or more) of the previously identified requirements. This
entitles us to conclude that the implementation of the lazy approach to ACaaS for cloud-edge
IoT solutions of [AMRZ18b] can be effectively re-used in several other IoT uses cases. Indeed,
qualitative and quantitative evidence that such an implementation verifies the requirements have
been already provided in [AMRZ18b].

We have discussed how the choice of an architecture in the cloud-edge continuum can support
the efficient and secure deployment of access control enforcement for distributed IoT systems.
Our approach (Chap. 4) has been to use a combination of security analysis and the CAP theorem
to understand the trade-offs underlying the choice. Crucial to make the investigation more
systematic and comprehensive has been the adoption of the set of requirements identified in
previous work [AR18]. For concreteness, we have applied our approach to a smart lock use case
scenario which is representative of a wide range of smart home applications.

We have introduced MQTTSA (Chap. 5), a tool capable of detecting potential vulnerabilities in
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MQTT brokers by automatically instantiating a set of attack patterns to expose known vulnerabili-
ties and then generating a report describing possible mitigations. The attack patterns are extensions
to the exploits and procedures described in [Lun17, HRVL18, ARH17, FBVI17]. The report
contains actionable descriptions of mitigation strategies at a different level of details, ranging from
narratives in natural language to code snippets that can be cut-and-paste in actual deployments.
In light of our thorough experimental evaluation (Chap. 6), we believe the current version of
MQTTSA is a first significant step towards assisting IoT developers in mitigating well-known
(but unfortunately widely-found) vulnerabilities that result from MQTT broker misconfigurations.
Being fully automated and providing actionable information for the mitigations, MQTTSA can be
easily integrated within IoT deployment processes with stringent time-to-market constraints; even
by developers with limited security awareness.

Driven from this analysis and the current state-of-the-art IoT platforms, we presented an ACaaS
solution (Chap. 7) that outsources the specification and administration of access control policies to
a trusted third party, while leveraging the access control mechanism available in the IoT platform
for policy evaluation and enforcement. We investigated the practical feasibility of the proposed
approach (Chap. 8) and discussed how the identified requirements are satisfied.

Our lazy approach to ACaaS provides an initial blueprint for developing access control mecha-
nisms for edge-cloud enabled IoT, which can be incrementally enhanced to incorporate new access
control capabilities. We observed the main challenge in doing this, namely the simultaneous
satisfaction of all requirements in Tab. 3.1. The main reason for this seems to be the combina-
tion of heterogeneous technologies—such as cloud, edge and mobile computing together with
communication protocols for resource constrained devices (e.g., BLE and MQTT)—that enlarge
the attack surface of the access control system, hindering the possibility of confining its core
functionalities to a trusted base as it is the case with more traditional systems (such as databases,
operating systems, or web services). For instance, policy evaluation becomes unreliable when
updates to the latest version of the policies are prevented by features of mobile computing devices
such as switching to air mode in order to guarantee availability; there is an obvious trade-off
between reliability (AC6) and latency (AC5). As a consequence of this state-of-affairs, it is no
more possible to separate the concerns of validating and enforcing policies as typically done
in the access control literature (see, e.g., [SDV00]) that assumes that enforcement is correctly
implemented by analyzing policies with respect to the abstract semantics of the specification
language. Such as assumption seems be too coarse because of the subtle interactions among the
technologies used in major IoT platforms. For this reason, we believe that new approaches to
design and implement access control mechanisms for IoT systems must be developed and we
regard this work as a first step towards this research goal.
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10.1 Future Works

• We plan to further investigate the CAP trade-offs in context of IoT (both theoretically
and experimentally). A particularly interesting line of work would be to identify appro-
priate synchronization protocols available in the literature or to develop new ones for the
synchronization of policies and attributes in the cloud and edge.

• We plan to conduct a user study to further investigate the effectiveness of MQTTSA
tool in terms of assisting developers with little security skills in adopting robust broker
configurations. We also plan to expand the capabilities of the MQTTSA tool by

1. Incorporating new attack patterns made available as security fixes or Common Vulner-
abilities and Exposures (CVE)

2. Assessing the security implications of using pre-shared keys or web-sockets.

3. Synthesizing code snippets for other brokers besides Mosquitto.

4. Investigate the features introduced by the latest version (5) of the MQTT standard.1

• We plan to extend the ACaaS tool to support more IoT platforms such as Microsoft Azure
and Google Cloud Platform.

1http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
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