11 research outputs found

    Resource bounds analysis.

    Get PDF
    We present a generic analysis that infers both upper and lower bounds on the usage that a program makes of a set of user-definable resources. The inferred bounds will in general be functions of input data sizes. A resource in our approach is a quite general, user-defined notion which associates a basic cost function with elementary operations. The analysis then derives the related (upper- and lower- bound) cost functions for all procedures in the program. We also present an assertion language which is used to define both such resources and resource-related properties that the system can then check based on the results of the analysis. We have performed some experiments with some concrete resource-related properties such as execution steps, bits sent or received by an application, number of arithmetic operations performed, number of calls to a procedure, number of transactions, etc. presenting the resource usage functions inferred and the times taken to perform the analysis. Applications of our analysis include resource consumption verification and debugging (including for mobile code), resource control in parallel/distributed computing, and resource-oriented specialization

    User-definable resource bounds analysis for logic programs

    Get PDF
    We present a static analysis that infers both upper and lower bounds on the usage that a logic program makes of a set of user-definable resources. The inferred bounds will in general be functions of input data sizes. A resource in our approach is a quite general, user-defined notion which associates a basic cost function with elementary operations. The analysis then derives the related (upper- and lower-bound) resource usage functions for all predicates in the program. We also present an assertion language which is used to define both such resources and resourcerelated properties that the system can then check based on the results of the analysis. We have performed some preliminary experiments with some concrete resources such as execution steps, bytes sent or received by an application, number of files left open, number of accesses to a datábase, number of calis to a procedure, number of asserts/retracts, etc. Applications of our analysis include resource consumption verification and debugging (including for mobile code), resource control in parallel/distributed computing, and resource-oriented specialization

    Automatic Inference of Upper Bounds for Recurrence Relations in Cost Analysis

    Get PDF
    The classical approach to automatic cost analysis consists of two phases. Given a program and some measure of cost, we first produce recurrence relations (RRs) which capture the cost of our program in terms of the size of its input data. Second, we convert such RRs into closed form (i.e., without recurrences). Whereas the first phase has received considerable attention, with a number of cost analyses available for a variety of programming languages, the second phase has received comparatively little attention. In this paper we first study the features of RRs generated by automatic cost analysis and discuss why existing computer algebra systems are not appropriate for automatically obtaining closed form solutions nor upper bounds of them. Then we present, to our knowledge, the first practical framework for the fully automatic generation of reasonably accurate upper bounds of RRs originating from cost analysis of a wide range of programs. It is based on the inference of ranking functions and loop invariants and on partial evaluation

    Customizable resource usage analysis for java bytecode

    Get PDF
    Automatic cost analysis of programs has been traditionally studied in terms of a number of concrete, predefined resources such as execution steps, time, or memory. However, the increasing relevance of analysis applications such as static debugging and/or certification of user-level properties (including for mobile code) makes it interesting to develop analyses for resource notions that are actually applicationdependent. This may include, for example, bytes sent or received by an application, number of files left open, number of SMSs sent or received, number of accesses to a database, money spent, energy consumption, etc. We present a fully automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of application programmer-definable resources. In our context, a resource is defined by programmer-provided annotations which state the basic consumption that certain program elements make of that resource. From these definitions our analysis derives functions which return an upper bound on the usage that the whole program (and individual blocks) make of that resource for any given set of input data sizes. The analysis proposed is independent of the particular resource. We also present some experimental results from a prototype implementation of the approach covering an ample set of interesting resources

    Incorporating Resource Safety Verification to Executable Model-based Development for Embedded Systems

    Full text link
    This paper formulates and illustrates the integration of resource safety verification into a design methodology for development of verified and robust real-time embedded systems. Resource-related concerns are not closely linked with current xUML model-based software development although they are critical for embedded systems. We describe how to integrate resource analysis techniques into the early phase of an xUML-based development cycle. Our hybrid framework for resource safety verification combines static resource analysis and runtime monitoring. A case study based on an embedded controller for satellite simulation, TableSat, illustrates the benefits obtained by incorporating resource verification into design and combining static analysis and runtime monitoring. 1

    Enforcing resource bounds via static verification of dynamic checks

    No full text
    We show how to limit a program’s resource usage in an efficient way, using a novel combination of dynamic checks and static analysis. Usually, dynamic checking is inefficient, due to the overhead of checks, while static analysis is difficult and rejects many safe programs. We propose a hybrid approach that solves these problems. We split each resource-consuming operation into two parts. The first part is a dynamic check, called reserve. The second part is the actual operation, called consume, which does not perform any dynamic checks. The programmer is then free to hoist and combine reserve operations. Combining reserve operations reduces their overhead, while hoisting reserve operations ensures that the program does not run out of resources at an inconvenient time. A static verifier ensures that the program reserves resources before it consumes them. This verification is both easier and more flexible than a priori static verification of resource usage. We present a sound and efficient static verifier based on Hoare logic and linear inequalities. As an example, we present a version of tar written in Java

    Cost analysis of object-oriented bytecode programs

    Get PDF
    AbstractCost analysis statically approximates the cost of programs in terms of their input data size. This paper presents, to the best of our knowledge, the first approach to the automatic cost analysis of object-oriented bytecode programs. In languages such as Java and C#, analyzing bytecode has a much wider application area than analyzing source code since the latter is often not available. Cost analysis in this context has to consider, among others, dynamic dispatch, jumps, the operand stack, and the heap. Our method takes a bytecode program and a cost model specifying the resource of interest, and generates cost relations which approximate the execution cost of the program with respect to such resource. We report on COSTA, an implementation for Java bytecode which can obtain upper bounds on cost for a large class of programs and complexity classes. Our basic techniques can be directly applied to infer cost relations for other object-oriented imperative languages, not necessarily in bytecode form

    A program logic for resources

    Get PDF
    AbstractWe introduce a reasoning infrastructure for proving statements about resource consumption in a fragment of the Java Virtual Machine Language (JVML). The infrastructure is based on a small hierarchy of program logics, with increasing levels of abstraction: at the top there is a type system for a high-level language that encodes resource consumption. The infrastructure is designed to be used in a proof-carrying code (PCC) scenario, where mobile programs can be equipped with formal evidence that they have predictable resource behaviour.This article focuses on the core logic in our infrastructure, a VDM-style program logic for partial correctness, which can make statements about resource consumption alongside functional behaviour. We establish some important results for this logic, including soundness and completeness with respect to a resource-aware operational semantics for the JVML. We also present a second logic built on top of the core logic, which is used to express termination; it too is shown to be sound and complete. We then outline how high-level language type systems may be connected to these logics.The entire infrastructure has been formalized in Isabelle/HOL, both to enhance the confidence in our meta-theoretical results, and to provide a prototype implementation for PCC. We give examples to show the usefulness of this approach, including proofs of resource bounds on code resulting from compiling high-level functional programs

    Abstract Certification of Java Programs in Rewriting Logic

    Full text link
    In this thesis we propose an abstraction based certification technique for Java programs which is based on rewriting logic, a very general logical and semantic framework efficiently implemented in the functional programming language Maude. We focus on safety properties, i.e. properties of a system that are defined in terms of certain events not happening, which we characterize as unreachability problems in rewriting logic. The safety policy is expressed in the style of JML, a standard property specification language for Java modules. In order to provide a decision procedure, we enforce finite-state models of programs by using abstract interpretation. Starting from a specification of the Java semantics written in Maude, we develop an abstraction based, finite-state operational semantics also written in Maude which is appropriate for program verification. As a by-product of the verification based on abstraction, a dependable safety certificate is delivered which consists of a set of rewriting proofs that can be easily checked by the code consumer by using a standard rewriting logic engine. The abstraction based proof-carrying code technique, called JavaPCC, has been implemented and successfully tested on several examples, which demonstrate the feasibility of our approach. We analyse local properties of Java methods: i.e. properties of methods regarding their parameters and results. We also study global confidentiality properties of complete Java classes, by initially considering non--interference and, then, erasure with and without non--interference. Non--interference is a semantic program property that assigns confidentiality levels to data objects and prevents illicit information flows from occurring from high to low security levels. In this thesis, we present a novel security model for global non--interference which approximates non--interference as a safety property.Alba Castro, MF. (2011). Abstract Certification of Java Programs in Rewriting Logic [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/13617Palanci
    corecore