
User-Definable Resource Bounds Analysis
for Logic Programs

Jorge Navas1 , Edison Mera2 , Pedro López-García3 ,
and Manuel V. Hermenegildo1 '3

1 University of New México, USA
2 Complutense University of Madrid, Spain

3 Technical University of Madrid, Spain

Abs t r ac t . We present a static analysis that infers both upper and lower
bounds on the usage that a logic program makes of a set of user-definable
resources. The inferred bounds will in general be functions of input data
sizes. A resource in our approach is a quite general, user-defined notion
which associates a basic cost function with elementary operations. The
analysis then derives the related (upper- and lower-bound) resource us
age functions for all predicates in the program. We also present an asser-
tion language which is used to define both such resources and resource-
related properties that the system can then check based on the results
of the analysis. We have performed some preliminary experiments with
some concrete resources such as execution steps, bytes sent or received
by an application, number of files left open, number of accesses to a
datábase, number of calis to a procedure, number of asserts/retracts,
etc. Applications of our analysis include resource consumption verifi-
cation and debugging (including for mobile code), resource control in
parallel/distributed computing, and resource-oriented specialization.

1 Introduction

It is generally recognized tha t inferring information about the costs of computa-
tions can be useful for a variety of applications. These costs are usually related
to execution steps and, sometimes, time or memory. We propose an analyzer
which allows automatically inferring both upper and lower bounds on the us
age tha t a logic program makes of user-definable resources. Examples of such
user-definable resources are bits sent or received by an application over a socket,
number of calis to a procedure, number of files left open, number of accesses to a
datábase, number of licenses consumed, monetary units spent, disk space used,
etc., as well as the more traditional execution steps, execution time, or mem
ory. We expect the inference of this kind of information to be instrumental in a
variety of applications, such as resource usage verification and debugging, certi-
fication of resource consumption in mobile code, resource/granulari ty control in
parallel /distr ibuted computing, or resource-oriented specialization.

In our approach a resource is a user-defined notion which associates a basic
cost function with elementary operations in the base language and /or to some

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148662753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

predicates in librarles. In this sense, each resource is essentially a user-defined
counter. The user gives a ñame (such as, e.g., b i t s j rece ived) to the counter and
then defines via assertions how each elementary operation in the program (e.g.,
unifications, calis to builtins, external calis, etc.) increments or decrements that
counter. The use of resources obviously depends in practice on the sizes or valúes
of certain inputs to programs or predicates. Thus, in the assertions describing
elementary operations the counters may be incremented or decremented not
only by constants but also by amounts that are functions of input data sizes or
valúes. Correspondingly, the objective of our method is to statically derive from
these elementary assertions and the program text functíons that yield upper and
lower bounds on the amount of those resources that each of the predicates in the
program (and the program as a whole) will consume or provide. The input to
these functions will also be the sizes or valué ranges of the topmost input data
to the program or predicate being analyzed.

As mentioned previously, most previous work is specific to the analysis of
execution steps and, sometimes, time or memory. The ACE system [16] can auto-
matically extract upper bounds on execution steps for a subset of functional pro-
gramming. The system is based on program transformation. The original program
is transformed into a step-counting versión and then into a composition of a cost
bound and a measure function. In [19] another automatic upper-bound analysis
is presented based on an abstract interpretation of a step-counting versión. The
analysis measures both execution time and execution steps. However, size mea-
sures cannot automatically be inferred and the experimental section shows few
details about the practicality of the analysis. In [8,7] a semi-automatic analysis
is presented which infers upper-bounds on the number of execution steps. These
bounds are functions on the sizes or valué ranges of input data. This seminal work
applies to a large class of logic programs and presents techniques in order to deal
with the generation of múltiple solutions via backtracking. The authors also show
how other specific analyses could be developed, such as for, e.g., time or memory.
This approach was later fully automated and extended to inferring upper- and
lower-bounds on the number of execution steps (which is non-trivial because of
the possibility of failure) in [9,12]. Our method builds on this work but general-
izes it in order to deal with a much more general class of user-defined resources,
allowing thus the coverage of an unlimited number of analyses within a single im-
plementation. In [11] a method is presented for automatically extracting cost re-
currences from first-order DML programs. The main feature is the use of depen-
dent types to describe a size measure that abstracts from data to data size. In [17],
and inspired by [3] and [15], a complexity analysis is presented for Horn clauses,
also fully automating the necessary calculations. In [13] a method is presented for
modeling problems such as memory management, lock primitive usage, etc., and
a type-based method is proposed as solution to the inference problem. In [21] a
cost model is presented for inferring cost equations for recursive, polymorphic,
and higher-order functional programs. While it is claimed that the approach can
be modified in order to infer a reduced set of resources such as execution time, exe
cution steps, or memory, no details are given. Worst case execution time (WCET)

estimation has been studied for imperative languages and for different application
domains (see, e.g., [20,4,10] and its references). However these and related meth-
ods again concéntrate only on execution time. Also, they do not infer cost func-
tions of input data sizes but rather absolute máximum execution times, and they
generally require the manual annotation of loop iteration bounds. In [5] a method
is presented for reserving resources before their actual use. However, the program-
mer (or program optimizer) needs to annotate the program with "acquire" and
"consume" primitives, as well as provide loop invariants and function pre- and
post-conditions. Interesting type-based related work has also been performed in
the GRAIL system [1], also oriented towards resource analysis, but it has concen-
trated mainly on ensuring memory bounds.

In comparison with previous work our approach allows dealing with a class of
resources which is open, in the ampie sense that such resources are in fact defined
by programmers using an assertion language, which we also consider itself an
important contribution of our work. Another important contribution of our work
(because its impact in the scalability and automation of the analysis) is that our
approach allows defining the resource usage of external predicates, which can
be used for modular composition. In addition, assertions also allow describing
by hand the usage of any predicate for which the automatic analysis infers a
valué that is not accurate enough, and this can be used to prevent inaccuracies
in the automatic inference from propagating. In the following (Sect. 2) we first
present the assertion language proposed. Sect. 3 then provides an overview of
the approach, Sect. 4 shows how size relationships among program variables
are determined, and Sect. 5 and 6 describe how the resource usage functions
are inferred. We have implemented the proposed analysis and applied it to a
series of example programs. The results are presented in Sect. 7. Finally, Sect. 8
summarizes our conclusions.

2 The Resource Assertion Language

We start by describing the assertion schema. This language is used for describ
ing resources and providing other input to the resource analysis, and is also
the language in which the resource analysis produces its output. This assertion
language is used additionally to state resource-related specifications (which can
then be proved or disproved based on the results of analysis following the scheme
of [12], which allows finding bugs, verifying the program, etc.).

The rules for the assertion language grammar are listed in Fig. 1. In this
grammar Var corresponds to variables written in the syntax for variables of
the underlying logic programming language (i.e., normally non-empty strings of
characters which start with a capital letter or underscore). Similarly, Num is any
valid number and Predjname any valid ñame for a predicate in the underlying
programming language (normally non-empty strings of characters which start
with a lower-case letter or are quoted). Statejprop corresponds to other state
propertíes (such as modes and types), and Compjprop stands for any other valid
computatíonal property (see [12] and its references).

(programjassrt) :

(status Jlag) :
(predjassrt) :
(predAesc) :
(args) :
(pre_cond) :
(post-cond) :
(comp_cond) :
(statejprop) :
(statejprops) :
(compjprop) :
(compjprops) :
(cost) :
(approx) :
(szjrnetric) :
(arithjsxpr) :

(binj3p) :
(quantifier) :

:= :- (status-flag) (predjissrt).
| :- head_cost((appro:r},Res_name,ZÍ).
| :- literal_cost((appro:r},Res_name,ZÍ).

:= trust | check | true | e
:= pred (predAesc) (pre_cond) (postjcond) (compjcond).
:= Pred_name | Pred_name((ar(/s})
:= Var | Var, (args)
:= : (statejprops) \ e
:= = > (statejprops) \ e
:= + (compjprops) \ e
:= s'vze{Vsx,(approx),(szjrnetric),(arith_expr)) \ State_prop
:= (statejprop) \ (statejprop), (statejprops)
:= size_metric(Var,(szjrnetric)) \ (cost) \ Comp_prop
:= (cornpjprop) \ (cornp_prop), (compjprops)
: = c ost ((approx) ,Res_name, (arith_expr))
:= ub | Ib | oub | olb
:= valué | length | size | void
:= — (arith_expr) \ (arith_expr) ! | (quantifier) (arithjsxpr)

| (arith_expr) (binjop) (arith_expr)
(arith.expr){arith-expr) \ logNum (arith.expr)

| Num | (szjrnetric){Vsx)

= = + 1 - 1 * 1 /
:= s i n

Fig. 1. Syntax of the Resource Assertion Language

Predicates can be annotated with zero or more pred assertions, which state
properties of the execution states when the predícate is called (pre_cond), proper-
ties of the execution states when the predicate terminates execution (postjcond),
or properties of the whole computation of the predicate, rather than the input-
output behavior (comp_cond, which herein will be used only for resource-related
properties). For brevity the (statejprops) fields can also be written using "star
notation" (see the examples). In addition, there may be a set of global head_cost
and literaLcost declarations (one for each resource and approximation direc-
tion). The Resáname fields determine which resource the assertion refers to.
These Resj2am.es are user-provided identifiers which give a ñame to each par
ticular resource that needs to be tracked. Resources do not need to be declared
in any other way -the set of resources that the system is aware of is simply
the set of such ñames that appear in assertions which are in the scope. The
(approx) fields state whether (arith_expr) is providing an upper bound or a
lower bound (with oub meaning it is a "big O" expression, Le., with only the
order information, and olb meaning it is an f¿ asymptotic lower bound).

The first and most fundamental use of assertions in our context is to describe
how the execution of some predicates increments or decrements the usage of the
resources (counters) defined in the program. The purpose of analysis is then to in-
fer the resource usage of all predicates in the program. The head_cost((approx),
Res_name, AH) declarations are used to describe how predicates in general update

http://Resj2am.es

the valué for those resources that are applicable only to predícate heads (such
as counting the number of arguments passed or total execution steps -see Sec-
tion 5). The definition of AH : clJiead —• arith_expr is provided by means a
user-defined (or imported) predícate, written in the source language, and which
will be called by the analyzer when the clause head is analyzed. This code gets
loaded into the compiler in a similar way to, e.g., macro expansión code. The lit-
eraLcost({approx), Res_name, AL) declarations describe how predícate bodies
update the valué of certain resources which are applicable only to body literals
(such as, for example, number of unifications). In this case, AL : bodyJit —•
arith_expr is also user- (or library-)provided code which will be executed when the
body literals of different predicates are analyzed. The cost ({approx), Res_name,
(arith_expr)) comp-type properties are included in pred assertions and used to
provide the actual resource usage functions for each builtin or external (e.g., de-
fined in another language) predícate used in the program. Such assertions have
trust status (meaning that the analysis will assume this valué [12]). As mentioned
previously, the aim of the analysis is to derive functions that describe the resource
usage (as well as argument size relations) for the rest of the predicates in the pro
gram. Note however that it is also possible to provide pred assertions for some
of those predicates and this can also be used to guide the analysis. In particu
lar, the analysis will compute the most precise expression between the resource
usage function provided by the assertion ((cost)) and the resource usage function
inferred by analysis. Additionally, size metric (size_metric(Var,(szjmetric))) in-
formation can be provided by users if needed (but note that in practice size metrics
can often be derived automatically from the inferred types).

Assertions can also be used, via the pre_cond and post_cond fields, to declare
relationships between the data sizes of the inputs and outputs of predicates,
which are needed by our analysis, as will be described later. These assertions are
also used to label predícate arguments as input or output, as well as to provide
types or size (size(Var,{approx),(szjmetric),{arith_expr))) information. In the
same way as with the {cost) properties, for user-defined predicates these other
assertions can be provided by the user or inferred by analysis. Again, analysis
will compute the most precise of the two.

Example 1. The following example shows how a program can be annotated using
our assertion language in order to perform resource analysis. Consider a client
application in Fig 2 that sends a data buffer through a socket1 and receives
another (possibly transformed) data buffer. Assume that we would like to obtain
an upper bound on the number of bits received by the application -a resource
that we will cali bitsjreceived.

As we will see, the approach needs to know for each argument in the program
the metric and whether it is input or output in order to perform properly the size
and resource usage analyses described in Sect. 4 and 5. Input/output and metric
information can be required by the language (typed language), given by the user
(via assertions), or, as in our implementation, inferred automatically via analysis.

1 Note that the types of the socket operations must be given to the analysis by other
analyses or by user-provided assertions.

:- pred main(Opts, IBuf, OBuf)
: list(gnd) * list(byte) * var.

main([Host,Port],IBuf,OBuf) :-
connect_socket(Host,Port,Stream),
exchange_buffer(IBuf,Stream,OBuf),
cióse(Stream).

exchange_buf f er ([],_,[]).
exchange_buffer([B|Bs],Id,[BOIBsO]) :-

exchange_byte(B,Id,BO),
exchange_buffer(Bs,Id,BsO).

:- trust pred
connect_socket(Host,Port,Stream)
: atm * num * var
=> atm * num * atm
+ cost(ub,bits_received,0).

:- trust pred cióse(Stream)
: atm => atm
+ cost(ub,bits_received,0).

:- trust pred exchange_byte(B,Id,BO)

: byte * num * var
=> byte * num *
{byte(BO), size(BO,ub,bytes,l)}

+ cost(ub,bits_received,8).

:- head_cost(ub,bits_received,
head_bits_received).

head_bits_received(_,0).
:- literal_cost(ub,bits_received,

literal_bits_received).
Iiteral_bits_received(_,0).

Fig. 2. A simple client application

3 Overview of the Approach

Our basic approach is as follows. Given a predicate cali p, let á>(p, r, n) denote
the units of resource r consumed or produced during the computation of p for an
input of size n. An expression RUj,re(¡(p,ap,r ,n) is determined (at compile-time)
that approximates <¡>(p, r, n) with approximation ap. Typical size metrics are the
actual valué of a number, the length of a list or array, the size (number of nodes
and fields) of a data structure, etc. We will refer to such RUj,re(¡(p,ap,r ,n) ex-
pressions as resource usage bound functíons. Certain program information (such
as, for example, input/output modes and size metrics for predicate arguments)
is first automatically inferred by other (abstract interpretation-based) analyzers
and then provided as input to the size and resource analysis (the techniques
involved in inferring this information are beyond the scope of this paper —see,
e.g., [12] and its references for some examples). Based on this information, our
analysis first finds bounds on the size of input arguments to the calis in the body
of the predicate being analyzed, relative to the sizes of the input arguments to
this predicate using the inferred metrics. The size of an output argument in
a predicate cali depends in general on the size of the input arguments in that
cali. For this reason, for each output argument we infer an expression which
yields its size as a function of the input data sizes. To this end, and using the
input-output argument information, data dependency graphs are used to set up
difference equations whose solution yields size relationships between input and
output arguments of predicate calis. This information regarding argument sizes
is then used to set up another set of difference equations whose solution provides
bound functions on resource usage. Both the size and resource usage difference
equations must be solved by a difference equation solver. Although the operation
of such solvers is beyond the scope of the paper our implementation does provide
a table-based solver which covers a reasonable set of difference equations such
as first-order and higher-order linear difference equations in one variable with

constant and polynomial coefficients,2 divide and conquer difference equations,
etc. In addition, the system allows the use of external solvers (such as, e.g. [2],
Mathematica, Matlab, etc.). Note also that , since we are computing upper/lower
bounds, it suffices to compute upper/lower bounds on the solution of a set of
difference equations, rather than an exact solution. This allows obtaining an
approxímate closed form when the exact solution is not possible.

4 Size Analysis

We will give the intuition behind the da ta dependency-based method for inferring
bounds on the sizes of output arguments in the head of a predicate as a function
of the sizes of input arguments to the predicate. Besides this, as a result of the
size analysis, we have bounds on the size of each input argument to body literals
in a clause as a function of the size of the input arguments to the head of tha t
clause. The size of the input arguments to body literals will be used later to infer
functions which give bounds on the resource usage of body literals in terms of
the sizes of the input arguments to the head. We adopt the approach of [8,7] for
the inference of upper bounds on argument sizes and [9] for lower bounds. For
the sake of brevity, we will only consider the inference of upper bounds in this
paper, and refer the reader to [9] for the inference of lower bounds.

Various metrics are used for the "size" of an argument (e.g., valué, length,
size,3...). For the sake of brevity, we will only consider the length metric in this
paper, and refer the reader to [8,7,9] for other metrics.

We define the s ize ((s z jmetr ic) , t) operation which returns the size of a term
t under the metric (szjmetric):

(0 if t = [] (the empty list)

1 + size(length, T) if t = [H\T]
_L otherwise.

Thus, size(length, [X,Y]) = 2, and size(length, [X\Y]) = _L.
We also define the d i f f ((szjmetric), ti, t_) operation, which returns (an upper

bound on) the size difference between two terms t\ and t_ under the metric
(szjmetric).

(0 Í f í i = í 2

d i f f (length, t i , ¿2) = \ á±ii(length,t,t_) — 1 if t i = [_|t] for some term t
[_L otherwise.

Thus, d i f f (length, [a, b\T], T) = - 2 .
A directed acyclic graph called argument dependency graph is used to rep-

resent the da ta dependency between argument positions in a clause body (and
between them and those in the clause head). Each node in the graph denotes an
argument position. There is an edge from a node «4 to a node n_ if the variable

2 Note that it is always possible to reduce a system of linear difference equations to a
single linear difference equation in one variable.

3 Metric voíd in an argument means that analysis does not need to infer its size.

bindings generated by n i are used to construct the term occurring at n^. The
node n i is said to be a predecessor of the node n-2, and ni a successor of n i .

Using the s i z e and d i f f functions and the argument dependency graph we
can set up size relations for expressing the size of each argument position in terms
of the sizes of its predecessors. Let sz(a) denote the size of the term occurring
at an argument position a, and @a the term occurring at an argument position
a. For the sake of simplicity we will omit the argument (szjmetric) in the s i z e
and d i f f functions in the rest of the paper.

— Output arguments. Let Z i , . . . , ln denote the input argument positions of the
literal L, and let í7- : TV™ ^ i—• 7VJ_I00 be a function tha t represents the size of
the 5-th (output) argument position of the predicate p of literal L in terms of
the size of its input positions, where J\í± denotes the set of natural numbers
augmented with the special symbols _L (denoting "undefined"), and oo.
Assume tha t a is an output argument position in a clause. Then the follow-
ing size relation is set up:

sz(a) < # ° (s z (Z i) , . . . , s z (Z n))
If L is recursive, then í / - " (s z (¿ i) , . . . , s z (/ n)) is a symbolic expression. How-
ever, if L is non-recursive then the function í7-" has been recursively com-
puted, and thus we replace í / - " (sz (Zi) , . . . , s z (/ n)) by the (explicit) expression
resulting from the application of the function í7-" to s z (Z i) , . . . , sz(Zn).

— Input arguments. Assume tha t a is an input argument position in a body
literal. Let p r e d e c e s s o r s (a) be the set of predecessors of a in the argument
dependency graph. We have the following possibilities:

1. Compute s i ze (@a) . If s i ze (@a) ^ _L then set up the size relation:
sz(a) < s i ze (@a) .

2. Otherwise, if 3r G p r e d e c e s s o r s (a) such tha t the size metrics cor-
responding to r and a are the same and d = d i f f (r , a) ^ _L, then
sz(a) < sz (r) + d.

3. Otherwise, if s i ze (@a) can be expanded using the definition of the
s i z e function, then expand s ize(@a) one step and recursively compute
s i ze (í j) for the appropriate subterms t¿ of @a. If each of these recursive
size computations have a defined result, then use them to compute the
size relation for s i ze (@a) . Otherwise, sz(a) = _L.

Size relations can be propagated to transform a size relation corresponding to
an input argument in a body literal or an output argument in the clause head
into a function in terms of the sizes of the input arguments of the head. The
basic idea here is to repeatedly substi tute size relations for body literals into size
relations for head arguments. This is the purpose of the normalization algorithm
described in [7]. However, for recursive clauses, we need to solve the symbolic
expression due to recursive literals into an explicit function first.

Example 2. Consider again the program described in Fig. 2. Here and in the
rest of the paper we will denote by predjname the ñame of a predicate, and
by pred-name? the i-th argument position in the j-th literal with predicate

ñame predjname in the body of a clause. If there is only one body literal with
predicate ñame pred.name in the body of a clause then we omit the superscript
j and write simply predjnamei. Let headi be the i-th argument position in the
clause head. To simplify notation, we will represent exchange_buf f e r / 3 and
exchange_byte/3 with exJmj and ex_byt respectively. Consider the recursive
clause of exchange_buf f e r / 3 . First, the system sets up the size relation for the
inpu t /ou tpu t arguments of the body literals:

sz(exJbyti) < size(B) = sz(arg(l,headi))
sz.(ex Jryti) < size(Id) = sz{head2) + diff{Id,Id) = sz{head2)
sz(exJryt3) < <Plx_byt(sz(exJyyti), sz(ex_byt2)) = 1
sz(exjbufi) < size(Bs) = sziheadi) -\-diff (\B\Bs\,Bs) = sziheadi) — 1
sz(ex Jbuf2) < size(Id) = sz{head2) + diff (Id, Id) = sz{head2)
sz(exJmf3) < <Plx_buf(sz(exJyufi),sz(exJyuf2))

Then, system sets up the size relation for the output arguments of the head:

sziheadi) < size([BO|BsO]) = size(BsO) + 1 =
sz(ex_buf3) + diff (BsO, BsO) + 1 = sz(exjruf3) + 1

The normalization algorithm is applied to the previous size relation and gives:

szijieadi) < <Plx_buf(sz(exJyufi),sz(exJyuf2)) + l
< <Plx_buf(sz(headi) — 1, sz(head2)) + 1

Thus, the system establishes the difference equation for the output argument
(heads) in the head (since it belongs to a recursive predicate). Then, it obtains
the boundary condition ^exj>uf(^>y) = ^ from the non-recursive clause, and
using it, it obtains a closed form function by calling the difference equation
solver (variables x and y represent sz(headi) and sz(/iea<¿2) respectively):

*L_buA0,y) = 0 3

5 Resource Usage Analysis

In order to infer the resource usage functions all predicates in the program
are processed in a single traversal of the cali graph in reverse topological order.
Consider such a predicate p defined by clauses Ci,... , Cm. Assume tha t ñ is a tupie
such tha t each element corresponds to the size of an input argument position
to predicate p. Then, the resource usage (expressed in units of resource r with
approximation ap) of a cali to p, for an input of size ñ, can be expressed as:

RUPred(í>, ap, r, ñ) = Q(ap) {RUciause(Cí,í5, ap, r, n)} (1)

where Q(ap) is a function tha t takes an approximation identifier ap and returns
a function which applies over all RUciause(C¿,p, ap, r, ñ), for 1 < i < m. For exam-
ple, if ap is the identifier for approximation "upper bound" (ub), then a possible
conservative definition for Q(ap) is the J2 function. In this case, and since the
number of solutions generated by a predicate tha t will be demanded is generally
not known in advance, a conservative upper bound on the computational cost of

a predícate is obtained by assuming that all solutions are needed, and that all
clauses are executed (thus the cost of the predícate is assumed to be the sum of
the costs of all of its clauses). However, it is straightforward to take mutual exclu
sión into account (information which is inferred by CiaoPP [14,12] and is available
to our analysis) to obtain a more precise estímate of the cost of a predícate, us-
ing the máximum of the costs of mutually exclusive groups of clauses. If ap is the
identifier for approximation "lower bounds" (Ib), then Q(ap) is the min function.

Let us see now how to compute the resource usage of clauses. Consider a
clause C of predícate p of the form H : — Li,..., Lk where L-¡, 1 < j < k, is a literal
(either a predícate cali, or an external or builtin predícate), and H is the clause
head. Assume that ipj(ñ) is a tupie with the sizes of all the input arguments to
literal Lj, given as functions of the sizes of the input arguments to the clause
head. Note that these ipj(n) size relations have previously been computed during
size analysis for all input arguments to literals in the bodies of all clauses.

Then, RUciause(C, ap, r, n), the resource usage (expressed in units of resource
r with approximation ap) of clause C of predícate p, is RUciause(C, ap, r, n) =
closed_form(RV(p,ap,r,n)). That is, it is expressed as the solved form func
tion of the following expression (which, in general, for recursive clauses yields a
difference equation):

R\](p,ap,r,n) = 6(ap,r)(head(C)) +
lim(ap,C) / r j \

£ (nSols L i (ñ ¡)) (/3(a í 5 , r) (L J)+RU l l t (L J , a í 5 , r ,^ (ñ))) [>

where lim(ap, C) is a function that takes an approximation identifier ap and a
clause C and returns the Índex of a literal in the clause body. For example, if
ap is the identifier for approximation "upper bound" (ub), then lim(ap,C) = k
(the Índex of the last body literal). If ap is the identifier for approximation
"lower bounds" (Ib), then lim(ap, C) is the Índex for the rightmost body literal
that is guaranteed not to fail. S(ap, r) is a function that takes an approximation
identifier ap and a resource identifier r and returns a function AH : clJiead —s-
arith_expr which takes a clause head and returns an arithmetic resource usage
expression < arith_expr > as defined in Section 2. Thus, S(ap,r)(head(C))
represents AH(head(C)). On the other hand, ¡3(ap,r) is a function that takes
an approximation identifier ap and a resource identifier r and returns a function
AL : bodyJit —s- arith_expr which takes a body literal and returns an arithmetic
resource usage expression < arith_expr > as defined in Section 2. In this case,
¡3(ap,r)(Lj) represents AL(Lj). SolsL¡ is the number of solutions that literal L¡
can genérate, where / -< j denotes that L¡ precedes Lj in the literal dependency
graph for the clause. Section 6 illustrates different definitions of the functions
S(ap,r) and ¡3(ap,r) in order to infer different resources.
RUilt(Lj,ap, r, ipj(ñ)) is:

— If Lj is recursive (i.e., calis a predícate q which is in the strongly-connected
component of the cali graph being analyzed), then RX5nt(Lj,ap,r,tpj(n)) is
replaced by a symbolic expression RU(</, ap, r, -¡/>¿(ñ)).

— If Lj is not recursive, assume that it is a cali to q (where q can be either a
predicate cali, or an external or builtin predicate), then q has been already
analyzed, i.e., the (closed form) resource usage function for q has been re-
cursively computed as á>' and RUilt (Lj, ap, r, n) can be expressed explicitly
in terms of the function á>', and it is thus replaced with <¡>'(ipj(n)).

Note that in both cases, if there is a resource usage assertion for q, cost(ap,
r, á>), then RUilt(Lj, ap,r, i>j(n)) is replaced by the most precise (greatest lower
bound if upper bounds or least upper bound if lower bounds) of a) the arithmetic
resource usage expression (in closed form) <¡>(ipj(n)) or b) its (closed form) re
source usage function inferred previously by the analysis (provided they are not
incompatible, in which case an error is flagged).

It can be proved by induction on the number of literals in the body of clause
C that:

1. If clause C is not recursive, then, expression (2) results in a closed form
function of the sizes of the input argument positions in the clause head;

2. If clause C is simply recursive, then, expression (2) results in a difference
equation in terms of the sizes of the input argument positions in the clause
head;

3. If clause C is mutually recursive, then expression (2) results in a difference
equation which is part of a system of equations for mutually recursive clauses
in terms of the sizes of the input argument positions in the clause head.

If these difference equations can be solved (including approximating the solution
in the direction of ap) then RU(p, ap, r, n) can be expressed in a closed form, which
is a function of the sizes of the input argument positions in the head of predicate p
(and henee RUciause(C, ap, r, n) = closed_form(RV(p,ap,r,ñ))). Thus, after the
strongly-connected component to which p belongs in the cali graph has been
analyzed, we have that expression (1) results in a closed form function of the
sizes of the input argument positions in the clause head.

Note that our analysis is parameterized by the functions 6(ap, r) and ¡3(ap, r)
whose definitions can be given by means of assertions of type heacLcost and lit-
eraLcost respectively, as given in Figure 1. These functions make our analysis
parametric w.r.t. resources (such as execution steps, bytes sent by an applica-
tion/socket, number of calis to a procedure, etc.).

6 Deflning the Parameters (Functions) of the Analysis

In this section we explain and illustrate with examples how the functions that
make our resource analysis parametric, namely, 6 (which includes the definition
of AH), and ¡3 (which includes the definition of AL) are written in practice in
our system. For brevity, we assume that we are interested in computing upper
bounds on the different resources.

Assume for example that the resource we want to measure is (an upper bound
on) the number of resolution steps performed by a program. Then we can define

6(ub, steps) = delta_one, and define delta_one(H) = 1 for all H. This is achieved
by providing the following heacLcost assertion and definition of the de l t a_one
predícate:

: — head. .cost(ub
delta_one(_ !)•

s teps de l ta . _one).

In order to simplify the process of defining interesting and useful AH and AL

functions, our implementation provides a library with predicates tha t perform
(syntactic) operations on clauses, such as, for example, getting the number of
arguments in a clause head or body literal, accessing an argument of a clause
head or body literal, getting the main functor and arity of a term in a certain
position, etc. In this context it is important to remember tha t the different AH

and AL function definitions perform syntactic matching on the program text.

Assume now tha t the resource we want to measure is the number of argument
passings tha t occur during clause head matching in a program (as an approxi-
mation to the number of unifications performed by the program). Then we can
define 6(ub, nurajirgs) = deltajnumjargs, and define deltajnumjargs{H) =
arity(H). This is achieved by the following code:

: — head_cost(ub, num_args, delta_num_args).
delta_num_args(H, N) :— functor(H, _, N).

As another example, if we are interested in decomposing arbi trary unifica
tions performed while unifying a clause head with the literal being solved into
simpler steps, we can define a resource numjunifs, define 6(ub, numjunifs) =
deltajnumjunifs, and define deltajnumjunifs(H) = The number of function
symbols, constants, and variables in H.

If, in addition to the number of unifications performed while unifying a clause
head, we are also interested in the cost of term creation for the literals in the
body of clauses, we can define a resource térras jzreated, and define a ¡3 function
f3(ub, térras jzr eated) = betajberms.created, where betaJtermsjyreated{L) =
The number of function symbols, and constants in body literal L. Note tha t
in this case we define 6(ub, térras jzr eated) = deltaJter'ras jyreated, and define
deltaJterras_created(H) = 0 for all H.

Example 3. Consider the same program defined in Fig. 2 and the size relations
computed in Example 2. We now show the corresponding resource usage equa-
tions for each clause for the resource bitsjreceived (denoted by bits for brevity)
inferred automatically by our system. Although the functions 6(ap,r)(H) and
¡3(ap, r)(L) take as arguments a clause head H and a body literal L respectively,
in our examples we will only write the predicate ñame of H and L for the sake
of brevity. Again, to simplify notation we will represent exchange_buf f e r / 3 ,
exchange_by te /3 and c o n n e c t _ s o c k e t / 3 with ex_buf and exj>yt and consock
respectively. Since the program is analyzed in a single traversal of the cali
graph in reverse topological order, the system star ts by analyzing the predicate
exchange_buf f e r / 3 . Note tha t the resource usage for external predicates (whose
code is not available) c o n n e c t _ s o c k e t / 3 , exchange_by te /3 and c l o s e / 1 is

already given by "trust" assertions which express that : RU(con_socfc, ub, bits, S) =
0, RU(ex J)yt, ub, bits, _) = 8 and RU(close, ub, bits, _) = 0.

For the recursive clause of exchange_buf f e r / 3 , the system sets up the fol-
lowing difference equation, where n represents the length of the first argument
to this predicate (note tha t the system infers the "length" size metric for this
argument and tha t n > 0):

RU(ex Jbuf, ub, bits, (n)) = S(ub, bits)(exJmf) + ¡3(ub, bits)(exj>yt) +
RU(ex J)yt, ub, bits, _) + ¡3(ub, bits)(exJmf) +
RU(exJ)uf, ub , bits, (n — 1}) =
0 + 0 + 8 + 0 + RV(exJmf, ub, bits, (n - 1})

For the non-recursive clause of exchange_buf f e r / 3 the system infers: RV(exJmf,
ub, bits, (0)) = 0 which can be used as boundary condition for solving the previous
difference equation, yielding the following closed form resource usage function:
RU(ex Jbuf, ub, bits, (n)) = 8 x n.

Now, the ma in /2 predicate is analyzed, and the system sets up the following
expression for its only clause (where k is the length of the input buffer, i.e., the
second argument to this predicate):

RU(main, ub, bits, (k)) = S(ub, bits)(main)-\-
¡3(ub, bits) (consock) + RU(con_socfc, ub, bits, _) +
¡3(ub, bits)(ex.buf) + RV(exJ)uf, ub, bits, (k))
¡3(ub, bits)(elose) + RU(close, ub, bits, _)

= 0 + 0 + 0 + 0 + 8 x f c + 0 + 0 = 8 x k

7 Experimental Results

To study the feasibility of the approach we have completed a prototype imple-
mentat ion of the analyzer. It is writ ten in the Ciao language and uses a number
of modules and facilities from CiaoPP, the Ciao preprocessor (including differ
ence equation processing). We have also writ ten a Ciao language extensión (a
"package" in Ciao terminology) which when loaded into a module allows writ-
ing the resource-related assertions and declarations proposed herein.4 We have
then used this prototype to analyze a set of representative benchmarks which
include definitions of resources using this language and used the system to infer
the resource usage bound functions.

The results from the analysis of these benchmarks are shown in Table 1. For
brevity, we report only results for upper-bounds analysis. The column labeled
R e s o u r c e shows the actual resource for which bounds are being inferred by
the analysis for a given benchmark. While any of the resources defined in a
given benchmark could then be used in any of the others we show only the
results for the most natural or interesting resource for each one of them. We
have tried to use a relatively wide range of resources: number of bytes sent by

4 The system also supports adding resource assertions specifying expected resource
usages which the implemented analyzer will then verify or falsify using the results
of the implemented analysis.

Table 1. Accuracy and efñciency in milliseconds of the analysis

Program
c l i en t
color_map
copy_files
eight_queen
eval_polynom

f i b

grammar
hanoi
i n s e r t . s t o r e s

perm

power_set
qsor t
send_f i l e s
subst_exp
zebra

Resource
"bits received"
"unifications"

"files left open"
"queens movements"

"FPU usage"

"arithmetic operations"

"phrases"
"disk movements"
"accesses Stores"

"insertions Stores"

"WAM instructions"

"output elements"
"lists parallelized"

"bytes read"
"replacements"

"resolution steps"

Usage Function
A:r.8 • x
39066
Xx.x

19173961
\x.2.5x

Ax.2.17 •1.61a: +
0.82- (-o .e i)* - 3

24

Xx.2x - 1
\n,m.n + k

\n,m.n
Aa:.(£--118-a :!) +
(E - = i l 4 - f) + 4 . : r !

\x.±-2x+1

XxA • 2X - 2x - 4
Xx,y.x • y

Xx,y.2xy + 2y
30232844295713061

Metrics
length

size
length
length
length

valué

length/size
valué
length

length

length
length

length / size
size / length

size

Time
186

176

180

304

44

116

227

100

292

98

119

144

179

153

292

an application, number of calis to a particular predicate, robot arm movements,
number of files left open in a kernel code, number of accesses to a datábase,
etc. The column Usage Function shows the actual resource usage function
(which depends on the size of the input arguments) inferred by the analysis,
given as a lambda term. The column Metrics shows the size metric used for
the relevant arguments. Finally, the column labeled Time shows the resource
analysis times in milliseconds, on a médium-loaded Pentium IV Xeon 2.0Ghz
with two processors, 4Gb of RAM memory, running Fedora Core 5.0. Note that
these times do not include other analyses such as types, modes, etc.

8 Conclusions

We have presented a static analysis that infers upper and lower bounds on the
usage that a logic program makes of a quite general notion of user-definable
resources. The inferred bounds are in general functions of input data sizes. We
have also presented the assertion language which is used to define such resources.
The analysis then derives the related (upper- and lower-bound) resource usage
functions for all predicates in the program. Our preliminary experimental results
are encouraging because they show that interesting resource bound functions can
be obtained automatically and in reasonable time, at least for our benchmarks.
While clearly further work is needed to assess scalability we are cautiously hope-
ful in the sense that our approach allows defining via assertions the resource
usage of external predicates, which can then be used for modular composition.

These includes also predicates for which the code is not available or which are
writ ten in a programming language tha t is not supported by the analyzer. In
addition, assertions also allow describing by hand the usage of any predicate for
which the automatic analysis infers a valué tha t is not accurate enough, and this
can be used to prevent inaccuracies in the automatic inference from propagat-
ing. Our expectation is tha t the automatic analysis will be able to do the bulk
of the work for large applications, even if the cost of some specially complex
predicates may still need to be given by the user. In particular, for the exam-
ples in Table 1 all results where obtained automatically. Finally, we expect the
applications of our analysis to be rather interesting, including resource consump-
tion verification and debugging (including for mobile code), resource control in
parallel /distr ibuted computing, and resource-oriented specialization [6,18].

References

1. Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.-W., Momigliano, A.: A program
logic for resource verification. In: Slind, K., Bunker, A., Gopalakrishnan, G.C.
(eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 34-49. Springer, Heidelberg (2004)

2. Bagnara, R., Pescetti, A., Zaccagnini, A., Zaffanella, E., Zolo, T.: Purrs: The Parma
University's Recurrence Relation Solver, h t t p : / / w w w . c s . u n i p r . i t / p u r r s /

3. Basin, D., Ganzinger, H.: Complexity Analysis based on Ordered Resolution. In:
l l t h . IEEE Symposium on Logic in Computer Science, IEEE Computer Society
Press, Los Alamitos (1996)

4. Bate, L, Bernat, G., Puschner, P.: Java virtual-machine support for portable worst-
case execution-time analysis. In: 5th IEEE Int'l. Symp. on Object-oriented Real-
time Distributed Computing (April 2002)

5. Chander, A., Espinosa, D., Islam, N., Lee, P., Necula, G.C: Enforcing resource
bounds via static verification of dynamic checks. In: Sagiv, M. (ed.) ESOP 2005.
LNCS, vol. 3444, pp. 311-325. Springer, Heidelberg (2005)

6. Craig, S.J., Leuschel, M.: Self-tuning resource aware specialisation for Prolog. In:
Proc. of PPDP'05, pp. 23-34. ACM Press, New York (2005)

7. Debray, S.K., Lin, N.W.: Cost analysis of logic programs. TOPLAS, 15(5) (1993)
8. Debray, S.K., Lin, N.-W., Hermenegildo, M.: Task Granularity Analysis in Logic

Programs. In: Proc. PLDP90, pp. 174-188. ACM, New York (1990)
9. Debray, S.K., López-García, P., Hermenegildo, M., Lin, N.-W.: Lower Bound Cost

Estimation for Logic Programs. In: Proc. ILPS'97, MIT Press, Cambridge (1997)
10. Eisinger, J., Polian, L, Becker, B., Metzner, A., Thesing, S., Wilhelm, R.: Au

tomatic identification of timing anomalies for cycle-accurate worst-case execution
time analysis. In: Proc. of DDECS, IEEE Computer Society Press, Los Alamitos
(2006)

11. Grobauer, B.: Cost recurrences for DML programs. In: Int'l. Conf. on Functional
Programming, pp. 253-264 (2001)

http://www.cs.unipr.it/purrs/

12. Hermenegildo, M., Puebla, G., Bueno, F., López García., P.: Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming 58(1-2), 115-140
(2005)

13. Igarashi, A., Kobayashi, N.: Resource usage analysis. In: Symposium on Principies
oí Programming Languages, pp. 331-342 (2002)

14. López-García, P., Bueno, F., Hermenegildo, M.: Determinacy Analysis for Logic
Programs Using Mode and Type Information. In: Bruynooghe, M. (ed.) Logic
Based Program Synthesis and Transformation. LNCS, vol. 3018, pp. 19-35.
Springer, Heidelberg (2004)

15. McAllester, D.A.: On the complexity analysis of static analyses. In: Static Analysis
Symp., pp. 312-329 (1999)

16. Le Metayer, D.: ACE: An Automatic Complexity Evaluator. ACM Transactions
on Programming Languages and Systems 10(2), 248-266 (1988)

17. Nielson, F., Nielson, H.R., Seidl, H.: Automatic complexity analysis. In: European
Symposium on Programming, pp. 243-261 (2002)

18. Puebla, G., Ochoa, C : Poly-Controlled Partial Evaluation. In: Proc. of PPDP'06,
pp. 261-271. ACM Press, New York (2006)

19. Rosendhal, M.: Automatic Complexity Analysis. In: Proc. FPCA, ACM, New York
(1989)

20. Thiele, L., Wilhelm, R.: Design for time-predictability. In: Perspectives Workshop:
Design of Systems with Predictable Behaviour

21. Vasconcelos, P., Hammond, K.: Inferring Cost Equations for Recursive, Polymor-
phic and Higher-Order Functional Programs. In: Trinder, P., Michaelson, G.J.,
Peña, R. (eds.) IFL 2003. LNCS, vol. 3145, Springer, Heidelberg (2004)

