
Theoretical Computer Science 413 (2012) 142–159

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Cost analysis of object-oriented bytecode programs✩

Elvira Albert a, Puri Arenas a, Samir Genaim a, German Puebla b, Damiano Zanardini b,∗
a Complutense University of Madrid, Spain
b Technical University of Madrid, Spain

a r t i c l e i n f o

Keywords:
Cost analysis
Resource usage analysis
Bytecode languages
Static analysis
Quantitative analysis

a b s t r a c t

Cost analysis statically approximates the cost of programs in terms of their input data size.
This paper presents, to the best of our knowledge, the first approach to the automatic cost
analysis of object-oriented bytecode programs. In languages such as Java and C#, analyzing
bytecode has a much wider application area than analyzing source code since the latter is
often not available. Cost analysis in this context has to consider, among others, dynamic
dispatch, jumps, the operand stack, and the heap. Our method takes a bytecode program
and a cost model specifying the resource of interest, and generates cost relations which
approximate the execution cost of the programwith respect to such resource.We report on
COSTA, an implementation for Java bytecode which can obtain upper bounds on cost for a
large class of programs and complexity classes. Our basic techniques can be directly applied
to infer cost relations for other object-oriented imperative languages, not necessarily in
bytecode form.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Computational complexity theory is a fundamental research topic in computer science, which aims at determining the
amount of resources required to run a given algorithm or to solve a given problem in terms of the input value. This topic
has received considerable attention since the early days of computer science. The most common metrics studied are time-
complexity and space-complexity, which measure, respectively, the time and memory required for running an algorithm
or solving a problem. Due to its focus on measuring quantitative aspects of program executions, it is natural to consider
computational complexity as a first-class citizen in the area of quantitative analysis. In complexity theory, algorithms and
problems are often categorized into complexity classes, according to the amount of resources required for executing the
algorithm or solving the problem by using the best possible algorithm. Although, especially in recent decades, complexity
theory has produced a wealth of research results, assigning a complexity class to an algorithm is still far from being
automatic, and requires significant human intervention.

In this work, rather than on the complexity of problems or algorithms, we concentrate on analyzing the complexity of
programs. The first proposal for doing this automaticallywas the seminalwork byWegbreit [63],wherein theMetric system is
described, togetherwith a number of applications of automatic cost analysis. This systemwas able to automatically compute
closed-form cost functions which capture the non-asymptotic cost of simple Lisp programs as functions of the size of the
input arguments. Since then, a number of cost analysis frameworks have been proposed, mostly in the context of declarative
languages (functional [45,54,62,56,19] and logic programming [33,48]). Imperative languages have received significantly
less attention. It is worth mentioning the pioneering work by Adachi et al. [1]. There also exist cost analysis frameworks
which do not followWegbreit’s approach [43,25].

✩ This work is an extended and revised version of ESOP’07 (Albert et al., 2007) [9].
∗ Correspondence to: Technical University of Madrid, 28660 Boadilla del Monte, Madrid, Spain. Tel.: +34 600317288.

E-mail address: damiano.zanardini@gmail.com (D. Zanardini).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.07.009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81180114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.tcs.2011.07.009
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:damiano.zanardini@gmail.com
http://dx.doi.org/10.1016/j.tcs.2011.07.009

E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159 143

Traditionally, cost analysis has been formulated at the source code level. However, it can be the case that the analysis
must consider the compiled code instead. This may happen, in particular, when the code consumer is interested in verifying
some properties of third-party programs, but has no direct access to the source code, as usual for commercial software and
in mobile code. This is the general picture where the idea of Proof-Carrying Code [49] was born: in order for the code to be
verifiable by the user, safety properties (including resource usage) must refer to the (compiled) code available, so that it is
possible to check the provided proof and verify that the program satisfies the requirements.

1.1. Summary of contributions

As ourmain contribution, the presentwork formulates an automatic approach to cost analysis of real-life, object-oriented
bytecode programs (from now on, we use bytecode for short), whose features imply dealing with the most important
difficulties encountered when analyzing (source) object-oriented and low-level code: (1) as a low-level language, bytecode
features unstructured control flow, i.e., execution flow ismodified using conditional and unconditional jumps; (2) as an object-
oriented language, bytecode includes features such as virtual method invocation, extensive usage of exceptions, and the use
of a heap; moreover, (3) an additional challenge in bytecode is the use of an operand stack for storing the intermediate results
of computations.

Our analysis takes as input the bytecode corresponding to a program and the cost model of interest, and yields a set of
recursive equations which capture the cost of the program. The following steps are performed:
1 Intermediate representation. As it is customary in the analysis of bytecode [61,9,34], we develop our method on

an intermediate rule-based representation (RBR for short) which is generated from the original bytecode program
automatically by using techniques from compiler theory [2,3].

2 Size relations. Static analysis infers linear size relations (non-linear arithmetic is not supported) among program variables
at different program points. Size relations are, in the case of integer variables, constraints on the values of variables, and,
in the case of references, constraints on their path length, i.e., the length of the longest reference chain reachable from
the given reference [59].

3 Cost model. A parametric notion of cost model is introduced, which allows one to describe how the resource consumption
associated to a program execution should be computed. A cost model defines how cost is assigned to each execution step
and, by extension, to an entire execution trace. We consider a range of non-trivial cost models for measuring different
quantitative aspects of computations (number of steps, memory, etc.).

4 Cost relations. From theRBR, the size relations, and a given costmodel, a cost relation system (CRS for short) is automatically
obtained. CRSs express the cost of any block in the control flow graph (or rule in the RBR) in terms of the cost of the block
itself plus the cost of its successors.

5 Upper bound. If possible, an exact solution or an upper bound in non-recursive form (i.e., a closed-form solution or upper
bound) is found for the cost relation system. This step requires the use of a solver for such systems, whose details are not
in the scope of this paper [7].

As another contribution, we report on the COSTA system: an implementation of our proposed framework for Java bytecode
(JBC), which is one of the most widely used languages in mobile code architectures, and a candidate for building a realistic
proof-carrying code framework for software verification.

1.2. Applications of cost analysis of object-oriented bytecode programs

Resource bound certification. This research area deals with security properties involving resource-usage requirements; i.e.,
the (untrusted) codemust adhere to specific bounds on its resource consumption. The presentwork automatically generates
non-trivial resource-usage bounds for a realistic programming language. Such bounds could then be translated to certificates.
Performance debugging and validation. This is a direct application of resource usage analysis, where the analyzer tries to verify
or falsify assertions about the efficiency of the program. This application was already mentioned as future work by [63], and
is available in a number of systems [42,5].
Granularity control. Parallel computers have recently become mainstream with the massive use of multicore processors. In
parallel systems, knowledge about the cost of different procedures in the code can be used in order to guide the partitioning,
allocation and scheduling of parallel processes [33,41].
Program synthesis and optimization. This application was already mentioned as one of the motivations by [63]. Both in
program synthesis and in semantic-preserving optimizations, such as partial evaluation [31,52], there aremultiple programs
which may be produced in the process, with possibly different efficiency levels. Here, automatic cost analysis can be used
for guiding the selection process among a set of candidates.

2. The rule-based representation

Bytecode is more complicated to (manually or automatically) reason about than high-level languages like Java, since it
features unstructured control flow, where jumps are allowed instead of if-then-else, switch and loop structures. It uses the
operand stack to hold intermediate results of the computation. Moreover, virtual method invocationmakes the analysis even
more difficult.

144 E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159

Fig. 1. A Java source (left) and bytecode for method add within its CFG (right).

Example 2.1. Fig. 1 shows to the left the Java source of our running example (shown only for clarity as the analysis works
directly on the bytecode). Bytecode instructions for the method M.add are shown on the right within its control flow graph
(CFG). Classes A, B and C provide different implementations for the inc method, which returns the result of increasing
an integer by a different amount. The method M.add computes (1)

∑n
i=0 i if the runtime class of o is A; (2)

∑⌊n/2⌋
i=0 2i if

the runtime class is B; or (3)
∑⌊n/3⌋

i=0 3i if the runtime class is C. The block M.add1 is the entry block. It initializes the local
variables res and i to 0, corresponding, respectively, to indices 3 and 4 in the table of bytecode local variables. The block
M.add5 corresponds to the loop condition. It compares n and i; depending on the result, the execution continues toM.add17
(i.e., exits the loop), or to M.add8 (i.e., enters the loop). The instruction ‘‘if_icmpgt 17’’ is wrapped by nop, and its effect
is ‘‘moved’’ to the corresponding edges. In block M.add8, the first four instructions increase res by i, then the values of o
and i (local variables 2 and 4) are pushed into the stack in order to perform the call to inc. Depending on the runtime type
of o, we move to M.add14:A, M.add14:B, or M.add14:C , and invoke the method inc of class A, B or C, respectively. On the first
out-edge of block M.add8, type(1, A) succeeds if the type of the object in stack position 1 is A. In the block M.add15, the
return value is stored in i, and the execution moves back toM.add5.

Due to the challenges mentioned above, it is customary to develop analyses for bytecode on an intermediate language
[61,9]. In this section, we present the rule-based structured language in which we will develop our analysis. The language
is rich enough to allow the (de-)compilation of bytecode programs to it (and preserve the information about cost), yet is
simple enough to develop a precise cost analysis. The following key features of the rule-based representation will make the
development of the analysis easier:

1. recursion becomes the only form of iteration;
2. there is only one form of conditional construct: the use of guarded rules;
3. there is only one kind of variables: local variables; also, there is no stack;
4. some object-oriented features are no longer present: (i) classes can be simply regarded as records; and (ii) the behavior

induced by dynamic dispatch is compiled into dispatch blocks using class analysis;
5. there is no distinction between executing a method and executing a block.

2.1. The abstract syntax

A rule-based representation (RBR) consists of a set of (global) procedures. A procedure p with k input arguments x̄ and a
single output argument y is defined by a set of guarded rules according to the following grammar:

E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159 145

rule ::= p(x̄, y) ← g, b1, . . . , bn
g ::= true | exp1 op exp2 | type(x, c)
b ::= x:=exp | x:=new c | x:=y.f | x.f :=y | nop(any) | q(x̄, y)

exp ::= x | null | n | x−y | x+y
op ::= > | < | ≤ | ≥ | =

where p(x̄, y) is the head of the rule, and x̄ = x1, . . . , xk. Note that the last argument is always the output argument. n is an
integer; c is a class (i.e., record) name taken from a set of class namesC; q(x̄, y) is a procedure call (by value); and nop(any) is
an auxiliary instruction which takes any bytecode instruction as argument, and has no effect on the semantics (but is useful
for preserving information about the original bytecode program). In the following, Instr denotes the set of instructionswhich
can appear in the body of the rules. Note that, even though the RBR is more readable, all guards and instructions correspond
to three-address code, as in bytecode, except for procedure calls.

The class hierarchy of the bytecode program is used, together with class analysis, in order to generate the required
dispatch blocks, namely, for resolving the virtual calls statically. Furthermore, RBR programs are deterministic since the
guards for all rules for the same procedure are pairwise mutually exclusive, and the disjunction of all guards is always
true (i.e., all possible cases are covered and only one rule can be chosen). The RBR may include rules whose name has the
superscript c , which correspond to continuation procedures, and are used to choose one execution branch when there is
more than one successor.

The compilation of bytecode programs into the RBR is done by building the CFG for the bytecode program and
representing each block in the CFG bymeans of a rule. The arguments to the bytecode instructions aremade explicit, and the
operand stack is flattened by converting its contents into local variables. This process is rather standard (similar to [61,9])
and hence it is omitted.

Example 2.2. The RBR for methods add and inc (of class A) is:

add(th, n, o, r) ← add1(th, n, o, res, i, r).
add1(th, n, o, res, i, r) ← s1:=0, res:=s1, s1:=0, i:=s1,

add5(th, n, o, res, i, r).
add5(th, n, o, res, i, r) ← s1:=i, s2:=n, nop(if_icmpgt 17),

addc5(th, n, o, res, i, s1, s2, r).
addc5(th, n, o, res, i, s1, s2, r) ← s1 > s2, add17(th, n, o, res, i, r).
addc5(th, n, o, res, i, s1, s2, r) ← s1 ≤ s2, add8(th, n, o, res, i, r).
add17(th, n, o, res, i, r) ← s1:=res, r:=s1
add8(th, n, o, res, i, r) ← s1:=res, s2:=i, s1:=s1 + s2, res:=s1,

s1:=o, s2:=i, nop(invokevirtual A.inc(I)I),
addc8(th, n, o, res, i, s1, s2, r).

addc8(th, n, o, res, i, s1, s2, r) ← type(s1, A), add14:A(th, n, o, res, i, s1, s2, r).
addc8(th, n, o, res, i, s1, s2, r) ← type(s1, B), add14:B(th, n, o, res, i, s1, s2, r).
addc8(th, n, o, res, i, s1, s2, r) ← type(s1, C), add14:C (th, n, o, res, i, s1, s2, r).
add14:A(th, n, o, res, i, s1, s2, r) ← A.inc (s1, s2, s1), add15(th, n, o, res, i, s1, r).
add14:B(th, n, o, res, i, s1, s2, r) ← B.inc (s1, s2, s1), add15(th, n, o, res, i, s1, r).
add14:C (th, n, o, res, i, s1, s2, r) ← C .inc (s1, s2, s1), add15(th, n, o, res, i, s1, r).
add15(th, n, o, res, i, s1, r) ← i:=s1, nop(goto 5), add5(th, n, o, res, i, r).

A.inc (th, i, r) ← A.inc1(th, i, r).
A.inc1(th, i, r) ← s1:=i, s2:=1, s1:=s1 + s2, r:=s1.

It can be observed that rules in the RBR correspond to blocks in the CFG of Fig. 1. The first rule is the entry procedure of
add, which receives as input the method arguments. Local variables have the same name as in the source code (th stands for
this). Always true guards are omitted. The call to add1 from add adds local variables as parameters. The loop starts at add5;
bytecodes pushing i and n on the stack are compiled to s1:=i and s2:=n. Rule add5 calls addc5 to check the loop condition.
If s1 > s2 (i.e., i > n in the source), then the loop ends, and add17 is called, which assigns s1 to the return value r and
terminates. Otherwise, the loop continues on add8, which accumulates i on res and prepares the call to A.inc by assigning its
parameters to the stack variables. Finally, it calls the continuation addc8, which depends on the runtime type of o and calls
the corresponding dispatch block add14:_ (i.e., the instance matching the guard). Calls to inc receive s1, s2 (corresponding to
o and i) as input, and return s1 to store the incremented i. The computation continues on add15, which stores the top of the
stack in i, and calls the loop entry for the next iteration.

2.2. The semantics

Rules in Fig. 2 define an operational semantics for the RBR. An activation record has the form ⟨p, bc, lv⟩, where p is a
procedure name, bc is a sequence of instructions, and lv is a variable mapping. Given a variable x, lv(x) refers to the value of

146 E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159

(1)
b ≡ x:=exp, eval(exp, lv) = v

⟨p, b·bc, lv⟩·ar; h ❀ ⟨p, bc, lv[x → v]⟩·ar; h

(2)
b ≡ x:=new c, newobject(c) = o, r∉dom(h)
⟨p, b·bc, lv⟩·ar; h ❀ ⟨p, bc, lv[x → r]⟩·ar; h[r → o]

(3)
b ≡ x:=y.f , lv(y) ≠ null

⟨p, b·bc, lv⟩·ar; h ❀ ⟨p, bc, lv[x → h(lv(y)).f]⟩·ar; h

(4)
b ≡ x.f :=y, lv(x) ≠ null, h(lv(x)) = o

⟨p, b·bc, lv⟩·ar; h ❀ ⟨p, bc, lv⟩·ar; h[o.f → lv(y)]

(5)
b ≡ nop(any)

⟨p, b·bc, lv⟩·ar; h ❀ ⟨p, bc, lv⟩·ar; h

(6)
b ≡ q(x̄, y), there is a rule q(x̄′, y′):=g, b1, · · · , bk ∈ RBR,

newenv(q)=lv′, ∀i.lv′(x′i) = lv(xi), eval(g, lv′) = true
⟨p, b·bc, lv⟩·ar; h ❀ ⟨q, b1 · · · bk, lv′⟩·⟨p[y′, y], bc, lv⟩·ar; h

(7)
⟨q, ϵ, lv′⟩·⟨p[y′, y], bc, lv⟩·ar; h ❀ ⟨p, bc, lv[y → lv′(y′)]⟩·ar; h

Fig. 2. Operational semantics of bytecode programs in rule-based form.

x, and lv[x→v] updates lv by making lv(x) = v while lv remains the same for all other variables. A heap h is a partial map
from an infinite set of memory locations to objects. We use h(r) to denote the object referred to by r in h. We use h[r → o]
to indicate the result of updating the heap h by making h(r) = o while h stays the same for all locations different from r .
For any location r and heap h, r ∈ dom(h) iff there is an object associated to r in h. Given an object o, o.f refers to the value
of the field f in o, and o[f →v] sets the value of o.f to v. We use h[o.f →v] as a shortcut for h(r)[f →v], with o = h(r). The
class tag of o is denoted by class(o).

Similar to bytecode programs, we assume that RBR programs have been verified for well-typedness. Hence, the types of
the variables at each program point are known statically. For clarity, instead of annotating the variables with their types, we
assume that, given a variable x, static_type(x) denotes its static type (i.e., int or reference). In rule (1), eval(exp, lv) returns the
evaluation of the arithmetic or boolean expression exp for the values of the corresponding variables from lv in the standard
way; for reference variables, it returns the reference. Rules (2)–(4) deal with objects as expected. Procedure newobject(c)
creates a new object of class c by initializing its fields to either 0 or null, depending on their types. Rule (5) is used for
ignoring nop-wrapped instructions. Rule (6) (resp., (7)) corresponds to calling (resp., returning from) a procedure. The
notation p[y′, y] records the association between the formal and actual return variables. newenv creates a new mapping
of local variables for the method, where each variable is initialized to either 0 or null.

An execution in the RBR starts from an initial configuration of the form ⟨start, p(x̄, y), lv⟩; h, and ends in a final
configuration ⟨start, ϵ, lv′⟩; h′, where: (1) start is an auxiliary name to indicate an initial activation record; (2) p(x̄, y) is a
call to the procedure from which the execution starts; (3) h is an initial heap; and (4) lv is a variable mapping such that
dom(lv) = x̄ ∪ {y}, and all variables are initialized to an integer value, null or a reference to an object in h. Executions
can be regarded as traces of the form C0 ❀ C1 ❀ · · · ❀ Cf (abbreviated C0 ❀∗ Cf), where Cf is a final configuration.
Non-terminating executions have infinite traces. Confs denotes the set of all possible configurations.

3. The notion of cost and cost model

This section introduces cost models for RBR programs which define the cost to be assigned to an execution step
and, by extension, to an entire trace. We concentrate on cost models where the cost of a step only depends on the
executed instruction and its input values, since all realistic cost models fall into this category. For this, we first define
an operation that eliminates all irrelevant information from a given RBR configuration: for a non-final RBR configuration
C = ⟨p, b · bc, lv⟩·ar; h, we let rrinput(C) = (b, ⟨v1, . . . , vn⟩), where each vi is the value of the i-th parameter of b in C (we
assume that b has a fixed order on its input parameters). Note that the input parameters include also static values such as c
in new c. The mapping rrinput is lifted to sets of configurations as follows: rrinput(X) = {rrinput(C) | C ∈ X, C is not final}.

Definition 3.1. An RBR cost model M is a function from rrinput(Confs) to R. For C ∈ Confs, we write M(C) instead of
M(rrinput(C)).

Example 3.2. (1) The cost model Mi counts the number of instructions by assigning cost 1 to every instruction: Mi((b,
⟨v1, . . . , vn⟩)) = 1. (2) The cost model Mh counts the amount of (heap) memory consumption:

Mh(I) =

size(c) if I ≡ (x:=new c, ⟨c⟩)
0 otherwise

The cost of the execution step C1 ❀ C2 is M(C1), and the cost of a trace M(t) is the sum of the cost of its steps. Since the RBR
program is an intermediate representation of the bytecode program whose cost we are interested in, we need to guarantee

E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159 147

that the cost counted at the level of RBR corresponds to the actual cost at the level of bytecode. This could be problematic
since, for instance, different forms of assignment in the bytecode (e.g., load, store, etc.) have been transformed into an
identical assignment instruction in the RBR,while they could contribute a different cost. This is however not a problem in our
framework, as we can instrument the RBR program (at the corresponding program points) with nop(i) instructions where
i provides extra information to be considered by the cost model. This information can be used, for example, to distinguish
assignments originating from load and store.

4. Cost analysis of rule-based programs

Static programanalysis [29,50] is nowawell-established techniquewhich has allowed the inference of very sophisticated
properties in an automatic and provably correct way. The basic idea in abstract-interpretation-based static analysis is to
infer information on programs by interpreting (‘‘running’’) them using abstract values rather than concrete ones, thus
obtaining safe approximations of the behavior of the program. The size abstraction we will perform consists in abstracting
the instructions by the size constraints they impose on the variables on which they operate. This abstraction is necessary
in order to approximate the cost of executing the program. More concretely, given a program P and a cost model M, the
classical approach to cost analysis [63] consists in obtaining a set of Recurrence Relations (RRs for short) which capture the
cost w.r.t. M of running P on some input x. Data structures are replaced by their size in the RRs. Soundness of the analysis
guarantees that, for a concrete input, the execution of the RRs on the size abstraction of such input must return as one of
its solutions the actual cost (note that, due to the standard theory of abstract interpretation, this also holds if techniques as
widening are used).

This section describes how static program analysis can be applied to RBR programs to obtain Cost Relation Systems (CRSs),
an extended form of RRs, which describe their costs. In our approach, each rule in the RBR program results in an equation
in the CRS. For instance, using Mi, the rule defining add8 gives the following (after simplifying it for readability):

add8(th, n, o, res, i) = ⟨1, {s′1=res}⟩ + ⟨1, {s
′

2=i}⟩ + ⟨1, {s
′′

1=s
′

1+s
′

2}⟩ +

⟨1, {res′=s′′1}⟩ + ⟨1, {s
′′′

1 =o}⟩ + ⟨1, {s
′′

2=i}⟩ +
⟨1, {true}⟩ + ⟨addc8(th, n, o, res

′, i, s′′′1 , s
′′

2), {r
′
= _}⟩

Here, variables are constraint variables corresponding to those of the original rule; e.g., s′1 and s′′1 both correspond to values
of s1, but at different program points. Each pair ⟨e, ϕ⟩ in the right hand side of the equation corresponds to an instruction in
the original rule: e is the cost of executing that instruction, and ϕ is the effect of the instruction on the variables (in terms
of linear constraints). The last pair is the cost of running addc8 on input th, n, o, res′, i, s′′′1 and s′′2 . The constraint r ′ = _ is the
effect of calling addc8 on the local variables and it indicates that we do not obtain any relation between the input and the
output variables. The equation can be simplified by merging the pairs into:

add8(th, n, o, res, i) = ⟨7, {res′ = res+ i, s′′′1 =o, s
′′

2=i}⟩+
⟨addc8(th, n, o, res

′, i, s′′′1 , s
′′

2), {r
′
= _}⟩

which states that, given values (sizes) for th, n, o, res, and i, the cost of executing add8(th, n, o, res, i) is 7 units plus the cost
of addc8(th, n, o, res

′, i, s′′′1 , s
′′

2). Cost equations are generated for each RBR rule as follows:
1. size measures are chosen to represent information relevant to cost (Section 4.1) in order to abstract variables to their size.

E.g., a list is abstracted to its length, since this gives information about the cost of traversing it.
2. Instructions are replaced by linear constraints (Section 4.2) approximating the relation between states w.r.t. the size

measures. E.g., s1:=o is replaced by s′′′1 =o, meaning that the size of s1 after the assignment (represented by s′′′1) is equal
to the size of o.

3. Output variables are removed from the rules by inferring the relation between the input and the output using input–
output size relations (Section 4.3). This is why there is no argument r in the above equation (see Example 2.2).

4. Finally, a CRS is obtained by using the abstract rules, the original rules, and the selected cost model to generate cost
expressions representing the cost w.r.t. the model (Section 4.4). In the above example, the cost expressions are the
constants, corresponding to Mi.

As notation, a linear expression takes the form q0+q1x1+ · · ·+qnxn, where qi are rational numbers, and xi are variables. A
linear constraint (over integers) takes the form l1 op l2, where l1 and l2 are linear expressions, and op ∈ {=,≤, <,>,≥}. A
size relation ϕ is a set of linear constraints, interpreted as a conjunction. The statement ϕ1 |H ϕ2 indicates that ϕ1 implies
ϕ2. An assignment σ maps (constraint) variables to values in Z, and σ |H ϕ denotes that σ is a consistent assignment for ϕ,
i.e.,

{x = σ(x) | x ∈ dom(σ)} |H ϕ. Given ϕ1 and ϕ2, ϕ1 ⊔ ϕ2 is their convex-hull [30]. We use ϕ|S to denote projection

of ϕ on the set of variables S, i.e., eliminating all variables vars(ϕ) \ S using, for example, Fourier–Motzkin elimination. In
our system, we rely on [16] for manipulating linear constraints. We use a ≪c A to indicate that an entity a is a renamed
apart (from c) element of A, i.e., we choose an element from A and then rename its variables such that it does not share any
variable with c .

4.1. The notion of size measure

For the purpose of cost analysis, data structures are usually abstracted into their size. Beginning with [63], several size
measures or norms have been proposed in cost and termination analysis (see, e.g., [23] and its references). The choice of a

148 E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159

b bα with respect to a renaming ρ ρ′

x:=exp bα ≡ ρ(x)′=expα ρ[x→ρ(x)′]
x:=new c bα ≡ ρ(x)′=1 ρ[x→ρ(x)′]
x:=y.f if f is a numeric field: bα ≡ ρ(x)′=_

if f is a reference field and y is acyclic:
bα ≡ ρ(y) > ρ(x)′ ∧ ρ(x)′ ≥ 0 ρ[x→ρ(x)′]

if f is a reference field and y might be cyclic:
bα ≡ ρ(y) ≥ ρ(x)′ ∧ ρ(x)′ ≥ 0

x.f :=y if f is a reference field and y ∉ SHx:
S = {v | v ∈ SHx} and ρ[∀v ∈ S.
bα ≡ ∧{ρ(v)′ ≤ ρ(v)+ ρ(y) ∧ ρ(v)′ ≥ 0 | v ∈ S} v →ρ(v)′]

if f is a reference field and y ∈ SHx:
S = {v | v ∈ SHx} and bα ≡ ∧{ρ(v)′ ≥ 0 | v ∈ S}

if f is a numeric field: S = ∅ and bα ≡ true
p(x̄, y) bα ≡ ⟨p(ρ(x̄), ρ(y)′), ϕ1 ∧ ϕ2⟩where:

Up={v| v ∈ x̄, v might be updated in p } ρ[∀v∈S.
S={v| x ∈ Up , v ∈ SHx} v →ρ(v)′,

ϕ1=∧ {ρ(v)
′
≥ 1 | v∈S not null before call} y→ρ(y)′]

ϕ2=∧ {ρ(v)
′
≥ 0 | v∈S maybe null before call}

type(x, c) bα ≡ x ≥ 1 ρ

exp1⊗exp2 bα ≡ expα1⊗exp
α
2 ρ

null bα ≡ 0 ρ

x bα ≡ ρ(x) ρ

otherwise bα ≡ true ρ

Fig. 3. Abstract compilation of instructions.

measure, especially for heap structures, heavily depends on the program. E.g., in termination analysis, norms should describe
something which strictly decreases at each loop iteration. For a list traversed by a loop, a typical example of measure is its
length, which is used to bound the number of iterations. For an integer i, the actual numerical value can be a good measure
to bound the number of iterations of loops with counter i.
Definition 4.1. Given a configuration C ≡ ⟨p, bc, lv⟩ · ar; h, the size of x ∈ dom(lv) with respect to a static type stype is
defined as:

α(x, stype, C) =

lv(x) if stype is int
path-length(lv(x), h) if stype is a reference type

path-length corresponds to Def. 5.1 in [59]. It takes a heap h and a reference lv(x) ∈ dom(h), and returns the length of the
maximal path reachable from that reference by dereferencing, i.e., following other references stored as fields. The path-length
of null is 0, and that of a cyclic data structure is∞. Note that, due to lack of space, our language does not include arrays;
however, they are supported in our system, and are abstracted to their length.

4.2. Abstract compilation

This section describes how to transform a rule-based program P into an abstract program Pα , which can be seen as an
abstraction of P w.r.t. the size measure α. The translation is based on replacing each instruction by (linear) constraintswhich
describe its behavior with respect to the sizemeasure. E.g., x:=new c can be replaced by x=1, meaning that the length of the
maximal path starting from x is 1. For simplicity, the same name (possibly primed) is used for the original variables and their
sizes, i.e., given a list l, the name l also denotes its path-length (in Pα). Letting α denote the size measure of Definition 4.1,
the translation of the instructions in the RBR is depicted in Fig. 3.

The presented setting is able to obtain relations between the size of a variable at different program points. E.g., when
analyzing x:=x + 1, the interest can be in the relation ‘‘the value of x after the instruction is equal to the value of x before
the instruction plus 1’’. This important information is obtained via a Static Single Assignment (SSA) transformation, which,
together with the abstract compilation, produces x′=x+ 1, where x and x′ refer to, resp., the value of x before and after the
instruction. To implement the SSA transformation, a mapping ρ (a renaming) of variable names (as they appear in the rule)
to new variable names (constraint variables) is maintained. The expression ρ[x → y] denotes the update of ρ, such that it
maps x to the new variable y. The use of path-length as a size measure for references requires extra information to obtain
precise and sound results: (a) sharing information [57] tells whether two variables might point (either directly, by aliasing,
or indirectly) to a common heap location; and (b) acyclicity information [55] guarantees that, at some program point, a
reference points to an acyclic data structure.

For the instruction x:=y.f of Fig. 3: (1) for numeric fields, all information is lost; i.e., b is abstracted to ρ(x)′ = _ where _
is assumed to be a constraint variable not used anywhere else. In practice we use [6] for handling numeric fields. Note that,
if _ appears several times, then each occurrence is assumed to be a different constraint variable; (2) for reference fields, if
y is acyclic, then b is abstracted to ρ(y) > ρ(x)′, since the longest path reachable from y is longer than the longest path
reachable from x; otherwise ρ(y) ≥ ρ(x)′. As for x.f :=y, when f is a reference field, if x and y do not share, the length of the
maximal path reachable from x and any variable sharing with x (SHx is the set of variables which might share with x before

E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159 149

the instruction, including x) might change. This change can be safely described by ρ(v)′ ≤ ρ(v)+ρ(y)∧ρ(v)′ ≥ 0, where v
is a variable in SHx. If x and y share, no safe information can be provided, it can only be said that the size is non-negative [59].
When f is a numeric field, the path-length property of x does not change, so that b is abstracted to true.

The abstraction of calls p(x̄, y) to procedures (or methods) requires computing the set Up of the input variables pointing
to data structures which may be updated by p. This set can be approximated by constancy analysis [36]. Note that updating
refers to actuallymodifying the structure of the heap. If only numeric fields aremodified, then the changes are not considered
as updates, and the path-length is preserved. The set of updated input variables (closed under sharing), denoted by S in the
figure, is renamed in order to forget them after the call (i.e., not to propagate the constraints involving S before the call to
the state after the call). For instance, consider the call p(x, z, r), and assume that z is updated by p. Letψ be a constraint over
x and z which holds before the call. Then, a fresh variable z ′ must be used after the call instead of z in order to distinguish
between the path-length of z before and after running p. For such argument, we can still say that the final size of every x
possibly sharingwith it is: (a) positive, if x is certainly non-null; or (b) non-negative, otherwise. Our implementation includes
a simple nullity analysis which can verify this condition. A newly-created object can be always guaranteed to be non-null
before calling its constructor. The abstraction of calls can be improved by using shallow variables for the arguments. They
are extra variables which are only used to record the initial value of the arguments (and are never modified), and allow
inferring more precise input–output relations. This well-known technique can improve the precision, at the cost of a higher
computational effort.

Note that in Fig. 3,when accessing a numeric field,weuse a constraint of the formρ(x)′ = _. In principle, this is equivalent
to true; i.e., it states that we cannot provide any abstract information on the corresponding instruction. However, for the
correctness of Lemma 4.4, if the abstraction of b starting from a renaming ρ1 results in bα and ρ2, then it is essential that
ρ2(x) appears in bα for any x for which ρ1(x) ≠ ρ2(x). This would be also the case of (numeric) array accesses, since arrays
(which are not part of the language in this paper) are abstracted to their length. Likewise in the case of non-linear arithmetic
such as x:=y ∗ z and x:=y/z, as linear constraints cannot approximate their behavior. In our system, constant propagation
analysis is applied in order to identify when y or z are constants, thus improving the precision.

Sharing and acyclicity information is precise only if computed w.r.t. a context (e.g., an initial state). Therefore, the
soundness of the transformation is guaranteed under an initial Sharing-Acyclicity context description. In practice, if the
initial call is a Java-likemainmethod, then such an initial Sharing-Acyclicity description is not required, as all data structures
are created at runtime, instead of being provided as an input. An initial Sharing-Acyclicity context description takes the form
Q ≡ ⟨p(x̄),SH,ACY⟩ (output variables are ignored), where SH ⊆ x̄ × x̄, and ACY ⊆ x̄. A statement (x, y) ∈ SH means
that x and y might share, and x ∈ ACY means that x certainly points to an acyclic data structure. An initial configuration
⟨start, p(x̄, y), lv⟩; h is said to be safely approximated by Q if: (1) if x, y ∈ dom(lv) share a common region on h, then
(x, y) ∈ SH; and (2) if x ∈ dom(lv) points to a cyclic data structure, then x ∉ ACY. The information contained in SH and ACY
is propagated by means of fixpoint computations, as described by, respectively, [57,55]. Essentially, such analyses provide
the information which is required in order to answer the (program point) queries about sharing and acyclicity in Fig. 3.
Definition 4.2. Let r ≡ p(x, y)←g, b1, . . . , bn, and ρ1 be the identity renaming over vars(r). The abstract compilation of r
with respect to a size measure α is rα ≡ p(x, y′)← ϕ0 | bα1 , . . . , b

α
n where:

1. gα is the abstract compilation of g with respect to the renaming ρ1;
2. ϕ0 = {ρ1(z) = 0 | z ∈ vars(r) \ x̄} ∧ gα;
3. bαi is the abstract compilation of bi using ρi;
4. ρi+1, 1 ≤ i ≤ n, is generated from ρi and bi as shown in Fig. 3;
5. y′ = ρn+1(y).

Given anRBRprogram P , an initial Sharing-Acyclicity context descriptionQ , and a sizemeasureα, Pα is the programobtained
by abstracting all its rules using the sharing, acyclicity and constancy information induced by Q .
Note that the Sharing-Acyclicity context Q in the above definition is used to compute the sharing, acyclicity, and constancy
information used in Fig. 3 (which is used in point 3 of the above definition). When generating a rule, we also produce a
tuple of renamings ρ = ⟨ρ1, . . . , ρn+1⟩ which can be used (e.g., in Definition 4.15) to relate program variables to their
corresponding constraint variables at each program point. For simplicity, we do not include ρ as part of the rule; rather, we
assume that it can be retrieved when needed.
Example 4.3. The rule on the left is abstracted to the rule on the right.

add8(th, n, o, res, i, r)← add8(th, n, o, res, i, ρ9(r))←
{s1=0, s2=0, r=0} |

s1:=res, {s′1=res,
s2:=i, s′2=i,
s1:=s1 + s2, s′′1=s

′

1+s
′

2,
res:=s1, res′=s′′1
s1:=o, s′′′1 =o,
s2:=i, s′′2=i,
nop(invokevirtual A.inc(I)I), true},
addc8(th, n, o, res, i, s1, s2, r). ⟨addc8(th, n, o, res

′, i, s′′′1 , s
′′

2, r
′), true⟩.

150 E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159

The renaming ρ=⟨ρ1, . . . , ρ9⟩ used in the translation is as follows: ρ1 is the identity on {this, n, o, res, i, s1, s2};
ρ2=ρ1[s1 →s′1]; ρ3=ρ2[s2 →s′2]; ρ4=ρ3[s1 →s′′1]; ρ5=ρ4[res→res′]; ρ6=ρ5[s1 →s′′′1]; ρ7=ρ6[s2 →s′′2]; ρ8=ρ7; and
ρ9=ρ8[r →r ′]. Note that variables which do not appear in the head are initialized in the body (first condition in Defini-
tion 4.2). E.g., when abstracting s1:=s1 + s2, according to Fig. 3, ρ3 contains s1 → s′1 and s2 → s′2, introduced by compiling,
resp., s1:=res and s2:=i. First, such renaming is applied to s1+s2, which leads to s′1+s

′

2. Next, the abstract compilation of the
expression (first row in Fig. 3) produces s′′1:=s

′

1 + s′2, and adds s1 → s′′1 to ρ3, generating ρ4. In the above rule, the variable o
stands for a reference, and as it is not updated in addc8, there is no renaming.

An abstract RBR abstracts the behavior of a programw.r.t. α. Its operational semantics is given by the following transition
system:

p(x̄, y)← ϕ | bα1 , . . . , b
α
n ≪AC Pα, ψ∧ϕ |̸H false

⟨⟨p(x̄, y), φ⟩·bcα, ψ⟩ ❀α ⟨bα1 · · · b
α
n ·φ·bc

α, ψ∧ϕ⟩

ψ∧ϕ |̸H false

⟨ϕ·bcα, ψ⟩ ❀α ⟨bcα, ψ∧ϕ⟩

where AC = ⟨⟨p(x̄, y), φ⟩·bcα, ψ⟩). Note that the renaming in the leftmost transition is required in order to avoid name
clashes between constraints variables. Hence, we always rename the rule (using≪AC) by using fresh variables that have
not been used before. The next lemma states the soundness of the abstract compilation, i.e., that the size of variables in
a concrete trace can be observed in the abstract trace. For this, we prove that, given a concrete trace, we can generate
an abstract trace of the same length and instantiate it (i.e., give integer values to all constraint variables using a consistent
assignment σ) in such away that the size of a variable in the i-th concrete state coincideswith the value of the corresponding
constraint variable in the i-th abstract state. Given an initial configuration C0 = ⟨start, p(x̄, y), lv0⟩; h, we let α(C0) be
{z = α(z, static_type(z), C0) | z ∈ x̄ ∪ {y}}, where z = ∞ is interpreted as z = _.

Lemma 4.4. Let P be an RBR program, C0=⟨start, p(x̄, y), lv0⟩; h, ϕ0 = α(C0), Q = ⟨p(x̄), SH,ACY⟩ a safe Sharing-Acyclicity
description of C0, and Pα the corresponding abstract program w.r.t. Q . The following holds: If C0 ❀n Cn is a concrete trace of
P, then there exist an abstract trace AC0 ❀n

α ACn where AC0 = ⟨p(x̄, y), ϕ0⟩ and ACn = ⟨_, ϕn⟩, a partial map f : vars(P) ×
{0, . . . , n} → vars(ACn), and a consistent assignment σ : vars(ACn) → Z for ϕn, such that: for any Ci = ⟨_, _, lvi⟩·ar i; hi and
AC i = ⟨_, ϕi⟩ (0 ≤ i ≤ n), it holds that ϕn |H ϕi; ∀z ∈ dom(lvi).α(z, static_type(z), Ci) = σ(f (z, i)).

The above lemma states that each (abstract) state AC i is a safe approximation (w.r.t. α) of the corresponding activation
record in Ci. The claim that ϕn |H ϕi is straightforward since abstract traces basically accumulate the constraint by means of
conjunction. A partial map f is used to relate program variables to their corresponding constraint variables. This mapping
can be constructed by collecting the renamings (enrichedwith a state index) of the abstract rules used during the evaluation.
We use ‘‘_’’ in order to indicate parts of an entity that we are not interested in, instead of assigning them names that will not
be used.

4.3. Input–output size relations

CRSs are mathematical relations, in the same way as RRs are mathematical functions. Hence, they cannot have output
variables: instead, they should receive a set of input parameters and return a number. This step of the analysis is meant
to transform the abstract program Pα into one where output variables do not appear. The basic idea relies on computing
abstract input–output (size) relations in terms of linear constraints, and using them to propagate the effect of calling a rule.We
consider the abstract rules obtained in the previous step to approximate the input–output (‘‘io’’ in abbreviations) relation
for blocks. Concretely, we infer io size relations of the form p(x̄, y) → ϕ, where ϕ is a constraint describing the relation
between the size of the input x̄ and the output yupon exit from p. Input–output size relations are needed in order to eliminate
output variables without losing relevant information, since the output of one call may be input to another call. Consider the
following abstract rule:

p(x, y′)← {w=0, z=0, y=0} | x>0, z ′=x−1, ⟨q(z ′, w′), true⟩, ⟨p(w′, y′), true⟩

Assuming that q(z ′, w′)will generate z ′≥w′, this rule becomes:

p(x)← {w=0, z=0, y=0} | x>0, z ′=x− 1, ⟨q(z ′), z ′ ≥ w′⟩, ⟨p(w′), {y′ = _}⟩

which does not have output arguments. Importantly, this makes it possible to infer x>w′, which is crucial for bounding the
number of iterations. The next definition introduces the notion of io relations, which can be seen as a denotational semantics
for the abstract programs of Section 4.2. The definition is based on a semantic operator TPα which describes how, from a set
of io relations I , we learn more relations by applying the rules in the abstract program.

Definition 4.5 (Input–Output Relations). Let the operator TPα (I) bep(x̄, y)→ ψ

(1) r = p(x̄, y)← ϕ | bα1 , . . . , b
α
n ∈ Pα

(2) ∀ 1 ≤ i ≤ n, either
2.1) bαi is a constraint ϕi; or
2.2) bαi =⟨qi(w̄i, zi), φi⟩where qi(w̄i, zi)→ ψ ′i ∈ I

and we let ϕi = φi ∧ ψ
′

i
(3) ψ = (ϕ ∧ ϕ1 ∧ · · · ∧ ϕn)|x̄∪{y}

E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159 151

The input–output relations of an abstract program Pα , denoted by I(Pα), are defined as

i∈ω T i
Pα (∅), where T i

Pα (I) =
TPα (T

i−1
Pα (I)) and T 0

Pα (I) = I .

Computing I(Pα) is often impractical, as it might include an infinite number of objects. However, it can be approximated
using abstract interpretation techniques [29]. In particular, by using a convex-hull operator⊔ instead of∪, and incorporating
a widening operator to guarantee termination [30].

Example 4.6. The following io relations are obtained from the corresponding procedures in the RBR of the running example:

A.inc (th, i, r)→{r=i+1} B.inc (th, i, r)→{r=i+2} C .inc (th, i, r)→{r=i+3}

In all cases, the output variable r is related only to the input variable i. This piece of information will be crucial for inferring
the cost.

The following lemma, which establishes the correctness of the io size relations, is well-known in the context of logic
programming [18].

Lemma 4.7. Let Pα be an abstract program. If t = ⟨⟨p(x̄, y), φ⟩, ψ0⟩ ❀∗α ⟨ϵ, ψ⟩ is an abstract trace, then there exists p(x̄, y)→
ϕ ∈ I(Pα) s.t. ψ |H ϕ.

Our framework only requires a safe approximation of the io relations, as the next definition states.

Definition 4.8. The set A is a safe approximation of the input–output relations of a program Pα iff, for any a = p(x̄, y) →
ϕ ∈ I(Pα), there exists p(x̄, y)→ ψ ∈ A such that ϕ |H ψ .

For simplicity, A is supposed to contain only one io relation p(x̄, y) → ψ for every p. This can be done by merging all the
relations of p using ⊔. In addition, for simplifying the correctness claim in Theorem 4.17, we assume that y ∈ vars(ψ). This
can be achieved by simply adding y = _ to ψ where _ is a new variable.

The following definition describes how to remove the output variables from Pα by using a safe approximation of the io
relations: for each call p(w̄, z) in a rule r , p(w̄, z)→ ϕ ∈ A is used in order to eliminate z, but still propagate its relation (ϕ)
with w̄ generated by the execution of p.

Definition 4.9. Given Pα and a safe approximation A of its input–output relations, P io denotes the abstract program
generated from the rules of Pα , as follows: each rule r = p(x̄, y)← ϕ | bα1 , . . . , b

α
n ∈ Pα is replaced by p(x̄)← ϕ | bio1 , . . . , b

io
n ,

where (1) if bαi =⟨q(w̄, z), ϕi⟩, then bioi =⟨q(w̄), ϕi ∧ ψ⟩, where q(w̄, z)→ ψ ∈ A; and (2) if bαi is a constraint, then bioi =b
α
i .

Example 4.10. Using the relations of Example 4.6, eliminating the output variables of the rules add14:A, add14:B and add14:C
(Example 2.2) results in:

add14:A(th, n, o, res, i, s1, s2)←
{r=0, s1=0, s2=0} | ⟨A.inc (s1, s2), {s′1=s2+1}⟩,⟨add15(th, n, o, res, i, s

′

1), {r
′
=_}⟩.

add14:B(th, n, o, res, i, s1, s2)←
{r=0, s1=0, s2=0} | ⟨B.inc (s1, s2), {s′1=s2+2}⟩,⟨add15(th, n, o, res, i, s

′

1), {r
′
=_}⟩.

add14:C (th, n, o, res, i, s1, s2)←
{r=0, s1=0, s2=0} | ⟨C .inc (s1, s2), {s′1=s2+3}⟩,⟨add15(th, n, o, res, i, s

′

1), {r
′
=_}⟩.

Note that r ′ = _ has been added to make the output variable appear explicitly when the io relation is true.

The generated abstract rules can be executed by using the following transition system. They are identical to the execution
of the abstract rules explained in Section 4.2 (here, AC=⟨⟨p(x̄), φ⟩·bc io, ψ⟩) , but without have output variables:

p(x̄)← ϕ | bio1 , . . . , b
io
n ≪AC P io, ψ ∧ ϕ |̸H false

⟨⟨p(x̄), φ⟩·bc io, ψ⟩ ❀io ⟨bio1 · · · b
io
n · φ·bc

io, ψ∧ϕ⟩

ψ ∧ ϕ |̸H false

⟨ϕ·bc io, ψ⟩ ❀io ⟨bc io, ψ∧ϕ⟩

The next lemma states the soundness of this step: intuitively, the result (in terms of constraints) of executing the abstract
rules without output variables (but with io relations) is a safe approximation of the execution of the abstract rules with
output variables.

Lemma 4.11. Let Pα be an abstract program, and P io be its corresponding program generated (following Definition 4.9) with
respect to a safe approximation A of its input–output size relations. Then, if AC0 ❀n

α ACn is a trace in Pα where AC0 =

⟨⟨p(x̄, y), φ⟩, ϕ0⟩, then there is an abstract trace AC ′0 ❀
n
io AC ′n in P io such that: (1) AC ′0 = ⟨⟨p(x̄), φ ∧ ψ⟩, ϕ0⟩, where

p(x̄, y)→ ψ ∈ A; and (2) for any ACi = ⟨_, ϕi⟩ and AC ′i = ⟨_, ϕ
′

i ⟩ (0 ≤ i ≤ n), it holds that ϕi |H ϕ
′

i .

152 E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159

4.4. Building cost relation systems

This section presents the automatic generation of cost relation systems (CRSs) which capture the cost of executing a
bytecode method w.r.t. a cost model. CRSs are generated by incorporating symbolic cost expressions into the abstract rules.

Definition 4.12. A symbolic cost expression exp is defined as follows

exp ::= n | x | exp op exp | expexp
| loga(exp) op ∈ {+,−, /, ∗}

where a ∈ N, a > 1; n is real and positive; and x is an integer variable. The set of all symbolic cost expressions is denoted
by Exprs.

Symbolic cost expressions are used for two purposes: (1) to count the resources we accumulate in the different cost models,
thus, to define the cost relation systems; e.g., in Example 3.2, when we estimate memory consumption, we can obtain a
symbolic cost expression where the object size is a variable; (2) to describe the closed-form solutions (or upper bounds)
of cost relations. The above definition shows that we aim at covering a wide range of complexity classes: in addition to
polynomial cost expressions, also exponential and logarithmic expressions (and any combination of them) are handled.

Definition 3.1 needs to be adapted to the symbolic level: given an instruction, a symbolic cost model returns a symbolic
expression instead of a constant value.

Definition 4.13. Let α be the size measure (Definition 4.1), and M be a cost model (Definition 3.1). The partial map
Ms
: Instr → Exprs is said to be a symbolic cost model for M iff, for any C=⟨m, b · bc, lv⟩ · ar; h: if e = Ms(b), then

e[∀x ∈ vars(e) → α(x, static_type(x), C)] =M(C).

Intuitively, given a configuration such that b is the next instruction to be executed, the evaluation of the symbolic expression
Ms(b), must be equal to applying M to the configuration. Note that the definition of cost model depends only on the input
values of a given instruction. Thus, if a cost model involves only (linear) arithmetic expressions over the input variables
(which is the case of realistic cost models), one can generate a corresponding symbolic model by replacing the reference to
the i-th input value by its constraint variable.

Example 4.14. The symbolic version of Mh (Example 3.2), is defined as follows:

Ms
h(b) =

size(c) b ≡ x:=new c
0 otherwise

To understand the relation between a cost model and its corresponding symbolic model, assume that our language includes
an instruction x:=newarray(int, y) for creating an array of size ywhose elements are of type int . The cost model Mh would
map such instruction to size(int) ∗ v where v is the input value that corresponds to y, i.e. v = lv(y), and size(int) is the
space required for storing a value of type int . The symbolic cost model would map such instruction to size(int) ∗ ywhich is
obtained by replacing v by y. For the case of Mi, its corresponding symbolic cost model assigns 1 to each instruction.

Definition 4.15. Let P be the rule-based representation of P . Consider a rule r≡ p(x̄, y) ← g, b1, . . . , bn ∈ P , its abstract
compilation (after eliminating the output variables from rα) r io ≡ p(x̄)← ϕ | bio1 , . . . , b

io
n ∈ P io, and a symbolic cost model

Ms. The cost equation of r is req ≡ p(x̄) = ϕ | beq1 + · · · + beqn , where: (1) if bioi = ⟨q(w̄), φ⟩, then beqi = ⟨q(w̄), φ⟩; and
(2) if bioi = ϕi then beqi = ⟨ρi(M

s(bi)), ϕi⟩, where ρ = ⟨ρ1, . . . , ρn+1⟩ is the renaming used to generate rα according to
Definition 4.2. Pcr is the cost relation system consisting of the cost equations obtained from P .

Essentially, the output of cost analysis is the above CRS, i.e., a set of recursive equations which have been generated
from the program structure by inferring size relations between its arguments. Importantly: (1) size relations between the
rule variables are associated to the cost equations (at different points) to describe how the size of data changes when the
equations are applied; and (2) guards do not affect the cost: they are simply used to define the applicability conditions of
the equations.

CRSs are powerful as they are not limited to any complexity class. E.g., they can capture the cost of exponential methods
with several recursive calls, or logarithmic methods where the size of the data is halved at every loop iteration.

Example 4.16. Consider the RBR of Example 2.2, and the size relations derived by size analysis (Example 4.6). By applying
Definition 4.15 w.r.t. the symbolic cost model Ms

i , the CRS in Fig. 4 is obtained. The constraint r ′ = _ is added just to make
r ′ appear syntactically in the rules. Note that it has been simplified to make it more readable: (1) Some input arguments are
written as x̄1, x̄2 and x̄3, where each x̄i is defined at the bottom of the figure; (2) constraints which stem from the implicit
variable initialization (to 0 or null) are ignored; (3) ‘‘true’’ guards are omitted; (4) if possible, consecutive pairs ⟨e, ϕ⟩ are
grouped together (e.g., in add8, we grouped together pairs with a constant cost); (5) constraints are simplified, e.g., equalities
x = y have been eliminated by unifying the corresponding variables.

E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159 153

add(th, n, o)=⟨add1(th, n, o, res, i), {r ′ = _}⟩
add1(x̄3) =⟨4, {res′=0, i′=0}⟩+⟨add5(th, n, o, res′, i′), {r ′ = _}⟩
add5(x̄3) =⟨3, {s′1=i, s

′

2=n}⟩+⟨add
c
5(x̄3, s

′

1, s
′

2), {r
′
= _}⟩

addc5(x̄1) ={s1 > s2} | ⟨add17(x̄3), {r ′ = _}⟩
addc5(x̄1) ={s1 ≤ s2} | ⟨add8(x̄3), {r ′ = _}⟩
add17(x̄3) =⟨2, {r ′=res}⟩
add8(x̄3) =⟨7, {res′=res+i, s′′′1 =o, s

′′

2=i}⟩+⟨add
c
8(th, n, o, res

′, i, s′′′1 , s
′′

2), {r
′
= _}⟩

addc8(x̄1) =⟨add14:A(x̄1), {r ′ = _}⟩
addc8(x̄1) =⟨add14:B(x̄1), {r ′ = _}⟩
addc8(x̄1) =⟨add14:C (x̄1), {r ′ = _}⟩
add14:A(x̄1) =⟨A.inc (s1, s2), {s′1=s2+1}⟩+⟨add15(th, n, o, res, i, s

′

1), {r
′
= _}⟩

add14:B(x̄1) =⟨B.inc (s1, s2), {s′1=s2+2}⟩+⟨add15(th, n, o, res, i, s
′

1), {r
′
= _}⟩

add14:C (x̄1) =⟨C .inc (s1, s2), {s′1=s2+3}⟩+⟨add15(th, n, o, res, i, s
′

1), {r
′
= _}⟩

add15(x̄2) =⟨2, {i′=s1}⟩+⟨add5(th, n, o, res, i′), {r ′ = _}⟩
A.inc (th, i) =⟨A.inc1(th, i), {r ′ = _}⟩
A.inc1(th, i) =⟨4, {r ′ = i+1}⟩

Fig. 4. The CRS of the example, where x̄1 , x̄2 and x̄3 respectively are ⟨th, n, o, res, i, s1, s2⟩, ⟨th, n, o, res, i, s1⟩, and ⟨th, n, o, res, i⟩.

The evaluation of CRSs is defined by means of the following rules (here, AC = ⟨⟨p(x̄), φ⟩·bceq, exp, ψ⟩):

p(x̄)← ϕ | beq1 + · · · + beqn ≪AC Pcr , ψ∧ϕ |̸H false

⟨⟨p(x̄), φ⟩·bceq, exp, ψ⟩ ❀cr ⟨b
eq
1 · · · b

eq
n ·⟨0, φ⟩·bceq, exp, ψ∧ϕ⟩

ψ ∧ ϕ |̸H false

⟨⟨e, ϕ⟩·bceq, exp, ψ⟩ ❀cr ⟨bceq, e+exp, ψ ∧ ϕ⟩

which perform three actions: (1) check the satisfiability of the constraints (and accumulate them); (2) if the instruction is
not a call, then add its symbolic cost expression to the accumulated cost; and (3) evaluate the next calls in the rule.We delay
the application of the effects of executing a call (i.e., φ) by adding the pair ⟨0, φ⟩, to be considered afterward. The following
theorem states the soundness of the proposed cost analysis: given a derivation in an RBR program with cost a, there is a
derivation in its CRS with the same cost a.

Theorem 4.17. Let P be an RBR program, C0≡⟨start, p(x̄, y), lv0⟩; h,ϕ0 ≡ α(C0), Q ≡ ⟨p(x̄), SH,ACY⟩ a safe Sharing-Acyclicity
description of an initial context, and Pcr the cost relation system w.r.t. Ms and Q . The following holds: if C0 ❀n Cn is a trace t for
P, then there exists a trace ⟨beq, 0, ϕ0⟩ ❀n

cr ⟨_, e, ϕn⟩ and a consistent assignment σ : vars(ϕn) → Z for ϕn such that eσ=M(t).

As it can be observed from the example, cost relations depend on the cost of other calls (i.e., they are usually recursive). It
is useful, for practical purposes, to obtain a non-recursive representation of the equations, known as closed form, which can
be an exact solution of the equations, or an upper/lower bound. Using the PUBS solver [7,14], we automatically obtain the
upper (resp., lower) bound 9+16∗(n+1) (resp., 9+16∗(n3−1)) for the CRS add(th, n, o) of Fig. 4 (when n ≥ 0). Intuitively,
the solving process consists of the next steps: (1) We find safe bounds for the number of times that each relation can be
applied by relying on ranking functions [7]. For the example, n+1 is the maximum number of iterations that the loop can
make (when increasing i always by 1), and n

3−1 is the minimum one (when increasing i always by 3). When the solver finds
upper bounds on the number of iterations of all relations, termination of the program is proven. (2) We find the worst-case
cost of all applications of the relation. This step is non-trivial and requires finding invariants, which state the range of values
that each variable can take, and then maximizing the cost expressions w.r.t. such invariants. In this example, the cost of
all applications is the constant 16 and, thus, there is no need to find invariants and maximize. (3) If the relation has one
recursive call, a closed-form bound is obtained by multiplying the upper bound on iterations by the worst-case cost of all
iterations and then adding the cost associated to executing the base cases. This is how the above upper and lower bounds are
found. If the relation has several recursive calls, an exponential cost expression will be produced. All details of this process
can be found in [7].

5. The COSTA system: an implementation for Java bytecode

This section describes COSTA, an abstract-interpretation-based COSt and Termination Analyzer for Java bytecode. The
system receives as input a bytecode program and a resource of interest in the form of a cost model, and tries to obtain
an upper bound of the resource consumption. COSTA can deal, among others, with the above non-trivial cost notions,
i.e., the heap consumption, the number of instructions. Additionally, COSTA tries to prove termination, which implies the
boundedness of any resource consumption. The termination module [4] is outside the scope of this article. The system is
implemented in Prolog; it uses the Parma Polyhedra Library [16] formanipulating linear constraints, and the PUBS system [7]
for solving the CRSs. To the best of our knowledge, this system is the first one to apply cost analysis to realistic object-oriented
programs, in bytecode form. Currently, it can be used through the web interface at http://costa.ls.fi.upm.es.

154 E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159

Table 1
Runtimes of analysis.
bench B M C R Ro E rbr opt ana size crs ub sim tot tr
copy 108 4 3 78 56 55 21 50 66 362 12 82 0 594 8
divByTwo 15 1 1 17 15 16 2 10 7 54 2 10 0 87 5
binsearch 68 1 1 31 30 30 6 30 24 207 4 158 0 430 14
fact 14 1 1 11 10 9 4 6 6 2 0 8 0 28 3
arrayReverse 27 1 1 28 24 25 5 20 24 137 4 37 0 226 8
concat 44 1 1 49 43 45 10 40 74 348 6 111 0 589 12
add 105 4 5 32 27 27 14 23 18 78 2 94 0 228 7
merge 170 3 2 89 61 59 20 77 348 258 13 270 0 986 11
power 15 1 1 11 10 9 0 7 10 5 0 14 0 38 3
copy_cons 92 5 4 56 34 31 15 35 50 48 4 49 0 201 4
evenDigits 31 2 1 34 30 33 8 27 12 102 3 22 0 175 5
selectOrd 51 1 1 58 55 57 11 51 68 1556 9 253 0 1948 34
doSum 27 2 1 28 25 19 5 19 11 31 0 13 0 81 3
multiply 58 1 1 75 64 67 15 89 225 2411 16 859 0 3616 48
hanoi 20 1 1 13 11 9 4 8 30 10 0 150 0 202 16
fibonacci 18 1 1 14 13 11 5 9 11 14 0 16 0 55 4
copy_bst 123 6 4 119 73 67 30 73 138 513 16 630 0 1399 12
as_push 658 7 6 104 70 59 54 59 160 17 14 67 0 372 4
ns_pop 666 9 7 132 90 77 58 84 205 27 22 100 0 496 4
nq_dequeue 748 8 7 128 90 78 62 82 214 33 22 162 2 577 5
nl_prev 1024 10 9 212 140 118 104 150 586 47 53 281 0 1220 6

Table 1 aims at assessing the efficiency of our analysis. Two sets of benchmarks are considered whose complexity ranges
from constant to exponential (their code is available at the COSTA web-site). The first set, from copy to copy_bst, consists
of classical examples in complexity analysis; the second set is taken from the net.datastructures Java package [38],
which contains a collection of Java interfaces and classes implementing important data structures and algorithms [37]. Such
programs are relevant since they intensively use object-oriented features. This is made even more evident by the fact that
analyzing somepart of the Java libraries is often required. In that package, the following classes have been selected as starting
point: ArrayStack, NodeStack, NodeQueue and NodeList. Due to lack of space, we only show the results for one method per
class: resp., push, pop, dequeue, and prev. COSTA handles bytecode programs for Java SE 1.4, 1.5 and 1.6. Experiments have
been done in Java 1.5.0_22.

Columns B, M, and C in the table show, resp., the number of instructions, methods, and classes. Column R shows the
number of RBR rules; Ro shows the same number after some optimizations. E shows the number of equations in the final
cost relation system. Columns rbr and opt show, resp., the time for building the RBR and for optimizing it. Experiments
have been performed on an Intel Core 2 Quad Q9300 at 2.5 GHz with 1.95 GB of RAM, running Linux 2.6.28-11. Times are in
milliseconds, and have been computed as the average of five runs. ana is the time needed by the auxiliary analyses required
by size analysis, whose time appears in size. Column crs is the time to obtain the CRS, and ub and sim is the time for, resp.,
obtaining a closed-form solution and for simplifying it. The total time is shown in tot. Finally, tr evaluates how the analysis
time varies w.r.t. the size of the program. For this, we divide the total analysis time by the number of rules in the RBR. This
number can be roughly interpreted as the average time to analyze a rule, which ranges from 3 to 48 ms. We argue that, at
least in our experiments, analysis time is acceptable. Importantly, the current implementation is not optimized for efficiency.

Table 2 shows the closed-form upper bounds obtained for the same examples. In all cases, the result for the number of
instructions cost model Mi is shown. We also show upper bounds w.r.t. another model, Mo, which counts the number of
objects allocated in the heap. In Table 1 only the times for Mi were shown, because the differences are small. Calls to native
methods appear as symbolic constants in the upper bounds. This is the case of fillInStackTrace in java.lang.Throwable,
which is represented by the constant c(fST). We evaluate the precision by comparing the inferred upper bounds with the
actual number of instructions and memory consumption. For this aim, we implemented a JVMTI agent (see http://java.sun.
com/j2se/1.5.0/docs/guide/jvmti/) which tracks object allocations and counts the number of bytecodes executed in concrete
traces. Column act contains the exact number of bytecode instructions or objects required by concrete executions of the
methods. Since COSTA approximates the worst-case behavior, we selected as input parameters those which lead to the
worst execution cost of the programs. The column est shows the value obtained by evaluating the upper bound computed
by COSTA on the given input data. Finally, acc indicates the accuracy act/est∗100. Soundness requires act≤est, 100 indicates
that the upper bound is exact.

For Mi, COSTA obtains an exact upper bound in four cases: fact, merge, power, and copy_cons. Except for fibonacci
and nl_prev, the accuracy obtained for the remaining benchmarks ranges from 50% to 97%, which we argue is quite
good for many applications. The main reason for the loss of precision in these benchmarks is that there are loops (or
recursion) whose body contains computations with a different cost at each iteration. In this case, the CRS solver takes
the larger cost, and multiplies it by the number of iterations. This is the case of binsearch, selectOrd, doSum, hanoi,
copy_bst, as_push, ns_pop, nq_dequeue, and nl_prev. In other cases, the problem comes from exceptional behaviors as
ArrayIndexOutOfBoundsException. This is the case of copy, arrayReverse, concat, add, andmultiply, where COSTA computes
the exact bound if exceptions are not considered. Finally, divByTwo has a division in the loop guard. This loss of precision

http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/

E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159 155

Table 2
Upper bounds (n(X) = max(0, X)).

Mi Mo
bench est act acc ub est act acc ub
copy(a) 228 220 96 228 2 2 100 2

divByTwo(a) 40.58 38 94 6+8log2(1+ 0
n(2a− 1))

binSerch(a, b, c, d) 119.72 101 84 16+24log2(1+ 0
n(2d−2c+1)) 0

fact(a) 94 94 100 4+9∗n(a) 0
arrayReverse(a) 162 152 94 22+14a 1 1 100 1

concat(a, b) 389 265 68.12 39+(11∗ 1 1 100 1
(a+b)+13b)

add(a, b, c) 214 207 97 16+18∗n(1+b) 0
merge(a, b) 597 597 100 27+30∗n(a+b−1) 20 20 100 1+n(a+b−1)
power(a, b) 104 104 100 4+10∗n(b) 0

copy(a) 247 247 100 23+26∗n(a−1) 10 10 100 1+n(a−1)
evenDigits(a) 502.59 369 73 9+n(a)∗(16+ 0

8log2(1+n(2a−3)))
selectSort(a) 1882 942 50 37+n(a)∗ 0

(36+30∗n(a−1))
doSum(a) 1271 677 53 6+n(1+a)∗ 0

(16+9∗n(1+a))
multiply(a,b,c) 36 609 28 117 77 27b2(c+1)+ 0

59b(c+1)+37c+49
hanoi(a, b, c, d) 20 463 19 940 97 20∗2n(a)

−17 0
fibonacciMethod(a) 9203 1589 17 18∗2n(a−1)

−13 0
copy(a) 25 549 24 527 96 100∗2n(a−1)

−51 1022 1022 100 4∗2n(a−1)
−2

push(a, b) 40 22 55 40+c(fST) 1 1 100 1+c(fST)
pop(a) 38 31 82 38+c(fST) 1 1 100 1+c(fST)

dequeue(a) 33 32 97 33+c(fST) 1 1 100 1+c(fST)
prev(a, b) 130 43 33 130+3∗c(fST) 3 1 33 3+3∗c(fST)

also affects evenDigits, which calls divByTwo. COSTA is not accurate in two cases: fibonacci and nl_prev. In the first, the
precision loss is bigger since [7] approximates the length of execution paths (generated by recursive calls) by a − 1,
while in practice there are many execution paths that are shorter than a − 1. In the second, the loss comes from
exceptional branches enclosed in if statements whose condition depends on fields: those are lost in the abstraction, so
that the cost of all exceptional branches is accumulated in the upper bound (although only one exception can be raised at
runtime).

As for Mo, the results are more precise. In this setting, the worst case occurs when exceptions are raised and
corresponding exception objects are created. In all cases, except for nl_prev, we obtain an accuracy of 100%. In nl_prev,
objects are created in exceptional branches, which, as mentioned above, generates a loss of precision. We argue that the
computed upper bounds are useful since they are both reasonably accurate and simple.

6. Precision issues, limits, and extensions

This section discusses the possible sources of precision loss, and the limits of COSTA when handling full sequential Java
bytecode. It also explains how our approach can be naturally extended to handle most of these problems.

Field-sensitive analysis. When the cost depends on a value which is stored in a field, as in ‘‘while (x.f>i) i++;’’, we cannot
provide cost bounds. This is because the size abstraction of Section 4.2 does not provide information about field values.
To overcome this limitation, techniques making numeric and reference fields observable at the abstract level can be
incorporated in the size analysis; e.g., numerical abstract domains [47], or program transformations at the level of the RBR,
as proposed [6,8] and already included in COSTA. The latter consists in a pre-analysis which first infers which fields can be
treated as if they were local variables and then, those fields are actually transformed into local variables. This would allow
performing field-sensitive cost analysis by relying on a fully field-insensitive analysis. Therefore, this approach does not
require any conceptual change to the presented framework.

Arrays. A similar problem arises when the cost depends on array elements, since array accesses are abstracted to true.
Dealing with such cases requires modifying the size analysis in order to incorporate information about array contents,
which is known to be one of the most challenging problems in program analysis [40]; therefore, it is difficult to provide
a general solution. However, solutions can be provided for typical programming patterns which naturally fit in our
approach: e.g., programs where the number of iterations of a loop depends on a value stored in an array. (1) Loops like
‘‘while (x[i]>0) x[i]−−;’’ can be handled similarly to numeric fields, since x[i] can be seen as the i-th field of the array
object x; indeed, the techniques for fields are applicable here if x and i can be proven not to change during the loop using

156 E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159

[6,8]. (2) Array searches: ‘‘for(int i=0; e! =x[i]; i++)’’ can be handled (Section 4.2) since the RBR contains a branch which
(exceptionally) exits the loop when i ≥ x.length; therefore, the number of iterations can be bounded by the length of the
array.

Non-linear, floating-point, and bitwise arithmetic. Our language does not include such classes of instructions; however,
considering full Java bytecode requires to provide suitable abstractions for them. A sound (yet very imprecise) abstraction
is to lose all information about variables affected by such instructions. COSTA currently uses this abstraction; however, in
the case of non-linear integer arithmetic, it tries to improve the precision by applying constant propagation. E.g., z:=x ∗ y
becomes a linear constraint when x or y are constants. A more general solution for non-linear arithmetic would require
sophisticated numerical abstract domains [39], which comes at a high price in performance. Linear floating-point arithmetic
can be easily included using existing techniques [27] available in PPL [16] (already used by COSTA). As for bitwise arithmetic,
in some cases, the behavior of some operations can be reasonably approximated with linear constraints. However, a general
solution requires incorporating more complex methods which can reason at the level of bits [22].

Cyclic data structures and other properties of the heap. We cannot provide bounds for programs traversing cyclic
data structures. This is mainly due to the difficulty in bounding the number of loop iterations. Consider the loop
while(x.data != e) x = x.next; and assume that x points to a cyclic linked list. In order to bound the number of iterations,
one needs to (1) verify that there is an element equal to e in x; (2) verify that the loop will eventually visit all the elements;
and (3) bound the number of elements in the data structure. The difficulty lies in verifying (1) and (2), since they require
under-approximations. Another source of imprecision is due to the over-approximation applied by the analyses which infer
sharing, acyclicity, and constancy information (e.g., the analysis can infer that a variablemight point to a cyclic data-structure
while in practice it does not). One can develop more precise analyses for inferring such properties and overcome precision
problems at the price of performance.

Scalability. It is known that very precise analysis (like the global size analysis which is used in order to precisely infer
the cost) and scalability are frequently at odds. The application of our analysis to code of large size (e.g., when the Java
libraries must be analyzed) should be done in a compositional way. This means that small fragments of code are analyzed
(often in a context-insensitive way) and the results are stored in some form of assertion or method summary. The potential
benefit is that such precomputed information can be reused when analyzing other fragments of code. The drawback is that,
if the analysis does not take context information into account, the results are less precise. Modularity in static analysis has
been studied in several contexts. Recent work in the context of our COSTA system [53] studies the modular extension of
the termination component. It is subject of future work to study compositionality (and incrementality) of the whole cost
analysis framework.

Non-cumulative resources. Standard recurrence relations (like those in Section 4.4) can be used only to estimate cumulative
resources. There exist cost models, like the peak of the memory consumption in garbage-collected languages [13] or the
peak of active-tasks in concurrent languages [11] that can increase and decrease along the execution. Approximating these
models requires non-standard forms of recurrence relations. In these cases, Section 4.4 is not applicable, but the remaining
parts of the analysis can be directly used.

7. Related work

Since the advent of mobile code, the analysis of Java bytecode has become an active research area, and a number of
analysis tools are currently available. Although they do not perform cost analysis, especially relevant are the analyses
developed on the Soot framework [61] and the generic analyzer Julia [58]. Soot is a framework for the development of
analyses for Java bytecode which includes points-to analysis, purity analysis, and dynamic data structure analysis. Julia
features a generic analysis engine in which sharing, cyclicity, class, non-nullness, information flow, escape, constancy,
and static initialization analysis have been integrated. Julia is nowadays an industrial-strength termination analyzer for
Java bytecode [60]. Although Julia concentrates on termination analysis while we also perform cost analysis, the work in
Julia is closely related to ours. Both systems contain path-length analysis [59] as a key component. Also, following the
idea originally proposed in [4], Julia produces constraint logic programs whose termination implies the termination of
the initial bytecode. Another interesting proposal for an intermediate representation for program analysis and verification
of object-oriented (bytecode) programs is BoogiePL [34], which has been used to represent .NET and Java bytecode
programs.

Focusing on cost analysis, significant effort has been devoted to extend the first, general framework [63] to different
programming paradigms. Most work on automatic cost analysis refers to the context of high-level declarative languages. In
the imperative paradigm, a lot of work has been devoted to WCET (worst-case execution time) analysis (see e.g. [64]), which
in many respects can be considered complementary to our work. In WCET, most of the effort has been devoted to obtaining
precise platform-dependent cost models, i.e., to estimating the time taken by the different instructions in the current, rather
complex computing architectures. In contrast, we produce reasonably accurate platform-independent results. It should
be noted that, in some contexts (like in real-time systems), platform dependence is inevitable. WCET has been applied to
industrial code [35]. There is also work which studies the relationship between syntactical constructions of programming
languages and their computational complexity [44,17]. These analyses are developed on simple imperative languageswhich

E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159 157

are far from the presented bytecode and, unlike our work, complexity classes instead of CRSs are inferred (CRSs are valid not
only to infer the complexity class, but also to compute non-asymptotic upper bounds).

Recent work [46] applies sub-interpretation (first used in first-order functional programming to deal with complexity) to
object-oriented programs without recursion to provide upper bounds on stack usage. Not being based on generating CRSs,
the approach does not follow the original framework [63]. Also, it is restricted to polynomial bounds and to a particular
resource (stack usage). More recent work develops cost analyses to estimate the memory consumption. In particular, a
technique for Java-like languages is proposed [21], which computes symbolic polynomial approximations of the amount of
memory required by a program, and a study of memory consumption (including both heap space and stack usage) is done
[28] on low-level programs which are similar to our bytecode programs. Both analyses are less general than ours, in both
the properties they estimate (only memory consumption) and the kind of upper bounds they generate (polynomial).

Resource usage certification [32,15,43,26,51] proposes the use of security properties involving cost requirements; i.e., it
requires that the (untrusted) code adheres to specific bounds on resource consumption. Our work shows, for the first time,
that it is possible to automatically generate resource usage guarantees, not restricted to polynomial bounds, for a realistic
mobile language. Related work in the context of Java bytecode includes the MRG project [15], which can be considered
complementary to ours. MRG focuses on building a proof-carrying code [49] architecture for ensuring that programs are free
from runtime violations of resource bounds. Their cost model deals with heap consumption: applications to be deployed
on devices with limited memory, such as smartcards, must be rejected if they require too much memory. Unlike ours, the
framework is restricted to polynomial bounds and to the above cost model. Further related work [24] also focuses on one
particular notion of cost (memory consumption) and aims at verifying that the program executes in bounded memory by
making sure that it does not create new objects inside loops. However, this approach does not infer bounds on resource
usage.

8. Conclusions

The presented framework is, to the best of our knowledge, the first automatic approach to the cost analysis of object-
oriented bytecode, a theoretical model for low-level languages (such as Java bytecode) which, most likely, come from
compiling higher-level languages. The analysis is based on the generation of cost relation systems w.r.t. a cost model which
provide useful approximations of the computational cost. We believe that our work opens the door to applying resource
usage analysis in the context of realistic programming languages like Java bytecode. The theoretical framework has already
been the basis for (1) the inference of the number of executed instructions of well-known programs used in research on
complexity analysis [10]; and (2) the computation of the heap consumption of object-oriented programs with an extensive
use of the heap [12]. In the latter case, cost relations were refined in order to consider the heap space which can be safely
deallocated by garbage collection upon exit from a method, as approximated by escape analysis [20].

Current work is basically being focused on extending both the theoretical foundations and the practical implementation
in order to handle a larger class of programs, and obtain improvements both in terms of efficiency and accuracy. Futurework
includes supporting assertions: COSTA will be able to (1) save the result of analyzing a method, together with information
about the context of the analysis, in order to reuse it; and (2) load such resultswhen analyzingmethods forwhich an assertion
is available, provided the current context is compatible. Assertions can also be used to specify the behavior of native or
unavailable code.

Acknowledgements

We gratefully thank the anonymous referees for many useful comments and suggestions that greatly helped to improve
this article. This work was funded in part by the Information & Communication Technologies program of the European
Commission, Future and Emerging Technologies (FET), under the ICT-231620 HATS project, by the Spanish Ministry of
Science and Innovation (MICINN) under the TIN-2008-05624 DOVES project, the HI2008-0153 (Acción Integrada) project,
the UCM-BSCH-GR35/10-A-910502 GPD Research Group and by theMadrid Regional Government under the S2009TIC-1465
PROMETIDOS-CM project.

Appendix. Supplementary data

Supplementary data associated with this article can be found, in the online version at doi:10.1016/j.tcs.2011.07.009.

References

[1] A. Adachi, T. Kasai, E. Moriya, A theoretical study of the time analysis of programs, in: Proc. of MFCS’79, in: LNCS, vol. 74, Springer, 1979, pp. 201–207.
[2] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.
[3] A.V. Aho, R. Sethi, J.D. Ullman, Compilers – Principles, Techniques and Tools, Addison-Wesley, 1986.
[4] E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, D. Zanardini, Termination analysis of Java bytecode, in: Proc. of FMOODS’08, in: LNCS, vol. 5051,

Springer, 2008, pp. 2–18.
[5] E. Albert, P. Arenas, S. Genaim, I. Herraiz, G. Puebla, Comparing cost functions in resource analysis, in: Proc. of FOPARA’09, in: LNCS, vol. 6234, Springer,

2010, pp. 1–17.

http://dx.doi.org/doi:10.1016/j.tcs.2011.07.009

158 E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159

[6] E. Albert, P. Arenas, S. Genaim, G. Puebla, Field-sensitive value analysis by field-insensitive analysis, in: Proc. of FM’09, in: LNCS, vol. 5850, Springer,
2009, pp. 370–386.

[7] E. Albert, P. Arenas, S. Genaim, G. Puebla, Closed-form upper bounds in static cost analysis, Journal of Automated Reasoning 46 (2) (2011) 161–203.
[8] E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Ramírez, From object fields to local variables: a practical approach to field-sensitive analysis, in: Proc. of

SAS’10, in: LNCS, vol. 6337, Springer, 2010, pp. 100–116.
[9] E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Zanardini, Cost analysis of Java bytecode, in: Proc. of ESOP’07, in: LNCS, vol. 4421, Springer, 2007,

pp. 157–172.
[10] E. Albert, P. Arenas, S. Genaim, G. Puebla, D. Zanardini, Experiments in cost analysis of Java bytecode, in: Proc. of BYTECODE’07, ENTCS 190 (2007)

67–83.
[11] E. Albert, P. Arenas, S. Genaim, D. Zanardini, Task-level analysis for a language with async-finish parallelism, in: Proc. of LCTES’11, ACM Press, 2011,

pp. 21–30.
[12] E. Albert, S. Genaim, M. Gómez-Zamalloa, Heap space analysis for Java bytecode, in: Proc. of ISMM’07, ACM Press, 2007, pp. 105–116.
[13] E. Albert, S. Genaim, M. Gómez-Zamalloa, Parametric inference of memory requirements for garbage collected languages, in: Proc. of ISMM’10, ACM

Press, 2010, pp. 121–130.
[14] E. Albert, S. Genaim, A.N. Masud, More precise yet widely applicable cost analysis, in: Proc. of VMCAI’11, in: LNCS, vol. 6538, Springer, 2011, pp. 38–53.
[15] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, I. Stark, Mobile resource guarantees for smart devices, in: Proc. of CASSIS’04, in: LNCS, vol. 3362,

Springer, 2005, pp. 1–27.
[16] R. Bagnara, P.M. Hill, E. Zaffanella, The parma polyhedra library: toward a complete set of numerical abstractions for the analysis and verification of

hardware and software systems, Science of Computer Programming 72 (1–2) (2008).
[17] A.M. Ben-Amram, N.D. Jones, L. Kristiansen, Linear, polynomial or exponential? complexity inference in polynomial time, in: Proc. of CiE’08, in: LNCS,

vol. 5028, Springer, 2008, pp. 67–76.
[18] F. Benoy, A. King, Inferring argument size relationships with CLP(R), in: Proc. of LOPSTR’97, in: LNCS, vol. 1207, Springer, 1997, pp. 204–223.
[19] R. Benzinger, Automated higher-order complexity analysis, Theoretical Computer Science 318 (1–2) (2004).
[20] B. Blanchet, Escape analysis for object oriented languages. Application to Java (TM), in: Proc. of OOPSLA’99, ACM Press, 1999, pp. 20–34.
[21] V. Braberman, F. Fernández, D. Garbervetsky, S. Yovine, Parametric prediction of heap memory requirements, in: Proc. of ISMM’08, ACM Press, 2008,

pp. 141–150.
[22] J. Brauer, A. King, Automatic abstraction for intervals using Boolean formulae, in: Proc. of SAS’10, in: LNCS, vol. 6337, Springer, 2010, pp. 167–183.
[23] M. Bruynooghe, M. Codish, J.P. Gallagher, S. Genaim, W. Vanhoof, Termination analysis of logic programs through combination of type-based norms,

ACM Transactions on Programming Languages and Systems 29 (2) (2007).
[24] D. Cachera, T. Jensen, D. Pichardie, G. Schneider, Certified memory usage analysis, in: Proc. of FM’05, in: LNCS, vol. 3582, Springer, 2005, pp. 91–106.
[25] D. Cachera, T.P. Jensen, A Jobin, P. Long-run, Cost analysis by approximation of linear operators over dioids, Mathematical Structures in Computer

Science 20 (4) (2010) 589–624.
[26] A. Chander, D. Espinosa, N. Islam, P. Lee, G. Necula, Enforcing resource bounds via static verification of dynamic checks, in: Proc. of ESOP’05, in: LNCS,

vol. 3444, Springer, 2005, pp. 311–325.
[27] L. Chen, A. Miné, P. Cousot, A sound floating-point polyhedra abstract domain, in: Proc. of APLAS’08, in: LNCS, vol. 5356, Springer, 2008, pp. 3–18.
[28] W.-N. Chin, H.H. Nguyen, C. Popeea, S. Qin, Analysing memory resource bounds for low-level programs, in: Proc. of ISMM’08, ACM Press, 2008,

pp. 151–160.
[29] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints,

in: Proc. of POPL’77, ACM Press, 1977, pp. 238–252.
[30] P. Cousot, N. Halbwachs, Automatic discovery of linear restraints among variables of a program, in: Proc. of POPL’78, ACM Press, 1978, pp. 84–97.
[31] S.J. Craig, M. Leuschel, Self-tuning resource aware specialisation for prolog, in: Proc. of PPDP’05, ACM Press, 2005, pp. 23–34.
[32] K. Crary, S. Weirich, Resource bound certification, in: Proc. of POPL’00, ACM Press, 2000, pp. 184–198.
[33] S.K. Debray, N.W. Lin, Cost analysis of logic programs, ACM Transactions on Programming Languages and Systems 15 (5) (1993).
[34] R. DeLine, K.R.M. Leino, BoogiePL: a typed procedural language for checking object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft

Research, 2005.
[35] A. Ermedahl, J. Gustafsson, B. Lisper, Experiences from industrial wcet analysis case studies, in: Proc. of WCET’05, volume 1 of OASICS, 2005.
[36] S. Genaim, F. Spoto, Constancy analysis, in: 10th Workshop on Formal Techniques for Java-like Programs, 2008.
[37] M. Goodrich, R. Tamassia, Data Structures and Algorithms in Java, 3rd ed., John Wiley, 2004.
[38] M.T. Goodrich, R. Tamassia, R. Zamore, The net.datastructures Package, version 3. Available at http://net3.datastructures.net, 2003.
[39] B. S. Gulavani, S. Gulwani, A numerical abstract domain based on expression abstraction andmax operatorwith application in timing analysis, in: Proc.

of CAV’08, in: LNCS, vol. 5123, Springer, 2008, pp. 370–384.
[40] N. Halbwachs, M. Péron, Discovering properties about arrays in simple programs, in: Proc. of PLDI’08, ACM Press, 2008, pp. 339–348.
[41] M. Hermenegildo, E. Albert, P. López-García, G. Puebla, Abstraction carrying code and resource-awareness, in: Proc. of PPDP’05, ACM Press, 2005,

pp. 1–11.
[42] M. Hermenegildo, G. Puebla, F. Bueno, P. López-García, Integrated program debugging, verification, and optimization using abstract interpretation

(and the ciao system preprocessor), Science of Computer Programming 58 (1–2) (2005).
[43] M. Hofmann, S. Jost, Static prediction of heap space usage for first-order functional programs, in: Proc. of POPL’03, ACM Press, 2003, pp. 185–197.
[44] L. Kristiansen, N.D. Jones, The flow of data and the complexity of algorithms, in: Proc. of CiE’05, in: LNCS, vol. 3526, Springer, 2005, pp. 263–274.
[45] D. Le Metayer, ACE: an automatic complexity evaluator, ACM Transactions on Programming Languages and Systems 10 (2) (1988).
[46] J.-Y. Marion, R. Pèchoux, Resource control of object-oriented programs, in: Proc. of LICS affiliated Workshop LCC’07, 2007.
[47] A. Miné, Field-sensitive value analysis of embedded C programswith union types and pointer arithmetics, in: Proc. of LCTES’06, ACM, 2006, pp. 54–63.
[48] J. Navas, E. Mera, P. López-García, M. Hermenegildo, User-definable resource bounds analysis for logic programs, in: Proc. of ICLP’07, in: LNCS, vol.

4670, Springer, 2007, pp. 348–363.
[49] G. Necula, Proof-carrying code, in: Proc. of POPL’97, ACM Press, 1997, pp. 106–119.
[50] F. Nielson, H.R. Nielson, C. Hankin, Principles of Program Analysis, 2nd ed., Springer, 2005.
[51] K.-H. Niggl, H. Wunderlich, Certifying polynomial time and linear/polynomial space for imperative programs, SIAM Journal on Computing 35 (5)

(2006).
[52] G. Puebla, C. Ochoa, Poly-controlled partial evaluation, in: Proc. of PPDP’06, ACM Press, 2006, pp. 261–271.
[53] D. Ramírez, J. Correas, G. Puebla, Modular termination analysis of Java bytecode and its application to phoneme core libraries, in: Proc. of FACS’10,

LNCS, vol. 6921, Springer, 2010 (in press).
[54] M. Rosendahl, Automatic complexity analysis, in: Proc. of FPCA’89, ACM Press, 1989, pp. 144–156.
[55] S. Rossignoli, F. Spoto, Detecting non-cyclicity by abstract compilation into Boolean functions, in: Proc. of VMCAI’06, in: LNCS, vol. 3855, Springer,

2006, pp. 95–110.
[56] D. Sands, A Naïve time analysis and its theory of cost equivalence, Journal of Logic and Computation 5 (4) (1995).
[57] S. Secci, F. Spoto, Pair-sharing analysis of object-oriented programs, in: Proc. of SAS’05, in: LNCS, vol. 3672, Springer, 2005, pp. 320–335.
[58] F. Spoto, Julia: a generic static analyser for the java bytecode, in: Proc. of FTfJP’05, 2005.
[59] F. Spoto, P.M. Hill, E. Payet, Path-length analysis of object-oriented programs, in: Proc. of EAAI’06, 2006. Available at http://profs.sci.univr.it/∼spoto/

papers.html.
[60] F. Spoto, F. Mesnard, É Payet, A termination analyser for Java bytecode based on path-length, Transactions on Programming Languages and Systems

32 (3) (2010).

http://net3.datastructures.net
http://profs.sci.univr.it/~spoto/papers.html
http://profs.sci.univr.it/~spoto/papers.html
http://profs.sci.univr.it/~spoto/papers.html
http://profs.sci.univr.it/~spoto/papers.html
http://profs.sci.univr.it/~spoto/papers.html
http://profs.sci.univr.it/~spoto/papers.html
http://profs.sci.univr.it/~spoto/papers.html
http://profs.sci.univr.it/~spoto/papers.html

E. Albert et al. / Theoretical Computer Science 413 (2012) 142–159 159

[61] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, P. Co, Soot — a Java optimization framework, in: Proc. of CASCON’99, IBM, 1999,
pp. 125–135.

[62] P. Wadler, Strictness analysis aids time analysis, in: Proc. of POPL’88, ACM Press, 1988, pp. 119–132.
[63] B. Wegbreit, Mechanical program analysis, Communications of the ACM 18 (9) (1975).
[64] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,

J. Staschulat, P. Stenström, The worst-case execution-time problem — overview of methods and survey of tools, ACM Transactions on Embedded
Computing Systems 7 (36) (2008).

	Cost analysis of object-oriented bytecode programs
	Introduction
	Summary of contributions
	Applications of cost analysis of object-oriented bytecode programs

	The rule-based representation
	The abstract syntax
	The semantics

	The notion of cost and cost model
	Cost analysis of rule-based programs
	The notion of size measure
	Abstract compilation
	Input--output size relations
	Building cost relation systems

	The COSTA system: an implementation for Java bytecode
	Precision issues, limits, and extensions
	Related work
	Conclusions
	Acknowledgements
	Appendix. Supplementary data
	References

