13 research outputs found

    Energy-based Cost Model of Virtual Machines in a Cloud Environment

    Get PDF
    The cost mechanisms employed by different service providers significantly influence the role of cloud computing within the IT industry. With the increasing cost of electricity, Cloud providers consider power consumption as one of the major cost factors to be maintained within their infrastructures. Consequently, modelling a new cost mechanism for Cloud services that can be adjusted to the actual energy costs has attracted the attention of many researchers. This paper introduces an Energy-based Cost Model that considers energy consumption as a key parameter with respect to the actual resource usage and the total cost of the Virtual Machines (VMs). A series of experiments conducted on a Cloud testbed show that this model is capable of estimating the actual cost for heterogeneous VMs based on their resource usage with consideration of their energy consumption

    Atomicity and non-anonymity in population-like games for the energy efficiency of hybrid-power HetNets

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, the user–base station (BS) association problem is addressed to reduce grid consumption in heterogeneous cellular networks (HetNets) powered by hybrid energy sources (grid and renewable energy). The paper proposes a novel distributed control scheme inspired by population games and designed considering both atomicity and non-anonymity – i.e., describing the individual decisions of each agent. The controller performance is considered from an energy–efficiency perspective, which requires the guarantee of appropriate qualityof-service (QoS) levels according to renewable energy availability. The efficiency of the proposed scheme is compared with other heuristic and optimal alternatives in two simulation scenarios. Simulation results show that the proposed approach inspired by population games reduces grid consumption by 12% when compared to the traditional best-signal-level association policy.Peer ReviewedPostprint (author's final draft

    Atomicity and non-anonymity in population-like games for the energy efficiency of hybrid-power HetNets

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper, the user–base station (BS) association problem is addressed to reduce grid consumption in heterogeneous cellular networks (HetNets) powered by hybrid energy sources (grid and renewable energy). The paper proposes a novel distributed control scheme inspired by population games and designed considering both atomicity and non-anonymity – i.e., describing the individual decisions of each agent. The controller performance is considered from an energy–efficiency perspective, which requires the guarantee of appropriate qualityof-service (QoS) levels according to renewable energy availability. The efficiency of the proposed scheme is compared with other heuristic and optimal alternatives in two simulation scenarios. Simulation results show that the proposed approach inspired by population games reduces grid consumption by 12% when compared to the traditional best-signal-level association policy.Peer ReviewedPostprint (author's final draft

    Integrating Clustering and Regression for Workload Estimation in the Cloud

    Get PDF
    Workload prediction has been widely researched in the literature. However, existing techniques are per‐job based and useful for service‐like tasks whose workloads exhibit seasonality and trend. But cloud jobs have many different workload patterns and some do not exhibit recurring workload patterns. We consider job‐pool‐based workload estimation, which analyzes the characteristics of existing tasks' workloads to estimate the currently running tasks' workload. First cluster existing tasks based on their workloads. For a new task J, collect the initial workload of J and determine which cluster J may belong to, then use the cluster's characteristics to estimate J′s workload. Based on the Google dataset, the algorithm is experimentally evaluated and its effectiveness is confirmed. However, the workload patterns of some tasks do have seasonality and trend, and conventional per‐job‐based regression methods may yield better workload prediction results. Also, in some cases, some new tasks may not follow the workload patterns of existing tasks in the pool. Thus, develop an integrated scheme which combines clustering and regression and utilize the best of them for workload prediction. Experimental study shows that the combined approach can further improve the accuracy of workload prediction

    Hybrid heuristic algorithm for better energy optimization and resource utilization in cloud computing

    Get PDF
    Energy-efficient execution of the scientific workflow is a challenging task in cloud computing that demands high-performance computing to process growing datasets. Due to the interdependency of tasks in the scientific workflow applications, energy-efficient resource allocation is vital for large-scale applications running on heterogeneous physical machines. Thus, this paper proposes a Hybrid Heuristic algorithm based Energy-efficient cloud Computing service (HH-ECO) that offers a significant solution for resource allocation, task scheduling, and optimization of scientific workflows. To ensure the energy-efficient execution, the HH-ECO focuses on executing non-dominant workflow tasks through adaptive mutation and energy-aware migration strategy. HH-ECO adopts the Chaotic based Particle Swarm Optimization (C-PSO) principle to optimize the resource allocation, task scheduling, and resource migration by generating the global best plans without local convergence. C-PSO with adaptive mutation avoids the deterioration of global optima while finding the best host to place the virtual machine and ensures an appropriate resource allocation plan. By considering the workflow task precedence relationships during C-PSO based task scheduling, the novel hybrid heuristic method efficiently solves the multi-objective combinatorial optimization problem without dominance among the workflow tasks. The Cloudsim based simulation study delivers superior results compared to the existing methods such as the Hybrid Heuristic Workflow Scheduling algorithm (HHWS) and Distributed Dynamic VM Management (DDVM). The proposed approach significantly improves the optimal makespan to 38.27% and energy conservation to 38.06% compared to the existing methods

    Energy and throughput efficient strategies for heterogeneous future communication networks

    Get PDF
    As a result of the proliferation of wireless-enabled user equipment and data-hungry applications, mobile data traffic has exponentially increased in recent years.This in-crease has not only forced mobile networks to compete on the scarce wireless spectrum but also to intensify their power consumption to serve an ever-increasing number of user devices. The Heterogeneous Network (HetNet) concept, where mixed types of low-power base stations coexist with large macro base stations, has emerged as a potential solution to address power consumption and spectrum scarcity challenges. However, as a consequence of their inflexible, constrained, and hardware-based configurations, HetNets have major limitations in adapting to fluctuating traffic patterns. Moreover, for large mobile networks, the number of low-power base stations (BSs) may increase dramatically leading to sever power consumption. This can easily overwhelm the benefits of the HetNet concept. This thesis exploits the adaptive nature of Software-defined Radio (SDR) technology to design novel and optimal communication strategies. These strategies have been designed to leverage the spectrum-based cell zooming technique, the long-term evolution licensed assisted access (LTE-LAA) concept, and green energy, in order to introduce a novel communication framework that endeavors to minimize overall network on-grid power consumption and to maximize aggregated throughput, which brings significant benefits for both network operators and their customers. The proposed strategies take into consideration user data demands, BS loads, BS power consumption, and available spectrum to model the research questions as optimization problems. In addition, this thesis leverages the opportunistic nature of the cognitive radio (CR) technique and the adaptive nature of the SDR to introduce a CR-based communication strategy. This proposed CR-based strategy alleviates the power consumption of the CR technique and enhances its security measures according to the confidentiality level of the data being sent. Furthermore, the introduced strategy takes into account user-related factors, such as user battery levels and user data types, and network-related factors, such as the number of unutilized bands and vulnerability level, and then models the research question as a constrained optimization problem. Considering the time complexity of the optimum solutions for the above-mentioned strategies, heuristic solutions were proposed and examined against existing solutions. The obtained results show that the proposed strategies can save energy consumption up to 18%, increase user throughput up to 23%, and achieve better spectrum utilization. Therefore, the proposed strategies offer substantial benefits for both network operators and users

    Energy-Efficient Resource Allocation and Provisioning Framework for Cloud Data Centers

    No full text
    Energy efficiency has recently become a major issue in large data centers due to financial and environmental concerns. This paper proposes an integrated energy-Aware resource provisioning framework for cloud data centers. The proposed framework: i) predicts the number of virtual machine (VM) requests, to be arriving at cloud data centers in the near future, along with the amount of CPU and memory resources associated with each of these requests, ii) provides accurate estimations of the number of physical machines (PMs) that cloud data centers need in order to serve their clients, and iii) reduces energy consumption of cloud data centers by putting to sleep unneeded PMs. Our framework is evaluated using real Google traces collected over a 29-day period from a Google cluster containing over 12,500 PMs. These evaluations show that our proposed energy-Aware resource provisioning framework makes substantial energy savings. 2004-2012 IEEE.Scopus2-s2.0-8495947999
    corecore