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Chapter 1: Introduction

Electric vehicles are ubiquitous. Many of these vehicles come with self-driving abilities,
and as more appear on roadways, the need for the vehicles to communicate with each
other to navigate the roads safely increases. This communication happens with the help
of vehicular networks. Vehicular networks require low-latency and high reliability to
communicate successfully. To meet these requirements, researchers organized vehicular
ad-hoc networks (VANET) to provide services related to road safety over the past sev-
eral decades. Nowadays, the automotive industry has improved by integrating software
and hardware components to provide a new level of connectivity in vehicular networks.
Intelligent vehicular networks combine the early advancements made to create a new
generation that supports the quality of services and the reliability of communication that
both today’s consumers and urban settings require. As a result, intelligent vehicles suc-
cessfully operate on the world’s roadways as part of smart city infrastructure [40, 41, 9].
Furthermore, researchers have focused on improving vehicular networks with advanced
wireless networks and Artificial Intelligence (AI) technology [54].

Well established networks are getting much research attention because of their ability to
provide services efficiently. SDN infrastructure is a network infrastructure management
method that enables dynamic and efficient network configuration to improve network
performance by distributing control and data planes. Thus, SDN and advanced wire-
less networks in vehicular networks are solutions to manage and improve the quality of
service while satisfying performance requirements such as ultra-low latency and high re-
liability. Moreover, this technology is applied to overcome these requirements by having
a programmable and flexible network infrastructure that includes differently integrated
technologies, such as network functions virtualization (NFV) and network slicing [21, 5].

There are many challenging issues in vehicular networks, one of which is extensive traf-
fic on the roadways which requires management to protect human life. Considerable
progress in the research is needed to make autonomous vehicles work smoothly in vehic-
ular systems with heavy traffic [48]. This study proposes a method for managing traffic
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prediction and for optimizing the traffic avoidance system at the top of a well-established
network infrastructure. As a result, vehicles send their next lane and route data to one
or more central controllers in SDN infrastructure to collect, analyze, and direct vehicles
to alternative paths to avoid traffic.

Communication is another challenge and a very critical factor affecting network per-
formance. The amount of delivered data to the servers and controllers, for example,
dramatically affects the response time and reliability of vehicular networks. The Internet
of Vehicles (IoV) will benefit from significantly minimizing latency and energy usage.
Thus, with recent advances in artificial intelligence, vehicles can get many services faster
than usual by predicting the decisions to manage the network communication and accom-
plish services successfully. This latency is minimized by offloading the computationally
intensive tasks from mobile devices to a nearby Mobile Edge Cloud (MEC) [48, 6]. As a
result, we have applied the DNN technique in high-density vehicular environments called
Deep Reinforcement Learning (DRL) to distribute the processing and prediction pro-
cess at the top of the traffic avoidance algorithm in the control plane. DRL is used to
study the environmental inputs and produce associated outputs, which are rerouting by
changing directions or increased speed to reach the destination faster.

In real-life scenarios, physical barriers and limited wireless ranges are other challenges that
could prevent all nodes from steadily communicating with others in real time. Examples
include rapidly changing architecture, accidents, disconnects, delays, and harsh commu-
nication environments like natural disasters and inclement weather incidents [80, 41].
Hence, the system needs a protocol that could manage the buffers and data storage cri-
teria to keep critical data instead of losing it. DTN protocol is used to preserve the data
and manage the buffer.

The number of self-driving vehicles that need to be connected to wireless access net-
works will increase as a result of the growth of the Autonomous Vehicles (AVs) industry.
Therefore, our goal in this thesis is to consider the learned policy in vehicular environ-
ment properties to preserve stability and security before autonomous vehicles travel on
our highways and city roads. Moreover, we need to study the real-life vehicular envi-
ronment inputs, such as the number of vehicles and vehicle occupancy limits to ensure
smooth movement throughout streets to reach the destination faster. Nevertheless, the
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biggest obstacles and challenges are connectivity and network latency [70]. Some studies
have developed algorithms by using the queuing system to organize response priorities to
overcome latency challenges. Many studies have used network slicing and implemented
algorithms to speed up processing based on latency constraints, but they have used high
numbers of controllers to manage the vehicular infrastructure. Most of the previous work
relies heavily on simplifications, such as assuming unrealistic properties of real-world net-
works such as modeling roads using the Manhattan Poisson Line Process (MPLP) distri-
bution or probabilistic routing. Therefore, there were inaccuracies when applied to large
networks which did not predict complex situations with realistic routing configurations.
These inaccuracies resulted in increased latency and reduced response time that could
lower performance metrics [21]. Our work has enhanced this previous work by improving
data processing and offloading the analysis between BSs and Fog controllers, using DNN
instead of simply increasing the Fog controllers’ numbers and consuming them. More-
over, our work has studied emergent scenarios such as disconnections that could happen
in real life. Therefore, we addressed the low latency and reliability requirements in an
intelligent way without consuming more controllers.

In this thesis, we provide a system architecture based on SDN technology by using the
latest mobile networks based on 4G capabilities. This system allows us to improve trans-
mission efficiency and meet low latency constraints. Moreover, we developed prediction
models using Deep Reinforcement Learning (DRL) to distribute the processing and pre-
diction between data plane and controller plane infrastructure. Advantages to our system
include the fact that we can reduce centralization and have the ability to deal with big
data analytics by offloading processing for a large number of vehicles. Also, our system
can also address the problems of harsh communication environments and it has incorpo-
rated the ability to keep data without losing it. Thus, our approach uses DTN protocol
to improve the quality of autonomous driving and ensure its continuity.

The rest of this thesis is as follows. In section two, we present relevant works. The third
section explains the SDN design and how mobile networks were used. The fourth section
presents the DNN and its use in the network layers. In the fifth section, we describe
DTN and its application on the network. We present the simulation setup in the sixth
section. The seventh section explains the results and performance analysis. Finally, the
eighth section presents the future work and the conclusion.
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The following table describes the significance of various abbreviations and acronyms used
throughout the thesis:

Acronym Meaning
VANET Vehicular ad-hoc networks

AI Artificial Intelligence
SDN Software Defined Networking
NFV Network functions virtualization
IoV Internet of Vehicles
MEC Mobile Edge Cloud
DNN Deep Neural Network
DRL Deep Reinforcement Learning
DTN Delay-Tolerant Networking protocol
AVs Autonomous Vehicles

MPLP Manhattan Poisson Line Process
BS Base Station
RSU Road Side Unit
V2V Vehicle to Vehicle
V2I Vehicle to Infrastructure
IoT Internet of Things
V2X Vehicle to Everything
ITS Intelligent Transport System

OMNET++ Network Simulator
Venis Vehicles in Network Simulator
SUMO Road Traffic Simulator
TraCI Trac Control Interface
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Chapter 2: Literature Review

This section examines previous studies and discusses vehicular network challenges, and
how technologies are used to overcome those challenges. It also shows the related work
of the technologies, which are SDN, DNN, and DTN protocol.

In SDN, Chekired et al.[21] studied the performance of vehicular networks with ultra-low
latency and high reliability. They deployed new emerging technologies such as SDN,
NFV, and network slicing using architecture called slicescale. In addition, they used a
distributed SDN core network architecture with Fog, edge, and cloud computing nodes in
a 5G wireless network. Also, they split the physical network infrastructure into multiple
logical networks functions which are controlled and managed separately by the slice’s
owners to satisfy the low latency challenge. Finally, they used an algorithm to manipulate
the resources and to provide the vehicle missions depending on time preferences. Based
on their proposed algorithm, the resource blocks of each Fog cell were scheduled when
it arrived at the associated Base Station (BS) and checked whether the number of local
resource blocks satisfied the latency requirement. The simulation results show that they
met the low-latency requirement of the autonomous system; however, they did not study
the content of the delivered data in real situations, and the amount of delivered data in
their system was enormous, particularly in the upper layer.

In DNN, [46] considered a wireless powered MEC network that utilizes an offloading policy
so that each processing task of wireless devices can be executed locally or offloaded to
a MEC server. They used an algorithm to offload the decisions and resource allocations
between servers based on wireless channel conditions. Because of channel coherence time
and its requirements, which are a quick processing and response that are hard to achieve
with traditional methods, they used DRL based on the offloading framework to learn
the offloading decisions. They successfully decreased the computation time. However,
they only considered channel information as DNN input. Vita et al. [28, 29] studied
the MEC to bring data and computational resources close to mobile users that reduce
latency and improve resource utilization. They used DRL to relocate applications in
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MEC scenarios and to manage data migration by learning during system development.
Furthermore, they used 5G technology to improve the network performance and to allow
mobile users to access distributed services efficiently. They showed the feasibility of
this approach for the latency challenge via simulation. Nevertheless, they presented
the continuity of the services throughout the 5G wireless network without considering
urgent scenarios. Also, they did not study different scenarios of stochastic environments
that include a large number of users and lower levels of wireless technology such as
WIFI or 4G. Moreover, vehicular environments could have urgent situations such as
limitations in wireless communication due to physical barriers, so it needs alternative
solutions on top of DRL to provide the services in lower latency. [57, 58] proposed
an approach based on swarm intelligence to evaluate the traffic flow during congestion
to avoid collision using Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I)
communications. They considered the details of vehicular environment inputs to exchange
and collect information about vehicles and roads. They studied the road experience to
reduce road congestion and improve traffic management to ensure road safety. Their
system requirements achieved fast and efficient communication between smart devices.
The results showed improvement in the performance to maintain the traffic flow. Also,
they improved the work by using DRL on smart rerouting, but they did not use robust
networks such as SDN infrastructure. Thus, V2I in SDN managed traffic flow even with
a large number of mobile nodes as they get the services faster from the servers to cover
the information from the whole coverage area.

In DTN, [45, 56] studied the unreliability issue in mobile networks to improve the delivery
rate in a stochastic environment. They found that Internet of Things (IoT) applications
need to achieve efficient data transmission using the Delay-Tolerant Network (DTN) to
enhance delivery that ensures high throughput and low latency requirements. Further-
more, comparing it with other routing protocols demonstrated that the DTN can perform
better than the existing protocols by managing the buffer between nodes in urgent sce-
narios such as losing the communications.

In this work, we used the network structure SDN in [21]. We improved their architecture
by making it more intelligent by using DNN instead of a specific algorithm that depends
on the queuing system. Thus, we were able to achieve ultra-low latency results even with
WIFI and 4G wireless networks issues. Also, we considered the disconnection scenarios,
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and we used the DTN protocol to make the system more reliable overall. This work
is more specific because it depended on environmental and vehicle information, thus
implementing complex policies to avoid vehicular traffic. The idea of setting up the
simulation environment came from [29] that used the OMNeT++/SimuLTE simulator
integrated with the Keras framework. It helped us to study the RL technique and observe
the dynamics of an environment, thus understanding an optimal policy for one or more
environmental situations. Moreover, we studied the traffic at each point of the vehicle’s
coverage area to avoid extensive traffic, so we controlled the traffic in a high mobility
environment. Thus, based on this literature review, we used these integrated technologies
on top of the proposed traffic avoidance algorithm.
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Chapter 3: System Technologies

Recent advances in wireless communication and networking technologies and techniques
emerge as key enablers to vehicular communication and autonomous vehicular systems.
These include advancements in wireless bandwidth management [37, 13, 39, 69, 38, 33],
spectrum resource sensing and discovery [35, 36, 34, 79, 81, 51, 50], in-network con-
tent caching and placement [68, 78, 72, 53, 67], edge cloud computing and offload-
ing [2, 71, 3, 24, 76, 1, 7, 4], software defined networking (SDN) and network func-
tion virtualization [25, 17, 5, 47], cloud datacenter networking and resource manage-
ment [11, 60, 62, 26, 10, 64, 22, 23, 27], AI-enabled networking and communication [75,
44, 31, 32, 15, 43, 59, 74], among many others. Nowadays, vehicles can communicate with
one another (aka V2V) and with everything (aka V2X) including infrastructure. They
can communicate without the need for complex protocols and algorithms that enhance
the ability to determine each vehicle’s emergency signals based on their positions [66].

In the new generations of cellular networks such as 4G and 5G [12, 20, 42], the download
and upload rates are increasing rapidly. As a consequence, the amount of data commu-
nicated is enormous. This data needs robust infrastructure for vehicular networks with
rapid speeds [21]. Thus, the robust infrastructure distributes the analysis of the collected
data in a way such that the data has low latency in processing and controlling.

VANETs, a type of wireless system, are used to share traffic information between vehicles
to avoid accidents. However, the industry faces many challenges because of a dynamic
topology and high mobility environments, such as sharing the information among vehicles
and infrastructure nodes. Moreover, the processing capacity of this network will be much
higher because it communicates with services in the cloud. To address these problems,
IoV is used between wireless systems, which are VANETs, Wi-Fi, 4G, and other advanced
wireless networks. IoV is a scalable structure that splits and enlarges services across
diverse networks. Therefore, it brings intelligence to the network because the information
is shared and distributed between layers [66, 21].
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This work presents the used layers in IoV which share the information among the vehicles
and achieve the mission in real-time using the following integrated technologies:

1. SDN manages and coordinates the infrastructure of the environment. In SDN, we
study how this data is collected, exchanged, and offloaded between data and control
layers.

2. DNN focuses on realizing and analyzing the delivered information to and from
BSs to offload the processing with fog controllers on vehicles’ intelligence routing
procedures.

3. DTN protocol manages the buffer to improve the intelligence network feeding in
disconnection scenarios.

3.1 Software Defined Networking (SDN)

Vehicular networks need to be intelligent, centrally controlled, or programmed using soft-
ware applications. Software-Defined Networking (SDN) is a network architecture strategy
that allows us to meet these needs. SDN helps operators to manage the entire infras-
tructure consistently and holistically, regardless of the underlying network technology.
In addition, SDN operators can manage the infrastructure with several competing forces
surrounding enterprises, carriers, and service providers. Moreover, the extensive growth
in multimedia content, the influence of increasing mobile usage, and the explosion of
cloud computing tends to wreak havoc on traditional models. Therefore, many systems
are turning to SDN technology to reform network design and operations regardless of the
complexity of the underlying network technology.

SDN was created by separating the control and data levels used in the public telephone
network to simplify management in data networks. SDN allows us to control the program-
ming of network functions using open APIs. The API for OpenFlow was first created in
2008 to build the network operating system. OpenFlow allows communication between
the control plane and the network infrastructure [21].

My work is based on the SDN infrastructure, and one of its benefits is its ability to be
developed in consecutive steps. This network is the base point in controlling the vehicular
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environment, re-routing, and extracting the base infrastructure from applications and
network services.

There are many advantages to SDN architectures. Several of these are listed as follows:

• Their architectures are directly programmable.

• They reduce delay in computing services by having data and control layers.

• They can dynamically adjust traffic flow at the network level to meet changing
needs.

• They have a network that is managed centrally through specific controllers.

• They allow network administrators to rapidly identify, manage, secure, and optimize
network resources.

We have designed the nodes and communication protocol in different layers, which can
determine the path of the network packets and manage them in the most efficient way.
We did not rely on OpenFlow because we do not need most of its services. In addition,
the simulation system version is a newer version compared to OpenFlow available ver-
sions. Therefore, it was hard to merge OpenFlow with the system, so we have designed
a communication protocol between the control level and the network infrastructure as
clarified in the following network design, network layers, and messaging sections. As a
result, a large part of the searching and linking strategies were shortened.

3.1.1 Network Design

Vehicles have more than one way to connect wirelessly, so our network design uses two
different wireless networks, which are WIFI and 4G. Also, the system identifies the com-
munication between layers of SDN in these different types of wireless communication.
Figure 3.1 clarifies the design of the network infrastructure in all scenarios. It includes
number of nodes, which are vehicles, RSUs, BSs, and Fog.
Figure 3.1 shows the following types of communications between nodes:

• V2V communication, such as the communication between vehicles to share buffer
storage information.
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• V2I communication, such as sending the inputs data from vehicles to the infras-
tructure.

• Infrastructure to Infrastructure (I2I) communication, such as the communication
between the BSs to share the resources in the shared coverage area or the commu-
nication between the BS and the Fog to update the topology information.

Figure 3.1: The Structure in Different Scenarios

3.1.1.1 WiFi Scenario

In this scenario, RSUs are distributed over the entire area to cover the map equally to
communicate with the vehicles, whether receiving data or sending routing commands.

Communication with BS units uses the WIFI method by communicating with the RSUs
reaching the BSs. Using a WIFI wireless network is good if the system can not deal
with the expensive or unprepared type of advanced wireless network. This scenario has
several characteristics, such as simplicity, and it distributes offloading mechanisms that
are supportive because of SDN architecture. The WIFI system works as an alternative
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to the 4G system. Thus, it maintains service levels when the advanced network service
is interrupted.

3.1.1.2 4G Scenario

The significant feature of 4G is short-range wireless communications that support the
novelty of V2I and I2I communications. Considering the IoV requirement of using intel-
ligence, we used 4G to establish communication directly between the vehicle and BSs.
Also, we used 4G to communicate between BSs and Fog.

4G is suitable and reliable to be used type for IoV communications through a distributed
node. In addition, its solution enhances vehicular network communication delays and
overhead by reducing the need for multi-hop routing. Preliminary simulation results show
that it provides short setup times and improves vehicular communication by reducing
delays.

3.1.2 Network Layers

The system layers are shown in Figure 3.2 which includes data and control planes.
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Figure 3.2: Network Structure Layers.

3.1.2.1 Data Layer

This layer involves the vehicles and the Road Side Units (RSUs) in which the data is being
transmitted throughout the logical area. The primary use of this layer is collecting the
data and re-sending it to the control layer. First, each vehicle will have a trip that includes
initial and final positions. It is responsible for localization, planning the route based on
the instructions from the upper layer, and managing the driving mode to accelerate,
decelerate, or park. Second, RSU will maintain network coverage, so vehicles can send
their data to the closest RSU. Also, RSUs combine GPS and sensors to determine their
locations recorded as data. Thus, depending on traffic rules and given map data, vehicles
determine the allowed speed in the current location. Moreover, based on the collected
data, vehicles choose the driving mode and the functions that are used for driving. The
vehicle and the RSU communication is called Vehicle to RSU (V2R) and is done using
WIFI wireless networks.
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3.1.2.2 Control Layer

Control Layer is divided into two different levels:

• Aggregation:
This level involves the duty of the BS. It collects data from the RSUs in the WIFI
scenario or collects data from vehicles in the 4G scenario. After collection, primary
processing is done on the collected data at this level. It aggregates the data based
on geographical area positions to avoid traffic. Therefore, it helps to reduce the
Fog processing load, as the work is divided between Fog and the BS units [21].
Moreover, BS is responsible for monitoring the number of occupied resource blocks
at the current coverage area to virtualize the unoccupied resources to the adjacent
BS.

• Forecasting and Control:
The Fog’s main duty is completing the work done by the BS in the previous level to
collect the data of the intersecting areas between them. Then, it analyzes the data
and extracts the places of expected congestion. After that, it makes automated
decisions about the traffic congestion [21]. Next, it determines a set of commands
to the units at specific area, which are the decision for cars to redirect them and
changing their associate speeds. Then, Fog sends these commands to the BS units.
Finally, BSs recognize vehicle location and send instructions to the RSUs respon-
sible for the commands in a WIFI scenario or they command vehicles directly in
the 4G scenario. The Fog contributes by distributing the load and decreasing the
overhead of large services. Thus, the work is done through regular direct guidance
for all vehicles to alternative or leading routes.

3.1.2.3 Cloud Layer

This layer first performs the process of saving data in public databases used in the
final analysis of the system. It is responsible for building global network connectivity
by aggregating information received from the lower layers. Hence, it tracks work and
analyzes its performance. This layer also works on available application services that
provide many services to the Fog through API applications that help in many tasks.
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Figure 3.3: Messaging Stages

3.1.3 Messaging

Messaging identifies the nodes to each other and designs the communication between data
and control levels. It also adds or replaces any unit easily to avoid any error as each layer
is working separately. Also, it provides information about traffic jams based on vehicle
location to avoid accidents and long trip time. Thus, vehicles can change routes and
speeds when they are provided almost real-time information [21, 66]. The work between
units goes in the following messaging stages as shown in Figure 3.3:

1. Definition Stage:
It is the first gate when anyone enters the system. At first, it starts with the
highest unit, which is the Fog. It sends an introduction message that includes its
data, which is Information (Info). Upon reception, all BS units respond to it with
Info messages that have their data, such as ID and position after registering the
data of the Fog unit. When the Fog receives these messages, it records the BSs
data. At the same time, the RSUs get an Info message, so they select and register
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with the nearest BS unit and send an Info message to it. The BS receives this
message and records the data of its RSUs and in this stage, the system nodes have
known each other, communicated, and registered. When registering a new unit
of any kind, it sends an Info message, then the infrastructure units record it, and
this process occurs when the system starts, stops, or restarts. Thus, this stage is
repeated periodically when there is a new added node.

The introduction between vehicles and RSUs is a systematic process where the
vehicle sends message Info at a fixed time. When received for the first time by the
RSU, it replies to the message, clarifies its data, and records it. In addition, when
the vehicle gets the message that bears the same Info message number, it will be
with the same RSU; otherwise, it will find the closest RSU.

2. Data Stage:
After the vehicle receives the message from the RSU, it records it. Then, after the
specified period for sending, the vehicle sends data (Car-data) to the last associate
RSU, which includes its data such as its ID, speed, location, destination, a group
of upcoming route points. Next, the RSU resends this data to the BS unit without
any delay or modification in the message. After that, when the BS receives the
message, it adds the data within a real-timing table which includes all of its vehicles’
data. Then after a specified period, it analyzes the data and collects it in packets
that include the specific area of this BS. In other words, it calculates the vehicle
speed that depends on permissible street speed, and it collects the vehicles and
their directions in the local area numbers. Finally, it resends it to the Fog unit to
extract the congestion data in the future following routes in chronological order.

3. Command Stage:
The Fog receives vehicle messages from BSs after each BS collects data from all
units in one table, processes, and assembles in the form of packets. The Fog records
them in another table. Then, it analyzes and makes decisions as a message with the
area number. The decision message (order) is to request the rerouting or change
the speeds. After that, the outcome is either to direct the vehicles to alternative
routes or to to direct them to change their speeds based on the specified percentage
of vehicles of the maximum occupancy vehicle number within the range. Finally,
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with the RSU or the BS from these areas, they direct orders to vehicles.

4. Preservation and Evaluation Stage:
After the Fog sends operating commands to the units, it sends all the packets with
the decisions specified to the cloud, where it saves them. In addition to the per-
formance analysis data that the Fog creates to the cloud on a regular and separate
basis, the Fog’s decisions can be evaluated and modified for future forecasting.

3.1.4 Used Algorithm for Vehicles Directions Management

In cities, traffic jams are widespread. In this thesis, we have used a routing technique
to avoid extensive traffic. This technique is used to reroute the vehicles that are not yet
reached the crowded points of the route but coming toward the points. This algorithm
addresses this issue to enhance the delay of vehicles’ trips.

When a new vehicle joins the current road based on its route, and the following points are
crowded, Simulation of Urban Mobility (SUMO) gives shortest alternative routes from
the map that reach the same destination point. It has characteristics of the environment
and its topology. Additionally, it can provide different routes for a specific destination
and help Fog with a table of routes based on positions and destinations. On the other
hand, Vehicles in Network Simulation (Veins) measures the costs of the roads based on
the shortest path to the following route points that have lower traveling times. Then,
the upcoming steps are rerouted to the alternative routes that have lower costs [57, 58].

Algorithm 1 will be done periodically, and it shows the procedure as steps to avoid
extensive traffic in a vehicular environment. Thus, this algorithm observes the most
basic information about traffic on any road in order to calculate different parameters
such as threshold (the distance of the coverage area after calculating the spacing between
lanes) and vehicles’ occupancy (vehicles’ number limit that can locate in the current area)
as shown in equation 3.1. The processes in lines 1-10 are to set the traffic parameters.
In 11-21 lines, we measure the density and rerouting technique to avoid extensive traffic.
Finally, in the last line, the system refreshes the number of vehicles and the threshold
periodically to monitor the density of vehicles in real-time.
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Algorithm 1 Vehicles Directions Management
Input : Position, Speed, Destination, Next route points
Output: Changing speeds, Changing next route points

1 Fog stores routes file from SUMO that includes routes and alternative routes of
each position based on source and destination

2 Vehicles send the inputs, and their identification to count them

3 RSUs and BSs resend the data to the Fog

4 Fog receives the inputs of each vehicle that are associated with different RSUs

5 Group vehicles that have identical following points of routes

6 Obtain the dimension of each vehicle and calculate the average size of vehicles

7 Compare the vehicles’ average size with coverage area distance based on the
position to set the threshold

8 Set the vehicles’ occupancy limit of the coverage area

vehicles′occupancy =
Threshold

vehiclesAverageSize
(3.1)

9 Get vehicles’ occupancy and divide it by 3 to get the maximum number of
vehicles allowed in the current distance

10 Locate the points of traffic that could have a larger number of vehicles than the
occupancy limit of the area
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while The following route points are in the area that has higher number of vehicles
than vehicles’ occupancy limit do

11 Calculate the difference between the vehicle’s number and the vehicles’ occupancy
limit.

12 if difference <30% then
Change the fourth of vehicles’ speed

if difference is between 30% and 60% then
13 Veins will calculate the eligibility to access the alternative route by setting the

cost based on travel time of each route and the shortest path

14 Eliminate the alternative routes by choosing the lowest route cost

15 The infrastructure chooses the next route

16 Direct the half of the vehicles to the alternative route

if difference >60% then
17 Do from 13-15

18 Direct the two thirds of the vehicles to the alternative route

19 Updated vehicles’ routes table

20 Add the vehicles to the alternative position

21 Update the threshold and the occupancy

Figure 3.4 shows the the flowchart of Algorithm 1.
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Figure 3.4: Vehicles Directions Algorithm
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3.2 Deep Neural Network (DNN)

The best methods for the development of electric vehicles services and applications have
not existed yet. Nowadays, 5G and WAVE only have solved part of the whole set of
requirements for vehicular environments. The motivation to solve them will have come
when these networks start to be extensively used in everyday life, particularly IoV. Ve-
hicular networks have reached a point where the cloud paradigm can no longer ensure low
latency, especially when the distance between nodes is too high. In that context, where
network infrastructure has become more complicated, machine learning and DNN can
be helpful as a process to deal with environmental forces by finding the right strategy
to improve the whole system performance, such as traffic delivery in real-time aware-
ness. Recent works have intended to use SDN to address some challenges of vehicular
networks. For example, environment data and actions can be stored to save more lives
by predicting traffic congestion to avoid accidents. AI can be used for many reasons in
vehicular environments ranging from network structure to driver benefits. For example,
some systems have used large data services, so it is necessary to distribute the computing
throughout the network nodes. Thus, DNN is used as the best method today to offload
the computational services to protect the lower network layer from slow responses and
poor QoS [66, 28].

Deep neural networks are ML algorithms developed to make decisions according to learned
actions. DNN-based on the Vehicle-to-Everything (V2X) system gathered the input in-
formation from many sources, such as vehicles. DNN system increased the realization and
forecasting deeply to avoid traffic. This improvement has the opportunity to understand
smart driving from a large number of states and avoid human mistakes to bring safety
to drivers [8].

In this work, we have focused on building an autonomous AI-enabled algorithm that can
understand the system’s state and appropriately transfer vehicles requests data with the
ultimate goal of improving the Quality of Service (QOS).

In particular, we are interested in developing DNN based on enhanced Reinforcement
Learning (RL), which is DRL.
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3.2.1 Deep Reinforcement Learning (DRL)

RL is a machine learning technique used to recognize the dynamics of an environment.
Thus, learning an optimal policy concerning one or more performance indexes. RL is
the only feasible solution to correctly train a system in many contexts, especially if it
is impossible to work with labeled data in a stochastic environment. The learning is
through a trial and error process, so it is almost like the human learning one that makes
the best choice to solve decision-making problems. Therefore, RL uses a basic model,
which is the MDP formalism, to model the decision-making. It includes [55]:

• State: s is the state that defines the current situation (e.g., the point of the traffic
in the street).

• Action: a is the choice that the car makes at the current time step (e.g., it can
change the speed or find an alternative route throughout the street, etc.).

• Probability transition matrix

• Reward function: R(s) s:→R

(e.g., It is the outcome of these actions. If the BS can direct the car to an alternative
route that reaches the destination faster, we can call it a positive reward. While
getting stuck in the chosen route will be called a negative reward)

• Discount factor: γ ∈ [0,1], which defines the importance of future rewards.

The objective of RL is to find an optimal policy that maximizes the reward while perform-
ing actions in the environment. The policy will be the thought process behind picking
actions. In other words, it is a probability distribution assigned to the set of actions.
For example, highly rewarding actions will have a high probability and vice versa. Thus,
the agent will repeatedly traverse the environment states and change the system policy
to maximize the reward. When the probability transition matrix is unknown, The RL
approach is Q-learning. It is a model-free technique that learns the relationship between
actions in a given state and their associated rewards by updating a Q-value to have the
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optimal reward in the state.

New Q(s, a)︸ ︷︷ ︸
New

Q-Value

= Q(s, a)︸ ︷︷ ︸
Current
Q-Value

+α
[
R(s, a)︸ ︷︷ ︸
Reward

+γ

Maximum predicted reward, given
new state and all possible actions︷ ︸︸ ︷

maxQ′(s′, a′)−Q(s, a)
]

Learning
rate

Discount
rate

Where α is the learning rate, and γ is the discount factor. In our situation, the number
of states describing an environment is too large, and it is not likely to use traditional
methods like RL alone and its corresponding MDP. Therefore, DRL is the best solution
to this problem instead of using a traditional method, especially in a stochastic vehicular
environment. It is used as a useful tool to improve the learning rate for RL algorithms.
Furthermore, the obtained experiences will be saved and used to train the neural network
throughout the real-time learning process. The latter will support the agent in making
optimal decisions in real-time. Thus, the neural network in the DRL will be trained, and
we will have new experiences obtained through real-time interactions with surrounding
environments [29, 77].

3.2.1.1 DRL and Problem Formulation

DRL is an advanced model of the RL technique introduced by DeepMind [49]. DL over
RL is used as a powerful tool to increase the learning rate for RL algorithms. This work
tends to use the DRL approach to form an optimal migration policy to improve user QoS.

DRL will be used to predict the Q-values of a state. The idea behind this is to provide
the main and target DNN, so the main will predict Q-values associated with states and
the target will be used to produce the target Q-values needed to train the Main one.
Hence, the obtained result will be more stable, which is not affected by learning loops
because of the self updated network targets that can lead to oscillations [28].
The gathered data inputs starting from vehicles; then, RSUs and BSs, are clarified below.

1. Position.
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2. Speed.

3. Destination.

4. The following route points.

Then, the data will be forwarded to RSUs and BSs that can be used as grouped infor-
mation based on associate coverage areas such as the number of cars.

The system can understand the environment from the knowledge of system parameters.
Then, it can learn a complex policy that is very difficult to deploy by using heuristic
methods.
The output is the direct vehicle commands to avoid extensive traffic, e.g., change direc-
tions and speeds, including brake and park. However, the system behaves like a black
box because realizing the motion is complicated, it needs to follow all the driving duties
[65].
In parallel, BS will learn to predict the following points of the path based on the streets
states of the associated areas.

Figure 3.5: Infrastructure of Learning
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Figure 3.5 shows the interaction with the environment in multiple looped steps.

1. The system checks the initial observation s.

2. The infrastructure will take decisions based on this observation for action a for all
vehicles of the associate geographical area.

3. The data plane performs the data transmission.

4. The information is exchanged between edge nodes to cover the topology and predict
the following vehicle’s movement.

5. Rewards evaluate the actions.

6. Having new observations from new environmental situations is the last part of each
step, and it is the basis for the next step.

The learning includes two phases. The first phase is the training phase for a particular
area that includes the number of states. The second phase is the operational phase when
the training is completed but still has the ability for minor optimization [52, 29].

The path selection is constructed based on the Djikstra algorithm. It is computed by
specifying the shortest path between the position of the vehicle and its destination. More-
over, the routing path is not stable, so the system has measured the costs of the roads
based on the threshold and the maximum vehicles number limit to guarantee a smooth
trip that reaches the destination at a lower trip time. Then, the upcoming steps are
rerouted to the alternative routes that have lower costs. As a result, the direction, cur-
rent area, and velocity are affected to have lower traveling times. In DRL, the path
selection as actions will be determined and offloaded between BSs and the Fog.

Table 3.1 and Table 3.2 show how we offloaded the processing and decision-making to
avoid waiting for the response for the decision from the Fog controller. The Fog will be
responsible for decisions of a more significant area level controlled by the number of BSs.
Hence, applying the DNN on the BSs can reduce the effort to process collected data and
assist in decision-making to accomplish lower latency.
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Data collections Processing Decisions making
Vehicles 3

RSUs 3

BSs 3 3

Fog 3 3 3

Table 3.1: The Functions before Applying DNN

Data collections Processing Decisions making
Vehicles 3

RSUs 3

BSs 3 3 3

Fog 3 3 3

Table 3.2: The Functions after Applying DNN

The outcome of our system is a reduced amount of delivered data to the controller layer
of the infrastructure because it will offload the type of data that needs to be delivered.
For example, the BS will take all the gathered data from the data layer as the initial
perspective in the first stage. Then, after learning, it will have efficient features instead of
just having initial perspective information. In other words, the system will consume the
channel efficiently, and it will process and decide the actions in lower latency by making
the decision by the BS instead of waiting for the Fog. As a result, we will have data
offloading of decision-making between Fog and BSs by using DRL. Moreover, reducing
computing service delay and service failure penalty.
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3.2.1.2 The used Algorithms in DNN

Algorithm 2 DRL

1 initialize the environment’s experience

2 initialize the main DNN network in random weights

3 set the target DNN network equal to the main one

4 set the discount factor

5 set the batch size

6 set update step K

7 set the exploration rate ε

8 for episode = 1 to end do
9 observe the current state si

10 p = random([0, 1])

11 if ε > p : then
action = random([a1, aZ ])

else
action = argmax(Q(si, θ))

end
12 execute the action

13 observe the new state si+1

14 observe the reward r

15 store the t-uple (si, action, si+1, r) in experience

16 sample a batch from the experience

17 y = Q(si, θ)

18 ytarget = Q(si + 1, θ)

19 yaction = r + γ.max(ytarget)

20 execute one training step on the main DNN network

21 every K steps set θ = θ

end

Algorithm 2 shows deep reinforcement learning procedures. Line 1 is for setting up the
initial experience. It plays a vital role as it stores all the necessary information for the
DNN training. First, the neural network weights are set to the same values in lines 2-3.



28

then other DNN parameters are set in lines 4-7. At each for-loop iteration, the node
observes the current state. Then, it selects the action depending on the exploration rate
that establishes if it has to be chosen randomly from the action set to direct vehicles. On
the other hand, it can be returned by the main DNN. Then, it observes the new state of
the environment and the correspondent reward, as shown in lines 13,14. After that, the
algorithm stores the new experience. In 17-20 lines, the main Q network will predict the
Q-values for the given state si. Then, prediction and Q-value evaluation stages set the
target DNN network using the Bellman update formula. Still, only the Q-value related
to the action sampled from the batch will be updated. Finally, in line 20, train the main
DNN network by executing one training step on the cost function, and if K steps are
completed, the target DNN network weights will be set equal to the main DNN network
ones [28, 29]. Figure 3.6 shows the the flowchart of Algorithm 2.
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Figure 3.6: DRL Algorithm
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Algorithm 3 Vehicles Directions Managements by using NN
Input : Position, Speed, Destination, Next route points
Output: Changing speeds, Changing next route points

1 The vehicles send the inputs with their identifications.

2 RSUs resend the data to the BSs.

3 BSs save a copy before sending the data to the Fog.

4 BSs insert the data in the vehicles’ routes table.

5 BSs put the next move as the target field based on the vehicles’ information inputs.

6 Add the inputs in the process folder as a text file for processing.

7 Python code will work when it receives the updates as a text file and uses them as DRL input.

8 Get what has been done in Algorithm 1 from 10 to 21 to direct vehicles as actions

9 Do DRL Algorithm

10 if the experience is enough then
The BSs update the data

else
The target has not been determined and get the instructions from the Fog

end

Algorithm 3 is a looped algorithm that shows traffic management using DRL in clear
stated steps. When the target is enough to update and execute the action by BSs, It
can do the process without waiting for Fog for the routes instructions. The Python code
will work in parallel with C++, and the updates between them are periodically updated
using the text file.
The following flowchart shows the steps of Algorithm 3.
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Figure 3.7: Vehicles Directions Managements Algorithm by using NN

3.3 Delay-Tolerant Networking (DTN)

Data transmission failures in vehicular networks could occur due to low signal qual-
ity. DTN protocol improves the QoS during the continuous disconnection of a network
(e.g., [30, 16, 18, 61, 19]). It gives an opportunity of saving the environmental information
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while minimizing the end-to-end delay.

On the other hand, an urban environment usually has a lack of connectivity because
of dynamic mobility and interruptions. The stochastic environment can be considered
a delay/disruption tolerant network type. Moreover, the DTN protocol will show high
reliability because of its data storage and transmission ability throughout the nodes.
Because of communication disconnection cases, data should be forwarded to another
data holder using the “store-carry-forward” mechanism. Thus, instead of dropping the
data, the data can be held and transferred in a limited time [45, 56].

In DTN, we need to choose the data holder based on some parameters. First of all, the
node will determine the data holder in its range that has most same following routes
point and speed. Moreover, it will prefer the closest vehicle that has available buffer
space. Thus, the main aim of this protocol is to improve transmission efficiency and help
preserve the most data of the environment to benefit the applied DNN in our system.

3.3.1 Network Structure

• Vehicles: Choosing a new data holder will be done as long as there is a disconnec-
tion with RSU. All the vehicles’ movements are random, so when nodes encounter
each other in the communication range, they can get an opportunity for data trans-
fer. However, we will have preferences of choosing the data holder. Hence, each
node keeps a table locally, containing its identification, received messages, following
routes, available buffer space, etc.
If node A faces other nodes, they will exchange their tables to decide whether to
transfer messages or not.

• Transferring and preferences of choosing the data holder: The selection depends on
the available closest vehicle with enough buffer space.

• Storage: This protocol manages the buffer space by prioritizing the currently avail-
able messages to be preserved or deleted according to the protocol priorities. When
the chosen data holder receives the message, the current vehicle will remove it from
the buffer. In this case, there is a time restriction to keep this data in the data
holder [56].
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The messages will be deleted only in the following cases:

1. When the messages are transmitted to the chosen data holder, the vehicle, after
receiving acknowledgment, will remove the message from the buffer.

2. If time is up for messages to stay in the buffer, they will be forwarded and deleted.

3. When the buffer is full, it will delete the lowest priority messages to improve the
utilization of network resources.

3.3.2 DTN Scheme

In this section, we present the scheme for the DTN protocol procedure on the vehicular
network. The road environment that has a disconnection case will have messages that
are coming from vehicles. In this case, the vehicle has a buffer and table with local
information. First, each vehicle sends its information periodically to the closest RSU.
Then, the vehicle will need to send the data for directions instructions; however, if there
is no acknowledgment from RSUs, the vehicle will follow the DTN protocol procedures
as shown in Figure 3.6 and the following steps.

(a) Before disconnection scenario (b) After disconnection scenario

Figure 3.8: DTN Scenarios

In the disconnection scenario first, the vehicle will recognize the disconnection if does not
receive a response from RSUs. Then, the vehicle will calculate the buffer storage ability
to keep the information in the current buffer. Next, if the buffer is not enough, it will
forward the existing data to the closest preferred vehicles because of some parameters
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such as closest node, same following route points, and available buffer storage for its
current data.
Also, DTN protocol is a store-carry-forward, so once the bundles are forwarded and
acknowledged by vehicle X, the sender will remove the data and change it to be a mobile
node that could provide and receive data. Finally, the protocol will compare the free
buffer space with the new message size, and it will keep it as long as it is fitting; otherwise,
it will forward it to the closest node.

The following flowchart shows the steps of the DTN protocol in our system.

Figure 3.9: DTN Protocol
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Chapter 4: Simulation Framework

In recent years with the advancement of technology, the Intelligent Transport System
(ITS) enhances VANET to study the implementation of safety on roads. However, the
high mobility and often high speed travel of large-scale scenarios will lead to several main
disadvantages: deploying, performing, and testing VANET projects in a real-world envi-
ronment because it can be risky, limiting, and time-consuming, particularly during tests.
Therefore, simulation is the only possible solution to test our improvement idea. Sim-
ulation of VANETs networks, in particular, needs two different components: a network
simulator and a trac (or mobility) simulator [63, 14].
• Mobility Simulator: to analyze performances and vehicular ad hoc network characteris-
tics, trac simulators are needed to generate movement information and position of every
single vehicle in VANETs environment.
• Network Simulator: to form and analyze the functionality of VANETs, a network sim-
ulator is needed to exchange messages between vehicles and support protocols. A proper
network simulator has to hold some features of routing protocols and communication
standards, such as IEEE 802.11p.
Figure 4.1 shows different available simulator tools.
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Figure 4.1: Simulation Tools.

In this work, we’ve chosen two open-source tools to recreate the scenarios: SUMO, a vi-
sualizing the road by trac simulator, and OMNeT++, a free vehicular network simulator.

4.1 Simulation Tools

4.1.1 OMNeT++

OMNeT++ is a simulator with a component-based C++ simulation library and frame-
work. It has generic architecture, and it can model many diverse problems:
• Wired and wireless communication networks.
• Protocol.
• Queuing networks.
• Multiprocessors and other distributed hardware systems.
• Hardware architectures.
• Assessing the performance of software systems.
• Event approach, and mapped into entities communicating by exchanging messages.
It is an excellent and powerful tool in the simulation and research field because of its
flexibility. Another key strength is providing feasible architecture by combining several
of them to implement different algorithms to create complex models.
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OMNET++ is a Discrete Event Simulation (DES) framework. Therefore, the situation
change events occur only at a discrete time, taking zero time to execute entirely. All the
structures introduced so far are clarified in NEtwork Description (NED) language. NED
allows declaring the network topology and its connection. Another important file for the
configuration is omnetpp.ini, which has the parameters needed to start the simulation
[65]. I have used OMNET++ as the simulation software “Framework” to simulate all
the scenarios that will be talking about in the following section, inside OMNET++ [73],
I have used the following libraries to achieve my results in the desired way as listed as
follows:

4.1.1.1 SimuLTE

SimuLTE for OMNeT++ can be applied to interpret and evaluate the performance of
LTE and LTE Advanced networks. It is an open-source project developed by researchers
to assess the network environments and allows extension with new algorithms and pro-
tocols. SimuLTE should be installed on top of OMNET++ and INET Framework. It is
a specific framework made to simulate 4G in some of the scenarios to check the vehicular
behavior [65].

4.1.1.2 INET Framework

OMNET++ has external extensions that we can use to design and simulate the wireless
network, such as INET Framework. The INET Framework is an open-source model
that can be installed on top of OMNET++. In addition, this framework is used to
simulate wired and mobile networks. It contains IPv4, IPv6, TCP, SCTP, UDP protocols
implementations. Furthermore, the INET framework also uses for the communication
between the network layer and application layer [14].

4.1.2 SUMO

Simulation of Urban MObility (SUMO) is an open-source, trac simulator mainly formed
in 2001 by the Institute of Transportation Systems (ITS) employees at the German
Aerospace Center. A trac is a particular type of mobility modeling approach for which
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several parameters determine each single, such as (positioning, velocity, and direction).

It is a time-discrete simulator, and it has an expression about the number of variables
associated with each vehicle and the opportunity to set/retrieve their value at each instant
of the simulation.

Simulations are deterministic, but we can introduce randomness. In addition, the tool
NETEDIT easily allows you to create your map. On the other hand, SUMO can import
an existing urban configuration and edit it if necessary. SUMO is written in C++, and
everything is easily defined by xml, such as net.xml and rou.xml inside. This simulation
environment is provided with a user-friendly GUI interface.

Its primary duty is to be connected with OMNET++ to download the maps needed,
such as "Portland map." So, the vehicles will be tracked for the simulation results [65].

4.1.3 Veins and TraCI

Vehicles in Network Simulation (Veins) is an open-source framework for running vehicular
simulations. It is based on two well-established simulators: OMNeT++ and SUMO. This
library contains a specific extension responsible for communicating the two simulators,
where SUMO acts as a server, and the OMNET++ is the client. Thus, we will have
queries about mobility to update its network topology accordingly. The Trac Control
Interface (TraCI) allows the developers to recover and edit vehicle parameters, such as
changing a particular route because of an event. It’s made for vehicular networks parts
and its connection with infrastructure and mobility, and it’s helpful to simulate the
scenarios in actual behavior [65].
Our system frameworks hierarchy is shown in Figure 4.2.
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Figure 4.2: System Phases

4.1.4 Deep RL Engine

We are using Keras on top of TensorFlow to build complex neural network topologies.
OMNeT++ (C++) and Keras (Python) are integrated by using text files to perform a
mechanism to communicate between them.

4.1.4.1 Keras

It is an open-source library written in Python that runs on top of machine learning
frameworks like TensorFlow. Using Keras lets us build complex neural network topologies
with simply a few lines of code while keeping the power of the neural network. We
created a feedforward fully connected deep neural network composed of n hidden layers
between the input and output layers. The integration between the Python and C++
environments lets them communicate using text files so that the deep RL engine will
wait for the generation of the files from OMNET++. When it receives the data, it will
generate the output as a text file containing the action to execute on the simulator. On
the OMNeT++ side, there is an asynchronous timer that checks periodically for action
availability. When the file is available, the simulator will be able to read the action and
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change the speed or the direction instructions based on the street situation. Also, it will
control the data migration between BSs and Fog controllers from one to another. After
the action execution, the RL agent (BS or Fog) observes the reward obtained. Then, the
performance indexes provided by the OMNeT++ will check if the action performed has
increased it. Finally, the agent will use the reward in this thought as outcomes that help
it to know if the executed action is an appropriate choice in that specific state [28, 29].

4.2 Simulation Setup

This section shows the used environment for simulation and all conditions of the setups
as clarified below.

• 70% of the vehicles in the simulation are fully autonomous "self-driving cars".

• 30% of the simulations’ vehicles are driven by humans "simulated by SUMO".

• There are two primary communication types used in this simulation, 4G and WIFI.

• There are two primary techniques used in this simulation, which are NN, and DTN
protocol for disconnections scenario.

• Simulation is done in a part of Portland map. Figure 4.3 shows the used map from
the OpenStreetMap.

• The system processes will migrate throughout the data and control plane (Vehicles,
RSU, BS and Fog ).

• We distributed the RSUs and BSs equally throughout the map, and by defining
their location and ranges, the nodes can recognize each other.

• We used "randomTrips.py". It is an open-source code used to generate a set of
random trips for a given network structure in a given map in SUMO. It is usually
done by choosing source and destination at random or with an altered distribution.
Thus, each vehicle would have a route with known start and destination points.
The resulting trips will be stored in an XML file.
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• We evaluate the path by analyzing at least the following three-points of the car’s
path instead of the whole path as there will be many changes throughout the street
points. Figure 4.4 is shows the used system process as an example.

• The infrastructure aim is to learn how to predict the following points of the path
based on the state of the streets to avoid heavy traffic at a specific time step.

• In 4G, we are using OFDM that transmit the data over many narrow-band carrier
of 180 KHZ, and the details of communication technologies is shown in Table 4.1.

• Table 4.2 describes the infrastructure settings used in this simulation in detail.

• Table 4.3 clarifies the disconnection’s scenario settings in our system as an experi-
ment to see the effect of DTN protocol.

• Table 4.4 describes the settings of DRL.

Communications Technologies Comparison
Feature WIFI 4G

Channel width 10 MHz Up to 100 MHz
Bit rate 3-54 Mbps Up to 1 Gbps
Range Up to 1 km Up to 30 km

Coverage Intermittent Ubiquitous
V2I support Yes Yes
V2V support Yes No

Table 4.1: The Used Wireless Networks in the System
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Numbers of cars in all scenarios 5000 cars
Numbers of RSUs in all scenarios 64 RSUs
Numbers of BSs in all scenarios 4 BSs

Numbers of Fog controller in all scenarios One Fog
Simulation time 400 S

Interval time update 0.01 second
The total area of the Portland city map 165.27 Km2

The trip Random, and each vehicle has a destination.
The path controlling Changing the route points or update the speed.

Table 4.2: Simulation setup

Figure 4.3: Part of Portland City Map.
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Figure 4.4: System Process Example.

RSU-number Shutdown Time Operation Time

RSU[1] 100 110
RSU[16] 170 180
RSU[19] 350 360
RSU[16] 500 510
RSU[31] 700 710
RSU[42] 810 820

Table 4.3: Disconnection’s Scenarios Settings in WIFI
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Numbers of hidden layers 3
Numbers of neurons 16

Input 5
Output 2

Learning rate 0.001
Activation function ReLU

Update step 30
Batch size 32

Table 4.4: DRL setup
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Chapter 5: Performance Evaluation

The main challenges of our system are low latency and high reliability. The system is
built in a highly structured network that includes SDN. Thus, we will have low latency,
high speed, and throughput to complete the mission even in the least effective scenario,
which is WIFI. Moreover, using DRL will help to reduce the latency compared to a plan
without DRL. Furthermore, we will have high reliability as the throughput increases
using the DTN protocol in disconnection scenarios.

5.1 Performance Results

In this section, we perform a simulation-based evaluation of the proposed system. We
measure the performance effectiveness of the system in different scenarios for autonomous
environment. We present the 4G-NN, which means 4G scenario that uses DNN based on
RL, as the best scenario. The reason is that 4G reduces the need for multi-hop routing.
Preliminary simulation results show that it provides short setup times and improves
vehicular communication by reducing delays. Also, DRL offloads the processing between
BSs and Fog by interacting with the environment, so the system can process and respond
faster. The WIFI scenario remains the least effective one compared with others. However,
after applying SDN infrastructure, the WIFI scenario in all performance metrics will have
good performance as this network infrastructure has different planes, which are data and
control planes.

5.1.1 Results of Continuous Scenarios

In this section, we performed a simulation without any disconnection throughout trip
time.
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5.1.1.1 Latency

By total Latency, we mean the duration time starting from sending car information until
response. In other words, it is the round trip time "RTT," which is the time needed to
let the message travel to the destination and get back again. This time also includes
propagation time, which is reaching the infrastructure, waiting, and processing to get the
instructions for the vehicle.
The following formula calculates the average: LatencyTotal

NumberofCarsAtEachSingleT imeStep

The following figures show the continuous communications scenario that includes the car’s
round time to be responded to get the instructions. The arrows’ green color represents
that there must be communication as long as the nodes want to initiate messages.

(a) Continuous WIFI Communication (b) Continuous 4G communication

Figure 5.1: Continuous Scenarios for Latency Results

The following figures show the system after applying NN. The arrows’ green color repre-
sents that there must be communication as long as the nodes want to initiate messages.
Also, the red color clarifies that it might not migrate throughout all layers to reach the
Fog for the instructions.
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(a) Continuous WIFI Communication (b) Continuous 4G Communication

Figure 5.2: Continuous Scenarios for Latency Results after Applying NN

After simulating to check the differences between different scenarios and the latency
response, I have plotted the following graph to clarify the result:

(a) For car node zero (b) For all cars

Figure 5.3: Latency Results in One and All Cars Scenarios

Figure 5.3 (a) shows the latency of one vehicle in four different scenarios: WIFI, WIFI-
NN, 4G, and 4G-NN. It shows that the latency increases in WIFI scenarios compared with
4G because there is an extra layer of communication in WIFI, which is the communication
between the car and the RSU. However, there is a significant improvement between WIFI
and WIFI-NN because after applying DRL, it will offload the processing between Fog
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and BS. Figure 5.3 (b) shows the average latency throughout the first 100 seconds of the
simulation time.

5.1.1.2 Delay

In communication between vehicles, the delay is considered the difference between the
time that data has arrived at its destination and when the data has been created. The
following figures show the continuous communications scenario of delay, including the
message traveling time from the car to the infrastructure. The arrows’ green color rep-
resents that there must be communication as long as the nodes want to initiate messages.

(a) Continuous WIFI Communication (b) Continuous 4G Communication

Figure 5.4: Continuous Scenarios for Delay Results

The following figures show the system after applying NN. The arrows’ green color demon-
strates that there must be communication as long as the nodes want to initiate messages.
Also, the red color clarifies that it might not migrate throughout all layers to reach the
Fog.
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(a) Continuous WIFI communication (b) Continuous 4G communication

Figure 5.5: Continuous Scenarios for Delay Results after Applying NN

The following graphs clarify the delay response results of different scenarios:

(a) For car node one (b) For all cars

Figure 5.6: Delay Results in One and All Cars Scenarios

In Figure 5.6 (a), the time taken to reach the Fog controller is low. Therefore, we can
consider ultra-low communication time with the upper layer, especially in the NN sce-
nario compared with scenarios without NN. Moreover, 4G has better improvement as the
vehicle reaches the BS faster. In other words, the traveling time will end with BS in the
NN scenario. Figure 5.6 (b) shows the average delay throughout the first 100 seconds of
the simulation time.
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5.1.1.3 Throughput

• Vehicles Throughput
The throughput is the total size of received messages in bit per time in second. In other
words, It is a successful amount of data that has been transmitted.
The throughput of the system is shown in the below figures.

(a) For car node zero (b) For all cars

Figure 5.7: Throughput Results in One and All Cars Scenarios

In Figure 5.7 (a), when the car[0] started to send the data successfully, the throughput
increased gradually, and it reached almost 16000 bits per second as the highest through-
put in the car[0]. The throughput is high in NN scenarios because applying DRL on the
infrastructure such as BS will make the processing and delivering faster, so the car will
have the ability to send more successful bits. Therefore, we can consider high reliability,
especially in the NN scenario compared with scenarios without NN. However, the system
works with the network efficiently because there will be offloading in processing and re-
sponding. Figure 5.7 (b) shows the average throughput throughout the first 200 seconds
of the simulation time.
• Fog Throughput
The Fog’s throughput is the total size of successful transmission of messages in bit per
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time in second. The Figure 5.8 is clarifying the throughput of the Fog in different sce-
narios.

Figure 5.8: Fog Throughput.

In Figure 5.8, the Fog sends messages to identify itself as a node in this architecture at the
beginning of the simulation to have a highly successful transmission. Then, vehicles start
to pass the streets, and the throughput of the Fog is changing. After that, the vehicles
are gradually decreased throughout time, and the fog throughput is reduced depending
on the number of cars.

The throughput of the Fog in the WIFI-NN scenario will be higher than the WIFI scenario
as the bandwidth of WIFI is lower than 4G. On the other hand, The throughput of Fog
in 4G-NN sometimes will be lower than the 4G scenario because the data transfer of 4G,
in general, is high, and it could succeed to have higher throughput than NN one. Also,
in some cases, Fog transmission will be low in the NN scenario as the lower layer nodes
will not deliver massive amounts of data to the upper layers.

5.1.1.4 Duration Trip

It is defined as the difference between the arrival time and start time in different scenarios
of our system.
The following figures show the difference between a scenario without using NN and with
using it.
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Figure 5.9: Duration trip.

Figure 5.9 shows a significant difference between vehicles’ trip times in the scenario of
NN and without it. The reason is that using NN will reduce the trip time as the vehicles
will get responded faster. Thus, BSs can make decisions more quickly than waiting to
have all the data to reach the Fog layer.

5.1.2 Results of Disconnections Scenarios

In this section, we will show the disconnection scenarios without DTN protocol when the
vehicles drop the data immediately. On the other hand, we will clarify the disconnection
scenario by using the DTN protocol that keeps and sends the preserved data when the
communication is retrieved.

In the WIFI Scenario, the disconnection will be between the vehicles and the RSU. In
the 4G scenario, the disconnection will be between the vehicles and the eNB attached to
the BS.

The aim of this protocol is preserving the data as much as possible by managing the
buffers between vehicles.
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5.1.2.1 Latency

The latency or RTT in the disconnection scenario will lose the latency data in the time
steps of disconnection.
The following figures shows the disconnection scenarios in WIFI and 4G.

(a) WIFI (b) 4G

Figure 5.10: Disconnection Scenarios for Latency Results

For example, the below figures show the system of communication disconnection that
happened in vehicles number zero passed under RSU (1) from 100 to 110-time steps
and RSU (16) from 170 to 180-time steps. The simulation also contained the difference
between before applying the DTN protocol and after using it, as shown in Figure 5.11.
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(a) Before Applying DTN protocol (b) After Applying DTN protocol

Figure 5.11: Disconnections Latency Results in Car (0)

We can see the difference in disconnections between the two above figures, “Before ap-
plying DTN protocol and After,” which is clarified in black circles, confirming that DTN
protocol enhanced the communication and made it safer to keep the communication alive
compared with the latency data before applying the DTN. Thus, we can say:
• Disconnection scenario without DTN:
As shown in Figure 5.11 (a), the car drops the data immediately.
• Disconnection scenario with DTN:
As shown in Figure 5.11 (b), it keeps the data and sends the old and new data when the
communication is retrieved.
The benefit of this procedure is that we will preserve much of the environmental data,
which will help the continuity of DNN feeding.

5.1.2.2 Delay

The delay data will be lost in the time steps of disconnection. The following figures show
the disconnection scenario in delay.



55

(a) WIFI (b) 4G

Figure 5.12: Disconnection Scenarios for Delay Results

Figure 5.13 shows the system of communication disconnection that happened in the first
vehicle that passed under RSU (1) from 100 to 110-time steps and RSU (16) from 170 to
180-time steps. The simulation clarifies the difference between before applying the DTN
protocol and after using it, as shown in below figures.

(a) Before Applying DTN protocol (b) After Applying DTN protocol

Figure 5.13: Disconnections Delay Results in Car (0)

The same result can be obtained when applying DTN protocol, which again ensures the
enhancement in keep the data in a place away from connections, and the graphs above
clarify this point. We can see the difference in disconnections between the two figures,
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“Before applying DTN protocol and After,” clarified in black circles.

5.1.2.3 Throughput

The vehicles’ throughput will be high after applying the DTN protocol. However, the
Fog throughput will be almost same because the Fog can communicate with lower nodes
layer such as BS.
• Vehicles’ Throughput
The throughput will be decreased in the disconnection scenarios. For example, Figure
5.14 (a) shows the system of communication disconnection that happened in vehicle
number zero that passed under RSU (1) from 100 to 110-time steps and RSU (16) from
170 to 180-time steps. In addition, Figure 5.14 demonstrates the difference between
before applying the DTN protocol and after using it. Also, in Figure 5.14 (b), We can
see a significant increase in the throughput from 16000 to 35000 bits per second compared
with Figure 5.14 (a).

(a) Before Applying DTN protocol (b) After Applying DTN protocol

Figure 5.14: Disconnections Throughput Results in Car (0)

5.1.2.4 Duration Trip

It is defined as the difference between the arrival time and start time in different scenarios
of our system. In addition, to clarify it, we are showing the difference between a scenario
without using DTN and using it in a disconnection situation.
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Figure 5.15: Duration trip.

Figure 5.15 shows a significant difference between vehicles’ trip times in the scenario of
DTN and scenarios without it. The reason is that using DTN will reduce the trip time in
disconnection situations because instead of losing the data that make the vehicle slower,
we can preserve the data that help to direct the vehicle to its destination faster. In other
words, keeping the vehicles’ data will improve the NN accuracy as we are feeding the
network continuously.

5.2 Mobility Results

5.2.1 Acceleration

The acceleration here is defined as the difference between the current speed and last
speed by the update interval.
= (speed−lastspeed)

updateInterval
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(a) For car node one (b) For all cars

Figure 5.16: Acceleration Results in One and All Cars Scenarios

In Figure 5.16 (a), the vehicle’s movement is stable in all scenarios; however, the NN
could affect the acceleration by increasing it. Figure 5.16 (b) shows the average accel-
eration in all scenarios. We can see the NN is higher than others because the amount
of handled data throughout the upper layer is lower in the NN. As a result, the vehicles
could take the decision faster, and the vehicle’s movement will be stable and fast.

5.2.2 Speed

The speed of vehicles based on traffic will change to avoid the traffic. Hence, the change
depends on path decisions and associate destinations.
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(a) For car node one (b) For all cars

Figure 5.17: Speed Results in One and All Cars Scenarios

In Figure 5.17 (a), We can see the vehicle’s performance in WIFI NN is lower than the
4G because, in WIFI scenarios, we will have more hops as the vehicle communicates with
RSU instead of communicating directly with BS. Figure 5.17 (b) shows the average speed
in all scenarios. Again, we can see the NN is higher than others because the traffic is
reduced. Thus, the speed will be increased.

5.2.3 CO2 Emission

The petrol engine of the car will burn fuel and in doing so produces carbon dioxide (CO2).
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(a) For car node one (b) For all cars

Figure 5.18: CO2 Results in One and All Cars Scenarios

In Figure 5.18, they are almost the same. However, the NN got the highest CO2 emissions
because, in the NN scenario, it could change the route to another street with a traffic
light instead of a highway. Thus, we will have higher CO2 emissions in NN scenarios.
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Chapter 6: Conclusion and Future Work

Ultra-low latency, reliability, and efficient communication in the automotive industry are
essential to ensure a vehicular network’s safety. However, addressing these requirements
is complex and needs efficient orchestration of network functionality at different structure
levels. Thus, in this work, we covered the essential requirements of vehicular networks
by applying integrated technologies. First, we introduced a distributed SDN network
architecture to establish and enforce the infrastructure. Second, we described the applied
suitable intelligence technique in our internet of vehicle, deep reinforcement learning to
improve the processing in lower latency. Finally, we presented the protocol used in the
disconnection scenarios to improve the system’s reliability and to keep the most critical
information of the environment.

This thesis presented these technologies to find alternative routes and avoid traffic in
a high mobility environment. The simulation results have demonstrated that the used
technologies have reduced handling latency with high throughput, especially in the DNN
scenarios. Also, using the DTN protocol has increased the reliability of the system
by preserving the information to keep feeding the neural networks, so this system has
increased DNN accuracy. Moreover, we have presented mobility results such as speed
and acceleration to illustrate how the vehicles are smoothly moving in our system.

Future works will be dedicated to better integrating the algorithm with the OMNeT++
environment by using more realistic traffic data and comparing other proposed solutions
to improve the system performance. Moreover, we could focus more on vehicular resource
management by scheduling them to overcome the ultra-low latency challenges, so we
could improve the system by dealing with algorithms that distribute resources efficiently
between nodes.

The union of these technologies can overcome these requirements. However, in the com-
ing years, 6G will enable a completely ubiquitous network across various devices as it
will support the novelty of Vehicle to Infrastructure (V2X) communications efficiently.
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Moreover, it can exchange the data through vehicle sensors using high-bandwidth and
high-reliability links. Before electric vehicles travel throughout our streets, 6G will im-
prove safety on the road and guarantee traffic efficiency in the vehicular networks to have
ultra-low latency services. Hence, advanced wireless network and using AI in resources
management on top of robust network infrastructure such as SDN will improve the pro-
cessing to have ultra-low latency and reliability requirements in vehicular networks.
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