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Abstract 

Energy-efficient execution of the scientific workflow is a challenging task in cloud computing that demands 
high-performance computing to process growing datasets. Due to the interdependency of tasks in the scientific 
workflow applications, energy-efficient resource allocation is vital for large-scale applications running on 
heterogeneous physical machines. Thus, this paper proposes a Hybrid Heuristic algorithm based Energy-
efficient cloud Computing service (HH-ECO) that offers a significant solution for resource allocation, task 
scheduling, and optimization of scientific workflows. To ensure the energy-efficient execution, the HH-ECO 
focuses on executing non-dominant workflow tasks through adaptive mutation and energy-aware migration 
strategy. HH-ECO adopts the Chaotic based Particle Swarm Optimization (C-PSO) principle to optimize the 
resource allocation, task scheduling, and resource migration by generating the global best plans without local 
convergence. C-PSO with adaptive mutation avoids the deterioration of global optima while finding the best 
host to place the virtual machine and ensures an appropriate resource allocation plan. By considering the 
workflow task precedence relationships during C-PSO based task scheduling, the novel hybrid heuristic method 
efficiently solves the multi-objective combinatorial optimization problem without dominance among the 
workflow tasks. The Cloudsim based simulation study delivers superior results compared to the existing 
methods such as the Hybrid Heuristic Workflow Scheduling algorithm (HHWS) and Distributed Dynamic VM 
Management (DDVM). The proposed approach significantly improves the optimal makespan to 38.27% and 
energy conservation to 38.06% compared to the existing methods.  

Keywords: Green Cloud Computing, VM Migration, energy-efficient Resource Optimization, Multi-Objective 
Optimization Problem, Heuristic Algorithm, and Load Category.  

1. Introduction
Cloud computing has enabled rapid on-demand resource provisioning of virtualized resources to fulfil the

growing demand for computing power. The energy efficiency of cloud resources is a vital factor due to the rapid 
growth of cloud data centers that fuel the upsurge of energy requirements, which significantly escalates overall 
operational costs. Cloud data centers allocate virtualized resources to run applications for remote-end users. 
Managing the energy efficiency of cloud computing processes such as resource allocation, task scheduling, and 
resource migration is a vital factor. Energy-efficient resource allocation without violating the SLAs is a 
significant research issue in cloud computing due to the dynamicity, scalability, performance uncertainties, and 
heterogeneous application workloads that demand varying resource requirements [1]. Energy-efficient 
management of virtualized resources has to ensure Quality of Service (QoS) constraints of the end-user while 
improving the energy efficiency of operations such as efficient virtual machine allocation [2], task scheduling 

This is a peer-reviewed, accepted author manuscript of the following article: Al-Mahruqi, A. A. H., Morison, G., Stewart, 
B. G., & Athinarayanan, V. (2021). Hybrid heuristic algorithm for better energy optimization and resource utilization in 
cloud computing. Wireless Personal Communications. https://doi.org/10.1007/s11277-020-08001-x

mailto:alialmahruqi@nu.edu.om


  2 

 

[3, 4], and resource migration. Maintaining the trade-off between energy consumption and performance is often 
a challenging task while providing the best possible cloud service to end-users. In the cloud environment, idle 
Physical Machines (PMs) consume a considerable amount of resources, and it consumes more than 70% of its 
peak load power, which have addressed by several cloud implementations that suggest to switch off the idle 
machines to save energy [5]. However, in practice, it is demonstrated that energy consumption is higher when 
rebooting PMs due to the consumption of more time for stabilizing all the applications to work as a fully 
functional server after rebooting. To improve energy efficiency, several researchers have recommended that 
change a physical server into a sleep mode because it takes less time to stabilize all the applications [6] compared 
to the idle state. In contrast, overloaded PMs considerably deteriorate the quality of cloud services and slow 
down the execution speed, mainly due to the over-utilization of the available resources on a particular PM. 
Thus, optimally allocating the virtual resources to PM is crucial, and migrating overloaded Virtual Machines 
(VMs) to the best hosts is essential to optimize the resource utilization significantly [7]. Owing to the dynamic 
nature of the cloud, VMs accept dynamic workload while running applications that demand highly intensive 
computation, and thus, the utilization of the Central Processing Unit (CPU) varies with time.  

A scientific workflow defines a set of interdependent tasks and their dependencies. It significantly changes 
the decision parameter on the resource management objective. Scientific workflows construct complex 
distributed solutions and enforce the effective usage of computational resources. Due to complex scientific 
operations, scientific workflow applications have become data-intensive and computation-intensive. Cloud 
computing is emerging as the widely utilized distributed computing environment that supports the execution of 
complex and large scientific workflow applications. Workflow decomposes the data-intensive and complex 
applications into a set of smaller tasks that are to be executed either in a serial or parallel manner concerning 
the nature of the application. A representation of workflow application is in the form of a Directed Acyclic 
Graph (DAG) that reflects the interdependency among the tasks. In a DAG structure, nodes indicate the 
computational tasks of the workflow application, and directed edges represent the dependencies between the 
tasks. During the execution of scientific workflow application, effective resource utilization is crucial to the 
success of robust problem-solving environments in high-performance computing. The traditional cloud 
computing approaches [8] not considering the dominant characteristics of scientific workflow tasks, which 
intricate the execution of interdependent jobs that demand substantially varying resource requirements. Thus, 
the violations of the assured quality of cloud services to the end-user has significantly increased in the scientific 
workflow. It is essential to focus on the orchestration of the workflow tasks execution on the VMs by 
considering the dominant characteristics. By leveraging these considerations, QoS must be ensured at a 
reasonable cost for the end-users while sustaining the optimal energy consumption of the resources.  

Several research publications have employed the population-based meta-heuristic algorithms [9], such as 
PSO, which provides global solutions for the dynamic and scalable cloud environment. Even though the PSO-
based algorithms provide better solutions without gradient information for combinatorial and multi-objective 
optimization problems, it leads to premature convergence. Improving the convergence rate of the PSO algorithm 
without premature convergence is a challenging task while considering the multiple objectives. Only limited 
research works have focused on exploiting the chaotic sequence with PSO to ensure the global convergence for 
multiple objectives while handling the workflow tasks in the cloud. This paper proposes a unified hybrid 
heuristic methodology, HH-ECO that accomplishes efficient resource management and energy optimization. 
The advantage of HH-ECO methodology is that it adopts the C-PSO, which accelerates the optimization of 
resource allocation, task scheduling, and resource migration by generating global best plans without local 
convergence. The proposed C-PSO algorithm based energy-efficient methodology attempts to tackle the 
dominance issue among the workflow tasks while scheduling and migrating the workflow tasks due to the 
ergodicity and disciplinarian characteristics of the chaotic method. In the HH-ECO approach, an enhanced C-
PSO algorithm with an adaptive mutation solution controls the dominance area of one task to the other tasks 
and avoids the deterioration of global-optimum performance. It ensures the appropriate resource allocation plan 
to reduce the Makespan and ensure a green cloud environment. The HH-ECO approach employs the C-PSO 
algorithm with significant enhancements to optimize energy and non-dominant execution among the workflow 
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tasks during the execution of workflow tasks in the dynamic cloud environment, which addresses the stagnation 
problem. In essence, an enhanced C-PSO algorithm with an adaptive mutation mechanism facilitates in solving 
continuous problems and meets dynamic requests with a rapid convergence rate and less computation effort. 
Additionally, the HH-ECO methodology fine-tunes the scheduling results by globally exploring the cloud 
resources with the help of a self-adaptive global optimization technique of C-PSO with the adaptive mutation.  

The organization of this paper is categorized into nine sections. Section 2 presents related works, and Section 
3 discusses the theme of the problem. The proposed system models and preliminary details are described in 
section 4. Section 5 presents the problem formulation. The proposed methodology has been elaborated in 
Section 6. Section 7 presents the experimental setup and evaluation metrics. Section 8 illustrates the results, and 
section 9 summarizes the main conclusions of the work. 

 
2. Related Work 

Several resource management techniques have been implemented in the virtualized data center framework 
[4], [7], [8]. In cloud computing, the factors such as the heterogeneity of the task, the arrival of dynamic 
workloads over time, and workflow tasks create significant problems in resource allocation, task scheduling, 
and VM migration. This section provides a brief survey of several energy-efficient [10] resource management 
techniques with their advantages and limitations. The detailed analysis determines the essential characteristics 
of resource management algorithms and discusses various issues and solutions to optimize a single objective, 
bi-objective, and multi-objective [11] functions for green cloud computing. 

 
2.1 Workflow Task Scheduling approaches 

A multi-objective task scheduling algorithm is proposed in [12] and assigns tasks to VMs to improve the 
throughput and reduce the cost in terms of processing time.  The assignment of task priority relies on the QoS 
requirements of the applications. The tasks and VMs are sorted using a non-dominated sorting based on the 
running capacity before task scheduling. This algorithm is suitable for QoS parameters such as execution time 
and cost, but not appropriate for energy efficiency. A meta-heuristic PSO algorithm is exploited to minimize 
the execution cost of the application in [13][14] [15]. However, the earlier standstill of the PSO particles before 
reaching an optimal global value, and the low-level diversification among the particles, creates premature 
convergence when a large number of jobs are running on the cloud. A Hybrid Heuristic Workflow Scheduling 
algorithm (HHWS) in [14] determines the optimal solution for the workflow tasks by combining a PSO 
algorithm and a Gravitation Search Algorithm (GSA). Even though the method provides cost and deadline-
aware workflow scheduling, it fails to ensure the globally optimal solution when applying the GSA on affected 
tasks that may create a negative impact on the k-best particles within the PSO process, and thus, possible to 
allow local convergence. Consequently, it leads to the dominance execution among the workflow tasks while 
focusing on reducing the cost and deadline alone. 

The research work [15] presents a discrete Comprehensive Learning PSO (CLPSO) approach for 
scheduling the workflow tasks based on a Set-based PSO (S-PSO) to address the user-defined QoS constraints. 
However, the meta-heuristic algorithms for workflow applications reduce the speed to reach the global optima. 
EnReal model [16] categorizes the VMs into splittable and non-splittable VMs and effectively utilizes the slack 
time of the workflow tasks. Consequently, it schedules the online scientific workflows in the cloud using 
different energy-efficient dynamic scheduling methods. A Multi-Objective list-based workflow scheduling 
heuristic [17] maintains a trade-off between the Makespan and energy efficiency, which is the extension of 
Heterogeneous Earliest Finish Time (HEFT), named MOHEFT. By applying the empirical models, it predicts 
the execution time and energy consumption for the workflow tasks based on the historical data of the real 
workflow task execution. However, historical execution based workflow scheduling leads to computational 
complexity. The evolutionary Multi-objective Optimization (EMO) model [18] resolves the problem of 
workflow scheduling on Infrastructure as a Service (IaaS) platform. It presents the encoding, population 
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initialization, fitness evaluation, and genetic operators concerning the problem, ensuring higher stability of task-
instance assignments of workflows with the minimized Makespan and cost. Even though it mutates the tasks 
randomly, it lacks to perform the mutation during the execution of the workflow tasks, which leads to ineffective 
results in terms of higher energy consumption for the dynamic cloud environment. A Multi-Objective Genetic 
Algorithm (MOGA) ensures the minimized makespan based on the deadline and budget constraints and the 
improved energy efficiency for workflow scheduling in the cloud by considering the conflicting interest of the 
cloud stakeholders and employing the DVFS. Even though the MOGA model improves resource utilization 
during workflow scheduling in the cloud, it fails to improve the user satisfaction level [19]. A Cost and Energy-
Aware Scheduling (CEAS) algorithm [20] minimizes the energy consumption and execution cost while 
considering the deadline by incorporating sub-algorithms, including VM selection, task merging, VM reuse, 
and the slack time reclamation algorithms. To schedule the workflow applications, the research work [21] 
applies a hybridization of GSA and Heterogeneous Earliest Finish Time (HEFT) to accomplish the bi-objective 
optimization to minimize both the makespan and cost. However, it provides ineffective results for the complex 
tasks that arrived in the cloud environment. Reliability and Energy Efficient Workflow Scheduling (REEWS) 
method [22] maximizes the reliability and minimizes the energy consumption while maintaining the workflow 
dependency and considering the QoS and deadline constraints specified by the users. It achieves the objectives 
by applying four main phases, such as priority computation, task clustering, target time distribution, and cluster 
assignment of the resources based on the voltage or frequency levels. The research work [23] presents an 
energy-efficient, cost-effective, and QoS-aware scheduling model for the workflow applications in the cloud. 
It employs the per-core DVFS method on multi-core heterogeneous processors and considers the effects of input 
error on the execution time of the tasks. A Hybrid algorithm-based scientific workflow scheduling approach 
[24] considers the execution time, load balancing, and monetary costs while scheduling the workflow tasks on 
the cloud computing resources. It applies the preprocessing to prepare the tasks for the scheduling algorithm 
based on the dependencies and employs the PSO algorithm for workflow scheduling. A hybrid meta-heuristic 
algorithm [25] resolves the discrete task-scheduling problem in the distributed computing environment using 
the Hybrid Discrete Particle Swarm Optimization (HDPSO) algorithm. By applying the Hill-Climbing 
algorithm with the local search trend, it balances exploitation and exploration and avoids the sub-optimal trap. 
The energy-aware workflow scheduling approach [26] employs the bat algorithm and presents the Energy-
Aware, Time, and Throughput Optimization heuristic (EATTO) algorithm to minimize the execution time and 
energy consumption of the compute-intensive workflows in the cloud environment. Moreover, it maximizes the 
throughput without compromising the Quality of Service (QoS) while resolving the multi-objective 
optimization problem. A firefly based multi-objective scheduling strategy [27] considers the multiple objectives 
such as makespan, the workload of servers, reliability, and resource utilization in the cloud during the 
scheduling of the workflow tasks. It assigns the workflow tasks to the appropriate VM instances along with the 
balancing of the workloads and utilization, and minimization of the makespan with the reference of the deadline. 
An Improved Many Objective Particle Swarm Optimization (I_MaOPSO) approach [28] addresses the 
workflow-scheduling problem in the cloud considering four objectives, such as cost minimization, energy 
consumption minimization, makespan minimization, and reliability maximization. By applying the four greedy 
heuristic methods, it maintains the equilibrium between the exploitation and exploration during the scheduling 
and tends to the convergence of the non-dominated solutions along with the generation of the high-quality initial 
population, social leader selection, and cognitive leader selection to balance the intensification and 
diversification capabilities of the scheduling algorithm. 

 
2.2 Resource Allocation and Migration approaches 

Resource allocation is a process of allotting VMs to PMs. The user establishes service level agreements with 
the cloud service provider [29] and resource management techniques attempt to ensure the SLA as well as 
reduced energy consumption [30] [31]. Managing the SLA is formulated as a multi-objective combinatorial 
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problem in most of the recent applications [29] [32]. The research work [32] applies an ant colony optimization 
algorithm based VM placement strategy to reduce resource wastage and energy consumption. By applying the 
ACO algorithm, it obtains a Pareto set to resolve the multi-objective constraints. A Distributed Dynamic VM 
Management (DDVM) mechanism in [33] allocates and reactively reallocates the VMs using a First fit heuristic 
algorithm to accomplish the distributed and dynamic adaptation, eliminating the single point failure. However, 
its reactive VM management leads to an unmanageable optimal solution selection process during the arrival of 
numerous similar applications requiring VM management. This method maximizes power consumption due to 
the lack of consideration of the restart time of the inactive server. A dynamic resource allocation technique in 
[34] optimizes the allocated resources in VMs based on user demands. According to the dynamic workload over 
time, this technique adaptively multiplexes the VMs to PMs. However, heterogeneity among PMs and VMs 
encounters allocation issues within the above techniques, since it tends to imbalance a load of PMs. The research 
work [35] optimizes energy efficiency during communication and computation by enabling smart resource 
management for real-time vehicular cloud services. It accomplishes the QoS requirements by distributing the 
intensive computation to the distributed fog computing infrastructures. However, this adaptive resource 
management model fails to focus on reducing energy consumption during VM migration. In these situations, 
the energy-aware resource allocation algorithms presented in [36] and [37] take into account the resource 
utilization and energy consumption. Energy-efficient resource allocation has proposed traditional data centers 
that have distinguishing features such as heterogeneous workload, average load rate, and intensive completion 
time [38]. However, the assumption of allocating heavy load applications to new generation servers and light 
load applications to older generation servers deteriorates the efficiency of load balancing. Most resource 
management techniques exploit heuristic optimization algorithms to solve the energy-efficient placement of 
VMs in a cloud environment [39]. However, only a few of the techniques consider VM migration during running 
time, but these techniques result in significant time overhead. A scheduling method for multi-VM migration in 
the cloud is proposed in [40] to reduce VM migration time, but lack of correlation between migrated VMs 
considerably degrades the performance and increases the time of migration [41]. In essence, the determination 
of VM migration time is a significant challenge in cloud computing services [42]. There is a necessity to 
consider load category (i.e., idle, underloaded, balanced, and overloaded) in attaining better trade-off between 
resource utilization and Makespan without violating the SLAs. An Energy-Efficient Hybrid (EEH) framework 
[43] performs the request scheduling and the server consolidation to improve the efficiency of the electrical 
energy consumption in the datacenter. Initially, it sorts the user requests for the time and power needs to execute 
the tasks before scheduling and determines the underloaded and overloaded servers to migrate the virtual 
machines to the new servers to reduce the energy consumption.  

 
 
3. Problem Theme 

Several techniques have been suggested for cloud computing in terms of better performance and energy 
efficiency, but still, there is a deficiency in maintaining a trade-off between resource utilization and Makespan 
without violating SLAs. Most of the energy-aware resource management techniques consider a trade-off 
between under-utilization and over-utilization of resources as a primary way to produce an energy-optimized 
green cloud environment. However, the dynamic nature of workloads raises different issues and deteriorates 
the performance of the existing resource management techniques. It necessitates the investigation of multi-
objective resource management schemes for the complex scientific workflow tasks. The possible ways to attain 
multi-objective resource management, including the provisioning of the optimal number of PMs for VM 
allocation, migrating under or over-utilized VMs to the best fit servers, switching OFF the un-utilized PMs, and 
providing energy-efficient task scheduling. Firstly, deciding the exact threshold for capacity utilization is 
critical without degrading the performance of the hosts to avoid the violations in maintaining a trade-off between 
the performance level and resource consumption. Secondly, current resource management techniques shut down 
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the VMs of the idle server to save energy. However, additional energy has been consumed to reboot the PMs, 
as discussed previously. The existing techniques allocate CPU and memory resources to workflow tasks based 
on the assumption that the individual best fit solution has no negative impact on another solution, which leads 
to a multi-objective combinatorial optimization problem for multi-interdependent task execution optimization. 
Thirdly, energy-efficient management of resources requires discovering the solution for each task that is non-
dominated by other jobs in the solution space. Contrary to the single heuristic algorithm, hybrid heuristic 
algorithms significantly utilize the properties of different algorithms and achieve complementary advantages to 
solve multi-interdependent task execution optimization in the cloud environment. Thus, this proposed 
methodology attempts to provide energy optimization without violating SLAs using hybrid heuristic 
optimization algorithms.   

 
4. System Model and Preliminaries of Algorithms 

This section provides a system set up for executing the proposed HH-ECO algorithm over the cloud 
environment, including VM allocation, workflow task scheduling, and VM migration. Let, the virtualized cloud 
server consists of a set of m physical computing hosts defined by H= {PM1, PM2,...PMm}. For the ith PM (i = 
1, 2,…,m), the processing Capability (Ci) is defined as the CPU performance in Millions of Instructions Per 
Second (MIPS), which varies for each PM. Let,n be the number of VMswithin any given PMi having different 
capacity, i.e.,PMi = {VM1i, VM2i, ........VMni}. Each VMji has the processing capability Cji that is subject to 
Σn

j=1 (Cji)≤ Ci. There are two states for each PMi, such as active,i.e., APMi, when Ci>15%, and idle, i.e.,IPMi, 
when 5%≤Ci≤15%. These values are decided from previous research work [44] that focuses on server 
performance on a practical high-end server.  
PSO-based Workflow Scheduling: Three main steps involved in the PSO are computing the fitness of every 
particle, computing local and the global best fit, and updating the position and velocity of each particle, which 
are iterated until stopping criteria is met [45]. The PSO heuristic model optimizes the execution of a task-
resource mapping according to its principles. Initially, the heuristic model computes the mapping for all the 
tasks without considering the workflow dependencies to optimize the overall computation cost of the workflow 
application. According to the PSO-based mapping, the scheduling heuristic validates the dependencies between 
the workflow tasks. If the mapped resource is unavailable for a particular task during execution, it recalculates 
the PSO based mappings to support the execution of the workflow tasks dynamically. In subsequence, it repeats 
these scheduling steps until scheduling all the workflow tasks [46]. In the first step, the PSO algorithm randomly 
initializes the position and velocity of the particles. In the context of workflow scheduling, the task-resource 
mapping process is the particles, and the number of workflow tasks is the dimension of the particles. By 
performing the fitness function, the evaluation of each particle has computed. The computational method PSO 
identifies the solution in the region of a given problem. By applying the simple mathematical formula over the 
position and velocity of particles, the PSO moves these particles in the region and identifies the best position.   
CPSO-based Workflow Scheduling: In the PSO algorithm, random sequence helps simulate the analysis, 
sampling, and decision making, which reduces the computation time. The random sequence is appropriate for 
one set of tasks, but not enough for another set of tasks. The chaos is a random sequence with regularity, which 
speeds up the generation of chaotic sequence. Compared to the PSO algorithm, CPSO [47] improves the global 
convergence and ensures the global best solution in which chaotic system based generated sequences are 
substituted for the random sequence of the PSO. In the scheduling model, the CPSO exploits the chaotic 
sequence for initialization and updation, which is different from the PSO algorithm. With the incorporation of 
the chaotic sequences, the CPSO algorithm [48] determines a better scheduling plan and attains minimum time 
and cost than the PSO algorithm.  

By using the Chaotic based Particle Swarm Optimization (C-PSO) algorithm, it is possible to carry out an 
optimal allocation of VMs on PMs using Ci during the idle state ‘s,’ where no load is assigned. The value of Ci 
in terms of MIPS can be varied under different VM load conditions. The scientific workflow application is 
represented as a directed Acyclic Graph (DAG) model G= {T, ET } [36][49] in Figure 1, where T defines a set 



  7 

 

of tasks, and the processes in the execution order are named as tasks, and ET refers to a set of dependencies 
between tasks ∈ T of an application. Figure 1 describes a set of processes with the following notations(V, W, X, 
Y, Z). 

 
 

 

 

 

 

 

Figure1: Example Workflow of Tasks 

An edge is defined as a set of dependencies between Tasks [36]. In Figure 1, the dependencies are in the 
form of edges ET = ((Tv)1

, (Tx, Tw)2, (Ty)3, (Tz)4), ∈ T  in which the superscripts denote the level of task processing. 
For instance, the succeeding tasks Tx and Tw depend on data generated by the preceding task (Tv) for its 
execution, and so they are executed in parallel after completing the task V. TaskTv is in the first level of task 
processing, and after completing the Tv, the second level of tasks (Tx, Tw)2 can be executed. Moreover, the exit 
task Tzcannot start before the completion of Tw and Ty. In other words, the task Tz depends on the data generated 
by the preceding tasks with the same priority (TwandTy) for its execution. For a given task, Tv, the parameters 
are denoted as Tv = {ATv, TSv, DLv}, where ATv, TSv, and DLv indicates the arrival time, task size, and a deadline 
of task Tv, respectively. Makespan is the execution time of an initial task along with its succeeding tasks, 
whereas the execution cost is the time expense of allocated VM for a task completed. The Makespan defines 
the completion time of tasks from Tv to Tz. To minimize the Makespan and execution cost, C-PSO takes the 
workflow task precedence relationship to provide adaptive task mutation. For this task, the workflow task 
precedence relationship, such as a set of Preceding Tasks and Succeeding Tasks of Tv is denoted as {PT}Tvand 
{ST}Tv, respectively. According to the disequilibrium state of resource utilization, C-PSO categorizes the active 
PM into Over Loaded (PMOL), Under Loaded (PMUL), and Balanced (PMBL) [44] conditions. C-PSO takes the 
PMOLand PMULas input and determines the best suitable destination PMILto execute the migrated tasks 
efficiently. The idle server utilization ranges between 5% to 15%, which is denoted as (PMIS). The parameters 
below are introduced after stressing a high-end server in each category [44] in an ESXi 8.5 Hypervisor setup 
on PMs. The PM was consolidated with 17 VMs, and the test was conducted by sending the load to the VMs 
with results retrieved and recorded. The parameters may change slightly due to the nature of the load being 
considered and tested in a physical server. However, based on the behaviour of the server in terms of 
performance, these “fixed” values were considered in this paper for each category. 

 
 

Load category= 

{
 
 

 
 
PMOL(i)                       if  Ci ≥ 75%           

PMUL(i)                       if  15% ≤ Ci ≤ 40%

PMBL(i)                        if  41% ≤ Ci ≤ 60%

PMIS(i)                             if  5% ≤ Ci ≤ 15%

(1) 

 
5. Problem Formulation 

This section provides the fundamental issues in cloud computing processes and explains how the 
performance of HH-ECO is high, through a small example. Let the Cloud (CL) consists of PM, VM, Tasks. 

W 

Z 
V 

Y X 
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The VM resources need to be allocated within each PM to execute the tasks. Each PM is modelled using its 
Makespan (MS), SLA violations, and Degree of Disparity (DD). DD defines the unevenness of workload among 
all the allocated hosts in which the minimum DD represents the situation when the system is balanced. 
Definition: Given CL, HH-ECO aims to provide energy-efficient cloud computing processes such as resource 
allocation, task scheduling, and migration. These processes must return a considerable execution time, without 
violating the SLAs. However, CL includes heterogeneous PMs and VMs, which create both server overloading 
and underloading issues. The energy-efficient cloud computing problem may be considered as a problem space 
𝑃𝑆 in each process, where ‘s’ represents the space. The particles ‘p’ is flown through the solution space, 𝑆𝑆. 
Every individual particle ‘p’ flies through 𝑃𝑆. Instead of providing the best solution to each particle, the best 
possible solution to all the particles without dominance is defined as the global optima. The impact of the best 
solution of a particle over other particles is named as the dominance relationship. The level of dominance 
relationship between two particles leads the time complexity, i.e., the time taken to run the HH-ECO algorithm, 
to either best, average, or worst case. Table 1 illustrates the time complexity of particles over the solution space 
in PSO. In the solution space, there are two different solutions, So1 and So2. Providing the best solution s1𝜖 𝑆𝑆 
for particle ‘i’, pi tends the time complexity of another particle k to the average solution. Selecting the best or 
average solutions for each particle without dominating the solution of other particles reduces the time 
complexity (O). In Table 1, the solutions 1 and 2 are represented as So1 and So2, respectively. The task size 
represents the length of the task, and Waiting Time represents the amount of time a job is in the idle state before 
it is processed. 
 

Table 1: Time Complexity of Particles over Solution Space in PSO 
 

Problem Space Solution So1 Solution So2 

pi Best: O((Task Size/CVM(i))) Average: O((Task 

Size/CVM)+Waiting Time due to 

VM(i) overloading)) 

Pk Average: O((Task Size/CVM(i)) + 

Waiting Time due to VM(i) 

overloading)) 

Worst: O((Task Size/CVM) + 

Migration Time to VM(j) + Waiting 

Time due to VM(j) overloading)) 

 
The SLA violation needs to be ensured with the Degree of Disparity (DD) defined by the equation (2), i.e. 

 
DD = (ETmax − ETmin)/ETavg                                                            (2) 

 
Where, ETmax , ETmin , and ETavg denotes the maximum, minimum, and average task execution time, 

respectively, among all the hosts. DD is mainly due to improper allocation of VMs and tasks in the computing 
phases. DD is primarily due to improper allocation of VMs and tasks in the computing phases. While using 
PSO, local convergence to an inappropriate solution is a primary reason behind the DD problem, since local 
convergence violates the SLA. Local convergence is referred to as the convergence of a particle for satisfying 
SLA before reaching its appropriate solution. To avert local convergence in PSO, the C-PSO method applies 
the process of mutating the particle to another position in SS, which controls the dominance area (i.e., time 
complexity) of one solution to the other and avoids the deterioration of a global optimum. The mutation is the 
process of particle movement towards the global best position in which the movement relies on the particle 
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velocity, previous best position, and inertia weight. Applying C-PSO with a mutation in each phase in CL, it 
permits HH-ECO to provide a time computation efficient solution.  
Resource Allocation and Task Scheduling: The mutation algorithm reduces the total execution time of all 
PMs and reduces the DD value by identifying the global best solution using C-PSO. The optimal C-PSO 
algorithm in HH-ECO derives a solution for each job and allocates the set of VMs in PMi. The examination of 
energy-efficient resource allocation relies on the assumption of evenly distributed tasks among resources. 
Consider an equal load distributed among various PMi. The execution time of tasks decides the total cost of 
PMi and the DD value. The total cost is the summation of the execution time of ‘l’ tasks executed by the PMi, 
i.e. ∑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒task

𝑙
𝑡𝑎𝑠𝑘𝑠=1 . To utilize the advantage of energy-efficient resource allocation, HH-ECO 

deals with the task scheduling pragmatically based on the even distribution of tasks. The task scheduling 
measures the fitness using Makespan and total execution time, where the fitness is defined as the condition of 
being a suitable solution without dominance. Based on the workflow, the tasks are mutated among PMs to 
reduce the waiting time, resulting in energy-efficient task scheduling. 
VM Migration: Due to the lack of knowledge in overall PM capacity utilization, PMi can be overloaded or 
under-loaded at any time. When a PM is in an overloaded state, the VM is migrated using the load category and 
C-PSO. Waking up the PM for migration increases the total cost. The waking-up process is likely to increase 
the responding time of the application in which the waking-up time varies according to the state of the resource, 
such as idle, sleep, or shut down. The decision of VM migration along with the task without considering the 
domination of the succeeding task may affect the MS. There are three cases of VM migration considered. 
Case (i): if the resource is in an idle state, there is no need for a wake-up time because the idle resource is in an 
active state, 
Case (ii): if the resource is in sleep mode, it takes a wake-up time of 300ms to become an active resource, 
Case (iii): if the resource is in shutdown state, it requires a wake-up time of 480ms for the transition [50]. 

Thus, the consumption of wake-up time is idle < sleep < shut down. Also, to decrease the response time, 
applying the pre-wake up policy without sacrificing energy efficiency is necessary. Hence, HH-ECO focuses 
on implementing the pre-wake up policy considering the makespan, computational cost, and energy 
consumption. The following section explains the processes of the HH-ECO in detail. 
 
6. The HH-ECO Methodology 
 

The details of the HH-ECO in different phases are illustrated in Figure 2. The HH-ECO approach focuses 
on enriching three cloud-computing processes, such as VM allocation, task scheduling, and VM migration. In 
the VM allocation phase, each VM has the predefined CPU, memory, storage, IP address, and so on. The goal 
of VM placement is to find the best PM to run the appropriate VMs. The second phase is task scheduling, in 
which hierarchical task scheduling plays a significant role in workflow applications. Scheduling the tasks on 
available VMs, based on the Workflow precedence is essential. Thirdly, in the VM migration phase, the 
overloaded VM must be migrated to idle PMs.  

The HH-ECO approach combines the Chaotic and PSO algorithms and adaptively applies the C-PSO to 
cloud computing processes. As PSO is a meta-heuristic algorithm that searches only the best fit solution in local 
optima, it incurs an earlier standstill of the particles before reaching the global optima due to the low-level 
diversification among particles. This problem is called premature convergence. Thus, the proposed work applies 
a chaotic mapping function to assist the particles in breaking away from the local optima when it reaches the 
premature convergence in each iterative searching process and improves the accuracy of the HH-ECO. To 
prevent the PSO algorithm from being trapped into a premature convergence, it is essential to apply control 
over local exploitation, i.e., taking advantage of previous best solutions, and global exploration, i.e., the heuristic 
search over new regions. PSO performance significantly relies on its parameters, especially the velocity of the 
previous particle. The previous velocity provides the necessary momentum for particles to find the best fit 
solution for the search space. Thus, proper control of the particle velocity is essential to determine the optimum 
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solution accurately and efficiently. To ensure a global convergence, the HH-ECO approach attempts to employ 
the chaotic sequence with high randomness and regularity, which improves the diversity among the solutions. 
Moreover, the adaptive inertia weight factor based proposed model effectively balances the local and global 
exploration to avoid premature convergence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Hybrid Heuristic Based Energy Optimized Task Scheduling and VM Migration of 
Scientific Workflow  

 
The HH-ECO approach attempts to identify the best solution to a particle problem over a region iteratively. 

The inertia weight plays a vital role in controlling the previous velocity of a particle on the movement of particle 
toward the best solution. The C-PSO adaptively controls the inertia weight using the fitness measurement and 
moves it toward the best solution without local optima. In essence, the randomness of the chaotic theory 
improves the PSO algorithm with the chaotic mutation operator. According to the PSO procedure, the CPSO 
algorithm prevents the convergence of the particle position and leads other particles to move away from the 
local optimal solutions within a short period. 
 
6.1 VM Allocation with Adaptive Mutation 
 With the target of ensuring both the performance and energy efficiency, the HH-ECO focuses on allocating 
the VMs to minimize the energy consumption instead of meeting SLAs.The HH-ECO approach implements the 
VM allocation on heterogeneous PMs and VMs. CPU and memory utilization are the most critical components 
since they contribute significantly to the performance of servers [7]. Consider that ‘n’ number of VMs has to 
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be allocated in ‘m’ number of PMs. According to their capacity, the HH-ECO categorizes both the VMs and 
PMs into Small, Medium, and Large types [51] and then allocate the VMs to its appropriate PMs using the C-
PSO algorithm.  
Equation (3-5): The PSO models the simple mathematical formulae using particle velocity, position, and inertia 
weight. Note that, in every iteration, the C-PSO generates ‘k’ solutions, and the best solution is considered as 
GBest among them. The previous positions of all particles in a jth solution of the ith iteration act as PBest for the jth 
solution of the i+1th iteration. The chaotic algorithm applies an inertia weight W to control the impact of the 
previous velocity on the current one and balance between exploitation and exploration in the PSO algorithm. 
Larger inertia weight guides the particles to the global search, while a smaller factor leads particles to a local 
search through the previously estimated best solutions. The HH-ECO estimates the adaptive inertia weight 
factor (W) and new velocity (Vj

ITER+1) using equations (3)-(5), where Wmax and Wmin refer the maximum and 
minimum values of inertia weight (W), and Fitnessmax, Fitnessmin, and Fitnessavg represent the maximum, 
minimum, and average fitness of the particle in all solutions of the ith iteration respectively. Equation (4) 
computes the weighted threshold (Wα) based on the inertia weight and the fitness values of particles in the 
corresponding iteration to adaptively compute the inertia weight. In equation (5), c1 and c2 are positive constant 
parameters, and r1 and r2 represent the random value generated from the random function. The HH-ECO model 
applies the C-PSO algorithm to optimize each cloud computing phase using the equations (3-5).  

 

Inertia Weight,W = {
Wmin +Wα, if Fitnessmax  ≤ Fitnessavg
Wmax,              if  Fitnessmax > Fitnessavg

                  (3) 

 

Wα=

(Wmax −Wmin)(Fitnessmax − Fitnessmin)

Fitnessavg − Fitnessmin
                                           (4) 

 

Vj
ITER+1=W * Vj

ITER + c1r1(PBestj- Xj
ITER)+ c2r2(GBest- Xj

ITER)(5) 

 
According to the participation of a single type of PM over the total Ci of all the PMs, the HH-ECO approach 
allocates the VMs. An example of the PM allocation to A, B, and C types of VMs is depicted in Table 2. The 
total capacity of A, B, and C are presumed to be 30MB, 45MB, and 45MB, respectively. The allocation plan 
(A+B+C) for Small PMs is 20.6% of total VM capacity (i.e. 26/(26+47+53) = 20.6%) to reach its Max speed. 
However, deciding the allocation per PM and how many VMs are allocated in each type A, B, and C to reach 
20.6% of VM capacity is quite complicated. The proposed work applies the best-fit meta-heuristic PSO 
algorithm for chaotic iterations and determines the VM allocation plan that fits with the capability of the PM.  
 

Table 2: Example scenario for VM Allocation Strategy 
 
PM type and Total  Capacity (MB) VM type and Total Capacity 

(MB) 

 

VM Allocation (%) 

A B C 

Small (S) 26  

30 

 

45 

 

45 

20.6 

Medium (M) 47 37.3 
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Large (L) 53 42 

 
 

To demonstrate the steps of the C - PSO procedure in the cloud environment, two case examples are used, 
explaining the C-PSO processes in VM allocation.  
Case 1: Initially, HH-ECO decides the participation level of each type of VM and executes the fitness function. 
Notably, the total participation level of all types of VMs is equal to 20.6%, as per table 2. Different combinations 
of VMs are created to reach a 20.6% participation level. Each combination is denoted as a particle and the 
position vector of particles. According to PSO, initially, the values of W and  Vj

ITER are randomly chosen from 
0 to 1. By using the W and Vj

ITER , the value of Vj
ITER+1Is estimated using equation (5). In the initial case, the 

value of  PBestjand GBestare equal to the position vector of the first particle. Xj
ITER also represents the first 

particle’s position vector. Thus, both the terms, c1r1(PBestj- Xj
ITER) and c2r2(GBest- Xj

ITER) tend to zero, and the 
new velocity value is equal to W * Vj

ITER. In the next solution of the same iteration, the  Wαvalue is identified 
using equation (3).   
Case 2: After the first iteration, Wα is estimated. Moreover, PBestj  and GBestvalues of the particle are also 
identified. In the previous iteration, if the value of fitness is maximum than fitnessavg,Wα is high and so the value 
of Vj

ITER+1Are also high, according to equation (5). This scenario represents that the location of the best solution 
is at a long distance from the previous solution, due to the high difference between them(𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑎𝑥 −
𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑚𝑖𝑛). A high value of (Fitnessavg- Fitnessmin) represents the closeness of the best solution. Thus, C-
PSO reduces its velocity significantly. Moreover, if fitness is better than the average fitness, the high values of 
W and Vj

ITER+1are used to identify a suitable solution for cloud computing processes. A large inertia weight 
guides the particles to the global search, while the smaller factor leads particles to the local search through the 
previously estimated best solutions. 

 
Equation (6): To reach the total capacity of a single type of PM, C-PSO selects different types of VMs (A, B, 
and C) in each iteration. For the selected VMs, the HH-ECO applies the equation (6) to measure the fitness for 
the VM allocation plan. The best Allocation Plan (AP = {Ag, Bg, Cg}) is decided using the fitness measurement 
according to the Capacity (Ci) and Memory utilization (Mi) in many iterations, Ag represents the fraction of the 
number of VMs allocated to the ‘A’ type. The allocation plan iteration continues until fitness reaches the 
condition of 0.8 ≤ Fitness Ap <1, assuming that 80% of the suitability of solutions avoids imbalanced PMs. For 
the capacity of a single type of PM, the VMs are allocated. For instance, the participation level of a large 
capacity PM is 20.6%. Equation (6) decides the allocation of the number of VMs required in each type to reach 
20.6% of the total VM capacity, where the total capacity and memory is 20.6% of the total available VMs 
Capacity and memory respectively. The C-PSO algorithm executes equation (6) for Small, Medium, and Large 
capacity PMs individually to reach an optimal VM allocation. 

 

Fitness  Ap= {
∑ Ci

n
i=1

total capacity
} * {

∑ Mi
n
i=1

total memory
} (6) 

Equation (7): According to equation (6), the PM which has a number of VMs more than its capacity, i.e., 
fitness is greater thanFitnessavg, is classified under {q}. Otherwise, the PM is grouped under {p}. The VM 
resource allocation defines ‘p’ and ‘q’ as the number of VMs in the {p} and {q}, respectively, as mentioned in 
equation (7).  

Particle Type= {
{p}                         if Fitness<Fitnessavg

{q}                         if Fitness>Fitnessavg
(7) 
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HH-ECO plans to mutate a few of the VMs among PMs to equalize the capacity utilization of all PMs closer to 
100%. When the fitness equation returns a value more than that of average fitness for the particles in {q}, the 
VM that has a high capacity in a particle has to be mutated with a VM that has low capacity in {q} to equalize 
the load. 
 
6.2 Task Scheduling with Adaptive Mutation 

In Workflow applications, hierarchical task scheduling plays a significant role. To effectively plan the task 
scheduling in a cloud environment, the Workflow task relationship must satisfy the quality constraints. At the 
task level, scheduling on-demand VMs to the tasks with knowledge of workflow can minimize the total cost 
without violating the SLA requirements. By applying C-PSO, the HH-ECO considers the static resource 
utilization of the PMs under idle state and dynamically estimated Makespan and execution cost of scheduled 
tasks by C-PSO as input to the fitness measurement. Total execution cost denotes the summation of the 
execution cost of all the subtasks. 
Equation (8): The HH-ECO selects the best scheduling plan using the equations (3)-(5) based on the chaotic 
sequence and ‘W’ factor. When the scheduling plan returns a higher fitness value, it converges to the optimum. 
The high fitness value is returned only when the tasks allocated to a particular VM with minimum Makespan 
than the deadline and minimum total execution cost using equation (8). In equation (8), t1 and t2 denote the 
weighted parameters for two objectives of makespan and total execution cost, where, 0≤t1,t2≤1 and t1+t2=1.  
 

Fitness TSc=t1* (1- 
Makespan

Deadline TSc
)+ t2 * (

1
Total execution cost

)   (8) 

 
In consequence, the C-PSO based scheduling algorithm decreases the scheduling space and generates the best 
scheduling plan. However, the generated plan only satisfies the individual particle but does not consider the 
dominance of other particles. For example, according to the C-PSO, the Workflow tasks in Figure 1 are 
scheduled for small, medium, and large capacity VMs, as shown in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3: C-PSO Task Scheduling Plan  
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According to the C-PSO algorithm, task X is scheduled in a small capacity VM, after the execution of task 
V. However, when the succeeding task of X (Y) runs after the completion of task W, the Makespan will be 
increased. In essence, the decision of scheduling for task W without considering the dominance on Y affects the 
Makespan. To avoid this, the HH-ECO applies mutation to the task scheduling plan. Considering each task has 
its preceding task (PT)Ti and succeeding task(ST)Ti. If a task Ti dominates any one of its (ST) Ti, the HH-ECO 
applies the adaptive mutation. Accordingly, task X dominates task Y. Consequently, such a scheduling plan 
destroys the resource utility due to the delayed start time of the task Y by the task W even after the completion 
of its preceding task X. Hence, the HH-ECO approach mutates the task W on another best fit free VM based on 
the high value of the mutation-selection, which reduces the Makespan without wasting the resources and 
violating SLAs. 
 
6.3 VM Migration with Adaptive Mutation 
 The HH-ECO has successfully scheduled the tasks according to the proposed task scheduling with the 
adaptive mutation. However, lack of knowledge in overall PM capacity utilization, each PMi can be overloaded 
or under-loaded at any time. So HH-ECO monitors each PM after the tasks are scheduled and decides the state 
of PM (PMOL(i), PMUL(i), and PMIL(i)). In the context of VM migration, consider PMOL(i) and PMUL(i), are source 
PMs. A set of predicted underloaded and overloaded PMs is denoted as SourceUPM = {SUPM1, SUPM2, ......, SUPMk} 
and SourceOPM = {SOPM1, SOPM2, ......, SOPMk} respectively. A set of imbalanced (active), idle servers are 
represented as destination PMs, Active Dest(APM) = {DAPM1, DAPM2, ......, DAPMk} and {Idle Dest(IPM) = {DIPM1, 
DIPM2, ......, DIPMk} respectively. Moreover, DestPM represents a combination of Dest(APM) andDest(IPM).From 
source to destination, the VMs are moved until all the PMs are balanced. Consider that (n-k) VMs are allocated 
in the ith PM. If the ratio of all the (n-k) VMs over the total capacity of PM exceeds the ¾ thC, then the PM is 
categorized into Overloaded. Otherwise, it is categorized as Under Loaded, which are finalized from the way 
of experiments discussed in [52, 53]. 
Equation (9): By experimenting, from the testing results, the proposed model decides that the idle server is 
5%-15%, the underloaded server is 15%-40%, the imbalanced load server is 41%-60%, and the overloaded 
server is above 75% to avoid the performance degradation. These threshold limits have been determined by 
several factors, such as better energy consumption, the minimum number of VM migrations, and reduced SLA 
violations in the cloud environment. To attain the energy-efficient cloud, the proposed model performs this 
experiment as the prerequisite process that evaluates the performance of these factors for the different threshold 
range value.  
 
 

Load Category= 

{
 
 
 
 
 
 

 
 
 
 
 
 Under Load                             if 0.15Ci<(

∑ Cji
n-k
j=1

Ci
)≤

3
4

Ci

Over Load                               if (
∑ Cji

n-k
j=1

Ci
)>

3
4

Ci

Balanced 

 if  0.41% Ci<(
∑ Cji

n-k
j=1

Ci
)≤ 

3
5

Ci

Idle if 0.05% Ci<(
∑ Cji

n-k
j=1

Ci
)≤ 

0.6

4
Ci

(9) 
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Equations (10-12): CVM is the predicted capacity utilization of the VM that creates the host either over or 
underloaded. The Fitness value is equal to the inverse of the difference between CiЄDest(PM) and capacity 

utilization of the PMiЄDest(PM) + CVM, where PMiЄDest(PM) represents the ith PM in a set of DestPM. VM migration to 
the high fitness destination PM favors reduced under-utilization and over-utilization of PMs. When migrating 
the VM from source PM into new destination PM, the capacity of the destination PM must less than or equal to 
its total capacity after migration happens. Otherwise, the fitness value is zero. The VMs are migrated according 
to the high fitness destination measured by using C-PSO. The high fitness destination is considered as a suitable 
solution. 
 

Fitness SourcePM(i)= {(CiϵDest(PM)- (PMiϵDest(PM)+ CVM))
-1

if{PMiϵDest(PM)+ CVM} ≤ CiϵDest(PM)(10)
0Otherwise

 

 
During the VM migration, HH-ECO allows the PM to enable sleep mode when all of its loaded VMs 

migrate. Moreover, it allows the PM in sleep mode to switch on only when there is no possibility to migrate a 
VM to an already active PM. However, the sleep mode PM might take time to become an active server. In such 
a time, the VM possibly executes the task in the source PM as per the scheduling plan and move it to the 
overloaded state. To reduce the energy consumption, HH-ECO tunes the idle server to sleep mode if a task is 
not allocated in the idle server. If a VM with the task ‘i’ is migrated due to either overloaded or underloaded 
PM, it ensures that the preceding task of ‘i’ is completed. After completing the preceding task, the task ‘i’ can 
be executed in the migratable VM. According to this procedure, HH-ECO estimates the triggering time point 
(𝜏𝑃) for waking up an active server from the sleep mode and triggers the server at the time of ‘𝜏𝑃’ and avoids 
unnecessary resource wastage. In equation (12), ‘Co’ represents a constant value for the type of resource, and it 
is assigned as 2 sec for large capacity resources. MTP and CTP denote the migration time point and current time 
point, respectively, in which time point refers to the time in geometric space.  
 

MTP = CTP+ Completion Time {PT}Tv                                    (11) 

 

𝜏𝑃 = 𝑀𝑇𝑃 − {𝑊𝑎𝑘𝑖𝑛𝑔𝑢𝑝 𝑇𝑖𝑚𝑒 + 𝐶𝑜}𝑉𝑀 −𝑀𝑇𝑉𝑀                                         (12) 

 

MTVM is the time consumed to migrate the VM from source to target resource. τ is the subtraction of 
{Waking-up Time + Co}VM  and MTVM  from MTP . After the completion of the preceding task {PT}Tv, the 
succeeding task can be executed in a migratable VM.  
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Figure 4: Flowchart of HH-ECO Methodology 
 

 Moreover, the decision of VM migration along with the task without considering the domination of its 
succeeding task may affect the Makespan. To avoid this, HH-ECO attempts to apply task mutation among the 
VMs in the same PM, when there is an availability of better task scheduling before migration. Thus, HH-ECO 
attains better trade-off between resource utilization and makespan without violating SLAs. Figure 4 illustrates 
the overall sequential steps involved in the HH-ECO methodology. 
 
7. Experimental evaluation 

This section presents the experimental results using the WorkflowSim toolkit to evaluate the efficiency of 
the proposed approach and compares its performance with two existing cloud computing techniques. 
Experimental setup: The experiments were conducted in a virtual environment using WorkflowSim.  
WorkflowSim is an extended model of CloudSim that supports workflow level simulation and enables seamless 
cloud modelling, simulation, and experimentation for the workflow tasks. The workflow model is based on the 
DAG model, enabling both the static and dynamic workflow schedulers. WorkflowSim comprises a set of 
components to simulate the workflow application; the components are workflow mapper, workflow engine, 
clustering engine, workflow scheduler, failure generator, and failure monitor. The experiment employs Cyber 
Shake workflow applications with sizes of 30, 50, and 100 workflow tasks. 
Pricing for cloud services over different subscription periods is known as pricing policies. VM servers and 
pricing policies are based on the configuration in Amazon EC2 Infrastructure as a Service (IaaS), and on-
demand VM instances are in the range of small, medium, and large. The proposed implementation model 
represents the processing capacity of the processor using MIPS. The simulated cloud data center consists of 10 
host machines and 40 VMs involving three different types, such as small, medium, and large. Each type of host 
machine includes 3, 3, and 4 numbers of PMs, respectively, and the specifications of the host and VMs used in 
the simulated data center are given in Table 3.  

 

Table 3: Specifications of Host and Virtual Machines 

Cloud 

Resources 

No.of 

machines 

CPU/MIPS RAM (MB) Bandwidth 

(MB/s) 

Storage (GB) 

Host Machines 10 1000, 2000, 

3000 

1024, 2048, 

3072 

100 1 

Virtual 

Machines 

40 500, 1000, 1500 256, 512, 768 1 - 

 
7.1 Evaluation metrics 

The evaluation system employs a set of evaluation metrics to validate the efficiency of the proposed HH-
ECO system as follows: 
Makespan - the total time taken from the start time of the initial task to the end time of the final task of a 
sequence of tasks, which refers to the overall application completion time. 
Degree of disparity - the measurement of unevenness among all the allocated hosts. The minimum value of 
the degree of disparity represents that the system is more balanced. 
Average energy consumption - the average consumed energy to run the complete application on the allocated 
cloud resources during the simulation. The energy consumption of the computing server is based on the 
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utilization of the resources. Although it is an idle server, it also consumes energy to retain the running of 
memory, disks, and I/O resources. The remaining consumption linearly escalates when increasing the workload 
of resources.  
SLA Violations – depends on the number of violating tasks from the task deadline and the number of violating 
hosts from the optimal energy consumption level while executing the workflow application. 
Total cost - the total cost spent to complete the entire application, including the amount spent on processing, 
memory, storage, and transfer cost along with the Makespan.  
Migration efficiency - the ratio between the number of useful migrations and the number of migrations 
throughout the execution of the application. Useful migrations refer to (i) when the underloaded host becomes 
idle, and (ii) when the overloaded host becomes a balanced host after the migration completes.   
Waiting Time Ratio (WTR) – the ratio between the waiting time of the tasks during the execution of the 
application and the overall completion time of the application. The minimum value indicates that the system is 
efficient. Compared to the overall execution time, the waiting time should be a minimum. High waiting time 
leads to unnecessary power consumption at both user and cloud sides. The efficient allocation of VMs and tasks, 
as well as the workload, decides the waiting time.  
 
8. Experimental results 

The simulation scenario conducts the following four tests: Test 1: Impact of the number of workflow tasks, 
Test 2: Impact of an average number of active hosts, Test 3: Impact of the percentage of resource utilization, 
and Test 4: Impact of server behaviour. The experimental framework compares the results obtained by the HH-
ECO approach with the existing approaches such as the HHWS algorithm [14], which partially applies the 
mutation on the workflow tasks regardless of the optimal global solution, and DDVM [33], which merely takes 
into account reactive VM management with the concern of minimizing the SLA violations and power 
consumption. 

 

 
a) Makespan    b) Average energy consumption 
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c) SLA violations                    d) Waiting Time Ratio (WTR) 

Figure 5: Performance measures with varying Number of workflow tasks 

Concerning Makespan, as shown in Figure 5a, it is seen that for the increasing number of workflow 
tasks, the HH-ECO algorithm gives minimum Makespan when compared to the existing HHWS and DDVM 
methods. Further, the HH-ECO approach maintains the workflow of the application and reduces the waiting 
time of the succeeding task, and ensures optimal execution of the workflow tasks. The performance in this 
approach is better than the HHWS approach when the Makespan is in the range of 35.07% to 38.27% and much 
better than the DDVM approach in the range of 36.2% to 85.74%. It is because the HHWS approach partitions 
a set of tasks to apply PSO and GSA algorithms separately. The proposed HH-ECO approach applies the chaotic 
based PSO algorithm during the allocation and scheduling of the workflow tasks, which tends to minimize the 
execution time even when there is an increased number of workflow tasks in the cloud environment. In 
principle, it proactively allocates the VM resources on the respective PMs and also considers the relationship 
among the workflow tasks during the scheduling as well as the migration. 
 As seen from Figure 5b, the average energy consumption in the HH-ECO approach is increased by 37.5% 
while the number of workflow tasks is varied from 30 to 100. However, the energy consumption of HH-ECO 
is less compared to the existing methods. It is because HH-ECO initially allocates VMs to the appropriate hosts 
in an energy-efficient manner and then optimally schedules the workflow tasks on the allocated VM resources 
using the C-PSO algorithm. Moreover, it applies mutation on the scheduled tasks to diminish the dominance in 
processing time and thus mitigates resource wastage and conserves considerable energy. On the other hand, in 
the same scenario, the average energy consumption of DDVM is higher, by around 11.76% compared to HH-
ECO. The DDVM approach lacks in assigning the optimal maximum and minimum utilization level of the 
resource, which increases the number of stress resources. When the number of workflow tasks is higher, 180, 
the average energy consumption of the HH-ECO yields 31.76% and 25.64% lower than the HHWS and DDVM 
approaches. It is accomplished by the C-PSO based balancing of the resource utilization for the overloaded and 
underloaded resources during the workflow execution. 

Figure 5c reveals the SLA violation ratio in the HH-ECO, HHWS, and DDVM approaches while varying 
the number of workflow tasks from 30 to 180. The SLA violations inversely expose the effectiveness of the 
system. Even when the number of workflow tasks with unique characteristics increases, the HH-ECO approach 
effectively restricts the violations within 15.76% and maintains the SLA. In contrast, the SLA violations are 
33.88% and 55.18% in the HHWS and DDVM approaches. DDVM implements only the traditional scheduling 
of the first-fit heuristic method, which ensures minimum waiting time, whereas HH-ECO and HHWS can filter 
out the local optimal solutions. The unique consideration of the mutation in HH-ECO fetches an accurate global 
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solution throughout the application execution. Moreover, the HH-ECO approach analyzes the task relationship 
and performs the task mutation based on the task dependency before migrating to another resource in the cloud, 
which tends to avoid SLA violations. However, HHWS fails to consider the dominance relationship. Hence, 
the performance of HHWS is weaker than HH-ECO. 
 Figure 5d illustrates WTR of HH-ECO, HHWS, and DDVM approaches while varying the number of 
workflow tasks. WTR inherently represents the responsiveness of the cloud server to execute a workflow 
application, which linearly increases with the increase of the number of workflow tasks. The HH-ECO approach 
effectively manages the waiting time of each task even when the number of tasks in the workflow is high by 
applying the C-PSO algorithm with an adaptive mutation on the scheduled tasks. The waiting time ratio of HH-
ECO decreases by 56% and 62% over HHWS and DDVM, respectively, when running 30 workflow task 
numbers. The HH-ECO approach obtains a 37.49% lesser waiting time ratio compared to the DDVM approach. 
It is because the HH-ECO approach estimates the fitness score for the workflow tasks with the consideration of 
the task dependency and adaptively mutates the tasks without compromising the SLA constraints.  
 

As for Test 2 (Impact of an average number of active hosts), the total costs of the HH-ECO, HHWS, and 
DDVM approaches are shown in Figure 6a when varying the average number of active hosts from 2 to 10. Total 
cost is directly proportional to the total time spent and resource utilization that includes processing, memory, 
storage, and bandwidth. It reveals the overall performance of the system after completion of the workflow 
application execution on the remote server. The C-PSO algorithm with the adaptive mutation of the HH-ECO 
approach substantially reduces the total cost by 10.49% even when there is a need to start many hosts. The 
existing HHWS and DDVM methods lack in accessing the resources within the optimal utilization range, and 
thus these approaches rapidly increase the total cost up to 34.8% and 59.16% respectively over HH-ECO, even 
when utilizing an average count of 2 active hosts. By adaptively controlling the inertia weight and mutating the 
tasks, the HH-ECO approach effectively utilizes the cloud resources during the execution, which reduces the 
overall cost.  
 Figure 6b illustrates the DD of the HH-ECO approach in comparison to the HHWS and DDVM approaches. 
The degree of disparity represents the imbalance of the resources in the cloud environment. HH-ECO manages 
the degree of disparity value at 3.38, whereas HHWS manages the disparity value at 3.53. The DDVM approach 
can balance active hosts only when a minimum number of resources are utilized. Hence, DD is less, i.e., under 
45.61% in the DDVM approach in comparison to HH-ECO when the average number of active hosts is 2. 
Moreover, the HH-ECO approach maintains the utilization of the active hosts in the cloud at a certain range of 
value but, the existing HHWS and DDVM approach obtain the variations on the degree of disparity when 
increasing the number of active hosts. It is accomplished by the balancing of the overloaded and underloaded 
resources through the C-PSO based migration with adaptive mutation during the execution of the workflow 
tasks in the cloud.  
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c) Average energy consumption 

 

Figure 6: Performance with a varying average number of active hosts 

 Figure 6c illustrates the average energy consumption of HH-ECO, HHWS, and DDVM approaches. The 
average energy consumption heavily relies on the number of active hosts during the execution of the workflow 
tasks in the cloud. The advantage of exploiting the C-PSO algorithm with an adaptive mutation on the workflow 
task execution creates a significant impact on the application completion time and, consequently, minimizes the 
overall energy consumption to 28.96% compared to HHWS and 35.4% for DDVM when utilizing an average 
count of 10 active hosts. Moreover, the HH-ECO approach gradually increases the average energy consumption 
while increasing the number of active hosts from 2 to 10, whereas DDVM and HHWS approach rapidly 
increases the average energy consumption. Notably, HH-ECO migrates the tasks when the allocated resources 
are either in the overloaded or underloaded condition during execution. Moreover, the idle server utilization 
policy also assists in minimizing energy consumption. 
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d) SLA violations 

Figure 7: Performance with varying percentage of resource utilization 

 As shown in Figure 7a, the Makespan increases while increasing the percentage of resource utilization by a 
specific application. Among the three comparative approaches, the HH-ECO approach significantly reduces the 
Makespan compared to HHWS and DDVM because it focuses on maintaining the optimal utilization of each 
server at a specific level throughout the execution of the workflow application. Thus, the HH-ECO approach is 
efficient enough to complete the execution of workflow application in a reasonable time. If there is 25% 
resource utilization, the proposed approach accomplishes a better performance of 36.34% and 40.07% 
compared to the performance of HHWS and DDVM approaches, respectively. The proposed HH-ECO approach 
yields the minimum makespan even when there is an increased amount of resource utilization but, the existing 
HHWS and DDVM approach linearly increases the energy consumption with the increase of resource 
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utilization. It is accomplished by the effective utilization of the active resources for the corresponding scheduled 
workflow tasks with the minimum migrate rate for the execution of the workflow tasks.  
 Figure 7b illustrates the value of DD for the HH-ECO approach in comparison to the HHWS and DDVM 
techniques. An increase in the percentage resource utilization escalates DD substantially over 41.89% in HH-
ECO when increasing resource utilization from 5% to 10%. However, in HHWS and DDVM, the percentage 
DD has a drastic increase of over 65.94% and 44.19%. Significantly, the HH-ECO approach manages a 
negligible degree of disparity than both the HHWS and DDVM approaches. In contrast to the HHWS and 
DDVM, the HH-ECO approach performs the adaptive mutation during the VM resource allocation, task 
scheduling, and migration, which leads to the performance improvement with the advantage of the C-PSO 
algorithm on the workflow tasks. 
 Figure 7c shows the performance improvement in the Migration efficiency of HH-ECO compared with the 
DDVM approach when varying the percentage resource utilization. The HH-ECO approach maintains the 
migration efficiency throughout the application execution in the range of 89.4%. Although DDVM has a fair 
migration efficiency until it reaches a specific percentage of resource utilization, it shows a sudden drop of over 
50% migration efficiency, and beyond a specific level of resource utilization, it gradually reaches a level of 
73.4%. This is because the DDVM applies shut down and freeze, which leads to providing an inaccurate solution 
when the load percentage is high. Moreover, the HH-ECO approach applies the chaotic theory-based PSO 
algorithm during the migration of the overloaded or underloaded resources, which prevents the premature 
convergence in the decision-making of the optimal solution, and thus, ensures the optimal migration efficiency 
even when increasing the percentage of resource utilization. 
 Figure 7d demonstrates that stress or overloaded resources cause any SLA violations. When the percentage 
of resource utilization is high, the HH-ECO approach reschedules the tasks within a reasonable time to complete 
the execution of workflow application based on the C-PSO algorithm. The HHWS approach applies the PSO 
and GSA algorithms on two different sets of the tasks of one application. Thus the independent identification 
of the optimal solution is not useful in all cases because it is likely to misclassify while identifying the optimal 
solution within a set of tasks and resources, which is likely to extend the overall processing time resulting in 
many violations of time and energy. DDVM lacks in scheduling the tasks on the optimal resources as the 
allocation is based on the first-fit heuristic algorithm, which dynamically allocates the resources based on the 
current availability of resources in which the local solution appears as the optimal global solution. It leads to a 
violation of SLA in HHWS and DDVM of 21.6% and 41.54%, respectively, higher than that of the HH-ECO. 

 

a) Average CPU utilization 

 

                  b) Average energy consumption 
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Figure 8: Performance while varying Categorization of server behaviour 

 The evaluation results in terms of Average CPU utilization and Average energy consumption for different 
server behaviours are shown in Figures 8a and 8b. The server behaviours such as idle, under load, imbalanced, 
and overload are graphically represented as 1, 2, 3, and 4. The average CPU utilization of the allocated resources 
under various server behaviours is illustrated in Figure 8a. The HH-ECO approach optimally utilizes the CPU 
resources by applying an adaptive mutation method when there is a dominance of one solution over the other. 
This process averts the local convergence of the solutions as it determines the global solution in both the 
workflow application and cloud resources. When there are sudden changes in the allocated resources such as 
the state of underload or overload during the execution of workflow application, the proposed approach 
efficiently handles the tasks without violating the SLAs through adaptive mutation and task migration among 
the available resources. By effectively exploiting the optimal level of resource utilization, the HH-ECO 
approach obtains average CPU utilization for idle, under load, imbalanced, and overloaded servers as 
7.16%,25.82%,50.38%, and 79%, respectively during application execution. 
 Figure 8b illustrates the increase in average energy consumption of the HH-ECO approach while varying 
the server categorization from the idle state to overload conditions. The average energy consumption varies 
concerning the server category. When the server is in an idle state, the energy consumption of the server is 
minimum regardless of the workload. The HH-ECO approach consumes reasonable energy as it considers the 
limited access level of the server resources rather than utilizing the entire available resources. The consideration 
of idle server restarts during the execution of workflow application facilitates less consumption of energy. The 
average energy consumption of the HH-ECO approach under the various server states of idle, under load, 
balanced, and overload is 2.49%, 68.89%, 86.03%, and 100%, respectively. Moreover, the adaptive mutation-
based resource allocation, task scheduling, and migration in the HH-ECO approach leverage the energy-
efficient execution of the workflow tasks in the cloud by considering the task dependencies and the objective 
factors. 
 
9. Conclusions 

A hybrid workflow scheduling algorithm, HH-ECO, for energy-efficient cloud computing has been 
proposed in this paper. The approach focuses on accomplishing multi-objectives via resource allocation, task 
scheduling, and resource migration phases underpinned by the application of the C-PSO algorithm with an 
adaptive mutation. It builds the system as an energy-efficient green cloud system through optimal allocation 
and avoids the dominant solution among other workflow tasks that ensure the optimal global solution rather 
than local convergence solutions. Moreover, the scheduling of the workflow tasks is performed dynamically 
based on the scheduling plan, workflow model, and the optimal global solution. Also, the HH-ECO migrates 
the overloaded or underloaded resources during the execution of workflow application, facilitating an improved 
quality of service and an energy-efficient cloud environment. The key achievements of the proposed 
methodology are:   

 The Hybrid Heuristic Workflow algorithm provides an energy-efficient virtualized environment 
with high reliability and efficiency in resource allocation. 

 Hybrid Heuristic algorithms allocate heterogeneous VMsbased on the capability of the host CPU 
and memory and assist to successfully satisfy the user demands by minimizing the cost of the 
schedulers. 

 The C-PSO plans the scheduling procedure of workflow application to utilize the advantages of 
a green cloud environment; the mutation process improves the potential profit without violating 
SLAs. 
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 The Chaotic iterations in PSO avoid earlier standstill of particles before reaching global optima 
to provide a near-global optimal solution to promise user demands and achieve optimal energy 
consumption. 

 C-PSO with adaptive mutation characterizes the resource utilization of VMs and generates the 
globally best migration plan to optimize the Makespan and cost. 

 
 The experimental results of the HH-ECO approach demonstrate a fair performance, accomplishing an 
optimal Makespan of 38.27% and significant energy conservation of 38.06% when compared with existing 
cloud computing approaches such as HHWS and DDVM. In future work, VM migration among various data 
centers needs to be focused along with the network latency. Additionally, instead of considering CPU and RAM 
as the source of performance and energy consumption alone, other resources such as cooling systems and 
network racks such as routers and switches can be considered, and suitable algorithms developed to improve 
performance.  
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