1,242 research outputs found

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI

    A Movement of Mobile Sink in Wireless Sensor Network to Conserve Energy

    Get PDF
    Energy is the major constraint in wireless sensor network. In wireless sensor network with static mobile collector (SNSMC),static nodes located near to sink consume more energy, since the nodes relay the data collected by sensor nodes far away from the sink. The battery drained in short time. This problem is resolved by the MMC-WSN method. While simplifying the routing process, proposing an energy-efficient routing technique based on cluster based method for mobile sink is preferred. First part ,the selection of cluster head (CH) in cluster based method made periodically according to their residual energy and in second part the mobile sink moves across the sensing field and directly collects data from cluster heads and returns to back to initial site in a specific sequence based on spanning graphs. The spanning graph includes the shortest search path for the MS. Finally, a tour-planning algorithm is used on the basis of the spanning graph. An energy efficient routing technique (EFR) in WSNs among obstacles uses the shortest route. In this way, the mobile sink retrieves all detected knowledge among a given time and sends to base station which reduces the packet delay and energy-consumption and WSNs

    A Comparative Study of Wireless Sensor Networks and Their Routing Protocols

    Get PDF
    Recent developments in the area of micro-sensor devices have accelerated advances in the sensor networks field leading to many new protocols specifically designed for wireless sensor networks (WSNs). Wireless sensor networks with hundreds to thousands of sensor nodes can gather information from an unattended location and transmit the gathered data to a particular user, depending on the application. These sensor nodes have some constraints due to their limited energy, storage capacity and computing power. Data are routed from one node to other using different routing protocols. There are a number of routing protocols for wireless sensor networks. In this review article, we discuss the architecture of wireless sensor networks. Further, we categorize the routing protocols according to some key factors and summarize their mode of operation. Finally, we provide a comparative study on these various protocols

    Survey of location-centric target tracking with mobile elements in wireless sensor networks

    Get PDF
    介绍目标跟踪的过程以及移动跟踪的特点;通过区分目标定位为主的方法和目标探测为主的方法,介绍定位为主的移动式目标跟踪方法(称为目标的移动式定位跟踪; )的研究现状;分析和比较不同方法的特点和应用领域,发现现有方法虽然可以提高跟踪质量、降低网络整体能耗,但是还存在一些问题。基于此,总结目标的移动; 式定位跟踪方法在方法类型、网络结构和节点模型等方面可能存在的研究热点,指出其研究和发展趋势。The basic process of target tracking and the properties of tracking; solutions with mobile elements were introduced. By distinguishing; location-centric methods and detection-centric methods, the current; research status of the location-centric target tracking methods were; reviewed. The properties and application fields of different solutions; were analyzed and compared. Although the existing solutions can; significantly improve tracking quality and reduce energy consumption of; the whole network, there are also some problems. Based on these; discoveries, some possible research hotspots of mobile solutions were; summarized in many aspects, such as method types, network architecture,; node model, and so on, indicating the future direction of research and; development.国家自然科学基金资助项目; 国家科技支撑计划项

    Effective Node Clustering and Data Dissemination In Large-Scale Wireless Sensor Networks

    Get PDF
    The denseness and random distribution of large-scale WSNs makes it quite difficult to replace or recharge nodes. Energy efficiency and management is a major design goal in these networks. In addition, reliability and scalability are two other major goals that have been identified by researchers as necessary in order to further expand the deployment of such networks for their use in various applications. This thesis aims to provide an energy efficient and effective node clustering and data dissemination algorithm in large-scale wireless sensor networks. In the area of clustering, the proposed research prolongs the lifetime of the network by saving energy through the use of node ranking to elect cluster heads, contrary to other existing cluster-based work that selects a random node or the node with the highest energy at a particular time instance as the new cluster head. Moreover, a global knowledge strategy is used to maintain a level of universal awareness of existing nodes in the subject area and to avoid the problem of disconnected or forgotten nodes. In the area of data dissemination, the aim of this research is to effectively manage the data collection by developing an efficient data collection scheme using a ferry node and applying a selective duty cycle strategy to the sensor nodes. Depending on the application, mobile ferries can be used for collecting data in a WSN, especially those that are large in scale, with delay tolerant applications. Unlike data collection via multi-hop forwarding among the sensing nodes, ferries travel across the sensing field to collect data. A ferry-based approach thus eliminates, or minimizes, the need for the multi-hop forwarding of data, and as a result, energy consumption at the nodes will be significantly reduced. This is especially true for nodes that are near the base station as they are used by other nodes to forward data to the base station. MATLAB is used to design, simulate and evaluate the proposed work against the work that has already been done by others by using various performance criteria

    Energy-efficient routing for mobile data collectors in wireless sensor networks with obstacles

    Get PDF
    This paper proposes an energy-efficient routing mechanism by introducing intentional mobility to wireless sensor networks (WSNs) with obstacles. In the sensing field, Mobile Data Collectors (MDCs) can freely move for collecting data from sensors. An MDC begins its periodical movement from the base station and finally returns and transports the data to the base station. In physical environments, the sensing field may contain various obstacles. A research challenge is how to find an obstacle-avoiding shortest tour for the MDC. Firstly, we obtain the same size grid cells by dividing the network region. Secondly, according to the line sweep technique, the spanning graph is easily constructed. The spanning graph composed of some grid cells usually includes the shortest search path for the MDC. Then, based on the spanning graph, we can construct a complete graph by Warshall-Floyd algorithm. Finally, we present a heuristic tour-planning algorithm on the basis of the complete graph. Through simulation, the validity of our method is verified. This paper contributes in providing an energy-efficient routing mechanism for the WSNs with obstacles

    An energy-balanced heuristic for mobile sink scheduling in hybrid WSNs

    Get PDF
    Wireless sensor networks (WSNs) are integrated as a pillar of collaborative Internet of Things (IoT) technologies for the creation of pervasive smart environments. Generally, IoT end nodes (or WSN sensors) can be mobile or static. In this kind of hybrid WSNs, mobile sinks move to predetermined sink locations to gather data sensed by static sensors. Scheduling mobile sinks energyefficiently while prolonging the network lifetime is a challenge. To remedy this issue, we propose a three-phase energy-balanced heuristic. Specifically, the network region is first divided into grid cells with the same geo-graphical size. These grid cells are assigned to clusters through an algorithm inspired by the k-dimensional tree algorithm, such that the energy consumption of each clus-ter is similar when gathering data. These clusters are adjusted by (de)allocating grid cells contained in these clusters, while considering the energy consumption of sink movement. Consequently, the energy to be consumed in each cluster is approximately balanced considering the energy consumption of both data gathering and sink movement. Experimental evaluation shows that this technique can generate an optimal grid cell division within a limited time of iterations and prolong the network lifetime.This work was supported in part by the National Natural Science Foundation of China under Grant 61379126, Grant 61401107, Grant 61572060, and Grant 61170296; in part by the Scientific Research Foundation for Returned Scholars, Ministry of Education of China; and in part by the Fundamental Research Funds for the Central Universities. Paper no. TII-15-0703.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424hb2017Electrical, Electronic and Computer Engineerin

    Restricting Barrier and Finding the Shortest Path in Wireless Sensor Network Using Mobile Sink

    Get PDF
    Wireless Sensor Network (WSN) is a collection of spatially deployed in wireless sensors. In general, sensing field could contain various barriers which cause loss of information transferring towards the destination. As a remedy, this proposed work presents an energy-efficient routing mechanism based on cluster in mobile sink. The scope of this work is to provide a mobile sink in a single mobile node which begins data-gathering from starting stage, then immediately collects facts from cluster heads in single-hop range and subsequently, it returns to the starting stage. During the movement of the mobile sink if the barrier exists in the sensing field it can be detected using Spanning graph and Grid based techniques. The possible locations for the mobile sink movement can be reduced easily by Spanning graph. At last, Barrier avoidance-shortest route was established for mobile sink using Dijkstra algorithm. The Distributed location information is collected using a Timer Bloom Filter Aggregation (TBFA) scheme. In the TBFA scheme, the location information of Mobile node (MNs) is maintained by Bloom filters by each Mobile agent (MA). Since the propagation of the whole Bloom filter for every Mobile node (MN) movement leads to high signaling overhead, each Mobile agent (MA) only propagates changed indexes in the Bloom filter when a pre-defined timer expires. To verify the performance of the TBFA scheme, an analytical model is developed on the signaling overhead and the latency and devise an algorithm to select an appropriate timer value. Extensive simulation and Network Simulator 2(NS2) results are given to show the accuracy of analytical models and effectiveness of the proposed method

    Data Aggregation & Transfer in Data Centric Network Using Spin Protocol in WSN

    Get PDF
    The advancement in the wireless communications and electronics has led to the growth of low-cost sensor networks. Due to which the sensor networks is part of different application areas now. Low-cost, low-power and multifunctional small-sized sensor devices are the great end-products of wireless sensor network technologies. These sensor nodes together in a group form a sensing network. A sensor network can offer access to data anytime, anywhere by gathering, processing, evaluating and distributing data. The evolution of information sending in wireless sensor networks is boosting to devise newer and more advanced routing strategies. Many strategies have considered data collection and data dissemination. In this project, the data produced by the sensor nodes is aggregated and provide the further guaranteed data transmission to sink node/ base station using clustering mechanism and node concentration with SPIN protocol. The proposed scheme provides increased network lifetime, better data gathering and period of stability as compared to M-LEACH protocol

    A Routing Algorithm for Extending Mobile Sensor Network’s Lifetime using Connectivity and Target Coverage

    Get PDF
    In this paper, we propose an approach to improving the network lifetime by enhancing Network CONnectivity (NCON) and Target COVerage (TCOV) in randomly deployed Mobile Sensor Network (MSN). Generally, MSN refers to the collection of independent and scattered sensors with the capability of being mobile, if need be. Target coverage, network connectivity, and network lifetime are the three most critical issues of MSN. Any MSN formed with a set of randomly distributed sensors should be able to select and successfully activate some subsets of nodes so that they completely monitor or cover the entire Area of Interest (AOI). Network connectivity, on the other hand ensures that the nodes are connected for the full lifetime of the network so that collection and reporting of data to the sink node are kept uninterrupted through the sensor nodes. Keeping these three critical aspects into consideration, here we propose Socratic Random Algorithm (SRA) that ensures efficient target coverage and network connectivity alongside extending the lifetime of the network. The proposed method has been experimentally compared with other existing alternative mechanisms taking appropriate performance metrics into consideration. Our simulation results and analysis show that SRA performs significantly better than the existing schemes in the recent literature
    corecore