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Abstract—Wireless sensor networks (WSNs) are inte-
grated as a pillar of collaborative Internet of Things (IoT) 
technologies for the creation of pervasive smart environ-
ments. Generally, IoT end nodes (or WSN sensors) can be 
mobile or static. In this kind of hybrid WSNs, mobile sinks 
move to predetermined sink locations to gather data 
sensed by static sensors. Scheduling mobile sinks energy-
efficiently while prolonging the network lifetime is a 
challenge. To remedy this issue, we propose a three-phase 
energy-balanced heuristic. Specifically, the network region 
is first divided into grid cells with the same geo-graphical 
size. These grid cells are assigned to clusters through an 
algorithm inspired by the k-dimensional tree algorithm, 
such that the energy consumption of each clus-ter is 
similar when gathering data. These clusters are adjusted 
by (de)allocating grid cells contained in these clusters, 
while considering the energy consumption of sink 
movement. Consequently, the energy to be consumed in 
each cluster is approximately balanced considering the 
energy consumption of both data gathering and sink move-
ment. Experimental evaluation shows that this technique 
can generate an optimal grid cell division within a limited 
time of iterations and prolong the network lifetime.
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I. INTRODUCTION

A LONG with the advent and rapid development of the
Internet of Things (IoT), it is envisioned that by the year

2020, there will be over 50 billion connected smart things in
the world, and these smart things could act as sensors to sup-
port widespread domain applications. The interconnection of
smart things will provide real-world sensory data for driving
higher efficiencies and streamlining business practices. In fact,
the Internet nowadays is becoming the platform of communica-
tion, computation, coordination, and cooperation for machines
and smart objects [1]. The achievement of the IoT vision lever-
ages smart things (such as sensors and actuators) to detect
environmental variables and to response for supporting domain
applications. Smart things communicate primarily in a wireless
manner and construct a sensor network [2]. In fact, wireless
sensor networks (WSNs) have become an important research
topic in the recent decades and have been applied in many
application scenarios like target tracking [3]. As argued in [4],
WSNs are a key component at the perception layer of the IoT
architecture, and serve as the data acquisition interface for IoT
with the physical environment. Generally, WSNs are well rec-
ognized as an important enabling technique for achieving the
vision of IoT [1].

Empowered by embedded computing and wireless commu-
nication techniques, sensors can move around when installed
on mobile equipment. Typically, mobile sensors are resource-
rich devices with more energy, higher communication power,
and more powerful sensing and computational capabilities.
However, mobile sensors still have energy, computational stor-
age, and other constraints [5]. In this hybrid sensor network
environment, static sensors are responsible for sensing envi-
ronmental variables, while mobile sensors, also called IoT
mobile sinks [6], move to designated locations for gathering
data sensed by static sensors. The visiting frequency of mobile
sinks depends on the data buffer on static sensors and data
sensing rates. Generally, when a mobile sink moves to a (pre-
determined) sink location, it stops and broadcasts its arrival.
Thereafter, static sensors start to transfer their sensory data
to this mobile sink. Leveraging this data gathering (or col-
lection) strategy, mobile sinks collaborate to fulfill domain
applications, such as battle field surveillance and habitat moni-
toring [7]. Note that the data aggregation mechanisms of mobile
sinks depend on specific requirements of domain applications.



Without loss of generality, the energy consumed for data gath-
ering is assumed the same for all mobile sinks when the number
of static sensors is the same. In this context, scheduling mobile
sinks efficiently, while prolonging the network lifetime as much
as possible, is one of the major research challenges. It is worth
mentioning that the bulk of energy consumption for mobile
sinks is to support their movement [16]. Energy harvesting tech-
niques can be used to replenish the energy of mobile sinks,
but the energy replenished is usually much less than that con-
sumed by mobile sinks. Therefore, the lifetime of a hybrid
WSN depends on that of mobile sinks. Generally, the lifetime
of WSNs can be defined in different ways. This paper adopts
the widely used one, which is the time when the first mobile
sink depletes its energy [7]. With the mechanisms of duty-cycle
and energy harvesting, static sensors usually can survive until
the first mobile sink depletes its energy. In this paper, we study
the scheduling mechanism of mobile sinks to cover the whole
network region in an energy-efficient and -balanced manner.

The scheduling of mobile sinks is an important research
topic in hybrid WSNs and techniques have been proposed to
address this problem from different perspectives [6], [8]–[10].
An inspiring survey about the evolution of sink mobility issues
in WSNs has been presented in [27]. It is argued that sink
mobility is a recent trend to mitigate the network performance
issue, which can hardly be solved properly by static WSNs.
Generally, single (or multiple) sink(s) mobility scheduling is
a problem of NP-hard. Consequently, heuristics are adopted
mostly for the scheduling of sink movement. Intuitively, the
task of mobile sink scheduling can be modeled as the well-
known (multiple) traveling salesman problem [(m)TSP]. Since
TSP (or mTSP) is NP-hard and can hardly be used when the
number of static and mobile sinks is relatively large, heuristics
are adopted mostly for scheduling routes (or paths) of feasible
[11]. For instance in [8], mobile sensors are assumed to have
multiple capabilities. They can move to appropriate event loca-
tions, which are unpredictable and detected by static sensors
in real time, to conduct a more in-depth analysis. A two-phase
heuristic is proposed for assigning mobile sensors to event
locations, while extending the system lifetime. This method
is interesting and inspiring for the technique developed in this
paper. However, (mobile) sensors normally have similar set of
capabilities in most cases, and how to efficiently assign mobile
sensors to event locations, where multiple attributes need to be
examined, is still open. In [9], it is envisioned that for a very
large region to be monitored, it is almost impossible to cover
the whole region using static sensors. In this setting, actuators
are used to mitigate this issue for improving the area coverage,
target detection, and many other tasks. Balancing the work-
load of actuators is important in this context. After the initial
deployment, their workload is computed dynamically in light
of the partition result of Voronoi diagrams. When an imbal-
ance is detected, actuators are moved to achieve a balanced
load distribution. Voronoi diagrams are irregular somehow, and
hence, the partition may not be optimal when the path travers-
ing cost is unnegligible. Besides, we assume in this research
that the network region can be covered by static sensors. The
technique in [6] proposes to schedule one single mobile sink to
travel over sink sites (or positions) for gathering environmental
variables with delay constraints. The mobile sink is assumed

to have limitless energy compared with static sensors. The
technique in [10] mitigates the region coverage issue when a
region is relatively large and mobile sensors move indepen-
dently following decentralized control principles. Generally,
current techniques have studied the scheduling of mobile sinks
in hybrid WSNs. These include the dispatch of mobile sinks
with multicapabilities, in a sparse (or) static sensor deployment
situation. However, how to schedule mobile sinks efficiently
while prolonging the network lifetime is still a challenge to be
explored further.

This research aims to propose an efficient technique for
scheduling mobile sinks of a hybrid WSN in the framework of
IoT, while balancing the workload of these IoT mobile sinks,
such that the network lifetime is prolonged. The region to be
monitored is assumed to be covered by static sensors and has
no holes (or obstacles) [12]. Static sensors sense and buffer their
newly generated data, and these data are assumed delay-tolerant
to applications. In a nutshell, we follow a divide-and-conquer
strategy to develop a technique, including the following steps.

1) Region Division to Grid Cells: The region to be monitored
is divided into grid cells, whose size is proportional to
the communication radius of the static sensors. Grid cells
are the basic unit for mobile sinks to gather data sensed
by static sensors. To minimize the energy consumption of
mobile sink movement, there are some (possibly one) sink
positions to be predetermined in each grid cell, such that
a mobile sink is required to move to these sink positions
only for gathering sensory data.

2) Grid Division w.r.t. Data Gathering Energy Cost: Grid
cells are the same in size, but may differ in the number
of static sensors contained (especially when static sen-
sors are in a skewed distribution). This indicates that the
energy consumption for mobile sinks of gathering data
may differ considerably for different grid cells. In this
step, grid cells are grouped into clusters using an algo-
rithm inspired by the k-dimensional tree algorithm. The
number of clusters is set to the same number as that of
mobile sinks. Hence, the data gathering effort is almost
the same (within an allowed threshold of difference) in
each cluster.

3) Cluster Adjustment w.r.t. Sink Movement Cost: In the pre-
vious step, the energy consumption of sink movement has
not been considered. In fact, the energy consumption of
mobile sinks is different (to a large extent), especially
when static sensors are not distributed evenly. By taking
this into account, we propose to adjust the initial grid divi-
sion by considering the impact of the movement cost of
mobile sinks, such that the energy consumption of data
gathering and sink movement is almost the same for all
clusters. Consequently, the energy consumption is almost
the same for each mobile sink, and the lifetime of each
mobile sink does not differ to a certain extent. Therefore,
the network lifetime is prolonged.

Note that when the grid cell division and adjustment pro-
cedures have been applied, no update needs to be enacted
afterward. Compared with the state of the art, our technique
ensures that the energy consumption of all mobile sinks is
almost the similar, which causes the life of mobile sinks not
to differ much. Hence, the lifetime of the network is prolonged.
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This paper is organized as follows. Section II introduces the
network model. Section III discusses related work. Section IV
presents the network division strategy. Section V introduces
the clustering technique considering the energy consumption
of data collection only, while Section VI proposes to adjust
clusters through transferring grid cells between clusters when
considering the energy consumption of mobile sink move-
ment. Section VII presents the experimental evaluation, and
Section VIII makes a conclusion and presents future directions.

II. PRELIMINARY
IoT end nodes (or smart things) are primarily wirelessly

connected and construct a network, while these nodes can be
mobile or static [2]. In fact, IoT end nodes correspond to the
sensors in WSNs. As mentioned above, a hybrid WSN contains
two types of sensors: 1) static sensors; and 2) mobile sinks.
Static sensors are deployed in the network region for sensing
environmental variables, while mobile sinks move, following
predetermined paths, to designated locations for gathering data
sensed by static sensors. Sensors are aware of their locations,
which can be achieved through global positioning systems or
other localization techniques. Note that the location of sensors
is obtained during the network initialization phase, and does
not need to be updated afterward. Hence, the energy consump-
tion of location acquisition is relatively small and negligible.
Static sensors may be deployed unevenly in the network region.
Without loss of generality, we assume that a hybrid WSN has
no holes, and static sensors (or mobile sinks) are assumed to
possess the same capabilities. Mobile sinks have much more
capabilities, including energy and communication radius, than
those of static sensors, although still have limitations in their
capabilities. Since static sensors are responsible for sensing
environmental variables and sending data to mobile sinks, while
mobile sinks move around and gather sensory data by static sen-
sors, the energy consumption of mobile sinks are much higher
than that of static sensors. Specifically, a mobile sink moves to
a grid cell, stops at prespecified sink positions, and gathers data
sensed by static sensors. The energy consumption occurs during
the sink movement and data gathering phases. Since the energy
of static sensors can be replenished by the techniques of energy
harvesting, the lifetime of the hybrid WSNs is determined by
the lifetime of mobile sinks (rather than that of static sensors).

Generally, this work is to propose a mobile sink scheduling
mechanism, which aims to prolong the lifetime of the hybrid
WSNs as much as possible. The energy consumption of mobile
sinks includes two parts: 1) sink movement; and 2) data gather-
ing. Given a network, the energy consumption of data gathering
is proportional to the number of static sensors contained in this
network, while that of sink movement is proportional to the
distance of sink movement. Prolonging the network lifetime
requires that mobile sinks should move as short a distance as
possible, and the energy consumption of mobile sinks should
be as close as possible. To mitigate this problem, we divide the
network region into grid cells, and group grid cells into clus-
ters, such that each mobile sink has similar energy consumption
when considering the cost of both data gathering and mobile
sink movement. Below we list symbols and notations used in
the subsequent sections.

S a hybrid WSN with n static sensors and m
mobile sinks. Note that n is much bigger than m
in domain applications.

r the data communication radius of static sensors.
Note that the communication radius of mobile
sinks is typically much bigger than that of static
sensors.

gi, gSide: gi is the grid cell i divided from the network S,
and gSide is the side length of gi. Without loss of
generality, all grid cells are equivalent in their
geographic size and a grid cell is a square in
shape.

ci: the cluster i (i ∈ (0, m]). The cluster ci is built
through grouping the relevant grid cells.

ci · gnum: the number of grid cells contained in a certain
cluster ci.

GN(i, j): the set of grid cells belonging to the cluster ci and
neighboring the cluster cj(j ∈ (0, m]). Note that
cj denotes an adjacent cluster to the cluster ci.

gnk(i, j): the grid cell k in GN(i, j), which is numbered
from top to bottom, and from left to right.

gi · ECD: the energy consumption of a mobile sink when
gathering data sensed by static sensors in the grid
cell gi. gi · ECD is proportional to the number of
static sensors in gi, since sensory data of all
sensor nodes contained in gi are gathered. Note
that there may be a minor difference in energy
consumption due to the difference in distance
between static sensors and the corresponding
mobile sink. For simplicity, this is not considered
in this technique.

ci · ECM: the energy consumption of a mobile sink when
moving within a cluster ci for traversing all grid
cells contained in ci. Generally, ci · ECM is
proportional to the length of the path that a
mobile sink traverses in ci.

uECM: the energy consumption of a mobile sink when
moving from a grid cell gi to its neighboring grid
cell gj . It is worth mentioning that the movement
direction can only be horizontal or vertical.

ci · EC: the energy that a mobile sink consumes when it
traverses all grid cells in the cluster ci for
gathering data sensed by static sensors. ci · EC is
composed of ci · ECM and all gi · ECD, where
the grid cell gi belongs to the cluster ci.
Specifically, gi · ECD represents the energy
consumption of gathering all sensory data in the
cluster ci, while ci · ECM represents that of sink
movement within ci.

As mentioned above, this technique is to prolong the net-
work lifetime, which requires the lifetime of mobile sinks to
be as close as possible. This mandates that the difference of
c · EC for each mobile sink should be as small as possible. We
use the formula in the following to reflect this requirement,
where V represents the variance of c · EC. Generally, a smaller
value of V means that the difference between c · EC for mobile
sinks is relatively smaller. Specifically, (c · EC−

∑m
i=1 ci·EC

m )
2

is smaller only when the bias of c · EC for all mobile sinks is
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Fig. 1. Diversification of ci · ECM when adjusting grid cells.

Fig. 2. Grid cell division with a small side length (i.e.,
√
2r/2), where the

black and solid points represent static sensors, while the red and circled 
points represent sink locations. The points in Fig. 3 are the same as 
these in Fig. 2.

Fig. 3. Grid cell division where the side length is set to
√
2r.

smaller. This reflects that the energy consumption of all mobile
sinks does not differ to a certain extent. Therefore, the mini-
mization of V is used as the criterion, when grouping grid cells
into clusters and assigning clusters to mobile sinks for gathering
data of static sensors

V =

∑m
i=1

(
ci · EC−

∑m
i=1 ci·EC

m

)2

m
. (1)

Intuitively, if grid cells are smaller (gSide is set to a rela-
tively smaller value), c · EC should be smaller as well. In this 
setting, it may be possible to make c · EC similar in value for 
all clusters through the mechanisms proposed in Sections IV 
and V. On the other hand, as illustrated in Figs. 2 and 3, when 
grid cells are too small, certain energy consumed for the sink 
movement may be unnecessary. This means that more energy 
has to be consumed and the network lifetime may be impacted
negatively. Hence, grid cells should be set to the most appro-
priate size (i.e., gSide =

√
2r), to prolong the network lifetime,

although V may not be the minimum in this setting.
Before presenting our technique, we would like to discuss

more about ci · ECM. Since no holes exist in the network
region, given a cluster ci, a mobile sink needs to move ci ·

Table I
ci · ECD AND cj · ECM ADJUSTMENT WHEN REALLOCATING GRID

CELLS gn1(i, j), . . . ,  gnk(i, j) FROM THE CLUSTER ci TO A
NEIGHBORING CLUSTER cj

gnum − 1 steps to traverse all grid cells contained in most 
cases, as shown in Fig. 1(a) and (b). However, for some other 
cases as illustrated in Fig. 1(c) and (d), the mobile sink is

mandated to move ci · gnum or ci · gnum + 1  steps for a tra-
verse. It is worth noting that the cases of Fig. 1(c) and (d) do 
not exist after initial clustering of grid cells (see Section V). 
Furthermore, we have tried to avoid the cases as shown in 
Fig. 1(c) and (d) during the reallocation of grid cells between 
clusters (see Section VI). This means that the cases of Fig. 1(c)

and (d) are rare in final clusters. For simplicity, we set ci · 
ECM = (ci · gnum − 1) × uECM in the following sections.

When reassigning grid cells gn1(i, j), . . . , gnk(i, j) from
a cluster ci to a neighboring cluster cj , ci · ECD is updated
depending on k and

∑k
i=1 gni (i, j) · ECD. The formulae for

updating cj, c i · ECD and cj · ECM for this reallocation are 
presented in Table I, where the first row represents the energy 
consumption of data gathering, while the second row represents 
that of sink movement, for the transformation from the cluster

ci to its neighboring cluster cj .

III. RELATED WORK AND COMPARISON
In [8], a hybrid WSN is composed of static and mobile

sensors. Each static sensor is assumed to detect one kind of
attribute, while each mobile sensor can analyze multiple (not
all normally) attributes of events. Mobile sensors are required
moving to appropriate event locations, which are detected by
static sensors, for conducting more in-depth analysis. Events
are assumed to be happening independently and unpredictably.
To mitigate this multiattribute mobile (MAM) sensor dispatch
problem, a two-phase heuristic is proposed for the assignment
of mobile sensors to event locations while extending the sys-
tem lifetime. Specifically, MAM sensors are assigned to event
locations in a one-to-one fashion initially, and a spanning-tree
construction algorithm is adopted for dispatching MAM sen-
sors to unassigned event locations afterward. This research
is promising and has inspired the development of our tech-
nique. However, (mobile) sensors normally have a similar set
of capabilities, and a method to efficiently assign MAM sensors
to event locations, where multiple attributes are to be exam-
ined, is not explored. The authors have studied the mobility
management algorithms of mobile sensors and reviewed some
existing WSN platforms in [15]. Besides, the authors have
studied the mobile sink scheduling problem in centralized and
distributed situations [16]. In centralized environments, static
sensors are divided into clusters, and the traverse of mobile
sensors is constructed using the minimum spanning tree. In
distributed counterparts, static sensors are divided according
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to a grid structure, which is similar to our grid-division strat-
egy presented in Section IV. The difference between this work
and our technique is that the dispatching of mobile sensors
in this work is triggered in an event-oriented manner, where
a part of the network region is normally to be investigated.
By contrast, the coverage of the whole network region is our
concern.

In [9], the authors argue that in certain applications like
space exploration, static sensors can hardly cover the entire tar-
get region and cannot ensure the network connectivity. In this
context, mobile actuators are used for mitigating this network
architecture challenge. Balancing the workload of actuators is
a critical issue for prolonging the network lifetime. To address
this challenge, the minimum-load path is computed for a sin-
gle actuator which is responsible for the data gathering at a
certain subregion. After the initial deployment of actuators to
subregions, their workload is computed dynamically in light
of the partition result of Voronoi diagrams. When an imbal-
ance is identified, actuators are moved following prespecified
rules to achieve a balanced load distribution. In fact, we are
inspired by this technique to propose our clustering and adjust-
ment strategies. Our technique leverages the grid cell division
for avoiding irregular subregions, as presented in the evalu-
ation part (Section VII-B). In this work, the authors divide
the network region in terms of Voronoi diagrams, which may
be irregular subregions in some cases. Therefore, the partition
may not be optimal, especially when the path traversing energy
consumption is unnegligible. Similar to the method presented
in [9], the technique in [17] argues that no static sensors are
deployed for sensing data in relatively large regions. Hence,
mobile sensors are dispatched to visit critical sensing locations
for gathering sensory data. The routes are planned almost the
same in path length for ensuring the load balance of mobile sen-
sors. Leveraging the same assumption that only mobile sensors,
while no static sensors, exist in the network, the technique in
[10] studies the region coverage challenge, especially when the
coverage priority of different fields may be different. Generally,
these techniques consider the energy consumption of mobile
sink movement, while the energy comsumption of data gather-
ing at certain subregions is assumed to be the equivalent. This
assumption may not be valid in certain domain applications.
Therefore, we propose a mobile sink scheduling method for
balancing the energy consumption of mobile sinks, considering
both data gathering and sink movement.

In quasi-real-time applications, information delay can be tol-
erant to a limited extent. In this setting, Gu et al. [6] propose
to schedule one single mobile sink to travel over sink sites for
gathering environmental variables with delay constraints. Delay
is mainly caused by the movement of the mobile sink. To solve
this issue, sink sites are determined such that a mobile sink
can gather sensory data when traversing these sink sites only.
The formalized mixed integer nonlinear programming problem
is time consuming to be solved directly, and thus it is con-
verted to tractable subproblems. In this research, the mobile
sink is assumed to have limitless energy compared to static
sensors. This assumption may not be held in certain domain
applications. The authors surveyed the sink mobility manage-
ment techniques in WSNs [27]. This survey is very interesting

and has inspired us to develop the technique presented in this
paper. Different from the above approach, the authors proposed
in [7] a method to maximize the network lifetime for delay tol-
erant WSNs. Static sensors store sensory data temporarily and
transmit to the mobile sink whenever it locates in a position
most favorable for achieving the maximinum of network life-
time. The assumption of delay-tolerant applications is similar
to what we have made in this paper. A similar technique is pro-
posed in [18], where information is routed to a mobile sink in a
multihop fashion. A distributed algorithm is proposed for pro-
longing the network lifetime under energy constraints through
casting it into a linear program, and solving it through a dual
decomposition method. Generally, these techniques may work
well when one single mobile sink is considered, whereas the
solution for supporting the cooperation of multiple mobile sinks
is not explored.

In a task (or event)-driven network, sink scheduling is to
assign tasks to potential sinks. The technique in [19] inves-
tigates the task assignment issue in a wireless sensor and
robot network. When multiple tasks happen simultaneously, the
assignment of the most appropriate robot to fulfill a certain task
is a challenge. However, this work does not give solutions to
remedy this issue. Sensor self-deployment is important, espe-
cially when the network size is large and the bandwidth is
limited. Therefore, [20] studies this issue in a localized manner,
where each sensor makes self-deployment decisions indepen-
dently leveraging the information about k-hop neighborhoods.
Two strictly localized algorithms are developed and they are
proved efficient with desired coverage guarantee. [21] studies
the mobile sensor relocation problem when sensors dropping
or failure happens, for mitigating the coverage challenge. In
summary, these approaches focus primarily on task prediction
and assignment, as well as sensor relocation, for improving the
region coverage. Balancing the energy consumption of mobile
sinks, and thus to prolong the network lifetime, is not the main
concern.

Besides, there are some techniques investigating similar chal-
lenge addressed in this paper. The authors propose in [22] an
integer linear programming model for the optimization of sink
locations and sensor-to-sink information flow routes between
sensors and mobile sinks. [23] proposes to prolong the net-
work lifetime through a controlled mobile sink by restricting
the distance between two mobile sinks’ sojourn location and
the sojourn time. This work is improved through considering
multiple mobile sinks [24]. Specifically, a WSN is divided into
k clusters with a load-balanced tree. The routes and sojourn
time of these k sinks are optimized in a heuristic manner. It is
envisioned that thousands of independent components should
be involved in an IoT application [25], which has a property
called sparseness in the transformation process. Therefore, a
desirable data compression ratio is important when consider-
ing the performance of applications. Hence, the authors propose
a compressed sensing-oriented technique to explore the infor-
mation acquisition in both IoT and WSNs. [26] proposes to
apply mobile robots for supporting the real-time search and
monitoring in remote sensing, where the coverage is the main
concern. Based on the discussion above, we argue that cur-
rent approaches have explored the scheduling of IoT mobile
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sinks in a hybrid WSN. They have investigated the dispatch
of mobile sinks with multicapability, in the sparse (or) static
sensor deployment situation. However, scheduling mobile sinks
efficiently, while prolonging the network lifetime, is a challenge
not explored extensively. To fill this gap, this paper proposes a
three-phase energy-balanced heuristic, where the energy con-
sumption of data gathering and sink movement are taken into
account, to balance the energy consumption of mobile sinks and
to prolong the network lifetime.

IV. DIVIDING NETWORK REGION INTO GRID
CELLS

Grid-based techniques have been used widely to support the
applications of WSNs [13]. This section introduces the first step
of our technique, which is to represent the network region as
grid cells. Generally, these grid cells are equivalent in size and
square in shape. The purpose is to facilitate the grid cell clus-
tering and cluster adjustment procedures to be presented in the
following sections. When this grid cell division is enacted, no
update is necessary afterward. As argued in [27], a grid over-
lay may not be necessary when the number of sensor nodes
deployed in the network is not large. In this technique, there
is no assumption made about the network scale. Therefore, a
grid overlay is adopted to represent the network region. The
geographical size of a grid cell is determined by its side length
gSide. Generally, a grid cell contains some static sensors, which
are responsible for sensing environmental variables. There is
(are) one (or multiple) position(s) in each grid cell, called the
sink position(s), such that a mobile sink can gather data of all
static sensors in this grid cell when staying at this (or these)
sink position(s). The sink position(s) selection is affected by
two parameters: 1) r; and 2) gSide. Note that r is fixed, and
thus, gSide is the only deterministic factor.

1) When gSide is set to a relatively small value, the num-
ber of grid cells should be very large. Note that there is at 
least one sink position in each grid cell. This means that 
mobile sinks should spend much more energy on moving 
between grid cells within a cluster. For instance, gSide in 
Fig. 2 is set to half of that in Fig. 3, and we set gSide 
in Fig. 2 as one unit of distance. A mobile sink needs to

omove 31 units of distance in Fig. 2, while it has t move
14 units of distance in Fig. 3. Since gSide is set to

√
2r in

Fig. 3, a mobile sink can gather sensory data from all sen-
sor nodes in the cluster when staying at the corresponding 
sink location (i.e., the center of a grid cell). This suggests 
that the energy to be consumed by the mobile sink for the 
case of Fig. 3 is sufficient, while the extra energy 
consumption for the movement of (31 − 14 = 17) units of 
distance in Fig. 2 is unnecessary and can be avoided. From 
these two figures, it is evident that it is not energy efficient 
when gSide is set to a too smaller value than√

2r. In addition, too small a side length of grid cells may
induce hole or island problems, especially when static
sensors are distributed in a skewed manner.

2) When gSide is set to a relatively large value, the network
will be divided into some large grid cells. Hence, multiple
sink positions are required for each grid cell and gi · ECD
is a large value, although the energy consumption for the

sink movement may be the same, or does not differ much,
compared with that for the case when gSide is set to

√
2r.

Therefore, after the initial grid cell clustering, a grid cell
adjustment strategy considering the sink movement cost
may be hard, if not impossible, to achieve a balanced sit-
uation, such that the deviation on energy consumption of
all mobile sinks is within an allowed threshold.

Note that in [14], some experiments have been performed to
study the optimal cluster size of WSNs, while optimizing the
energy consumption of the network. It is evident that in most
cases, the most optimal cluster size is where sensors are within
the one-hop distance to the cluster head sensor (i.e., sink posi-
tion). Leveraging this observation, gSide is set to a value that is
not larger than

√
2r and the sink position is set as the center of

a grid cell in this paper, as illustrated in Fig. 3. Therefore, when
a mobile sink moves to a sink position, all static sensors in the
grid cell can forward their sensory data to this mobile sink. In
this setting, static sensors do not require to communicate with
each other and send data to the mobile sink in a hop-by-hop
fashion. Based on this grid division strategy, we will present
our grid cell clustering procedure, while considering the energy
consumption of data gathering, in the next section.

V. GRID CELLS CLUSTERING CONSIDERING 
DATA GATHERING ENERGY CONSUMPTION

This section presents the second step of our technique, which
is to group grid cells into clusters, such that in each cluster,
a mobile sink should consume appropriately a similar amount
of energy when gathering data from static sensors. Leveraging
this grid cell clustering result, the energy consumption for the
movement of mobile sinks is to be considered in Section VI
through adjusting grid cells between clusters.

Without loss of generality and for simplicity, the number of
clusters is set to the same number as that of mobile sinks. With
this consideration, in this step, the number of static sensors
contained in each cluster should not differ much after the grid
cell clustering. We use a strategy inspired by the k-dimensional
tree algorithm for clustering grid cells. Different from the
k-dimensional tree algorithm, which clusters spatial data points
through splitting the point set by their x- and y-coordinates, our
technique clusters grid cells and a grid cell should be assigned
into only one cluster.

As presented in Algorithm 1, we iterate the cell division pro-
cedure m times and generate one cluster in each iteration. It
is worth mentioning that the division is guided by the variance
of static sensors in grid cells along their x- or y-coordinate.
A smaller variance is chosen in each round of division, which
ensures that the two clusters generated after the division is much
more similar in the number of static sensors contained.

First, the variances of static sensors with respect to their
x- and y-coordinates are computed, respectively (lines 3–4). A
larger value of the variance suggests that static sensors are dis-
tributed more evenly along their x- (or y-) coordinate. In this
manner, it is highly possible that clusters generated along their
x- (or y-) coordinate are similar in geographical size.

If the variance of x-coordinate is larger, the new cluster will
be generated through the division along x-coordinate (lines
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6–14). First, static sensors are sorted with respect to their
x-coordinates (line 6), and the static sensor sn, which position
is �e� = 4, is chosen as the position mark. Note that �e� speci-
fies the ceiling operation for e. For instance, �e� = 4 when e =
3.34. Static sensors contained in grid cells are numbered and
counted while considering the cases of including (or excluding)
the grid cell which contains sn (lines 8–9). Grid cells, which
is in the upper and/or lower side(s) of the grid cell containing
sn, are also being included (or excluded). These two numbers
are encoded as cL and cR, respectively. A cluster is formed and
includes grid cells containing static sensors in cL or cR. In a
similar fashion, when the variance of y-coordinate is relatively
larger, the same procedure is applied to generate a new cluster
(lines 16–24).

Algorithm 1. GridCluster

Require:
G:the set of grid cells generated from a hybrid WSN S,
where S contains n static sensors and m mobile sinks

Ensure:
c1 . . . cm: m clusters to be divided

1: while m > 1 do
2: e← (the number of static sensors in S) / m
3: vX ← variance of x-coordinate of static sensors in S
4: vY ← variance of y-coordinate of static sensors in S
5: if vX � vY then
6: Qx ← sort static sensors w.r.t. their x-coordinate
7: sn← take the static sensor which is in the

position of �e� in Qx

8: cL← the number of static sensors whose
x-coordinate is less than that of sn, while exclud-
ing the grid cell containing sn

9: cR← the number of static sensors whose
x-coordinate is less than that of sn, while includ-
ing the grid cell containing sn

10: if |cL− e| � |cR− e| then
11: cm ← a cluster containing a set of grid cells, such

that these grid cells contain all static sensors
in cL

12: else
13: cm ← a cluster containing a set of grid cells, such

that these grid cells contain all static sensors
in cR

14: end if
15: else
16: Qy ← sort static sensors w.r.t. their y-coordinate
17: sn← take the static sensor which is in the position

of �e� in Qy

18: cT ← the number of static sensors whose
y-coordinate is less than that of sn, while including
the grid cell containing sn

19: cB ← the number of static sensors whose
y-coordinate is less than that of sn, while excluding
the grid cell containing sn

20: if |cT − e| � |cB − e| then
21: cm ← a cluster containing a set of grid cells, such

that these grid cells contain all static sensors
in cT

Fig. 4. Example demonstrating the new cluster generation procedure.

22: else
23: cm ← a cluster containing a set of grid cells, such

that these grid cells contain all static sensors
in cB

24: end if
25: end if
26: m← m− 1
27: G, S ← remove grid cells and static sensors in cm
28: end while

An example is shown in Fig. 4 illustrating the new cluster 
generation procedure. A hybrid WSN S contains three mobile 
sinks (m = 3) and 10 static sensors [denoted n1(1, 1), n2(1, 5), 
n3(3, 3), n4(3, 7), n5(5, 1), n6(5, 7), n7(7, 3), n8(7, 5), 
n9(9, 5), and n10(9, 7)]. The side length of grid cells gSide is 
set to 2 units of distance, as shown in Fig. 4. In this setting, 
these 10 static sensors should be assigned into m = 3 clusters, 
and each cluster should contain e = 3.34 static sensors. In the 
first iteration, the variances of the x- and y-coordinates (vX and 
vY ) are computed as 8 and 8.36, respectively. Static sensors are 
sorted along their y-coordinate from small to large in Qy , and 
set the static sensor, which is in the position of �e� = 4 in Qx, 
as sn. Thereafter, as marked in Fig. 4, TTop is sn’s nearest top 
grid side, and TBottom is sn’s nearest bottom grid side. We get 
that |cT − e| = 0.66 is less than |cB − e| = 1.34. Hence, we 
set static sensors under TTop as c3 (as marked in the red rectan-
gle in Fig. 4), remove static sensors in c3 from S, and thereafter, 
a new cluster is generated accordingly.

In a nutshell, this section groups grid cells into clusters. This
step tries to make the number of static sensors in each cluster as
equivalent as possible, while can hardly guarantee that the bias
of the geographical size of clusters is within a certain threshold.
This is due to the fact that the number of static sensors is mainly
considered when clusters are generated (refer to lines 11, 13, 21,
23 in Algorithm 1). This means that the energy consumption
of mobile sinks may be significantly different when consider-
ing the energy consumption of sink movement, since mobile
sinks need to traverse all grid cells that a certain cluster con-
tains for gathering data from static sensors, and sink movement
consumes the majority of energy [16]. To remedy this issue,
we propose in Section VI to transfer grid cells between clus-
ters, ensuring that clusters are similar in energy consumption
considering the cost of data gathering and sink movement.
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VI.CLUSTER ADJUSTMENT CONSIDERING
MOBILE SINK MOVEMENT ENERGY 

CONSUMPTION
Grid cells have been grouped into clusters in Section V,

where the energy consumption of data gathering is similar
for clusters. However, clusters may differ significantly in the
geographical size of their subregions, which induces the dif-
ference in the energy consumption of sink movement. To
balance the whole energy consumption of mobile sinks, this
section introduces our cluster adjustment strategy, which is to
transfer grid cells between clusters, for achieving a relatively
balanced energy consumption considering sink movement
cost.

Intuitively, when a cluster is bigger in the number of static
sensors and/or larger in geographical size, which should induce
more energy consumption than average, one or more grid cells
contained in this cluster should be transferred to its neighbor
cluster(s) whose energy consumption is less than the aver-
age. Consequently, the energy consumption of all clusters is
more balanced than that before the adjustment. As presented
in Algorithm 2, clusters are examined in sequence (line 2), and
grid cells are reallocated from a cluster to a neighboring one
when necessary (lines 5 or 8). This procedure terminates when
V (see Formula 1 in Section II) is relatively stable. Note that
the situation where V repeats between several fixed values is
considered as stable. In fact, this situation specifies the case
that one (or several) grid cell(s) is(are) being realocated from a
cluster to another cluster, being transferred back to the original
cluster in the next round, and this procedure iterates afterward.
It is worth mentioning that the criterion for the termination
of Algorithm 2 (i.e., V is relatively stable) indicates that the
bias of c · EC for mobile sinks can hardly be further decreased
under certain network and parameter settings, which suggests
that the network lifetime can hardly be prolonged further. As
discussed, the network life is determined by the lifetime of the
mobile sink, which is moving along a predetermined path to
gather data in the cluster with the largest c · EC. The clusters
generated with respect to the smallest V during the cluster-
ing procedure should be kept as the result of final grid cell
division.

Algorithm 2. ClusterAdjustment

Require:
c1 . . . cm: m clusters generated by Algorithm 1

Ensure:
c1 . . . cm are balanced in energy consumption

1: E ←
∑m

i=1 ci.EC

m
2: while V is unstable do
3: for (i = 1; i <= m; i++) do
4: if ci.EC > E then
5: DeclineCluster(ci, E)
6: end if
7: if ci.EC < E then
8: IncreaseCluster(ci, E)
9: end if

10: end for
11: end while

Algorithm 3. DeclineCluster

Require:
ci: the cluster whose grid cells need to be transferred to one
of its neighbor clusters
E: average energy consumption for all clusters

Ensure:
one or several grid cells in the cluster ci is(are) transferred
to one of its neighbor cluster(s)

1: cj : a cluster neighboring to ci and has the smallest energy
consumption considering data gathering and mobile sink
movement

2: k ← 1
3: while ci.EC > cj .EC and ci.EC > E do
4: ci.EC ← ci.EC − gnk(i, j).ECD − uECM
5: cj .EC ← cj .EC + gnk(i, j).ECD + uECM
6: k ← k + 1
7: end while
8: transfer gn1(j, i), . . . , gnk(j, i) from ci to cj

The function DeclineCluster is presented in Algorithm 3,
which aims to transfer some grid cells contained in the cluster
ci to its neighboring cluster cj , such that the difference between
ci · EC and cj · EC should be reduced. Note that cj represents
one of ci′s neighboring clusters which has the smallest energy
consumption (line 1). Intuitively, cj · EC should not be adjusted
to a number of too large or too small compared with the aver-
age energy consumption of each cluster E. Otherwise, cj · EC
should further transfer grid cells to or from neighboring clus-
ters, which should reduce the speed of clustering procedure.
When cj · EC is larger than cj · EC and E, grid cell gnk(i, j)
in the set GN(i, j) is to be transferred from ci to cj . This pro-
cedure terminates until ci · EC is not larger than either cj · EC
or E (lines 3–7). These grid cells are transferred from ci to cj
finally (line 8). Since the function IncreaseCluster as presented
in Algorithm 4 is similar to the function DeclineCluster, we do
not discuss it in detail.

An example is shown in Fig. 5 about the grid cell adjust-
ment procedure. The thick black line in the middle denotes the 
boundary between two clusters c1 and c2. The initial distribu-
tion generated by Algorithm 1 is shown in Fig. 5(a), where two 
clusters c1 and c2 are formed and the relation c1 · EC > c2 · EC 
holds. Thus, the grid cells gn1(1, 2) and gn2(1, 2) are required 
to be transferred from c1 to c2. Thereafter c1 · EC <= c2 · EC 
holds, and the transformation procedure ends. Note that the 
marks of grid cells are adjusted after the transformation pro-
cedure, as shown in Fig. 5(b), and only the grid cells next to the 
boundary in the initial distribution can be a GN(i, j) cell. For 
instance in Fig. 5(a), grid cells 2, 3, 6, 7, 10, 11, 14, or 15 can 
be a GN(1,2) cell, while grid cells 1, 4, 5, 8, 9, 12, 13, or 16 
cannot be.

When this grid cell adjustment strategy has been enacted,
the difference of energy consumption for all clusters can hardly
be reduced any further, considering the energy consumption of
data gathering and sink movement. Consequently, the lifetime
of mobile sinks is the longest somehow for current network and
environmental settings. Therefore, the lifetime of the network
is prolonged.
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Fig. 5. Example illustrating the reallocation procedure of grid cells from 
the cluster c1 to the neighboring cluster c2.

Algorithm 4. InscreaseCluster

Require:
ci: the cluster which needs to get grid cells from neighbor-
ing cluster(s)
E: average energy consumption in each cluster

Ensure:
Grid cells are added to ci from a neighboring cluster

1: cj : a cluster neighboring to ci and has the biggest energy
consumption considering data gathering and mobile sink
movement

2: k ← 1
3: while ci.EC < cj .EC and ci.EC < E do
4: cj .EC ← cj .EC − gnk(j, i).ECD − uECM
5: ci.EC ← ci.EC + gnk(j, i).ECD + uECM
6: k ← k + 1
7: end while
8: transfer gn1(j, i), . . . , gnk(j, i) from cj to ci

VII. EXPERIMENTAL EVALUATION

A. Experiment Settings

The prototype has been implemented in a Java program. A
hybrid WSN S is constructed, where m = 6 mobile sinks and
n = 10 000 static sensors are deployed in a region of 1000m×
750m network space. We set r = 50 m and gSide = 50 m.
gSide can be 50 m×√2 = 71 m of appropriate according to
the discussion in Section IV. S is divided into 20× 15 = 300
grids cells. As to the energy consumption of data gathering
(gi · ECD) and mobile sink movement (uECM), without loss of
generality, we set gi · ECD as 0.1 unit of energy when gather-
ing data from one static sensor contained in a certain grid cell.
gi · ECD is proportional to the number of static sensors con-
tained in a certain grid cell. uECM is set to 20 units of energy
when moving a distance of 71 m. Note that the values for uECM
and gi · ECD can be set to other appropriate values when neces-
sary. With this setting of parameters, we generated seven sets of
datasets for static sensors with random distribution for the eval-
uation purpose. Specifically, 10 000 static sensors are randomly
assigned to locations in the network region, and the distribution
is uneven in most scenarios. Experiments are conducted on a
laptop with an Intel i5-3210M processor, 8 GB memory, and a
64-bit Windows 8 operating system.

Fig. 6. Diversification of V on datasets 1, . . . ,  7 when transferring grid 
cells between clusters.

Fig. 7. Grid cell clustering result on dataset 7.

B. Evaluation Results

Three experiments have been performed for evaluating the
convergence of our cluster adjustment strategy (as presented by
Algorithm 2), the effectiveness of our grid cell transformation
strategy, and the impact of gSide to clustering results.

Fig. 6 illustrates the diversification of V when Algorithm 2 is 
performed on datasets 1, . . . , 7, respectively. It is evident that V 
converges after several iterations, for instance, 11 iterations for 
dataset 1, and 9 iterations for dataset 2. This suggests that our 
technique presented in Algorithm 2 can generate an appropriate 
division of grid cells after limited iterations of (de)allocating 
grid cells between clusters, such that these clusters are sim-
ilar (within an allowed divergence), considering the energy 
consumption of data gathering and sink movement between 
grid cells. The curves in Fig. 6 show that in each iteration, 
Algorithm 2 transfers grid cells from the clusters with local 
maximum energy consumption to the clusters of local mini-
mum, in order to decrease V . Note that V may increase in some 
iterations, since the optimization of the local does not mean that 
of the global. On the other hand, when V is relatively stable 
(i.e., the fluctuation of V is within a certain threshold), the sta-
tus of a global optimization in current network and parameter 
settings is achieved. Then, the cluster adjustment procedure fin-
ishes. The result of the clustering procedure corresponds to the 
clusters when V is the smallest, as mentioned in Section VI. 
For instance, Fig. 7 shows the clustering result on dataset 7 
after the grid cells division (as detailed in Algorithm 1). Fig. 8 
shows the cluster adjustment result after transferring certain 
grid cells between clusters for achieving a balance of energy 
consumption.

Note that we have presented in Fig. 1(c) and (d) that some 
special situations may cause ci·gnum steps or ci · gnum + 1  
movement steps of mobile sinks for the traverse of grid cells 
in a certain cluster. These cases are evident in Fig. 8 and should 
be avoided whenever possible. Leveraging the analysis on our 
experimental results, it is found that the existence of these cases 
is related to the GN(i, j) grid cell transformation sequence in
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Fig. 8. Cluster adjustment result on dataset 7.

Table II
GN(i, j) GRID CELLS TRANSFORMATION STRATEGIES WHEN 

TRANSFERRING GRID CELLS FROM THE CLUSTER ci TO 
THE NEIGHBORING CLUSTER cj

Fig. 9. Cluster adjustment result on dataset 7 using strategies in Table II.

Algorithm 2. Actually, GN(i, j) grid cells are transferred from
gn1(i, j) to gnk(i, j) in sequence. To avoid the appearance of 
these cases, we have set some cell transformation strategies as 
presented in Table II. Fig. 9 shows the cluster adjustment result 
when these strategies are applied. In comparison with Fig. 8, t h e 
boundary of clusters is smoother in Fig. 9 when these strategies 
are applied, and the cases shown in Fig. 1(c) and (d) do not 
appear.
Fig. 10 shows the diversification of V on datasets 1, . . . , 7 

when these strategies are adopted. Similar to the situation of not 
applying these strategies (as shown in Fig. 6), V converges after 
some iterations of grid cell adjustment procedures. Note that the 
number of iterations may increase (e.g., from 9 to 19 for dataset

2) or decrease (e.g., from 8 to 7 for dataset 3) when V con-
verges. Fig. 10 shows that the V of the smallest is decreased (to 
a large extent) for most datasets against that as shown in Fig. 6. 
Note that V may become larger after the grid cells adjustment 
using the transformation strategies proposed in Table II, since 
static sensors may be in an appropriate distribution initially. In 
this case, the clusters with respect to the V of the smallest dur-
ing the clustering procedure is the final result. An example is 
dataset 2, whose V in Fig. 10 is much larger than that in Fig. 6, 
and hence, the V at the ninth iteration as shown in Fig. 6 is to 
be adopted. We have examined and found that static sensors of 
dataset 2 are distributed in a more skewed fashion compared to 
the others. Specificcally, some regions are extremely dense, 
while the others are relatively sparse. In this setting, adjusting 
grid cells neighboring between clusters may induce the 
increase of V to an extent.

Fig. 10. Diversification of V of cluster adjustment results on datasets 
1, . . . , 7 when transformation strategies presented in Table II are applied.

Fig. 11. Diversification of V on dataset 7 when gSide is set to different 
values.

We have discussed the impact of gSide on our clustering and 
cluster adjustment results as presented in Section IV. We have 
set six different values for gSide and conducted the experiments 
upon dataset 7. Note that when gSide is set to 80 or 100 m, 
four sink locations are set in each grid cell. The result is shown 
in Fig. 11. It is evident that when gSide is set to a relatively 
large value (e.g., 80 or 100 m as shown in Fig. 11), V can 
hardly converge within an allowed threshold. This means that 
an assignment task of grid cells to mobile sinks fails. On the 
other hand, when gSide is set to a relatively small value (for 
instance, 25 or 40 m as shown in Fig. 11), V can converge 
to a relatively small value very quickly (within 4 to 6 itera-
tions). However, setting gSide to a smaller value cannot make 
V converge to a very small value.

C. Comparison With mTSP Mobile Sinks Scheduling

As mentioned above, the scheduling of mobile sinks can be
reduced to the problem of the mTSP [11]. Therefore, experi-
ments have been conducted to compare the performance of our
technique with the mTSP algorithm. As shown in Fig. 12, when
the network region is represented as grid cells, each grid cell g
is represented using a node ndg1 central in this grid cell g (for
instance, the node ndg1 in the top-left grid cell in Fig. 12). A
weight ndw

g1 is set upon ndg1, which corresponds to g1 · ECD,
representing the energy to be consumed by a mobile sink when
it stays at ndg1 and gathers data sensed by all static sensors in g.
An edge ed connects ndg1 with a neighboring ndg2, where ndg2
is the central node of a neighboring grid cell g2 in the upper,
lower, left, or right side of g, if applicable. A weight edw is set
upon ed, which corresponds to uECM, representing the energy
to be consumed by a mobile sink when moving from the node
ndg1 to the node ndg2.

Generally, mTSP is used when grid cells have been clustered
into m clusters (denoted ci where i ∈ [1, m]) as presented in
Section V, and an improved TSP algorithm is applied in each
cluster ci for deriving a path pci traversing all ndg in this cluster
ci. It is worth mentioning that the number of grid cells and static
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Fig. 12. Grid cells are represented by their central nodes for supporting 
the scheduling of mobile sinks using the mTSP algorithm.

Fig. 13. Cluster adjustment result on dataset 7 for Prin.1.

Fig. 14. Cluster adjustment result on dataset 7 for Prin. 2.

sensors contained in different clusters may be different. Hence,
the energy consumption for data gathering and sink movement
may differ significantly. Therefore, grid cells in the cluster ci
may be transferred from one cluster ci to another cj . Besides,
unlike the traditional TSP algorithm, which finds a path starting
and ending at a single node, a path starting and ending at dif-
ferent nodes is appropriate for our case, since the mobile sink
can take the next round of traversal through the same path in
the reverse direction. Specifically, after clustering grid cells as
presented in Section V, a starting node ndpth

init is determined for
each cluster, which locates in the center of the corresponding
cluster. Two kinds of principles are adopted for choosing the
next node ndnt

g , where the current node of the path is ndg .
Prin. 1: Randomly, whenever there exists one node ndnt

g

neighboring to ndg and unoccupied.
Prin. 2, Besides Prin. 1, ndnt

g should be the nearest to ndpth
init in

the Euclidean distance.
As examples, the cluster adjustment results on dataset 7 by

applying Prin. 1 and Prin. 2 are shown in Figs. 13 and 14, 
respectively. In comparison with Fig. 9, which shows our clus-
ter adjustment strategy as presented in Section VI, Figs. 13 and
14 are much more irregular in shape.

Besides, experiments have been conducted to compare the
difference in the energy consumption of mobile sinks for Prin.
1, Prin. 2, and our technique proposed in Section VI (denoted 
ClsAdj in Fig. 15), upon datasets 1 to 7, respectively. As to

Fig. 15. Variance about the energy consumption of mobile sinks for Prin. 
1, Prin. 2, and our technique ClsAdj .

the Prin. 1 and Prin. 2, for a certain path, the energy consump-
tion includes

∑
ndw

g , which represents the energy consumption
for data gathering, and

∑
edw, which represents that for sink

movement. Experiments have been conducted 10 times, and 
an average energy consumption is applied for computing their 
variances. As illustrated in Fig. 15, the variance in our tech-
nique (i.e., ClsAdj) is much smaller than those of Prin. 1 and 
Prin. 2. This means that for Prin. 1 and Prin. 2, the energy con-
sumption of mobile sinks differ to a large extent. Therefore, 
some mobile sinks may deplete their energy much quicker than 
the others, and hence, the network lifetime is decreased. As to 
ClsAdj, the variance of energy consumption is quite small. This 
means that the energy consumption of mobile sinks does not 
differ much. Hence, the network lifetime for our technique is 
longer than that of Prin. 1 and Prin. 2.

VIII. CONCLUSION
Wirelessly connected IoT end nodes are changing the way

we live and interact with the environment, and collaborative
WSNs are integrated as a key component in the IoT architec-
ture for creating novel pervasive smart environments [4]. Static
WSNs are limited in achieving tasks for supporting certain
domain applications. Using mobile sinks improve the capability
of hybrid WSNs, where mobile sinks traverse along prespeci-
fied sink locations for gathering sensory data by static sensors.
Prolonging the network lifetime, while ensuring the network
region coverage, is a challenge. This paper proposed a method
to mitigate this problem. Specifically, the network region is
divided into grid cells, which are grouped into clusters while
considering the energy consumption of data gathering. These
clusters are adjusted through transferring grid cells among
them, when considering the energy consumption of sink move-
ment. Thereafter, mobile sinks are similar in energy consump-
tion for both data gathering and sink movement. Consequently,
the network lifetime is prolonged.

As to future work, as argued in [27], a prediction model can
be adopted to support mobile sink management, when mobil-
ity patterns can be identified. This is a direction to be explored
further. We have applied a grid overlay to represent the network
region in this technique. This grid overlay may not be beneficial
when the number of sensors is not large and the network region
is not huge. Hence, a loosely coupled network structure may be
appropriate to be used for exploring the mobile sink scheduling
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problem. Besides, the network lifetime can be defined in other
ways. The mobile sink management mechanism with various
lifetime concern is one of future directions.
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