153 research outputs found

    Energy-efficient wireless communication schemes and real-time middleware for machine-to-machine networks

    Get PDF
    Esta tesis estudia sistemas Machine-to-Machine (M2M) en los que se ejecutan tareas de manera autónoma sin, o con mínima intervención humana. Los sistemas M2M están formados por dispositivos desplegados en un entorno que recolectan información relacionada con una tarea y la envían a aplicaciones para su proceso. Las aplicaciones optimizan estas tareas y responden a los dispositivos con comandos de control. Idealmente, después de configurar las políticas de tareas, los humanos son excluidos del lazo de control. Un importante caso de uso en M2M es la automatización de la red eléctrica, también conocido como Smart Grid, que se trata en esta tesis. Muchos escenarios M2M requieren dispositivos de bajo bitrate, bajo coste y que puedan ser fácilmente desplegables y mantenidos. Una solución adecuada son los dispositivos inalámbricos, alimentados por batería y de capacidades limitadas (con reducida potencia de procesado y memoria). Un bajo mantenimiento requiere años de vida, que sólo pueden conseguirse con protocolos de comunicación altamente eficientes energéticamente. En esta tesis nos centramos principalmente en las capas MAC y de enlace (especialmente en esquemas Cooperative Automatic Repeat Request) para mejorar la eficiencia energética de los dispositivos. Proponemos y evaluamos extensiones de Cooperative MAC para varios estándares como IEEE 802.11, IEEE 802.15.4 y sus revisiones MAC. El transmisor radio de los dispositivos puede ponerse en estado de reposo cuando está inactivo, llevando a cortos periodos de activación (duty-cycle) en dispositivos de bajo bitrate, consiguiendo así un ahorro energético considerable. Dado que la capa MAC controla los estados de reposo de los transmisores radio, los esquemas de Duty-Cycle MAC son el pilar de las comunicaciones energéticamente eficientes. Por ello, en esta tesis diseñamos, analizamos y evaluamos esquemas Cooperative and Duty-Cycled ARQ (CDC-ARQ). CDC-ARQ se basa en la (re)transmisión dinámica de paquetes (dynamic packet forwarding) dependiendo del estado del canal inalámbrico. Cuantificamos las ganancias considerando enlaces inalámbricos de baja potencia con modelos realistas, que sufren efectos de apantallamiento (shadowing) desvanecimientos (fading) de canal, y presentamos las condiciones bajo las cuales CDC-ARQ consiguen mejores resultados que las técnicas estándar de forwarding. Finalmente, determinamos estrategias óptimas de selección de enlace y retransmisión para direct, multi-hop y CDC-ARQ forwarding. Los esquemas de comunicación inalámbricos energéticamente eficientes son adecuados, por ejemplo, para automatización de edificios y hogar, contribuyendo a un buen uso de la energía eléctrica en dichos escenarios. Después de considerar el entorno de dispositivos, la tesis se centra en las aplicaciones, al otro lado de los sistemas M2M. Las aplicaciones típicamente intercambian datos sobre amplias zonas con varios dispositivos remotos. Las técnicas de computación distribuida, estandarizadas e implementadas en plataformas middleware para sistemas M2M, facilitan este intercambio de datos. Los requisitos de comunicación de estas aplicaciones son diversos en términos de latencia, número de actualizaciones, número de dispositivos asociados, etc. Mientras que las soluciones middleware existentes tales como ETSI M2M satisfacen los requisitos de ciertas aplicaciones, dichas soluciones son inadecuadas para los requisitos de latencia de transmisión en tiempo real. Esta tesis propone y analiza modificaciones del ETSI M2M que mejoran el rendimiento en tiempo real. El análisis se ejemplifica con tres aplicaciones Smart Grid, una relacionada con la automatización del hogar y edificios, y las otras dos con la monitorización y control del flujo de potencia de la red eléctrica.This thesis studies emerging Machine-to-Machine (M2M) systems that execute automated tasks without, or with minimum human intervention. M2M systems consist of devices deployed in the field to collect task-related information and send it to remote applications for processing. The applications optimise the tasks and issue control commands back to the devices. Ideally, after configuring the task policies, humans are excluded from the control loop. A prominent and urgent M2M use case concentrates on the automation of the electric power grid, also known as Smart Grid, that is considered in the thesis. Many M2M scenarios require devices that are low-rate, low-cost and can be easily deployed and maintained. A fitting solution are wireless, battery-powered and resource-constrained devices (with limited processing power and memory). Low-maintenance requires years of lifetime, that can only be achieved with unprecedented energy efficiency of communication protocols. Specifically, we focus on the MAC and link layers in this thesis (especially on the Cooperative Automatic Repeat Request schemes) to improve the energy efficiency of the devices. Cooperative MAC extensions to the various standard technologies such as IEEE 802.11, IEEE 802.15.4 and its MAC amendments are proposed and evaluated. The radio transceiver of a device can be put to sleep state when inactive, yielding very low duty-cycles for low-rate devices, and thus achieving significant energy savings. Since the MAC layer controls the radio transceiver sleep states, duty-cycled MAC schemes are the cornerstone of the energy-efficient communication schemes. To that end, Cooperative and Duty-Cycled ARQ (CDC-ARQ) scheme has been designed, analysed and evaluated in this thesis. CDC-ARQ is based on dynamic packet forwarding depending on the current state of the wireless channel. The benefits are quantified by considering realistic wireless low-power links that experience shadowing and multipath fading channel effects. The conditions under which CDC-ARQ outperforms the standard forwarding techniques are presented. Finally, optimal link selection and retransmission strategies are determined for direct, multi-hop or CDC-ARQ forwarding. The studied energy-efficient wireless schemes are suitable e.g. for home and building automation which can contribute to the efficient use of the electric power in homes and buildings. After considering the device domain, the focus of this thesis turns to the applications at the other end of the M2M system. The applications typically exchange data over wide areas with many remote devices. Distributed computing techniques facilitate this data exchange, standardised and implemented in the middleware platform for M2M systems. The communication requirements of these applications are diverse in terms of data latency, update rate, number of associated devices etc. While the existing middleware solutions such as ETSI M2M fully support communication requirements of some applications, the solution is inadequate when it comes to the real-time latency constraint. Some suitable upgrades that improve the real-time performance of data exchange in ETSI M2M middleware are analysed in the thesis. The analysis is exemplified with three Smart Grid applications, one related to the home and building automation and the other two concerned with monitoring and control of the power flow in the electric grid

    Research View, Spring 2008

    Get PDF
    Contents of this issue include: Living Large in Antarctica: Scientists study polar gigantism Andes to Amazon Adventure: UM offers remote South American field course CO2 Sea Change: Researcher studies ocean impacts on global warming Strenuous Science: Growing UM center tests limits of human endurancehttps://scholarworks.umt.edu/researchview/1015/thumbnail.jp

    Smart-antenna techniques for energy-efficient wireless sensor networks used in bridge structural health monitoring

    Get PDF
    Abstract: It is well known that wireless sensor networks differ from other computing platforms in that 1- they typically require a minimal amount of computing power at the nodes; 2- it is often desirable for sensor nodes to have drastically low power consumption. The main benefit of the this work is a substantial network life before batteries need to be replaced or, alternatively, the capacity to function off of modest environmental energy sources (energy harvesting). In the context of Structural Health Monitoring (SHM), battery replacement is particularly problematic since nodes can be in difficult to access locations. Furthermore, any intervention on a bridge may disrupt normal bridge operation, e.g. traffic may need to be halted. In this regard, switchbeam smart antennas in combination with wireless sensor networks (WSNs) have shown great potential in reducing implementation and maintenance costs of SHM systems. The main goal of implementing switch-beam smart antennas in our application is to reduce power consumption, by focusing the radiated energy only where it is needed. SHM systems capture the dynamic vibration information of a bridge structure in real-time in order to assess the health of the structure and to predict failures. Current SHM systems are based on piezoelectric patch sensors. In addition, the collection of data from the plurality of sensors distributed over the span of the bridge is typically performed through an expensive and bulky set of shielded wires which routes the information to a data sink at one end of the structure. The installation, maintenance and operational costs of such systems are extremely high due to high power consumption and the need for periodic maintenance. Wireless sensor networks represent an attractive alternative, in terms of cost, ease of maintenance, and power consumption. However, network lifetime in terms of node battery life must be very long (ideally 5–10 years) given the cost and hassle of manual intervention. In this context, the focus of this project is to reduce the global power consumption of the SHM system by implementing switched-beam smart antennas jointly with an optimized MAC layer. In the first part of the thesis, a sensor network platform for bridge SHM incorporating switched-beam antennas is modelled and simulated. where the main consideration is the joint optimization of beamforming parameters, MAC layer, and energy consumption. The simulation model, built within the Omnet++ network simulation framework, incorporates the energy consumption profiles of actual selected components (microcontroller, radio interface chip). The energy consumption and packet delivery ratio (PDR) of the network with switched-beam antennas is compared with an equivalent network based on omnidirectional antennas. In the second part of the thesis, this system model is leveraged to examine two distinct but interrelated aspects: Gallium Arsenide (GaAs) based solar energy harvesting and switched-beam antenna strategies. The main consideration here is the joint optimization of solar energy harvesting and switchedbeam directional antennas, where an equivalent network based on omnidirectional antennas acts as a baseline reference for comparison purposes.Il est bien connu que les réseaux de capteurs sans fils diffèrent des autres plateformes informatiques étant donné 1- qu’ils requièrent typiquement une puissance de calcul minimale aux noeuds du réseau ; 2- qu’il est souvent désirable que les noeuds capteurs aient une consommation d’énergie dramatiquement faible. La principale retombée de ce travail réside en la durée de vie allongée du réseau avant que les piles ne doivent être remplacées ou, alternativement, la capacité de fonctionner indéfiniment à partir de modestes sources d’énergie ambiente (glânage d’énergie). Dans le contexte du contrôle de la santé structurale (CSS), le remplacement de piles est particulièrement problématique puisque les noeuds peuvent se trouver en des endroits difficiles d’accès. De plus, toute intervention sur un pont implique une perturbation de l’opération normale de la structure, par exemple un arrêt du traffic. Dans ce contexte, les antennes intelligentes à commutation de faisceau en combinaison avec les réseaux de capteurs sans fils ont démontré un grand potentiel pour réduire les coûts de réalisation et d’entretien de systèmes de CSS. L’objectif principal de l’intégration d’antennes à commutation de faisceau dans notre application réside dans la réduction de la consommation énergétique, réalisée en concentrant l’énergie radiée uniquement là où elle est nécessaire. Les systèmes de CSS capturent l’information dynamique de vibration d’une structure de pont en temps réel de manière à évaluer la santé de la structure et prédire les failles. Les systèmes courants de CSS sont basés sur des senseurs piézoélectriques planaires. De plus, la collecte de données à partir de la pluralité de senseurs distribués sur l’étendue du pont est typiquement effectuée par le biais d’un ensemble coûteux et encombrant de câbles blindés qui véhiculent l’information jusqu’à un point de collecte à une extremité de la structure. L’installation, l’entretien, et les coûts opérationnels de tels systèmes sont extrêmement élevés étant donné la consommation de puissance élevée et le besoin d’entretien régulier. Les réseaux de capteurs sans fils représentent une alternative attrayante, en termes de coût, facilité d’entretien et consommation énergétique. Toutefois, la vie de réseau en termes de la durée de vie des piles doit être très longue (idéalement de 5 à 10 ans) étant donné le coût et les problèmes liés à l’intervention manuelle. Dans ce contexte, ce projet se concentre sur la réduction de la consommation de puissance globale d’un système de CSS en y intégrant des antennes intelligentes à commutation de faisceau conjointement avec une couche d’accès au médium (couche MAC) optimisée. Dans la première partie de la thèse, une plateforme de réseau de capteurs sans fils pour le CSS d’un pont incorporant des antennes à commutation de faisceaux est modélisé et simulé, avec pour considération principale l’optimisation des paramètres de sélection de faisceau, de la couche MAC et de la consommation d’énergie. Le modèle de simulation, construit dans le logiciel de simulation de réseaux Omnet++, incorpore les profils de consommation d’énergie de composants réels sélectionnés (microcontrôleur, puce d’interface radio). La consommation d’énergie et le taux de livraison de paquets du réseau avec antennes à commutation de faisceau est comparé avec un réseau équivalent basé sur des antennes omnidirectionnelles. Dans la deuxième partie de la thèse, le modèle système proposé est mis à contribution pour examiner deux aspects distrincts mais interreliés : le glânage d’énergie à partir de cellules solaire à base d’arséniure de Gallium (GaAs) et les stratégies liées aux antennes à commutation de faisceau. La considération principale ici est l’optimisation conjointe du glânage d’énergie et des antennes à commutation de faisceau, en ayant pour base de comparaison un réseau équivalent à base d’antennes omnidirectionnelles

    Estudi bibliomètric segon trimestre 2014. EETAC

    Get PDF
    El present document recull les publicacions indexades a la base de dades Scopus durant el període comprès entre el mesos de maig a setembre de l’any 2014, escrits per autors pertanyents a l’EETAC. Es presenten les dades recollides segons la font on s’ha publicat, els autors que han publicat, i el tipus de document publicat. S’hi inclou un annex amb la llista de totes les referències bibliogràfiques publicades.Postprint (published version

    Estudi bibliomètric any 2014. Campus del Baix Llobregat: EETAC i ESAB

    Get PDF
    En el present informe s’analitza la producció científica de les dues escoles del Campus del Baix Llobregat, l’Escola d’Enginyeria de Telecomunicació i Aerospacial de Castelldefels (EETAC) i l’Escola Superior d’Agricultura de Barcelona (ESAB) durant el 2014.Postprint (author’s final draft

    Highly reliable, low-latency communication in low-power wireless networks

    Get PDF
    Low-power wireless networks consist of spatially distributed, resource-constrained devices – also referred to as nodes – that are typically equipped with integrated or external sensors and actuators. Nodes communicate with each other using wireless transceivers, and thus, relay data – e. g., collected sensor values or commands for actuators – cooperatively through the network. This way, low-power wireless networks can support a plethora of different applications, including, e. g., monitoring the air quality in urban areas or controlling the heating, ventilation and cooling of large buildings. The use of wireless communication in such monitoring and actuating applications allows for a higher flexibility and ease of deployment – and thus, overall lower costs – compared to wired solutions. However, wireless communication is notoriously error-prone. Message losses happen often and unpredictably, making it challenging to support applications requiring both high reliability and low latency. Highly reliable, low-latency communication – along with high energy-efficiency – are, however, key requirements to support several important application scenarios and most notably the open-/closed-loop control functions found in e. g., industry and factory automation applications. Communication protocols that rely on synchronous transmissions have been shown to be able to overcome this limitation. These protocols depart from traditional single-link transmissions and do not attempt to avoid concurrent transmissions from different nodes to prevent collisions. On the contrary, they make nodes send the same message at the same time over several paths. Phenomena like constructive interference and capture then ensure that messages are received correctly with high probability. While many approaches relying on synchronous transmissions have been presented in the literature, two important aspects received only little consideration: (i) reliable operation in harsh environments and (ii) support for event-based data traffic. This thesis addresses these two open challenges and proposes novel communication protocols to overcome them

    Wireless Techniques for Body-Centric Cooperative Communications

    Get PDF
    Body-centric and cooperative communications are new trends in telecommunications field. Being concerned with human behaviour, body-centric communication networks, also known as Wireless Body Area Networks (WBANs), are suitable for a wide variety of applications. The advances in the miniaturisation of embedded devices to be placed on or around the body, foster the diffusion of these systems, where the human body is the key element defining communication characteristics. Cooperative communications paradigm, on the other hand, is one of the emerging technologies that promises significantly higher reliability and spectral efficiency in wireless networks. This thesis investigates possible applications of the cooperative communication paradigm to body-centric networks and, more generally, to Wireless Sensor Networks (WSNs). Firstly, communication protocols for WBANs are in the spotlight. Performance achieved by different approaches is evaluated and compared through experimentation providing guidelines for choosing appropriate protocol and setting protocol parameters to meet application requirements. Secondly, a cooperative Multiple Input Multiple Output (MIMO) scheme for WBANs is presented. The scheme, named B-MIMO, exploits the natural heterogeneity of the WBAN propagation channel to improve energy efficiency of the system. Finally, a WSN scenario is considered, where sensor nodes cooperate to establish a massive MIMO-like system. The analysis and subsequent optimisation show the advantages of cooperation in terms of energy efficiency and provide insights on how many nodes should be deployed in such a scenario

    On the application of massive mimo systems to machine type communications

    Get PDF
    This paper evaluates the feasibility of applying massive multiple-input multiple-output (MIMO) to tackle the uplink mixed-service communication problem. Under the assumption of an available physical narrowband shared channel, devised to exclusively consume data traffic from machine type communications (MTC) devices, the capacity (i.e., number of connected devices) of MTC networks and, in turn, that of the whole system, can be increased by clustering such devices and letting each cluster share the same time-frequency physical resource blocks. Following this research line, we study the possibility of employing sub-optimal linear detectors to the problem and present a simple and practical channel estimator that works without the previous knowledge of the large-scale channel coefficients. Our simulation results suggest that the proposed channel estimator performs asymptotically, as well as the MMSE estimator, with respect to the number of antennas and the uplink transmission power. Furthermore, the results also indicate that, as the number of antennas is made progressively larger, the performance of the sub-optimal linear detection methods approaches the perfect interference-cancellation bound. The findings presented in this paper shed light on and motivate for new and exciting research lines toward a better understanding of the use of massive MIMO in MTC networks
    • …
    corecore