
H I G H LY R E L I A B L E , L O W- L AT E N C Y
C O M M U N I C AT I O N I N L O W- P O W E R W I R E L E S S

N E T W O R K S

A dissertation submitted to
t e c h n i s c h e u n i v e r s i t ä t d r e s d e n

f a c u l t y o f c o m p u t e r s c i e n c e

for the degree of
Doktor-Ingenieur (Dr.-Ing.)

presented by
m a r t i n a b r a c h m a n n , m . s c .

born on April 14, 1987 in Dresden, Germany

accepted on the recommendation of
Examiner:

Prof. Dr. Silvia Santini (Università della Svizzera italiana, Switzerland)
Co-examiner:

Prof. Dr. Thiemo Voigt (Uppsala University, Sweden)

Dresden, November 9, 2018

D E C L A R AT I O N

Hiermit versichere ich, dass ich die vorliegende Dissertation zur Erlangung des akademis-
chen Grades “Doktor-Ingenieur (Dr.-Ing.)” mit dem Titel Highly reliable, low-latency com-
munication in low-power wireless networks selbstständig und ohne unzulässige Hilfe Dritter
verfasst habe. Es wurden keine anderen als die in der Arbeit angegebenen Hilfsmittel und
Quellen benutzt. Die wörtlichen und sinngemäß übernommenen Zitate habe ich als solche
kenntlich gemacht.

Dresden, November 9, 2018

Martina Brachmann, M.Sc.

iii

A B S T R A C T

Low-power wireless networks consist of spatially distributed, resource-constrained devices
– also referred to as nodes – that are typically equipped with integrated or external sensors
and actuators. Nodes communicate with each other using wireless transceivers, and thus,
relay data – e. g., collected sensor values or commands for actuators – cooperatively through
the network. This way, low-power wireless networks can support a plethora of different
applications, including, e. g., monitoring the air quality in urban areas or controlling the
heating, ventilation and cooling of large buildings. The use of wireless communication in
such monitoring and actuating applications allows for a higher flexibility and ease of de-
ployment – and thus, overall lower costs – compared to wired solutions. However, wireless
communication is notoriously error-prone. Message losses happen often and unpredictably,
making it challenging to support applications requiring both high reliability and low latency.
Highly reliable, low-latency communication – along with high energy-efficiency – are, how-
ever, key requirements to support several important application scenarios and most notably
the open-/closed-loop control functions found in e. g., industry and factory automation
applications.

Communication protocols that rely on synchronous transmissions have been shown to
be able to overcome this limitation. These protocols depart from traditional single-link
transmissions and do not attempt to avoid concurrent transmissions from different nodes
to prevent collisions. On the contrary, they make nodes send the same message at the
same time over several paths. Phenomena like constructive interference and capture then
ensure that messages are received correctly with high probability. While many approaches
relying on synchronous transmissions have been presented in the literature, two important
aspects received only little consideration: (i) reliable operation in harsh environments and
(ii) support for event-based data traffic. This thesis addresses these two open challenges
and proposes novel communication protocols to overcome them.

When low-power wireless networks are deployed in harsh environments, nodes are ex-
posed to large variations of, e. g., temperature and humidity. It is known from the literature
that under these conditions the link quality, and thus, the reliability of communication pro-
tocols decreases significantly. This is because environmental parameters may negatively
affect the functioning of the electronic equipment of a node and in particular of its clock.
Protocols relying on synchronous transmissions, however, require a precise and consistent
operation of the nodes’ clock to achieve constructive interferences with high probability.
Through both simulation and laboratory experiments, we show that even little offsets
across the nodes’ clocks significantly decrease this probability, especially when the nodes

v

are exposed to different temperatures. To tackle this problem, we present Flock, a novel
mechanism to compensate clock frequency variations across synchronously transmitting
nodes. Our results confirm that Flock allows protocols to achieve constructive interfer-
ence in 98 % of the message transmissions even when nodes are exposed to temperature
differences of 30 ◦C and without introducing any message overhead.

While most protocols based on synchronous transmissions are tailored for periodic
communication, aperiodic, event-based traffic occurs frequently in low-power wireless
networks. Thereby, the data to transmit is generated at unknown, non-regular time instants,
and must be relayed immediately to a central server. To be able to timely detect and handle
communication requests, nodes must, nonetheless, regularly switch their radios on and
check the channel for incoming transmissions. While reducing the frequency and duration
of this channel sampling procedure is mandatory to reduce energy consumption, frequent
channel checks are needed to ensure a timely detection and handling of data traffic. To
cope with this trade-off, we present Whisper, a communication primitive that allows nodes
to efficiently propagate small amounts of data. A key advantage of Whisper is that –
compared to existing solutions – it significantly reduces the energy consumption due to
efficient channel sampling. In particular, our testbed experiments show that when no data
traffic must be relayed, Whisper spends 30 % less time in channel sampling than its closest
competitor. At the same time, Whisper can disseminate data twice as fast and with no loss
in reliability.

Whisper’s ability to support event-based data traffic is particularly useful when Internet
protocols like UDP, TCP or CoAP – which serve applications that may generate data
aperiodically – are used on top of a routing substrate. However, the direct utilization
of such protocols on top of Whisper is cumbersome and inefficient. The payload size of
standard Internet protocols can reach hundreds of bytes that are exchanged between two
nodes in a one-to-one communication manner. However, Whisper floods the entire network
at each data exchange, thus, causing unnecessary overhead. To overcome this issue, we
introduce LaneFlood, a communication protocol that establishes a restricted number of
paths – collectively called lane – between two communicating nodes, and thus, involves in
the data distribution only the strictly necessary amount of nodes. Our testbed experiments
show that LaneFlood reduces the overall energy consumption considerably compared to
state-of-the-art approaches and without any loss in reliability.

In summary, the three contributions of this thesis provide a step further towards the
efficient usage of low-power wireless networks in real scenarios. This is achieved by first
ensuring high performance in extreme environmental conditions and then by providing
solutions that enable energy-efficient, highly reliable, low-latency communication of event-
based data traffic.

vi

K U R Z FA S S U N G

Energiearme drahtlose Netze bestehen aus räumlich verteilten, ressourcenbeschränkten
Geräten – auch als Knoten bezeichnet – die typischerweise mit integrierten oder externen
Sensoren und Aktoren ausgestattet sind. Knoten kommunizieren miteinander über draht-
lose Sendeempfänger und übertragen somit Daten – z. B. gesammelte Sensorwerte oder
Befehle für Aktuatoren – kooperativ durch das Netz. Auf diese Weise können drahtlose
Netze eine Vielzahl verschiedener Anwendungen unterstützen, z. B. die Überwachung der
Luftqualität in städtischen Gebieten oder die Steuerung der Heizung, Lüftung und Küh-
lung großer Gebäude. Die Nutzung drahtloser Kommunikation ermöglicht eine höhere
Flexibilität und einfacheren Einsatz – und damit insgesamt geringere Kosten – im Vergleich
zu kabelgebundenen Lösungen. Allerdings ist die drahtlose Kommunikation fehleranfällig.
Nachrichtenverluste treten häufig und unvorhersehbar auf, so dass es schwierig ist, Anwen-
dungen zu unterstützen, die gleichzeitig eine hohe Zuverlässigkeit und eine niedrige Latenz
erfordern. Eine zuverlässige Kommunikation mit niedriger Latenz ist – zusammen mit
einer hohen Energieeffizienz – jedoch eine Schlüsselvoraussetzung für die Unterstützung di-
verser Anwendungsszenarien, insbesondere von offenen oder geschlossenen Regelkreisen
wie sie in der Industrie- und Fabrikautomatisierung zu finden sind.

Es wurde bereits gezeigt, dass Kommunikationsprotokolle, die auf synchronen Übertra-
gungen beruhen, diese Einschränkungen bewältigen können. Diese Protokolle weichen von
traditionellen Single-Link-Übertragungen insofern ab, dass sie Kollisionen durch parallele
Übertragungen von verschiedenen Knoten nicht verhindern. Im Gegenteil, sie bewirken,
dass Knoten gleiche Nachricht gleichzeitig über mehrere Pfade senden. Phänomene wie
konstruktive Interferenz und Capture sorgen dafür, dass Nachrichten mit hoher Wahrschein-
lichkeit korrekt empfangen werden. Während in der Literatur viele Ansätze beschrieben
wurden, die auf synchronen Übertragungen beruhen, wurden zwei wichtige Aspekte bisher
nur wenig berücksichtigt: (i) der zuverlässige Einsatz in harschen Umgebungen und (ii) die
Unterstützung von ereignisbasiertem Datenverkehr. Diese Arbeit befasst sich mit diesen
beiden Herausforderungen und schlägt neuartige Kommunikationsprotokolle vor.

Wenn drahtlose Netze in harschen Umgebungen eingesetzt werden, sind die Knoten
großen Schwankungen von Temperatur und Feuchtigkeit ausgesetzt. Aus der Literatur ist
bekannt, dass in dieser Umgebung die Verbindungsqualität und damit die Zuverlässigkeit
von Kommunikationsprotokollen signifikant abnimmt. Ursache hierfür ist, dass Umwelt-
parameter die Funktionsweise des elektronischen Equipments eines Knotens und insbeson-
dere dessen Clock negativ beeinflussen können. Protokolle basierend auf synchroner
Übertragung benötigen jedoch eine präzise und konsistent betriebene Clock, um mit hoher

vii

Wahrscheinlichkeit konstruktive Interferenzen zu erzielen. Sowohl durch Simulations- als
auch durch Laborexperimente zeigen wir, dass selbst kleine Clock-Offsets der Knoten diese
Wahrscheinlichkeit signifikant verringert. Um dieses Problem zu lösen, präsentieren wir
Flock, einen Mechanismus der Abweichungen der Taktfrequenz von synchron sendenden
Knoten kompensiert. Unsere Ergebnisse bestätigen, dass mit Flock – ohne Nachrichten-
Overhead zu verursachen – in 98 % der Übertragungen konstruktive Interferenzen erzielt
wird, selbst wenn Knoten Temperaturunterschieden von 30 ◦C ausgesetzt sind.

Während die meisten Protokolle, die auf synchronen Übertragungen basieren, für pe-
riodische Kommunikation zugeschnitten sind, tritt in drahtlosen Netzen aperiodischer,
ereignisbasierter Verkehr häufig auf. Dabei werden zu übertragende Daten zu unbekan-
nten, nicht regulären Zeitpunkten erzeugt, die dann sofort an einen zentralen Server
weitergeleitet werden müssen. Um Nachrichten rechtzeitig erkennen und weiterleiten zu
können, müssen die Knoten regelmäßig ihre Empfänger einschalten und den Kanal auf
eingehende Übertragungen prüfen. Während zur Verringerung des Energieverbrauchs
die Häufigkeit und Dauer dieser Kanalabtastung reduziert werden muss, sind häufige
Kanalabtastungen erforderlich, um eine rechtzeitige Erkennung der Datenübertragung
sicherzustellen. Wir lösen diesen Konflikt mit Whisper, einer Kommunikationsprimitive,
welche es Knoten ermöglicht, kleine Datenmengen effizient zu übertragen. Ein wesentlicher
Vorteil von Whisper ist, dass im Vergleich zu bestehenden Lösungen der Energieverbrauch
durch Kanalabtastungen deutlich reduziert wird. Insbesondere zeigen unsere Testbed-
Experimente, dass wenn kein Datenverkehr weitergeleitet werden muss, Whisper 30 %
weniger Zeit für die Kanalabtastung benötigt als sein nächster Konkurrent. Gleichzeitig
kann Whisper Daten doppelt so schnell und ohne Verlust an Zuverlässigkeit verbreiten.

Whispers Fähigkeit, ereignisbasierten Datenverkehr zu unterstützen, ist besonders nüt-
zlich, wenn Internetprotokolle wie UDP, TCP oder CoAP verwendet werden. Die direkte
Verwendung solcher Protokolle mit Whisper ist jedoch umständlich und ineffizient. Die
Nutzlast von Standard-Internet-Protokollen kann hunderte von Bytes erreichen, die zwis-
chen zwei Knoten – also One-to-One – ausgetauscht werden. Whisper flutet jedoch bei
jedem Datenaustausch das gesamte Netz und verursacht so unnötigen Overhead. Um
dieses Problem zu lösen, präsentieren wir LaneFlood, ein Kommunikationsprotokoll, das
eine beschränkte Anzahl von Pfaden – kollektiv als Lane bezeichnet – zwischen zwei
kommunizierenden Knoten erzeugt und somit bei der Datenverteilung nur die unbedingt
notwendige Menge an Knoten involviert. Unsere Testbed-Experimente zeigen, dass Lane-
Flood den Gesamtenergieverbrauch im Vergleich zu State-of-the-Art-Ansätzen ohne Verlust
an Zuverlässigkeit deutlich reduziert.

Zusammengefasst bieten die drei Beiträge dieser Arbeit einen weiteren Schritt zur ef-
fizienten Nutzung von drahtlosen Netzen in realen Szenarien. Dies wird erreicht, indem
zuerst eine hohe Performanz unter extremen Umweltbedingungen sichergestellt wird und
dann Lösungen bereitgestellt werden, die eine energieeffiziente, zuverlässige und latenz-
arme Kommunikation von ereignisbasierten Datenverkehr ermöglichen.

viii

C O N T E N T S

l i s t o f f i g u r e s xii

l i s t o f t a b l e s xv

l i s t o f a c r o n y m s xvii

l i s t o f s y m b o l s xix

1 i n t r o d u c t i o n 1
1.1 Problem statement . 2

1.1.1 Reliable operation in harsh environments 3
1.1.2 Support for event-based data traffic . 4

1.2 Objectives and contributions . 4
1.2.1 On-the-fly clock offset compensation 5
1.2.2 Fast flooding of small amounts of data 6
1.2.3 On-demand one-to-one communication 6

1.3 Outline . 7

2 b a c k g r o u n d a n d r e l a t e d w o r k 9
2.1 Low-power wireless networks . 9

2.1.1 Node platforms and their architecture 10
2.1.2 The TelosB platform . 11
2.1.3 Testbeds for low-power wireless networks 12

2.2 Single-link communication protocols and standards 12
2.2.1 Requirements and applications . 13
2.2.2 Wired industrial networks . 13
2.2.3 Wireless industrial networks . 14
2.2.4 Standard Internet protocols for low-power wireless networks 16
2.2.5 Subsumption of this thesis in the context of single-link protocols and

standards . 17
2.3 The IEEE 802.15.4 standard . 17

2.3.1 Packets in IEEE 802.15.4 . 18
2.3.2 Signal (de-)modulation and spreading in IEEE 802.15.4 19

2.4 Synchronous transmissions in low-power wireless networks 19
2.4.1 Synchronous transmissions in IEEE 802.15.4 20

ix

c o n t e n t s

2.4.2 A brief history of synchronous transmissions 22
2.4.3 Synchronous transmissions with Glossy 26

2.5 Summary and subsumption of this thesis . 27

3 o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n 29
3.1 Ensuring synchronous transmissions with Glossy 30
3.2 Impact of the MCU clock frequency on the software delay 32
3.3 Flock: On-the-Fly Clock Offset Compensation 32

3.3.1 Flock: How it works . 33
3.3.2 Counting E∗

rx and computing Erx . 34
3.3.3 Theoretical analysis on the distribution of Tsw 36

3.4 Evaluation of Flock . 38
3.4.1 Performance of Flock in simulations . 38
3.4.2 Quantifying the effects of temperature on the software delay 40
3.4.3 The performance of Flock in a controlled environment 44

3.5 Related work . 46
3.6 Summary . 47

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a 49
4.1 Whisper: How it works . 50
4.2 Whisper: A closer look . 53

4.2.1 The signaling packet . 53
4.2.2 Sending identical packlets . 55
4.2.3 Sending packlets synchronously . 57
4.2.4 Time synchronization . 58
4.2.5 Lazy sampling . 60
4.2.6 Direction-aware sampling . 60
4.2.7 Whisper (compliant) . 63
4.2.8 Resilience against external interferences 64
4.2.9 The portability of Whisper . 64

4.3 Evaluation . 65
4.3.1 Evaluation setup . 65
4.3.2 Whisper vs. Glossy . 66
4.3.3 Concurrent dissemination of signaling packets 68
4.3.4 Impact of low-level mechanisms . 70
4.3.5 Crystal and Whisper . 74

4.4 Related work . 77
4.5 Summary . 78

5 e v e n t - b a s e d o n e - t o - o n e c o m m u n i c a t i o n 81

x

c o n t e n t s

5.1 Terminology and basic operation . 83
5.2 Establishing a lane . 86

5.2.1 Collecting information . 87
5.2.2 Decision making . 87

5.3 The protocol operation of LaneFlood . 88
5.4 Running Internet protocols on top of LaneFlood 90
5.5 Evaluation of LaneFlood . 90

5.5.1 Methodology . 91
5.5.2 Impact of the slack . 91
5.5.3 Impact of the session and round length on latency 95

5.6 Related work . 97
5.7 Summary . 98

6 c o n c l u s i o n 99
6.1 Contributions . 100
6.2 Limitations and future directions . 101
6.3 Concluding remarks . 102

b i b l i o g r a p h y 103

au t h o r ’ s p u b l i c a t i o n s 117

c u r r i c u l u m v i t a e 119

a p p e n d i x 121

a a p p e n d i x 121
a .1 6LoFlood . 121

a .1 .1 Node addressing and message forwarding 122
a .1 .2 Packet fragmentation . 124
a .1 .3 Header compression . 125
a .1 .4 Summary . 131

xi

L I S T O F F I G U R E S

Figure 1.1 Single-link vs. synchronous transmissions 3

Figure 2.1 TelosB nodes . 11
Figure 2.2 FlockLab testbed . 12
Figure 2.3 Structure of an IEEE 802.15.4 packet 18
Figure 2.4 Constructive interference and the capture effect 20
Figure 2.5 Timeline and classification of synchronous transmission-based ap-

proaches . 23
Figure 2.6 Protocols and their ranking at the EWSN dependability competition 25
Figure 2.7 Network floods with Glossy . 26

Figure 3.1 Radio activity during packet reception and retransmission 31
Figure 3.2 Counting E∗

rx . 35
Figure 3.3 Simulated distribution of the software delay Tsw in Flock 39
Figure 3.4 Experimentally retrieved distribution of the software delay Tsw in

Glossy . 42
Figure 3.5 Experimentally retrieved distribution of the software delay Tsw in

Flock . 43
Figure 3.6 Experiment setup for Flock in a controlled environment 45

Figure 4.1 Structure of a signaling packet that is used as “wake-up call” in
Whisper . 50

Figure 4.2 Whisper vs. Whisper with lazy sampling vs. Glossy 51
Figure 4.3 Operation of Whisper . 56
Figure 4.4 Time synchronization in Whisper . 59
Figure 4.5 Whisper in a collection scenario . 63
Figure 4.6 Comparison of the performance of Whisper and Glossy 67
Figure 4.7 Comparison of Whisper and Glossy in different dissemination sce-

narios . 70
Figure 4.8 Impact of low-level mechanisms on Whisper 72
Figure 4.9 A Crystal epoch with and without Whisper 75
Figure 4.10 Impact of Whisper on Crystal . 77

Figure 5.1 Interconnection of a low-power wireless network with the Internet . 82

xiii

l i s t o f f i g u r e s

Figure 5.2 Conventional IP-based IEEE 802.15.4-based network stack vs. net-
work stack with LaneFlood . 83

Figure 5.3 Lane establishment with LaneFlood 84
Figure 5.4 Structure of a LaneFlood message . 85
Figure 5.5 LaneFlood’s protocol operation . 86
Figure 5.6 Impact of the slack on the performance of LaneFlood in the sparse

topology . 93
Figure 5.7 Impact of the slack on the performance of LaneFlood in the dense

topology . 94
Figure 5.8 Impact of the round length on the performance of LaneFlood 96

Figure A.1 IPv6/UDP packet. 121
Figure A.2 6LoFlood packet format. 122
Figure A.3 Pv6 header structure . 126
Figure A.4 ICMP message structure. 128
Figure A.5 Juxtaposition of the 6LoFlood-UDP and the “standard” UDP header 128
Figure A.6 Juxtaposition of the 6LoFlood-TCP and the “standard” TCP header . 130

xiv

L I S T O F TA B L E S

Table 2.1 ISA SP100 Application Classes . 14
Table 2.2 Envisioned protocol stack for IP-enabled low-power wireless networks 16

Table 3.1 Experimental results of Flock in a controlled environment 46

Table 4.1 Summary of evaluation scenarios and configuration parameters us-
ing Whisper . 66

Table 4.2 Whisper’s evaluation results . 69
Table 4.3 Impact of low-level machanisms on Whisper and Glossy 73
Table 4.5 Crystal’s configuration parameters . 76

Table 5.1 LaneFlood message types . 86
Table 5.2 LaneFlood server settings . 91

Table A.1 6LoFlood address encoding of IPv6 addresses 123
Table A.2 6LoFlood Fragmentation information 124
Table A.3 Next header encoding of 6LoFlood . 127
Table A.4 Port number encoding in 6LoFlood . 129
Table A.5 Resulting packet sizes using 6LoWPAN and 6LoFlood 131

xv

L I S T O F A C R O N Y M S

6LoWPAN IPv6 over Low power Wireless
Personal Area Network

6LoFlood 6LoWPAN for LaneFlood

CAN Controller Area Network

CIWA Chinese Industrial Wireless
Alliance

CoAP Constrained Application Protocol

CRC Cyclic Redundancy Check

CSMA Carrier-Sense Multiple Access

CSMA/CA CSMA with Collision Avoidance

CXFS Concurrent Transmission
Forwarder Selection

DAE Destination Address Encoding

DCO Digitally Controlled Oscillator

DPE Destination Port Encoding

DSSS Direct Sequence Spread
Spectrum

FCS Frame Check Sequence

FDMA Frequency Division Multiple
Access

Flock On-the-Fly Clock Offset
Compensation

HART Highway Addressable Remote
Transducer

HTTP Hypertext Transfer Protocol

HVAC Heating, Ventilation and Air
Conditioning

ICMP Internet Control Message
Protocol

IEC International Electrotechnical
Commission

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IPv4 IP Version 4

IPv6 IP Version 6

ISA International Society of
Automation

ISM Industrial, Scientific and Medical

LAN Local Area Network

LR-WPAN Low-Rate Wireless Personal Area
Network

LWB Low-power Wireless Bus

MAC Medium Access Control

MCU Microcontroller Unit

xvii

l i s t o f a c r o n y m s

MPDU MAC Protocol Data Unit

MSK Minimum Shift Keying

MTU Maximum Transfer Unit

NOP No Operation

O-QPSK Offset-Quadrature Phase Shift
Keying

OSI Open System Interconnection

PN Pseudo-random Noise

QoS Quality of Service

RA Router Advertisement

RAM Random Access Memory

ROM Read-Only Memory

RPL IPv6 Routing Protocol for
Low-Power and Lossy Networks

RS Router Solicitation

RSS Received Signal Strength

RTS/CTS Request to Send / Clear to Send

SA Short Acknowledgement number

SAE Source Address Encoding

SFD Start-of-Frame Delimiter

SLAAC StateLess Automatic Address
Configuration

SMA SubMiniature Version A

SNR Signal-to-Noise Ratio

SoC System-on-Chip

SPE Source Port Encoding

SPI Serial Peripheral Interface

SS Short Sequence number

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TI Texas Instruments

TSCH Timeslotted Channel Hopping

TSMP Time Synchronized Mesh
Protocol

UDP User Datagram Protocol

USB Universal Serial Bus

VHT Virtual High Resolution Time

WIA-PA Wireless Networks for Industrial
Automation – Process
Automation

WISA Wireless Interface for Sensors
and Actuators

WSN Wireless Sensor Network

xviii

L I S T O F S Y M B O L S

∆Td Temporal displacement of incoming signals.
∆Td⩽0.5µs Maximum temporal displacement of incoming signals for achieving constructive

interference.

c Relay counter in Glossy and LaneFlood. It indicates how often a packet has been
relayed.

ddf In LaneFlood, distance in hops between destination and the node that has re-
ceived the current message.

dsd In LaneFlood, distance in hops between source and destination.
dsf In LaneFlood, distance in hops between source and the node that has received

the current message.

Erx Number of clock cycles that elapse during Trx with a frequency of fDCO.
E∗
rx Number of clock cycles that actually elapse during Trx with a frequency of f∗DCO.

fr Nominal frequency of the radio clock. In this thesis, fr is set to 8 MHz.
fDCO Nominal frequency of the DCO clock. In this thesis, fDCO is set to 4 194 304 Hz.
f∗DCO Actual frequency of the DCO clock.

I Number of clock cycles and thus, number of instructions that must elaps during
Tsw with fDCO.

I∗ Number of clock cycles and thus, number of instructions that must actually elaps
during Tsw with f∗DCO.

kp Variable and unpredictable delay at which the MCU detects the SFD signal from
the radio. The delay is caused by the unsynchronized running MCU and radio
clocks. It is a uniformly distributed random variable in the interval 0 < kp ⩽ 1.

Ntx Number of consecutive packet/packlet transmissions before a node turns its
radio off.

p Packlet counter in Whisper. It indicates the packlet a receiver has intercepted.

s The slack s determines the width of a lane in LaneFlood and thus, the number
of nodes that actively participate in the message exchange.

si The integer part of the slack. It declares the nodes that must be within the lane.

xix

l i s t o f s y m b o l s

sd The fractional part of the slack. It declares the nodes that are part of the lane
with probability sd.

Tc Duration of a LaneFlood communication slot.
Tg Duriation of the guard time in LaneFlood at the end of a session.
Tr Duration of a LaneFlood round.
Ts A LaneFlood session.
Tsw Software delay between the end of a packet reception and the transmission

request to the radio. During the Tsw the Microcontroller Unit (MCU) is in charge.
Trx The interval where the SFD pin is active during reception. It spans the reception

duration of the length field and the MPDU.
Tturn The rx/tx turnaround time, where the radio switches from receive mode to trans-

mit mode (and vice versa). The IEEE 802.15.4 standard defines the rx/tx turnaround
to be at most 192 µs.

xx

CHAPTER 1

I N T R O D U C T I O N

Low-power wireless networks consist of resource-constrained, battery-operated devices
that are equipped with a wireless transceiver. Such devices are called nodes and together
with integrated or external sensors and actuators, the nodes jointly perform tasks like the
monitoring and control of physical events. With regard to wired solutions, low-power wire-
less networks have great potential to improve productivity and operational efficiency, e. g.,
in “industrial and factory automation, distributed control systems, automotive systems and other
kinds of networked embedded systems [116, 184]” [183]. The advantages of low-power wireless
networks lie in the cost- and time-effective installation and maintenance of a high number
of wireless nodes [58, 63, 139, 184]. The nodes are cheap, which allows for installing hun-
dreds or thousands of these devices for comprehensive sensing and monitoring of complex
systems [58, 151]. The absence of cables facilitates node mobility, e. g., the deployment
of the nodes on rotating equipment or freely moving devices. Thus, low-power wireless
networks can operate in dangerous and for humans’ inaccessible environments [10, 46].

For nodes to operate unattended and reliably for several month or years – as needed
by many applications [10, 14, 125, 151] – an energy-efficient operation of the network
is mandatory. This implies that communication protocols used in low-power wireless
networks must be designed to be energy-efficient. This is because wireless communication
is the main cause of energy consumption in these networks [58, 183]. However, the wireless
communication channel is inherently unreliable and lossy due to interference, attenuation
and unpredictable signal propagation effects. This causes packet losses and delays in
packet deliveries. However, applications like open-/closed-loop control rely on timely
feedback and thus, have high requirements in reliability and low latency [58, 63, 139, 183].

Several approaches [36–38, 50, 52, 60, 73, 75, 90, 189, 191] tackle this problem with a
technique called synchronous transmissions. Using synchronous transmissions, multiple
nodes forward identical packets simultaneously to let their packets precisely overlap and
collide constructively at the same receiver(s). The constructive collisions significantly
increase the likelihood of packets being correctly received. A short radio activity, and thus,
the energy-efficient operation of synchronous transmission-based protocols relies on the
simultaneous wake-up and the quick and reliable network-wide packet dissemination.

In this thesis, we build upon the promising results of synchronous transmission-based
protocols with respect to energy-efficiency, reliability and latency. In particular, this thesis
deals with two major aspects that have only received little consideration in this field:
reliable operations in harsh environments and the support for event-based data traffic.

1

1 i n t r o d u c t i o n

1.1 p r o b l e m s t a t e m e n t

The rationale behind the use of synchronous transmissions is to depart from traditional
single-link communication and instead let several nodes transmit and receive identical
packets synchronously over multiple paths. Figure 1.1 shows schematically a packet
propagation using single link transmissions (Figure 1.1a) and synchronous transmissions
(Figure 1.1b) in comparison. As displayed in Figure 1.1a, in single-link-based protocols
the nodes forward packets to only one node within their communication range. Using
synchronous transmissions, depicted in Figure 1.1b, identical packets are flooded simul-
taneously to all nodes within one hop. Thus, several replicas of a packet exist. In case of
packet loss on one link, the packet can still be disseminated until it is received by all nodes
in the network. Letting the nodes transmit the replicated packets at exactly the same time
instant – within a temporal displacement of sub-microseconds – increases the likelihood that
a packet is correctly received despite interference.

Experiments with real nodes in optimal ambient conditions and under high noise inter-
ference have shown that synchronous transmissions boost the performance in low-power
wireless networks [47, 52, 74, 130, 153]. While these results demonstrate the potential of
synchronous transmissions, two important aspects remain unexplored:

• Reliable operation in harsh environments: Low-power wireless networks are often de-
ployed in harsh environments, where the nodes are exposed, e. g., to high temperature
variations. Related work has shown that temperature has a dramatic effect on the link
quality and thus, on the communication reliability in single-link protocols [17, 178].
However, investigations on the temporal displacement of packets from synchronously
transmitting nodes have not yet been performed. Therefore, it is unclear how well
packets collide constructively in harsh environmental conditions.

• Support of event-based data traffic: Existing protocols building upon synchronous trans-
missions strongly focus on periodic data transfer, and thus, on periodically occurring
events that need to be transmitted. In contrast to periodic data transfer is event-
based communication, where an event, and thus, the data transmission occurs un-
predictably. For a timely packet forwarding, the nodes have to check the channel
regularly and long enough for incoming data packets. The aspect of reducing the
channel check activity to save energy has yet only received little considerations in
the context of synchronous transmissions. Another problem occurs in scenarios in
which two nodes exchange data in a one-to-one communication manner. Realizing
such scenario with existing solutions results in flooding the entire network, which
consumes unnecessary energy.

In the following, we discuss both aspects in more detail.

2

1.1 p r o b l e m s t a t e m e n t

Destination

Wireless link

Source

(a) Single-link transmissions.

Source

Destination

Wireless link

(b) Synchronous transmissions.

Figure 1.1: Single-link vs. synchronous transmissions. In single-link transmissions, only one node
forwards the packet until it reaches its destination. Using synchronous transmissions, a packet
is received and retransmitted by all nodes within one hop, and thus, several replicas of a packet
exists along different paths. In case of packet loss at one link, the packet can still be forwarded to
its destination through other paths. Letting nodes transmit the replicated packet at the same time
instant, so that their packets collide constructively, increases the likelihood that the packet is being
received at the receiver(s).
The dots in the figures represent nodes and circles indicate the one-hop communication range of
the nodes.

1.1.1 Reliable operation in harsh environments

Many low-power wireless networks are expected to be deployed in inaccessible or harsh
environments where nodes are exposed to dust, vibrations, moister, and extreme heat/cold.
Typical example applications range from industrial and factory automation [55, 63, 139]
over smart grids [172] to critical infrastructure monitoring [10, 29]. Related work [17, 178]
has shown that changes in temperature and humidity has strong influence on the packet
reception reliability in traditional single-link networks. For example, Boano et al. [17] argue
that an increasing temperature reduces a node’s communication range due to a lower
Signal-to-Noise Ratio (SNR). The latter is caused by the temperature sensitivity of the
hardware equipment.

The impact of temperature and humidity on the reliability that has been explored in
the context of single-link transmissions, indeed, also applies when using synchronous
transmissions. Furthermore, in order to achieve a temporal displacement in the order
of sub-microseconds, protocols based on synchronous transmissions heavily rely on the
precise and consistent operation of the nodes’ electronic equipment, and especially of

3

1 i n t r o d u c t i o n

the nodes’ clock. However, the clocks of commodity nodes show strong drifts over time
and even larger drifts when temperature, humidity or voltage change, also affecting the
temporal displacement. As a consequence, the probability that synchronously transmitted
packets collide destructively instead of non-destructively increases significantly. However,
the effect of clock drifts on the temporal displacement has not been quantified yet.

1.1.2 Support for event-based data traffic

Existing protocols based on synchronous transmissions let nodes periodically flood packets
through the network. This periodic flooding perfectly matches to applications that require
periodic data transfer. However, often “[d]ata is measured and collected continuously but sent
only when the data measured represents previously specified importance, e. g., an event. The time of
occurrence of an event is unpredictable” [139]. In other words, in various applications the data
to transmit is generated at unpredictable time instants but must be forwarded immediately
to a central server. For nodes to be able to timely detect the presence of communication
in form of data packets, they must regularly switch their radios on and check the channel
for incoming transmissions. The more often this channel check is performed, and the
longer each check lasts, the higher is the energy consumption of the nodes. Thus, channel
sampling induces a high energy overhead in event-based traffic. However, these frequent
channel checks are needed to ensure a timely packet delivery. This trade-off has not yet
been fully explored in synchronous transmission-based protocols.

Typical scenarios for such event-based data transfer are those in which data prediction [73,
134] or compression [66, 79] is used to reduce the amount of data to transmit. Another
example is the use of standard Internet protocols like IPv6 in low-power wireless networks
for the interoperability and interconnection with other networks [64, 172].

In Internet protocols, data can reach up to a few hundreds of bytes and is often exchanged
one-to-one between only two nodes. Thus, flooding the entire network at each data ex-
change – as done by many protocols based on synchronous transmissions – causes unnec-
essary energy consumption. However, this issue has only received little consideration yet.

1 .2 o b j e c t i v e s a n d c o n t r i b u t i o n s

The main goal of this thesis is to contribute novel techniques and protocols based on
synchronous transmissions that enable highly reliable, low-latency distribution of event-
based data in low-power wireless networks in even harsh environments. More specifically,
we provide the following three main contributions:

4

1.2 o b j e c t i v e s a n d c o n t r i b u t i o n s

• On-the-fly clock offset compensation. In this thesis, we quantify the effects of clock
offset caused by temperature on the temporal displacement of synchronously trans-
mitting nodes. To counteract this issue, we propose Flock, a protocol primitive
that compensates on-the-fly for clock frequency deviations among synchronously
transmitting nodes.

• Fast flooding of small amounts of data. We reduce the length of channel checks while
still allowing the reliable detection of packet transmissions for reducing the energy
consumption of the nodes by introducing Whisper. Whisper targets two types of
applications: First, it can be used to disseminate small amounts of data. Second, it
can be integrated in another communication protocol running within the nodes to act
as wake-up primitive, i. e., using Whisper as “wake-up call” before the actual data
exchange if one or several nodes have an event to share.

• Event-based one-to-one communication. We enable standard Internet protocols to effi-
ciently run on top of protocols based on synchronous transmissions. In particular,
we target one-to-one communication scenarios. To this end, we introduce LaneFlood,
a protocol that only includes nodes that are required for data exchange, while other
nodes have turned their radio off to save energy.

1.2.1 On-the-fly clock offset compensation

The Microcontroller Units (MCUs) of common low-power wireless nodes rely on imprecise
and unstable running Digitally Controlled Oscillators (DCOs). DCOs show strong frequency
drifts over time. These drifts further intensify with changing environmental parameters like
temperature and humidity, leading to frequency deviations among the nodes. In this thesis,
we show and quantify that small clock offsets among synchronously transmitting nodes
significantly decrease the probability in achieving constructive interference. We further
show that this is even exacerbated when the nodes are exposed to different temperatures.
To compensate for the different clock offsets across synchronously transmitting nodes, we
propose Flock: On-the-Fly Clock Offset Compensation. Instead of only relying on the
DCO, Flock exploits the fine-grained, highly accurate radio clock to compensate on-the-fly
for DCO offsets. Most of this contribution described above has already appeared in the
following publication:

• M. Brachmann, O. Landsiedel, and S. Santini. “Keep the Beat: On-The-Fly Clock
Offset Compensation for Synchronous Transmissions in Low-Power Networks.” In:
Proceedings of the Conference on Local Computer Networks (IEEE LCN). 2017.

5

1 i n t r o d u c t i o n

1.2.2 Fast flooding of small amounts of data

This thesis introduces Whisper, a reliable protocol tailored to the propagation of small
amounts of data. Whisper exploits synchronous transmissions and a packet-in-packet
technique, which makes network floods significantly shorter compared to the state-of-the-
art. This reduces the duration of a flood and further enables robust sampling of packets.

Whisper targets the quick yet energy-efficient dissemination of small data portions and
it can improve the energy-efficiency of other communication protocols. The latter can be
achieved by using Whisper within the other protocol as network-wide wake-up primitive
when one or multiple nodes have pending data to transmit in the next communication slot.
Otherwise, when nodes have not received the “wake-up call”, they keep the radio turned
off to save energy. Parts of this contribution is in preparation to be published:

• M. Brachmann, O. Landsiedel, D. Göhringer, S. Santini, “Whisper: Fast Flooding
for Low-Power Wireless Networks”, In preparation for ACM Transactions on Sensor
Networks, arXiv preprint, http://arxiv.org/abs/1809.03699. 2018.

1.2.3 On-demand one-to-one communication

We introduce LaneFlood to efficiently run standard Internet protocols like UDP/TCP and IP

Version 6 (IPv6) in low-power wireless networks. Most Internet protocols only target data
exchange between two nodes, a source node and a destination node. Therefore, LaneFlood
only involves these two nodes along with forwarding nodes in the communication. This
is in contrast to existing approaches that instead inherently flood the entire network. In
fact, LaneFlood creates a path between source and destination. Nodes that belong to the
path stay active, otherwise they turn the radio off. In this way, LaneFlood ensures energy-
efficient one-to-one communication with only a subset of nodes in the network. When
source and destination have finished the packet exchange or no other node has pending
data, the nodes keep their radio off for some time to save energy. Parts of this contribution
have been already published:

• M. Brachmann, O. Landsiedel, and S. Santini. “Concurrent Transmissions for Com-
munication Protocols in the Internet of Things.” In: Proceedings of the Conference
on Local Computer Networks (IEEE LCN). 2016.

6

http://arxiv.org/abs/1809.03699

1.3 o u t l i n e

1.3 o u t l i n e

The remainder of this thesis is structured as follows: Chapter 2 introduces background
information about low-power wireless networks in general and synchronous transmissions
in particular. Moreover, this chapter summarizes related work. Chapter 3 presents our
analysis about synchronous transmissions in harsh environments and Flock, our strategy to
counteract this issue. While the goal of Flock is to increase the probability of constructively
colliding packets using synchronous transmissions, the following two chapters, Chapter 4
and Chapter 5, use synchronous transmissions as underlying communication service. In
Chapter 4, we present Whisper for fast flooding of event-based small data and in Chapter 5,
we demonstrate LaneFlood for efficiently running standard Internet protocols in low-power
wireless networks. Finally, we conclude this thesis in Chapter 6 by summarizing the
achieved results and discussing limitations and possible future directions.

7

CHAPTER 2

B A C K G R O U N D A N D R E L AT E D W O R K

In this chapter, we provide the reader with background information and related work that
is relevant for this thesis and show delimitations to existing solutions. We start by briefly
introducing the field of low-power wireless networks for readers that are unfamiliar with
the topic in Section 2.1. In Section 2.2, we analyze and discuss protocols and standards
that use single-link transmissions and target highly reliable, low-latency communication.
Our developed protocols and techniques build upon the IEEE 802.15.4 standard on the
physical transmission level, which we briefly describe in Section 2.3. We detail synchronous
transmissions in IEEE 802.15.4 by explaining the concept and surveying state-of-the-art
in Section 2.4. Lastly, in Section 2.5, we summarize this chapter and distinguish the
contributions of this thesis from the related work.

2.1 l o w - p o w e r w i r e l e s s n e t w o r k s

Traditional low-power wireless networks, also known as Wireless Sensor Networks (WSNs),
are clusters of loosely coupled, spatially dispersed, autonomous devices, dubbed nodes. Up
to thousands of these nodes are installed to sense and record physical conditions of the
environment. The nodes then pass the collected data cooperatively through the network
to its destination. Early applications for low-power wireless networks include habitat and
environment monitoring [13, 87, 108] and the surveillance of battle fields [89, 91, 150].
Further applications include next to monitoring also actuation and control allowing for,
e. g., adaptive lighting in tunnels [28] or performance control in chemical plants [123].

One big challenge in low-power wireless networks is the power consumption. The nodes
are often resource-constrained, which relates to a small memory (e. g., few kByte of Random
Access Memory (RAM)) and processing unit (e. g., less than ten MHz) of battery-operated,
cheap devices. However, the form factor of nodes highly depends on the application. For
example, applications involving sensing, actuating and controlling may also involve nodes
that have more resources available. Thus, low-power wireless networks may consist of het-
erogeneous nodes that have different storage space, processing power and even different
strategies for their power supply. Nevertheless, protocols have to run and must therefore
be designed for (1) the devices with the highest constraints and thus, the lowest amount
of resources available, and (2) the required application lifetime, which may range from

9

2 b a c k g r o u n d a n d r e l a t e d w o r k

a few days to several years [138]. During this time, the nodes may operate unattended,
e. g., in harsh and extremely dangerous areas [9, 10], or for non-intrusive habit monitor-
ing [126]. During these long-term operations, node failures caused by physical damage,
breakdown of the electronics or simply battery-depletion are common. The operation of
the low-power network, however, has to continue even in case of node malfunctions. Re-
silience is achieved by relying on wireless connectivity and the spontaneous formation
of a distributed, infrastructure-less network. Thus, low-power wireless networks have to
quickly adapt to topology changes. In addition, nodes may not be able to connect via direct
links due to interference or the size of the area of interest, making multi-hop communication
– i. e., the relaying of data by intermediate nodes – a necessary requirement. Because the
radio consumes the most energy in low-power devices [14, 77], communication protocols
aim to save energy by turning the radio off most of the time and switching it on shortly to
transmit or forward data packets. Turning on and off the radio alternately is called duty
cycling. Thus, communication protocols target a low duty cycle in order to increase the
network lifetime.

2.1.1 Node platforms and their architecture

Nodes in low-power wireless networks mostly consist of three modules: a sensor module,
a processing module and a wireless transceiver module. The composition of the three
building blocks has led to the development of two widespread hardware architectures [7,
14, 187]:

1. MCU and radio as two separate modules: In this architecture, the MCU executes code and
the radio module enables the wireless communication. This architecture allows for
flexible selection of the radio and MCU chips and thus, enables an application-aware
hardware design. However, “application developers have full access to hardware, but at the
same time need to take care of all the resources” [14].

2. System-on-Chips (SoCs): A SoC integrates the MCU and the radio module into a single
chip. “[A]ll of the packet processing and applications processing is performed within the
single chip” [68].

The choice of architecture highly depends on the application scenario and its required
peripherals, e. g., whether the application demands a customized hardware configura-
tion [187]. Also, one architecture may consume more energy for a specific application than
the other [7, 68]. Thus, both architectures can be found in low-power wireless networks. In
this thesis, we focus on node platforms with separate MCU and radio modules. Challenges that
we discuss and solve for this architecture may not occur for SoC-architectures. In particular,
the node architecture is relevant in Chapter 3, where we discuss synchronous transmissions
in harsh environments.

10

2.1 l o w - p o w e r w i r e l e s s n e t w o r k s

2.1.2 The TelosB platform

In this thesis, we mainly use the TelosB nodes [115] as reference platform for our imple-
mentations and evaluations. For this reason, we will introduce this platform in more detail
below. The TelosB is the de-facto standard in low-power wireless testbed evaluations [52,
73, 117, 146]. It features a Texas Instruments (TI) MSP430f1611 16 bit-MCU, which can oper-
ate at maximum 8 MHz and the IEEE 802.15.4-compliant CC2420 radio transceiver from TI

(previously Chipcon). The TelosB thus has a separate MCU and radio module, as discussed
in Section 2.1.1. The TelosB is further equipped with 10 kByte of RAM and 48 kByte of
ROM. The nodes can be powered and programmed over a USB interface. For autonomous
operations, the TelosB can be equipped with two AA batteries.

The TelosB, is an open platform that was designed by Moteiv Corp., a spin-off from the
Berkeley University of California. The published schematics have led to several by-forms
of the TelosB from different companies, e. g., Tmote Sky (Moteiv Corp.), CrossbowTelos
(Crossbow Technology, Inc.), MTM-CM5000 (Advanticsys), and TPR2420 (Memsic Inc.).
The hardware design of all by-forms is identical, and they only differ in the manufacturer
and the hardware revisions of the components they are equipped with. Different behaviors
of the TelosB by-forms is thus due to revisions of single components. In this thesis, we use
the Tmote Sky platform from Moteiv Corp. and the MTM-CM5000-MSP from Advanticsys.
Figure 2.1 shows both platforms side-by-side with the Tmote Sky on the left side and
the MTM-CM5000 on the ride side. If the TelosB by-form is not further specified for an
experiment, the evaluation results are independent of the by-form.

Figure 2.1: TelosB nodes. On the left side is a Tmote Sky from Moteiv Corp. and on the right side an
MTM-CM5000 from Advanticsys.

11

2 b a c k g r o u n d a n d r e l a t e d w o r k

2.1.3 Testbeds for low-power wireless networks

We use FlockLab [99] – a publicly available low-power wireless testbed – to evaluate our
approaches. The FlockLab testbed is located in an office floor at the ETH Zurich. It allows to
run software binaries for different hardware platforms like the TelosB (i. e., the Tmote Sky,
according to a technical staff of FlockLab), TinyNode, and Opal (RF212) [99]. In this thesis,
we only use the TelosB nodes to evaluate our approaches. FlockLab currently consists of
27 indoor nodes that form a multi-hop network. Figure 2.2 shows the floor plan of the
office floor at the ETH with node distribution and the corresponding node identifiers.

Figure 2.2: Node location in the FlockLab testbed. The FlockLab testbed has been used for evaluations
throughout this thesis. It features the TelosB nodes in a multi-hop environment.

2.2 s i n g l e - l i n k c o m m u n i c a t i o n p r o t o c o l s a n d s t a n d a r d s

In the previous section, we gave an overview of the characteristics of low-power wireless
networks and presented typical hardware features of the nodes. This section introduces
communication protocols and existing standards for low-power wireless networks. In
particular, we focus on such protocols and standards that aim for highly reliable packet de-
livery with low latency. In order to be able to classify our work as well as existing solutions,
we first briefly introduce applications and their requirements regarding the timeliness of
packet arrivals in Section 2.2.1. In our context, timeliness denotes the result of latency and

12

2.2 s i n g l e - l i n k c o m m u n i c a t i o n p r o t o c o l s a n d s t a n d a r d s

reliability. Industrial (wired) networks have had stringent requirements in reliability and
the timeliness of data arrival since their deployment in the 1970s [169]. We therefore review
standards and established protocols in the industrial context to derive insights that are
relevant for this thesis. We start by surveying wired industrial networks in Section 2.2.2 in
order to provide the necessary notions for wireless industrial networks, which we describe
in Section 2.2.3. We also review open Internet standards in Section 2.2.4 before concluding
this section with a subsumption of this thesis with respect to the presented standards
and protocols.

2 .2 .1 Requirements and applications

The International Society of Automation (ISA) – one of the leading associations for setting
global standards in automation – has classified automation and control systems regard-
ing their importance of message timeliness into six classes. Table 2.1 summarizes the ISA

classes, with class 0 involving the most time-critical data and class 5 without timeliness
requirements. Most existing wireless solutions for automation and control systems realize
monitoring systems (class 4 and class 5). As pointed out by [195]: “Due to the stringent
requirements for closed-loop control, it takes a long journey for the technology transit from wire-
less process monitoring and open-loop control to closed-loop control.” However, recent practical
solutions involve open-loop control (class 3) for production monitoring and control in an
oil refinery [123], and closed-loop control (class 2) for tunnel lightning [28]. Emergency
actions (class 0) and regulatory control (class 1) are currently still realized by wired indus-
trial solutions, due to their critical demands in reliability. In the following sections, we
explore the industrial domain in more depth to derive insights that are relevant for this
thesis. We start with wired industrial networks, which are the foundation of most wireless
industrial networks.

2.2.2 Wired industrial networks

The family of wired communication protocols in industrial control systems is named Field-
bus. Fieldbus systems are defined in the International Electrotechnical Commission (IEC)
61158 standard as “a digital, serial, multidrop, data bus for communication with industrial con-
trol and instrumentation devices such as – but not limited to – transducers, actuators and local
controllers” [55]. They are different from common Local Area Network (LAN) technologies
like Ethernet in “their robustness against harsh conditions and their ability to meet hard indus-
trial requirements regarding real-time behavior and reliability” [182]. A vast number of different
fieldbus protocols exist, providing solutions for a variety of problems regarding application
sector, requirements (see Section 2.2.1), end-user hardware and many more [169]. The most
often deployed fieldbus systems are the Highway Addressable Remote Transducer (HART),

13

2 b a c k g r o u n d a n d r e l a t e d w o r k

Table 2.1: ISA SP100 Application Classes. The table is taken verbatim from [31] and [179].

Category Class Application Role Description

Safety Class 0
Emergency
action

Safety-related actions, e. g.,
safety-interlock, emergency
shutdown, and fire control

Always critical

Im
po

rt
an

ce
of

m
es

sa
ge

ti
m

el
in

es
s

in
cr

ea
se

s
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−→

Control

Class 1
Closed-loop,
regulatory
control

Motor and axis control, primary flow
and pressure control

Often critical

Class 2
Closed-loop,
supervisory
control

Low frequency cascade loops,
multivariable controls, and
optimizers with timeliness of
communications measured in
seconds to minutes

Usually non-critical

Class 3
Open loop
control

Actions where an operator, rather
than a machine, “closes the loop”
between input and output with
timeliness in human scale, measured
in seconds to minutes

Human in the loop

Monitoring

Class 4 Alerting
Event-based maintenance, low battery
level indicator, and asset tracking.

Short-term
operational
consequences

Class 5
Logging,
Down-
/Uploading

Sequence-of-events logs, reports of
slowly changing information,
preventive maintenance, and history
collection

No intermediate
operational
consequence

Foundation Fieldbus, Profibus, Controller Area Network (CAN) bus, and Modbus [55, 78,
169]. While all fieldbus protocols differ in their technical concept, they all implement
reliable wired communication in a bus, star, ring, or tree topology [169].

Despite their ability to achieve the stringent requirements of emergency actions (class 0)
and regulatory control (class 1) compared to wireless solutions, wired networks are inher-
ently costly and inflexible. Nonetheless, the switch from wired to wireless networks is
a long-lasting step. Thus, most wireless solutions have been built to complement wired
standards, as we discuss in the following section.

2.2.3 Wireless industrial networks

In this and the following section, we review wireless standards and protocols to derive
insights that are relevant for this thesis. We later summarize our findings in Section 2.2.5.
While the following Section 2.2.4 deals with open standards, in this section we discuss
protocols and standards that are designated for the deployment in industrial plants and

14

2.2 s i n g l e - l i n k c o m m u n i c a t i o n p r o t o c o l s a n d s t a n d a r d s

factories. Four important standards have been defined by various working groups for
wireless multi-hop networks in industrial settings: WirelessHART, ISA 100.11a, Wireless
Networks for Industrial Automation – Process Automation (WIA-PA), and ZigBee PRO.
After presenting these standards, we briefly introduce the Wireless Interface for Sensors
and Actuators (WISA), a commercial system from ABB, and the research project GINSENG.

The WirelessHART standard was released in 2007 by the HART Communication Foun-
dation (HCF) [94] and approved 2009 by the IEC as international standard IEC 62591 [33].
It was developed to complement the HART fieldbus with the possibility of wireless com-
munication [78]. The ISA, and more precisely, the ISA100 standard committee has defined
and published the ISA 100.11a standard in 2009 [139, 195]. In 2012 ISA 100.11a became the
international standard IEC 62734 [34]. WIA-PA was proposed 2007 by the Chinese Indus-
trial Wireless Alliance (CIWA) [94] and became an international standard in 2009 named
IEC 62601 [32]. In 2007 the ZigBee Alliance presented ZigBee PRO, which extends ZigBee
(2003). While ZigBee targets home automation and consumer electronics, ZigBee PRO was
designed for industrial automation [54, 78].

While WirelessHART only processes HART commands at its application layer, ISA 100.11a
and WIA-PA also handle Fieldbus Foundation, Profibus, and Modbus commands [78, 139]
(see Section 2.2.2). ZigBee PRO is, instead, not coupled to fieldbus commands. All four
standards are based on the IEEE 802.15.4 standard. The IEEE 802.15.4 standard specifies
the physical and Medium Access Control (MAC) layer for low-power wireless networks
and is also the foundation of the protocols designed in this thesis. We therefore introduce
the IEEE 802.15.4 standard in more detail in Section 2.3. WirelessHART and ISA 100.11a
rely on the Time Synchronized Mesh Protocol (TSMP) [127], which uses Time Division
Multiple Access (TDMA) to schedule the medium access and Frequency Division Multi-
ple Access (FDMA) to allow for frequency hopping. Instead, WIA-PA implements TDMA

and CSMA with Collision Avoidance (CSMA/CA) for accessing the channel and FDMA for
frequency hopping [192]. ZigBee PRO uses CSMA/CA and employs a “frequency agility”
concept. Frequency agility “allows for an entire network to change its operative channel when
faced with reduced link qualities caused by noise and/or interference” [78]. In contrast to chan-
nel hopping, frequency agility is thus less tolerant to fluctuating channel conditions. In
WirelessHART each node is a routing node that maintains its own neighbor table. Further,
each WirelessHART network consists of exactly one network manager, which maintains and
configures the network. For example, it has full knowledge of the network topology and
all existing devices in the network. The network manager configures the routing path
between any source and destination in the network, e. g., by requesting a node’s neighbor
table along with the battery status, ensuring an optimal routing path. ISA 100.11a, WIA-PA,
and ZigBee PRO distinguish between routing and non-routing (e. g., sensors and actuators)
nodes. ISA 100.11a further applies IPv6 for node addressing, which can also be used in
ZigBee PRO. Thus, nodes in a ISA 100.11a or ZigBee network are directly accessible via

15

2 b a c k g r o u n d a n d r e l a t e d w o r k

the Internet, allowing, e. g., to interconnect multiple production plants, as we discuss in
Section 2.2.4 and Section 5.

WISA is a commercial system from ABB. It provides wireless communication as well as
wireless power supply [145]. The latter is achieved using magnetic coupling. The wireless
communication is based on IEEE 802.15.1 (the physical layer that is used in Bluetooth) at
the physical layer and TDMA with frequency hopping at MAC layer. In WISA, up to 120
input/output devices can be connected to a base station, arranged in a star topology with
a communication range of 5 to 10 m. The base station is expected to be connected to a
controller over a wired fieldbus [145, 183].

The GINSENG system [123] is a research project that realizes performance control using
IEEE 802.15.4-based low-power wireless networks. It offers a standalone solution including
network protocols, system software, and the integration of industrial-suited middleware.
GINSENG proposes GinMAC, a TDMA-based single-channel MAC protocol for low-power
nodes that further includes queue management (GinQueue), topology control (GinTop),
and performance monitoring (GinPerf).

2 .2 .4 Standard Internet protocols for low-power wireless networks

The solutions presented in Section 2.2.3 are designated protocols for the deployment in
industrial plants and factories. A different direction are the so-called IP-enabled low-power
wireless networks, also referred as OpenWSN [39, 86, 170]. As mentioned before, the
ISA 100.11a and ZigBee standards have the advantage to be accessible via the Internet.
However, instead of relying on proprietary or closed standards, IP-based low-power wire-
less networks use open standards, specified by the Internet Engineering Task Force (IETF).
These networks are not dedicated for industry, but serve the purpose of the more general
vision of the Internet of Things (IoT), where all devices are interconnected. By acquiring
IPv6 addresses, each device, including low-power wireless nodes, can become either a
client or a server. Clients and servers can interact via standard Internet protocols like User
Datagram Protocol (UDP) or Transmission Control Protocol (TCP), the Hypertext Transfer
Protocol (HTTP) or the Constrained Application Protocol (CoAP) – a lightweight alternative

Table 2.2: Envisioned protocol stack for Internet Protocol (IP)-enabled low-power wireless networks [39, 86].

OSI layer Solution Standard

Application CoAP/HTTP RFC 7252 [19]/RFC 2616 [53]
Transport UDP/TCP RFC 768 [129]/RFC 793 [27]
Network IPv6 + 6LoWPAN + RPL RFC 8200 [35] + RFC 6282 [65] + RFC 6550 [23]

Data Link IEEE 802.15.4e TSCH IEEE 802.15.4 [67]
Physical IEEE 802.15.4 IEEE 802.15.4 [67]

16

2.3 t h e i e e e 8 0 2 . 1 5 . 4 s t a n d a r d

of HTTP. Table 2.2 illustrates the envisioned protocols in the Open System Interconnec-
tion (OSI) model. On the physical and data link layer, IEEE 802.15.4 is expected. In 2012
Timeslotted Channel Hopping (TSCH) was introduced as an amendment to the MAC layer of
IEEE 802.15.4. TSCH was derived from WirelessHART and ISA 100.11a and applies TDMA and
channel hopping. Thus, with IEEE 802.15.4e-2012, the achieved reliability is comparable
with WirelessHART and ISA 100.11a networks [39]. IPv6 over Low power Wireless Personal
Area Network (6LoWPAN) is used as adaptation layer to perform header compression and
packet fragmentation. Both is necessary since the maximum packet size in IEEE 802.15.4
is limited to 127 byte, while IPv6 allows packets of size 1280 byte. The IPv6 Routing Proto-
col for Low-Power and Lossy Networks (RPL) is the state-of-the-art protocol in low-power
wireless networks to guide packets between client and server.

2.2.5 Subsumption of this thesis in the context of single-link protocols and standards

All the solutions for wireless communication presented in Section 2.2.3 and Section 2.2.4
have in common that they rely on single-link transmissions with designated time-slots for
each node for a quick and collision-free data distribution. Data distribution is achieved
by these solutions through routing protocols. In contrast to these approaches, we use
synchronous transmissions, where nodes synchronously propagate packets through the
network. Instead of routing, we use flooding or let the nodes create a path between any
two nodes in the network to flood data along the path. Using this approach, we show in
this thesis that we enable synchronous transmissions to efficiently run standard Internet
protocols as discussed in Section 2.2.4. Further, the presented approaches apply a form of
frequency switching in case of strong interference. In this thesis, we do not explicitly apply
frequency hopping. Effective solutions for frequency hopping when using synchronous
transmissions already exist [36, 48, 49, 74, 112, 118, 120, 130] and can be integrated straight-
forward in the solutions presented in this thesis. In the following Section 2.3, we introduce
the IEEE 802.15.4 standard, which builds the basis on the physical layer for our approaches.
Afterwards, we explain synchronous transmissions for IEEE 802.15.4 networks in detail
in Section 2.4.

2.3 t h e i e e e 8 0 2 . 1 5 . 4 s t a n d a r d

The IEEE 802.15.4 standard is the underlying communication standard for Low-Rate Wire-
less Personal Area Networks (LR-WPANs). LR-WPANs comprise ubiquitous low-cost, low
data rate communication between devices with little or no underlying infrastructure. In
particular, the IEEE 802.15.4 standard specifies the physical layer and the MAC sublayer
for LR-WPANs. As mentioned in Section 2.2.3, IEEE 802.15.4 is the basis of, e. g., ZigBee,
ISA 100.11a, and WirelessHART. IEEE 802.15.4 operates transnational at the Industrial, Sci-

17

2 b a c k g r o u n d a n d r e l a t e d w o r k

entific and Medical (ISM) band at 2.4 GHz. It, thus, has to share the available frequencies
for communication with other wireless technologies like IEEE 802.15.1 (Bluetooth) and
IEEE 802.11 (Wifi) that have higher transmit powers. Several amendments for IEEE 802.15.4
exist that specify additional physical layer mechanisms (e. g., IEEE 802.15.4a improves lo-
calization), or address country-specific regulations and markets (e. g., IEEE 802.15.4c and
IEEE 802.15.4d add new radio frequencies for China and Japan, respectively).

The CC2420 radio chip that is implemented on the TelosB nodes – our reference platform
in this thesis as described in Section 2.1.2 – realizes the physical layer operations of the
IEEE 802.15.4 standard. Similar to WirelessHART and ISA 100.11a, in this thesis, we design
our own strategy for channel access, based on synchronous transmissions. We therefore
neglect the MAC sublayer specification of IEEE 802.15.4. The protocols designed in this
thesis heavily rely on the implemented physical layer of IEEE 802.15.4, and in particular
on the Offset-Quadrature Phase Shift Keying (O-QPSK) modulation with half sine pulse
shaping, and we therefore describe the important aspects in the following. In particular,
we detail the structure of IEEE 802.15.4 packets in Section 2.3.1 and clarify the signal
modulation and demodulation in Section 2.3.2.

2.3.1 Packets in IEEE 802.15.4

Figure 2.3 shows the structure of an IEEE 802.15.4 packet. A packet always starts with a
synchronization header that consists of a preamble and a Start-of-Frame Delimiter (SFD).
The preamble is 4 byte set to 0x00. It is used by receivers to achieve symbol synchronization
and to adjust for frequency offsets [72]. The SFD is a one byte value set to 0xa7 by default. It
indicates the end of the preamble and the start of the packet data. The SFD field is followed
by a 1 byte packet length field. The length field defines the number of bytes in the MPDU.
The MPDU consists of the payload, which contains the actual data, and a 2 byte footer.
The footer includes a Frame Check Sequence (FCS) that is calculated over the payload for
bit error detection. During reception, a Cyclic Redundancy Check (CRC) using the FCS is
performed. A receiver was not able to correctly decode a packet when the CRC fails.

Byte: 4 1 1 0 – 125 2
Field: Preamble SFD Length Payload Footer

Synchronization header MAC Protocol Data Unit (MPDU)

Figure 2.3: Structure of an IEEE 802.15.4 packet.

18

2.4 s y n c h r o n o u s t r a n s m i s s i o n s i n l o w - p o w e r w i r e l e s s n e t w o r k s

2.3.2 Signal (de-)modulation and spreading in IEEE 802.15.4

Before transmission, each byte of a packet is split into two symbols, thus one symbol
corresponds to four bits. Each symbol is mapped to one out of 16 orthogonal chip sequences,
called Pseudo-random Noise (PN) sequence. Each PN sequence consists of 32 chips. The
mapping of bits to a PN sequence is known as Direct Sequence Spread Spectrum (DSSS).
Four bits are, thus, spread to 32 chips. IEEE 802.15.4 uses DSSS in order to make the
transmitted signal impervious to narrowband interference signals and to increase the SNR

at the receiver. The PN-sequences are concatenated and modulated as half-sine onto the
carrier, starting from the least significant chip. The CC2420 uses as modulation format
O-QPSK with half sine chip shaping, which is equivalent to Minimum Shift Keying (MSK)
modulation [72]. Consequently, each even-indexed chip is modulated onto the in-phase (I)
carrier and each odd-indexed chip is modulated onto the quadrature-phase (Q) carrier with
one-half period offset. The chips are transmitted at 2 MChips/s, thus the offset between
each chip, which is the inverse chip rate, is 0.5 µs. The resulting data rate is 250 kbit/s at
the 2.4 GHz band [67]. The modulated I and Q channels that are finally transmitted are
called signals.

On receiving a signal, each half-sine from the I and Q channel is demodulated to a chip
and 32 chips are grouped to one PN sequence. The radio performs soft decision on chip-
level, i. e., the PN sequences may contain chips with non-binary values between 0 and 1 [72].
The de-spreading from PN sequences to symbols is performed by hard decision through
mapping each PN sequence to the symbol with the highest correlation. The redundancy
that is induced through DSSS increases the correct decoding of the received signal, even
when a few chips have not been correctly decoded. The CRC after packet reception fails
when the receiver has decoded too many chips in a PN sequence incorrectly, resulting in
false symbol mappings and thus, falsely decoded bits.

2 .4 s y n c h r o n o u s t r a n s m i s s i o n s i n l o w - p o w e r w i r e l e s s n e t w o r k s

In the last section, we introduced the IEEE 802.15.4 standard and in particular the O-QPSK

with half sine pulse shaping modulation1, which builds the foundation on the physical layer
for our synchronous transmission-based approaches presented in this thesis. Synchronous
transmissions have shown to boost the performance of low-power wireless networks in
terms of reliability, latency and energy-efficiency. We first provide the basic notions of
synchronous transmissions in IEEE 802.15.4 in Section 2.4.1. Afterwards, we present a
brief history of synchronous transmissions in Section 2.4.2. This thesis mainly builds upon

1 Henceforth, we use IEEE 802.15.4 as shortcut for IEEE 802.15.4 with O-QPSK with half sine pulse shaping
modulation.

19

2 b a c k g r o u n d a n d r e l a t e d w o r k

Glossy, the state-of-the-art protocol of synchronous transmissions. We therefore introduce
Glossy and its basic principle in Section 2.4.3.

2.4.1 Synchronous transmissions in IEEE 802.15.4

Using synchronous transmissions, two or more nodes transmit packets simultaneously to at
least one common receiver in their one-hop range. At the receiver, two events can happen:
either the receiver is able to correctly decode one packet, or the reception fails because
packets collide and the CRC fails. A successfully received packet during synchronous
transmissions is the result of non-destructive interference. Two physical phenomena exist that
affirm non-destructive interference: constructive interference and the capture effect. Figure 2.4
illustrates both phenomena on the example of two synchronously transmitting nodes A
and B, and a common receiver node C. In the following we explain these two phenomena
in more detail in the context of IEEE 802.15.4. Note that the time values specified in the
following only apply for O-QPSK with half sine pulse shaping modulation. The time values
change with other modulation schemes.

BA

C
Link 1 Link 2

(a) Nodes A and B transmit synchronously to node C.

t}

Δtd ⩽ 0.5 µs

Signal received
by node C

Signal link 1
Signal link 2

(b) The signals of nodes A and B interfere construc-
tively at node C.

t}

Δtd < 160 µs

Signal received
by node C

Signal link 1
Signal link 2

(c) Node C receives the packet from node B due to
the capture effect.

Figure 2.4: Non-destructive interference due to constructive interference and the capture effect. When two or
more nodes transmit a packet synchronously, a receiver is able to successfully decode the incoming
packet because the corresponding signals interfere non-destructively due to either constructive
interference or the capture effect. Non-destructive interference, indeed, requires precise timing of
the transmissions.

20

2.4 s y n c h r o n o u s t r a n s m i s s i o n s i n l o w - p o w e r w i r e l e s s n e t w o r k s

c o n s t r u c t i v e i n t e r f e r e n c e . When two or more packets precisely overlap at a
common receiver, their baseband signals may interfere constructively and superim-
pose. To achieve constructive interference, two conditions must be fulfilled:

1. The nodes must transmit identical packets, and thus, identical signals.

2. The transmissions of multiple senders must be precisely timed so that their
signals are in phase with each other and the receiver is able to decode a sufficient
amount of chips in a PN sequence.

Ferrari et al. [52] have theoretically and practically shown that a receiver is able to
successfully decode a packet when the temporal displacement ∆Td of two or more sig-
nals is 0.5 µs or less, which corresponds to the one-half chip period offset, described
in Section 2.3.2. Henceforth, we refer this requirement for achieving constructive
interference the temporal displacement of ∆Td⩽0.5µs. Figure 2.4b illustrates the superim-
position of the signals from node A and B at node C due to constructive interference.
To achieve constructive interference, and thus, allow the arrival of signals at (exactly)
the same time at a common receiver requires the precise timing of the packet transmis-
sions. This is because propagation delay is negligible in low-power wireless networks
due to the limited communication range of transceivers.

c a p t u r e e f f e c t Due to the capture effect, an IEEE 802.15.4-compliant receiver has
a high probability to successfully intercept and decode a packet when the temporal
displacement ∆ of two incoming signals is greater than 0.5 µs. The capture effect,
and in particular the power capture effect, occurs when “the power of the signal of interest
exceeds the sum of interference from colliding packets by a certain threshold” [181]. In other
words, a receiver has a high probability to correctly decode a packet when its signal
is stronger than the sum of all interfering signals from other currently transmitting
nodes. There are two conditions that must be fulfilled in order to make the capture
effect happen:

1. The received signal must be at least 3 dBm stronger than the sum of the interfer-
ing signals [90].

2. The stronger signal must arrive before the radio has completely received the
synchronization header of the weak signal [90, 188]. The IEEE 802.15.4 standard
defines the length of the synchronization header to be 5 byte (see Section 2.3.1),
which corresponds to 160 µs.

In Figure 2.4c, node C receives the packet of node B due to the capture effect. Note
that signal link 2 (signal from node B) is the received signal by node C (highlighted
in red). The capture effect transpires regardless whether the incoming signals are
identical. Thus, it also occurs when two or more nodes transmit different packets.
However, the capture effect is not scalable to numerous synchronous transmitters.

21

2 b a c k g r o u n d a n d r e l a t e d w o r k

The probability to correctly decode a packet decreases with an increasing number of
synchronously transmitting nodes [52, 90].

When during synchronous transmissions either constructive interference or the capture
effect occur, the receiver is able to successfully decode an incoming packet with high
probability. Thus, the signals have interfered non-destructively. However, signals may
also interfere destructively. During destructive interference, the signals cancel each other
out. In particular, when one signal is at its crest and the other signal is at its through,
the amplitudes add up to their difference, which in this case is a resulting amplitude of
zero. However, a complete cancellation of signals rarely happens. Typically, the signals
only partially interfere destructively, which results in few falsely decoded symbols by the
receiver and thus, to a failed CRC.

2 .4 .2 A brief history of synchronous transmissions

More and more protocols have been building upon constructive interference and the cap-
ture effect for the past few years. Figure 2.5 shows an excerpt of the published papers.
The papers shown in the figure are grouped on the y-axis in four different categories:
papers that examine synchronous transmissions, protocols that exploit the capture effect,
protocols that exploit both constructive interference and the capture effect, and protocols
that investigate security in synchronous transmission-based networks. In the following,
we provide a brief history of the rise of synchronous transmissions in low-power wireless
networks.

Until the early 2000s, it was assumed that packet collisions necessarily result in packet cor-
ruptions [82, 160, 167, 174]. Different collision avoidance schemes have been proposed like
TDMA, Carrier-Sense Multiple Access (CSMA), or Request to Send / Clear to Send (RTS/CTS).
However, CSMA and RTS/CTS approaches cannot prevent collisions in any case [11, 174].
In 2005, Whitehouse at al. [180] showed that the capture effect can help in detecting such
packet collisions and also allows the recovery of the packet of the stronger signal. Be-
tween 2006 and 2008, as illustrated in Figure 2.5, Son et al. [155–158] performed a series
of experiments, where they investigated the effects of multiple concurrently transmitting
nodes on the packet reception reliability of a single sender-receiver pair. They found that
the capture effect helps significantly in increasing the packet reception reliability. As a
consequence, concurrently transmitting sender-receiver pairs increase the overall network
throughput. Up to this point, the term concurrent transmissions refers to the simultaneous
data transfer between nodes regardless of the time of the transmission start. Later (around
2011) until today, the term concurrent transmissions has been also used as a substitutional
for synchronous transmissions, where senders simultaneously start transmitting packets.

Dutta et al. [43] have been the first that considered simultaneous transmission starts of
concurrently transmitting nodes to achieve non-destructive interference in their Backcast

22

2.4 s y n c h r o n o u s t r a n s m i s s i o n s i n l o w - p o w e r w i r e l e s s n e t w o r k s
In

ve
st

ig
at

e
Se

cu
ri

ty Hewage
et al.
[61]

Arpeggio
[59]

Hewage et
al. [62]

Ex
pl

oi
t

co
ns

tr
uc

ti
ve

in
te

rf
er

en
ce

an
d

th
e

ca
pt

ur
e

ef
fe

ct

CT-LoRa
[98]

CXFS
[25]

RedFixHop
[47]

eLWB [163]

VIRTUS
[51]

LWB
/w TCP

[60]

FS-LWB
[143]

BLITZ
[162]

Trigger-
Cast
[175]

PEASST
[75]

Disco
[177]

LaneFlood
[20]

LiM [194]

LWB
[50]

Choco
[165]

Poc &
Poid
[185]

Ripple
[189]

Sleeping
Beauty
[144]

Syncast
[112]

Glossy
[52]

pTunes
[197]

Splash
[37]

P3 [36]
Pando

[38]
CRYSTAL

[73]
Flock [21]

CRYSTALCH
ND

[74]

Ex
pl

oi
t

ca
pt

ur
e

ef
fe

ct

SyncMerge/
ByteCast

[140]

Mixer [107]
PacketSync

[141]
NDI-MAC

[102]
vCollector

[12]
Back-
cast
[43]

Flash
[104]

A-
MAC
[42]

Flip-
MAC
[26]

Chaos
[90]

Sparkle
[191]

RFT
[193]

Chasm [83] A2 [118] Codecast [111]

Ex
am

in
e

sy
nc

hr
on

ou
s

tr
an

sm
is

si
on

s

Zimmer-
ling at

al. [196]

König et al.
[84]

Son
et al.
[155]

SCIF
[176]

Park et
al. [124]

Noda et
al. [122]

DIPA [133]

Son
et al.
[156]

Son
et al.
[157]

Son
et al.
[158]

Yuan et
al. [188]

Wilhelm
et al.
[181]

Cheng
et al.
[30]

Liao et al.
[95]

Alhalabi et
al. [4]

Liao et al. [97]

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Pu
bl

is
he

d
pa

pe
rs

(e
xc

er
pt

)

Year

XX Effects of concurrent transmissions XX Synchronous transmissions of identical packets XX Build upon Backcast

XX Build upon Glossy XX Build upon LWB XX Build upon Chaos

XX Analyze Glossy XX Analyze LWB XX Analyze Chaos

XX Improve Glossy XX Improve LWB XX Improve Chaos

XX Other protocols

Figure 2.5: Brief history of the rise of synchronous transmissions. Protocols with white font color mark pro-
tocols that pioneered the research in synchronous transmissions, namely Backcast [43], Flash [104],
Glossy [52], LWB [50], and Chaos [90]. A variety of novel protocols and approaches emerged based
on the protocols named above. Framed protocols mark the approaches published by the author of
this thesis.

23

2 b a c k g r o u n d a n d r e l a t e d w o r k

primitive. In Backcast, a sender transmits a packet and all destination nodes confirm
the reception by synchronously transmitting short hardware-generated acknowledgments.
Thus, the sender can efficiently determine that at least one destination has received the
packet. This principle has been applied to receiver-initiated protocols like A-MAC [42]
and Flip-MAC [26]. While Backcast concurrently transmits short hardware-generated
acknowledgments, Flash [104] successfully transmits longer data packets concurrently.

While the success of packet reception in the previous approaches heavily relies on the
capture effect, Ferrari et al. [52] are the first with Glossy that exploit constructive interference
when transmitting long data packets efficiently over a multi-hop network. Glossy has
sparked a new research direction in wireless low-power communication protocols that
timely transmit identical or different packets to exploit the capture effect or constructive
interference. Two protocols that have further pushed synchronous transmissions are the
Low-power Wireless Bus (LWB) [50] and Chaos [90]. LWB [50] uses Glossy to create a virtual
wireless bus system based on consecutive Glossy floods. Chaos [90] integrates Glossy’s
principle but instead of sending identical data, the nodes transmit different data packets to
efficiently support all-to-all data sharing. In recent years, a plethora of work have appeared
that improve, analyze or build upon Glossy, LWB, and Chaos or examine constructive
interference-based transmissions, as illustrated in Figure 2.5.

The successful packet reception in synchronous transmission-based approaches have
not only been evaluated in dedicated simulations or testbed experiments, but have also
been shown in the EWSN dependability competition [147]. The EWSN competition is
co-located with the International Conference on Embedded Wireless Systems and Net-
works (EWSN) and aims to “benchmark the dependability of state-of-the-art IoT protocols in
environments rich with radio interference” [147]. Competitors are ranked according to their
overall performance regarding the following evaluation metrics: reliability, latency, and
energy-efficiency. Figure 2.6 shows the protocols that have participated per year on the
y-axis and the according ranks on the x-axis. Note that rank 4 is always given to two pro-
tocols and X indicates that the protocols have not been ranked. We clustered the protocols
in synchronous transmission-based, TSCH-based, and other protocols. We already intro-
duced the OpenWSN protocols stack and TSCH in Section 2.2.4. The TSCH-based protocols
in the competition, however, implemented different strategies for TSCH without the layers
above data link. The category “other protocols” includes all protocols that are neither
synchronous transmission-based nor TSCH-based. As shown in the figure, approaches that
utilize synchronous transmission always ranked the first three positions since the start
of the competition in 2016. This success story impressively demonstrates the promising
potential of synchronous transmissions in low-power wireless networks.

24

2.4 s y n c h r o n o u s t r a n s m i s s i o n s i n l o w - p o w e r w i r e l e s s n e t w o r k s
Ye

ar

2018 - BigBangBus

[49]
CRYS-

TAL

Clear:

Making

Interfer-

ence

Transpar-

ent

[171]

Using

Enhanced

OF∂COIN

to Monitor

Multiple

Concurrent

Events

under

Adverse

Conditions

[106]

Wireless-

Transparent

Sensing

Platform

[96]

Aggressive

Synchronous

Transmissions

with

In-network

Processing for

Dependable

All-to-All

Communica-

tion

[121]

Synchronous

Transmissions

+ Channel

Sampling =

Energy

Efficient

Event-

Triggered

Wireless

Sensing

Systems

[137]

Smart

Flooding

with Mul-

tichannel

for

Industrial

Wireless

Sensor

Networks

[173]

CROWN –

Concurrent

ReceptiOns

in Wireless

Sensor and

Actuator

Networks

[136]

Energy-

Efficient

Many-to-

Many

Communi-

cation with

Channel-

Hopping

[152]

2017 - Robust

Flooding

using Back-

to-Back

Syn-

chronous

Transmis-

sions with

Channel-

Hopping

[130]

RedFix-

Hop

with

Channel

Hopping

[48]

Towards

Low-Power

Wireless

Networking

that

Survives

Interference

with

Minimal

Latency

[120]

Using

OF∂COIN

under In-

terference

[105]

Energy-

Efficient

Network

Flooding with

Channel-

Hopping

[154]

Dynamic

Alternative

Path Selection

in Wireless

Sensor

Networks

[148]

Syn-

chronous

Transmis-

sions

based

Flooding

for De-

pendable

Internet of

Things

[135]

Adaptive

Time-Slotted

Channel

Hopping

[45]

Controlled

Replication

for Higher

Reliability

and Pre-

dictability

in

Industrial

IoT

Networks

[76]

Tackling

Cross-

technology

Interference

using Spatial

and Channel

Diversity for

Robust Data

Collection

[113]

2016 - RedFixHop

[81]
Depend-

able

Network

Flooding

using

Glossy

with

Channel-

Hopping

[153]

Towards

Low-

Latency,

Low-Power

Wireless

Networking

under

Interference

[119]

Reliability

through

Time-

Slotted

Channel

Hopping

and

Flooding-

based

Routing

[57]

Sparkle:

Energy

Efficient,

Reliable,

Ultra-low

Latency Com-

munication in

Wireless

Control

Networks

[190]

Multimodal

Reactive-

Routing

Protocol to

Tolerate

Failure [100]

Contiki-

MAC with

Differenti-

ating

Clear

Channel

Assess-

ment

[80]

Interference-

Aware

Multi-

Channel

Cross Layer

Protocol for

Energy-

Efficient and

Low-Delay

Networking

[2]

Is

Concurrent

Transmis-

sion

Flooding a

Good Idea

for Random

Traffic?

[164]

An Adaptive

Protocol

Stack for

High-

Dependability

based on the

Population

Protocols

Paradigm

[5]

Channel

Exploration/-

Exploitation

Based on a

Thompson

Sampling

Approach in a

Radio

Cognitive

Environment

[110]

1 2 3 4 4 X X X X X X
Ranking

synchronous transmission-based protocols

TSCH-based protocols

Other protocols

Figure 2.6: Protocols and their ranking at the EWSN dependability competition. Protocols based on
synchronous transmissions have ranked the first three positions since the start of the competition
in 2016.

25

2 b a c k g r o u n d a n d r e l a t e d w o r k

2.4.3 Synchronous transmissions with Glossy

As illustrated in the previous section, Glossy has pioneered a new research direction.
Also, the protocols presented in this thesis are based on Glossy. We therefore explain the
operation of Glossy in more detail in the following.

Initiator

Hop 2

Hop 1

Hop 3
tc = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7

Initiator

Hop 2

Hop 1

Hop 3
tc = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7

Initiator

Hop 2

Hop 1

Hop 3
tc = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7

Glossy Glossy Glossy

Application Application

t

(a) Application tasks are suspended during periodic Glossy floods.

Initiator

Hop 2

Hop 1

Hop 3
t

transmit software delayreceive idle listening radio off

c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7

(b) Glossy flood with Ntx = 3.

Figure 2.7: Glossy in action. Glossy is scheduled periodically. After suspending application tasks,
Glossy follows a receive-and-relay scheme. Thereby, nodes synchronously transmit packets to their
one-hop neighbors. After transmitting a packet Ntx times, the nodes turn their radio off. The
figures are slightly modified versions of Figure 3 and Figure 6 from [52].

Due to its very strict timing requirements, synchronous transmissions and thus, non-
destructive interference-based flooding has not been applied for data sharing until Glossy [52]
was published in 2011 by Ferrari et al. Glossy provides quick data dissemination through
flooding with implicit time synchronization of a network. As shown in Figure 2.7a, it
decouples Glossy floods from the application. By suspending application tasks on the
host system during network floods, Glossy achieves a synchronization accuracy of sub-

26

2.5 s u m m a r y a n d s u b s u m p t i o n o f t h i s t h e s i s

microseconds and quickly disseminates a packet through a 5-hop network within 2 ms
and a reliability close to 100 %. The packet dissemination is triggered by a single, ded-
icated node, called initiator. Figure 2.7b illustrates a Glossy-flood on the example of a
3-hop network. The initiator transmits a packet and all nodes in the first hop receive and
immediately relay this packet synchronously after a short processing time, called software
delay Tsw throughout this thesis. Next, the second hop and the initiator receive the packet
and also relay it. This receive-and-relay scheme continues until all nodes have transmitted
a packet Ntx times. Afterwards, the nodes turn their radio off. The nodes have their radio
turned on during the entire flood, which takes only a few milliseconds, resulting in a low
packet distribution latency. A node has at least 2Ntx − 1 opportunities to receive a packet
at least once, resulting in a high reliability. Constructive interference is achieved when the
software delay Tsw has the same duration in each node and thus, nodes within the same
hop start their packet transmission at the same time instant. Each packet contains of a relay
counter c that the nodes increase before each transmission. The relay counter c indicates,
thus, how often a packet was already flooded in the network. Knowing c of the first packet
a node has received, the duration of the software delay Tsw, and the packet length, the
nodes synchronize to the initiator by computing the time the initiator has started the flood,
the so-called reference time. The nodes turn their radio on for the next flood according to
the reference time and the periodic flooding frequency. After the next flood, the nodes
compare the expected with the actual start time of the flood and consequently are able
to determine potential clock drifts. The nodes include the computed clock drift in their
calculation for the beginning of the next Glossy-flood, resulting in a high accuracy in the
simultaneous wake-ups of the nodes, and thus in a low radio duty cycle.

The description above only provides an overview and does not cover Glossy in a com-
prehensive manner. We provide more details in related chapters in this thesis.

2 .5 s u m m a r y a n d s u b s u m p t i o n o f t h i s t h e s i s

In this chapter, we provided the fundamentals relevant for this thesis and surveyed related
work. Synchronous transmission-based protocols, and especially Glossy, LWB, and Chaos,
have shown impressive performance regarding reliability, latency, and energy-efficiency.
By building upon Glossy, this thesis tackles several shortcomings of the related work based
on synchronous transmissions: We first show and mitigate clock drift variations among
synchronously transmitting nodes that are caused, e. g., by harsh environmental conditions
like strong temperature and humidity fluctuations in Section 3. Second, we address fast
flooding of event-based data. As discussed in Section 2.4.3, Glossy runs periodically
and follows a receive-and-relay scheme with a short software delay Tsw in between. In
Section 4, we show that this scheme is energy-inefficient in event-based traffic scenarios
with small data packets like configuration parameters or control information. We therefore

27

2 b a c k g r o u n d a n d r e l a t e d w o r k

propose a novel packet-in-packet technique that exploits synchronous transmissions and in
which nodes only initiate communication when they have an event to share. Last, Glossy
periodically floods the entire network. In Section 5, we introduce a protocol that only
involves required nodes in the communication. Nodes that are not required, or in case of
no pending data traffic, the nodes turn their radio off.

In this thesis, we address high reliability, high energy-efficiency, and low latency. How-
ever, each solution in this thesis targets a different metric. Flock (Chapter 3) focuses on
reliability, Whisper (Chapter 4) on reliability and energy-efficiency, and LaneFlood (Chap-
ter 5) aims for all three metrics. Referring to table 2.1, this thesis targets applications in
class 2 to class 5.

28

CHAPTER 3

O N - T H E - F LY C L O C K O F F S E T C O M P E N S AT I O N

In this chapter, we address synchronous transmissions in harsh environments, in which low-
power wireless networks are typically deployed. Within such environments, the nodes are
exposed to strong changes in environmental parameters, e. g., temperature and humidity.
It has been shown in the literature that these changes in environmental parameters have
strong influence on the Received Signal Strength (RSS) and hence, on the packet reception
reliability [16, 17, 168, 178].

In our first contribution, we show that also the temporal displacement ∆Td of syn-
chronous transmissions is affected by the changes in environmental parameters. In par-
ticular, it causes to exceed the temporal displacement ∆Td that is required for achieving
constructive interference. The reason for this temporal drift of incoming signals lies in the
sensitivity of the node’s clocks to temperature and humidity changes. More precisely, syn-
chronous transmissions heavily rely on the precise and consistent operation of the nodes’
clock to align the duration of the software delay Tsw among the nodes (see Section 2.4.3).
The clock of the MCU in commodity nodes, however, shows strong drifts over time and
stronger drifts of up to 20 % when the temperature changes [18, 52]. These drifts are the
cause of varying software delays Tsw among synchronously transmitting nodes. As an ex-
ample, Glossy makes the MCU execute a fixed number of clock cycles during Tsw to ensure
that nodes start their transmission at the same time. Further, Glossy limits the number
of MCU cycles to only less than a hundred to mitigate the impact of MCU clock drift that
occurs over time. However, we show in this chapter that the execution of these few clock
cycles can already result in a temporal displacement ∆Td that exceeds the requirement for
achieving constructive interference. We further quantify ∆Td, when the nodes are exposed
to temperature differences of up to 30 ◦C.

To address the problem clock drifts that cause clock offsets among synchronously transmit-
ting nodes, we present Flock: On-the-Fly Clock Offset Compensation. Flock compensates
for these clock offsets and thus, increases the probability that the signals align construc-
tively. Flock, hence, makes Glossy, and protocols building upon it, more robust to operate
in harsh environments. Furthermore, Flock relaxes an integral part of Glossy: Glossy was
not designed to allow for additional operations during Tsw. More precisely, it strives to
minimize the number of software instructions that are executed during Tsw to mitigate the

29

3 o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n

impact of clock frequency deviations. Thus, approaches that require intermediate opera-
tions, e. g., switching channels to increase resilience [48, 120, 130] or processing received
packets [90], can apply Flock to compensate for clock frequency misalignments and thus
relax Glossy’s timing constraints during Tsw.

The remainder of this chapter is structured as follows: In Section 3.1 we detail how
Glossy achieves ∆Td⩽0.5µs and show the effects of clock frequency deviations on Glossy in
Section 3.2. We introduce Flock in Section 3.3 and evaluate its performance in simulations
and on real nodes in Section 3.4. We describe related work in Section 3.5 and conclude
this chapter in Section 3.6. We have published most of the contributions presented in this
chapter in [21].

3 .1 e n s u r i n g s y n c h r o n o u s t r a n s m i s s i o n s w i t h g l o s s y

We have shown in Section 2.4.3 that Glossy’s network flood is based on an alternating
sequence of receive and relay events that precisely overlap among the nodes1. Glossy’s
receive-and-relay scheme is driven by radio events only, allowing the alignment of syn-
chronous transmission with the absence of explicit node synchronization, as described in
Section 2.4.3. More precisely, the start and end of each packet reception as well as the
start and end of each transmission triggers a pin in the radio, the so-called Start-of-Frame
Delimiter (SFD) pin. Figure 3.1 illustrates the SFD pin activity. The SFD pin is set after
successfully decoding a packet’s SFD field on reception. Because the propagation delays
are negligible in low-power wireless networks (in the order of nanoseconds), the SFD pin
rises on all receiving nodes at almost the same time. The SFD pin stays active until the
entire packet has been received. In other words, the interval in which the SFD pin is active
indicates the packet reception duration Trx. After the nodes have successfully received the
packet, they (almost) immediately turn the radio from receive to transmit mode, which
called rx/tx turnaround, and retransmit the packet, indicated with Ttx in Figure 3.1. Glossy
ensures that the elapsed time between reception and the triggering of the rx/tx turnaround
very short. More precisely, the falling edge of the SFD pin causes an interrupt on the MCU

that indicates the complete reception of the incoming packet. Within the interrupt ser-
vice routine, Glossy aims to quickly initiate the retransmission of the just received packet.
The time it takes for the MCU to issue this retransmission is what we have introduced in
Section 2.4.3 as the software delay Tsw. In order to ensure a temporal displacement of
∆Td⩽0.5µs among synchronously transmitting nodes – which is required to achieve con-
structive interference, as discussed in Section 2.4 – Glossy eliminates almost completely all
possible contingencies that can affect the duration of Tsw. For example, it accounts for the
interrupt delay. The interrupt delay is between 1 and 6 instructions in the MSP430f1611 –

1 This section is an extended version of Section II-A and Section II-B of our previous work published in [21].

30

3.1 e n s u r i n g s y n c h r o n o u s t r a n s m i s s i o n s w i t h g l o s s y

SYNC

Pr
ea

m
bl

e

SF
D

Le
ng

th

M
PD

U

RECEIVE IDLE RX/TX TURNAROUND TRANSMIT

Pr
ea

m
bl

e

SF
D

Le
ng

th

M
PD

U

Packet

Radio
Activity

SFD Pin

TswTrx Ttx
t

Figure 3.1: Radio activity during packet reception and retransmission. The SFD pin rises after successfully
receiving/transmitting the packet’s SFD field and falls after the last byte of a packet has been
received/transmitted. The falling SFD pin after reception triggers in interrupt in which the MCU

initiates the retransmission of the currently received packet and accounts for the interrupt delay.
During this short period, software instructions are executed by the MCU, which is sourced by the
DCO while the radio is idle. The packet reception duration Trx, the software delay Tsw ,and the
packet transmission duration Ttx are shown at the figure’s bottom. This illustration is based on
Figure 7 in [52].

the MCU of our reference platform, the TelosB – and occurs, because the MCU “completes the
execution of the current instruction before starting to serve the interrupt” [52]. Glossy ensures
that the MCU executes exactly the same number of instructions – corresponding to 97 clock
cycles – on all nodes during Tsw.

However, besides a fixed number of instructions I that must elapse during Tsw, “Tsw is still
not constant: there is a variable delay in the transfer of digital signals between [the radio and the
MCU clock]” [52]. In other words, the falling SFD pin at the end of a packet reception is set at
the rising edge of the radio’s clock that runs with frequency fr. However, the MCU detects
the rising SFD pin at the rising edge of its own clock, i. e., a DCO that runs at frequency
of fDCO. Because these two clocks, i. e., the radio clock and the DCO, run at different
frequencies, there is variable and unpredictable delay in Tsw. The ratio between this delay
and the length of an MCU clock cycle is indicated in Glossy [52] as the factor kp, “the fraction
of the DCO period 1/fDCO required at the MCU to sample the SFD transition at the end of the packet
reception. Given that the radio clock and the DCO run completely unsynchronized, the initial offset
kp is a continuous random variable uniformly distributed in the interval 0 < kp ⩽ 1” [52]. By
knowing the frequencies fDCO and fr, the number of instructions I and neglecting clock
drift, the equation for computing Tsw is given by [52] with

Tsw =
1

fr
·
⌈
(I+ kp) ·

fr

fDCO

⌉
. (3.1)

The resulting value for Tsw “is a discrete random variable with granularity 1/fr. The number
of possible discrete values for Tsw and their distribution depend on the number of DCO ticks I” [52].

31

3 o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n

With fr = 8 MHz and fDCO = 4 194 304 Hz the (theoretical) maximal distribution of Tsw on
different nodes results in two possible values that are 0.125 µs [52] apart, which is sufficient
to ensure a temporal displacement of ∆Td⩽0.5µs. This, however, only applies when the
DCOs of synchronously transmitting nodes run at the exactly same frequency. In practice,
however, these clocks typically run on different nodes with different frequencies. In the
following Section 3.2 and in Section 3.4, we show that these frequency deviations lead to
significant differences in the duration of actual software delay Tsw.

3 .2 i m pa c t o f t h e m c u c l o c k f r e q u e n c y o n t h e s o f t wa r e d e l ay

The MCU in low-power nodes is often sourced by an unstable running DCO2. In fact, the DCO

is expected to tick at a pre-specified, nominal frequency. Manufacturing issues, the node’s
by-form (see Section 2.1.2), or temperature, humidity, and voltage differences, however,
cause the actual frequency to vary from node to node [18, 70]. Thus, the actual frequency
of the DCO may vary significantly from the target value, even when the DCO is frequently
calibrated by a stable 32 kHz crystal. For example, the MSP430f1611 – the MCU found on the
TelosB platform – runs with a nominal frequency of 4 194 304 Hz [70]. Further, frequency
deviations of the DCO due to temperature drifts are quantified with −0.38 %/◦C [70]. Let us
assume that two nodes are exposed to temperature differences of 20 ◦C. As a consequence,
the DCO frequencies of these two nodes differ by 7.6 %. While the clock of one node can
be assumed to run at 4 194 304 Hz (i. e., ∼238 ns per tick), the other node would have a
clock running at 3 875 537 Hz (i. e., ∼258 ns per tick). While 97 ticks at the first frequency
correspond to 23.13 µs, they instead result in 25.03 µs if the second frequency is considered.
The difference ∆ between these two delays, (i. e., ∆1.9 µs) is far higher than ∆0.5 µs, which
is required to ensure constructive interference to occur.

3.3 f l o c k : o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n

As discussed in the previous section, the actual duration of the software delay Tsw in
Glossy can deviate across nodes, because the node’s DCO frequency can drift unpredictably
from the nominal frequency. The result is a clock offset among the nodes.

In this section, we address this problem and present our solution called Flock3. Flock
compensates for this clock offset without introducing additional communication overhead
in the network with a rather simple principle of operation. In short, while in Glossy the

2 This section is based on Section II-C of our previous work published in [21].
3 This section and all subsequent subsections are an extended version of Section III of our previous work

published in [21].

32

3.3 f l o c k : o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n

MCU executes a fixed number of instructions during Tsw (97 clock ticks), Flock adjusts
the number of MCU instructions individually for each node to account for clock frequency
deviations of the DCO.

3 .3 .1 Flock: How it works

Flock needs a reliable estimate of either the actual DCO frequency or the DCO’s frequency
deviation from the nominal value to determine the number of software instructions that
must be executed during Tsw. To obtain this estimate, Flock makes use of the radio clock
as a time reference. The radio clock is highly accurate and runs with a higher resolution
than the DCO in our reference platform, the TelosB. In particular, the maximum drift rate of
the radio clock is at most ±40 ppm according to the IEEE 802.15.4 standard [67]. The radio
clock is responsible for the time instance at which the SFD pins are set during reception
start and end. Thus, the rationale behind Flock is to use the time interval between the
SFD pin transitions, indicated as Trx in Figure 3.1, as reference to determine the frequency
deviation of the DCO. Trx can be assumed to be reliable, due to the high accuracy of the
radio clock. Further, the duration of Trx can be derived from the received packet, and more
precisely, the packet length field (see Section 2.3.1).

In the following, we briefly provide a worst-case consideration to justify the use of Trx
as reference in Flock. The data rate for IEEE 802.15.4 at 2.4 GHz using O-QPSK modulation
is 250 kbit/s. Thus, the transmission of a 9 byte Glossy message, consisting of a 1 byte
length field, and an 8 byte MPDU including a 1 byte Glossy header, a 4 byte payload, a 1 byte
relay counter c and the 2 byte FCS, takes 288 µs. Let us assume that the radio clock has
a maximum drift of ±40 ppm. The resulting error on Trx is thus ±11.52 ns (288 µs · ±40
· 10−6). Consequently, we can assume that Trx is equal for all nodes, except for a few
nanoseconds. This is still a factor of 23 below the required 0.5 µs for achieving constructive
interference. In addition, ±40 ppm is the maximum acceptable drift rate for the radio
clock over its entire lifetime and operating conditions, including fluctuating voltages and
temperatures. Thus, the actual drift rate is much smaller than ±40 ppm, as we can confirm
through our experiments in Section 3.4.2. We also observe that the frequency of the DCO

remains stable in the interval Trx + Tsw, which eliminates another potential error source.
In the following, we indicate with Erx the number of clock cycles that elapse during Trx

under the assumption that the DCO runs at the nominal frequency fDCO. Accordingly, with
E∗
rx we indicate the number of DCO clock cycles when the DCO runs at its actual frequency,

indicated as f∗DCO. We further indicate with I the number of clock cycles that must elapse
during Tsw when the DCO frequency is fDCO. By knowing Erx, E∗

rx, and I, we can compute

33

3 o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n

the number of clock cycles I∗ that must elapse during Tsw when the DCO frequency is
f∗DCO with:

I∗ =

⌊
E∗
rx

Erx
·I
⌉

. (3.2)

In Equation 3.2, we denote with ⌊⌉ the “nearest integer function”, i. e., the right side
of the equation must be rounded to the closest integer. Using the equation above, Flock
computes the anticipated value of I∗ for a given I. In the following we detail how Flock
derives the values for E∗

rx and Erx of Equation 3.2.

3.3.2 Counting E∗
rx and computing Erx

In order to determine the value of E∗
rx, we let the MCU count the number of DCO clock ticks

that elapse during Trx. More precisely, we exploit the capability of the TelosB to timestamp
the transitions of the SFD pin. Thus, we capture a timestamp when the SFD pin rises at the
beginning of a packet reception, and another timestamp at the falling SFD pin at the end of
a packet reception. Accordingly, E∗

rx is the result of the difference of these two timestamps.
Since the MCU timestamps are given in clock ticks, the corresponding value for E∗

rx is an
integer value.

In the following, we provide a more detailed description of how Flock counts the MCU

clock ticks to derive E∗
rx. Figure 3.2 illustrates on two examples (Figure 3.2b and Figure 3.2a)

how E∗
rx is determined. In particular, Figure 3.2 shows the radio clock (colored in green)

and the corresponding SFD pin transitions (red lines) as well as the MCU counting the clock
ticks (colored in blue) that elapse during the SFD transitions. Just as it occurs in Glossy
when determining Tsw (see Section 3.1), the radio clock runs at frequency fr and sets the
SFD pin at its rising edge (red line) while the MCU detects the rising SFD pin at the rising
edge (yellow line) of its own clock , the DCO, running at its own speed. Thus, a variable
and unpredictable delay originates, illustrated in Figure 3.2 with “Delay”. The ratio of this
delay and the length of an MCU clock cycle is indicated with kp, as discussed in Section 3.1.
The value of kp causes the MCU to count different clock cycles for the same duration of
Trx. Moreover, the MCU detects the transition of the SFD pin on its next clock tick, thus, it
actually counts one additional clock cycle. Figure 3.2 illustrates both facts: kp causing the
MCU to count different values for the same Trx, and the MCU counting one clock cycle in
addition. For example, in Figure 3.2b, there are five clock cycles between the SFD transitions.
However, the MCU detects the falling SFD pin at the end of the reception at the sixth clock
tick. In Figure 3.2a, kp causes the MCU to count seven ticks in total.

34

3.3 f l o c k : o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n

0 500 1000 1500 2000 2500
t in ns

Delay Counts 6.0 ticks

clock MCU
clock Radio
SFD from radio (recpetion start)
Sample SFD by MCU
SFD from radio (reception end)
Sample SFD by MCU

(a) MCU counts 6 ticks.

0 500 1000 1500 2000 2500
t in ns

Delay Counts 7.0 ticks

clock MCU
clock Radio
SFD from radio (recpetion start)
Sample SFD by MCU
SFD from radio (reception end)
Sample SFD by MCU

(b) MCU counts 7 ticks.

Figure 3.2: Counting E∗
rx. There is a variable and unpredictable delay between the time instant the

radio clock sets the SFD pin at its rising edge and time instance the MCU detects the active SFD pin
at the rising edge of its own clock, the DCO. The length of this delay varies and causes the MCU to
count different values for E∗

rx that occur with different probabilities.

35

3 o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n

Assuming a nominal frequency fDCO, we can use the procedure described above to
compute the value for Erx.

Erx = ⌈(Trx · fDCO) + kp⌉+ 1. (3.3)

In rare cases, when the product of Trx · fDCO results in an integer number, there is only
one possible value for E∗

rx. Otherwise, Erx assumes one of two possible values (e. g., 6 ticks
or 7 ticks as shown on the example in Figure 3.2) that occur with different probabilities.
For computing I∗ in Equation 3.2, Flock selects the value that occurs with higher probability
E
high
rx . We compute E

high
rx by first determining the occurrence probability of the bigger

value Emax
rx of the two possible values (e. g., 7 ticks in Figure 3.2). Because kp is a random

variable that is uniformly distributed in the interval 0 < kp ⩽ 1, the probability of Emax
rx

can be computed as follows:

P(Emax
rx) = (Trx · fDCO) − ⌊(Trx · fDCO)⌋. (3.4)

Lastly, we can determine E
high
rx in dependence of the probability of Emax

rx with:

Ehigh
rx =

{
⌈(Trx · fDCO)⌉+ 1 if: P(Emax

rx) < 0.5

⌈(Trx · fDCO)⌉+ 2 if: P(Emax
rx) ⩾ 0.5 .

(3.5)

3.3.3 Theoretical analysis on the distribution of Tsw

Flock enables protocols building upon synchronous transmissions to operate more robustly
in harsh environments and further allows such protocols to include intermediate opera-
tions during Tsw, e. g., for processing of incoming packets or channel switching. In this
section, we theoretically analyze the distribution of Tsw by also considering the number of
instructions during Tsw as well as the duration of Trx, and thus, the packet length.

The resulting software delay Tsw in Flock after combining Equation 3.1 and Equation 3.2
can be computed with

Tsw =
1

fr
·
⌈(⌊

E∗
rx

Erx
·I
⌉
+ kp

)
· fr

f∗DCO

⌉
. (3.6)

We know from the previous Section 3.3.2 that Erx may result in one or two values, even
in the absence of clock offset. With E

high
rx we select for Equation 3.2 the value for Erx that

occurs with the highest probability. There is, however, still a chance of 1− P(Ehigh
rx) that

36

3.3 f l o c k : o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n

the value with lower probability occurs for Erx. Let us assume that the bigger value for
Erx is the one that occurs with higher probability, thus, Emax

rx = E
high
rx . Consequently, we

set Erx = Emax
rx in Equation 3.2. Let us further assume that a perfectly stable running DCO

with f∗DCO = fDCO is available and that during Trx the MCU counts Emin
rx , thus, the smaller

value of Erx. Because the two values Emax
rx and Emin

rx differ by one DCO tick, E∗
rx becomes

Erx − 1. After transforming Equation 3.2, it becomes I∗ · Erx = I · (Erx − 1). This equality
holds if I∗ < I. More generally, it applies:

I∗ = I± I

Erx
if: f∗DCO = fDCO (3.7)

Thus, the difference between I and I∗ is I
Erx

DCO ticks, also when neglecting clock drift.
There are now three observations that we can make:

1. Glossy sets I = 97 to achieve “the theoretical lower bound of only two possible values for
Tsw” [52] that are 1/fr apart. We obtain from Equation 3.6 and Equation 3.7 that
Flock achieves a theoretical lower bound of two possible values for Tsw only when
the product Trx · fDCO results in an integer value. Otherwise, the theoretical low
bound of Flock is three possible values for Tsw with granularity 1/fr.

2. From Equation 3.7 we observe that with a fixed Erx and increasing I – i. e., having
a fixed packet length while introducing additional instructions during Tsw – the
deviation between I∗ and I increases. The consequence is a higher range of values for
Tsw. In other words, a large processing delay in Flock may also exceed a temporal
displacement of ∆Td⩽0.5µs even in the absence of clock offset.

3. We further read from Equation 3.7 that with a fixed I and increasing Erx – i. e., a fixed
number of instructions during Tsw and an increasing size of transmitted packets – the
deviation between I∗ and I decreases. As a result, also the number of possible values
for Tsw decreases. This implies that to be able to support intermediate operations
during Tsw, also Trx and thus, the packet length must be increased in Flock.

In the next section, we evaluate Flock in various scenarios. Among others, we confirm
the observations that we made within the current section – Flock supports a large amount
of instructions I when adjusting the packet length – even in the presence of clock offset
variations.

37

3 o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n

3.4 e va l ua t i o n o f f l o c k

This section shows the ability of Flock to successfully compensate for clock offsets among
synchronously transmitting nodes4. In Section 3.4.1, we first simulate the distribution of
Tsw with and without Flock for different packet sizes and numbers of instructions using
Python. Afterwards, we report in Section 3.4.2 our evaluation results when running Glossy
with and without Flock on real nodes under different temperature conditions. Finally,
we compare in Section 3.4.3 the performance of synchronous transmissions with and
without Flock with respect to reliability, latency, and energy-consumption in a controlled
lab environment.

3.4.1 Performance of Flock in simulations

In the first set of experiments, we investigate the distribution of Tsw with and without
Flock in different settings through simulations in Python. In particular, we are interested
in the impact of the packet length and the number of instructions I on the distribution
of Tsw when the DCO frequency of nodes deviate from the nominal value. This set of
experiments confirms that even the small number of instructions I used in Glossy may
cause to exceed the temporal displacement of ∆Td⩽0.5µs when DCO frequency deviations
occur. Afterwards, we show that Flock compensates for frequency deviations of the DCO

even when a high number of instruction cycles I – allowing, e. g., for processing operations
– is used by changing the transmitted packet length. This is conform with the observations
from Section 3.3.3.

e x p e r i m e n t s We start our simulation with I = 97, i. e., the number of instruction
executed by the MCU during Tsw in Glossy. To simulate a temperature difference between
0 ◦C and 20 ◦C, we randomly vary f∗DCO between 4 194 394 Hz and 3 875 537 Hz. This
corresponds to a frequency deviation between 0 % and 7.6 % from the nominal value, as
discussed in Section 3.2. We repeat each simulation 1,000,000 times. For computing Tsw,
we use Equation 3.1 for Glossy without Flock and Equation 3.6 with Flock.

r e s u l t s Figure 3.3a shows the distribution of Tsw for Glossy without Flock. In the
figure, Tsw spreads from 23.25 µs to 25.375 µs, resulting in a difference of ∆2.215 µs with
18 values that are 125 ns apart. The latter is because of the radio clock running at 8 MHz,
which results in a resolution of 125 ns (see Section 3.1). This result confirms that even
the small number of instructions in Glossy causes a distribution of Tsw that may exceed
the temporal displacement of ∆Td⩽0.5µs. Next, we repeat the simulation with Flock and

4 This section and the subsequent subsections are an extended version of Section IV of our previous work
published in [21].

38

3.4 e va l ua t i o n o f f l o c k

23.25 23.375 23.5 23.625 23.75 23.875 24.0 24.125 24.25 24.375 24.5 24.625 24.75 24.875 25.0 25.125 25.25 25.375

Tsw [µs]

0.0

2.0

4.0

6.0
F

re
qu

en
cy

[%
]

1.84% 5.49% 6.93% 6.89% 6.82% 6.74% 6.66% 6.58% 6.45% 6.50% 6.40% 6.41% 6.24% 6.20% 6.16% 5.24% 2.33% 0.12%

(a) Glossy: I = 97.

23.125 23.25 23.375 23.5 23.625

Tsw [µs]

0.0

20.0

40.0

F
re

qu
en

cy
[%

]

11.59% 35.86% 38.21% 14.17% 0.17%

(b) Flock: I = 97, packet length = 9 byte.

23.125 23.25 23.375 23.5 23.625

Tsw [µs]

0.0

20.0

40.0

F
re

qu
en

cy
[%

]

11.56% 37.27% 38.45% 12.70% 0.02%

(c) Flock: I = 97, packet length = 128 byte.

476.375 476.5 476.625476.75476.875 477.0 477.125477.25477.375 477.5 477.625477.75

Tsw [µs]

0.0

10.0

20.0

F
re

qu
en

cy
[%

]

0.01% 0.95% 4.57% 10.13% 15.93% 19.46% 19.37% 15.54% 9.47% 3.82% 0.73% 0.02%

(d) Flock: I = 2000, packet length = 9 byte.

476.75 476.875 477.0 477.125 477.25 477.375

Tsw [µs]

0.0

20.0

40.0

F
re

qu
en

cy
[%

]

0.77% 20.86% 42.39% 29.08% 6.91% 0.00%

(e) Flock: I = 2000, packet length = 128 byte.

476.875 479.375 481.875 484.375 486.875 489.375 491.875 494.375 496.875 499.375 501.875 504.375 506.875 509.375 511.875 514.375
Tsw [µs]

0.0

0.1

0.2

0.3

F
re

qu
en

cy
[%

]

(f) Glossy: I = 2000.

Figure 3.3: Simulated distribution of the software delay Tsw. Flock efficiently compensates DCO frequency
deviations among synchronously transmitting nodes. Adjusting the packet length helps in reducing
the amount of possible values for Tsw.

39

3 o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n

a packet length of 9 byte. Figure 3.3b shows the distribution of Tsw in this scenario. Tsw
spreads only over 5 values with a resulting difference of ∆0.625 µs. More precisely, Tsw
distributes within ∆0.5 µs in 99.83 % of the simulation runs. Thus, this confirms that Flock
can achieve constructive interference by efficiently mitigating clock frequency deviations
among nodes.

In the following, we simulate the impact of the packet length and the number of instruc-
tions I on the distribution of Tsw in Flock. First, we leave I unchanged and increase the
packet length to 128 byte. The resulting distribution of Tsw is shown in Figure 3.3c. In this
scenario, the packet length has only marginal effect when comparing the distribution with
Figure 3.3b. In particular, the frequentness of Tsw being within ∆0.5 µs increases to 99.98 %.
This is because a packet length of 9 byte is sufficient to compensate clock frequency devi-
ations for 97 clock ticks. Next, we change I to 2000 ticks, i. e., the time in Chaos [90] to
compute a “maximum” function across 139 nodes, and the packet length to 9 byte. The
simulation result is shown in Figure 3.3d. Tsw spreads over 12 values with a difference of
∆1.375 µs. Thus, compared with Figure 3.3b, Figure 3.3d shows a larger distribution of Tsw
(∆0.625 µs vs. ∆1.375 µs). This is expected and already discussed in Section 3.3.3 (Observa-
tion 2). In particular, from Equation 3.7 with I = 2000 and Erx = 1209, i. e., the number of
clock ticks that the MCU should count during Trx, we can derive that the difference between
I and I∗ is around 2 DCO ticks. These 2 additional DCO ticks, consequently result in a higher
distribution of Tsw. To verify observation 3 in Section 3.3.3, i. e., the packet length must
be increased to let Flock support intermediate operations, we change the packet length to
128 byte. Figure 3.3e shows the result. The distribution of Tsw decreases to ∆0.625 µs with
larger packets. Further, constructive interference can be achieved in 99.24 % of the simu-
lation runs. Figure 3.3f shows Tsw when running Glossy with I = 2000 for reference. Tsw
can take values over an interval of ∆39.5 µs Thus, even with small packets, the distribution
of Tsw using Flock is smaller than without Flock.

3.4.2 Quantifying the effects of temperature on the software delay

In the previous section, we have evaluated through simulations the effect of Flock on the
distribution of Tsw. In this section, we present the results of experiments performed in
a controlled environment with real nodes. We find in this set of experiments that Flock
enables to achieves constructive interference in 98 % of the cases, even when the nodes are
exposed to temperature differences of 30 ◦C. More precisely, Flock reduces the distribution
of Tsw from ∆2.124 µs to ∆0.75 µs. Thus, Flock increases the probability of synchronously
transmitted packets to precisely overlap.

40

3.4 e va l ua t i o n o f f l o c k

e x p e r i m e n t s We embedded Flock in Glossy’s publicly available source code5 and
run it on TelosB nodes6. To account for different frequency offsets, we implement a look-up
table that uses E∗

rx as input. We pre-calculate for different values of E∗
rx the correspond-

ing number of instructions I∗. Thus, the output of the look-up table is a number of No
Operations (NOPs) to add during Tsw, which corresponds to I∗. The consequence is that
Flock within Glossy requires additional instructions. Thus, in our implementation the total
number of instructions is I = 112.

We first measure Trx for 9 byte packets – the default packet size in Glossy – using an os-
cilloscope. We find that Trx is 288.6 µs instead of 288.0 µs as computed in Section 3.3.1. As
stated in [72], the CC2420 – the radio chip used in the TelosB – adds a processing delay dur-
ing packet reception. We assume that the discrepancy between measurements and theory
is caused by this delay. We have not observed such delay on sending nodes. Nonetheless,
this delay has no effect on the design of Flock. However, it has to be considered when
computing the value for Erx.

We measure the distribution Tsw on four nodes acting as receivers by connecting their SFD

pins to an oscilloscope. Three receivers are Tmote Sky nodes and one is an MTM-CM5000
node. As discussed in Section 2.1.2, both platforms, Tmote Sky and MTM-CM5000, are
by-forms of the TelosB platform that only differ in their manufacturer and the hardware
revisions of the components they are equipped with. We enforce different frequency offsets
of the DCO by repeating the experiments under three different temperature conditions:
room temperature (22 ◦C), cold (10 ◦C) and hot (40 ◦C). These temperature ranges are
within the operating conditions of the nodes that are specified with −40 ◦C and 85 ◦C [115].
We generate the cold and hot conditions with a refrigerator that can be switched to either
cooling or heating. After carefully placing the four receivers into the refrigerator we wait a
few minutes before starting the experiments, to allow the nodes to acclimatize. The initiator
– the node that starts the communication and disseminates the packets – operates at room
temperature. We set the transmission power to 0 dBm, i. e., the maximum transmit power
for TelosB nodes, and make sure that the reception reliability is close to 100 %. We further
ensure that the DCO is calibrated with the stable 32 kHz clock before each Glossy-flood to
ensure a fair evaluation. We first run Glossy at room temperature without Flock. After
collecting over 2,000 samples, we repeat the experiment, but expose the four receivers to a
cold condition and then to a hot condition. Finally, we run the experiment again, but with
Flock enabled.

r e s u l t s Figure 3.4 shows the resulting distribution of Tsw in the different tempera-
ture conditions for Glossy and Figure 3.5 shows the results for Flock. When comparing
Figure 3.4a (i. e., Glossy at room temperature) and 3.4b (i. e., Glossy exposed to the cold

5 http://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/

6 The source code of Flock is publicly available at https://github.com/martinabr/flock.

41

http://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/
https://github.com/martinabr/flock

3 o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n

22.875 23.0 23.125 23.25 23.375 23.5 23.625 23.75 23.875 24.0 24.125 24.25
Tsw [µs]

0

11

23

35

F
re

qu
en

cy
[%

]

Tmote Sky 1

Tmote Sky 2

MTM-CM5000

Tmote Sky 3

(a) Glossy: 22◦C.

22.875 23.0 23.125 23.25 23.375 23.5 23.625 23.75 23.875 24.0 24.125 24.25
Tsw [µs]

0

5

11

17

23

29

F
re

qu
en

cy
[%

]

(b) Glossy: 10◦C.

22.25 22.375 22.5 22.625 22.75 22.875 23.0 23.125 23.25 23.375 23.5 23.625 23.75 23.875 24.0 24.125 24.25 24.375
Tsw [µs]

0

4

8

12

F
re

qu
en

cy
[%

]

(c) Glossy: 40◦C.

Figure 3.4: Experimentally retrieved distribution of the software delay Tsw in Glossy. Temperature as
well as the nodes’ by-form heavily affect the distribution of Tsw. In particular, Tsw spreads over
∆2.125 µs for over 2,000 samples at 40 ◦C.

condition), the distributions of Tsw for the Tmote Sky nodes are close together while the
distribution of Tsw for the MTM-CM5000 strongly differs from the distribution of the
Tmote Sky nodes. We believe that the cause for these differences is (1) the nodes by-form,
and (2) the age of the nodes. In both temperature conditions the resulting distribution for
Tsw spreads over ∆1.375 µs. In the hot environment the distribution of Tsw expands to
∆2.125 µs, distributed over 18 values with a distance of 125 ns. It has been already observed
by Boano et al. that “the impact of temperature on the radio chip is considerable, and the higher
the temperature is, the lower are the signal strength and the link quality” [16]. Obviously, this

42

3.4 e va l ua t i o n o f f l o c k

26.25 26.375 26.5 26.625 26.75 26.875 27.0

Tsw [µs]

0

10

21

32

F
re

qu
en

cy
[%

]

0.4% 5.7% 14.2% 26.5% 33.6% 18.0% 1.6%

98.0% of Tsw values
within 0.5 µs

(a) Flock: 22◦C.

26.2526.375 26.5 26.62526.7526.875

Tsw [µs]

0

8

17

26

F
re

qu
en

cy
[%

]

0.3% 10.9% 26.8% 31.3% 25.3% 5.4%

99.7% of Tsw values
within 0.5 µs

(b) Flock: 10◦C.

26.25 26.375 26.5 26.625 26.75 26.875 27.0

Tsw [µs]

0

13

27

F
re

qu
en

cy
[%

]

0.7% 5.0% 16.2% 27.4% 31.5% 17.8% 1.4%

97.9% of Tsw values
within 0.5 µs

(c) Flock: 40◦C.

Figure 3.5: Experimentally retrieved distribution of the software delay Tsw in Flock. Flock is able to
reduce the spreading of Tsw to only ∆0.75 µs for the same temperature conditions. However, the
implementation of Flock requires a few more instructions I compared to Glossy, so that Flock has a
slightly higher software delay.

also applies for other components that the nodes are equipped with, especially the DCO.
Constructive interference is not guaranteed in all three temperature environments.

43

3 o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n

Figure 3.5 depicts the distribution of Tsw with Flock. When the nodes are exposed to
room temperature conditions (Figure 3.5a) and warm conditions (Figure 3.5c) Tsw spreads
over ∆0.75 µs. In the cold condition (Figure 3.5b) Tsw spreads over ∆0.625 µs. In all three
temperature conditions the distribution of Tsw is within 0.5 µs in 98 % of the cases, the
required temporal displacement to achieve constructive interference. The gray area in the
plots marks the range of values for Tsw for which constructive interference can be achieved.
In particular, this range spreads from 26.375 µs to 26.875 µs in all temperature conditions.
Thus, we can conclude that constructive interference can also be achieved when the nodes
are located in mixed temperature environments.

As mentioned before, Flock requires a few software instructions for itself. The average
value for Tsw increases from 23.56 µs for Glossy with Flock disabled to 26.63 µs with Flock
enabled. Thus, the average time the radio is active should be higher in using Flock com-
pared to “standard” Glossy. However, we show in the following experiments that enabling
Flock allows still to achieve a lower radio-on time during a Glossy flood.

3.4.3 The performance of Flock in a controlled environment

In this set of experiments, we investigate the effects of clock offset and the impact of Flock
on the performance of synchronous transmissions with respect to reliability, latency, and
radio-on time as measure for the energy-consumption. We find that when the DCO of
the nodes deviate by 1.5 %, Flock enables the reliability of synchronous transmissions to
increase by up to 3.7 % and also reduces latency as well as the time the radio is active
during a packet flood.

e x p e r i m e n t s We use the code from the previous experiment and deploy it on three
Tmote Sky nodes – two senders and one receiver. The setup of the nodes is shown in
Figure 3.6. We ensure that we only measure the effects of clock offset by eliminating external
factors like multi-path propagation that may also influence the temporal displacement of
signals and thus, the performance of synchronous transmissions. For this purpose, we
connect the nodes at the SubMiniature Version A (SMA) connection sleeves of the antennas
via coaxial cables and a tee coaxial adapter as shown in Figure 3.6. We assign sender 1 and
the receiver a nominal MCU frequency of 4 194 304 Hz. To simulate a frequency offset of
1.5 % we set the nominal frequency of sender 2 to 4 131 389 Hz. We set the transmit power of
the nodes to −25 dBm and ensure that both receivers intercept packets with approximately
the same power level (in our case −66 dBm). We perform this set of experiments at room
temperature and run first “standard” Glossy and afterwards Glossy with Flock. We repeat
each experiment three times, with 2,100 packet floods for each experiment. Afterwards we
repeat the experiment with a transmit power of −29 dBm. Ntx, i. e., the number of packet

44

3.4 e va l ua t i o n o f f l o c k

Tmote Sky Tmote Sky

Tm
ote

Sky

Sender	 1 Sender	 2

Receiver

Attenuators	
(20	 dBm)

Tee	 coaxial
adapter	

Coaxial	 cable

SMA	 connection	
sleeve

Figure 3.6: Experiment setup for Flock in a controlled environment. We reduce multi-path propagation
and other channel effects by connecting the nodes via coaxial cables at their SMA connection sleeves.

retransmissions, is set to 3 in all experiments. Triggered by the receiver, the two senders
synchronously transmit a packet.

At the receiver, we measure three key metrics: reliability, latency, and the radio-on time.
The reliability is the ratio of missed and total packets. The latency indicates the time between
the transmission of a packet and its first reception. The radio-on time is the time the radio
is active during a packet flood. The receiver further collects information about dropped
packets (including retransmitted packets) due to bit-flips caused by destructive interference:
The parameter wrong length is the ratio of the number of packets that are dropped due to a
false length and the total number of dropped packets. A length is considered false when
it is either smaller than 2 byte, which is the size of the footer (see Section 2.3.1), or greater
than the maximum packet length of 127 byte, specified by the IEEE 802.15.4 standard [67].
Glossy distinguishes itself from other coexisting protocols by a header field with value
0xa0. The parameter wrong header indicates the ratio of packets that are dropped due to a
value that differs from the expected one and the total number of dropped packets. Packet
drops due to failed CRCs are indicated with the wrong FCS parameter.

r e s u l t s Table 3.1 summarizes the results for these of experiments. The results confirm
that Flock improves the overall performance of synchronous transmissions. In particular,
Flock increases reliability and reduces latency and radio-on time for both transmit powers.
As mentioned in Section 3.4.2, the implementation of Flock requires a few instructions
during Tsw. The total number of instructions during Tsw, thus, increases from I = 97 to
I = 112. However, Flock is still able to achieve a lower radio-on time and a lower latency
compared to Glossy. We believe that without Flock the first packets of a Glossy flood
collided destructively due to the temporal displacement exceeding ∆Td⩽0.5µs and thus, the
packets were corrupted and dropped by the nodes. The first packet is, hence, received later,

45

3 o n - t h e - f ly c l o c k o f f s e t c o m p e n s a t i o n

and thus, the latency increases. The nodes still transmit a packet Ntx = 3 times, which
results in an increased radio on time.

Table 3.1: Experimental results of Flock in a controlled environment. When the nodes’ DCO clocks deviate
by 1.5 %, Flock is able to increase Glossy’s reliability by 3.7 % at a transmit power of −29 dBm.

Scenario Tx power Reliability Latency Radio-on time Wrong length Wrong header Wrong FCS

[dBm] [%] [ms] [ms] [%] [%] [%]
Synchronous trans- -25 100.0 2.163 4.586 13.66 6.05 80.28

missions w/ Flock -29 98.74 2.464 6.986 13.21 5.98 80.81

Synchronous trans- -25 99.80 2.226 5.197 17.0 0.0 83.0

missions w/o Flock -29 95.18 2.834 10.184 11.88 5.85 82.27

3.5 r e l a t e d w o r k

Several authors have investigated the effects of temperature and humidity on the reception
reliability in single-link networks7. For example, Boano et al. [15, 16] showed experimentally
that the reliability decreases by 30 % when the nodes are exposed to temperature differ-
ences of 30 ◦C. Wennerström et al. [178] confirmed these results and also showed that the
reliability decreases especially at high temperatures. These findings are consistent with
our observations in Section 3.4.2. However, Flock aims to compensate clock offset that is
caused e. g., by temperature differences among nodes.

Clock offset or clock drift compensation has been extensively studied in the context of
clock synchronization. For example, RBS [44], TPSN [56], FTSP [109], RITS [142], RATS [88],
and PulseSynch [92] are protocols that aim to time-synchronize the nodes in a low-power
wireless network. The mentioned protocols achieve a synchronization accuracy in the order
of microseconds. In TPSN and RBS, e. g., the average synchronization error between two
nodes in a single hop network is 16.9 µs and 29.1 µs, respectively [56]. RITS, RATS and
PulsSynch have an average error of 5.3 µs, 8.0 µs, and 2.06 µs, respectively. FTSP achieves
an average error of only 1.48 µs [109] in a one-hop scenario and 0.5 µs per hop in a six-hop
network using MAC layer time-stamping. However, in the latter scenario, FTSP has an
average convergence time of 10 minutes.

Constructive interference requires the temporal displacement of identical signals in the
order of sub-microseconds, and more specific, within 0.5 µs [52] or even less [84]. Glossy,
e. g., achieves ∆Td⩽0.5µs with high probability, by minimizing the number of MCU instruc-
tions and letting each node execute the same amount of instructions, i. e., 97 MCU ticks,
between the end of a packet reception and the retransmission request. Due to clock fre-

7 This section is an extended version of Section V of our previous work published in [21].

46

3.6 s u m m a r y

quency deviations among the nodes, the actual time to execute these 97 clock cycles may
differ from node to node. Flock provides a practical solution to compensate these clock
frequency deviations on-the-fly without introducing additional message overhead. Further-
more, it allows intermediate instructions to be executed, and thus, relaxes an integral part
of Glossy.

Recently, König et al. [84] presented an approach to reduce the temporal displacement
in Glossy. In particular, they account for the propagation delay, the clock synchronization
error, and the transmission timing error, i. e., “the delay the node starts the transmission after a
given desired local time” [84]. In their approach, the authors achieve constructive interference
in over 30% of the cases while Flock obtains constructive interference in over 98 %.

A proposed technique to limit the effects of DCO deviations is to use the Virtual High
Resolution Time (VHT) [146]. VHT utilizes the fact that low-power platforms are typically
equipped with more than one clock. For example, the TelosB node, which we use in
this thesis as reference platform, features a 4.1 MHz and a 32 kHz clock. While the first
one is a highly unstable, high-power clock that has a high resolution, the latter one is a
highly accurate clock that draws little power consumption and offers a low resolution. VHT

combines both clocks to enable low-power and accurate high-resolution time-stamping.
Several synchronous transmission-based approaches utilize VHT [84, 120, 130], but also
denote limitations [120, 130]. In particular, the accuracy obtained using VHT is mostly
insufficient to ensure a temporal displacement of ∆Td⩽0.5µs.

3 .6 s u m m a r y

In this chapter we discussed Flock. Flock aims to compensate clock frequency deviations
among synchronously transmitting nodes that are caused, e. g., by manufacturing issues,
the by-form, or the internal temperature of the nodes. It adapts on-the-fly the number
of clock cycles that must elapse during the software delay Tsw that is induced in Glossy
to compensate for interrupt variations and to trigger the retransmission of a packet. This
allows Glossy and Glossy-like protocols to operate in harsh environments and to include
additional operations like processing of packets or channel switching while still maintain-
ing constructive interference, and hence, a high probability in receiving a packet. Our
evaluation showed that Flock efficiently adapts for frequency deviations of the DCO and
increased Glossy’s performance in terms of reliability, latency, and radio-on time.

The goal of the work presented in this chapter was to increase the probability of con-
structively colliding packets, even in harsh environments. Therefore, Flock can be used as
low-layer primitive in combination with other protocols based on Glossy-like synchronous
transmissions. For example, in the work presented in the following chapter, we utilize Flock
in event-based scenarios and more precisely, in the quick yet energy-efficient distribution
of small amounts of data.

47

CHAPTER 4

FA S T F L O O D I N G O F S M A L L A M O U N T S O F D ATA

In the previous chapter, we addressed the effects of frequency deviations among syn-
chronously transmitting nodes on the temporal displacement ∆Td, and thus, on the per-
formance of protocols based on synchronous transmissions. In the following two chapters,
we describe how one can use synchronous transmissions as a low-level communication
service to support event-based data traffic. In particular, in this chapter, we discuss the
quick and energy-efficient distribution of small data packets.

Event-based data traffic occurs frequently in applications for low-power wireless net-
works. For example, changing the set-point of the Heating, Ventilation and Air Condi-
tioning (HVAC) system in a smart building triggers sporadically events. These events can
occur unpredictably at any time and must be forwarded immediately by the nodes to the
building management system for further processing. Thus, the nodes have to be awake to
be able to forward such events with low latency. However, events can be quite rare. For
example, Istomin et al. [73] report that using data prediction in an indoor temperature
scenario and dividing time in 30-second slots, an event occurs only in 80 % of the slots.
There is thus a discrepancy between latency and energy-efficiency. In order to achieve a
low latency, the nodes have to frequently turn their radios on and sample the channel for
incoming packets. The more often this sampling is performed – and the longer it lasts –
the lower is the latency but the higher is the nodes’ energy consumption. And since events
are rare, nodes often consume unnecessary energy during idle listening, i. e., listening for
potential packets.

In this chapter, we present Whisper to address the challenge described above: Whisper
is a network primitive that builds upon synchronous transmissions and provides fast
and energy-efficient communication in low-power wireless multi-hop networks. Whisper
makes network floods significantly shorter by integrating the flood into a single packet
transmission. This (a) reduces the duration of a flood and thereby allows Whisper to
reduce radio-on time and energy consumption and (b) enables robust sampling, because
there is no “gap” between two packets in Whisper. Whisper can be used as “standalone”
dissemination protocol and as service for other protocols, e. g., as an efficient wake-up
primitive to reduce the protocols idle listening overhead. The latter is the case in the event-
based transmission of large data packets. In such scenarios, the nodes listen to potential
packets for a predefined interval before turning the radio off. Using Glossy-like protocols,
the length of this interval depends on the packet size, the number of hops in the network,

49

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

and Ntx. For example, it would take Glossy almost 67 ms to disseminate a 127 byte packet
in a 6-hop network with Ntx = 3. Thus, the nodes have to keep the radio turned on for the
same amount of time when no packet has been disseminated. Using Whisper, the nodes
keep their radio on for at most a Whisper slot, which is less than 3 ms. Only if they have
received a packlet during the Whisper slot, they await the actual data packet afterwards.
Otherwise, they keep their radio turned off. Thus, using Whisper, nodes only communicate
when they have an event to share. In sum, in case of no data traffic, the nodes are awake
using Whisper for only 3 ms instead of 67 ms.

The remainder of this chapter is structured as follows: Section 4.1 introduces the rationale
of Whisper. Next, Section 4.2 discusses the design choices of Whisper in detail. We evaluate
Whisper and compare its performance to the state-of-the-art in Section 4.3. Section 4.4
presents the related work and discusses key differences of Whisper. Finally, we conclude
this chapter in Section 4.5.

4.1 whisper : how it works

At its core, Whisper is a communication primitive that allows to flood small amounts of
data into a multi-hop network1. It can be used, e. g., to disseminate a configuration param-
eter or to signal all nodes in a network that they must stay awake for helping forwarding
incoming possibly large data packets. In the following, we describe the three corner-
stones of Whisper’s design: packlets, direction-aware channel sampling, and synchronous
transmissions.

signaling packets and packlets In Whisper, a node that needs to send data –
hereafter referred to as the sender – transmits a signaling packet that looks as depicted
in Figure 4.1. It consists of several packlets, whereas a packlet is a piece of message
payload that has the structure of an actual IEEE 802.15.4 packet, including preamble,
SFD and footer. Whisper’s signaling packet, thus, mimics a train of short, identical
packets being sent continuously by the radio, as illustrated in Figure 4.2a.

1 This section is based on Section II of our previous work published in [22].

Preamble SFD LEN Counter
(0) Footer Preamble SFD LEN Counter

(1) SFD LEN Counter
(n) Footer FooterFooter Preamble…

Generated by hardware Generated by software

Packlet Packlet Packlet

Signaling packet

Payload of the signaling packet

Figure 4.1: Structure of a signaling packet that is used as a “wake-up call”. Note that the gray-shadowed
footer at the end of the packet is created only when the radio is used in buffered mode.

50

4.1 whisper : how it works

(a) Whisper.

(b) Whisper with lazy sampling.

(c) Glossy.

Figure 4.2: Whisper vs. Whisper with lazy sampling vs. Glossy. Whisper transmits a train of short
packlets continuously sent by the radio. In contrast, Glossy’s transmit-and-relay scheme leaves
“gaps” between two transmissions, caused by the reception of packets, the software delay Tsw, and
the turnaround from receive to transmit mode (and vice versa) of the radio.

This is a core difference between Whisper and, e. g., Glossy. In Glossy, the initiator
– i. e., the node that starts the packet dissemination, as described in Section 2.4.3 –

continuously switches between sending and receiving mode and thus, leaves “gaps”
between two transmissions, as depicted in Figure 4.2c. The absences of such gaps
in Whisper significantly reduces the overall duration of a packet flood and thus, it
reduces the time the nodes have to sample the channel for potential packets. In Sec-
tion 4.2.1 and Section 4.2.7, we provide further details about the design of Whisper’s
signaling packet and packlets.

sampling strategy For nodes to be able to detect the presence of a signaling packet,
they must, indeed, regularly switch their radios on and check the channel for incom-
ing transmissions. The more often this channel check is performed, and the longer

51

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

each check lasts, the higher is the duty cycle of the nodes, and thus, their energy
consumption. Whisper, and in particular the use of packlets, opens up the possibility
to design thrifty sampling strategies. Efficient channel sampling is instrumental to
reduce the overall radio-on time, and thus, the duty cycle of nodes.

A straightforward sampling strategy – to which we refer to as lazy sampling (see
Figure 4.2b) – consists in making all nodes switch their radios on at the beginning
of a communication slot. This strategy is used in Glossy and other approaches such
as LWB [50] or Crystal [73] and can be used in Whisper, too. When adopting lazy
sampling, nodes must wait for an incoming transmission long enough so that the
signaling packet from a sender can propagate through the entire network. This can,
however, take several milliseconds in a network of several hops and represents a high
cost in terms of energy consumption, especially if no packet is transmitted.

Whisper uses an alternative sampling strategy that we call direction-aware sampling.
This strategy exploits two key observations: (i) in many practical scenarios the net-
work topology is usually fixed or changes slowly, and (ii) data traffic flows in one
direction only – e. g., from an initiator to all other nodes in a network in a data
dissemination scenario or from a node in the network to a central sink node in case
of event-driven data collection scenarios. Thus, nodes can estimate their distance in
hops from the sender or destination and switch on their radios only when a signaling
packet is likely to “pass-by”, as shown in Figure 4.2a. We provide further details on
Whisper’s sampling strategies in Section 4.2.5 and 4.2.6.

synchronous transmissions To ensure a fast and reliable propagation of the sig-
naling packet, Whisper exploits synchronous transmissions. When a neighbor of
the sender turns its radio on, it needs to intercept only one of the packlets to detect
the existence of a signaling packet. If no packlet is detected, the node switches its
radio off to save energy. If a packlet is instead successfully received, the node keeps
its radio on and helps propagating the signaling packet. It does so by joining the
ongoing synchronous transmission with its own signaling packet, which is again a
single packet made of multiple packlets.

To this end, a node that starts sending a signaling packet must ensure that its
own packlets overlap with the packlets that are already being transmitted by other
nodes. This means that packlets sent by nearby nodes must fulfill two conditions:
(i) they must be identical, and (ii) they must be sent within a temporal displacement
of ∆Td⩽0.5µs, as schematically illustrated in Figure 4.2a. We discuss in Section 4.2.2
and Section 4.2.3 how Whisper manages to fulfill both of these conditions.

52

4.2 whisper : a closer look

4.2 whisper : a closer look

After having briefly presented the main features of Whisper in the previous section, we
now provide a more detailed description.2. Hereafter, we consider Whisper as wake-up
primitive as service for other communication protocols that are deployed in the nodes.3 In
particular, Whisper facilitates the concurrent transmission of several signaling packets, i. e.,
several senders notify the nodes in a network about incoming bulk data packets. To this
end, the nodes need to be synchronized to a common reference. Thus, Whisper assumes
that there is an initiator – as it also exists in Glossy – that infrequently synchronizes the
network. The synchronization can be provided by the communication protocol that exists
besides Whisper, e. g., by using Glossy, or by using implicit time synchronization through
Whisper-floods. Indeed, only the initiator is allowed to start a packet transmission in the
synchronization slot.

In the following, we first discuss the design of the signaling packet in Section 4.2.1 and
present a back-of-the-envelope calculation to show why Whisper has superior performance
in comparison to Glossy. We then show how Whisper exploits synchronous transmissions.
We detail how Whisper makes the packlets that need to be transmitted identical with
ongoing transmissions in Section 4.2.2 as well as how it makes them precisely overlap in
Section 4.2.3. In Section 4.2.4 we present a concept for time synchronization with Whisper.
Afterwards, we present the two sampling strategies considered in this thesis: lazy sampling
in Section 4.2.5 and direction-aware sampling in Section 4.2.6. We present in Section 4.2.7
a fully IEEE 802.15.4-compliant version of Whisper, and discuss potential improvements to
make Whisper robust against external interference in Section 4.2.8. Lastly, we discuss the
portability of Whisper to other existing radio chips and node platforms.

4.2.1 The signaling packet

The design of the signaling packet as shown in Figure 4.1 allows Whisper to achieve a
fundamental goal: create a train of packets sent back-to-back without any gaps between
consecutive transmissions. We argue that this is an essential stepping stone to (a) simplify
timing of synchronous transmissions, (b) enable sampling strategies allowing nodes to
sleep efficiently, and (c) reduce the duration of a network-wide flood.

Whisper uses the payload of the signaling packet to simulate several packets being
sent back-to-back. This is achieved by filling the payload with a sequence of packlets. As

2 This section and the following subsections are an extended version of Section III of our previous work pub-
lished in [22]. More precisely, we extended this thesis with the following subsections: Section 4.2.4 – Time
synchronization, Section 4.2.6 – Computing pmin and pmin, Section 4.2.6 – Direction-aware sampling in collec-
tion scenarios, and Section 4.2.9 – The portability of Whisper.

3 The operation of Whisper for data dissemination is equivalent to the provided description, besides that the
size of the packlets increases with the payload length.

53

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

illustrated in Figure 4.1, a packlet in Whisper consists by default of five fields: a preamble, a
1-byte SFD, 1-byte length field, a 1-byte payload, and a 2-byte footer with FCS. Nonetheless,
the format of the packlet in Whisper is user-configurable and can be flexibly extended to
contain, e. g., more data. When a receiver starts listening for incoming packets, it only needs
to intercept the preamble and SFD of one of the packlets to detect an ongoing transmission.
The multi-header technique presented in [93] inspired our packlet-based design of the
signaling packet. The authors concatenated several synchronization headers to mitigate
interference, and thus, to increase the chance of detecting an incoming packet. Whisper,
instead, uses the same technique to transmit IEEE 802.15.4-compliant packets.

While the IEEE 802.15.4-compliant length of the preamble is 4 byte, in some radios, e. g.,
the CC2420 [72] of our reference platform TelosB, both the preamble length and the SFD

are configurable parameters. To reduce the total length of a signaling packet and thus,
decrease the radio-on time of the nodes, Whisper’s default implementation sets the length
of the preamble to 2 byte. This assumes that Whisper can exploit low-level features of the
transceiver and makes it non-IEEE 802.15.4-compliant. Nonetheless, Whisper can operate
with a preamble of arbitrary length and can thus, if required, also be used with a preamble
of 4 byte. While a longer preamble affects performance, we show in Section 4.3 that Whisper
outperforms Glossy also with preamble length of 4 byte.

Given the description above, a packlet in Whisper is by default 7 byte long4. Since
IEEE 802.15.4 radios transmit at 2.4 GHz at a rate of 250 kbit/s, the transmission of a single
packlet lasts 224 µs. The sender sends Ntx packlets and its total transmission time with
Ntx = 3 is thus 672 µs. The radio of other nodes in the network is instead active for the
duration of Ntx + 2 packlets. This is because, as illustrated in Figure 4.2a, one packlet
is received, during the second packlet the radio switches from receive to transmit mode
and then Ntx packlets are sent. Thus, when Ntx = 3, the radio of the other nodes in the
network is active for 1.120 ms.

In contrast, nodes running Glossy must keep their radio on for at least 2.304 ms during
a flood. Figure 4.2c shows that nodes in Glossy receive or transmit a packet 6 times.
Assuming that also Glossy sends packets with a 1-byte payload – and, thus, that a Glossy
packet is as long as a packlet– each node actively transmits or receives for 1.344 ms. Glossy
must, however, also continuously switch between receive and transmit mode, as illustrated
in Figure 4.2c. This rx/tx turnaround of the radio takes 192 µs [67] and nodes must turn the
radio from receive to transmit mode 5 times, which adds almost 1 ms (960 µs) of additional
radio-on time. The radio-on time of Glossy is thus roughly twice as long as that of Whisper
(2.304 ms vs. 1.120 ms) – even though we did not account for Glossy’s software delay, which
should be added to the rx/tx turnaround time (cf. [52] at Section 5.3). We also did not

4 While this structure seems to induce a high control overhead (6 byte) for a payload of 1 byte, we actually
consider a packlet including synchronization header, length and footer field as unity to allow for efficient
signaling of pending bulk data. More precisely, this allows nodes to recognize that a channel is busy while
being able to distinguish packet exchange from other interference.

54

4.2 whisper : a closer look

consider – neither in the calculation above nor in Figure 4.2 – the guard times that are
present in both Whisper and Glossy. A guard interval is usually short5 and appears only
once at the beginning of the idle listening phase. It, thus, has only little influence on the
computation presented above.

This back-of-the-envelope calculation shows that the superior performance of Whisper
in comparison with Glossy, as we have shown Section 4.3, is mainly due to the fact that
Whisper eliminates the gaps between consecutive transmissions. This advantage persists
even if Whisper is used with lazy sampling as in this case, the time spent in idle listening
is roughly the same as for Glossy.

In the example discussed above, we assume Glossy packets with a payload of 1 byte. The
payload of standard Glossy packets is, however, 4 byte: a 1 byte Glossy header, a 2 byte
sequence number, and a 1 byte relay counter [52]. We reduce the payload size to 1 byte (we
keep only the field relay_counter), to avoid penalizing Glossy due to its larger payload size.
This also allows us to show that shortening the payload size in Glossy is not sufficient to
make it more efficient than Whisper as wake-up primitive.

Even though Whisper targets the dissemination of small amounts of data portions, it can
also be used to transmit large quantities of data having the same benefits over Glossy as
described above. This is because Glossy always receives the full packet before transmitting
it, while Whisper only receives a packlet once. At first view, Whisper’s packlet size seems
limited since all Ntx packlets have to fit within 127 byte – the maximum packet size in
IEEE 802.15.4 as discussed in Section 2.3.1. However, we show in the following Section 4.2.2
how to enable Whisper to send signaling packets of more than 127 byte.

4.2.2 Sending identical packlets

Sending identical packets is a necessary condition for constructive interference to occur, or
more precisely, for packets not to interfere destructively, when synchronous transmissions
are used. In Whisper, this translates in ensuring that all packlets sent at the same time are
identical.

The only value that changes across different packlets within a signaling packet is the
packlet counter p, which is the 1-byte payload of each packlet. As illustrated in Figure 4.1, the
first packlet has counter p = 0, the second p = 1, and so on. When nodes start sending their
own signaling packet, they must properly set the value of the counter p in their packlets.
In particular, as also shown in Figure 4.3, Whisper makes a node that receives a packlet
with counter p = i set the counter of its first packlet to p = i+ 2. This is because while the
p = i+ 1th packlet is being transmitted, the radio switches from receive to transmit mode,

5 The reference implementation of Glossy we use in the evaluation has a guard time of roughly 130 µs (measured
experimentally). In [73], Istomin et al. showed that a guard time of 150 µs is sufficient to compensate for clock
drifts that accumulate over 5 minutes.

55

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

Sender

Receiving Software delay &
rx/tx turnaround

Packlet p = 1 Packlet p = 2 Packlet p = 3 Packlet p = 4 Packlet p = 5

Packlet p = 3 Packlet p = 4 Packlet p = 5

Packlet p = 4 Packlet p = 5

Packlet p = 5

Transmitting

Transmitting

Transmitting

Transmitting

Receivers

t

Receiving Software delay &
rx/tx turnaround

Receiving Software delay &
rx/tx turnaround

Figure 4.3: Operation of Whisper. Nodes receive a packlet, process it while turning their radio to
transmit mode and afterwards transmit their signaling packet.

called rx/tx turnaround. In this time frame, the node, thus, “misses” a packlet and has to
wait with its transmission for the next packlet being transmitted.

Besides ensuring that the value of the packlet counter p is identical for all concurrently
transmitted packlets, Whisper must also properly set the length field of the packlets. This
field specifies the length in bytes of the payload and the footer. For packlets that have a
1-byte payload, the length field must thus be set to 3 byte. This can be easily done for all
packlets but the first. As illustrated in Figure 4.1, the packlet with counter p = 0 “borrows”
the preamble, SFD, and length field of the signaling packet. The first byte of the signaling
packet, however, must specify how many bytes the radio must send before automatically
ceasing to transmit. If Whisper would use this mode of operation (called buffered mode in
the CC2420 [72]), the (first) length field in the signaling packet would indicate the total
length of the signaling packet in bytes – which is different than 3 byte. This would cause
the length field of each signaling packet to collide with the length field of concurrently sent
packlets. As a result, destructive interference would occur and cause packet drops.

To avoid this problem, we exploit an alternative transmit mode available on certain
IEEE 802.15.4 radio transceivers (including the CC2420 [72], the radio chip of our reference
platform, the TelosB): the TXFIFO looping mode. In this mode, the radio ignores the
length field and just continuously reads data from the radio buffer and sends it. Once the
content of the buffer has been sent, the radio wraps around and starts to read and send
the data from the beginning. This continues indefinitely until a timeout explicitly stops
the transmission. Since the value of the length field is ignored when the radio operates
in TXFIFO looping mode, Whisper can set the first length field to the length of a packlet

56

4.2 whisper : a closer look

instead of to the length of the signaling packet, thus completely overcoming the problem
described above. Further, the length of the signaling packet that is transmitted is not limited
to 127 byte. While the radio transmits the data in the buffer at a rate of 250 kbit/s (using
MSK at 2.4 GHz as discussed in Section 2.3.2), the MCU can write new data into the buffer.
The data is written via Serial Peripheral Interface (SPI) at a rate equal to half the MCU

frequency, thus 2.097 MHz. As a consequence, the size of the transmitted data packet
is unlimited. However, the receivers still operate in buffered mode, thus, practically the
length of a packlet is limited to 127 byte.

While this mode of operation may not be available on all IEEE 802.15.4 transceivers,
which limits the portability of Whisper, we believe that it is important to explore novel
design ideas notwithstanding current technological limits and protocol standards. We
further plan to explore an alternative approach to avoid the TXFIFO looping mode: using
byte-wise transmission power control as in [140] to send the length field using the smallest
possible transmit power. In our performance evaluation of Whisper in Section 4.3 we
nonetheless explicitly consider a fully IEEE 802.15.4-compliant version of the protocol
(called Whisper (compliant)), which we describe in Section 4.2.7.

4.2.3 Sending packlets synchronously

In the previous subsection, we mentioned that after receiving a packlet (with counter
pi), a node must wait for an entire Tpacklet before sending its first packlet (with counter
pi + 2). This is because while packlet pi + 1 is on the air, the node must perform the
rx/tx turnaround of the radio, which lasts Tturn = 192 µs for IEEE 802.15.4 radios [67].
This leaves a wait time Twait = Tpacklet − Tturn − Td, where Td is the time that elapses
between the rising SFD edge of a sender during transmission and the corresponding rising
SFD edge of a receiver during reception.

The existence of Td is due to the fact that the reception of a packlet lasts slightly longer
than its transmission. This data delay is a common phenomenon in wireless radios, and
each transceiver has a specific latency of the receive and transmit paths, which is reported
in the data sheets. If not compensated for, the existence of Td would make nodes start
sending the next packlet before receivers have completed the reception of the previous one.
Including propagation delay, Td is reported to be 3 < Td ⩽ 3.6 µs [72, 84, 188] and is thus
non-negligible. In Whisper, we set Td = 3 µs.

The existence of this fixed wait time is a further difference between Whisper and Glossy.
Indeed, Glossy aims at re-sending a packet as quickly as possible after receiving it (i. e.,
immediately after the rx/tx turnaround). This is because the longer nodes wait to re-
transmit a packet, the stronger MCU clock instabilities become relevant and can thus cause
transmissions of different nodes to misalign, as demonstrated in the previous chapter. The
software delay Tsw in Glossy is roughly 23.13 µs. In Whisper, if we assume a payload of

57

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

1 byte and a preamble of 2 byte – which corresponds to the shortest possible packlet – then
Tpacklet = 224 µs and, thus, Twait = 29 µs. Although the values of Twait and of Glossy’s
software delay are relatively close to each other, the latter does not depend on the length
of the packet whereas it does in the case of Whisper. The wait time is thus more critical for
Whisper than for Glossy.

To cope with this issue, we employ Flock, the clock drift compensation mechanism we
presented in Chapter 3. Flock compensates for instabilities in the DCO that drives the
MCU of many low-power hardware platforms. It, thus, makes Whisper able to ensure that
packlet transmissions align within the 0.5 µs window notwithstanding the existence of
Twait and even if Twait is significantly longer than 29 µs.

4.2.4 Time synchronization

Whisper provides implicit time synchronization, similar to Glossy (see Section 2.4.3). For
this, a network running Whisper requires a fixed initiator that (infrequently) disseminates
signaling packets to which the nodes synchronize. Because packlets are sent back-to-back
without gaps in between, the nodes can simply compute the time at which the initiator has
started transmitting the signaling packet by knowing the packlet counter p and the length
of a packlet. The time the initiator has started the transmission of the signaling packet is
then used by the nodes as a common reference time.

Just as Glossy, Whisper exploits the Virtual High Resolution Time (VHT) approach intro-
duced by Schmid et al. [146] to compute the reference time. The rationale behind VHT is to
use two independent time sources for high-resolution, low-power time stamping of events:
a high resolution clock that, however, is often prone to frequency deviations and a stable
low resolution clock. Since the length of a packlet is fixed and known a priori, the nodes
only need to know the packlet counter p and either the arrival time of the packlet or the
time the nodes start transmitting their signaling packet to compute the reference time. Both
the arrival time of the packlet and transmit time of the signaling packet are time stamped
in Whisper using the DCO that runs with fDCO = 4 194 304 Hz. Figure 4.4 illustrates the
procedure of Whisper taking the relevant time stamps that are required for computing the
reference time. As shown in the figure, we use in our implementation the transmit time
of the signaling packet, indicated with 2⃝, for computing the reference time, shown as 1⃝.
This is because the time constraints are more relaxed during this phase of Whisper. Thus,
we can safely capture time stamps from the high resolution and the low-resolution clock –
which are required for VHT. Capturing the two timestamps for VHT are indicated with 3⃝
in Figure 4.4. As shown in Figure 4.4b and discussed in detail in Section 3.1, the SFD pin
goes active after the successful transmission of the packet’s SFD field in buffered mode, i. e.,
the default operation mode of the radio. Thus, the nodes must include also the duration
of transmitting the synchronization header Tsh in their computation of the reference time.

58

4.2 whisper : a closer look

Tpacklet

21 3

Trx

TpackletTpacklet

Initiator

Receiver

t
(a) Transmission in TXFIFO looping mode

Tpacklet

2 3

Trx

TpackletTpacklet

Initiator

Receiver

t

1

Tsh

(b) Transmission in buffered mode

Figure 4.4: SFD activity when transmitting in TXFIFO looping and buffered mode. In TXFIFO looping
mode, the SFD pin rises at the beginning of the preamble transmission, while in buffered mode the
SFD pin rises after the successful transmission of the SFD field in the packet’s synchronization header
(depicted in gray). Thus, during buffered mode, the nodes also have to include the transmission
duration of their synchronization header Tsh when computing the reference time 1⃝. The reference
time is computed using the packlet counter p, the time to transmit a packlet Tpacklet, the time
instant at which the DCO time stamps the transmission of the signaling packet 2⃝, and one time
capture with both the high-resolution timer (i. e., the DCO) and the low-resolution timer (i. e., the
external 32 kHz crystal) 3⃝.
In receive mode, Whisper uses the buffered mode only, thus, the SFD pin rises after having success-
fully received the SFD field, as already discussed in detail in Section 3.1.

However, we found that during the TXFIFO looping mode, the SFD pin is already set at the
beginning of the preamble transmission. This has to be considered when computing the
reference time, as shown below:

T l
tx_to_cap = 3⃝l − 2⃝l

Th
tx_to_cap =

1+ T l
tx_to_cap
fDCO

f32 kHz

Th
ref_to_tx =

{(
(p+ 2) · Tpacklet

)
· f32 kHz if: TXFIFO looping mode(

(p+ 2) ∗ Tpacklet + Tsh
)
· f32 kHz if: buffered mode

1⃝h = 3⃝h −
(
Th
tx_to_cap + Th

ref_to_tx
)

. (4.1)

We indicate in Equation 4.1 with raised “l” and “h” time values with low and high
resolution, respectively. Note that the translation from T l

tx_to_cap to Th
tx_to_cap in the

second line is taken from the Glossy source code6.

6 https://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/

59

https://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

4.2.5 Lazy sampling

A straightforward way to maximize the probability that a node intercepts a signaling packet
consists in making the nodes keep their radio in idle listening for the entire duration of a
Whisper slot Tslot. This is the time interval during which a Whisper flood is executed and
during which – like in Glossy and other protocols based on synchronous transmissions
– all other application tasks executing the hosting platform are suspended. The length of
the slot is a protocol parameter and should be set depending on the expected network
diameter dnet. In particular, it holds:

Tslot = (2dnet +Ntx) · Tpacklet , (4.2)

where Tpacklet is the time needed to send a packlet. The first addend in Equation 4.2
accounts for the fact that Whisper progresses at a “speed” of 2 packlets per hop, as il-
lustrated in Figure 4.3. The second addend considers that at the last hop, after the first
packlet has been transmitted, a node must still transmit Ntx − 1 packlets. If Whisper is
used in a network of 6 hops and with Ntx = 3 and Tpacklet = 224µs (1 byte payload), a slot
length of 3.36 ms would be sufficient. In practical settings, however, it is recommendable
to use a slightly larger value to account for synchronization drifts and other issues. In the
experiments presented in Section 4.3, for instance, we use Tslot = 5 ms.

The advantage of the lazy sampling strategy is that it is independent of the network
topology and communication scheme. However, a significant drawback is that it causes
all nodes in the network to stay in idle listening for an entire Whisper slot, even if no
signaling packet is sent. To reduce this idle listening time, and thus, the overall radio-on
time, Whisper exploits a different strategy, which we call direction-aware sampling. We detail
this direction-aware sampling strategy in the following section.

4.2.6 Direction-aware sampling

The main idea behind the direction-aware strategy is to let the nodes switch their radio on
only shortly before the flood is expected to “pass by”. In low-power networks, traffic often
flows in one direction only, e. g., from an initiator towards all other nodes in the network in
data dissemination scenarios [37, 38, 52] or from all nodes to a sink in data collection [73].
If the direction of the traffic is known – hence the name direction-aware sampling – Whisper
can exploit this information to run an efficient sampling strategy.

In a dissemination scenario like the one considered in Glossy, for instance, traffic always
flows from a fixed initiator to all other nodes. If Whisper is used in this scenario, the
counter p of the packlet received by a forwarding node depends on the distance in hops
between the node and the initiator. If the topology of the network can be assumed to be

60

4.2 whisper : a closer look

static or vary slowly, this distance, and thus, the counter p, can also be assumed to be
constant or to vary only a little across consecutive floods. Whisper exploits this situation
and lets each node keep in memory two values: pmin and pmax. Both values are estimates
of the counters of the “earliest” and “latest” packlet that a node expects to receive and are
used by the nodes to compute when to turn the radio on and off, respectively. In particular,
the nodes compute the start of the sampling interval with:

tstart = t∗start − Tguard + max(0,pmin − 1) · Tpacklet (4.3)

In Equation 4.3, t∗start indicates the time at which the initiator is expected to start its
transmission, whereas Tguard is the guard time that protects against possible synchroniza-
tion drifts. The term max(0,pmin − 1) indicates that the nodes wake up to the packlet
before the one they actually expect. This allows the nodes to learn the arrival of earlier
packlets when channel conditions change. The duration of the sampling interval can be
calculated with

Tsampling = (⌊pmax⌋+ (Ntx + 1)) · Tpacklet − tstart. (4.4)

In the following, we detail how Whisper determines the values for pmin and pmax.

Computing pmin and pmax

When a node has not yet received its first packlet, it sets pmin = 0 and Tsampling = Tslot.
After the first packlet with counter p is received, the nodes set pmin = pmax = p. Afterwards,
the mechanisms described in the following are used to update pmin and pmax after each
Whisper slot. The value of pmin is set to the lowest value of p ever received. Thus, the
nodes wake up as early as possible to avoid missing a packlet. The computation of pmax

is slightly more elaborate. The value pmax, on one hand, must be set such that the nodes
have their radio on for as long as necessary to be able to capture packlets, even when the
earlier hops are exposed to interference and thus, miss packlets. Underestimating pmax

would, thus, cause a node to switch off its radio too early, which in the worst case could
stop the propagation of the flood. On the other hand, the value pmax must be set such that
the nodes have their radio on for as short as possible to save energy. Both requirements are
fulfilled by computing pmax as follows:

pmax = (pmax + p)/2 if: p ⩾ pmax − 2. (4.5)

The term pmax − 2 in the condition of Equation 4.5 accounts for the progression speed of
2 in Whisper. Thus, Equation 4.5 allows the filtering of outliers that could result in a high

61

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

sampling duration, and thus, high energy consumption, while also being able to react to
changing channel conditions.

The strategies chosen to set both pmin and pmax are very conservative and can definitely
be improved in future work. The design of Whisper actually opens up opportunities for
designing further smart sampling strategies beyond the two – lazy and direction-aware –
discussed in this thesis. Further, the discussion above assumes that Whisper is used in a
data dissemination scenario with a fixed initiator. In the following, we explain how the
direction-aware sampling strategy can be applied to collection scenarios.

Direction-aware sampling in collection scenarios

Whisper can also be used in data collection scenarios. Our direction-aware sampling
strategy described above exploits the fact that dissemination results in network tree with
the initiator as root. Each node learns its distance from the initiator in terms of hops based
on p. Running Whisper in collection scenarios only requires the nodes to start listening
for incoming packlets in the tree’s reverse order, i. e., from the leaves of the tree to the
root, with the sink as root node. To learn their position in the tree, a short initialization
phase is required, where the sink disseminates signaling packets. Figure 4.5 illustrates the
initialization phase on the left side and the actual collection on the right side with Ntx = 3.
During the initialization phase, the nodes calculate their position in the reverse tree. For
calculating their position in the reverse tree, the nodes need to know the last packlet
being disseminated during dissemination in a Whisper slot, which can be computed – by
knowing the network diameter dnet – with:

pdissemination
slot = 2dnet +Ntx − 1. (4.6)

As illustrated in Figure 4.5, pdissemination
slot = 14 in a network with 6 hops and Ntx =

3. During dissemination, and thus, in the initialization phase, the initiator immediately
starts transmitting with packlet p = 0 after waking up, as shown on the left side of
Figure 4.5. However, during collection, any node with pending data can be sender and
start transmitting. Thus, during collection, a node is either sender or forwarding node.
Letting a sender transmit at p = 0, as the sink during dissemination, implies that it would
expect a packlet at p = −2 when it is a forwarder (indicated in Figure 4.5 with “potential
RX”). We therefore have to add an offset of 2 when calculating the last packlet being
disseminated. Thus, as shown on the right side of Figure 4.5, the sender (during the
initialization phase it was the 6th hop) transmits at p = 2 and potentially receives a packet
at p = 0. The resulting equation is

pcollection
slot = pdissemination

slot + 2. (4.7)

62

4.2 whisper : a closer look

Figure 4.5: Packlets transmitted and received per hop during initialization phase and collection with Ntx = 3.
On the left side, the sink disseminates a packlet through the network in the initialization phase. On
the right side, one node in the 6th hop called sender, triggers during collection a packet propagation
to the sink. The sender would expect to receive a message at p = 0. So it starts transmitting at
p = 2.

Knowing pcollection
slot the nodes can now calculate the reverse packlet counter preverse

during the initialization phase based on the incoming packlet p with

preverse = pcollection
slot − (p+Ntx + 3). (4.8)

The sink node assigns itself preverse = pcollection
slot − (Ntx + 1).

After the initialization phase, the nodes calculate pmin and pmax in the same way as
for dissemination. The same is true for calculating the duration of the sampling interval
Tsampling and the start of the sampling interval tstart. A sender, however, has to start the
transmission with pmin + 2. That is because pmin indicates the packlet the sender expects
to receive, but it has to transmit the packlet the successive hop expects. The senders can
compute when to start transmitting with

tsender
start = t∗start + ((pmin + 2) · Tpacklet). (4.9)

4.2.7 Whisper (compliant)

The standard version of Whisper described above exploits low-level mechanisms of the
radio transceiver. For the sake of completeness, we consider in our evaluation also an IEEE-
802.15.4-compliant version of Whisper, called Whisper (compliant). This version uses a 4-
bytes preamble and the radio in buffered mode, which has the following two consequences.
First, the first length field of the signaling packet must be set to the actual length of the

63

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

payload and will thus collide with the length field of concurrently sent packlets. This
causes the first packlet of each signaling packet to be dropped and thus slows down the
progression of the flood. In particular, Whisper (compliant) needs three instead of two
packlets per hop to progress. Second, the radio hardware will set the footer of the signaling
packet, i. e., the gray-shadowed footer in Figure 4.1. To avoid this footer to collide with the
footer of synchronously sent packlets, Whisper (compliant) makes all nodes stop sending
at the same time to align the footers of all signaling packets.

4.2.8 Resilience against external interferences

As other approaches based on synchronous transmissions, Whisper is sensitive to external
interference. Common devices such as microwave ovens or Wi-Fi access points can disturb
communication and significantly reduce the reliability of the protocol. Several approaches
already presented in the literature show that introducing frequency diversity, and in par-
ticular channel hopping, is an effective countermeasure against external interference [74,
130, 153]. These techniques, especially sending each flood on a different frequency [74], are
straightforward to integrate in Whisper.

4.2.9 The portability of Whisper

Whisper exploits low-level mechanisms that are, admittedly, not available for all radio
transceivers. However, the design of Whisper is still not limited to the CC2420 radio chip
and the TelosB platform. Many platforms are still equipped with this radio chip. For
instance, the XM1000 platform [1] uses the CC2420. Other radio chips also provide the
option to change the preamble length and provide the TXFIFO looping mode (or a similar
option). These include, for example, the CC2520 [69], which is used by the WiSMote [6]
platform and the CC1101 [71] that is equipped on the MSP430-CCRF [103]. In particular,
the CC1101 provides three packet length modes that can be reprogrammed during receive
and transmit: fixed mode, variable mode, and infinite mode. Using these modes, the
CC1101 supports packet lengths that are longer than 127 byte. Whisper can use them to
avoid the transmission of the length field of the signaling packet.

For radios that do not support the TXFIFO looping mode or similar options, we still
provide an IEEE 802.15.4-compliant variant of Whisper, as described in Section 4.2.7. In
addition, as mentioned in Section 4.2.2, the byte-wise transmission power control approach
from [141], where the length field is transmitted with the smallest transmit power, is a
promising solution to mark the signaling packet length.

64

4.3 e va l ua t i o n

4.3 e va l ua t i o n

In this section7, we evaluate Whisper in extensive testbed experiments. We start by pre-
senting our evaluation setup in Section 4.3.1. We then compare Whisper and Glossy in
Section 4.3.2 and find that nodes using Whisper achieve a significantly smaller radio-on time,
both with and without data traffic, compared to Glossy. Next we present in Section 4.3.3 the
evaluation results for the case that multiple senders disseminate a signaling packet con-
currently. In this scenario we find that contention causes less packet drops and thus, a higher
reliability in Whisper compared to Glossy. Afterwards, we evaluate in Section 4.3.4 the impact
of Whisper’s low-level mechanisms: preamble length, number of transmissions Ntx, and
collisions due to different length fields. We find that the preamble length has a neglectable
impact on the reliability compared to the savings in the radio-on time. Further, the number of
retransmissions has a stronger impact on Glossy than on Whisper, and, the colliding packet length
fields have strong impact on the progression speed of a Whisper-flood. Lastly, we use Whisper
within Crystal – a recently presented collection protocol – in Section 4.3.5 and show that
Whisper significantly reduces Crystal’s duty cycle while also impacting reliability.

4 .3 .1 Evaluation setup

In this section, we present our evaluation setup, including a short description of our
implementation, the used Whisper and Glossy versions, and the metrics and scenarios that
we consider during this evaluation.

We implemented Whisper for the Contiki operating system8. We embedded the code
base of Flock9 into Whisper and reused parts of the publicly available implementation of
Glossy10 in our code.

To illustrate the performance of Whisper in detail, we implemented different versions of
the protocol. Whisper is the full-fledged protocol that includes direction-aware sampling
(see Section 4.2.6) and exploits the TXFIFO looping mode (see Section 4.2.2). In Whisper,
we further use a 2-byte preamble as mentioned in Section 4.2.1 and set Ntx = 3.

We also explore the performance of Whisper in a series of other configurations, e. g.,
with lazy sampling instead of direction-aware sampling, with a 4-byte instead of 2-byte
preamble, as well as with different values for Ntx. In the plots, we indicate after the name of
Whisper the specific change with respect to the default implementation, i. e., Whisper (lazy)
indicates a version of Whisper that uses lazy sampling but keeps the TXFIFO looping mode,

7 This section and the following subsections are an extended version of Section IV of our previous work published
in [22]. More precisely, we extended this thesis with the following subsection: Section 4.3.5 – Crystal and
Whisper.

8 http://www.contiki-os.org/

9 http://github.com/martinabr/flock

10 http://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/

65

http://www.contiki-os.org/
http://github.com/martinabr/flock
http://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

the 2-byte preamble and Ntx = 3. Lastly, we also consider the fully IEEE 802.15.4-compliant
version of Whisper described in Section 4.2.7. Whisper (compliant) uses a 4-byte preamble,
lazy sampling, Ntx = 14 and does not exploit the TXFIFO looping mode.

As for Glossy, we use its publicly available code base10. As discussed in Section 4.2.1,
we set the payload of Glossy packets to 1 byte to avoid an unfair penalization of Glossy
due to its larger packet size. We provide experimental results obtained by running Glossy
with both a 2-byte and a 4-byte preamble.

We run experiments in different dissemination scenarios, as summarized in Table 4.1.
For dissemination, we test both with only one sender and with different senders. We
also consider the case in which different senders transmit concurrently and differentiate
between concurrent senders positioned close-by each other or roughly evenly distributed
across the network.

We run our experiments in the FlockLab testbed (see Section 2.1.3) and thereby focus
on two key performance metrics: reliability and radio-on time. We compute the per-node
reliability as the ratio of the total number of signaling packets successfully received by a
node and the total number of signaling packets sent during an experiment. We then derive
the network reliability as the average of the reliability of all nodes in the network. The radio
on-time is the time the radio is turned on and active (including idle listening) during a
Whisper (or Glossy) slot. As for the case of reliability, the radio-on time of the network is
computed as the average of the radio-on time of each node.

4.3.2 Whisper vs. Glossy

We first compare the performance of Whisper, Whisper (lazy) as well as Glossy and Glossy
(2b preamble) in a dissemination scenario with a single, fixed sender (diss. fixed). This
scenario corresponds to, e. g., a controller that needs to signal the nodes to stay awake for
an unscheduled software update. We find that nodes using Whisper achieve, compared to
Glossy, a similar or higher reliability and a significantly smaller radio-on time, both with
and without data traffic.

Table 4.1: Summary of evaluation scenarios and configuration parameters.

Scenario Label Sender
[node id]

Dissemination with fixed sender diss. fixed 1
Dissemination with different senders diss. diff. 10, 22, 11, 16, 23, 19, 20, 31, 26, 7
Dissemination with concurrent, close-by senders diss. close 4, 2, 8, 1
Dissemination with concurrent, far-away senders diss. far 16, 19, 7, 1

66

4.3 e va l ua t i o n

96.0

98.0

100.0

R
el

ia
bi

lit
y

[%
]

Glossy (2b preamble)

Whisper (lazy)

Whisper

Glossy

2 3 4 6 7 8 10 11 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 31 32 33

Node ID

0.0

1.0

2.0

3.0

4.0

5.0

6.0

R
ad

io
-o

n
ti

m
e

[m
s]

(a) Performance during data dissemination. In comparison with Glossy, both Whisper and Whisper (lazy)
reduce the radio-on time by a factor of two while achieving a reliability near 100 %. Nodes have learned their
distance to the source (node 1) and efficiently turn their radio on before the flood “passes-by”.

2 3 4 6 7 8 1011131415161718192022232425262728313233

Node ID

0.0

1.0

2.0

3.0

4.0

5.0

6.0

R
ad

io
-o

n
ti

m
e

[m
s] Whisper

(b) Whisper achieves a low radio-on time even when no signaling packet is disseminated. In contrast, Whis-
per (lazy) and Glossy use a fixed timeout mechanism that is set to 5 ms (marked as red line) to turn the radio
off in case no packlet has been received. Learning the distance to the source (node 1) allows for energy-efficient
channel checks.

Figure 4.6: Performance of Whisper, Whisper (lazy), Glossy, and Glossy (2b preamble) at 0 dBm in FlockLab
in a data dissemination scenario with only a single, fixed sender (diss. fixed). Whisper outperforms Glossy
in terms of energy-efficiency during data dissemination as well as when no signaling packet are
sent.

e x p e r i m e n t s We run Whisper, Whisper (lazy), “standard” Glossy and Glossy (2b
preamble) in the following configuration. We select the node with identifier 1 as the
sender. As shown in Figure 2.2, the node is located on the outer edge of the FlockLab
testbed, which allows us to obtain a large network diameter. To vary the topology and in
particular the number of hops between the sender and the farthest receivers, we use two
different transmit powers: −10 dBm and 0 dBm. This results in a network diameter of 3 to
4 and 5 to 6 hops, respectively. Each experiment consists of 10,000 floods, and we repeat

67

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

each experiment 3 times. For Whisper, we further measure the radio-on time over 5,000
slots during which the sender sends no signaling packet. The collected per-node data is
averaged over the three independent runs and the standard deviation is plotted as error
bars in the figures.

r e s u l t s Figure 4.6a details – for the case in which the sender disseminates a signaling
packet in each slot – the per-node reliability in the upper plot and the per-node radio-on
time in the lower plot. While the reliability of Whisper and Whisper (lazy) is comparable
or slightly higher than that of Glossy and Glossy (2b preamble), the radio-on time is
significantly lower – roughly half that of Glossy in most cases – for Whisper and Whisper
(lazy). Figure 4.6a also shows that Whisper and Whisper (lazy) achieve a similar radio-on
time. This is due to the small network diameter at 0 dBm in FlockLab. Table 4.2 shows a
higher difference in the radio-on time between the two protocols at −10 dBm.

Figure 4.6b shows the per-node radio-on time of Whisper when no signaling packet
is sent. The bold (red) line at 5 ms corresponds to the radio-on time of approaches like
Whisper (lazy) or Glossy that – in case of the absence of communication – keep nodes
in idle listening for the entire slot. Whisper can save radio-on time in this case thanks
to the use of direction-aware sampling, which makes nodes switch their radio off at the
latest when the expected reception time of the packlet with counter p = pmax +Ntx + 1 has
elapsed. This characteristic of Whisper is particularly relevant when nodes must frequently
switch on their radios to limit delays in relaying data traffic – yet often no packet is flooded,
like in the data prediction scenario of Crystal [73].

4 .3 .3 Concurrent dissemination of signaling packets

To consider the case in which different nodes must signal the presence of data – possibly
even concurrently – we evaluate the performance of Whisper, Whisper (lazy) and Glossy in
the three scenarios diss. diff., diss. close, and diss. far (see Table 4.1). We find that contention
for the same slot causes less packet collisions – and thus results in higher reliability of – in
Whisper and Whisper (lazy) compared to Glossy.

e x p e r i m e n t s We run Whisper, Whisper (lazy) and Glossy consecutively with trans-
mission power −10 dBm and 0 dBm. In the diss. diff. scenario, each sender consecutively
transmits 1,000 signaling packets before handing over to the next sender. We execute 10,000
floods in each experiment (i. e., for each protocol), and we run each experiment 3 times.

68

4.3 e va l ua t i o n

Table 4.2: Summary of evaluation results. Whisper and Whisper (lazy) outperform Glossy in terms
of reliability and radio-on time in various scenarios. Nodes using Whisper (lazy) and Glossy use a
timeout mechanism to turn the radio off in case they have not intercepted a packlet/packet within
a given time. In this evaluation the timeout is set to 5 ms.

Protocol Scenario Tx power Reliability Radio-on Radio-on
/w signaling w/o signaling

[dBm] [%] [ms] [ms]

Whisper diss. fixed
-10 99.980 2.055 2.546
0 99.980 1.936 2.474

Whisper
(lazy)

diss. fixed
-10 99.817 2.477 5.0
0 99.983 1.962 5.0

diss. diff.
-10 99.932 2.175 5.0
0 99.986 1.865 5.0

diss. close
-10 99.887 2.438 5.0
0 99.952 2.129 5.0

diss. far
-10 99.786 1.626 5.0
0 99.965 1.540 5.0

Glossy diss. fixed
-10 99.738 4.253 5.0
0 99.828 3.756 5.0

Glossy
(2b preamble)

diss. fixed
-10 99.616 3.914 5.0
0 99.767 3.356 5.0

diss. diff.
-10 98.369 3.805 5.0
0 98.963 3.351 5.0

diss. close
-10 99.350 4.071 5.0
0 99.024 3.932 5.0

diss. far
-10 98.881 3.680 5.0
0 98.559 3.721 5.0

r e s u l t s Figure 4.7 shows the network reliability (upper plot, left), radio-on time
(lower plot, right) and the percentage of dropped packlets/packets per Whisper/Glossy
slot (lower plot, left). In all the considered scenarios, Whisper and Whisper (lazy) achieve
a higher reliability and a lower radio-on time than Glossy.

The difference in performance is more evident in scenarios with concurrent senders,
i. e., diss. close and diss. far. The reason is that interference due to concurrent floods has a
stronger impact in Glossy than in Whisper. More precisely, floods from different senders
overlap with a slightly different temporal displacement caused by (i) senders not being
synchronized within sub-microseconds and (ii) as stated in [112] “a combination of soft-
ware, hardware, and signal propagation delays” caused by an increasing number of concurrent
transmitters. While (i) affects both Whisper and Glossy to an equal extent, (ii) intensifies
for each gap between consecutive transmissions, resulting in a stronger impact on Glossy
than on Whisper. The consequence is that nodes using Glossy drop more packets on av-

69

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

-10dBm 0dBm

TX power [dBm]

0.0

0.5

1.0

D
ro

pp
ed

pa
ck

(l
)e

ts
[%

]

90.0

95.0

100.0

R
el

ia
bi

lit
y

[%
]

-10dBm 0dBm

TX power [dBm]

0.0

2.0

4.0

R
ad

io
-o

n
ti

m
e

[m
s]

Whisper (lazy, diss. diff.)

Whisper (lazy, diss. close)

Whisper (lazy, diss. far)

Whisper

Whisper (lazy)

Glossy (2b preamble)

Glossy (2b preamble, diss. diff.)

Glossy (2b preamble, diss. close)

Glossy (2b preamble, diss. far)

Figure 4.7: Comparison in dissemination scenarios. Whisper and Whisper (lazy) achieve in all scenarios
a two-fold lower radio-on time compared to Glossy. At the same time, Whisper and Whisper (lazy)
achieve a higher reliability.

erage, e. g., we measure 0.5 % in diss. far (lower plot, left) at 0 dBm resulting in 1 % lower
reliability compared to Whisper (lazy), in which nodes only dropped on average 0.03 %
of the packets.

4.3.4 Impact of low-level mechanisms

We now investigate the impact of the individual low-level mechanisms used in Whisper.
We thereby consider a dissemination scenario with a single, fixed initiator (diss. fixed).

4 .3 .4 .1 Impact of preamble length

We start by analyzing the effect of the preamble length on the performance of Whisper
(lazy) and Glossy. We find that a 2 byte preamble significantly reduces the radio-on time
for both protocols while causing a negligible loss in terms of reliability.

e x p e r i m e n t s We run Whisper (lazy) and Glossy in the diss. fixed scenario using
Ntx = 3, preamble length of both 2 byte and 4 byte, and transmit powers −10 dBm and

70

4.3 e va l ua t i o n

0 dBm. We execute 10,000 Whisper/Glossy network floods for each protocol and collect
data from 3 independent runs.

r e s u l t s Figure 4.8a shows the network reliability in the upper plot and the achieved
radio-on time in the lower plot. One can observe a slight increase in reliability with the
4 byte preamble compared to the 2 byte preamble. Comparing the gray-shadowed results
corresponding to Ntx = 3 in Table 4.4a, the network reliability with a 2 byte preamble
drops about 0.1 % for all protocols and transmit powers, which corresponds to the loss of
10 packets out of 10,000. The radio-on time, however, increases with the longer preamble
by 10 % and 20 % for Whisper (lazy) and Glossy, respectively, as shown in Figure 4.8a in
the lower plot. To a very small decrease in reliability (0.1 %) thus corresponds a significant
improvement in terms of radio-on time (10 %). This can be explained considering that
the preamble and SFD byte are used by receivers to achieve symbol synchronization and
to adjust for frequency offsets [72]. The length of the preamble, however, only affects
transmissions. The receiver starts intercepting a packet as soon as it has found a single
preamble byte followed by the SFD. Transmitting a longer preamble is useful to increase the
signal-to-noise ratio, and thus, to help the receiver in detecting the preamble and SFD bytes.
An increase of the preamble length from 2 to 4 bytes leads, however, to almost negligible
improvements, as illustrated in the figure.

4.3.4.2 Impact of the number of transmissions Ntx

We now discuss how different values of Ntx affect the performances of both Whisper and
Glossy. We find that both protocols achieve a similar reliability. However, Whisper (lazy,
4b preamble) has a smaller radio-on time than Glossy and with every Ntx, the effect on
the radio-on time increases stronger in Glossy compared to Whisper (lazy, 4b preamble).

e x p e r i m e n t s We run Whisper (lazy, 4b preamble) and set Ntx = {2, 3, 4, 5}. We use
transmit powers −10 dBm and 0 dBm and execute 10’000 Whisper/Glossy network floods
for each protocol and collect data from 3 independent runs. We further run “standard”
Glossy with a preamble length of 4 byte in the same configuration.

r e s u l t s Figure 4.8b shows the network reliability in the upper plot and the radio-on
time in the lower plot for varying values of Ntx. The upper plot of Figure 4.8b shows that
for different values of Ntx, Whisper (lazy, 4b preamble) and Glossy achieve a comparable
reliability. Apart from minor fluctuations, the reliability increases as Ntx increases, as
expected. The lower plot in Figure 4.8b shows that Whisper outperforms Glossy in terms

71

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

96.0

98.0

100.0

R
el

ia
bi

lit
y

[%
]

Whisper (lazy, -10dBm)

Whisper (lazy, 0dBm)

Glossy (-10dBm)

Glossy (0dBm)

2 4

Preamble length [byte]

0.0

2.0

4.0

6.0

8.0

R
ad

io
-o

n
ti

m
e

[m
s]

(a) Impact of preamble length. A 4 byte preamble in-
creases the overall reliability by 0.1 % while increasing
the radio-on time by 20 % and 10 % for Whisper and
Glossy, respectively, compared to a 2 byte preamble.

96.0

98.0

100.0

R
el

ia
bi

lit
y

[%
]

Whisper (lazy, 4b preamble, -10dBm)

Whisper (lazy, 4b preamble, 0dBm)

Glossy (-10dBm)

Glossy (0dBm)

2 3 4 5
Maximum number of pack(l)et transmissions Ntx

0.0

2.0

4.0

6.0

8.0

R
ad

io
-o

n
ti

m
e

[m
s]

(b) Impact of number of packlet/packet transmissions.
Glossy’s radio-on time increases stronger with Ntx

compared to Whisper’s (lazy, 4b preamble). The rea-
son is the additional packet reception as well as the
RX/TX turnaround.

96.0

98.0

100.0

R
el

ia
bi

lit
y

[%
]

2 4 8 3 33 15 16 28 22 6 31 10 20 32 26 23 18 13 27 24 11 17 19 25 7 14

Node ID

0

2

4

6

8

10

12

R
ec

ei
ve

d
c

Whisper (compliant) Whisper (lazy, 4b preamble)

(c) Impact of length field. Colliding length fields in Whisper (compliant) have
a great impact on the progression speed of the flood.

Figure 4.8: Impact of low-level mechanisms.

72

4.3 e va l ua t i o n

Table 4.3: Summary results of low-level mechanisms.
(a) Reliability.

4b preamble 2b preamble

Protocol Tx power Ntx = 2 = 3 = 4 = 5 Ntx = 3
[dBm] [%] [%] [%] [%] [%]

Whisper (lazy) -10 99.774 99.921 99.672 99.953 99.817
Whisper (lazy) 0 99.985 99.986 99.996 99.998 99.983

Glossy -10 99.204 99.738 99.870 99.888 99.616
Glossy 0 99.613 99.828 99.649 99.939 99.767

(b) Radio-on time.

4b preamble 2b preamble

Protocol Tx power Ntx = 2 = 3 = 4 = 5 Ntx = 3
[dBm] [ms] [ms] [ms] [ms] [ms]

Whisper (lazy) -10 2.718 3.036 3.587 3.705 2.477
Whisper (lazy) 0 2.118 2.487 2.772 3.109 1.962

Glossy -10 3.367 4.253 5.303 6.363 3.914
Glossy 0 2.781 3.756 4.834 5.841 3.356

of radio-on time even with lazy sampling and a 4 byte preamble. More precisely, Table 4.4b
shows that in Whisper (lazy, 4b preamble) increasing Ntx by 1 causes an increase of the
radio-on time of roughly 288 µs – which corresponds to Tpacklet for a packlet with a 4 byte
preamble and 1 byte payload. In Glossy the radio on-time increases for each Ntx by the
duration of one received and one transmitted packet á 288 µs, the rx/tx turnaround time
with 192 µs and 23.13 µs for the software delay. As a consequence, the increase in radio-on
time with increasing Ntx is more prominent in Glossy than in Whisper.

4.3.4.3 Impact of collisions due to different length fields

Lastly, we compare Whisper (compliant) with Whisper (lazy, 4b preamble, 14 packlets).
We find that the collisions due to different length fields in Whisper (compliant) have a
significant, negative influence on the speed at which a flood can progress.

e x p e r i m e n t s We run Whisper (compliant) with 14 packlets, which results in a sig-
naling packet of 122 byte. We further run Whisper (lazy, 4b preamble, 14 packlets) and
make all nodes stop transmitting their signaling packets simultaneously. The signaling
packet in Whisper (compliant) and in Whisper (lazy, 4b preamble, 14 packlets) differs only
for the length field of the first packlet. This is the length of the signaling packet in Whisper
(compliant) and the length of a packlet in the latter.

73

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

r e s u l t s Figure 4.8c shows the per-node reliability in the upper plot and the received
counter p in the lower plot. We find that each node achieves a reliability of 100 % for both
protocols. This is consistent with the results discussed in Section 4.3.4.2, where we found
that the reliability increases with each additionally transmitted packlet. This is also the
case when nodes simultaneously stop sending instead of ceasing after Ntx transmissions.

The lower plot of Figure 4.8c reveals that nodes using Whisper (compliant) receive higher
counter values compared to Whisper (lazy, 4b preamble, 14 packlets). This is what causes
a slower progression of the flood and is not unexpected given that in Whisper (compliant)
(i) nodes drop packlets whose length field is not set correctly, and (ii) the packlets are
exposed to collisions due to the different length fields. More precisely, the packlet with
p = 0 is dropped by the nodes in the first hop (nodes with identifiers 2 to 15 in FlockLab),
because the length field is not set to the length of a packlet but to the length of the signaling
packet. The nodes in the first hop receive packlet p = 1 and consequently miss p = 2 due
to the rx/tx turnaround. They transmit packlet p = 3, which collides with the packlet
of the sender. Thus, nodes on the second hop (identifiers 16 to 31) successfully receive
packlet p = 4. This procedure continues until the last hop (node with identifier 14) receives
packlet p = 11. In comparison, the same node receives p = 5 with Whisper (lazy, 4b
preamble, 14 packlets). This shows that the flood progresses faster with Whisper (lazy, 4b
preamble, 14 packlets) and thus requires less packlets to be sent in total, which reduces the
radio-on time.

4.3.5 Crystal and Whisper

In the following, we integrate Whisper in Crystal [73, 74], a recently proposed data col-
lection protocol based on Glossy that targets data prediction scenarios, and show the
performance of Crystal with and without Whisper. We find that Whisper significantly
reduces the duty cycle of Crystal, but also impacts its reliability.

c r y s t a l a n d c r y s t a l w i t h w h i s p e r In the following, we briefly describe
the operation of Crystal and afterwards how Whisper is incorporated in Crystal.

Crystal uses Glossy-floods to let nodes transmit data to a sink node. When the sink node
has received a data packet, it acknowledges its reception. Otherwise, it disseminates a
negative-acknowledgment. The transmit (T) and acknowledgment (A) slots alternate until
the sink has disseminated a negative-acknowledgment twice. After the second negative-
acknowledgment, the nodes turn their radio off. Crystal runs periodically and organizes
its operations in epochs. Figure 4.9a shows an example of a Crystal epoch. Each epoch
starts with a synchronization (S) slot in which the nodes re-synchronize to the sink node.

74

4.3 e va l ua t i o n

S

Node 1 S

t

11

11
AT

AT

18 18

18 18
AT

AT

25 25

25 25

Epoch

Node 2 S

S

11

11
AT

AT

18 18

18 18
AT

AT

25 25

25 25

(a) Crystal.

S W A AWT

Node 1

T

S W A AW

t

T T

1811 18 18 25 25 25

1811 18 18 25 25 25
S W A AWT T

S W A AWT T

1811 18 18 25 25 25

1811 18 18 25 25 25

Epoch

Node 2

(b) Crystal /w Whisper.

Figure 4.9: A Crystal epoch with and without Whisper. The (W-), T- and A-slot alternate until the sink
node has disseminated a negative-acknowledgement twice during the A-slot. The numbers above
the slots denote the channel used for communication. The illustrations are based on Figure 5 in [74].

After the synchronization slot follow the T- and A-slots as described above. To increase
resilience against interference, Crystal integrates a channel hopping mechanism. The
numbers above the communication slots in Figure 4.9a indicate the channel at which the
nodes communicate. In particular, each TA-pair uses the same channel.

The sink node always disseminates packets in the S- and A-slot. However, there is
infrequent communication in the T-slot. For example in Crystal’s temperature prediction
scenario, there is no data dissemination in over 80 % of the T-slots. However, as discussed
above, the duration of the T-slot must be sufficiently long to support the packet size that
is required by the application. As a consequence, the nodes consume unnecessary energy.
To reduce the idle listening time when no data communication is needed, and thus, the
energy consumption, Whisper can be integrated into Crystal. Figure 4.9b shows Crystal
with Whisper. Whisper (W) runs before each T-slot. A node that has data to share, transmits
a signaling packet in the Whisper slot. Nodes that intercept a packlet turn their radio on
in the T-slot, otherwise they keep the radio turned off until the following A-slot. In this
setting, Whisper relies on the synchronization and channel hopping mechanisms from
Crystal. More precisely, Crystal initiates the start of the Whisper slot and also provides
the communication channel, which is the same as used for the TA-slots. Since Crystal is a
collection protocol, we use Whisper (i. e., Whisper (coll.)) in its collection configuration as
described Section 4.2.6. We use Crystal’s bootstrapping period – which lasts 10 epochs – as
initialization phase for Whisper to let the nodes learn their position in the network tree.

75

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

Table 4.5: Crystal’s configuration parameters.

Tx power NS NT NA WS WT WA

[dBm] [#] [#] [#] [ms] [ms] [ms]

0 3 2 3 10 9 7
-10 4 3 4 14 14 12

e x p e r i m e n t s In this experiment, we measure the duty cycle and the achieved relia-
bility. In particular, the duty cycle is the averaged per-node duty cycle that is the ratio of
the sum of the radio-on time for all slots during an epoch and the duration of the epoch.
The reliability indicates how many nodes that have transmitted an update in the current
epoch also received an acknowledgment from the sink. Thus, the measured reliability
includes the packet reception rates of the S-slot, T-slot, the A-slot, and when used, also the
Whisper (W)-slot.

We first run Crystal with an epoch of 1.5 s and a data payload of 20 byte. We use the
default number of retransmissions N for the different slots and transmit powers, given
in [73] and summarized in Table 4.5. As also shown in the table, we further used the
default duration W for the S- and A-slots. However, since we increase the payload, we
adjusted the duration for the T-slot. We run Crystal in FlockLab, with node 1 as sink, and
with updates u = 0, u = 2, and u = 5. An update u = X implies that among the 27 nodes,
there are X events (or data packets) to share during a specific epoch. Crystal with u = 0

indicates that no message is transmitted in T-slot, and thus, in this case we measure the
idle listening time of Crystal. More precisely, it indicates the minimal power consumption,
and we, thus, use it as base line for other update configurations. After running Crystal 3
times for 60 minutes, we repeat the experiments with Crystal using Whisper (coll.).

r e s u l t s Figure 4.10 shows the duty cycle in the upper plot and the reliability in
the lower plot. We find that Whisper reduces the duty cycle by a factor of two for all
updates u. Considering only the energy consumption during communication (i. e., 20 mA)
and assuming a battery with a capacity of 2000 mAh, Crystal with Whisper increases the
nodes’ lifetime by a factor of 2.3 compared to “standard” Crystal (278 days vs. 119 days
of lifetime) in this experiment11. The factor of how much Whisper increases the network

11 Crystal (u = 0) at 0 dBm transmission power has an average duty cycle of 3.46 %. Accordingly, the battery lasts
for 120 days (2000 mAh/(3.46 % · 20 mA · 24 h)). Crystal w/ Whisper (coll.) (u=0) at the same transmission
power has a duty cycle of 1.18 %, and thus, the battery lasts for 353 days (2000 mAh/(1.18 % · 20 mA · 24 h)).
As a result, in case of no data transmission (i. e., u = 0) Whisper used in Crystal increases the network lifetime
by a factor of 2.9 compared to “standard” Crystal. Considering u = 5, i. e., among the 27 nodes in FlockLab,
there are 5 data packets to transmit during an epoch, the duty cycle of Crystal (u = 5) is 3.49 % and the duty
cycle of Crystal w/ Whisper (coll.) (u = 5) is 1.5 %. Using the computation described above, Crystal with
Whisper has a 2.3 times higher network lifetime compared to Crystal without Whisper.

76

4.4 r e l a t e d w o r k

lifetime depends on the size of the packets sent in the T-slot as well as the number of
retransmissions. A large packet requires a long duration of the T-slot compared to short
packets. The longer the duration of the T-slot, the higher is the gain in terms of energy-
efficiency that Whisper is able to achieve. However, one can also observe that Crystal with
Whisper has a lower reliability compared to “standard” Crystal (e. g., 95.7 % vs. 98.4 % at
−10 dBm with u = 5). Indeed, when the sink misses a packlet in a Whisper slot, it keeps
its radio turned off during the T-slot and thus, also misses the data packet. Thus, Whisper
requires high reliability when used as wake-up service. New sampling strategies or a
higher value for Ntx, as shown in Section 4.3.4.2, can help to increase Whisper’s reliability.

0.0

1.0

2.0

3.0

4.0

D
ut

y
C

yc
le

[%
]

-10 0

TX power [dBm]

90.0

95.0

100.0

R
el

ia
bi

lit
y

[%
]

Crystal (u=0)

Crystal (u=2)

Crystal (u=5)

Crystal w/ Whisper (coll.) (u=0)

Crystal w/ Whisper (coll.) (u=2)

Crystal w/ Whisper (coll.) (u=5)

Figure 4.10: Impact of Whisper on Crystal. Whisper halves the duty cycle of Crystal. However, a missed
packlet in Whisper also impacts the reliability of Crystal.

4.4 r e l a t e d w o r k

The overall architecture of Whisper builds on the concepts introduced by Glossy12. The
novel design elements that we introduce – in particular packlets and direction-aware sam-
pling – make Whisper significantly more efficient than Glossy. Whisper’s superior per-
formance is obtained by completely eliminating gaps between consecutive, synchronous
transmissions.

12 This section is based on Section V of our previous work published in [22].

77

4 f a s t f l o o d i n g o f s m a l l a m o u n t s o f d a t a

Lu et al. [104] already introduced in Flash the concept of consecutive packet transmissions
after a single reception for rapid flooding. Later, Lim et al. [130] applied this concept in
Glossy. In both approaches, consecutive packets are, however, not sent back-to-back as in
Whisper but have gaps between them. This is because they are transmitted as individual
packets and, thus, the radio must still perform an rx/tx turnaround even between consec-
utive transmissions. This increases the overall transmit time and strongly limits the use
of sampling strategies as introduced in Whisper. Furthermore, due to the instability of
the DCO, the alignment of synchronously transmitted packets decreases quickly with the
number of packets. In Whisper, instead, the use of Flock – presented in Chapter 3 – and
the concept of packlets guarantee that transmissions are precisely aligned. However, the
competitive advantage of Whisper with respect to these approaches regarding the duration
of a packet flood decreases with increasing payload size. This is because the time spent by
the radio in rx/tx turnaround becomes negligible with respect to the time spent receiving
or transmitting.

Approaches that exploit scheduled Glossy floods to provide high-level protocols – e. g.,
[50], or Crystal [73, 74] – could replace Glossy with Whisper to achieve a more efficient
operation. Other, more complex protocols like Splash [37] or Pando [38] could also benefit
from integrating Whisper’s design in their architecture.

Several authors proposed protocols to use some form of frequency diversity to make
synchronous transmissions more robust against interference. These include full-fledged
protocols like Splash [37] or Pando [38] but also improved versions of Glossy like the one
proposed by Sommer and Pignolet [153]. While we have not yet implemented the use of
multiple channels within Whisper, this is part of our future work. However, we have
shown on the example of Whisper in Crystal that Whisper already achieves high reliability
when flooding on different channels.

Other approaches related to Whisper are those that provide – or can be used to implement
– a network-wide wake-up service. Some basic techniques like Low-Power Listening [128] or
Backcast [43] have been successfully used in Medium Access Control protocols to schedule
nodes’ rendezvous [24, 42, 114, 128]. They are however contention-based approaches and
are inherently perform worse – both in terms of reliability and latency – than approaches
based on synchronous transmissions.

Lastly, protocols that build upon wake-up radios, e. g., Zippy [161], ALBA-WUR [159],
or the approach proposed in [101] rely on nodes that are equipped with special hardware.
Thus, such approaches are orthogonal to Whisper.

4.5 s u m m a r y

In this chapter, we presented a novel protocol to support the quick yet energy-efficient
distribution of event-based data portions with Whisper. Whisper is a communication

78

4.5 s u m m a r y

primitive that builds upon synchronous transmission-based flooding with a packet-in-
packet approach allowing to easily create energy-efficient sampling strategies. We present
two sampling strategies: lazy sampling and direction-aware sampling. Our evaluation in
the FlockLab testbed showed that Whisper can disseminate data twice as fast as Glossy
with no loss in reliability.

79

CHAPTER 5

E V E N T- B A S E D O N E - T O - O N E C O M M U N I C AT I O N

In the previous chapter, we presented a quick yet energy-efficient approach to flood small
amounts of data into a low-power wireless network. In particular, we considered small
data like configuration parameters, and “wake-up calls” announcing bigger data traffic to
reduce the nodes’ overall energy consumption. In the latter case, the announced data can
consist of bulk data that is transferred possibly using standard Internet protocols.

Using standardized Internet protocols like CoAP [19], HTTP, TCP, UDP, and IPv6 in low-
power wireless networks opens new possibilities and use cases. For example, it enables
the interoperability between devices of different vendors and link-layer technologies like
IEEE 802.15.4, IEEE 802.15.1 (Bluetooth) and IEEE 802.11 (Wifi) [60] as schematically illus-
trated in Figure 5.1. In the figure, a border router acts as gateway between the low-power
wireless network and the Internet, and thus, enables the date exchange over different
link-layer technologies. This allows for interconnecting different production plants and
locating the control plant of “mines and onshore and offshore oil and gas field[s]” [172] to “near
population centers where people prefer to work and live” [172]. Standard Internet protocols often
support the communication between two devices in a one-to-one manner, e. g., a CoAP

client located in the Internet requests a batch of data (e. g., (multimedia) sensor data [3] or
traffic monitoring information [131, 132]) from a specific node in the network.

The data that is exchanged using standard Internet protocols can be quite large. For ex-
ample, a CoAP request may have several tens of byte [85]. Using synchronous transmission
based protocols like Glossy for the data exchange implies flooding the low-power wireless
network with large packets that are addressed to a single destination. The consequence is
that nodes which (1) do not actively help forwarding the message to the destination, and
(2) are not the destination consume unnecessary energy.

In this chapter1, we present a novel approach to enable efficient one-to-one communica-
tion using standard Internet protocols based on synchronous transmission. In particular,
we introduce LaneFlood. LaneFlood allows quick yet energy efficient one-to-one commu-
nication. As discussed in Section 2.2.4, Internet protocols in low-power wireless networks
are typically deployed on top of the IPv6 Routing Protocol for Low-Power and Lossy Net-
works (RPL). RPL provides one-to-many and one-to-one routing. However, RPL has to
maintain routes by selecting parent nodes, announce routing metrics, discover neighbors

1 This section is an extended version of Section I and Section III-E of our previous work published in [20].

81

5 e v e n t - b a s e d o n e - t o - o n e c o m m u n i c a t i o n

Figure 5.1: Interconnection of a low-power wireless network with the Internet. The border router is the
access point to and from the low-power wireless network.

and maintain routing tables, and can only slowly adapt to network changes, unlike Lane-
Flood. LaneFlood quickly establishes a path between any source and destination in the
network. Once the path is established, LaneFlood involves only the nodes along that path
in the forwarding of data. Inactive nodes turn their radio off to preserve energy and peri-
odically wake up to be available for further connections. Thus, LaneFlood has no need for
routing tables or neighbor discovery services.

LaneFlood aims to efficiently support established Internet protocols like HTTP, CoAP, UDP,
TCP, and IPv6. In particular, LaneFlood’s design reflects the one-to-one communication pat-
tern of these protocols: First, it sets up a connection between any two nodes in the network
and afterwards facilitates the data exchange between these two nodes. For example, a CoAP

request message triggers a connection setup, and LaneFlood maintains this connection
until it is either closed or has timed out. LaneFlood builds upon two existing protocols
exploiting synchronous transmissions: Glossy and the Concurrent Transmission Forwarder
Selection (CXFS) protocol [25]. More precisely, it uses Glossy-floods to distribute messages
and it uses an approach inspired by CXFS to support the energy-efficient message flow be-
tween any two nodes in the network. LaneFlood has, thus, three key advantages compared
to existing solutions: (1) energy-efficient network operations for large, event-based data
traffic, (2) full and transparent integration into the TCP/IP stack, and (3) native support for
one-to-one communication.

Figure 5.2a shows the typical IP-based network stack considered for low-power wireless
networks, similar to the one discussed in Section 2.2.4, while Figure 5.2b shows the network
stack of nodes running LaneFlood. The latter figure illustrates that LaneFlood eliminates
the need of incorporating routing protocols such as RPL [23] as well as MAC protocols
like CSMA as in burst forwarding [41] or Disco [177]. Nodes do not need to perform
neighbor discovery, maintain routing tables or deal with channel contention, allowing the

82

5.1 t e r m i n o l o g y a n d b a s i c o p e r a t i o n

(a) Conventional IP-based IEEE 802.15.4-based network stack. (b) Network stack with LaneFlood.

Figure 5.2: Conventional IP-based IEEE 802.15.4-based network stack vs. network stack with LaneFlood.
LaneFlood allows for lightweight implementations of IPv6 and 6LoWPAN, indicated with IPv6∗ and
6LoWPAN for LaneFlood (6LoFlood), respectively. A conceptional description of 6LoFlood is provided
in Appendix A.1.

nodes to quickly adapt to channel fluctuations. Therefore, nodes running LaneFlood only
need a lightweight implementation of IPv6 and 6LoWPAN, indicated as IPv6∗ and 6LoFlood in
Figure 5.2b. In the following, we discuss LaneFlood, a routing-free protocol that enables
to efficiently run standard Internet protocols based on IPv6∗ within a low-power wireless
network. For the interested reader, we provide in Appendix A.1 a conceptual description
of 6LoFlood that allows for packet fragmentation, header compression and global IPv6∗

addressing to support the interconnection of the low-power wireless network with other
networks, e. g., the Internet.

The remainder of this chapter is structured as follows: We first introduce the terminology
that we use and present the basic operations of LaneFlood in Section 5.1. Afterwards, we
explain how a path is created in Section 5.2, and in Section 5.3, we show how LaneFlood
operates. Section 5.4 discusses how LaneFlood transparently runs Internet protocols, and
Section 5.5 reports our evaluation results. We review related work in Section 5.6 before sum-
marizing and concluding this chapter in Section 5.7. Parts of the contributions presented
in this chapter have been published in [20].

5 .1 t e r m i n o l o g y a n d b a s i c o p e r a t i o n

LaneFlood creates an exclusive communication channel, called lane, between any two nodes
– henceforth referred to as source and destination – in the low-power wireless network2. The
lane is created through two executive network floods, initiated by source and destination,
and involves only the nodes that are required for packet forwarding. Figure 5.3 illustrates
how a lane is established. In particular, Figure 5.3a shows what we call the Setup flood,

2 This section is an extended version of Section II and Section III of our work previously published in [20].

83

5 e v e n t - b a s e d o n e - t o - o n e c o m m u n i c a t i o n

2;?	

1;?	

1;?	

3;?	

2;?	

2;?	

3;?	

0;?	

2;?	

2;?	

3;?	

4;?	

Source
Destination
Active node
Inactive node
Link
Lane boundary

1;?	

2;?	

2;?	

3;?	
3;?	

3;?	 4;?	

2;?	

3;?	

Hop count 2;?

(a) Setup

2;3	

1;2	

1;2	

3;1	

2;1	

2;1	

3;0	

0;3	

2;4	

2;2	

3;1	

4;1	

1;3	

2;2	

2;2	

3;3	
3;2	

3;2	 4;1	

2;1	

3;4	

(b) Response

2;3	

1;2	

1;2	

3;1	

2;1	

2;1	

3;0	

0;3	

2;4	

2;2	

3;1	

4;1	

1;3	

2;3	

2;2	

3;3	
3;2	

3;2	 4;1	

2;1	

3;4	

(c) Data exchange

Figure 5.3: Establishing a lane. A lane is created by two consecutive network floods. First, the source
disseminates a Setup message. Triggered by this message, the destination disseminates a Response
message. The nodes compute whether they belong to the lane or not. If not, they turn their radio off
until the next session, otherwise the help in forwarding messages during the Data exchange.

84

5.1 t e r m i n o l o g y a n d b a s i c o p e r a t i o n

i. e., the first flood initiated by the source. The destination replies to the Setup flood with a
Response flood as shown in Figure 5.3b. Setup flood and Response flood are disseminated using
network floods, i. e., Glossy-floods initiated by either source or destination. The information
collected during these two floods is used by the nodes to decide autonomously whether
they belong to the lane or not. A node that belongs to the lane keeps its radio on to enable
the data exchange using Data floods between the source and destination. Otherwise, it turns
the radio off until a new lane must be created. Source and destination exchange data using
lane floods, i. e., network floods propagated by nodes being part of the lane only, as long as
the lane is active. Figure 5.3c illustrates an active lane.

During the Setup, Response and Data flood, the nodes propagate LaneFlood messages
that correspondingly dubbed Setup, Response, and Data messages. Figure 5.4 shows the
general format of these LaneFlood messages. The first byte is the relay counter c from
Glossy, as discussed in Section 2.4.3. The relay counter is increased each time a message
is retransmitted during a flood. We eliminated the Glossy fields that are not required by
LaneFlood, leaving only the relay counter c. The next field in the LaneFlood message
is the type field. With this field, nodes are able to distinguish the different LaneFlood
messages. Table 5.1 summarizes the available messages. The type Glossy indicates that
a source node must disseminate a message to all nodes in the network instead of to just
a single node. Thus, instead of establishing a lane, it just propagates its message using
network-wide Glossy floods. The Sync-type indicates a network synchronization, as we
discuss in Section 5.3. The type field is followed by the src field. It indicates the identifier
of the source and the field after, the dest field, is the identifier of the destination. The
dist field holds the actual information that the nodes collect during lane establishment,
i. e., it contains the minimal path between source and destination. We discuss how the
nodes determine the minimal path and how they derive the lane from this path in detail
in Section 5.2.

Figure 5.5 shows the protocol operation of LaneFlood. In particular, LaneFlood operates
in sessions Ts and each session is further split in multiple rounds Tr. The session in Figure 5.5
contains for example of six rounds. Each round consists of two parts. In the first part of
each round the application(s) running on the nodes operate and, e. g., collect sensor data or

Byte: 1 1 1 1 1 0 – 120 2
Field: c type src dest dist data FCS

Glossy LaneFlood
MPDU (127 byte)

Figure 5.4: LaneFlood message structure. The relay counter c, which is provided by Glossy, is used to
determine the distance measured in hops between nodes.

85

5 e v e n t - b a s e d o n e - t o - o n e c o m m u n i c a t i o n

Table 5.1: LaneFlood message types. Using the Glossy-type, nodes disseminate messages to all nodes
instead of creating a lane.

0 Glossy
1 Sync
2 Setup
3 Response
4 Data

perform computations. During this time the nodes have their radios turned off. The second
part of a round is used for communication. We refer to this part as the communication slot Tc,
accordingly. A session ends with a short guard period Tg that ensures that all nodes are
ready for the next session. Section 5.3 provides a more detailed description of the protocol
operation of LaneFlood.

round 1
(initiator slot)

round 3round 2 round 4

!"

session i-1 session i session i+1

!#

!$

round 5 round 6

slot 1 slot 2 slot 3 slot 4 slot 5 slot 6

!%

Figure 5.5: LaneFlood’s protocol operation.

5.2 e s t a b l i s h i n g a l a n e

In this section3, we discuss the establishment of a lane in LaneFlood. In particular, we
describe how nodes collect distance information and how a node decides whether it belongs
to the forwarder set or not. The protocol operation of LaneFlood is described in the
following Section 5.3.

3 This section is based on Section III-A and Section III-B of our work previously published in [20].

86

5.2 e s t a b l i s h i n g a l a n e

5.2.1 Collecting information

A lane is established through two consecutive network floods that are initiated by the source
and the destination. To this end, the source transmits a Setup message, i. e., a LaneFlood
message of type Setup. In the message, the source includes its identifier and the one from
the intended destination in the corresponding fields. Further, the node appends the data
it must send (e. g., a TCP-SYN for establishing the TCP handshake, or a CoAP request). The
distance field and the relay counter are set to zero. Nodes that receive the Setup message use
the relay counter c to determine their distance dsf in hops to the source, as done in [25]
and shown in Figure 5.3a. When the Setup message arrives at the destination, the relay
counter field holds the distance in hops between source and destination dsd. For example,
dsd = 3 in Figure 5.3a .

Next, the destination of the Setup message sends a Response message, i. e., a LaneFlood
message of type Response. The destination adds its identifier in the source field and the
one of the source into the destination field. The destination can also append its data to
transmit (e. g., the TCP-SYN-ACK as response to the TCP-SYN message, or a CoAP response
message). Further, the destination sets the distance field to the value of dsd. Alike the Setup
message, the nodes receiving the Response message can read their distance to the destination
ddf from the relay counter field, shown in Figure 5.3b. After the Response message has been
disseminated, the nodes know the values of dsd, which is included in the distance field
of the Response message, as well as their distance to source and destination dsf and ddf,
respectively [25]. The Setup message and Response messages are disseminated using Glossy-
floods. Thus, it is expected that all nodes in the network receive these messages with high
probability and low latency. Using the collected distance information, the nodes determine
whether they belong to the current lane or not, as depicted in Figure 5.3c. In the following
we show how nodes decide if they belong to the lane.

5.2.2 Decision making

After having received the Response message, the nodes not being source or destination decide,
whether they belong to the lane or not. A node always belongs to the current lane if it
fulfills the condition:

dsf + ddf ⩽ dsd + si, (5.1)

with si being the integer part of a configurable protocol parameter: the slack s. Con-
dition 5.1 includes nodes to the lane that are either (a) on the minimal path between the
source and the destination, and (b) on the non-minimal paths that are at most si hops
longer than the minimal path. This methodology corresponds to the forwarder selection

87

5 e v e n t - b a s e d o n e - t o - o n e c o m m u n i c a t i o n

strategy of CXFS [25]. The optimal value of si depends on the current network topology.
However, if the lane contains only nodes on minimal paths, i. e., setting si = 0, it may cause
the lane to consists of single-links due to the small number of nodes helping in forwarding
messages. Thus, the advantages of synchronous transmissions are not exploited and the
lane may become unreliable. Increasing si, and thus, including more nodes to the path
helps in improving reliability, but might in turn cause an unnecessarily high number of
forwarders being active, which increases the overall energy-consumption in the network.
Thus, in practical settings the number of nodes helping in forwarding messages should
be “somewhere in between” si and si + 1. In other words, we consider si to be small and
further include additional nodes to the lane. As a result, we add the following composite
condition:

[dsd + si < dsf + ddf ⩽ dsd + si + 1] ∩ [rand(0, 1) ⩽ sd], (5.2)

where sd corresponds to the fractional part of the slack s. For example, if s = 2, 30, then
this equals to si = 2 and sd = 0.30. Condition 5.2 implies that nodes that lie on paths that
are si + 1 hops longer than the minimal path are part of the lane with probability sd. In
this way, we can improve the packet reception reliability by increasing the number of nodes
that are part of the lane in a far more fine-grained way compared to just considering integer
values of the slack si. Thus, this allows us to save energy without sacrificing reliability.

5.3 t h e p r o t o c o l o p e r a t i o n o f l a n e f l o o d

After discussing how a lane is created, we now explain how LaneFlood operates4. To this
end, we consider an example scenario where the initiator (e. g., the border router) requests
sensor data from a node using CoAP. As illustrated in Figure 5.5, the first round of a session
is reserved for the initiator. In this round, the initiator either transmits a Sync message or
a Setup message. The initiator transmits a Sync message in case it has no pending data. The
Sync message ensures that the nodes in the network re-synchronize to the reference time of
the initiator. Further, it signals the nodes that they are free to establish a lane in the next
round by transmitting a Setup message. If the initiator, however, has data to transmit in the
first round – as in our current example – it transmits a Setup message. All other nodes with
pending data try to establish a connection in the next session. In the second round, the
nodes expect a Response message from the destination. After this message is received, the
nodes compute whether they belong to the forwarder set or not, as described in Section 5.2.
The data is exchanged starting from the third round until the end of the current session
with only the nodes that are part of the lane. All other nodes keep their radio off until the
beginning of the next session. In each round, one packet is exchanged using lane floods. In

4 This section is based on Section III-D of our previous work published in [20].

88

5.3 t h e p r o t o c o l o p e r a t i o n o f l a n e f l o o d

case source and destination complete the data exchange before the session ends, the nodes
keep listening for two consecutive rounds for potentially incoming messages. After these
two “idle rounds”, the lane is released and the nodes turn off the radio until the beginning
of the next session. When source and destination are not able to finish the data exchange
within one session, they continue in the next session. Irrespectively of whether and when
a data exchange ends within a session, when the new session starts nodes compete to
establish a new connection.

Because we assumed the initiator to be the source in our current example, the data
exchange in the next session is guaranteed in the initiator slot. When the initiator transmits
a Sync message in the first round of a session, all other nodes with pending data can establish
a lane in the second round. In this round, several nodes may want to establish a lane and
thus, they all transmit a Setup message. These messages compete against each other with
three possible outcomes:

1. The Setup messages collide destructively and all Setup messages are lost.

2. Only one of the Setup messages is received by its intended destination.

3. Two or more Setup messages are received by their intended destination.

When the first case occurs, no Response message is disseminated in the subsequent round.
This is detected by the nodes that transmitted the Setup message, and thus, they try to send
the message again in the next round. When the second case occurs, the only destination
that has received the Setup message replies with a Response message in the next round. As
a result, a lane between a source- and destination-pair has been successfully established
and the two nodes can continue with the data exchange as described above. The other
senders also receive the Response message and thus, detect that two other nodes established
a lane. Thus, they either keep their radio on to act as forwarders or turn their radio off.
In either way, they try to establishment a new lane in the next session. In the third case,
all destinations that have received a Setup message reply with a Response message. Thus, the
transmitted Response messages are sent concurrently and compete again with three possible
outcomes:

1. All Response messages are lost;

2. Only one of the Response messages reaches its intended destination;

3. Two or more Response messages reach their intended destination.

In the first case, the sources detect the missing Response message and try to disseminate
the Setup message again in the following round. In the current version of LaneFlood,
nodes try to establish a lane until the lane is successful established or until they received a

89

5 e v e n t - b a s e d o n e - t o - o n e c o m m u n i c a t i o n

Response message from another source-destination-pair. If the second case occurs, one lane
is successfully established between a source- and destination-pair. As before, the other
sources detect that lane is established and either act as forwarders or turn their radio off. If
the third case occurs, multiple lanes have been established concurrently. Since both Setup
and Response messages have been successfully delivered, it is likely that several lanes can
co-exist at the same time in the network.

5.4 r u n n i n g i n t e r n e t p r o t o c o l s o n t o p o f l a n e f l o o d

Standard Internet protocols like, e. g., CoAP [19], generate communication requests on-
demand, i. e., at any point in time5. LaneFlood, however, is a time-slotted protocol that
operates according to a fixed schedule, i. e., it transmits data only at pre-specified time
instants. To support on-demand traffic from application protocols like CoAP, LaneFlood
uses a packet queue to gather messages from the upper layers. More precisely, this queue
receives packets from layers sitting above LaneFlood and we refer to it as the tx queue.
Once a packet is generated by the application and passed down the stack, LaneFlood first
enqueues it in the tx queue.

In each round, before the communication slot starts, each node verifies whether it has
any packet in its queue. If so, the node further verifies whether it is allowed to transmit
in the current round. This is the case, e. g., when a Sync message was transmitted in the
previous round. If the tx queue of a node contains at least one message and the node is
allowed to send, it transmits a Setup message with a copy of the first message from its tx
queue as payload. The packet is removed from the queue if and only if – by the end of
the current communication slot – the node has received its own packet at least once. This
implies that the packet has been forwarded by neighboring nodes and, thus, has most
likely also reached the destination. If, instead, the node receives the packet of a contending
sender, it passes this packet to the upper layer and keeps its own packet in the tx queue. A
new transmission attempt is started in the next allowed round.

5.5 e va l ua t i o n o f l a n e f l o o d

In this section6, we evaluate the performance of LaneFlood through extensive testbed
experiments. We show that our forwarder selection strategy achieves a lower duty cycle and
a higher reliability compared to CXFS and Glossy by choosing the number of participating
nodes with more granularity. We also find that LaneFlood can transport Internet protocols
with an end-to-end latency that can be tuned to less than 300 ms.

5 This section is based on Section III-F in [20].
6 This section is an extended variant of Section IV in [20]. Please note that we have further improved LaneFlood,

and thus, the evaluation results in this thesis have been improved compared to the results shown in [20].

90

5.5 e va l ua t i o n o f l a n e f l o o d

5.5.1 Methodology

We run LaneFlood in the FlockLab testbed, which we have described in Section 2.1.3. For
this set of experiments, we consider a scenario in which a node sends CoAP requests to
different nodes in the network. LaneFlood is used as underlying communication protocol.
More precisely, the initiator, acting as client, requests a batch of data (e. g., sensor data
or traffic monitoring information) from specific nodes in the network. The client sends
requests of 90 byte. The time instants at which requests are generated are distributed within
a random interval of [1,11] seconds. Thus, a request is sent on average every 5 seconds.
The client sends 125 requests to each server before switching to the next one. We select the
node with identifier 1 as our client. The target nodes in the (servers) reply immediately
with 5 packets and a total packet size of 125 byte. Table 5.2 shows the server identifiers
and their distance to the client. Client and servers have IPv6 addresses and application
messages are transported through UDP.

We focus on three key performance metrics: reliability, latency, and duty cycle. The
reliability is the ratio of received messages and total messages sent by the application. We
measure the reliability of packets received at the client. The latency is measured end-to-end
(at the application level) and describes the time interval between the sending of a packet
and its reception. We distinguish between the latency of a packet transmitted from the
client to the server, and the latency from server to client. The duty cycle indicates the ratio
of the total time the radio of a node is on during an experiment and the total duration of
the experiment. The duty cycle is averaged over all nodes within the network.

We set the duration of a session and a round to 4 s and 200 ms, respectively, and run
each experiment at least 3 times for 1 hour. Results are averaged over the 3 runs, and error
bars in the plots indicate the 5th and 95th percentiles.

5 .5 .2 Impact of the slack

e x p e r i m e n t s We first evaluate the impact of the slack s in different network topolo-
gies. We set the transmission power to −10 dBm and s = 0, 00. We steadily increase the
slack until all nodes participate in the data exchange. This corresponds to network-wide

Table 5.2: Server settings.

Server Distance to client
[node id] [hops]

16 2 to 3 (short distance)
13 3 to 4 (middle distance)
7 4 to 7 (long distance)

91

5 e v e n t - b a s e d o n e - t o - o n e c o m m u n i c a t i o n

Glossy-floods and thus, we indicate this scenario with s = Glossy. A slack that only con-
sists of the integer part, e. g., s = 0, 00, s = 1, 00, s = 2, 00, and s = 3, 00, corresponds to the
use of CXFS [25]. We repeat the experiments with a transmission power of 0 dBm. Using a
transmission power of 0 dBm creates a dense topology with only a few hops between client
and server. Consequently, running LaneFlood with transmission power −10 dBm creates a
sparse topology with long distances between client and server.

o b s e r va t i o n 1 The higher the slack, the higher the duty cycle.
Figure 5.6 and Figure 5.7 show our evaluation results for the sparse and dense topology,
respectively. In particular, the first and upper plots of Figure 5.6 and Figure 5.7 show
the radio duty cycle for different slack values. Note that we did not increase the slack
continuously at the same rate. We marked the areas where we changed the rate with
dashed lines in the figures. As expected, the duty cycle increases with the slack, with a
data exchange using Glossy-floods resulting in the highest duty cycle. Furthermore, the
upper peak of the error bars indicates the duty cycle of the nodes participating in lane
floods, while the lower peaks of the error bars marks the duty cycle of nodes that are not
part of the data exchange and thus, entered the sleep state.

o b s e r va t i o n 2 A higher slack increases the reliability until it reaches a peak.
The second plots in Figure 5.6 and Figure 5.7 display the impact of the slack on the reliability.
The reliability increases until it reaches its maximum. Since more nodes participate in the
data exchange and help in forwarding packets, the reliability increases. The reliability
reaches its peak in the sparse topology at s = 1, 90 and in the dense topology at s = 0, 90.
After reaching the peak, the reliability either remains constant or even decreases slightly
as in the dense topology shown in Figure 5.7. At the peak, we have reached a saturation
of participating nodes. The phenomenon of the reliability drop using Glossy in dense
networks has been already observed by other authors and is often referred as scalability
problem [36, 52, 112, 176]. As stated by Mohammad et al. [112]: “This decrease in reliability with
an increasing number of synchronous transmitters can be explained by the increasing likelihood
of larger temporal displacements among synchronous transmitters [43], which can be caused by a
combination of software, hardware, and signal propagation delays [185].”

o b s e r va t i o n 3 The random slack achieves a higher reliability with a low network duty
cycle compared to CXFS.
We already showed that the reliability reaches a peak after which adding more nodes to the
lane negatively affect the network duty cycle without increasing the reliability. The goal is,
thus, to find the reliability peak with the lowest duty cycle. While the boundary b in CXFS
is a fixed integer, our random slack approach allows for a fine-grand selection of nodes
participating in a lane. This allows us to achieve a high reliability with only the amount

92

5.5 e va l ua t i o n o f l a n e f l o o d

Figure 5.6: Impact of the slack in the sparse topology in FlockLab.

93

5 e v e n t - b a s e d o n e - t o - o n e c o m m u n i c a t i o n

Figure 5.7: Impact of the slack in the dense topology in FlockLab.

94

5.5 e va l ua t i o n o f l a n e f l o o d

of nodes that are necessary to forward the packets between client and server, reducing the
energy consumption in the network.

o b s e r va t i o n 4 The optimal slack value for a client-server-pair depends on the topology.
The optimal slack value regarding high reliability and low duty cycle is determined by the
topology. For example, in the sparse topology, the servers achieve the highest reliability
at around s = 1, 90, shown in the second plot of Figure 5.6. The highest reliability in the
dense topology is achieved at s = 0, 90, shown in the second plot of Figure 5.7. Thus, the
slack has to be adjusted according to the current topology.

o b s e r va t i o n 5 The latency is independent of the slack.
The third plots in Figure 5.6 and 5.7 show the client to server latency, while the last plots of
the figures show the server to client latency. In all four figures, the latency does not change
with the slack, which indicates that the latency is independent of the slack value.

5.5.3 Impact of the session and round length on latency

We now evaluate the impact of the session and round length on the performance of Lane-
Flood. In this set of experiments, we run LaneFlood in the sparse topology with transmis-
sion power −10 dBm and set the slack to s = 1, 00. We first run LaneFlood with a round
length Tr = 200 ms and repeat the experiment with Tr = 100 ms.

o b s e r va t i o n 6 The server to client latency increases with the round length Tr.
Figure 5.8 shows the reliability (upper plot, left), the duty cycle (upper plot, right), the
client to server latency (lower plot, left), and the server to client latency (lower plot, right)
per round duration. We observe from the figure that the server to client latency (lower
plot, right) increases for all servers with the round length. More precisely, doubling the
round duration increases the server to client latency by a factor of two. The client to server
latency (lower plot, left), the reliability (upper plot, left) and the duty cycle (upper plot,
right) remain constant. This is expected since the latency from server to client is mainly
determined by Tr and the position of a packet in the tx queue. More specifically, after
receiving the Setup message (i. e., the CoAP request) the server enqueues all data packets in
the tx queue before transmission. In our evaluation scenario, the server creates 5 packets
to send to the client but in each round only one packet is transmitted. Thus, the average
server to client latency for the first packet in the tx queue is Tr/2. This is because we start
measuring the server to client latency when the packet is created, and thus, before the
communication slot starts. The average latency from server to client for each following
packet increases by Tr, assuming the previous packet was transmitted correctly. The 5th

95

5 e v e n t - b a s e d o n e - t o - o n e c o m m u n i c a t i o n

Figure 5.8: Impact of the round length on the performance of LaneFlood. Increasing the round length Tr
increases the latency from client to server.

packet has, thus, an average server to client latency of Tr/2+ 4 · Tr. Reducing Tr decreases
the time until a packet is scheduled and hence, the overall server to client latency.

o b s e r va t i o n 7 The client to server latency can be reduced by decreasing the session length
Ts. Figure 5.6 and Figure 5.7 (third plot) show equally that the average client to server
latency is ≈2 s. This is expected since the client to server latency is mainly influenced
by the value of Ts, which we set to 4 s. Since LaneFlood runs completely detached from
the application, it issues Setup messages from the client on average every Ts/2 seconds.
Reducing Ts, thus, allows to reduce the client to server latency. However, a lower value of
Ts results in (a) a higher duty cycle because Setup and Response messages are exchanged more
often, and (b) less rounds available for data exchange (assuming Tr is fixed). This, in turn,
may result in higher packet drops due to a full tx queue. In the current implementation of
LaneFlood, the tx queue can hold 35 packets.

96

5.6 r e l a t e d w o r k

5.6 r e l a t e d w o r k

As discussed in Section 2.4.2, Glossy sparked a new research direction in low-power wire-
less networks protocols7. Several approaches improve, build upon or analyze Glossy. For
example the Low-power Wireless Bus (LWB) [50] uses Glossy-floods to create a virtual
network bus. The Glossy-floods are scheduled at a central node to support one-to-many,
many-to-one, and many-to-many traffic patterns. Chaos [90] builds upon Glossy and the
capture effect to support quick and efficient all-to-all data sharing. Splash [37] and P3 [36]
add pipelining to Glossy-like floods to increase reliability and network throughput. Rip-
ple [189] further improves the throughput of Splash by assigning different channels to
different packets instead to different levels of the data dissemination tree. The approaches
mentioned above (1) do not support one-to-one traffic or at least without forwarder selec-
tion, and (2) they do not consider Internet protocols or other high-level protocols like TCP,
UDP or CoAP.

CXFS [25] and Sparkle [191] are protocols that build upon Glossy to provide one-to-one
communication. We have already discussed the differences between CXFS and LaneFlood
within this chapter. Sparkle builds upon the capture effect to find the most reliable path
between a source and a destination. To this end, it lets every node that receives a packet
modify it by setting a bit in a bitmap that corresponds to the node, before retransmitting the
packet. When the destination receives the packet, it can read from the bitmap the probably
most reliable path between itself and the source. Sparkle’s forwarder selection mechanism
is interchangeable with our approach. More precisely, LaneFlood could also operate using
Sparkle’s forwarder selection mechanism. However, based upon the results reported in
[191], it remains unclear if Sparkle can provide higher end-to-end reliability than CXFS.
RTF [193] builds upon Sparkle and focuses on improving reliability and energy-efficiency
in point-to-point traffic. It uses TDMA for scheduling messages. LaneFlood does not require
any scheduling mechanism as we assume on-demand traffic rather than constant traffic.

LaneFlood enables the seamless operation of standard protocols like TCP, UDP and
CoAP. Instead, protocols like CXFS [25], Sparkle[191], and RTF [193] support only pro-
prietary transport protocols. A recently presented approach by Hewage et al. [60] shows
that LWB [50] can be used to relay messages from high-level, standard Internet protocols.
However, this approach relies on a central entity that schedules communication. Instead,
in LaneFlood connections are established spontaneously between arbitrary source and des-
tination nodes. Furthermore, Hewage et al. [60] do not consider any forwarder selection
mechanism in their approach. Their main focus is on maximizing throughput. Instead,
LaneFlood can trade-off energy consumption against and reliability. Burst forwarding [41]
runs TCP on top of it. However, burst forwarding is not based on synchronous transmis-

7 This section is based on Section V in [20].

97

5 e v e n t - b a s e d o n e - t o - o n e c o m m u n i c a t i o n

sions, and thus, does achieve the reliability and energy-efficiency of Glossy-like protocols
in low-power wireless networks.

5.7 s u m m a r y

In this chapter, we presented LaneFlood. LaneFlood is a routing-less, one-to-one communi-
cation protocol based on synchronous transmissions that efficiently runs standard Internet
protocols like HTTP, CoAP, UDP, TCP, and IPv6. To this end, it quickly establishes a lane
between any source and destination in the network. Once the lane is established, it only
involves the nodes that are required for forwarding the data. All other nodes turn their
radio off to preserve energy. Our testbed evaluation showed that LaneFlood achieves a
lower duty cycle and a higher reliability compared to CXFS [25] and Glossy by choosing
the number of nodes being part of the lane with more granularity.

98

CHAPTER 6

C O N C L U S I O N

Low-power wireless networks support a plethora of applications including, e. g., monitor-
ing the air quality in urban areas or controlling the heating, ventilation, and cooling in
large buildings. The use of low-power wireless networks in such monitoring and actuating
applications has the advantage of deployment flexibility and low cost compared to wired
solutions. These applications often have stringent requirements on the data exchange and
thus, on the used communication protocols. More precisely, the data exchange must be
highly reliable and energy-efficient with low latency. However, wireless communication
is notoriously error-prone. Message losses happen often and unpredictably, making it
challenging to support applications requiring high reliability and low latency.

A quick yet energy-efficient technique called synchronous transmissions facilitates the
fulfillment of these requirements. Using synchronous transmissions, two or more nodes
transmit an identical packet at almost the same time instance, causing the packets to
collide constructively at the same receiver(s). The constructively colliding packets sig-
nificantly increase the likelihood of being correctly received. A short radio activity, and
thus, the energy-efficient operation of protocols based on synchronous transmissions re-
lies on the simultaneous wake-up of the nodes and the quick and reliable network-wide
packet dissemination.

In this thesis, we first investigated methods that can ensure high performance of syn-
chronous transmissions, even in harsh environments, in which the nodes are typically
deployed. After that, we used synchronous transmissions as a low-level communication
service and focused on event-driven data distribution. In particular, this thesis makes three
main contributions:

• On-the-fly clock offset compensation. We presented Flock, a protocol primitive that com-
pensates clock frequency deviations among synchronously transmitting nodes, even
when the nodes are exposed to harsh environmental conditions, like strong tempera-
ture and humidity fluctuations.

• Fast flooding of event-based small data portions. We introduced Whisper, a protocol
primitive exploiting a packet-in-packet technique to quickly yet efficiently distribute
small data in a low-power wireless network.

99

6 c o n c l u s i o n

• Event-based one-to-one communication. We enabled with LaneFlood the energy-efficient,
reliable, and quick distribution of large on-demand messages in low-power wireless
networks using synchronous transmissions and standard Internet protocols.

In the following, we summarize the three main contributions of this thesis, discuss
limitations, and sketch interesting future directions. We finally close this thesis with
concluding remarks.

6.1 c o n t r i b u t i o n s

In our first contribution, we addressed the performance of synchronous transmission in
harsh environments. In particular, we evaluated and quantified the impact of clock fre-
quency deviations on the temporal displacement ∆Td of synchronously transmitting nodes.
We showed that small clock offsets among synchronously transmitting nodes – which are
common in commodity nodes – significantly decrease the probability of achieving con-
structive interference. We further showed that this is exacerbated when the nodes are
exposed to different temperatures. To counteract the issue of deviating clock frequencies,
we proposed Flock: On-the-Fly Clock Offset Compensation. Flock compensates for clock
frequency deviations among synchronously transmitting nodes. The contributions that
Flock makes are twofold: First, it makes Glossy and Glossy-based protocols more robust
to operate in challenging environments. Second, Flock allows for intermediate operations,
like packet processing or channel switching, to be executed between packet reception and
retransmission while ensuring non-destructive interference of signals. Our results based
on simulations and experiments on real nodes confirm that Flock allows Glossy to achieve
constructive interference in 98 % of the message transmissions even when nodes are ex-
posed to temperature differences of 30 ◦C. Thereby improves Flock the overall performance
of Glossy without additional message overhead.

The second contribution provided a protocol for quick yet energy-efficient distribution of
small, event-based data, like configuration parameters, or “wake-up calls” to prepare nodes
for incoming (bulk) data traffic. In this context, we presented Whisper, a communication
primitive exploiting a packet-in-packet approach and synchronous transmissions. Whis-
per’s strength lies in its quick and reliable data transmissions. For example, our evaluation
on the publicly available FlockLab testbed showed that Whisper disseminates data twice
as fast compared to Glossy with no loss in reliability. Whisper’s design allows for creating
sampling strategies to reduce the nodes’ idle listening time – the time the nodes wait for
incoming packets – for a highly energy-efficient operation. In this thesis, we presented two
sampling strategies: lazy sampling and direction-aware sampling. While the latter strategy
targets applications like data dissemination or collection, where the traffic flows in only
one direction, lazy sampling can be used in any generic application. This makes Whisper
a highly modular but efficient protocol for various application scenarios.

100

6.2 l i m i t a t i o n s a n d f u t u r e d i r e c t i o n s

In our last contribution, we presented LaneFlood to enable the energy-efficient one-to-one
communication of standard Internet protocols with. LaneFlood is a routing-free protocol
based on synchronous transmissions. It establishes a communication lane between any
two nodes in the network. Only the nodes along the lane that are required for forwarding
messages are involved in the communication. All other nodes turn their radio off to
preserve energy. Our evaluation on the FlockLab testbed showed that by fine-granularly
choosing the number of nodes being part of the lane, LaneFlood achieves a lower duty-cycle
as well as higher reliability compared to the state-of-the-art.

6 .2 l i m i t a t i o n s a n d f u t u r e d i r e c t i o n s

In this section, we discuss limitations of this work. Building upon the identified limitations,
we suggest possible extensions and interesting research directions.

a p e r i o d i c c o m m u n i c a t i o n s l o t s In this thesis, we achieve with Whisper
and LaneFlood event-driven data transfer with periodic communication slots. Data ex-
change can only occur during these communication slots. Senders and forwarding nodes
can assume that their one-hop neighbors are ready to receive data instead of having to wait
until nodes at each hop turn their radios on – as it is typical in CSMA-based approaches and
other MAC protocols [24, 40, 117, 186]. Nonetheless, achieving event-driven data transfer
with periodic communication slots is also clearly a limitation of Whisper and LaneFlood
for several reasons. The simultaneous wake-up requires the nodes to be synchronized to
a common and fixed time reference, which, indeed, (1) represents a single point of failure
and (2) triggers communication among the nodes. The synchronization has to be sched-
uled recurrently (however, independently and less often than communication slots) due to
frequency deviations of the nodes’ clocks, as discussed in Section 3. For example, using
LaneFlood, the initiator triggers the synchronization when it has no data to transmit in
the first round. Despite having communication slots, (3) the nodes still have to sample for
incoming event-based packets due to their unpredictable occurrence. Further, (4) pending
data can only be transmitted during periodic communication slots and not immediately
when it is available. Thus, the data transfer delays on average for half the period before
being transmitted. We have shown and discussed this in the evaluation of LaneFlood in
Observation 6 and Observation 7. On one hand, frequent communication slots allow for a
small data transfer delay but result in high energy consumption. On the other hand, infre-
quent communication slots cause high delay but consume less energy. We believe that the
design of Whisper allows researchers to develop energy-efficient sampling strategies that
match aperiodic communication patterns, and thus, to design a communication protocol
with aperiodic communication slots.

101

6 c o n c l u s i o n

u l t r a - r e l i a b l e c o m m u n i c a t i o n Ultra-reliable, low-latency communication –
i. e., packet deliveries with loss rates of less than 10-9 and deadline guarantees – has been
a major goal in, e. g., industrial automation systems, since the introduction of Fieldbus
systems [166, 195]. While wired solutions are able to serve the stringent requirements of
mission-critical applications, most wireless solutions only focus on process monitoring,
despite the benefits promised when adopting wireless communication.

The approaches discussed in this thesis provide best-effort data deliveries and do not
guarantee the timely delivery of packets within a given deadline, as required in ultra-
reliable, low-latency communication. For example, nodes in LaneFlood contend for ex-
changing data. However, the source-destination-pair that “wins” the contention is not
necessarily the pair with the most time-critical data. This is a major limitation of Lane-
Flood that also applies to Whisper. Using Whisper, the nodes know that there is pending
data, however, they do not know how many senders contend for communication and with
which priority. We believe that an interesting solution approach to enable ultra-reliable,
low-latency communication could be to combine Whisper with a packet prioritization and
scheduling strategy, and a neighbor counting solution similar to PoC [185]. Thus, during
the Whisper phase, the nodes contend for the channel access and afterwards the node
that has the packet with the most time-critical data can disseminate its packet without
contention. This solution could be then applied to protocols like LaneFlood or Crystal [73,
74] to enable ultra-reliable, low-latency communication.

6.3 c o n c l u d i n g r e m a r k s

The contributions reported in this thesis demonstrate the efficient distribution of event-
based data with respect to reliability, latency, and energy-efficiency. To this end, we rely
on synchronous transmissions and ensure their temporal displacement in the order of sub-
microseconds in even harsh environments. We further used synchronous transmissions as a
low-level communication service for protocols targeting the event-driven data distribution.
We believe that the design of our novel protocols has taken a significant step towards highly
reliable, low-latency communication of event-based data in low-power wireless networks.

102

B I B L I O G R A P H Y

[1] Advanticsys. XM1000. [online] https://www.advanticsys.com/wiki/index.php?title=
XM1000. 2017.

[2] G. Sierra Aiello, I. Demirkol, A. Calveras, C. Gomez, E. Garcia Villegas, and A. Betzler.
“Competition: Interference-Aware Multi-Channel Cross Layer Protocol for Energy-Efficient
and Low-Delay Networking.” In: Proceedings of the European Conference on Wireless Sensor
Networks (EWSN). 2016.

[3] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury. “Wireless Multimedia Sensor Networks:
A Survey.” In: Computer Networks 14 (6 2007).

[4] H. A. H. Alhalabi, T. C. Wan, L. Missif, and M. Ehalabi. “Performance Analysis of the
Constructive Interference Flooding in Wireless Sensor Networks.” In: Proceedings of the
International Conference on Information Technology (ICIT). 2017.

[5] D. Amaxilatis and I. Chatzigiannakis. “Competition: An Adaptive Protocol Stack for High-
Dependability based on the Population Protocols Paradigm.” In: Proceedings of the European
Conference on Wireless Sensor Networks (EWSN). 2016.

[6] Arago Systems. WiSMote datasheet. 2011.

[7] Á. Asensio, R. Blasco, Á. Marco, and R. Casas. “Hardware Architecture Design for WSN
Runtime Extension.” In: International Journal of Distributed Sensor Networks 9 (4 2013).

[8] A. Ayadi, D. Ros, and L. Toutain. TCP header compression for 6LoWPAN. Internet draft. 2011.

[9] G. Barrenetxea, F. Ingelrest, G. Schaefer, M. Vetterli, O. Couach, and M. Parlange. “Sen-
sorScope: Out-of-the-Box Environmental Monitoring.” In: Proceedings of the Conference on
Information Processing in Sensor Networks (ACM/IEEE IPSN). 2008.

[10] J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl, I. Talzi, L. Thiele, C. Tschudin,
M. Woehrle, and M. Yuecel. “PermaDAQ: A Scientific Instrument for Precision Sensing and
Data Recovery in Environmental Extremes.” In: Proceedings of the Conference on Information
Processing in Sensor Networks (ACM/IEEE IPSN). 2009.

[11] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. “MACAW: A Media Access Protocol
for Wireless LAN’s.” In: Proceedings of the Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (ACM SIGCOMM). 1994.

[12] M. Z. A. Bhuiyan, J. Wu, G. Wang, Z. Chen, J. Chen, and T. Wang. “Quality-Guaranteed
Event-Sensitive Data Collection and Monitoring in Vibration Sensor Networks.” In: IEEE
Transactions on Industrial Informatics 13 (2 2017).

[13] E. S. Biagioni and K. W. Bridges. “The Application of Remote Sensor Technology To Assist
the Recovery of Rare and Endangered Species.” In: International Journal of High Performance
Computing Applications 16 (3 2002).

103

https://www.advanticsys.com/wiki/index.php?title=XM1000
https://www.advanticsys.com/wiki/index.php?title=XM1000

b i b l i o g r a p h y

[14] R. Bischoff, J. Meyer, and G. Feltrin. “Wireless Sensor Network Platforms.” In: Encyclopedia
of Structural Health Monitoring. 2009.

[15] C. A. Boano, J. Brown, Z. He, U. Roedig, and T. Voigt. “Low-Power Radio Communica-
tion in Industrial Outdoor Deployments: The Impact of Weather Conditions and ATEX-
Compliance.” In: Proceedings of the International Conference on Sensor Networks Applications,
Experimentation and Logistics (SENSAPPEAL). 2010.

[16] C. A. Boano, N. Tsiftes, T. Voigt, J. Brown, and U. Roedig. “The Impact of Temperature on
Outdoor Industrial Sensornet Applications.” In: IEEE Transactions on Industrial Informatics 6
(3 2010).

[17] C. A. Boano, H. Wennerström, M. Zúñiga, J. Brown, C. Keppitiyagama, F. J. Oppermann,
U. Roedig, L.-Å. Nordén, T. Voigt, and K. Römer. “Hot Packets: A Systematic Evaluation
of the Effect of Temperature on Low Power Wireless Transceivers.” In: Proceedings of the
Extreme Conference on Communication and Computing (ExtremeCom). 2013.

[18] C. A. Boano, M. Zúñiga, J. Brown, U. Roedig, C. Keppitiyagama, and K. Römer. “TempLab:
A Testbed Infrastructure to Study the Impact of Temperature on Wireless Sensor Networks.”
In: Proceedings of the Conference on Information Processing in Sensor Networks (ACM/IEEE IPSN).
2014.

[19] C. Bormann, K. Hartke, and Z. Shelby. The Constrained Application Protocol (CoAP). RFC
7252. 2015.

[20] M. Brachmann, O. Landsiedel, and S. Santini. “Concurrent Transmissions for Communica-
tion Protocols in the Internet of Things.” In: Proceedings of the Conference on Local Computer
Networks (IEEE LCN). 2016.

[21] M. Brachmann, O. Landsiedel, and S. Santini. “Keep the Beat: On-The-Fly Clock Offset
Compensation for Synchronous Transmissions in Low-Power Networks.” In: Proceedings of
the Conference on Local Computer Networks (IEEE LCN). 2017.

[22] Martina Brachmann, Olaf Landsiedel, Diana Göhring, and Silvia Santini. Whisper: Fast
Flooding for Low-Power Wireless Networks. 2018. eprint: arXiv:XXXX.XXXXX.

[23] A. Brandt, J.-P. Vasseur, J. Hui, K. Pister, P. Thubert, P. Levis, R. Struik, R. Kelsey, T. H.
Clausen, and T. Winter. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC
6550. 2015.

[24] M. Buettner, C. V. Yee, E. Anderson, and R. Han. “X-MAC: A Short Preamble MAC Protocol
for Duty-cycled Wireless Sensor Networks.” In: Proceedings of the Conference on Embedded
Networked Sensor Systems (ACM SenSys). 2006.

[25] D. Carlson, M. Chang, A. Terzis, Y. Chen, and O. Gnawali. “Forwarder Selection in Multi-
Transmitter Networks.” In: Proceedings of the Conference Distributed Computing in Sensor
Systems (DCOSS). 2013.

[26] D. Carlson and A. Terzis. “Flip-MAC: A Density-Adaptive Contention-Reduction Proto-
col for Efficient Any-to-One Communication.” In: Proceedings of the Conference Distributed
Computing in Sensor Systems (DCOSS). 2011.

[27] V. Cerf, R. Kahn, and J. Postel. Transmission Control Protocol. RFC 793. 1981.

104

arXiv:XXXX.XXXXX

b i b l i o g r a p h y

[28] M. Ceriotti, M. Corrà, L. D’Orazio, R. Doriguzzi, D. Facchin, S. T. Gună, G. P. Jesi, R. L.
Cigno, L. Mottola, A. L. Murphy, M. Pescalli, G. P. Picco, D. Pregnolato, and C. Torghele.
“Is There Light at the Ends of the Tunnel? Wireless Sensor Networks for Adaptive Lighting
in Road Tunnels.” In: Proceedings of the Conference on Information Processing in Sensor Networks
(ACM/IEEE IPSN). 2011.

[29] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna, M. Corra, M. Pozzi, D. Zonta,
and P. Zanon. “Monitoring Heritage Buildings with Wireless Sensor Networks: The Torre
Aquila Deployment.” In: Proceedings of the Conference on Information Processing in Sensor
Networks (ACM/IEEE IPSN). 2009.

[30] D. Cheng, Y. Mao, Y. Wang, and X. Wang. “Improving Energy Adaptivity of Constructive
Interference-Based Flooding for WSN-AF.” In: International Journal of Distributed Sensor
Networks 11 (6 2015).

[31] Cisco Systems, Inc. Integrating an Industrial Wireless Sensor Network with Your Plant’s Switched
Ethernet and IP Network. White Paper. 2000.

[32] International Electrotechnical Commission. Industrial communication networks - Fieldbus speci-
fications - WIA-PA communication network and communication profile. IEC 62601. 2009.

[33] International Electrotechnical Commission. Industrial communication networks - Fieldbus speci-
fications - WirelessHART™communication network and communication profile. IEC 62591. 2009.

[34] International Electrotechnical Commission. Industrial communication networks - Fieldbus speci-
fications - Wireless systems for industrial automation: process control and related applications. IEC
62734. 2012.

[35] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC 8200. 2017.

[36] M. Doddavenkatappa and M. C. Chan. “P3: A Practical Packet Pipeline Using Synchronous
Transmissions for Wireless Sensor Networks.” In: Proceedings of the Conference on Information
Processing in Sensor Networks (ACM/IEEE IPSN). 2014.

[37] M. Doddavenkatappa, M. C. Chan, and B. Leong. “Splash: Fast Data Dissemination with
Constructive Interference in Wireless Sensor Networks.” In: Proceedings of the Symposium on
Networked Systems Design & Implementation (USENIX NSDI). 2013.

[38] W. Du, J. C. Liando, H. Zhang, and M. Li. “When Pipelines Meet Fountain: Fast Data
Dissemination in Wireless Sensor Networks.” In: Proceedings of the Conference on Embedded
Networked Sensor Systems (ACM SenSys). 2015.

[39] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert. “6TiSCH: Deterministic IP-enabled
Industrial Internet (of Things).” In: IEEE Communications Magazine 52 (12 2014).

[40] A. Dunkels. The ContikiMAC Radio Duty Cycling Protocol. 2011.

[41] S. Duquennoy, F. Österlind, and A. Dunkels. “Lossy Links, Low Power, High Throughput.”
In: Proceedings of the Conference on Embedded Networked Sensor Systems (ACM SenSys). 2011.

[42] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis. “A-MAC: A Versatile
and Efficient Receiver-initiated Link Layer for Low-power Wireless.” In: ACM Transactions
on Sensor Networks 8 (4 2012).

105

b i b l i o g r a p h y

[43] P. Dutta, R. Musăloiu-E., I. Stoica, and A. Terzis. “Wireless ACK Collisions Not Considered
Harmful.” In: Proceedings of the Workshop on Hot Topics in Networks (ACM HotNets). 2008.

[44] J. Elson, L. Girod, and D. Estrin. “Fine-grained Network Time Synchronization Using
Reference Broadcasts.” In: Proceedings of the Symposium on Operating Systems Design & Imple-
mentation (USENIX OSDI). 2002.

[45] A. Elsts, X. Fafoutis, A. Adeleke, R. J. Piechocki, G. C. Oikonomou, S. Duquennoy, A. Liñán,
and M. Fàbregas. “Competition: Adaptive Time-Slotted Channel Hopping.” In: Proceedings
of the European Conference on Wireless Sensor Networks (EWSN). 2017.

[46] A. T. Erman, L. v. Hoesel, P. Havinga, and J. Wu. “Enabling Mobility in Heterogeneous
Wireless Sensor Networks Cooperating with UAVs for Mission-Critical Management.” In:
IEEE Wireless Communications 15 (6 2008).

[47] A. Escobar, F. J. Cruz, J. Garcia-Jimenez, J. Klaue, and A. Corona. “RedFixHop with Channel
Hopping: Reliable Ultra-Low-Latency Network Flooding.” In: Proceedings of the Conference
on Design of Circuits and Integrated Systems (DCIS). 2016.

[48] A. Escobar, J. Garcia, F. Cruz, J. Klaue, A. Corona, and D. Tati. “Competition: RedFixHop
with Channel Hopping.” In: Proceedings of the European Conference on Wireless Sensor Networks
(EWSN). 2017.

[49] A. Escobar, F. Moreno, B. Saez, A. J. Cabrera, J. Garcia-Jimenez, F. J. Cruz, U. Ruiz, A.
Corona, J. Klaue, and D. Tati. “Competition: BigBangBus.” In: Proceedings of the European
Conference on Wireless Sensor Networks (EWSN). 2018.

[50] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. “Low-power wireless bus.” In: Proceed-
ings of the Conference on Embedded Networked Sensor Systems (ACM SenSys). 2012.

[51] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. “Virtual Synchrony Guarantees for
Cyber-physical Systems.” In: Proceedings of the International Symposium on Reliable Distributed
Systems (IEEE SRDS). 2013.

[52] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. “Efficient network flooding and time
synchronization with Glossy.” In: Proceedings of the Conference on Information Processing in
Sensor Networks (ACM/IEEE IPSN). 2011.

[53] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. 1999.

[54] M. Franceschinis, C. Pastrone, M. A. Spirito, and C. Borean. “On the performance of ZigBee
Pro and ZigBee IP in IEEE 802.15.4 networks.” In: Proceedings of the International Conference
on Wireless and Mobile Computing, Networking and Communications (IEEE WiMob). 2013.

[55] B. Galloway and G. P. Hancke. “Introduction to Industrial Control Networks.” In: IEEE
Communications Surveys Tutorials 15 (2 2013).

[56] S. Ganeriwal, R. Kumar, and M. B. Srivastava. “Timing-sync Protocol for Sensor Networks.”
In: Proceedings of the Conference on Embedded Networked Sensor Systems (ACM SenSys). 2003.

[57] P. H. Gomes, T. Watteyne, P. Gosh, and B. Krishnamachari. “Competition: Reliability
Through Timeslotted Channel Hopping and Flooding-based Routing.” In: Proceedings of the
European Conference on Wireless Sensor Networks (EWSN). 2016.

106

b i b l i o g r a p h y

[58] V. C. Gungor and G. P. Hancke. “Industrial Wireless Sensor Networks: Challenges, Design
Principles, and Technical Approaches.” In: IEEE Transactions on Industrial Electronics 56 (10
2009).

[59] Z. He, K. Hewage, and T. Voigt. “Arpeggio: A Penetration Attack on Glossy Networks.” In:
Proceedings of the Conference on Sensor, Mesh and Ad Hoc Communications and Networks (IEEE
SECON). 2016.

[60] K. Hewage, S. Duquennoy, V. Iyer, and T. Voigt. “Enabling TCP in Mobile Cyber-Physical
Systems.” In: Proceedings of the International Conference on Mobile Ad Hoc and Sensor Systems
(IEEE MASS). 2015.

[61] K. Hewage, S. Raza, and T. Voigt. “An Experimental Study of Attacks on the Availability of
Glossy.” In: Computers & Electrical Engineering 41 (2015 2015).

[62] K. Hewage, S. Raza, and T. Voigt. “Protecting Glossy-Based Wireless Networks from Packet
Injection Attacks.” In: Proceedings of the International Conference on Mobile Ad Hoc and Sensor
Systems (IEEE MASS). 2017.

[63] L. Hou and N. W. Bergmann. “System Requirements for Industrial Wireless Sensor Net-
works.” In: Proceedings of the Conference on Emerging Technologies Factory Automation (IEEE
ETFA). 2010.

[64] J. W. Hui and D. Culler. “IP is Dead, Long Live IP for Wireless Sensor Networks.” In:
Proceedings of the Conference on Embedded Networked Sensor Systems (ACM SenSys). 2008.

[65] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based
Networks. RFC 6282. 2011.

[66] N. Q. V. Hung, H. Jeung, and K. Aberer. “An Evaluation of Model-Based Approaches to
Sensor Data Compression.” In: IEEE Transactions on Knowledge and Data Engineering 25 (11
2013).

[67] IEEE Computer Society. IEEE Standard for Low-Rate Wireless Networks. 2016.

[68] Silicon Laboratories Inc. The Net Benefits of Single-Chip Integration for ZigBee SoC Solutions.
2013.

[69] Texas Instruments. CC2520 datasheet. 2007.

[70] Texas Instruments. MSP430F1611 datasheet. 2011.

[71] Texas Instruments. CC1101 datasheet. 2013.

[72] Texas Instruments. CC2420 datasheet. 2013.

[73] T. Istomin, A. L. Murphy, G. P. Picco, and U. Raza. “Data Prediction + Synchronous
Transmissions = Ultra-low Power Wireless Sensor Networks.” In: Proceedings of the Conference
on Embedded Networked Sensor Systems (ACM SenSys). 2016.

[74] T. Istomin, M. Trobinger, A. L. Murphy, and G. P. Picco. “Interference-Resilient Ultra-Low
Power Aperiodic Data Collection.” In: Proceedings of the Conference on Information Processing
in Sensor Networks (ACM/IEEE IPSN). 2018.

[75] J. Jeong, J. Park, H. Jeong, J. Jun, C. J. M. Liang, and J. Ko. “Low-Power and Topology-
Free Data Transfer Protocol with Synchronous Packet Transmissions.” In: Proceedings of the
Conference on Sensor, Mesh and Ad Hoc Communications and Networks (IEEE SECON). 2014.

107

b i b l i o g r a p h y

[76] H. Jiang, Z. Brodard, T. Chang, A. Bouabdallah, N. Montavont, G. Texier, P. Thubert,
T. Watteyne, and G. Z. Papadopoulos. “Competition: Controlled Replication for Higher
Reliability and Predictability in Industrial IoT Networks.” In: Proceedings of the European
Conference on Wireless Sensor Networks (EWSN). 2017.

[77] H. Karl and A. Willig. Protocols and Architectures for Wireless Sensor Networks. 2005.

[78] A. N. Kim, F. Hekland, S. Petersen, and P. Doyle. “When HART Goes Wireless: Under-
standing and Implementing the WirelessHART Standard.” In: Proceedings of the Conference
on Emerging Technologies Factory Automation (IEEE ETFA). 2008.

[79] N. Kimura and S. Latifi. “A Survey on Data Compression in Wireless Sensor Networks.”
In: Proceedings of the International Conference on Information Technology: Coding and Computing
(ITCC). 2005.

[80] A. King, J Hadley, and U. Roedig. “Competition: ContikiMAC with Differentiating Clear
Channel Assessment.” In: Proceedings of the European Conference on Wireless Sensor Networks
(EWSN). 2016.

[81] J. Klaue, A. Corona, M. Kubisch, J. Garcia-Jimenez, and A. Escobar. “Competition: RedFix-
Hop with Channel Hopping.” In: Proceedings of the European Conference on Wireless Sensor
Networks (EWSN). 2016.

[82] L. Kleinrock and F. Tobagi. “Packet Switching in Radio Channels: Part I - Carrier Sense
Multiple-Access Modes and Their Throughput-Delay Characteristics.” In: IEEE Transactions
on Communications 23 (12 1975).

[83] M. König and R. Wattenhofer. “Effectively Capturing Attention Using the Capture Effect.”
In: Proceedings of the Conference on Embedded Networked Sensor Systems (ACM SenSys). 2016.

[84] M. König and R. Wattenhofer. “Maintaining Constructive Interference Using Well-Synchronized
Sensor Nodes.” In: Proceedings of the Conference Distributed Computing in Sensor Systems
(DCOSS). 2016.

[85] M. Kovatsch, S. Duquennoy, and A. Dunkels. “A Low-Power CoAP for Contiki.” In: Pro-
ceedings of the International Conference on Mobile Ad Hoc and Sensor Systems (IEEE MASS).
2011.

[86] C. P. Kruger and G. P. Hancke. “Implementing the Internet of Things Vision in Indus-
trial Wireless Sensor Networks.” In: Proceedings of the International Conference on Industrial
Informatics (IEEE INDIN). 2014.

[87] J. Kumagai. “Life of birds [wireless sensor network for bird study].” In: IEEE Spectrum 41
(4 2004).

[88] B. Kusy, P. Dutta, P. Levis, M. Maroti, Á. Ledeczi, and D. Culler. “Elapsed Time on
Arrival; a Simple and Versatile Primitive for Canonical Time Synchronisation Services.” In:
International Journal of Ad Hoc and Ubiquitous Computing 1 (4 2006).

[89] L. Lamont, M. Toulgoat, Mathieu Déziel, and G. Patterson. “Tiered Wireless Sensor Network
Architecture for Military Surveillance Applications.” In: Proceedings of the Conference on
Sensor Technologies and Applications (SENSORCOMM). 2011.

108

b i b l i o g r a p h y

[90] O. Landsiedel, F. Ferrari, and M. Zimmerling. “Chaos: Versatile and Efficient All-to-All Data
Sharing and In-Network Processing at Scale.” In: Proceedings of the Conference on Embedded
Networked Sensor Systems (ACM SenSys). 2013.

[91] S. H. Lee, S. Lee, H. Song, and H. S. Lee. “Wireless Sensor Network Design for Tactical
Military Applications: Remote Large-Scale Environments.” In: Proceedings of the Military
Communications Conference (IEEE MILCOM). 2009.

[92] C. Lenzen, P. Sommer, and R. Wattenhofer. “PulseSync: An Efficient and Scalable Clock
Synchronization Protocol.” In: IEEE/ACM Transactions on Networking 23 (3 2015).

[93] C. J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis. “Surviving Wi-fi Interference in Low
Power ZigBee Networks.” In: Proceedings of the Conference on Embedded Networked Sensor
Systems (ACM SenSys). 2010.

[94] W. Liang, X. Zhang, Y. Xiao, F. Wang, P. Zeng, and H. Yu. “Survey and Experiments of WIA-
PA Specification of Industrial Wireless Network.” In: Wireless Communication and Mobile
Computing 11 (8 2011).

[95] C.-H. Liao, Y. Katsumata, M. Suzuki, and H. Morikawa. “Revisiting the So-Called Con-
structive Interference in Concurrent Transmission.” In: Proceedings of the Conference on Local
Computer Networks (IEEE LCN). 2016.

[96] C.-H. Liao, T. Sakdejayont, M. Suzuki, Y. Narusue, and H. Morikawa. “Competition:
Wireless-Transparent Sensing Platform.” In: Proceedings of the European Conference on Wireless
Sensor Networks (EWSN). 2018.

[97] C.-H. Liao, M. Suzuki, and H. Morikawa. “Receiver Performance Evaluation and Fading
Duration Analysis for Concurrent Transmission.” In: IEICE Transactions on Communications
E101.B (2 2017).

[98] C.-H. Liao, G. Zhu, D. Kuwabara, M. Suzuki, and H. Morikawa. “Multi-Hop LoRa Networks
Enabled by Concurrent Transmission.” In: IEEE Access 5 (2017).

[99] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel. “FlockLab: A Testbed
for Distributed, Synchronized Tracing and Profiling of Wireless Embedded Systems.” In:
Proceedings of the Conference on Information Processing in Sensor Networks (ACM/IEEE IPSN).
2013.

[100] T. H. Lim, I. Bate, and J. Timmis. “Competition: Multimodal Reactive-Routing Protocol
to Tolerate Failure.” In: Proceedings of the European Conference on Wireless Sensor Networks
(EWSN). 2016.

[101] X. Liu, J. Cao, S. Tang, and J. Wen. “Enabling Reliable and Network-Wide Wakeup in
Wireless Sensor Networks.” In: IEEE Transactions on Wireless Communications 15 (3 2016).

[102] Y. Liu, Qi Chen, Hao Liu, Chen Hu, and Qing Yang. “A Non Destructive Interference
Based Receiver-Initiated MAC Protocol for Wireless Sensor Networks.” In: Proceedings of the
Annual Consumer Communications Networking Conference (IEEE CCNC). 2016.

[103] Olimex Ltd. MSP430-CCRF development board. User’s manual. 2013.

[104] J. Lu and K. Whitehouse. “Flash Flooding: Exploiting the Capture Effect for Rapid Flooding
in Wireless Sensor Networks.” In: Proceedings of the Conference on Computer Communications
(IEEE INFOCOM). 2009.

109

b i b l i o g r a p h y

[105] X. Ma, W. Tang, W. He, F. Zhang, and J. Wei. “Competition: Using OF∂COIN under
Interference.” In: Proceedings of the European Conference on Wireless Sensor Networks (EWSN).
2017.

[106] X. Ma, P. Zhang, W. Tang, X. Li, W.i He, F. Zhang, J. Wei, and O. Theel. “Competition: Using
Enhanced OF∂COIN to Monitor Multiple Concurrent Events under Adverse Conditions.”
In: Proceedings of the European Conference on Wireless Sensor Networks (EWSN). 2018.

[107] F. Mager, C. Herrmann, and M. Zimmerling. “One for All, All for One: Toward Efficient
Many-to-Many Broadcast in Dynamic Wireless Networks.” In: Proceedings of the Workshop
on Hot Topics in Wireless (ACM HotWireless). 2017.

[108] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. “Wireless Sensor
Networks for Habitat Monitoring.” In: Proceedings of the International Workshop on Wireless
Sensor Networks and Applications (ACM WSNA). 2002.

[109] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi. “The Flooding Time Synchronization
Protocol.” In: Proceedings of the Conference on Embedded Networked Sensor Systems (ACM
SenSys). 2004.

[110] A. Maskooki, V. Toldov, L. Clavier, V. Loscrí, and N. Mitton. “Competition: Channel
Exploration/Exploitation Based on a Thompson Sampling Approach in a Radio Cognitive
Environment.” In: Proceedings of the European Conference on Wireless Sensor Networks (EWSN).
2016.

[111] M. Mohammad and M. C. Chan. “Codecast: Supporting Data Driven In-network Processing
for Low-power Wireless Sensor Networks.” In: Proceedings of the Conference on Information
Processing in Sensor Networks (ACM/IEEE IPSN). 2018.

[112] M. Mohammad, M. Doddavenkatappa, and M. C. Chan. “Improving Performance of Syn-
chronous Transmission-Based Protocols Using Capture Effect over Multichannels.” In: ACM
Transactions on Sensor Networks 13 (2 2017).

[113] M. Mohammad, X.-F. Guo, and M. C. Chan. “Competition: Tackling Cross-technology
Interference using Spatial and Channel Diversity for Robust Data Collection.” In: Proceedings
of the European Conference on Wireless Sensor Networks (EWSN). 2017.

[114] D. Moss and P. Levis. BoX-MACs: Exploiting physical and link layer boundaries in low-power
networking. 2008.

[115] Moteiv. Tmote Sky datasheet. 2006.

[116] J. R. Moyne and D. M. Tilbury. “The Emergence of Industrial Control Networks for Manu-
facturing Control, Diagnostics, and Safety Data.” In: Proceedings of the IEEE 95 (1 2007).

[117] R. Musăloiu., C. J. M. Liang, and A. Terzis. “Koala: Ultra-Low Power Data Retrieval in
Wireless Sensor Networks.” In: Proceedings of the Conference on Information Processing in Sensor
Networks (ACM/IEEE IPSN). 2008.

[118] B. A. Nahas, S. Duquennoy, and O. Landsiedel. “Network-wide Consensus Utilizing the
Capture Effect in Low-power Wireless Networks.” In: Proceedings of the Conference on Embed-
ded Networked Sensor Systems (ACM SenSys). 2017.

110

b i b l i o g r a p h y

[119] B. A. Nahas and O. Landsiedel. “Competition: Towards Low-Latency, Low-Power Wireless
Networking under Interference.” In: Proceedings of the European Conference on Wireless Sensor
Networks (EWSN). 2016.

[120] B. A. Nahas and O. Landsiedel. “Competition: Towards Low-Power Wireless Networking
that Survives Interference with Minimal Latency.” In: Proceedings of the European Conference
on Wireless Sensor Networks (EWSN). 2017.

[121] B. A. Nahas and O. Landsiedel. “Competition: Aggressive Synchronous Transmissions with
In-network Processing for Dependable All-to-All Communication.” In: Proceedings of the
European Conference on Wireless Sensor Networks (EWSN). 2018.

[122] C. Noda, C. M. Pérez-Penichet, B. Seeber, M. Zennaro, M. Alves, and A. Moreira. “On the
Scalability of Constructive Interference in Low-Power Wireless Networks.” In: Proceedings
of the European Conference on Wireless Sensor Networks (EWSN). 2015.

[123] T. O’Donovan, J. Brown, F. Büsching, A. Cardoso, J. Cecílio, J. Do Ó, P. Furtado, P. Gil, A.
Jugel, W.-B. Pöttner, U. Roedig, J. S. Silva, R. Silva, C. J. Sreenan, V. Vassiliou, T. Voigt, L.
Wolf, and Z. Zinonos. “The GINSENG System for Wireless Monitoring and Control: Design
and Deployment Experiences.” In: ACM Transactions on Sensor Networks 10 (1 2013).

[124] J. Park, J. Jeong, H. Jeong, C. J. M. Liang, and J. Ko. “Improving the Packet Delivery
Performance for Concurrent Packet Transmissions in WSNs.” In: IEEE Communications
Letters 18 (1 2014).

[125] F. De Pellegrini, D. Miorandi, S. Vitturi, and A. Zanella. “On the Use of Wireless Networks
at Low Level of Factory Automation Systems.” In: IEEE Transactions on Industrial Informatics
2 (2 2006).

[126] G. P. Picco, D. Molteni, A. L. Murphy, F. Ossi, F. Cagnacci, M. Corrà, and S. Nicoloso. “Geo-
referenced Proximity Detection of Wildlife with WildScope: Design and Characterization.”
In: Proceedings of the Conference on Information Processing in Sensor Networks (ACM/IEEE IPSN).
2015.

[127] K. Pister and L. Doherty. “TSMP: Time Synchronized Mesh Protocol.” In: Proceedings of the
International Symposium on Distributed Sensor Networks (DSN). 2008.

[128] J. Polastre, J. Hill, and D. Culler. “Versatile Low Power Media Access for Wireless Sensor
Networks.” In: Proceedings of the Conference on Embedded Networked Sensor Systems (ACM
SenSys). 2004.

[129] J. Postel. User Datagram Protocol. RFC 768. 1980.

[130] F. Sutton R. Lim R. D. Forno and L. Thiele. “Competition: Robust Flooding using Back-to-
Back Synchronous Transmissions with Channel-Hopping.” In: Proceedings of the European
Conference on Wireless Sensor Networks (EWSN). 2017.

[131] S. Nürnberger R., Karnapke J., and Nolte. “Sensorium – An Active Monitoring System for
Neighborhood Relations in Wireless Sensor Networks.” In: Proceedings of the International
Conferenceon Ad Hoc Networks (ADHOCNETS). 2010.

[132] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin. “Sympathy for the
Sensor Network Debugger.” In: Proceedings of the Conference on Embedded Networked Sensor
Systems (ACM SenSys). 2005.

111

b i b l i o g r a p h y

[133] V. S. Rao, M. Koppal, R. V. Prasad, T. V. Prabhakar, C. Sarkar, and I. Niemegeers. “Murphy
loves CI: Unfolding and Improving Constructive Interference in WSNs.” In: Proceedings of
the Conference on Computer Communications (IEEE INFOCOM). 2016.

[134] U. Raza, A. Camerra, A. L. Murphy, T. Palpanas, and G. P. Picco. “Practical Data Prediction
for Real-World Wireless Sensor Networks.” In: IEEE Transactions on Knowledge and Data
Engineering 27 (8 2015).

[135] U. Raza, Y. Jin, and M. Sooriyabandara. “Competition: Synchronous Transmissions based
Flooding for Dependable Internet of Things.” In: Proceedings of the European Conference on
Wireless Sensor Networks (EWSN). 2017.

[136] U. Raza, Y. Jin, A. Stanoev, M. Baddeley, and M. Sooryiabandara. “Competition: CROWN
– Concurrent ReceptiOns in Wireless Sensor and Actuator Networks.” In: Proceedings of the
European Conference on Wireless Sensor Networks (EWSN). 2018.

[137] C. Rojas and J.-D. Decotignie. “Competition: Synchronous Transmissions + Channel Sam-
pling = Energy Efficient Event-Triggered Wireless Sensing Systems.” In: Proceedings of the
European Conference on Wireless Sensor Networks (EWSN). 2018.

[138] K. Römer and F. Mattern. “The Design Space of Wireless Sensor Networks.” In: IEEE
Wireless Communications 11 (6 2004).

[139] A. A. Kumar S., K. Ovsthus, and L. M. Kristensen. “An Industrial Perspective on Wire-
less Sensor Networks – A Survey of Requirements, Protocols, and Challenges.” In: IEEE
Communications Surveys Tutorials 16 (3 2014).

[140] S. Saha and M. C. Chan. “Design and Application of a Many-to-One Communication
Protocol.” In: Proceedings of the Conference on Computer Communications (IEEE INFOCOM).
2017.

[141] S. Saha, O. Landsiedel, and M. C. Chan. “Efficient Many-to-Many Data Sharing Using Syn-
chronous Transmission and TDMA.” In: Proceedings of the Conference Distributed Computing
in Sensor Systems (DCOSS). 2017.

[142] J. Sallai, B. Kusý, Á. Lédeczi, and P. Dutta. “On the Scalability of Routing Integrated
Time Synchronization.” In: Proceedings of the European Conference on Wireless Sensor Networks
(EWSN). 2006.

[143] C. Sarkar. LWB and FS-LWB implementation for Sky platform using Contiki. 2016.

[144] C. Sarkar, R. V. Prasad, R. T. Rajan, and K. Langendoen. “Sleeping Beauty: Efficient
Communication for Node Scheduling.” In: Proceedings of the International Conference on
Mobile Ad Hoc and Sensor Systems (IEEE MASS). 2016.

[145] G. Scheible, D. Dzung, J. Endresen, and J. E. Frey. “Unplugged But Connected [Design
and Implementation of a Truly Wireless Real-Time Sensor/Actuator Interface].” In: IEEE
Industrial Electronics Magazine 1 (2 2007).

[146] T. Schmid, P. Dutta, and M. B. Srivastava. “High-resolution, Low-power Time Synchroniza-
tion an Oxymoron No More.” In: Proceedings of the Conference on Information Processing in
Sensor Networks (ACM/IEEE IPSN). 2010.

112

b i b l i o g r a p h y

[147] M. Schuß, C. A. Boano, M. Weber, and K. Römer. “A Competition to Push the Dependability
of Low-Power Wireless Protocols to the Edge.” In: Proceedings of the European Conference on
Wireless Sensor Networks (EWSN). 2017.

[148] C. Sergiou, V. Vassiliou, C. Georgiou, C. Ioannou, N. Temene, and A. Paphitis. “Competition:
Dynamic Alternative Path Selection in Wireless Sensor Networks.” In: Proceedings of the
European Conference on Wireless Sensor Networks (EWSN). 2017.

[149] Z. Shelby and C. Bormann. 6LoWPAN: The Wireless Embedded Internet. 2009.

[150] G. Simon, M. Maróti, Á. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap, J. Sallai, and K.
Frampton. “Sensor Network-based Countersniper System.” In: Proceedings of the Conference
on Embedded Networked Sensor Systems (ACM SenSys). 2004.

[151] K. Sohraby, D. Minoli, and T. Znati. Wireless Sensor Networks: Technology, Protocols, and
Applications. 2007.

[152] P. Sommer, Y. A. Pignolet, S. Marinkovic, A. Monot, M. Kabir-Querrec, and R. Birke. “Com-
petition: Energy-Efficient Many-to-Many Communication with Channel-Hopping.” In: Pro-
ceedings of the European Conference on Wireless Sensor Networks (EWSN). 2018.

[153] P. Sommer and Y.-A. Pignolet. “Competition: Dependable Network Flooding Using Glossy
with Channel-Hopping.” In: Proceedings of the European Conference on Wireless Sensor Networks
(EWSN). 2016.

[154] P. Sommer and Y.-A. Pignolet. “Competition: Energy-Efficient Network Flooding with
Channel-Hopping.” In: Proceedings of the European Conference on Wireless Sensor Networks
(EWSN). 2017.

[155] D. Son, J. Heidemann, and B. Krishnamachari. Towards Concurrent Communication in Wireless
Networks. 2007.

[156] D. Son, B. Krishnamachari, and J. Heidemann. “Experimental Study of Concurrent Transmis-
sion in Wireless Sensor Networks.” In: Proceedings of the Conference on Embedded Networked
Sensor Systems (ACM SenSys). 2006.

[157] D. Son, B. Krishnamachari, and J. Heidemann. Evaluating the Importance of Concurrent Packet
Communication in Wireless Networks. 2007.

[158] D. Son, B. Krishnamachari, and J. Heidemann. Wireless Medium Access for Concurrent Com-
munication. 2008.

[159] D. Spenza, M. Magno, S. Basagni, L. Benini, M. Paoli, and C. Petrioli. “Beyond Duty Cycling:
Wake-up Radio with Selective Awakenings for Long-lived Wireless Sensing Systems.” In:
Proceedings of the Conference on Computer Communications (IEEE INFOCOM). 2015.

[160] T. Stathopoulos, R. Kapur, D. Estrin, J. Heidemann, and L. Zhang. “Application-Based
Collision Avoidance in Wireless Sensor Networks.” In: Proceedings of the Conference on Local
Computer Networks (IEEE LCN). 2004.

[161] F. Sutton, B. Buchli, J. Beutel, and L. Thiele. “Zippy: On-Demand Network Flooding.” In:
Proceedings of the Conference on Embedded Networked Sensor Systems (ACM SenSys). 2015.

[162] F. Sutton, R. Da Forno, J. Beutel, and L. Thiele. “BLITZ: A Network Architecture for Low
Latency and Energy-efficient Event-triggered Wireless Communication.” In: Proceedings of
the Workshop on Hot Topics in Wireless (ACM HotWireless). 2017.

113

b i b l i o g r a p h y

[163] F. Sutton, R. Da Forno, D. Gschwend, T. Gsell, R. Lim, J. Beutel, and L. Thiele. “The
Design of a Responsive and Energy-efficient Event-triggered Wireless Sensing System.” In:
Proceedings of the European Conference on Wireless Sensor Networks (EWSN). 2017.

[164] M. Suzuki, C.-H. Liao, Y. Katsumata, K. Jinno, and H. Morikawa. “Competition: Is Concur-
rent Transmission Flooding a Good Idea for Random Traffic?” In: Proceedings of the European
Conference on Wireless Sensor Networks (EWSN). 2016.

[165] M. Suzuki, Y. Yamashita, and H. Morikawa. “Low-Power, End-to-End Reliable Collection
Using Glossy for Wireless Sensor Networks.” In: Proceedings of the Vehicular Technology
Conference (IEEE VTC Spring). 2013.

[166] S. Svensson. Challenges of Wireless Communication in Industrial Systems. Keynote talk at ETFA
2011.

[167] F. Talucci and M. Gerla. “MACA-BI (MACA By Invitation). A Wireless MAC Protocol for
High Speed Ad Hoc Networking.” In: Proceedings of the International Conference on Universal
Personal Communications (ICUPC). 1997.

[168] J. Thelen, D. Goense, and K. Langendoen. “Radio Wave Propagation in Potato Fields.” In:
Proceedings of the International Workshop on Wireless Network Measurements (WiNMee). 2005.

[169] J. P. Thomesse. “Fieldbus Technology in Industrial Automation.” In: Proceedings of the IEEE
93 (6 2005).

[170] P. Thubert, T. Watteyne, M. R. Palattella, X. Vilajosana, and Q. Wang. “IETF 6TSCH: Com-
bining IPv6 Connectivity with Industrial Performance.” In: Proceedings of the International
Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS). 2013.

[171] M. Trobinger, T. Istomin, A. L. Murphy, and G. P. Picco. “Competition: CRYSTAL Clear:
Making Interference Transparent.” In: Proceedings of the European Conference on Wireless
Sensor Networks (EWSN). 2018.

[172] J.-P. Vasseur and A. Dunkels. Interconnecting Smart Objects with IP: The Next Internet. 2010.

[173] J. Wang, H. Tall, and G. Chalhoub. “Competition: Smart Flooding with Multichannel for
Industrial Wireless Sensor Networks.” In: Proceedings of the European Conference on Wireless
Sensor Networks (EWSN). 2018.

[174] P. Wang and W. Zhuang. “An Improved Busy-Tone Solution for Collision Avoidance in
Wireless Ad Hoc Networks.” In: Proceedings of the International Conference on Communications
(IEEE ICC). 2006.

[175] Y. Wang, Y. He, D. Cheng, Y. Liu, and X. Li. “TriggerCast: Enabling Wireless Collisions
Constructive.” In: Proceedings of the Conference on Computer Communications (IEEE INFOCOM).
2013.

[176] Y. Wang, Y. He, X. Mao, Y. Liu, and X.-y. Li. “Exploiting Constructive Interference for
Scalable Flooding in Wireless Networks.” In: IEEE/ACM Transactions on Networking 21 (6
2013).

[177] Y. Wang, Y. Liu, Y. He, X. Y. Li, and D. Cheng. “Disco: Improving Packet Delivery via
Deliberate Synchronized Constructive Interference.” In: IEEE Transactions on Parallel and
Distributed Systems 26 (3 2015).

114

b i b l i o g r a p h y

[178] H. Wennerström, F. Hermans, O. Rensfelt, C. Rohner, and L.-Å. Nordén. “A Long-Term
Study of Correlations between Meteorological Conditions and 802.15.4 Link Performance.”
In: Proceedings of the Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(IEEE SECON). 2013.

[179] J. Werb. Adoption of Wireless for Safety. Presentation at the Process Control and Safety
Symposium (PCS). 2015.

[180] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler. “Exploiting the Capture Effect
for Collision Detection and Recovery.” In: Proceedings of the Workshop on Embedded Networked
Sensor Systems (IEEE Emnets). 2005.

[181] M. Wilhelm, V. Lenders, and J. B. Schmitt. “On the Reception of Concurrent Transmissions
in Wireless Sensor Networks.” In: IEEE Transactions on Wireless Communications Volume
(2014).

[182] A. Willig. “An Architecture for Wireless PROFIBUS.” In: Proceedings of the Conference of the
IEEE Industrial Electronics Society (IEEE IECON). 2003.

[183] A. Willig. “Recent and Emerging Topics in Wireless Industrial Communications: A Selec-
tion.” In: IEEE Transactions on Industrial Informatics 4 (2 2008).

[184] A. Willig, K. Matheus, and A. Wolisz. “Wireless Technology in Industrial Networks.” In:
Proceedings of the IEEE 93 (6 2005).

[185] D. Wu, C. Dong, S. Tang, H. Dai, and G. Chen. “Fast and Fine-Grained Counting and
Identification via Constructive Interference in WSNs.” In: Proceedings of the Conference on
Information Processing in Sensor Networks (ACM/IEEE IPSN). 2014.

[186] W. Ye, F. Silva, and J. Heidemann. “Ultra-Low Duty Cycle MAC with Scheduled Channel
Polling.” In: Proceedings of the Conference on Embedded Networked Sensor Systems (ACM SenSys).
2006.

[187] P. Yu, L. Qinghua, and P. Xiyuan. “The Design of Low-Power Wireless Sensor Node.” In:
Proceedings of the International Instrumentation and Measurement Technology Conference (IEEE
I2MTC). 2010.

[188] D. Yuan and M. Hollick. “Let’s Talk Together: Understanding Concurrent Transmission
in Wireless Sensor Networks.” In: Proceedings of the Conference on Local Computer Networks
(IEEE LCN). 2013.

[189] D. Yuan and M. Hollick. “Ripple: High-throughput, Reliable and Energy-efficient Network
Flooding in Wireless Sensor Networks.” In: Proceedings of the Symposium on a World of Wireless
Mobile and Multimedia Networks (IEEE WoWMoM). 2015.

[190] D. Yuan and M. Hollick. “Competition: Sparkle: Energy Efficient, Reliable, Ultra-low
Latency Communication in Wireless Control Networks.” In: Proceedings of the European
Conference on Wireless Sensor Networks (EWSN). 2016.

[191] D. Yuan, M. Riecker, and M. Hollick. “Making ’Glossy’ Networks Sparkle: Exploiting
Concurrent Transmissions for Energy Efficient, Reliable, Ultra-Low Latency Communication
in Wireless Control Networks.” In: Proceedings of the European Conference on Wireless Sensor
Networks (EWSN). 2014.

115

b i b l i o g r a p h y

[192] P. Zand, S. Chatterjea, K. Das, and P. Havinga. “Wireless Industrial Monitoring and Control
Networks: The Journey So Far and the Road Ahead.” In: Journal of Sensor and Actuator
Networks 1 (2 2012).

[193] J. Zhang, A. Reinhardt, W. Hu, and S. S. Kanhere. “RFT: Identifying Suitable Neighbors
for Concurrent Transmissions in Point-to-Point Communications.” In: Proceedings of the
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (ACM MSWiM).
2015.

[194] P. Zhang, Y. Gao, and O. Theel. “Less is More: Learning More with Concurrent Transmis-
sions for Energy-Efficient Flooding.” In: Proceedings of the International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Services (ACM MobiQuitous). 2017.

[195] G. Zhao. “Wireless Sensor Networks for Industrial Process Monitoring and Control: A
Survey.” In: Network Protocols and Algorithms 3 (2 2011).

[196] M. Zimmerling, F. Ferrari, L. Mottola, and L. Thiele. “On Modeling Low-Power Wireless
Protocols Based on Synchronous Packet Transmissions.” In: Proceedings of the International
Conference on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(IEEE MASCOTS). 2013.

[197] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele. “pTunes: Runtime Parameter
Adaptation for Low-power MAC Protocols.” In: Proceedings of the Conference on Information
Processing in Sensor Networks (ACM/IEEE IPSN). 2012.

All websites and online documents were last accessed in January 2019.

116

A U T H O R ’ S P U B L I C AT I O N S

[1] Martina Brachmann, Olaf Landsiedel, Diana Göhring, and Silvia Santini. Whisper: Fast
Flooding for Low-Power Wireless Networks. In preparation for ACM Transactions on Sensor
Networks. 2018. eprint: arXiv:1809.03699.

[2] M. Brachmann, O. Landsiedel, and S. Santini. “Keep the Beat: On-The-Fly Clock Offset
Compensation for Synchronous Transmissions in Low-Power Networks.” In: Proceedings of
the Conference on Local Computer Networks (IEEE LCN). 2017.

[3] M. Brachmann, O. Landsiedel, and S. Santini. “Concurrent Transmissions for Communica-
tion Protocols in the Internet of Things.” In: Proceedings of the Conference on Local Computer
Networks (IEEE LCN). 2016.

[4] M. Stein, T. Petry, I. Schweizer, M.Brachmann, and M. Mühlhäuser. “Topology Control in
Wireless Sensor Networks: What Blocks the Breakthrough?” In: Proceedings of the Conference
on Local Computer Networks (IEEE LCN). 2016.

[5] M. Brachmann, D. Becker, and S. Santini. “Poster Abstract: Towards Enabling Concurrent
Transmissions in Heterogeneous Networks.” In: Proceedings of the Conference on Information
Processing in Sensor Networks (ACM/IEEE IPSN). 2015.

[6] P. M. Scholl, M. Brachmann, S. Santini, and K. v. Laerhoven. “Integrating Wireless Sensor
Nodes in the Robot Operating System.” In: Cooperative Robots and Sensor Networks. 2014.

[7] S. L. Keoh, O. Garcia Morchon, S. S. Kumar, M. Brachmann, and B. Erdmann. Methods, De-
vices and Systems for Establishing End-To-End Secure Connections and for Securely Communicating
Data Packets. Patent No: US20140143855A1. 2014.

[8] M. Brachmann and S. Santini. “Poster Abstract: Towards the Benchmarking of Ultra-
Low Latency Communication Protocols for Wireless Sensor and Actuator Networks.” In:
Proceedings of the Conference on Embedded Networked Sensor Systems (ACM SenSys). 2013.

[9] I. Gurov, P. E. Guerrero, M. Brachmann, S. Santini, K. v. Laerhoven, and A. Buchmann.
“Poster Abstract: A Site Properties Assessment Framework for Wireless Sensor Networks.”
In: Proceedings of the Conference on Embedded Networked Sensor Systems (ACM SenSys). 2013.

[10] M. Brachmann, O. Garcia Morchon, S. Keoh, and S. Kumar. “End-to-End Transport Security
in the IP-based Internet of Things.” In: Proceedings of the International Conference on Computer
Communications and Networks (ICCCN). 2012.

[11] M. Brachmann, O. Garcia-Morchon, S. Keoh, and S. Kumar. “Security Considerations
around End-to-End Security in the IP-based Internet of Things.” In: Workshop on Smart
Object Security. 2012.

[12] M. Brachmann, O. Garcia-Morchon, and M. Kirsche. “Security for Practical CoAP Appli-
cations: Issues and Solution Approaches.” In: Proceedings of the GI/ITG KuVS Fachgespraech
Sensornetze (FGSN). 2011.

117

arXiv:1809.03699

C U R R I C U L U M V I TA E

p e r s o n a l i n f o r m a t i o n

Name Martina Brachmann
Date of birth April 14, 1987
Place of birth Dresden, Germany
Nationality German

e d u c a t i o n

02/2015 – 11/2018
Technische Universität Dresden, Germany
Doctoral candidate at the Department of Computer Science

05/2015 – 07/2015
Chalmers University of Technology, Gothenborg, Sweden
Visiting scholar at the Computer Science and Engineering Group

12/2012 – 01/2015
Technische Universität Darmstadt, Germany
Doctoral candidate at the Department of Electrical Engineering
and Information Technology

03/2010 – 11/2012
Brandenburg University of Technology Cottbus, Germany
Master studies in Information and Media Technology with major
in Communication Technologies and Networks
Degree: Master of Science

10/2006 – 01/2010
Brandenburg University of Technology Cottbus, Germany
Bachelor studies in Information and Media Technology
Degree: Bachelor of Science

08/2003 – 07/2006
Berufsschulzentrum für Elektrotechnik Dresden, Germany
Gymnasium with major in Computer Science and German
Degree: Abitur

08/1997 – 07/2003
86. Mittelschule Dresden, Germany
Degree: Realschulabschluss

04/1994 – 07/1997 83. Grundschule Dresden, Germany

08/1993 – 04/1994 8. Grundschule Dresden, Germany

119

APPENDIX A

A P P E N D I X

a .1 6 l o f l o o d

LaneFlood facilitates standard Internet protocols to efficiently run in a low-power wireless
network. As mentioned before, Internet protocols like HTTP/CoAP, UDP/TCP and IPv6 enable
the interoperability and interconnectivity of different networks. In this section, we describe
the concept of 6LoFlood, which efficiently enables one-to-one communication between a host
system on the Internet and nodes running LaneFlood within a low-power wireless network,
as shown in Figure 5.1.

In the figure, a border router acts as access gate and thus, interconnects both networks,
the Internet and the low-power wireless network. When a host on the Internet transmits
a message to a node within the low-power wireless network, the border router forwards
it, after including the Glossy and LaneFlood header, to the low-power wireless network.
The resulting packet on the example of IPv6/UDP is shown in Figure A.1b. As indicated in
the figure, more than 40 % of the available 127 byte in the IEEE 802.15.4 packet is used for
headers and a footer. Further, a typical message size of a CoAP request can have several
tens of byte [85], which may exceed the size of IEEE 802.15.4 packets. Using 6LoFlood, the
border router compresses the protocol headers and fragments the message if necessary
before propagating the packet into the low-power wireless network. Figure A.1a shows the
resulting 6LoFlood packet. Protocol headers and footers only require 10 % of the available

Byte: 1 4 6 0 – 114 2
Field: GlossyLaneFlood 6LoFlood Payload FCS

MPDU (127 byte)
(a) 6LoWPAN uncompressed IPv6/UDP packet.

Byte: 1 4 40 8 0 – 72 2
Field: GlossyLaneFlood IPv6 UDP Payload FCS

MPDU (127 byte)
(b) IPv6/UDP packet.

Figure A.1: IPv6/UDP packet.

121

a p p e n d i x

127 byte. In case a node sends a message to a host on the Internet, the border router collects
the fragments and forwards the unfragmented and de-compressed message to the host.

Typically, 6LoWPAN [65] is used for header compression and encapsulation as well as
address resolution, and packet fragmentation. Further, it provides mechanisms for neighbor
discovery and routing. This is all necessary to enable the interconnection of a low-power
wireless network with the Internet. However, LaneFlood is a routing-free protocol, and
thus, as mentioned before, nodes in the low-power wireless network do not require a
full-fledged implementation of IPv6 and 6LoWPAN.

6LoFlood as adaption layer for the low-power wireless network relies on three cornerstones:
node addressing, packet fragmentation, and header compression. All this information is
encoded in the 6LoFlood header, shown in Figure A.2. In particular, the first field in the
6LoFlood header is the fragmentation field, which we discuss in Section A.1.2. Before, we
explain in Section A.1.1 how nodes in a low-power wireless network derive their IPv6

addresses. In the same section, we further detail the message forwarding using the Source
Address Encoding (SAE) and Destination Address Encoding (DAE) fields, shown in Figure A.2.
These two and the following fields – i. e., the Source Port Encoding (SPE), Destination Port
Encoding (DPE), the global IPv6 address, and the compressed transport protocol fields – are part
of the outcome of the 6LoFlood header compression, which we discuss in Section A.1.3. We
conclude this section in Section A.1.4.

a .1 .1 Node addressing and message forwarding

IPv6 distinguishes between link-local and global addresses. Link-local addresses are used
within a network, while global addresses are used to approach devices in different networks.
To create a link-local IPv6 address, the nodes extend the link-local prefix fe80:: with
zeros to a 64-bit network prefix and append a unique 64-bit identifier, e. g., the hardware

Bits: 0..3 4..5 6..7 8..9 10..12 13..15
Field: 0 Fragment SAE DAE Next header SPE (opt.) DPE (opt.)

16 Global IPv6 address (opt.)

144 Compressed transport protocol fields

Figure A.2: 6LoFlood packet format.

122

a p p e n d i x

address assigned by the manufacturer. Nodes running LaneFlood have a fixed 8-bit node
identifier that is unique within the low-power wireless network. Thus, the nodes use
this identifier to create their link-local IPv6 address. For example, a node with identifier
1 has the link-local IPv6 address fe80::1. For assigning a global IPv6 addresses, we use
StateLess Automatic Address Configuration (SLAAC). Using SLAAC, routers periodically
broadcast Router Advertisement (RA) messages, i. e., Internet Control Message Protocol
(ICMP) messages from type 134 that contain the global network prefix. In addition, devices
can request such RA messages directly via a Router Solicitation (RS) message, i. e., ICMP

messages of type 133. By knowing the global prefix, devices create their global IPv6 address
the same way they created their link-local IPv6 address.

The border router is connected to at least two networks. In our example, it is connected to
the low-power wireless network and the Internet. It, therefore, has two network interfaces,
each with its own link-local and global IPv6 address. In the following, we denote with if-Int
the interface that connects the border router with the Internet and if-LPWN the interface
for the low-power wireless network. Depending on the interface at which a message
arrives, the border router can distinguish if a message is sent from or destined to the
low-power wireless network. The message is then processed accordingly. In particular,
the border router compresses the IPv6 addresses depending on whether messages are
exchanged within the low-power wireless network, i. e., locally, or between an Internet host
and a node in the low-power wireless network, i. e., globally. The corresponding address
encoding is shown in Table A.1. In the following, we explain this address encoding in
more detail.

A message sent by an Internet host to a node in the low-power wireless network always
passes the border router. In particular, when the packet arrives at if-Int, the border router
compresses the headers as described in Section A.1.3 and forwards the message to the low-
power wireless network from if-LPWN. Because the Internet host and the node are located
in two different networks – the Internet and the low-power wireless network – the source
and destination IPv6 addresses are global. Therefore, the border router sets the SAE field in
the 6LoFlood header to 11, according to Table A.1. The host’s global IPv6 address is included
in the corresponding field in the 6LoFlood header, as shown in Figure A.2. Further, the
DAE field is set to 10. A destination address field is not required as the nodes’ identifier is
provided in the LaneFlood header, and the global IPv6 prefix is known by border router and

Table A.1: 6LoFlood address encoding of IPv6 addresses. The encoding is used to compress IPv6 addresses,
and the values are transmitted in the SAE and DAE fields in the 6LoFlood header.

00 Reserved for future use
01 Link-local IPv6 address
10 Global IPv6 address of a node within the low-power wireless network
11 Global address of a device located on the Internet

123

a p p e n d i x

node. However, the border router inserts his identifier in the source field of the LaneFlood
header to enable LaneFlood to create a lane between itself and the destination node.

A node sending a message to an Internet host adds its identifier in the source field of
the LaneFlood header and sets the SAE field to 10. With this information, the border router
is later able to create the node’s global IPv6 address. The node further includes the border
router’s identifier in LaneFlood’s destination field. This is required to create a lane between
border router and the node. It further sets the DAE field to 11 and includes the host’s global
IPv6 address in the following field.

When the border router receives a packet at if-LPWN, where both the source and the
destination addresses are link-local addresses, it behaves like a regular node in the low-
power wireless network and does not perform header (de)-compression. The SAE and
DAE fields are set to 01, and the global IPv6 address field in the 6LoFlood header is omitted.
Because the low-power wireless network is not a transit network, i. e., it cannot be used to
reach another network, the border router does not forward messages through if-LPWN if
the global IPv6 prefex does not match.

a .1 .2 Packet fragmentation

IPv6 allows the transmission of packets with a Maximum Transfer Unit (MTU) of 1280 byte,
while the maximum packet size in IEEE 802.15.4 is 127 byte. Therefore, 6LoFlood supports
the fragmentation of packets. When a host on the Internet transmits a message that does not
fit within an IEEE 802.15.4 packet, the border router fragments it and sends the fragments
to the destination node. After receiving all fragments, the destination node recomposes the
fragments to a message. The fragmentation process of 6LoFlood is rather simple. Knowing
the (compressed) header sizes of the protocols to transmit, it tries to fit the message into
an IEEE 802.15.4 packet. If it is successful, it transmits the packet, otherwise it transmits
the message part that fits within the packet as fragment. Thus, all fragments except the
last one have the maximum packet size.

Fragmentation information is encoded in the first four bits in a 6LoFlood packet, the frag-
ment field, shown in Figure A.2. Table A.2 summarizes the encoding of the fragment field.
In particular, the first two bits include information whether the packet is an unfragmented
packet, the first or last fragmented packet, or a fragment in between. The second two bits

Table A.2: 6LoFlood Fragmentation information.

00 00 Unfragmented packet
11 00 First fragment
11 nn Last fragment with sequence number Xnn in bits
01 nn Fragment with sequence number 0nn
10 nn Fragment with sequence number 1nn

124

a p p e n d i x

carry the sequence numbers of the fragments. Each fragment gets a sequence number that
is consecutively assigned before transmitting a fragment. When the first two bits of the
fragment field are 01, this value is substituted with 0 to derive the sequence number and
when the first two bits are 10, this value is substituted with 1. For example, the fragment
field of the first fragment is set to 11 00, the second fragment is 01 00 (0002 + 110 = 1),
the third fragment is 01 01 (0012 + 110 = 2), the sixth fragment is 10 00 (1002 + 110 = 5)
and so on. This encoding allows us to split a message into at most 10 fragments, with
the last fragment being encoded as 11 11. If the Internet host tries to transmit a message
larger than 10 · 127 byte = 1270 byte, the border router responds with a corresponding ICMP

message. We will leave the transmission of such messages for future work.

LaneFlood natively facilitates an ordered message exchange between devices. The frag-
ment sequence numbers are, thus, used to detect packet losses. Since the sequence numbers
are consecutive, the receiver can compute which sequence number to expect next. Only
the first and the last fragment requires a closer consideration. Let us assume the second
last packet has the fragment field 10 01 (1012 + 110 = 6). Thus, the fragment field of the
last packet is 11 01. The receiver therefore checks if the last two bits of the last and second
last packet in the fragment field match. The same applies for the first (11 00) and the
second (01 00) fragment. If packet loss is detected, the current implementation of 6LoFlood

discards all received fragments and thus relies on the retransmission of the message at the
application layer.

When creating a lane, LaneFlood follows a request-response-scheme. More precisely, the
source node disseminates a Setup flood and expects a Response flood in return. However,
if the border router has to fragment the Setup flood, 6LoFlood does not process the packet
at the destination until it received all fragments. Thus, the source waits for the Response
flood while the destination waits for the remaining fragments. To resolve this issue, 6LoFlood

enqueues an empty packet at the destination, consisting only of a Glossy and LaneFlood
header and a footer to let LaneFlood transmit the Response flood. Afterwards, the source
node continues transmitting the remaining fragments during LaneFlood’s regular data
exchange.

a .1 .3 Header compression

Using LaneFlood, nodes that have pending data traffic create a lane at the beginning
of a session, independently, i. e., without information, of the previous session. Therefore,
6LoFlood uses stateless header compression that only exploits redundancy in the packet without
the need to keep state information. In the following, we first detail how 6LoFlood compresses
an IPv6 header in Section A.1.3.1, and afterwards, in Section A.1.3.2, we discuss the header
compression of UDP, TCP and ICMP. Lastly, we discuss the resulting packet sizes for different
scenarios in Section A.1.3.3.

125

a p p e n d i x

a .1 .3 .1 IPv6 header compression

Figure A.3 shows the IPv6 header structure. In the following, we discuss each field and
detail how 6LoFlood compresses the particular field. We further compare our compression
method with 6LoWPAN’s IPv6 header compression, called HC1.

• Version The version field distinguishes IPv4 and IPv6 packets. Similar to 6LoWPAN,
6LoFlood only accepts IPv6 and therefore, 6LoWPAN and 6LoFlood omit this field.

• Traffic class and flow label These fields are used to provide Quality of Service (QoS),
e. g., to prioritize packets or to report impending congestions. These two fields
are rarely used in Internet traffic and are thus, set to zero [149]. 6LoWPAN allows
the uncompressed transmission of these fields in cases they are different from zero.
However, the current version of LaneFlood implements a first-in, first-out queue and
therefore, does not handle packet prioritization or any other type of QoS. Thus, this
field is omitted in 6LoFlood. However, in case a host on the Internet has set these
fields to a value different from zero, the border router drops this packet. We leave
the implementation of a notification message via ICMP for future work.

• Payload length The payload length can be derived from the IEEE 802.15.4 packet
length, i. e., the first byte after the synchronization header, as described in Sec-
tion 2.3.1, and the lengths of the headers in the packet, which are also known. Thus,
similar to 6LoWPAN, this field is omitted by 6LoFlood.

• Next header This field specifies the next header after IPv6. LaneFlood currently
only supports UDP, TCP, and ICMP and thus, compresses this field to 2 bit. The
encoding is shown in Table A.3. 6LoWPAN also compresses this field to two bits.
However, it transmits the next header in-line when both bits are zero. In 6LoFlood, the
border router drops the packet instead. We leave the implementation of a notification
message via ICMP for future work.

• Hop limit This field limits the number of routers a packet can pass and thus, prevents
packet life-locks, i. e., packets that are trapped in a routing loop. In 6LoWPAN “the

Bits: 0..3 4..11 12..31 32..47 48..55 56..63
Field: 0 Version Traffic class Flow label Payload length Next header Hop Limit

64 Source address

192 Destination address

Figure A.3: Structure of an IPv6 header.

126

a p p e n d i x

Hop Limit was considered too difficult to compress and therefore is always sent in-line in
the non-compressed fields” [149]. However, LaneFlood is a routing-free protocol, and
therefore, it omits this field.

• Source and destination address As already discussed in Section A.1.1, 6LoFlood uses
LaneFlood’s source and destination field for addressing nodes within the low-power
wireless network. When exchanging data with an Internet host, it further includes
the global IPv6 address of the host in the corresponding field of the 6LoFlood header
shown in Figure A.2. The addressing is selected using the address encoding shown in
Table A.1 and transmitted in the SAE and DAE fields. 6LoWPAN uses a similar approach
and also derives the node identifiers from layer 2, which is the MAC layer.

a .1 .3 .2 UDP and TCP header compression

As mentioned in the previous section, 6LoFlood supports TCP, UDP and ICMP. In particular,
it compresses the protocol headers of TCP and UDP. This is a difference to 6LoWPAN because
first, 6LoWPAN compresses only UDP headers with its HC2 called compression method,
and second, the use of HC2 is optional while 6LoFlood always compresses the mentioned
transport protocols. In the following, we shortly describe the three protocols, detail their
protocol headers and show how 6LoFlood compresses the header fields.

i c m p IPv6 uses ICMP Version 6 (ICMPv6) for diagnostic functions such as ping6, or SLAAC

as discussed in Section A.1.1, as well as error reporting, e. g., when the destination is
unreachable. The structure of an ICMP message is shown in Figure A.4. The field type
identifies the control message, and the code field provides additional information. The
message body contains the data specific for the type. The ICMP message further contains a
checksum to provide integrity. Due to the already minimal structure of the ICMP message,
6LoFlood transmits the full message without compression. However, the next header field in
the 6LoFlood header is set to 10, and the SPE and DPE fields are omitted.

u d p The User Datagram Protocol (UDP) protocol is often preferred in low-power wireless
networks because it has less overhead with respect to message size and the amount of
exchanged messages compared to its counterpart TCP. Figure A.5b shows the structure of a

Table A.3: Next header encoding of 6LoFlood.

00 Reserved for future use
01 UDP

10 ICMP

11 TCP

127

a p p e n d i x

Bits: 0..7 8..15 16..31
Field: 0 Type Code Checksum

32 Message Body

Figure A.4: ICMP message structure.

Bits: 0..15 16..31
Field: 0 Source port (opt.) Destination port (opt.)

32 Checksum Application data

64
(a) 6LoFlood-UDP message structure.

Bits: 0..15 16..31
Field: 0 Source port Destination port

32 Data length Checksum

64 Application data
(b) UDP message structure.

Figure A.5: Compressed 6LoFlood-UDP header vs. “standard” UDP header.

UDP message, and Figure A.5a shows the compressed 6LoFlood-UDP message for comparison.
In the following, we describe the protocol fields and our compression method.

• Source and destination port Port numbers are used to bind to a specific application.
6LoWPAN uses in total 10 bits – 5 bit per source/destination – for the port compression.
More precisely, it uses one bit to indicate whether the port is transmitted compressed
or uncompressed. The compressed port number is transmitted in the remaining
4 bit as so-called short_value. The actual port number can be later computed with
port_number = short_value + 0xF0B0 [172].

6LoFlood uses a different approach for compressing the port numbers. It simply uses
fixed port numbers that are encoded as shown in Table A.4. These encoded port
numbers are carried in the 6LoFlood header’s SPE and DPE fields. In case one or both
fields are set to 000, the port numbers are sent in the source and destination port
fields. Otherwise, these fields are omitted.

• Data length The data length can be derived from the packet length, i. e., the first byte
in the IEEE 802.15.4 packet as described in Section 2.3.1, and the protocol headers.
Thus, 6LoFlood omits this field. In contrast, 6LoWPAN indicates with a cleared bit that
the data length field is omitted, otherwise it is transmitted uncompressed.

• Checksum To ensure data integrity, 6LoFlood always transmits the full UDP checksum.
The receiving nodes re-model the UDP header based on the 6LoFlood header to compute

128

a p p e n d i x

its checksum. It then compares the computed checksum with the received check sum
to assure integrity.

t c p The Transmission Control Protocol (TCP) provides a reliable and ordered message
exchange between two devices. Its message structure is illustrated in Figure A.6b and the
compressed 6LoFlood message is shown in Figure A.6a. In the following, we explain the
single fields in the message in more detail and also detail our compression strategy.

• Source and destination port As in UDP, 6LoFlood omits these fields when the SPE or
DPE in the 6LoFlood header differ from 000.

• Checksum The checksum provides data integrity and therefore, is transmitted un-
compressed. For the integrity check, the receiver re-creates the TCP messages based
upon the 6LoFlood-TCP messages, computes its checksum and compares it with the
received one.

• Sequence number This field is used for message reordering and loss detection. If
the SYN flag is set, this field carriers the initial sequence number. If the SYN flag
is not set, this field is increased byte-wise, i. e., by the size of the application data,
for each transmission. The initial sequence number is negotiated during the TCP

handshake. Depending on the current sequence number and the amount of bits it
requires, 6LoFlood reduces the size of the sequence number field. The resulting size is
encoded in the Short Sequence number (SS) flag. More precisely, the SS flag being set
to 00 indicates a resulting field size of 1 byte, the flag being set to 01 denotes a 2-byte
sequence number, and so on.

• Acknowledgment number This field holds the sequence number up to which a desti-
nation acknowledges the reception of packets. This field is only valid if the ACK flag
is set. Thus, 6LoFlood omits this field when the ACK flag is unset. However, if the flag
is set, 6LoFlood reduces the field size of the acknowledgment numbers depending on

Table A.4: Port number encoding in 6LoFlood.

000 port numbers are sent in-line in full
001 port 80 for HTTP

010 port 8080 as alternative HTTP port
011 reserved for future use
100 port 3001, first default UDP port in LaneFlood
101 port 3000, second default UDP port in LaneFlood
110 reserved for future use
111 reserved for future use

129

a p p e n d i x

Bits: 0..15 16 17 18 19 20 21 22..2324..25 26..31
Field: 0 Source port (opt.) Destination port (opt.)

32 Checksum ACK PSH RST SYN FIN SW SA SS Reserved

64 Sequence number (pos. short)

96 Acknowledgment number (pos. short)

128 Window size (pos. short) Application data

160
(a) 6LoFlood-TCP message structure.

Bits: 0..3 4..9 10 11 12 13 14 15 16..31
Field: 0 Source port Destination port

32 Sequence number

64 Acknowledgment number

96 Data offset Reserved URG ACK PSH RST SYN FIN Window size

128 Checksum Urgent pointer

160 Options

192 Application data
(b) TCP message structure.

Figure A.6: Compressed 6LoFlood-TCP header vs. “standard” TCP header.

the bits the number currently requires, similar to the sequence number field. The size
of the field is encoded in the Short Acknowledgement number (SA) flag with the same
encoding scheme as used in the SS flag.

• Window size This field is used for flow control to indicate the sender how many
bytes to transmit until the queue at receiver side is full. Similar to the sequence
and acknowledgment numbers, this field can be shortened depending on the current
value. More precisely, if the SW (Short Window) flag is set, the window size field is
reduced to 1 byte.

• Urgent pointer If the URG flag is set, the data after the TCP header is immediately
processed by the application. The application, thus, stops processing the data of the
current TCP segment and reads out all bytes after the header up to the byte pointed to
by the urgent pointer field. However, most applications do not process the URG flag.
6LoFlood, thus, removes the URG flag and the urgent pointer field. In case the border
router receives a TCP packet where the URG flag is set, it drops the packet. We leave
the implementation of a notification message via ICMP for future work.

• Options TCP allows to transmit additional information. Since this field is usually
ignored in low-power wireless networks, it could be omitted in 6LoFlood. However,
the receiver cannot create the original TCP header for integrity check without know-
ing the options. In our implementation, the border router drops packets that are

130

a p p e n d i x

not compressible by 6LoFlood without further notification. We leave the design of a
corresponding error message for future work.

a .1 .3 .3 6LoFlood packet sizes

Using 6LoFlood, we can significantly reduce the header sizes of IPv6, UDP, and TCP. Table A.5
summarizes the savings when using 6LoWPAN or 6LoFlood. Local indicates that a message
is exchanged only within the low-power wireless network while global includes a second
network like the Internet. Thus, e. g., Local, UDP refers to IPv6 with a link-local IPv6 prefix
and UDP on top of it.

As shown in the table, the compressed IPv6/UDP headers result in a similar size for
6LoWPAN and 6LoFlood, independent of whether the IPv6 prefix is local or global. This is
because the compression methods are almost identical. The resulting savings range from
80 % to 90 % with a link-local IPv6 prefix and 45 % to 60 % in a global scenario. Using TCP

instead of UDP, 6LoFlood saves 65 % to 85 % in the local case and 40 % to 60 % in the global
case. The 6LoWPAN standard does not yet support TCP header compression, even though a
draft exists since 2011 [8].

a .1 .4 Summary

In this section, we illustrated the conceptional design of 6LoFlood to enable the interoper-
ability and interconnectivity of different networks. In particular, we discussed the node
addressing and message forwarding, the packet fragmentation, and the header compres-
sion. However, the main difference between 6LoFlood and 6LoWPAN is the absence of any
routing and neighbor discovery mechanisms in 6LoFlood. This reduces the total memory
consumption of 6LoFlood/LaneFlood, which has to be further evaluated.

Table A.5: Resulting packet sizes using 6LoWPAN and 6LoFlood.

Scenario Uncompressed 6LoWPAN (HC1 + HC2) 6LoFlood
Size Savings Size Savings

[byte] [byte] [%] [byte] [%]

Local, UDP 48 6 – 10 79.17 – 87.5 4 – 8 83.3 – 91.67
Local, TCP 60 — — 9 – 20 66.67 – 85.0
Global, UDP 48 22 – 26 45.83 – 54.17 20 – 24 50.0 – 58.3
Global, TCP 60 — — 25 – 36 40.0 – 58.3

131

	Contents
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	List of acronyms
	Acronyms

	List of symbols
	Symbols

	1 Introduction
	1.1 Problem statement
	1.1.1 Reliable operation in harsh environments
	1.1.2 Support for event-based data traffic

	1.2 Objectives and contributions
	1.2.1 On-the-fly clock offset compensation
	1.2.2 Fast flooding of small amounts of data
	1.2.3 On-demand one-to-one communication

	1.3 Outline

	2 Background and related work
	2.1 Low-power wireless networks
	2.1.1 Node platforms and their architecture
	2.1.2 The TelosB platform
	2.1.3 Testbeds for low-power wireless networks

	2.2 Single-link communication protocols and standards
	2.2.1 Requirements and applications
	2.2.2 Wired industrial networks
	2.2.3 Wireless industrial networks
	2.2.4 Standard Internet protocols for low-power wireless networks
	2.2.5 Subsumption of this thesis in the context of single-link protocols and standards

	2.3 The IEEE 802.15.4 standard
	2.3.1 Packets in IEEE 802.15.4
	2.3.2 Signal (de-)modulation and spreading in IEEE 802.15.4

	2.4 Synchronous transmissions in low-power wireless networks
	2.4.1 Synchronous transmissions in IEEE 802.15.4
	2.4.2 A brief history of synchronous transmissions
	2.4.3 Synchronous transmissions with Glossy

	2.5 Summary and subsumption of this thesis

	3 On-the-fly clock offset compensation
	3.1 Ensuring synchronous transmissions with Glossy
	3.2 Impact of the MCU clock frequency on the software delay
	3.3 Flock: On-the-Fly Clock Offset Compensation
	3.3.1 Flock: How it works
	3.3.2 Counting CyclesActual and computing CyclesNominal
	3.3.3 Theoretical analysis on the distribution of SoftwareDelay

	3.4 Evaluation of Flock
	3.4.1 Performance of Flock in simulations
	3.4.2 Quantifying the effects of temperature on the software delay
	3.4.3 The performance of Flock in a controlled environment

	3.5 Related work
	3.6 Summary

	4 Fast flooding of small amounts of data
	4.1 Whisper: How it works
	4.2 Whisper: A closer look
	4.2.1 The signaling packet
	4.2.2 Sending identical packlets
	4.2.3 Sending packlets synchronously
	4.2.4 Time synchronization
	4.2.5 Lazy sampling
	4.2.6 Direction-aware sampling
	4.2.7 Whisper (compliant)
	4.2.8 Resilience against external interferences
	4.2.9 The portability of Whisper

	4.3 Evaluation
	4.3.1 Evaluation setup
	4.3.2 Whisper vs. Glossy
	4.3.3 Concurrent dissemination of signaling packets
	4.3.4 Impact of low-level mechanisms
	4.3.5 Crystal and Whisper

	4.4 Related work
	4.5 Summary

	5 Event-based one-to-one communication
	5.1 Terminology and basic operation
	5.2 Establishing a lane
	5.2.1 Collecting information
	5.2.2 Decision making

	5.3 The protocol operation of LaneFlood
	5.4 Running Internet protocols on top of LaneFlood
	5.5 Evaluation of LaneFlood
	5.5.1 Methodology
	5.5.2 Impact of the slack
	5.5.3 Impact of the session and round length on latency

	5.6 Related work
	5.7 Summary

	6 Conclusion
	6.1 Contributions
	6.2 Limitations and future directions
	6.3 Concluding remarks

	Bibliography
	Author's publications
	Curriculum Vitae
	Curriculum Vitae

	Appendix
	Appendix

	A Appendix
	A.1 6LoFlood
	A.1.1 Node addressing and message forwarding
	A.1.2 Packet fragmentation
	A.1.3 Header compression
	A.1.4 Summary

