1,293 research outputs found

    Using the discrete hadamard transform to detect moving objects in surveillance video

    Get PDF
    In this paper we present an approach to object detection in surveillance video based on detecting moving edges using the Hadamard transform. The proposed method is characterized by robustness to illumination changes and ghosting effects and provides high speed detection, making it particularly suitable for surveillance applications. In addition to presenting an approach to moving edge detection using the Hadamard transform, we introduce two measures to track edge history, Pixel Bit Mask Difference (PBMD) and History Update Value (H UV ) that help reduce the false detections commonly experienced by approaches based on moving edges. Experimental results show that the proposed algorithm overcomes the traditional drawbacks of frame differencing and outperforms existing edge-based approaches in terms of both detection results and computational complexity

    A study of smart device-based mobile imaging and implementation for engineering applications

    Get PDF
    Title from PDF of title page, viewed on June 12, 2013Thesis advisor: ZhiQiang ChenVitaIncludes bibliographic references (pages 76-82)Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2013Mobile imaging has become a very active research topic in recent years thanks to the rapid development of computing and sensing capabilities of mobile devices. This area features multi-disciplinary studies of mobile hardware, imaging sensors, imaging and vision algorithms, wireless network and human-machine interface problems. Due to the limitation of computing capacity that early mobile devices have, researchers proposed client-server module, which push the data to more powerful computing platforms through wireless network, and let the cloud or standalone servers carry out all the computing and processing work. This thesis reviewed the development of mobile hardware and software platform, and the related research done on mobile imaging for the past 20 years. There are several researches on mobile imaging, but few people aim at building a framework which helps engineers solving problems by using mobile imaging. With higher-resolution imaging and high-performance computing power built into smart mobile devices, more and more imaging processing tasks can be achieved on the device rather than the client-server module. Based on this fact, a framework of collaborative mobile imaging is introduced for civil infrastructure condition assessment to help engineers solving technical challenges. Another contribution in this thesis is applying mobile imaging application into home automation. E-SAVE is a research project focusing on extensive use of automation in conserving and using energy wisely in home automation. Mobile users can view critical information such as energy data of the appliances with the help of mobile imaging. OpenCV is an image processing and computer vision library. The applications in this thesis use functions in OpenCV including camera calibration, template matching, image stitching and Canny edge detection. The application aims to help field engineers is interactive crack detection. The other one uses template matching to recognize appliances in the home automation system.Introduction -- Background and related work -- Basic imaging processing methods for mobile applications -- Collaborative and interactive mobile imaging -- Mobile imaging for smart energy -- Conclusion and recommendation

    Edge detection algorithm based on quantum superposition principle and photons arrival probability

    Get PDF
    The detection of object edges in images is a crucial step employed in a vast amount of computer vision applications, for which a series of different algorithms has been developed in the last decades. This paper proposes a new edge detection method based on quantum information, which is achieved in two main steps: (i) an image enhancement stage that employs the quantum superposition law and (ii) an edge detection stage based on the probability of photon arrival to the camera sensor. The proposed method has been tested on synthetic and real images devoted to agriculture applications, where Fram & Deutsh criterion has been adopted to evaluate its performance. The results show that the proposed method gives better results in terms of detection quality and computation time compared to classical edge detection algorithms such as Sobel, Kayyali, Canny and a more recent algorithm based on Shannon entropy

    INTELLIGENT MACHINE VISION BASED RAILWAY INFRASTRUCTURE INSPECTION AND MONITORING USING UAV

    Get PDF
    Traditionally, railway inspection and monitoring are considered a crucial aspect of the system and are done by human inspectors. Rapid progress of the machine vision-based systems enables automated and autonomous rail track detection and railway infrastructure monitoring and inspection with flexibility and ease of use. In recent years, several prototypes of vision based inspection system have been proposed, where most have various vision sensors mounted on locomotives or wagons. This paper explores the usage of the UAVs (drones) in railways and computer vision based monitoring of railway infrastructure. Employing drones for such monitoring systems enables more robust and reliable visual inspection while providing a cost effective and accurate means for monitoring of the tracks. By means of a camera placed on a drone the images of the rail tracks and the railway infrastructure are taken. On these images, the edge and feature extraction methods are applied to determine the rails. The preliminary obtained results are promising

    Detection of Road Conditions Using Image Processing and Machine Learning Techniques for Situation Awareness

    Get PDF
    In this modern era, land transports are increasing dramatically. Moreover, self-driven car or the Advanced Driving Assistance System (ADAS) is now the public demand. For these types of cars, road conditions detection is mandatory. On the other hand, compared to the number of vehicles, to increase the number of roads is not possible. Software is the only alternative solution. Road Conditions Detection system will help to solve the issues. For solving this problem, Image processing, and machine learning have been applied to develop a project namely, Detection of Road Conditions Using Image Processing and Machine Learning Techniques for Situation Awareness. Many issues could be considered for road conditions but the main focus will be on the detection of potholes, Maintenance sings and lane. Image processing and machine learning have been combined for our system for detecting in real-time. Machine learning has been applied to maintains signs detection. Image processing has been applied for detecting lanes and potholes. The detection system will provide a lane mark with colored lines, the pothole will be a marker with a red rectangular box and for a road Maintenance sign, the system will also provide information of aintenance sign as maintenance sing is detected. By observing all these scenarios, the driver will realize the road condition. On the other hand situation awareness is the ability to perceive information from it’s surrounding, takes decisions based on perceived information and it makes decision based on prediction

    Accelerating object extraction and detection using a hierarchical approach with shape descriptors

    Get PDF
    Automatic object recognition is a fundamental problem in the fields of computer vision and machine learning, that has received a lot of research attention lately. Miniaturization and affordability, of both, high resolution digital cameras and advanced computing hardware, have further advanced the scope and applications of object recognition methods. While there are different methods, that build upon various low level features to construct object models, this work explores and implements the use of closed-contours as formidable object features. A hierarchical technique is employed to extract the contours, exploiting the inherent spatial relationships between the parent and child contours of an object, and later describing them as part of the query feature vector. Fourier Descriptors are used to effectively and invariantly describe the extracted contours. A diverse database of shapes is created and later used to train standard classification algorithms, for shape-labeling. A simple-hierarchical, shape label and spatial descriptor matching method is implemented, to find the nearest object-model, from a collection of stored templates. Multi-threaded architecture and GPU efficient image-processing functions are adopted wherever possible, speeding up the running time of the proposed technique, and making it efficient for use in real world applications. The technique is successfully tested on common traffic signs in real world images, with overall good performance and robustness being obtained as an end result

    Computer vision reading on stickers and direct part marking on horticultural products : challenges and possible solutions

    Get PDF
    Traceability of products from production to the consumer has led to a technological advancement in product identification. There has been development from the use of traditional one-dimensional barcodes (EAN-13, Code 128, etc.) to 2D (two-dimensional) barcodes such as QR (Quick Response) and Data Matrix codes. Over the last two decades there has been an increased use of Radio Frequency Identification (RFID) and Direct Part Marking (DPM) using lasers for product identification in agriculture. However, in agriculture there are still considerable challenges to adopting barcodes, RFID and DPM technologies, unlike in industry where these technologies have been very successful. This study was divided into three main objectives. Firstly, determination of the effect of speed, dirt, moisture and bar width on barcode detection was carried out both in the laboratory and a flower producing company, Brandkamp GmbH. This study developed algorithms for automation and detection of Code 128 barcodes under rough production conditions. Secondly, investigations were carried out on the effect of low laser marking energy on barcode size, print growth, colour and contrast on decoding 2D Data Matrix codes printed directly on apples. Three different apple varieties (Golden Delicious, Kanzi and Red Jonaprince) were marked with various levels of energy and different barcode sizes. Image processing using Halcon 11.0.1 (MvTec) was used to evaluate the markings on the apples. Finally, the third objective was to evaluate both algorithms for 1D and 2D barcodes. According to the results, increasing the speed and angle of inclination of the barcode decreased barcode recognition. Also, increasing the dirt on the surface of the barcode resulted in decreasing the successful detection of those barcodes. However, there was 100% detection of the Code 128 barcode at the company’s production speed (0.15 m/s) with the proposed algorithm. Overall, the results from the company showed that the image-based system has a future prospect for automation in horticultural production systems. It overcomes the problem of using laser barcode readers. The results for apples showed that laser energy, barcode size, print growth, type of product, contrast between the markings and the colour of the products, the inertia of the laser system and the days of storage all singularly or in combination with each other influence the readability of laser Data Matrix codes and implementation on apples. There was poor detection of the Data Matrix code on Kanzi and Red Jonaprince due to the poor contrast between the markings on their skins. The proposed algorithm is currently working successfully on Golden Delicious with 100% detection for 10 days using energy 0.108 J mm-2 and a barcode size of 10 × 10 mm2. This shows that there is a future prospect of not only marking barcodes on apples but also on other agricultural products for real time production

    A Vision-Based Automatic Safe landing-Site Detection System

    Get PDF
    An automatic safe landing-site detection system is proposed for aircraft emergency landing, based on visible information acquired by aircraft-mounted cameras. Emergency landing is an unplanned event in response to emergency situations. If, as is unfortunately usually the case, there is no airstrip or airfield that can be reached by the un-powered aircraft, a crash landing or ditching has to be carried out. Identifying a safe landing-site is critical to the survival of passengers and crew. Conventionally, the pilot chooses the landing-site visually by looking at the terrain through the cockpit. The success of this vital decision greatly depends on the external environmental factors that can impair human vision, and on the pilot\u27s flight experience that can vary significantly among pilots. Therefore, we propose a robust, reliable and efficient detection system that is expected to alleviate the negative impact of these factors. In this study, we focus on the detection mechanism of the proposed system and assume that the image enhancement for increased visibility and image stitching for a larger field-of-view have already been performed on terrain images acquired by aircraft-mounted cameras. Specifically, we first propose a hierarchical elastic horizon detection algorithm to identify ground in rile image. Then the terrain image is divided into non-overlapping blocks which are clustered according to a roughness measure. Adjacent smooth blocks are merged to form potential landing-sites whose dimensions are measured with principal component analysis and geometric transformations. If the dimensions of a candidate region exceed the minimum requirement for safe landing, the potential landing-site is considered a safe candidate and highlighted on the human machine interface. At the end, the pilot makes the final decision by confirming one of the candidates, also considering other factors such as wind speed and wind direction, etc
    corecore