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ABSTRACT 

A VISION-BASED AUTOMATIC SAFE LANDING-SITE 
DETECTION SYSTEM 

Yufei Shen 
Old Dominion University, 2012 
Director: Dr. Dean Krusienski 

An automatic safe landing-site detection system is proposed for aircraft emer­

gency landing, based on visible information acquired by aircraft-mounted cameras. 

Emergency landing is an unplanned event in response to emergency situations. If, as 

is unfortunately usually the case, there is no airstrip or airfield that can be reached by 

the un-powered aircraft, a crash landing or ditching has to be carried out. Identifying 

a safe landing-site is critical to the survival of passengers and crew. Conventionally, 

the pilot chooses the landing-site visually by looking at the terrain through the cock­

pit. The success of this vital decision greatly depends on the external environmental 

factors that can impair human vision, and on the pilot's flight experience that can 

vary significantly among pilots. Therefore, we propose a robust, reliable and efficient 

detection system that is expected to alleviate the negative impact of these factors. 

In this study, we focus on the detection mechanism of the proposed system and as­

sume that the image enhancement for increased visibility and image stitching for 

a larger field-of-view have already been performed on terrain images acquired by 

aircraft-mounted cameras. Specifically, we first propose a hierarchical elastic hori­

zon detection algorithm to identify ground in the image. Then the terrain image is 

divided into non-overlapping blocks which are clustered according to a "roughness" 



measure. Adjacent smooth blocks are merged to form potential landing-sites whose 

dimensions are measured with principal component analysis and geometric transfor­

mations. If the dimensions of a candidate region exceed the minimum requirement for 

safe landing, the potential landing-site is considered a safe candidate and highlighted 

on the human machine interface. At the end, the pilot makes the final decision by 

confirming one of the candidates, also considering other factors such as wind speed 

and wind direction, etc. 
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CHAPTER 1 

INTRODUCTION 

1.1 PROBLEM STATEMENT 

Emergency landing is an unplanned event in response to emergency situations. 

The top five leading factors of emergency landing or forced landing are: engine failure, 

running out of fuel, extremely bad weather, medical emergency, and aircraft hijack. 

Particularly, under the two most emergent situations, engine failure and running 

out of fuel, the aircraft may quickly lose flying power, and its maneuverability may 

be restricted to gliding. Once these happen, a forced landing process has to be 

immediately carried out. If, as is unfortunately often the case, there is no airport or 

even a runway that can be reached by the un-powered aircraft, a crash landing or 

ditching will be inevitable. 

Finding a safe landing-site is vital to the survival of passengers and the pilot. 

Conventionally, the emergency landing-site is visually selected by the pilot looking 

at the terrain that is visible through the cockpit. This is a required fundamental skill 

in the flight training program, and every pilot is supposed to have the capability to 

do so. However, many external environmental factors, e.g., fog, rain, illumination, 

can significantly affect human vision so that the decision of choosing the optimal 

landing-site highly depends on the pilot's flight experience—the most significant in­

ternal factor—which can vary a lot among different pilots. In addition, the visual 

angle that the human eyes can cover simultaneously is limited: when the pilot looks 

to the left, what is on the right is missed, and vice versa. Since time is of supreme 

importance in the scenario under consideration, the inability to scan on both sides of 
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the cockpit simultaneously is a distinct disadvantage. Imaging sensors can alleviate 

this problem by creating panorama images that encompass the entire field-of-view 

(FOV) in front of the aircraft. In order to compensate for the natural inadequacies 

of human vision and also to alleviate the negative effects of both external and inter­

nal factors, a robust, reliable and efficient process for safe landing-site detection is 

greatly desirable. Therefore, the design of a vision-based automatic safe landing-site 

detection system [1-3] is proposed in this study. 

1.2 DEFINITION OF THE SAFE LANDING-SITE 

Before introducing the design of system, the appropriate criteria to assess the 

safeness of landing-sites are first investigated. Two geographic concepts, elevation 

and landform, are taken into consideration. The gradient of elevation generally deter­

mines the roughness of the terrain. Landform describes terrain covering, e.g., forest, 

grass, water, rock, buildings. Smooth elevation gradient by itself is not sufficient 

to guarantee a safe landing-site, since the associated landform could be hazardous 

to the landing procedure. In addition, the landing-site has to have sufficient length 

and width—which can vary with the type of airplane—to enable a safe emergency 

landing. In summary, the "safeness" of a potential landing-site is evaluated by con­

sidering its surface roughness and its dimensions. Thus, a landing-site is considered 

safe only if its surface is smooth and its length and width are adequate. The proposed 

safe landing-site detection system is designed to automatically detect landing-sites 

that meet both of the two requirements. 

1.3 NECESSITY OF THE VISION-BASED SYSTEM 

The safeness of an emergency landing-site is mainly determined by its surface 

roughness and dimensions. In general, the roughness of terrain can be measured by 
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the gradient of elevation, so if the elevation map of terrain is available, the gradi­

ent information can be easily found and the safeness can be accurately estimated. 

However, in this specific scenario, the safe landing is not only determined by the ele­

vation variation of the land but also threatened by the hazards upon the ground, e.g., 

trees, rocks, vehicles, which are usually not captured in elevation maps. Therefore, 

a vision-based information channel is necessary, which provides a real-time imagery 

of the ground. Ideally, when the aircraft is flying in the upper air, it can be guided 

to a generally smooth area according to the gradient information extracted from the 

elevation map. Then, the proposed computer-aided detection (CAD) system leads 

the aircraft to a safe landing-site. In practice, most aircrafts do not have either 

the database of elevation maps or the LIDAR sensor system. Imagery captured by 

aircraft-mounted cameras is the only available information source so that the pro­

posed CAD system will play a crucial role under this scenario. 

1.4 RELATED WORKS 

Many achievements of autonomous landing have been accomplished [4-11] by 

utilizing vision-based approaches to guide unmanned aerial vehicles (UAVs) or he­

licopters to known landing-sites. Landing marks, which often appear high-contrast 

in the image as to be easily detected, play an important role in those approaches by 

providing relative position information for state estimation and control. Neverthe­

less, for a landing strategy to be feasible in unknown environments, which is usually 

the case for emergency landing, the dependence on known landing marks is limiting 

and, therefore, a flexible means of finding safe landing-sites is desired. 

An extensive literature review was conducted but few publications are found on 

the topic of automatic aircraft safe landing-site detection. Garcia-Pardo et al. [12] 

state'd that at their time of writing they were "unaware of a vision based safe landing 

system for an autonomous aerial robot." Fitzgerald et al. [13] stated that "based 
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on an exhaustive literature review during the past two years, the group has found 

no forced landing research or forced landing system currently available." Also, as 

stated in [14], "A thorough literature review revealed that there has been no previous 

research on automated forced landing systems." 

To date, there are relatively few publications on automatic aircraft safe landing-

site detection. As stated in [12-14], no automated forced landing research or auto­

mated forced landing system were available at their time of writing. In [12], Garcia-

Pardo et al. designed a two-step autonomous safe landing-site detection strategy. 

First, they applied a local contrast descriptor /j/CT, which is derived by normalizing 

the neighborhood of the to-be-tested pixel and then calculating the mean /z and the 

standard deviation a of its neighborhood, to assess the roughness of the ground under 

the assumption that the boundaries of hazards appear as high-contrast edges in the 

image, reflected by small values of fi/cr. A contrast threshold needs to be selected to 

differentiate smooth areas and boundaries. The optimal contrast threshold is found 

to have a linear relationship, with the ratio of mean and standard deviation of the 

whole image [12]. Then, round landing-sites with a sufficient size are found in the 

smooth areas. The system described in [12] was tested in an off-line fashion on 10 

image sequences, which are captured by real flights over a synthesized environment, 

i.e. placing white boxes (obstacles) on grass covered ground. The detection results 

were evaluated by a "failure rate" defined as the percentage of images in which the 

system failed to find any safe landing-site. 

Fitzgerald et al. also applied a two-step safe landing-site detection strategy [13]. 

First, Canny edge detector [15] is employed to describe edges in the image. This is 

computationally more efficient than the local contrast descriptor mentioned above. 

Second, the safe landing-sites are found by scanning the smooth area with a set 

of rectangular masks which are pre-defined in different scales and 'rotation angles. 

Three problems associated with the second step are: (1) It is inconvenient, or even 
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impossible, to pre-define a sufficiently large number of masks with all possible scales 

and angles. For example, if a potential safe landing-site has a shape which is not 

covered in the pre-defined mask set, the system is very likely to miss it. (2) Various 

aircrafts have different requirements of safe landing-sites in terms of the minimum 

length and width. Using a pre-defined set of masks is limiting to apply the system 

to different aircrafts and (3) It is computationally expensive to move all the masks 

over the smooth area, and the computational cost is proportional to the number of 

masks so that the requirement of time cost conflicts with the requirement of detection 

accuracy. 

In addition to aircraft applications, related research of spacecraft landing has been 

conducted by many groups in recent years. NASA Jet Propulsion Laboratory (JPL) 

proposed a LIDAR-based hazard avoidance approach for safe landing on Mars [16]. 

They made use of elevation maps generated by scanning synthetic terrains with a 

simulated LIDAR model. Later, JPL introduced a fuzzy rule-based safety index to 

assess landing-sites [17,18]. Furthermore, they brought multi-sensor images into their 

approach [19]. JPL also proposed a method to estimate the reachable area for the 

spacecraft [20] based on ballistic analysis. In addition to its application to landing 

on Mars, autonomous landing and hazard avoidance technologies (ALHAT) are also 

utilized for lunar landing [21-23] and UAV landing [13]. Therefore, the proposed 

system discussed here has a wide range of potential applications. 

1.5 SYSTEM FRAMEWORK 

The proposed safe landing-site detection system consists of seven main modules 

as shown in Figure 1. In the first module, images are acquired by aircraft-mounted 

cameras. Each camera looks in a specific direction covering a portion of the region in 

front of the airplane. Multi-spectrum sensors are preferred to obtain complementary 

information. In the second module, the separate images that are acquired at the same 
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FIG. 1: Flow diagram of the proposed automatic safe landing-site detection system 

time instant, are registered and stitched together to form a larger panorama image 

that covers the full FOV in front of the airplane, instead of regions under or behind it. 

This is reasonable because the aircraft is assumed to have lost its flying power in the 

scenario of this study. Landing to an area in front of the gliding aircraft is relatively 

easier than landing to areas under or behind it in terms of maneuverability. The 

imaging platform comprised by the first two modules is very important to generate 

high quality images. However, they will not be further discussed since the emphasis 

of this study is not on the development of the imaging platform, but on the computer-

aided detection (CAD) system for finding safe emergency landing-sites. 

To ameliorate the effect of environmental factors and improve the contrast and 

sharpness of images, which directly affects the performance of the subsequent mod­

ules, the non-linear retinex image enhancement method [24,25] is utilized in the third 

module to images captured under poor illumination or weather conditions. Specif­

ically, an elastic bound detection method is designed to position the horizon. The 
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terrain image is divided into non-overlapping blocks which are then clustered ac­

cording to a "roughness" measure (the fourth module). Adjacent smooth blocks are 

merged to form potential landing sites (the fifth module) whose dimensions are mea­

sured with principal component analysis and geometric transformations (the sixth 

module). If the dimensions of the candidate region exceed the minimum requirement 

for safe landing, the potential landing site is considered a safe candidate and high­

lighted on the human machine interface (the seventh module). At the end, the pilot 

makes the final decision by confirming one of the candidates, also considering other 

factors such as wind speed and wind direction, etc. 

1.6 CONTRIBUTIONS OF THIS STUDY 

The contributions of the present dissertation consist of the following parts: (1) A 

delicate automatic safe landing-site detection mechanism is developed by seamlessly 

combining some existing image processing and analysis techniques, including block-

wise roughness assessment, classification of blocks based on their edge strength, seg­

mentation of candidate safe landing-sites, dimension assessment of candidate landing-

sites, and visualization of detected safe landing-sites on human-machine interface. 

(2) A hierarchical elastic horizon detection algorithm is proposed to identify the 

ground/sky interface in the aerial image so that the camera is relieved from the lim­

itation of looking straight down to the ground. In the forward-looking mode, the 

system can detect safe landing-sites in front of the aircraft providing more time to 

the pilot to prepare landing, which is especially helpful for un-powered aircraft in 

emergency situations. (3) The efficiency of the detection system is improved by ap­

plying Canny edge detector, instead of the local contrast descriptor [12], as a part of 

the roughness assessment algorithm and utilizing principle component analysis as the 

means to measure the dimension of smooth areas, instead of using a pre-defined set 

of masks [13]. And (4) a performance metric is developed to quantitatively evaluate 
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the detection results. 

The remainder of the dissertation is organized as follows. In Chapter 2, the image 

enhancement module is described. In Chapter 3, a hierarchical horizon detection 

algorithm is presented, followed by Chapter 4, in .which the proposed safe landing-

site detection algorithm is described in detail. In Chapter 5, an attempt of terrain 

analysis is presented. Conclusions are drawn in Chapter 6. 
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CHAPTER 2 

IMAGE ENHANCEMENT 

Image enhancement is the process of improving the quality of images and often 

serves as a preliminary module at the front end of a CAD system so that inter­

ested objects become distinguishable from the surroundings. Contrast enhancement 

is one of the most fundamental tasks in image enhancement, which is very applica­

tion dependent. Many image enhancement techniques [26-31] have been developed 

for a variety of applications. In this chapter, two widely used histogram modification 

based image enhancement methods, contrast stretching [28] and histogram equaliza­

tion [29], are reviewed. Then, two non-linear image enhancement methods, gamma 

correction [31] and retinex algorithm [24,25], are described, which are designed for 

improving the quality of low-contrast images captured under poor illumination or 

bad weather conditions. Results generated by the four methods are compared in 

Section 2.6. 

A few preliminaries are firstly reviewed. 

2D Image 

Let /(x\, X2) be the integer value at pixel {x\, x-j) of image /, which has Nrow 

rows and Nĉ  columns (1 < xi < Nrmv, 1 < x2 < Nat), in the range of [0, L\. 

L is 255 if the bit depth is eight. 

Histogram 

Histogram is a statistical distribution of pixel values in the image. The his­

togram H(l) (I € [0, L]) of image I can be computed by the following pseudo 

code. 
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Initialize H with zeros; 

for X\ 1 • Nrow 

for x<i = 1 : Ncoi 

H(I(x)) = H(I(x)) + 1; 

end 

end 

Intensity Level TVansform 

The motivation of histogram modification based methods is to find a transform 

Cumulative Intensity Level Distribution 

Cumulative intensity level distribution P of histogram H is defined as 

It is easy to prove that P(l) is in the range of [0,1] and P{L) = 1. 

2.1 CONTRAST STRETCHING 

Peaks of histogram often concentrate at the lower end for dark images, and vice 

versa for bright images. When the peaks are close to one another, image contrast 

becomes low. Contrast stretching [28] transforms the over-concentrated histogram 

of the original image to the full dynamic range such that the contrast increases as 

the distances between peaks are enlarged. The transform of contrast stretching can 

T(-) that maps the original pixel valuesto transformed pixel values 7(XI,X 2 )  

T(I(XI,X2)) .  

(1) 
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be written as 

T(l) = 

0 

hi — lo 

I > hi, 

I < lo, 

I-lo 
-—- x L lo<l< hi (2) 

L 

where T(l) is the transformed value of i, [ J is the floor function, and lo and hi are 

two thresholds at lower and higher ends. The lower tail of histogram (I < lo) and 

the higher tail of histogram (I > hi) are clipped, and then the clipped histogram in 

the range of [io, hi] is stretched to the range of [0, L]. In general, lo and hi can be 

determined in two ways. (1) Assign lo and hi with pre-defined intensity levels. (2) 

Adaptively determine lo and hi according to pre-defined percentage thresholds Pi 

and Ph (0 < Pi < Ph < 1). lo satisfies P{lo — 1) < Pi and P(lo) > Pi, and hi satisfies 

The contrast stretching method works well when most of pixel values in the 

original image are concentrated in a relatively narrow range. In other words, the 

dynamic range of the histogram is not fully used. The unoccupied dynamic range 

provides the potential expansion space for the contrast stretching method. Figure 2 

shows a good enhancement result by using contrast stretching. However, if most 

of pixel values in the original image already occupy the full dynamic range of the 

histogram, there will be no potential expansion space for contrast stretching, then the 

method fails. Figure 3 shows a failed example by contrast stretching. In summary, 

the contrast stretching method can provide the good global contrast in terms of the 

histogram of the whole image, but it fails to guarantee the good local contrast. 

P(hi — 1) < Ph and P(hi) > Ph. 
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(b-'l) (b-2) 

FIG. 2: (a-1) is the histogram of the original image (a-2); (b-1) is the histogram of 
the enhanced image (b-2). (Pi = 0.5%, Ph = 99.5%) 

i 
(b-l) (b-2) 

FIG. 3: (a-1) is the histogram of the original image (a-2); (b-l) is the histogram of 
the enhanced image (b-2).(Pj = 0.5%, Ph = 99.5%) 
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2.2 HISTOGRAM EQUALIZATION 

The transform of histogram equalization [29] is defined as 

T(l) = LP(l) x L\- (3) 

The advantage of histogram equalization is that it can be used to boost contrast by 

enlarging the distance between peaks in the histogram, especially at the lower end. 

However, its disadvantage is that the cumulative intensity level distribution P(l) may 

quickly climb to a relatively high value so that the dynamic range at the higher end 

of the histogram is actually suppressed. As shown in Figure 4, due to the major peak 

located at the lower end of the histogram, P(l) saturates quickly, so many places of 

the original image are over enhanced. Thus, the contrast of the brighter part of the 

image decreases, though the contrast of the darker part of the image increases. 

(a-1) (a-2) 

mf* 

IUIMMML 
(b-l) (b-2) 

FIG. 4: An example of histogram equalization 
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2.3 GAMMA CORRECTION 

Gamma correction [31] is a transformation defined as 

(4) 

where 7 is the parameter that determines the shape of the transfer curve, as shown 

in Figure 5. It can be used to enhance the brightness of the entire image, which 

is captured under poor illumination, when 7 is less than 1, and vice versa. This 

method actually suppresses the global contrast of the image, though local contrast 

at the darker end of the histogram may increase due to the curvature of the gamma 

transformation. As shown in Figure 6, the dark part of the original image becomes 

greatly enhanced after the gamma correction and many more details are revealed 

after the enhancement. 

T[l] 125-

250-1 

225-

200-

175-

150 -

100-

25 -

50-

0 J 

0 25 50 75 100 125 150 175 200 225 250 

I 
r 

FIG. 5: A group of gamma transforms 
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 ̂ r 

(a-l) (a-2) 

(b-2) 

FIG. 6: An example of gamma correction. 

2.4 INVERSE HYPERBOLIC TANGENT SHAPED CORRECTION 

To compensate the saturation problem of the gamma correction, an inverse hy­

perbolic tangent shaped correction is proposed [32]. The inverse hyperbolic tangent 

function is defined as 

tanh_1(a:) = ilogi^,x e (-1,1). (5) 
2 1 — x 

It centers at the origin (0,0) and it is undefined at x = —1 and x = 1. To make 

it applicable in the application of image enhancement, it must be normalized from 

the interval (—1,1) to [0, L). In addition, the values at / = 0 and I = L are defined 

by the values of its neighboring points. Thus, the inverse hyperbolic tangent shaped 



function can be written as 

16 

T(l) = 
1/(0-/(0) : : L  

I m - /(o) 

m = < 

2/(1) - /(2) 

ai 1 + ' ^log • 
(i - i)° 

2/(L-l)-/(L-2) / = L, 

1 = 0, 

1 < I < L- 1, 

/ = |-l,/"€ [-1,1] 

(6) 

(7) 

(8) 

where the transformation T(l) is normalized from /(/), a and /3 are two parameters 

used to tune the curvature of T(l). When a = 1 and 0 — 0.5, /(/) is the inverse 

hyperbolic tangent function. Figure 7 shows a group of inverse hyperbolic tangent 

shaped correction functions (/? = 0.5). A comparison of enhanced results with gamma 

correction is shown in Figure 8. 

- 4- • art 
a*J2 
a*0 4 
a=0 6 
qp0.8 
oy*1 0 
cy»1 4 

— 9-• a*1 8 
— OP-2 2 
— a*25 
— • a^3 

FIG. 7: A group of inverse hyperbolic tangent shaped correction functions 
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(b-l) (b-2) 

FIG. 8: An example of inverse hyperbolic tangent shaped correction 

2.5 RETINEX 

The non-linear image enhancement method multi-scale retinex with color restora­

tion [24,25] (MSRCR) is applied to ameliorate the effect of environmental factors, 

and improve the contrast and sharpness of images, if the images are captured under 

poor illumination or weather conditions. 

Single-Scale Retinex 

The basic form of the single-scale retinex (SSR) is given by 

Ri{xi,x2) = log/i(xi,x2) - log[F(xi,x2) <8> Ii(xi,a?2)], (9) 

where (xi, x2) are coordinates in the two-dimensional image coordinate system, "<g>" 

represents the convolution operator, U (i = 1,2,N, N = 3 for RGB images) 
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denotes the ith band of the iV-band input image I, Ri is the corresponding output 

to ij, and F is the surround function, which is defined as, 

cv \ I (x\ + x\) F{x ux2) = Kexp| -
<7 

(10) 

E (U) 

where a is the scale that controls the extent of the surround and k is the normalizing 

factor to make the sum of F(x 1,2:2) equal to one. Smaller values of a lead to narrow 

surrounds, and vice versa. 

A brief interpretation of the mechanism of SSR is provided here to explain how 

the enhancement is achieved. First, Equation (9) can be written in the following 

form, 

*<«.,*»> = log |F(l 
= l0gr'(l"l2)- (12) 

For a pixel (xi,x2), the convolution of the Gaussian surround function F and the 

input image band U can be interpreted as the weighted average value of the neigh­

borhood of Ii(x 1,0:2), and the ratio of the original value 7j(xi, x2) to the weighted 

average value Ii($i,x2) embodies the "center/surround" concept and can be used 

to find details in the neighborhood of /^Xj, x2). For example, if the neighborhood 

of Ii(x 1,12) is very smooth, that is, the neighboring pixels of Ii(xi,x2) have similar 

values of Ii(xi,x2), then Ii(xi,x2) will be almost identical to U(x\,x2), resulting in 

Ti{xi,x2) being very close to one. On the other hand, if a change occurs at (xi, x2), 

that is, Ii(xi, x2) is greater or less than the values in the neighborhood, then U{xi, x2) 

will be greater or less than one. Therefore, r^xx, X2) itself is an indicator of changes. 

Positive changes lead to values greater than one, and vice versa. 
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The usage of logarithm function is the critical point that leads the retinex al­

gorithm to success. First, when ri(xi,x2) is close to one, the linearity is preserved 

because the slope of the logarithm curve within a small range around one is about 

one. Second, when r*(x 1,0:2) rapidly increases over one, the slope of the logarithm 

curve is much less than one, so Ri(xi, x2) will slowly increase. This compresses 

the dynamic range at the bright end to avoid saturation. Third, when rj(xi,x2) 

fast drops below one, the slope of the logarithm curve is much greater than one, so 

Ri(x 1, x2) will sharply decrease. As a result, the dynamic range at the dark end gets 

dramatically expanded. In summary, by using the properties of the logarithm curve, 

pixels in dark zones get boosted and those in bright zones do not get over-brightened 

so that a full dynamic range is achieved. 

In addition, it is worth noting that the selection of the value of a plays an impor­

tant role in the surround function F. Figure 9 shows an example from the original 

paper, (a) is the input image, (b), (c), (d) are, respectively, the SSR outputs by 

using narrow, medium, and wide surround functions. The narrow surround function 

acts as a high-pass filter, capturing all the fine details in the image but at a severe 

loss of tonal information. The wide surround function captures all the fine tonal in­

formation but at the cost of dynamic range. The medium surround function acts as 

an intermediate between these two. Thus, multiple surrounds were found necessary 

in order to achieve a graceful balance between dynamic range compression and tonal 

rendition. 

Multi-Scale Retinex 

The motivation of MSR is to combine the advantages of using different scales of 

surrounds in order to improve the contrast and keep the tonal information. Intu­

itively, an MSR output can be expressed in a weighted summation form of several 
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(b)15 pixels (c)80 pixels 

(a) Original image 

(e)Multiscale (d)250 pixels 

FIG. 9: (a) The original input (b) Narrow surround (c) Medium surround (d) Wide 
surround (e) MSR output. The narrow-surround acts as a high-pass filter, capturing 
all the fine details in the image but at a severe loss of tonal information. The wide-
surround captures all the fine tonal information but at the cost of dynamic range. 
The medium-surround captures both dynamic range and tonal information. The 
MSR is the average of the three renditions. 

SSR outputs as follows, 

K 

Ri{xi,i2) = Wfc(log/i(xi,x2) - log[Fk(xi,x2) ® /<(xi,x2)]), (13) 
*=i 

where K is the total number of different scales of surround functions, and Wk is 

the weight assigned to the fcth SSR output generated by using the kth surround 

function F* (k = 1,2,K). h and Ft* are, respectively, the ith spectral band of 

the input image I and the retinex output image R. The total number of scales used 
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for the MSR K is, of course, application dependent. Rahman et al. [24,25] have 

found empirically, however, that a combination of three scales representing narrow, 

medium, and wide surrounds is sufficient to provide both dynamic range compression 

and tonal rendition. Figure 9 (e) shows the MSR output of (a) when three surround 

functions are applied together, which is obtained by equally weighting, i.e. W* = 1.0 

for k = 1,K (K = 3) in Equation (13). As is evident from Figure 9, none of the 

individual scales attain the goal, visual realism. The narrow and medium surround 

cases are self-explanatory. The wide-surround case deserves some discussion because 

it produces a reasonable output image. However, the lack of dynamic range obscures 

the features that were visible to the observer, hence it fails the test. The MSR 

processed image uses features from all three scales to provide simultaneous dynamic 

range and tonal rendition. 

Multi-Scale Retinex with Color Restoration 

Due to the mechanism of retinex algorithm shown in Equation (9) and (13), 

tonal information is often lost when a relatively narrow surround function is used, 

because the retinex processing focuses on the ratio of the center value to the weighted 

average value of the surround. Thus, a "graying out" of the image, either in specific 

regions or globally, is the general effect of retinex processing on images with regional 

or global gray-world violations. This de-saturation of color can, in some cases, be 

severe. Therefore the desired color computation can be considered a color restoration, 

which should produce good color rendition for images with any degree of graying. In 

addition, the correction is expected to preserve a reasonable degree of color constancy 

since that is one of the basic motivations for the retinex. To achieve that goal, a 

color restoration factor a is computed based on the following transform: 

N 

(14) 



where aj(xi,x2) is the color restoration coefficient in the ith spectral band, N is the 

number of spectral bands, /,• is the ith spectral band in the input image, and /(•) is 

some mapping function. In the original paper [25], /(•) is picked to be a logarithm 

function, so a is obtained as 

n 

ai(x1,x2) = l0g[li(xux2)/'*rin(xl,x2)). (15) 
n=l 

In a purely empirical fashion, this was tested on several images and proved to restore 

color rendition, encompassing both saturated and less saturated colors. Adding this 

to Equation (13), the multi-scale retinex with color restoration (MSRCR) is given 

by: 

k 

Ri(xi,x2) = ai(x1,x2)'̂ wk(\0gli{xux2) — log[Ffc(xi,x2)®/i(xi,x2)]). (16) 
fc=i 

The results of applying this transformation to the "monochrome" images are shown 

in Figure 10. 

Some examples are shown in Figure 11, on the left column are original aerial 

images with low contrast and sharpness, and on the right column are results after 

enhancement. It is clear that the contrast and sharpness of the original images is 

significantly improved by using MSRCR. Therefore, more details can be seen on the 

ground by the pilot under poor weather conditions and illumination. The restored 

color information is also helpful to the pilot. In addition, this pre-processing step 

provides a good input for the subsequential landing-site detection algorithm. 

2.6 EXPERIMENTAL RESULTS 

To compare the performance of the four enhancement methods described above, 

each of them was applied on the same set of 10 aerial images. Two examples are 



23 

Original 

Multiscale 
retinex 

Multiscale 
retinex 
with 
color 

correction 

FIG. 10: (Top row) Scenes that violate the gray-world assumption; (Middle row) the 
MSR output. 

shown in Figure 12 and Figure 13. The original image (see (a)) is foggy and the 

bounds of hazardous obstacles are blurred. The enhanced results by using contrast 

stretching (see (b)) and histogram equalization (see (c)) improved the global contrast 

in the whole image, but due to the intrinsic mechanism of these two methods, some 

bright areas in the original image become brighter in the enhancement results so that 

some details are lost. The results generated by using Gamma correction (see (d)) 

and inverse hyperbolic tangent shaped correction (see (e)) failed to eliminate the fog 

because the dynamic range is suppressed. The MSRCR produces relatively better 

enhancement results (see (f)) compared to afore mentioned methods. It improves the 

illumination and local contrast of the original image without introducing artifacts 

caused by over-enhancement. 
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2.7 DISCUSSION 

Contrast stretching, histogram equalization, and Gamma transform are widely-

used effective image enhancement methods. They are easy to understand and im­

plement. But the drawback of those global enhancement methods is that it does 

not fully utilize the local information. Multi-scale retinex with color restoration 

(MSRCR) is a relatively advanced image enhancement algorithm which makes use of 

local contrast information. Experimental results show that MSRCR performs better 

than the other three for the specific applications considered in this study. 



(g) (h) 

FIG. 11: MSR application on aerial images 



26 

FIG. 12: Example 1: (a) Original aerial image; (b) Enhanced by contrasting stretch­
ing; (c) Enhanced by histogram equalization; (d) Enhanced by Gamma correction; (e) 
Enhanced by inverse hyperbolic tangent shaped correction; (f) Enhanced by MSRCR. 
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FIG. 13: Example 2: (a) Original aerial image; (b) Enhanced by contrasting stretch­
ing; (c) Enhanced by histogram equalization; (d) Enhanced by Gamma transform; (e) 
Enhanced by inverse hyperbolic tangent shaped correction; (f) Enhanced by MSRCR. 
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CHAPTER 3 

HORIZON DETECTION 

Horizon detection often serves as a preliminary step of many aerial or ground-

based robotic systems [33-35]. A reliable segmentation of the sky and the ground 

plays an important role in subsequent steps. Much previous work has been conducted 

in horizon detection. In this chapter, three existing horizon detection algorithms are 

first reviewed and then the proposed algorithm is presented. 

3.1 INTENSITY-BASED HORIZON DETECTION 

Williams and Howard proposed a horizon detection algorithm for a specific 

ground-based rover application to segment the foreground plane from distant moun­

tains and the sky in glacial environments [36]. Due to the specialty of that appli­

cation, two strong but reasonable assumptions are made: (1) It is assumed that the 

bottom third of image is ground, because the camera is mounted on a ground-based 

rover. (2) The ground is assumed to appear all white with very little variance, be­

cause the rover is in glacial environments. Based on those two assumptions, they 

proposed an intensity-based horizon detection algorithm, which can be summarized 

as: 

Step 1 Generate an edge map by applying Canny edge detector [15] to the original 

image. 

Step 2 Scan the edge map column by column. In each column, an edge point can be 

considered a point of the horizon only if pixels below it in that column appear 

all white with little variance. 
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Step 3 Connect those horizon points detected in Step 2 to form the horizon after 

removing noisy points and interpolation. 

The problem of this intensity-based algorithm is that the two assumptions of­

ten fail in other environments, thus it will not be further considered in the present 

dissertation. 

3.2 HOUGH TRANSFORM-BASED HORIZON DETECTION 

Dusha et al. [37] applied Hough transform [38] to detect the horizon based on the 

assumption that the horizon is the strongest boundary in the image. Their method 

can be summarized as: 

Step 1 Generate a binary edge map by applying Canny edge detector [15] to the 

original image. 

Step 2 Apply Hough transform to recognize straight lines. 

Step 3 Pick the line that has the highest votes by Hough transform as the horizon. 

Hough transform is widely used to identify straight lines. However, that assump­

tion is not always valid and that method can be easily disturbed by the presence of 

other strong edges. Therefore, a hard decision of selecting the highest voted line by 

Hough transform as the horizon is unreliable. One failed example is shown in Fig­

ure 14. A soft decision strategy is brought in to solve this problem and is discussed 

in Section 3.4. 



30 

FIG. 14: A failed example by using Hough FIG. 15: A failed example by using the 
transform only greedy search method 

3.3 A GREEDY SEARCH ALGORITHM 

Ettinger et al. proposed a horizon detection method in a greedy search man­

ner [35]. The method is based on two assumptions: (1) The horizon is a straight line 

that partitions the image into two regions, namely sky and ground. (2) There is little 

variance in either region, i.e. pixel characteristics of the sky region are consistent and 

different from the ground region, and vice versa. Thus, the detection of the horizon 

becomes to search for the optimal straight line such that the sum of the variances of 

both regions reaches the lowest value. Lines of all possible locations and angles are 

tested, and the optimal one that meets the above criterion is considered the horizon. 

The implementation procedure can be summarized as: 

Step 1 Down-sample the original image to a smaller size for computational 

concern. 

Loop: for angle = 0° to 180° 

Step 2 Compute the range of possible y-intercept based on the angle. 

Loop: for y-intercept in the range computed in Step 2 

Step 3 Compute the position of that line segment in the image. 

Step 4 Partition the image into two parts and compute the pixel 
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intensity variance in each part. 

Step 5 Save the sum of results produced in Step 4. 

End 

End 

Step 6 Find the line with the largest value produced in Step 5. 

Step 7 Repeat the above double loops in the original image within a narrow 

dual side range of the angle and the y-intercept found in Step 6. 

Step 8 Select the line with the largest sum of two variances as the horizon. 

Two problems of this method are: (1) It is computationally expensive due to the 

greedy search scheme. (2) The second assumption fails when large objects having 

similar colors to the sky appear in the ground region of the image, such as lakes, 

rivers, or other large bodies of water. One failed example is shown in Figure 15. 

3.4 PROPOSED METHOD 

In this study, an automatic horizon detection algorithm with a hierarchical strat­

egy, in which the non-horizon pixels are gradually excluded step by step, is pro­

posed [39]. The proposed algorithm is designed with several relatively soft decisions 

in order to adapt all possible situations. Specifically, it consists of a coarse level 

detection and a fine level adjustment. First, the original image is blurred by a large 

scale low-pass filter. Then, Canny Edge detector [15] and Hough transform [38] are 

successively utilized to find major edges in the image and identify lines associated 

with those major edges. The desired horizon is modeled by one of the lines. Since 

the horizon is often not a straight line, an elastic fine level adjustment is applied to 

capture the curvature of the horizon. 

The proposed hierarchical horizon detection algorithm consists of a co»^se level 

detection and a fine level adjustment. Three steps, namely, (1) major edge detection, 
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(2) line fitting, and (3) coarse adjustment, comprise the coarse level detection. (1) 

The original image as shown in Figure 16 is blurred by a large scale low-pass filter 

to remove relatively fine edges and retain relatively major edges in the image. In the 

present paper, a Gaussian low-pass filter is employed with a relatively large sigma 

a which is adaptive to the dimension of the image, i.e. a = Ny/50, where Ny is 

the number of rows in the image. Then, a Canny edge detector [15] is applied to 

the blurred image to find major edges. The Canny edge detector is used because it 

provides edge strength information in addition to edge location information. (2) An 

edge strength histogram is computed based on the edge strength produced by the 

Canny edge detector, and the top p% of the points are obtained as possible points that 

comprise the horizon. On one hand, p should be a small number because the horizon 

is often the strongest edge in the image. On the other hand, it is not always the case, 

so p should not be too small. In other words, it would be better to conservatively 

include some non-horizon points in this step and exclude them in a later step than 

to frivolously lose some of the key horizon points in this step. Empirically, p% is 

adaptively obtained as 5/Nh, where Nh is the number of columns of the image. A 

binary edge map consisting of the top p% strongest edge points can be generated. 

The standard Hough transform (SHT) [38] is then applied to fit probable lines in 

the binary edge map. Due to the presence of strong edges in addition to the horizon 

in the image, the highest peak of the voting result of the SHT does not necessarily 

correspond to the horizon. Thus, it is unreliable to simply take the highest peak as 

the horizon. Instead, the top Nl highest peaks are taken into account by comparing 

the average edge strength within the dual-side narrow bands along each of them. The 

line that has the highest average edge strength within its dual-side narrow bands is 

called the true peak of Hough transformation. Empirically, Nl is set to 5. This 

soft decision strategy makes the* detection more reliable and robust. In Figure 17, 

the green line is the true peak of Hough transformation along with four yellow lines 
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that axe among the top N l  highest peaks but not the true peak. (3) It is necessary 

to adjust the coarsely detected line, because the real horizon is often not perfectly 

straight. The coarse level adjustment is to search the dual-side neighborhood of each 

pixel of the detected line according to the edge map of the blurred image. As shown 

in Figure 17, yellow arrows denote the directions of the coarse adjustment and the 

red dots denote the position of each point after the coarse adjustment. 

A fine adjustment takes place after the position of horizon is coarsely determined. 

As illustrated in Figure 18, the dual-side bands of the green coarsely determined 

horizon are explored based on a fine edge map computed from the original image 

in which fine edges are retained. Pixels of the coarsely detected horizon are then 

adjusted again to positions that meet certain criteria. The criterion used in [3] is to 

check edge pixels within the dual-side bands and find the one that has the largest 

edge strength. In general, it works well. However, strong edge patterns occasionally 

appear very close to the horizon, and the pixel of the horizon may be not the strongest 

edge point in its neighborhood. Therefore, in the present paper, a set of the strongest 

pixels EP is examined, which is defined as 

EP={Ei\ESi > ESi x 0.8, i = 1,2,..., NB}, (17) 

where N e is the total number of edge pixels in that dual-side narrow band, Ei 

(i = 1,2,..., Ne) is the ith strongest edge pixel in that dual-side neighborhood, and 

ESi is the edge strength of Ei. Let Nte be the number of points in EP and TEj 

(j = 1,2,..., Nte) be the jth strongest edge point in EP. A modification of the 

idea of [35] mentioned above is employed by computing the variance of TEj s dual-

side neighborhood. When validated on a test image database, in most cases, the true 

horizon pixel is the edge pixel that has lowest variances of ita dual-side r^ighborhood. 
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This is formulated as 

yJvar(NBj) x var(NBj ), (18) 

where NB* and NBJ are, respectively, the upper and lower neighborhoods of TEj, 

and Vj is the variance measurement to be evaluated. TEh is considered the pixel 

of the horizon when its corresponding v# is the minimum value of Vj. Noisy points 

may emerge due to the discontinuity of the horizon in the fine edge map. These 

discontinuous points are removed by interpolation based on their neighboring points 

on the left and right. In this paper, the B-Spline interpolation method [40,41] is 

used. After removing all the noisy points, a smoothing technique is applied to local 

segments of the detected horizon to get the smooth final detection result as shown 

in Figure 19. 

3.5 EXPERIMENTAL RESULTS 

The proposed algorithm is tested on 100 images provided by Google Earth®, 

which are captured in various view angles, over different types of terrains, and at 

different elevations that range from 1000 to 30000 ft. On the same image set, the 

greedy search method [35], the Hough transform method [37], and the hierarchical 

method [3] are tested. The quantitative performance measurement, average maxi­

mum bias (AMB) [3], is utilized. AMB is defined as 

where Lh is the total pixel number of the detected horizon, HM is one tenth of L h, 

MBh (h = 1,2,..., Hm) is the /ith maximum bias from the detected horizon to the 

position of the true horizon in the unit of pixel. Evaluating the average bias of the 

worst detected segment can reveal the true performance of the method, avoiding 

the significant bias to be canceled out by well-aligned segments, that is, if the most 

AMB (19) 
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biased segment of the detection result can be considered satisfactory, the rest of 

the detected horizon can be guaranteed to be better than the most biased segment. 

Figure 20 shows the horizon detection results by using the four methods. Five AMB 

intervals are used, which are, respectively, according to perfect detection (AMB<1), 

good detection (1<AMB<5), acceptable detection, (5<AMB<10), biased detection 

(10<AMB<20), and false detection (AMB>20). The percentage shown above the 

bar of each AMB interval reflects the ratio of the number of images, of which the 

AMB value falls into that AMB interval, to the total number of tested images. 

The greedy search method finds the true horizon in 69% of the test (33% perfect 

detection and 36% good detection), though it fails in 25% of the test when sea, rivers 

or anything that has similar colors to the sky appear in the ground part of the image. 

It cannot achieve better detection because of the straight line assumption, though 

the general position of the horizon is detected. The Hough transform method, due 

to its intrinsic mechanism, is easily corrupted by other non-horizon edges shown in 

the image. This explains why it only achieves 5% perfect detection but a high rate of 

good and acceptable detection (43% and 45%). In particular, when the non-horizon 

edges are stronger than the horizon, it fails as shown in the 7% of false detection. The 

proposed method achieves 94% perfect detection and 4% good detection, showing the 

improvement to the hierarchical method [3], which generates 86% perfect detection 

and 9% good detection. It is worth noting that the latter two methods produced no 

false detections on the test images. Figure 21 shows a comparison of detection results 

generated by the four methods, respectively, in yellow, cyan, green, and red. All four 

methods detect the horizon in (a) and (b). In (c), the former two methods find the 

general position of the horizon but cannot fit its curvature due to the straight line 

assumption. The latter two methods accurately find the horizon. In (d), the former 

two methods fail. The hierarchical method [3] finds the true horizon with minor bias. 

The proposed method successfully detects the horizon. 
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3.6 DISCUSSION 

The experimental results prove the feasibility of the proposed horizon detection al­

gorithm. The accuracy and robustness of detection results generated by the proposed 

algorithm is achieved by the delicate detection mechanism. It provides a reliable tool 

for applications which require the horizon detection as a preliminary step. 
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FIG. 16: A sample 

FIG. 17: Coarse adjustment 

FIG. 18: Fine adjustment 

FIG. 19: Detected horizon 
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• AMB<sl • 1<AMB<S5 • 5<AMB<=10 • 10 <AMB«20 • AMB>20 

6r««dy March Hough transform Hierarchical method Proposed m«thod 

FIG. 20: Horizon detection results by using the greedy search method [35], Hough 
transform[37], hierarchical method[3], and the proposed method. 
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(c) 

FIG. 21: Detection results by using the greedy search method [35] (yellow), Hough 
transform[37] (cyan), hierarchical method[3] (green), and the proposed method (red). 
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CHAPTER 4 

LANDING-SITE DETECTION 

4.1 ROUGHNESS ASSESSMENT 

4.1.1 EDGE DETECTION 

The roughness of ground and the presence of hazards are often reflected as bound­

aries and high variance of pixel intensity values in visible images. If high resolution 

elevation maps are not available, it is plausible to assume that identifying rough areas 

or hazardous objects on the ground is equivalent to the process of edge detection in 

visible images. Canny edge detector [15] is an efficient tool for computing the sharp­

ness of edges, which is, from smoothest to sharpest, quantified to the range from 0 to 

255. This method is applied at the beginning of the roughness assessment module. 

Figure 22 shows a sample image provided by Google Earth®, and its edge detection 

result using the Canny detector is shown in Figure 23. Brighter pixels represents 

sharper edges and vice versa. 

4.1.2 EDGE ANALYSIS 

Different edge patterns appear among diverse regions in terms of the edge strength 

within a certain range. To characterize the difference, the edge map is first divided 

into un-overlapping blocks. The cumulative hazard strength (CHS) of each block is 

defined as follows, 

(20) 
p€B 



H(ESP)  
1 ESP  > T, 

0 ESP  < T, 

(21) 

where ESP  is the edge strength of each pixel p in block B, and H() is the hazard 

indicator function. If ESP is greater than the pre-specified safeness threshold T, the 

pixel p is considered hazardous and the CHS of block B, CHSb, is incremented by 

1. In contrast, if ES P  is no greater than T,  the pixel p is considered safe and CHSb  

remains the same. Thus, blocks of smooth areas have a zero or low CHS value, but 

blocks of rough areas have a high CHS value. The block size (BS) in the unit of 

pixels is adaptively determined based on the height of the camera hc in the unit of 

For example, if the aircraft is flying at a higher elevation, the image covers a relatively 

larger area on the ground and the realistic size of each pixel is relatively larger 

compared to the image captured at a lower height. As a result, to keep the consistency 

of the' realistic area of each block to some extent, the block size is set as a smaller 

number when the image is captured at a higher height, and vice versa. In addition, 

the pre-specified safeness threshold T is related to the requirement of acceptable 

smoothness. A lower value of T means a stricter requirement for smoothness, because 

the edge strength of more pixels will be beyond the safeness threshold and they will 

be considered hazardous. It is more reasonable to utilize a unified strict safeness 

threshold rather than an adaptive safeness threshold according to the change of hc, 

because loosing the requirement for smoothness "as the hc increases will bring risk 

to the landing process. It was empirically determined that T is not sensitive to the 

ft 

20 x 20 hc < 10000ft, 

BS= 1 15 x 15 10000/* < hc < 20000ft 

10 x 10 hc > 20000ft. 

(22) 
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final detection results if its value is picked in the range from 15 to 30, since the edge 

strength of hazards' boundaries is usually much higher than 30. In this study, T is 

selected to be 20 as a relatively stricter requirement for smoothness. 

Two benefits are gained by introducing the CHS in a block process fashion. First, 

it improves the system reliability against sparsely located noise. For example, the 

real boundaries between objects usually appear as continuous points in the edge 

map. However, noise generated in the imaging process often appears as isolated 

sparse points in the edge map. By counting the number of edge points in each block, 

the effect of those sparse noisy points can be eliminated. Second, it can improve the 

computational efficiency for the sequential steps. 

4.2 IMAGE SEGMENTATION 

4.2.1 K-MEANS CLUSTERING 

The classification module utilizes the K-means clustering method [42,43] to clas­

sify the CHS of each block into a number of clusters. For example, if the number of 

clusters is specified as seven, the clusters can be interpreted as "very rough," "rough," 

"moderate rough," "median," "moderate smooth," "smooth," and 'Very smooth." 

The number of clusters is firstly set to seven by default and then automatically re­

duced in the clustering procedure; that is, if any cluster loses all of its members, 

that cluster will be removed [42,43]. Figure 24 shows the clustering results of the 

sample image shown in Figure 22. In this case, four clusters are obtained: "dark 

blue" renders the smoothest areas, "red" renders the roughest areas, and "green" 

and "light blue" represent the areas in between. 

4.2.2 REGION GROWING 

Based on the clustering result, adjacent "smoothest" blocks are merged to form 



larger smooth areas by using the region growing method [44-47]. The result of 

connected areas is shown in Figure 25, where each area is labeled with a unique color. 

In the interests of efficiency, isolated tiny spots and narrow branches of merged areas 

can be removed by applying the morphological operation of image erosion [44,48,49] 

without assessing their dimensions, since they are obviously undersized. 

4.3 DIMENSION ASSESSMENT 

After the above steps, potential landing-sites are obtained, as shown in Figure 26. 

In this module, the realistic dimensions of those potential landing sites are measured 

to determine which of them are qualified to be candidate landing-sites. The realistic 

dimensionality of each potential landing-site is measured by converting its size from 

the image coordinate system to the realistic world coordinate system. In flight dy­

namics, changing the orientation of the aircraft to any direction can be decomposed 

to three kinds of rotations: yawing, rolling and pitching, which are respectively to 

rotate the aircraft along the vertical axis, the longitudinal axis, and the lateral axis. 

Given those three rotation angles, this procedure can be described by the intrinsic 

or extrinsic matrices composition [50,51] with which one can map the world coordi­

nate system to the aircraft coordinate system, and vice versa. In other words, two 

arbitrary points in an aefial image can be mapped to the world coordinate system 

so that the realistic distance between the two points on the ground is measurable 

if the three rotation angles are known. In practice, most aircrafts have the device 

to record the three angles so that they can be synchronically stored with real time 

aerial images. Images provided by Google Earth®are used in this pilot study. For 

this simulation, the imaging process is simplified with only pitching angle but no 

yawing and rolling angles because the actual information of all three rotation angles 

is unavailable. Therefore, -the imaging model in the vertical direction of the image 

coordinate system can be described as shown in Figure 28, and the realistic size of 
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each pixel along the vertical direction of the image can be computed as follows, 

do = hc • tan (a — fo^y), 

d\ = hc • tan(a - + 6\) - do, 

d2 — hc • tan(a — FOVy _j_ ^ _j_ ^) — ^ 

i i-i (23) 
di = /ic-tan(a- + ~H2dk, 

j=l k=0 

n v  n v-1 

dNv = hc • tan(a - ^fy) - ̂  dk, 
j=l k=o 

where hc is the height of camera, a is the pitching angle, FOVv is the field of view 

along the vertical direction of the image, Ny is the total number of pixels along the 

vertical direction, do is the distance between the vertical line and the first pixel, $i and 

dj(i = 1,2,..., Ny) are respectively the angle and the realistic distance corresponding 

to pixel pi along the vertical direction. For large Ny, &i(i = 1,2,..., Nv) can be 

considered to have the same approximate value 8 so that Equation (23) can be 

simplified as 

di = hc • tan(a - F°̂ v 
+ dk, 0 = F<̂ V • (24) 

2 Nv 

In addition, since it is assumed that there is no yawing or rolling rotation, the 

realistic size of pixels along the horizontal direction of the image is the same, 

j 2/ic ,FOVn^ N  
dH = — tan(—-—), (25) 

where FOVh is the field of view along the horizontal direction of the image, Nh is 

the total number of pixels along the horizontal direction. 
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The dimensions of each potential landing-site are estimated by measuring the 

major axis and minor axis of its best fit ellipse, which are obtained using the principle 

component analysis method. Once the major axis and the minor axis are found, the 

realistic length L and width W in the unit of feet can be gained as, 

where (xai,yai), (xa2, ya2) are coordinates of two end points of the major axis and 

(^6i,2/6i), (^62,2/62) are coordinates of two end points of the minor axis, in the image 

coordinate system. Figure 26 shows the length and width of each potential landing-

site in the unit of ft. Small areas with insufficient length or width are ruled out, and 

only large areas with sufficient length and width can be considered safe emergency 

landing-sites. 

4.4 HUMAN-MACHINE INTERFACE 

All the candidate landing-sites are highlighted on a human machine interface and 

labeled with preference iadices that are sorted in a descending order based on the 

respective region areas, as shown in Figure 27. This allows the pilot to efficiently 

evaluate the recommended candidates in the rational order, since the time cost of 

making a decision is very critical. The pilot will make his/her final decision by 

choosing one emergency landing-site from the recommended candidates as well as 

concerning other factors, e.g. wind direction, wind speed, maneuvering ability. In 

general, larger areas are preferable compared with smaller ones. 

L =  ( d H ( x a 2  ~  X a l ) ) 2  +  (  ̂  d f c ) 2 >  
> k=ya 1 

(26) 

W = (dH(xb2-xbl))* + (J2dk)2, 
*=V61 



4.5 PERFORMANCE METRIC 

To quantitatively evaluate the results generated by the proposed system, two vet­

eran professional pilots were asked to manually pick all the possible landing-sites in 

the original images. Their judgment is mainly based on the apparent smoothness of 

the areas shown in the images. Next, the realistic dimensions of these manually se­

lected areas are measured by using the same dimension assessment module mentioned 

above. This step is necessary because it is hard to accurately estimate the length 

and width of candidate landing-sites in the images captured at different heights by 

just looking at them. As shown in the left column of Figure 29, if the dimensions 

of a selected area meet the minimum requirement, it is labeled in "green" as a safe 

landing site. Otherwise, it is labeled in "red" as an unsafe landing site. After manual 

selection, all the selected regions are sorted in a descending order according to area. 

To fully evaluate the performance of the proposed CAD system, those manually se­

lected and labeled regions are utilized as the ground-truth candidate regions. The 

complete detection results produced by the proposed CAD system are compared to 

the ground truth. 
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FIG. 23: Edges found with Canny detector FIG. 22: A sample image 

FIG. 25: Multi-region growing result FIG. 24: Clustering result based on CHS 

FIG. 26: Measurement of realistic dimen- FIG. 27: Candidate sites for emergency 
sionality landing 
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FIG. 28: Simplified imaging model 



TABLE 1: Four possible results of the detection of landing-sites 

# Categories Ground Truth Results CAD System Results 

1 True Positive The area is safe for emergency landing 
and labeled as a candidate. 

Hazards are not found in the area AND 
its dimensions equal or exceed the re­
quirement. 

2 False Positive The area is not safe for landing. Hazards are not found in that area 
AND its dimensions equal or exceed 
the requirement. 

3 True Negative The area is not safe for landing. Hazards are found in that area OR its 
dimensions are below the requirement. 

4 False Negative The area is safe for emergency landing 
and labeled as a candidate. 

Hazards are found in that area OR its 
dimensions are below the requirement. 



If an area is found as a candidate landing site by the proposed CAD system, the 

detection result of this area is considered positive. Furthermore, if this detection 

result is consistent with the ground-truth, it is called a true positive (TP) detection. 

Otherwise, it is a false positive (FP) detection. Similarly, if an area is not selected 

as a candidate landing site by the proposed CAD system, the detection result of this 

area is considered negative. In addition, if this detection result is consistent with 

the ground-truth, it is called a true negative (TN) detection. Otherwise, it is a false 

negative (FN) detection. Table 1 lists the interpretations of the four exclusive and 

exhaustive situations. TP and TN axe desired correct diagnoses. FP and FN are 

wrong diagnoses and have to be eliminated. It is worth noting that an FP is the 

worst situation, since it can mislead the aircraft to a dangerous place. 

A scoring mechanism is proposed to quantitatively evaluate the performance of 

the proposed CAD system, 

S  — So  +  S g  — Sp ,  
N M N (27) 

So = J>, Sb = 5>T<, SP = Y.PiFr 
j=l i— 1 j —1 

For each test image, the score S consists of three parts: bonuses Sb for TP 

detections*- penalties Sp for FP detections, and th» base score So- In tbs. ground-

truth of each test image, there are M manually selected areas. According to the 

priority index, different bonus weights bi (i — 1,..., M) are given to these M areas 

in a descending order of size. If the CAD system successfully detects the ith largest 

safe landing-site in the ground truth, then bonus bi is earned. Tj is the flag that 

indicates if the ith largest area in the ground-truth was successfully detected by 

the system. In addition to the reward mechanism, a punishment mechanism is also 

use i. Tlittcomple^e detestoun-wsttfctepwd®#^ by the system before the visualization 

module contains N candidates, where N may be greater than five and different from 



M. Penalty pj ( j  = 1,..., N) is imposed if the jth recommended candidate landing 

site is an FP detection. Fj is the flag indicating if the jth detected area is an FP 

detection. The initiative of using bonus and penalties with different weights is to 

emphasize the priority of each safe landing-site in the ground truth. In general, 

the larger the dimensions of the landing-site are, the easier and safer the forced 

landing process is. Therefore, it is reasonable to give higher bonuses for true positive 

detection of larger safe landing-sites. Also, since a FP detection result labeled as 

a higher priority has more negative effect than a FP detection result labeled as a 

lower priority, it is reasonable to impose higher penalties to the former. In this 

dissertation, 6, is set, respectively, to be 30, 25, 20, 15, 10 for 1 < i < 5 and 5 for 

i > 6. In the same way, Pj is set, respectively, to be 30, 25, 20, 15, 10 for 1 < j < 5 

and 5 for j > 6. The base score Sq is the potential maximum of penalties that a set 

of detection results can get. It is used to guarantee that S is non-negative, even if in 

the worst case all of the N detection results are FP, 5 = 0, the lowest score that the 

CAD system can get. Since N can significantly vary among images, the scores need 

to be normalized to a unified range. The normalized score is computed as follows, 

o \ m 

QfmJ ' SFM ~ So + 

where S is the normalized score that is obtained by normalizing S using Sfm- Sfm 

is the possible full score for each experiment when all detection results are consistent 

with the ground-truth. After normalization, scores range from 0 to 100: a score of 

100 shows a perfect match while lower scores show decreasing matches between the 

S — 100 
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ground-truth and the CAD results. Equation (28) can be also interpreted as follows, 

s = 1oo(/^) = ioo(^), 
\ &max &rrvin / \ &FM / 

n m (29) 
Smin = ^ ^ Pj i Smax = ^ 5 7 Sg Sp, SfM = Smax Smin, 

j=l i=l 

where 5' is the actual performance of the N detection results, Smi„ and Smax are, 

respectively, the lower and upper bound of S'. S' — Smin is equivalent to S' + So 

shown in Equation (27), both of which transfer S' from the interval [5mjn, S^x] to 

the interval [0, Sfm] SO that S is guaranteed to be non-negative. Then, S is obtained 

by normalizing S from the interval [0,5^] to the unified interval [0,100]. 

Equation (28) fails under two scenarios. (1) For images captured above rough 

terrains, there may be no safe landing-sites in the ground-truth (M = 0, S-max — 0), 

so the best corresponding detection results should be no recommendations (N = 

0, Sb = 0, So = 0, Sp = 0). For this special case, Equation (28) is ill-defined, since 

its denominator is 0; (2) When all the detection results are FP (Sb = 0, So = Sp), 

Equation (28) fails to differentiate results with different numbers of FPs, since the 

numerators of those situations are all zero. For example, suppose there is one safe 

landing-site in the ground truth (M = 1, Smax — 30), the detection result of zero TP 

and zero FP (Sb = 0, So = 0, Sp = 0) should be better than the result of zero 1'P 

and two FPs (Sb — 0, So = 55, Sp — 55). However, based on Equation (28), S of 

both above is 0, which means it fails to differentiate these two scenarios. 

To solve these two problems, a correction is made to Equation (28) by adding a 

small augment a to the numerator and denominator, 

S = m( S + * ), SFM = S0 + y>. (30) 
\ S F M  +  aJ  
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a should be a relatively small number so that it has little effect on the ratio of the non­

zero numerator and denominator when there is at least one TP in the detection results 

(Sb > 0). In this dissertation, a is 1. By using Equation (30), both problems are 

solved: in scenario (1), S gets the expected score 100; In scenario (2) the normalized 

scores of the two scenarios are, respectively, 3.2 and 1.2. Thus the two scenarios get 

different scores, though both are relatively low, but at least "no recommendations" 

is better than false recommendations in this particular application. 

4.6 EXPERIMENTAL RESULTS 

The validation of the proposed system consists of three parts in this pilot study. 

Experiment 1 

The reliability and accuracy of the proposed system was validated on indepen­

dent static sample images with projection angles of 0° and 60°. A total of 169 

images captured at 1,000-30,000 ft, and 100 images captured at 5,000 ft were 

used for testing the CAD algorithm. The left column of Figure 29 shows five 

samples of the labeled manual selection, and the right column shows the cor­

responding results produced by the proposed CAD system. Two performance 

metrics are applied to evaluate the detection results. (1) A group-wise TP 

detection rate (GTPR) is defined as, 

yWmj rypp 
GTPR = - x 100%, (31) 

MTPi 

where DTPi is the number of TP detections in the ith image, MTPi is the num­

ber of safe landing-sites in the ith image in the ground truth, and Nimg is the 

total number of images in the testing set. The GTPRs of the 1,000-30,000ft 

testing set and the 5,000ft testing set are, respectively, 81.2% and 87.1%. (2) 

By using the performance metric presented in Section 4.5, normalized scores of 
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detection results of the two testing sets axe obtained, and the distribution of 

the normalized scores is shown in Table 2. 69.2% of the experimental results of 

the first set and 74.0% of the experimental results of the second set completely 

match the ground truth (S = 100), and 80.6% of the first set and 86.0% of the 

second set generally match the ground truth (S > 60), which demonstrates the 

feasibility of the proposed CAD system. It is noticed that there were 18.3% 

failures in the first set and 14.0% in the second set (S < 5). Two major causes 

are found, (a) At higher elevations, fewer details are seen since the realistic 

area covered by each pixel in the image becomes larger when camera height 

increases. As a result, some areas appear to be smooth in the image, while in 

reality they are not. This explains why the results of the 5,000ft set is bet­

ter than that of the 1,000-30,000ft set. This image resolution problem is, of 

course, a characteristic of the image-capture device, (b) Artificial or pseudo 

boundaries may cause the system to miss safe landing-sites. For example, an 

area may be flat but changes in soil color or soil texture appear as sharp edges 

that can confuse the CAD system. This can be attributed to the assumption 

that elevation changes can be mapped by edges in visible images. In the ab­

sence of elevation information (most small general aviation aircraft do not have 

an elevation database on board), imagery captured by aircraft cameras Is the 

only source for computer algorithms to evaluate the surface roughness. The 

proposed CAD system can play an important role in this situation. 



TABLE 2: Distribution of normalized scores of experimental results 
Normalized Score 
! -

0 1 2 3 4 5-45 50 55 60 65 70 75 80 85 90 95 100 

Percentage(%), lk-30k ft 0 4.1 8.9 0 5.3 0 1.2 0 3.0 0 0.6 0.6 1.8 3.6 0.6 1.2 69.2 
Percentage(%), 5k ft 0 0 9.0 0 5.0 0 0 0 4.0 0 1.0 2.0 5.0 0 0 0 74.0 
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Experiment 2 

The consistency of detection results is important, because the proposed system 

eventually will be utilized as a real time system to detect safe landing-sites 

as the aircraft moves. This is done by applying the proposed system to 10 

sequences of images, each of which has 10 to 15 images. The motion of the 

aircraft is reflected by the relative position of the sequential images. For ex­

ample, if the aircraft moves along the direction parallel to the ground, the 

corresponding sequence of images covers a band along the trace of the aircraft. 

The distance between the centers of every two consecutive images is determined 

by the flying speed. In other words, two consecutive images captured by the 

aircraft with lower speed have more overlap than those captured by one with 

higher speed. One sample sequence is shown in Figure 30(a), in which the 

distance between two consecutive images is about 2.5 seconds of latitude and 0 

seconds of longitude, that is, approximately 253 feet or 77 meters. In addition, 

10 sequences of images captured over a same spot but at different heights in 

the direction perpendicular to the ground are tested. Figure 30(b) shows a 

sequence of images along the vertical direction. A pair-wise consistency rate 

(CR) of detection results between two adjacent images and is defined as, 

where CM is the number of common safe landing-sites in the ground truth 

between two adjacent images and CN is the number of common TP detection 

results between two adjacent images. The average consistency rate (ACR) is 

defined as, 

CR = —- x 100%, 
CM 

(32) 

(33) 
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where / is the index of images, F is the total number of images in one sequence, 

and CRf is the consistency rate between the /th image and the (/-bl)th image. 

The average ACR of tested 20 sequences is 84.1%. 

4.7 DISCUSSION 

A vision-based real time information source is indispensable in the application of 

seeking safe emergency landing-sites. Although there are existing advanced equip­

ments, that contain databases to indicate the locations of plain areas which are 

suitable for emergency landing, the system should possess the capability to iden­

tify transitory hazards or moving objects on a real time basis. The relatively low 

update frequency of the database mentioned above often cannot satisfy this expec­

tation. Ideally, the proposed system can be combined with such a database to work 

together. For example, if the database can provide the location of a potential safe 

area and this area is within the reachable radius of the aircraft, the pilot can first 

follow the direction prompted by the database. As a result, the aircraft is expected 

to go in a generally correct direction. Then, by using the proposed system, safe 

landing-sites can be found after ruling out hazardous sites in that generally safe 

area. This hierarchical methodology is also applicable for exploratory landing on the 

moon, Mars, or other planets, to eliminate the damage to the spacecraft during the 

landing procedure. 

Image quality is directly related to the reliability of the detection results. Given 

that the camera is at the same height, few details can be seen in a low resolution 

image, because each pixel of the image covers a large area on the ground. Similarly, 

for a given camera, fewer details can be seen from the higher elevations, so some 

areas appear to be smooth in the image, while in reality they are not. The resolution 

is, of course, a characteristic of the image-capture device, and a high quality imaging 
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(arl) (b-1) 
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FIG. 30: Detection results of sequential images, (a) Aircraft moves along the direc­
tion parallel to the ground, (b) Images are captured over the same spot at different 
elevations. 
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device is always desirable. 

In this study, the candidate landing-sites recommended to the pilot are sorted 

in a descending order only according to their areas. The factor of maneuverability 

has not been taken into account. The assumption used in this study is that a larger 

and wider landing-site can provide relatively more room for the emergency landing, 

which is indeed a positive factor for the emergency landing process. However, in 

reality the access to the largest candidate landing-site may not be safe and simple 

for the unpowered aircraft in terms of maneuverability. Therefore, if a method can 

be developed to estimate the degree of safeness, reliability and difficulty of landing 

at each candidate site by evaluating the recommended candidate landing-sites with 

other factors which are not reflected in the image, i.e., the controllability of the 

aircraft, wind direction, wind speed and so on, the automatic detection system can 

provide a comprehensive index of the priority of each candidate landing-site, which 

will be an advantage to the proposed system, although that is out of the scope of this 

dissertation. Currently this task is left to the pilot who will make the final decision 

by evaluating the recommended candidate landing-sites in an all-inclusive manner. 



61 

CHAPTER 5 

TERRAIN ANALYSIS 

Conventionally the task of terrain analysis is achieved by using multi-spectrum 

or hyper-spectrum remote sensing images [52-57]. In this chapter, an attempt is 

made to distinguish different types of terrains by using artificial neural networks. 

Selected features are first described for terrain analysis, and then the output weight 

optimization back propagation output reset (OWO-BP-OR) neural network [58-60] 

is introduced. Using this neural network as a unit, a cascaded neural network is 

designed. Experimental results are presented in Section 5.4. 

5.1 TERRAIN FEATURES 

Each terrain patch to be classified, P, contains Nr rows, Nc columns, and Nb 

spectral bands (Nr = 100, Nc = 100, Nb = 3 in this study). The feature vector 

V extracted from each terrain patch consists of (1) the standard deviation (std) of 

each band (Vi to Vy6), (2) the ratio between means of bands (V/v6+i to V^Vj), (3) 

normalized energy in Nring rings of the frequency spectrum [V2Nb+\ to V(2+Nri„g)Nb), 

(4) the ratio of (3) between channels (V(2+ntina)nb+i to V2{l+Nring)Nb). Given Nb = 3 

and Nnng = 5, the 36 elements of feature vector V can be written as follows. 

(1) The standard deviation (std) of each band (Vj to V3) 

(34) 
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where Pi is the ith band of P, and Mi is the mean of Pj which is defined as, 

,  nr n c  

Mi = N~N~ ̂  SP<(Xl'X2)'i = 1'2'3- (35) 
Xl = 1 X2 = l 

(2) The ratio between means of bands (V4 to V^) 

V. = (36) 

« " t' P7) 

- W <*> 

(3) The normalized energy in rings of the frequency spectrum (V7 to V21) 

n r  n c  

V6+5(i_1)+j = 1,1=1 ^ „e ,i = 1,2,3, j = 1,2,...,5, (39) 

X) £ \Fi{Vl,V2)\ 
Vl = l 1*2=1 

n r  n c  

("^ (if+^)) • 

R{uUv2)  = < 
1 ri„, < < r,, 

0 otherwise. 

(40) 

(41) 

r0 = 0, Tj = ĵ min(Nr, Nc), (42) 

where Fi is the two-dimensional discrete Fourier transform (DFT) of Pi,  R is the 

mask of the jth ring of F*, is the outer radius of the jth ring. In Figure 31, (a) 

shows a sample terrain patch, and (b) to (d) show the frequency spectrums of RGB 

bands of (a), labeled with normalized energy contained in each ring. 



W (d) 

FIG. 31: (a) A sample terrain patch, (b)-(d) frequency spectrums of RGB bands of 
(a) labeled with normalized energy contained in each ring. 

(4) The ratio of normalized energy between bands (V22 to V^) 

t / ^6+5mod(i— l,iVch)+j . lOQi* 10 K  ( A  ̂  ^2i-f-5(»—i)+j \r  1? 3, j  1,..., 5, (43j 
"6+5mod(i, jVc/l)+ j 

mod(a, b) — a — j x b. (44) 

5.2 OWO-BP-OR NEURAL NETWORK 

A multi-layer perceptron (MLP) is employed as the classifier. The output weight 
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optimization back propagation output reset (OWO-BP-OR) algorithm [58,59] is im­

plemented. The classifier is realized as a three-layer neural network with hidden units 

as shown in Figure 32, which contains an input layer, a hidden layer, and an output 

layer. The input layer contained Nin input units and a bias term. Each input unit 

corresponded to a feature item in the feature vector. The output layer contained 

Naut output units. 

It is worth noting that the range of each element in the feature vector V can be 

significantly different. If V is directly utilized as the training input, some elements 

of V with relatively larger standard deviations will dominate the training, even if 

they might be actually relatively useless. To avoid this problem, the mean and the 

standard deviation of each element of V is first computed, so that the normalized 

feature vector V is obtained as, 

where nm and am (m = 1,2,..,Nin) are, respectively, mean and standard deviation 

of Vm. The augmented input vector Va is defined as 

The total number of vectors in the training set is Nv. For simplicity, s (s = 

1,2,..., Nv) is used to index all the vectors in the training set. Y„ is defined as 

the corresponding classification output of the 5th augmented input vector Va>. Trs 

is defined as the classification ground truth of Va.- All the input feature vectors Va, 

(s — 1,2,..., Nv) form the input matrix Xa. Similarly, all the output vectors Y„ form 

the output matrix Y, and all the ground truth vectors Trs form the ground truth 

matrix Tr. 

Vm 
Hm (45) 

(46) 
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FIG. 29: Comparison between manual selection and automatic detection, (a): manu­
ally selected landing-sites; (b): recommended landing-sites detected by the proposed 
system 
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The goal of the training process is to minimize the error function E, which is 

defined as 
1 Nv Novt 

E=w E £ (r«(*) - y«(fc))2. (4?) 
v 1 *=1 

where k denotes the index of classes. The relationship between the ground truth 

vector Trs and the ground truth class label fs of vector Vaa can be written as 

Tra(k) = 1, k = f,; 
< (48) 
Tr3(k) = -1, k̂ fa. 

For example, if N̂ t is 3, when fa = 1, Tra = (1 - 1 - 1)T; when fs = 2, Tra = 

(—1 1 — 1)T; and when fa = 3, Tra = (—1 — 1 1)T. 

Before the training, W2, the weight matrix between the input layer to the hidden 

layer, was initialized with random numbers that follow a Gaussian distribution with a 

0 mean and a standard deviation of 1. The dimensionality of w? is Nh, x (jVin + l). tu3, 

the weight matrix between the input layer and the output layer, and w, the weight 

matrix between the hidden layer and the output layer, do not need to be initialized, 

since they will be solved by the OWO algorithm [58], [59] as follows, 

. wc = {HaTHa)ZlHaTTT, (49) 

where Ha and wc are respectively defined as 

Ha = 

\ X' /  

, wc = (w w3), (50) 

where H is constitutive of Nv hidden vectors Hs (s = 1,2,..., Nv). The dimensions of 

wc,.w, and w3 axe-N^t x (Nh + #*,-+1), x NM and ; {N^X), tczpeti?. rely. 
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The output matrix Y is computed as 

Y = wcHa. (51) 

The OWO algorithm [58], [59] solves for output weights wCl or w and u>3, while 

the BP algorithm updates the hidden weights w2j detailed as 

where Z is a learning factor that will continuously update during the training process. 

One possible problem of the cost function in (47) is that when a feature vector 

is already correctly classified, the cost function still may be increased. To solve this 

problem, the OE algorithm [58] is used. It improves the cost function as follows, 

where as and ds(k) are first initialized to zero and then updated during the training. 

5.3 CASCADED CLASSIFIER 

The OWO-BP-OR neural network described above ideally should be able to gen­

erate distinguishable prediction results, i.e. the output element according to the 

desired class is 1 and the rest output elements are —1. However, in practice, there 

could be more than one output elements having positive values, and sometime they 

are very close to each other so that the output element corresponding to the desired 

class might not have the highest value. If the decision is only based on the highest 

value, the desired classification result could be missed, though it might be just slightly 

lower than the highest value. Alternatively, if the least possible classes can first be 

excluded and the most possible classes retained, the classification process then can 

(52) 

(53) 
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be achieved within a narrowed range. This refined procedure can be carried out in 

an iterative fashion. As a result, a more reliable prediction result can be expected to 

be obtained. 

Based on this idea, a cascaded classifier is designed by making use of the OWO-

BP-OR neural network asifcs classification unit on each level. Instead of making a 

hard classification decision in one step by selecting the highest output element in the 

predicted result generated by a neural network, the cascaded classifier brings in a 

soft decision strategy. The classification process achieved by the cascaded classifier, 

which consists of multiple cascaded levels, becomes a refining procedure, in which a 

certain number of least possible classes are excluded on each level, as the number of 

candidate classes decreases. The desired classification result is gained on the final 

level. The structure of the proposed cascaded classifier is shown in Figure 33. On 

level one, an iVT-class classifier produces the output vector with Nt elements for each 

input feature vector. The least possible class can be found according to the lowest 

value of the elements and then the same feature vector is fed to a (Nt — l)-class 

classifier on level two, which is trained to differentiate Nt — 1 classes except the one 

that is just excluded. There are NT classifiers on level two. Similarly, according to 

the output generated on level two, another least possible class gets excluded, and the 

same injrtrt feature vector is ffeflrto a 7VT — 2 classifier on leveFthree. This refining 

procedure is carried out until it reaches the final level. It is worth noting that there 

are Nt — 1 levels in total and the number of classifiers on level k is determined by 

the number of combinations of Nt — k + 1 classes out of iVj classes, which can be 

computed as 

(54) 
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FIG. 32: (a) Multi-layer neural network representation; (b) Simplified representation 
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5.4 EXPERIMENTAL RESULTS 

1,005 patches are manually extracted from Google Earth®covering 7 terrain 

classes as shown in Figure 34: (1) fresh water; (2) salt water; (3) green grass/farm; 

(4) yellow grass/farm; (5) rock; (6) dessert; (7) pavement. Only one type of terrain 

appears in each patch. The data set is split into two parts. 503 patches are used for 

training and the other 502 patches are used for testing. 

FIG. 34: (a) fresh water; (b) salt water; (c) green grass/farm; (d) yellow grass/farm; 
(e) rock; (f) dessert; (g) pavement. 
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Experiment 1 

The weights of the neural network are obtained by using the method described in 

Section 5.2 at the training phase. Then, the testing data set is tested by using the 

trained neural network. Empirically, the number of hidden units Nh is set to 15 in 

this study. The training accuracy is defined by the ratio of the number of correct 

classification results to the total number of training samples. The testing accuracy 

is defined by the ratio of the number of correct classification results to the total 

number of testing samples. For the 7-class classifier, its training accuracy is 62.4% 

and testing accuracy is 61.6%. 

Experiment 2 

Each classification unit used ta form the cascaded classifier is individually trained 

for each particular set of classes. In general, a classifier for fewer classes can generate 

better classification results, which is consistent with the idea mentioned above and 

the experimental results listed in Table 3 in Appendix A. It lists classifiers covering 

all the combinations of the 7 classes. For example, the training and testing accu­

racies of two-class classifiers reach over 95%. Because only two classes of patches 

get involved, the disturbance is relatively low. As the number of classes increases, 

the accuracy accordingly decreases. Therefore, a classifier with fewer classes may 

produce more reliable classification results than a classifier with more classes. The 

soft decision strategy is brought in by placing the 7-class classifier on the top and the 

2-class classifier at the bottom. As shown in Experiment 1, the training and testing 

accuracies of the 7-class classifier are 62.4% and 61.6%. However, after the refining 

classification procedure, the overall training and testing accuracies are, respectively, 

improved by 14.6% and 14.1% to 71.5% and 70.3%. 
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5.5 DISCUSSION 

The classification accuracy can be further improved by introducing new features, 

since most of the classification errors are found between the two classes of fresh water 

and green grass/farm. Since features are extracted from each terrain patch without 

any environmental context, they do not appear to be strong enough to successfully 

distinguish these two classes. In the future, other features will be applied to the 

classifier. 
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CHAPTER 6 

CONCLUSIONS 

A novel CAD prototype system for automatic safe landing-site detection is pro­

posed in this dissertation, which is one of the few pilot studies in this area. By 

seamlessly combining a series of advanced image processing and analysis techniques 

and elaborately coordinating them to work together, the proposed system alleviates 

the limitations of human vision under poor illumination or weather conditions and 

primarily achieves the desired function, that is, to provide a robust, reliable, and 

efficient algorithm to automatically detect safe emergency landing-sites and to save 

time for the pilot under emergency situations to devote to other necessary actions. 

The promising experimental results show the feasibility of the design of the proposed 

system. It builds up a solid system framework which can be improved in the future. 

A hierarchical elastic horizon detection algorithm is proposed to identify the 

ground in the aerial image so that the camera is relieved from the limitation of 

looking straight down to the ground. In the forward-looking mode, the system can 

detect safe landing-sites in front of the aircraft, which is significantly important for 

an unpowered aircraft during the gliding mode, because forward landing-sites provide 

more preparation time to the pilot to make right decisions and operations. Use of 

the forward-looking mode makes this dissertation distinguished from the few known 

studies in this area, in which use of the straight-looking mode is the convention. 

A performance metric is developed to comprehensively and quantitatively evalu­

ate the detection results, which fills the blank of a quantitative performance metric 

on this specific topic. In addition, some technical details are also delicately improved 

for the efficiency and reliability of the system, compared with the few known studies. 
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Several suggestions are listed as future work to make the system to better meet 

practical demands and applications. A denoising step might be needed to eliminate 

strong noise and artifacts, because the real world video data often has low signal 

to noise ratio and low resolution. A target tracking algorithm can be brought in to 

reduce the computational load of the video stream. The algorithm can be performed 

in a parallel fashion and implemented on a hardware platform. A shortwave near 

infrared sensor can be applied to obtain addition information. The proposed sys­

tem has a wide range of potential applications, i.e. UAV autonomous landing and 

spacecraft landing, etc. 
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APPENDIX A 

TRAINING AND TESTING RESULTS OF CLASSIFIERS 

FOR ALL POSSIBLE COMBINATIONS 

TABLE 3: Training and Testing Results of Classifiers for All Possible Combinations 

Classifier No. Tra R W Acc TVa No. Tst R W Acc Tst 

1. 2. 138 128 10 92.8 138 127 11 92.0 

1. 3. 201 187 14 93.0 201 185 16 92.0 

1. 4. 174 169 5 97.1 172 166 6 96.5 

1. 5. 89 89 0 100.0 88 87 1 98.9 

1. 6. 96 96 0 100.0 95 95 0 100.0 

1. 7. 120 112 8 93.3 118 112 6 94.9 

2. 3. 213 213 0 100.0 215 215 0 100.0 

2. 4. 186 186 0 100.0 186 186 0 100.0 

2. 5. 101 101 0 100.0 102 102 0 100.0 

2. 6. 108 108 0 100.0 109 109 0 100.0 

2. 7. 132 132 0 100.0 132 131 1 99.2 

3. 4. 249 239 10 96.0 249 239 10 96.0 

3. 5. 164 163 1 99.4 165 163 2 98.8 

3. 6. 171 171 0 100.0 172 172 0 100.0 

3. 7. 195 192 3 98.5 195 194 1 99.5 

continued on next page 
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Classifier No. TVa R W Acc Tra No. Tst R W Acc Tst 

4. 5. 137 132 5 96.4 136 130 6 95.6 

4. 6. 144 144 0 100.0 143 143 0 100.0 

4. 7. 168 167 1 99.4 166 165 1 99.4 

5. 6. 59 59 0 100.0 59 55 4 93.2 

5. 7. 83 83 0 100.0 82 81 1 98.8 

6. 7. 90 90 0 100.0 89 89 0 100.0 

1. 2. 3. 276 241 35 87.3 277 241 36 87.0 

1. 2. 4. 249 223 26 89.6 248 223 25 89.9 

1. 2. 5. 164 145 19 88.4 164 145 19 88.4 

1. 2. 6. 171 158 13 92.4 171 155 16 90.6 

1. 2. 7. 195 170 25 87.2 194 172 22 88.7 

1. 3. 4. 312 258 54 82.7 311 257 54 82.6 

1. 3. 5. 227 203 24 89.4 227 196 31 86.3 

1. 3. 6. 234 209 25 89.3 234 206 28 88.0 

00
 

r4
 

258 218 40 84.5 257 217 40 84.4 

1. 4. 5. 200 175 25 87.5 198 171 27 86.4 

1. 4. 6. 207 191 16 92.3 205 192 13 93.7 

1. 4. 7. 231 208 23 90.0 228 212 16 93.0 

1. 5. 6. 122 116 6 95.1 121 110 11 90.9 

1. 5. 7. 146 137 9 93.8 144 133 11 92.4 

1. 6. 7. 153 143 10 93.5 151 144 7 95.4 

2. 3. 4. 324 271 53 83.6 325 279 46 85.8 

2. 3, 5. ... 239 >228 11 95.4 241 •225 16 93.4 

continued on next page 
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Classifier No. Tra R W Acc Tra No. Tst R W Acc Tst 

2. 3. 6. 246 241 5 98.0 248 240 8 96.8 

2. 3. 7. 270 258 12 95.6 271 263 8 97.0 

2. 4. 5. 212 186 26 87.7 212 187 25 88.2 

2. 4. 6. 219 218 1 99.5 219 217 2 99.1 

2. 4. 7. 243 229 14 94.2 242 225 17 93.0 

2. 5. 6. 134 75 59 56.0 135 76 59 56.3 

2. 5. 7. 158 155 3 98.1 158 153 5 96.8 

2. 6. 7. 165 164 1 99.4 165 161 4 97.6 

3. 4. 5. 275 251 24 91.3 275 250 25 90.9 

3. 4. 6. 282 273 9 96.8 282 271 11 96.1 

3. 4. 7. 306 278 28 90.8 305 284 21 93.1 

3. 5. 6. 197 180 17 91.4 198 181 17 91.4 

3. 5. 7. 221 212 9 95.9 221 214 7 96.8 

3. 6. 7. 228 224 4 98.2 228 224 4 98.2 

4. 5. 6. 170 150 20 88.2 169 146 23 86.4 

4. 5. 7. 194 185 9 95.4 192 178 14 92.7 

4. 6. 7. 201 198 3 98.5 199 196 3 98.5 

5. 6. 7. 116 102 14 87.9 115 102 13 88.7 

1. 2. 3. 4. 387 285 102 73.6 387 281 106 72.6 

1. 2. 3. 5. 302 239 63 79.1 303 239 64 78.9 

1. 2. 3. 6. 309 235 74 76.1 310 225 85 72.6 

1. 2. 3. 7. 333 245 88 73.6 333 248 85 74.5 

1. 2 4. 5. 275- 219 56 79.6 274 222 52 81.0 

continued on next page 
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Classifier No. Tra R W Acc Tra No. Tst R W Acc Tst 

1. 2. 4. 6. 282 212 70 75.2 281 212 69 75.4 

1. 2. 4. 7. 306 212 94 69.3 304 219 85 72.0 

1. 2. 5. 6. 197 142 55 72.1 197 144 53 73.1 

1. 2. 5. 7. 221 177 44 80.1 220 181 39 82.3 

1. 2. 6. 7. 228 168 60 73.7 227 165 62 72.7 

1. 3. 4. 5. 338 242 96 71.6 337 239 98 70.9 

1. 3. 4. 6. 345 261 84 75.7 344 259 85 75.3 

1. 3. 4. 7. 369 277 92 75.1 367 270 97 73.6 

1. 3. 5. 6. 260 205 55 78.8 260 202 58 77.7 

1. 3. 5. 7. 284 222 62 78.2 283 222 61 78.4 

1. 3. 6. 7. 291 223 68 76.6 290 220 70 75.9 

1. 4. 5. 6. 233 192 41 82.4 231 191 40 82.7 

1. 4. 5. 7. 257 202 55 78.6 254 205 49 80.7 

1. 4. 6. 7. 264 215 49 81.4 261 211 50 80.8 

1. 5. 6. 7. 179 137 42 76.5 177 138 39 78.0 

2. 3, 4. 5. 350 269 81 76.9 351 272 79 77.5 

2. 3. 4. 6. 357 298 59 83.5 358 299 59 83.5 

2. 3. 4. 7. 381 302 79 79.3 381 302 79 79.3 

2. 3. 5. 6. 272 234 38 86.0 274 230 44 83.9 

2. 3. 5. 7. 296 251 45 84.8 297 250 47 84.2 

2. 3. 6. 7. 303 261 42 86.1 304 260 44 85.5 

2. 4. 5. 6. 245 217 28 88.6 245 213 32 86.9 

2. 4.r5. 7A 269: 
I 

207 62 r- 77,0"-- 268 -,20.Q 65 75.7 

continued on next page 
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continued from previous page 

Classifier No. TVa R W Acc Tra No. Tst R W Acc Tst 

2. 4. 6. 7. 276 234 42 84.8 275 229 46 83.3 

2. 5. 6. 7. 191 158 33 82.7 191 158 33 82.7 

3. 4. 5. 6. 308 262 46 85.1 308 269 39 87.3 

3. 4. 5. 7. 332 272 60 81.9 331 273 58 82.5 

3. 4. 6. 7. 339 301 38 88.8 338 305 33 90.2 

3. 5. 6. 7. 254 214 40 84.3 254 218 36 85.8 

4. 5. 6. 7. 227 198 29 87.2 225 198 27 88.0 

1. 2. 3. 4. 5. 413 289 124 70.0 413 282 131 68.3 

1. 2. 3. 4. 6. 420 290 130 69.0 420 278 142 66.2 

1. 2. 3. 4. 7. 444 297 147 66.9 443 296 147 66.8 

1. 2. 3. 5. 6. 335 235 100 70.1 336 227 109 67.6 

1. 2. 3. 5. 7. 359 261 98 72.7 359 253 106 70.5 

1. 2. 3. 6. 7. 366 253 113 69.1 366 245 121 66.9 

1. 2. 4. 5. 6. 308 219 89 71.1 307 218 89 71.0 

1. 2. 4. 5. 7. 332 225 107 67.8 330 223 107 67.6 

1. 2. 4. 6. 7. 339 233 106 68.7 337 235 102 69.7 

1. 2. 5. 6. 7. 254 163 91 64.2 253 166 87 65.6 

1. 3. 4. 5. 6. 371 264 107 71.2 370 261 109 70.5 

1. 3. 4. 5. 7. 395 273 122 69.1 393 276 117 70.2 

1. 3. 4. 6. 7. 402 296 106 73.6 400 297 103 74.3 

1. 3. 5. 6. 7. 317 217 100 68.5 316 215 101 68.0 

1. 4. 5. 6. 7. 290 228 62 78.6 287 221 66 77.0 

2. 3. -:4. 5. & 

C
O
 0

0
 C
O
 

296 -87 77.3k 3?' 293 91 76.3 

continued on next page 
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continued from previous page 

Classifier No. Tra R W Acc Tra No. Tst R W Acc Tst 

2. 3. 4. 5. 7. 407 299 108 73.5 407 303 104 74.4 

2. 3. 4. 6. 7. 414 327 87 79.0 414 331 83 80.0 

2. 3. 5. 6. 7. 329 258 • 71 78.4 330 271 59 82.1 

2. 4. 5. 6. 7. 302 242 60 80.1 301 236 65 78.4 

3. 4. 5. 6. 7. 365 292 73 80.0 364 306 58 84.1 

1. 2. 3. 4. 5. 6. 446 288 158 64.6 446 279 167 62.6 

1. 2. 3. 4. 5. 7. 470 306 164 65.1 469 299 170 63.8 

1. 2. 3. 4. 6. 7. 477 318 159 66.7 476 310 166 65.1 

1. 2. 3. 5. 6. 7. 392 250 142 63.8 392 244 148 62.2 

1. 2. 4. 5. 6. 7. 365 244 121 66.8 363 242 121 66.7 

1. 3. 4. 5. 6. 7. 428 286 142 66.8 426 281 145 66.0 

to
 

CO
 

5. 6. 7. 440 322 118 73.2 440 328 112 74.5 

1. 2. 3. 4. 5. 6. 7. 503 314 189 62.4 502 309 193 61.6 
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