305 research outputs found

    MODELING WHEAT YIELD BY USING PHENOLOGYCAL METRICS DERIVED FROM SENTINEL2 IN ARID AND SEMI-ARID REGIONS- A case study in MOROCCO-

    Get PDF
    ABSTRACT  Context and background Wheat is one of the oldest cultivated plants in the world and has always been one of the most important staples for millions of people around the world and especially in North Africa, where wheat is the most used crop for typical food industry. Thus, an operational crop production system is needed to help decision makers make early estimates of potential food availability Yield estimation using remote sensing data has been widely studied, but such information is generally scarce in arid and semi-arid regions such as North Africa, where interannual variations in climatic factors, and spatial variability in particular, are major risks to food security.Goal and Objectives: The aim of this study is to develop a model to estimate wheat yield based on phenological metrics derived from SENTINEL-2 NDVI images in order to generalize a spatial model to estimate wheat yields in Morocco's semi-arid conditionsMethodology:The 10 m NDVI time series was integrated into TIMESAT software to extract wheat phenology-related metrics during the 2018-2019 agricultural season, the period in which ground truth data was collected.  Through the multiple stepwise regression method, all phenological metrics were used to predict wheat yield. Moreover, the accuracy and stability of produced models were evaluated using a K-fold cross-validation (K-fold CV) method.Results:The results of the obtained models indicated a good linear correlation between predicted yield and field observations (R2 = 0.75 and RMSE of 7.08q/ha). The obtained method could be a good tool for decision makers to orient their actions under different climatic conditions

    Besoin en eau et rendements des céréales en Méditerranée du Sud : observation, prévision saisonnière et impact du changement climatique

    Get PDF
    Le secteur agricole est l'un des piliers de l'économie marocaine. En plus de contribuer à 15% au Produit Intérieur Brut (PIB) et de fournir 35% des opportunités d'emploi, il a un impact sur les taux de croissance. Ces dernières sont affectées négativement ou positivement par les conditions climatiques et la pluviométrie en particulier. Lors des années de sécheresse, caractérisées par une baisse de la production agricole, en particulier celle des céréales, la croissance de l'économie marocaine a été sévèrement affectée et les importations alimentaires du royaume ont augmenté de manière significative. Dans ce contexte, il est important d'évaluer l'impact de la sécheresse agricole sur les rendements céréaliers et de développer des modèles de prévision précoce des rendements, ainsi que de déterminer l'impact futur du changement climatique sur le rendement du blé et leurs besoins en eau. Le but de ce travail est, premièrement, d'approfondir la compréhension de la relation entre le rendement des céréales et la sécheresse agricole au Maroc. Afin de détecter la sécheresse, nous avons utilisé des indices de sécheresse agricole provenant de différentes données satellitaires. En outre, nous avons utilisé les sorties du système d'assimilation des données terrestres (LDAS). Deuxièmement, nous avons développé des modèles empiriques de la prévision précoce des rendements des céréales à l'échelle provinciale. Pour atteindre cet objectif, nous avons construit des modèles de prévision en utilisant des données multi-sources comme prédicteurs, y compris des indices basés sur la télédétection, des données météorologiques et des indices climatiques régionaux. Pour construire ces modèles, nous nous sommes appuyés sur des algorithmes de machine learning tels que : Multiple Linear Regression (MLR), Support Vector Machine (SVM), Random Forest (RF) et eXtreme Gradient Boost (XGBoost). Enfin, nous avons évalué l'impact du changement climatique sur le rendement du blé et ses besoins en eau. Pour ce faire, nous nous sommes appuyés sur cinq modèles climatiques régionaux disponibles dans la base de données Med-CORDEX sous deux scénarios RCP4.5 et RCP8.5, ainsi que sur le modèle AquaCrop et nous nous sommes basés sur trois périodes, la période de référence 1991-2010, la deuxième période 2041-2060 et la troisième période 2081-2100. Les résultats ont montré qu'il y a une corrélation étroite entre le rendement des céréales et les indices de sécheresse liés à l'état de végétation pendant le stade d'épiaison (mars et avril) et qui sont liés à la température de surface pendant le stade de développement en janvier-février, et qui sont liés à l'humidité du sol pendant le stade d'émergence en novembre-décembre. Les résultats ont également montré que les sorties du LDAS sont capables de suivre avec précision la sécheresse agricole. En ce qui concerne la prévision du rendement, les résultats ont montré que la combinaison des données provenant de sources multiples a donné des meilleurs résultats que les modèles basés sur une seule source. Dans ce contexte, le modèle XGBoost a été capable de prévoir le rendement des céréales dès le mois de janvier (environ quatre mois avant la récolte) avec des métriques statistiques satisfaisants (R² = 0.88 et RMSE = 0.22 t. ha^-1). En ce qui concerne l'impact du changement climatique sur le rendement et les besoins en eau du blé, les résultats ont montré que l'augmentation de la température de l'air entraînera un raccourcissement du cycle de croissance du blé d'environ 50 jours. Les résultats ont également montré une diminution du rendement du blé jusqu'à 30% si l'augmentation du CO2 n'est pas prise en compte. Cependant, l'effet de la fertilisation au CO2 peut compenser les pertes du rendement, et ce dernier peut augmenter jusqu'à 27%. Finalement, les besoins en eau devraient diminuer de 13 à 42%, et cette diminution est associée à une modification de calendrier d'irrigation, le pic des besoins arrivant deux mois plus tôt que dans les conditions actuelles.The agricultural sector is one of the pillars of the Moroccan economy. In addition to contributing 15% in GDP and providing 35% of employment opportunities, it has an impact on growth rates that are negatively or positively affected by climatic conditions and rainfall in particular. During drought years characterized by a decline in agricultural production and in particular cereal production, the growth of the Moroccan economy was severely affected and the kingdom's food imports increased significantly. In this context, it's important to assess the impact of agricultural drought on cereal yields and to develop early yield prediction models, as well as to determine the future impact of climate change on wheat yield and water requirements. The aim of this work is, firstly to further understand the linkage between cereal yield and agricultural drought in Morocco. In order to identify this drought, we used agricultural drought indices from remotely sensed satellite data. In addition, we used the outputs of Land Data Assimilation System (LDAS). Secondly, to develop empirical models for early prediction of cereal yields at provincial scale. To achieve this goal, we built forecasting models using multi-source data as predictors, including remote sensing-based indices, weather data and regional climate indices. And to build these models, we relied on machine learning algorithms such as Multiple Linear Regression (MLR), Support Vector Machine (SVM), Random Forest (RF) and eXtreme Gradient Boost (XGBoost). Finally, to evaluate the impact of climate change on the wheat yield its water requirements. To do this, we relied on five regional climate models available in the Med-CORDEX database under two scenarios RCP4.5 and RCP8.5, as well as the AquaCrop model and we based on three periods, the reference period 1991-2010, the second period 2041-2060 and the third period 2081-2100. The results showed that there is a close correlation between cereals yield and drought indices related to canopy condition during the heading stage (March and April) and which are related to surface temperature during the development stage in January -February, and which are related to soil moisture during the emergence stage in November -December. The results also showed that the outputs of LDAS are able to accurately monitor agricultural drought. Concerning, cereal yield forecasting, the results showed that combining data from multiple sources outperformed models based on one data set only. In this context, the XGBoost was able to predict cereal yield as early as January (about four months before harvest) with satisfactory statistical metrics (R² = 0.88 and RMSE = 0.22 t. ha^-1). Regarding the impact of climate change on wheat yield and water requirements, the results showed that the increase in air temperature will result in a shortening of the wheat growth cycle by about 50 days. The results also showed a decrease in wheat yield up to 30% if the rising in CO2 was not taken into account. The effect of fertilizing of CO2 can offset the yield losses, and yield can increase up to 27 %. Finally, water requirements are expected to decrease by 13 to 42%, and this decrease is associated with a change in temporal patterns, with the requirement peak coming two months earlier than under current conditions

    Empirical Regression Model Using Ndvi, Meteorological Factors For Estimation Of Wheat Yield In Yunnan, China

    Full text link
    Crop yield estimation is of great importance to food security. NDVI, as an effective crop monitoring tool, is extensively used in crop yield estimation. However there are few studies conducted in the regions where mixed crops are grown. In this study, a statistical approach for crop area identification is proposed and applied to wheat in Jianshui County in the Nanpan River Basin, Yunnan Province of China. Based on the correlation analysis between MODIS NDVI data and crop yield, the planting areas are identified, as well as the best periods for a reliable estimation. Regression models are presented to predict the crop yield with the retrieved NDVI from the corresponding crop planting-areas. Besides, the crop yield is also strongly influenced by meteorological factors, such as precipitation, temperature and potential evapotranspiration data. Therefore, new regression model by adding those factors is presented and compared with the former one. This study has proposed a simple and convenient method on crop yield estimation using meteorological factors and NDVI data in small regions where crop type is unknown exactly

    Potential for early forecast of Moroccan wheat yields based on climatic drivers

    Get PDF
    Wheat production plays an important role in Morocco. Current wheat forecast systems use weather and vegetation data during the crop growing phase, thus limiting the earliest possible release date to early spring. However, Morocco' s wheat production is mostly rainfed and thus strongly tied to fluctuations in rainfall, which in turn depend on slowly evolving climate dynamics. This offers a source of predictability at longer time scales. Using physically guided causal discovery algorithms, we extract climate precursors for wheat yield variability from gridded fields of geopotential height and sea surface temperatures which show potential for accurate yield forecasts already in December, with around 50% explained variance in an out‐of‐sample cross validation. The detected interactions are physically meaningful and consistent with documented ocean‐atmosphere feedbacks. Reliable yield forecasts at such long lead times could provide farmers and policy makers with necessary information for early action and strategic adaptation measurements to support food security

    Potential for Early Forecast of Moroccan Wheat Yields Based on Climatic Drivers

    Get PDF
    Wheat production plays an important role in Morocco. Current wheat forecast systems use weather and vegetation data during the crop growing phase, thus limiting the earliest possible release date to early spring. However, Morocco's wheat production is mostly rainfed and thus strongly tied to fluctuations in rainfall, which in turn depend on slowly evolving climate dynamics. This offers a source of predictability at longer time scales. Using physically guided causal discovery algorithms, we extract climate precursors for wheat yield variability from gridded fields of geopotential height and sea surface temperatures which show potential for accurate yield forecasts already in December, with around 50% explained variance in an out-of-sample cross validation. The detected interactions are physically meaningful and consistent with documented ocean-atmosphere feedbacks. Reliable yield forecasts at such long lead times could provide farmers and policy makers with necessary information for early action and strategic adaptation measurements to support food security. ©2020. The Authors

    Estimation of the dynamics and yields of cereals in a semi-arid area using remote sensing and the SAFY growth model

    Get PDF
    International audienceIn semi-arid areas, a strongly variable climate represents a major risk for food safety. An operational grain yield forecasting system, which could help decision-makers to make early assessments and plan annual imports, is thus needed. It can be challenging to monitor the crop canopy and production capacity of plants, especially cereals. In this context, the aim of the present study is to analyse the characteristics of two types of irrigated and non-irrigated cereals: barley and wheat. Through the use of a rich database, acquired over a period of two years for more than 30 test fields, and from 20 optical satellite SPOT/HRV images, two research approaches are considered. First, statistical analysis is used to characterize the vegetation's dynamics and grain yield, based on remotely sensed (satellite) normalized difference vegetation index (NDVI) measurements. A relationship is established between the NDVI and LAI (leaf area index). Different robust relationships (exponential or linear) are established between the satellite NDVI index acquired from SPOT/HRV images, just before the time of maximum growth (April), and grain and straw, for barley and wheat vegetation covers. Following validation of the proposed empirical approaches, yield maps are produced for the studied site. The second approach is based on the application of a Simple Algorithm for Yield Estimation (SAFY) growth model, developed to simulate the dynamics of the LAI and the grain yield. An inter-comparison between ground yield measurements and SAFY model simulations reveals that yields are underestimated by this model. Finally, the combination of multi-temporal satellite measurements with the SAFY model estimations is also proposed for the purposes of yield mapping. Although the results produced by the SAFY model are found to be reasonably well correlated with those determined by satellite measurements (NDVI), the grain yields are nevertheless underestimated

    Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection

    Get PDF
    Low resolution satellite imagery has been extensively used for crop monitoring and yield forecasting for over 30 years and plays an important role in a growing number of operational systems. The combination of their high temporal frequency with their extended geographical coverage generally associated with low costs per area unit makes these images a convenient choice at both national and regional scales. Several qualitative and quantitative approaches can be clearly distinguished, going from the use of low resolution satellite imagery as the main predictor of final crop yield to complex crop growth models where remote sensing-derived indicators play different roles, depending on the nature of the model and on the availability of data measured on the ground. Vegetation performance anomaly detection with low resolution images continues to be a fundamental component of early warning and drought monitoring systems at the regional scale. For applications at more detailed scales, the limitations created by the mixed nature of low resolution pixels are being progressively reduced by the higher resolution offered by new sensors, while the continuity of existing systems remains crucial for ensuring the availability of long time series as needed by the majority of the yield prediction methods used today.JRC.H.4-Monitoring Agricultural Resource

    Agrometeorological forecasting

    Get PDF
    Agrometeorological forecasting covers all aspects of forecasting in agrometeorology. Therefore, the scope of agrometeorological forecasting very largely coincides with the scope of agrometeorology itself. All on-farm and regional agrometeorological planning implies some form of impact forecasting, at least implicitly, so that decision-support tools and forecasting tools largely overlap. In the current chapter, the focus is on crops, but attention is also be paid to sectors that are often neglected by the agrometeorologist, such as those occurring in plant and animal protection. In addition, the borders between meteorological forecasts for agriculture and agrometeorological forecasts are not always clear. Examples include the use of weather forecasts for farm operations such as spraying pesticides or deciding on trafficability in relation to adverse weather. Many forecast issues by various national institutions (weather, but also commodity prices or flood warnings) are vital to the farming community, but they do not constitute agrometeorological forecasts. (Modified From the introduction of the chapter: Scope of agrometeorological forecasting)JRC.H.4-Monitoring Agricultural Resource

    What Stages In The Phenology Of Corn Are The Most Correlated With Rainfed Corn Yields In The Corn Belt Using Remote Sensing?

    Get PDF
    Two weekly and freely available remotely sensed vegetation indices, Vegetation Condition Index (VCI) and Temperature Condition Index (TCI), were assessed for state level corn yield correlation in the Corn Belt region of the United States for the years of 2007-2013. VCI and TCI were 16-km pixels which are derived from the Advanced Very High Resolution Radiometer (AVHRR). Corn pixels were identified by downloading yearly USDA Cropscape pixels for corn in each state. Irrigated corn pixels were removed by using the 2007 Irrigated Agriculture Dataset developed by Pervez and Brown (2010) as a mask. Corn pixels were then resampled to 16-km in ArcGIS 10.1, with only pixels with greater than 50% corn coverage being drawn. These corn pixels were then used to identify VCI and TCI corn pixels for each state. Weekly VCI and TCI corn pixel values were then averaged for each state and correlated with yield from the National Agriculture Statistics Service (NASS). For the Corn Belt as a whole, VCI had high positive correlation in Week 34 and TCI has high positive correlation in Week 28. The highest correlating VCI and TCI weeks for each state were then used for regression with yield. Seven of the 12 states had R2 values greater than 0.7, meaning at least 70 percent of the variation in yield for seven of the states can be explained by VCI and TCI
    corecore