1,087 research outputs found

    Learning from Imbalanced Multi-label Data Sets by Using Ensemble Strategies

    Get PDF
    Multi-label classification is an extension of conventional classification in which a single instance can be associated with multiple labels. Problems of this type are ubiquitous in everyday life. Such as, a movie can be categorized as action, crime, and thriller. Most algorithms on multi-label classification learning are designed for balanced data and don’t work well on imbalanced data. On the other hand, in real applications, most datasets are imbalanced. Therefore, we focused to improve multi-label classification performance on imbalanced datasets. In this paper, a state-of-the-art multi-label classification algorithm, which called IBLR_ML, is employed. This algorithm is produced from combination of k-nearest neighbor and logistic regression algorithms. Logistic regression part of this algorithm is combined with two ensemble learning algorithms, Bagging and Boosting. My approach is called IB-ELR. In this paper, for the first time, the ensemble bagging method whit stable learning as the base learner and imbalanced data sets as the training data is examined. Finally, to evaluate the proposed methods; they are implemented in JAVA language. Experimental results show the effectiveness of proposed methods. Keywords: Multi-label classification, Imbalanced data set, Ensemble learning, Stable algorithm, Logistic regression, Bagging, Boostin

    A comparison of AdaBoost algorithms for time series forecast combination

    Get PDF
    Recently, combination algorithms from machine learning classification have been extended to time series regression, most notably seven variants of the popular AdaBoost algorithm. Despite their theoretical promise their empirical accuracy in forecasting has not yet been assessed, either against each other or against any established approaches of forecast combination, model selection, or statistical benchmark algorithms. Also, none of the algorithms have been assessed on a representative set of empirical data, using only few synthetic time series. We remedy this omission by conducting a rigorous empirical evaluation using a representative set of 111 industry time series and a valid and reliable experimental design. We develop a full-factorial design over derived Boosting meta-parameters, creating 42 novel Boosting variants, and create a further 47 novel Boosting variants using research insights from forecast combination. Experiments show that only few Boosting meta-parameters increase accuracy, while meta-parameters derived from forecast combination research outperform others

    Generative Adversarial Networks for Financial Trading Strategies Fine-Tuning and Combination

    Get PDF
    Systematic trading strategies are algorithmic procedures that allocate assets aiming to optimize a certain performance criterion. To obtain an edge in a highly competitive environment, the analyst needs to proper fine-tune its strategy, or discover how to combine weak signals in novel alpha creating manners. Both aspects, namely fine-tuning and combination, have been extensively researched using several methods, but emerging techniques such as Generative Adversarial Networks can have an impact into such aspects. Therefore, our work proposes the use of Conditional Generative Adversarial Networks (cGANs) for trading strategies calibration and aggregation. To this purpose, we provide a full methodology on: (i) the training and selection of a cGAN for time series data; (ii) how each sample is used for strategies calibration; and (iii) how all generated samples can be used for ensemble modelling. To provide evidence that our approach is well grounded, we have designed an experiment with multiple trading strategies, encompassing 579 assets. We compared cGAN with an ensemble scheme and model validation methods, both suited for time series. Our results suggest that cGANs are a suitable alternative for strategies calibration and combination, providing outperformance when the traditional techniques fail to generate any alpha

    Ensemble deep learning: A review

    Get PDF
    Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions
    • …
    corecore