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A B S T R A C T

Ensemble learning combines several individual models to obtain better generalization performance. Currently,
deep learning architectures are showing better performance compared to the shallow or traditional models.
Deep ensemble learning models combine the advantages of both the deep learning models as well as the
ensemble learning such that the final model has better generalization performance. This paper reviews the
state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble
models are broadly categorized into bagging, boosting, stacking, negative correlation based deep ensemble
models, explicit/implicit ensembles, homogeneous/heterogeneous ensemble, decision fusion strategies based
deep ensemble models. Applications of deep ensemble models in different domains are also briefly discussed.
Finally, we conclude this paper with some potential future research directions.
1. Introduction

Deep learning architectures have been successfully employed across
a wide range of applications from image/video classification to the
health care. The success of these models is attributed to the better
feature representation via multi layer processing architectures. The
deep learning models have been mainly used for classification, re-
gression and clustering problems. Classification problem is defined as
the categorization of the new observations based on the hypothesis ℎ
learned from the set of training data. The hypothesis ℎ represents a
mapping of input data features to the appropriate target labels/classes.
The main objective, while learning the hypothesis ℎ, is that it should
approximate the true unknown function as close as possible to reduce
the generalization error. There exist several applications of these classi-
fication algorithms ranging from medical diagnosis to remote sensing.
Mathematically,

𝑂𝑐 = ℎ(𝑥, 𝜃𝑐 ), 𝑂𝑐 ∈ Z, (1)

here 𝑥 is the input feature vector, 𝑂𝑐 is the category of the sample 𝑥,
𝑐 is the set of learning parameters of the hypothesis ℎ and Z is the set
f class labels.

Regression problems deal with the continuous decisions, instead of
iscrete categories. Mathematically,

𝑟 = ℎ(𝑥, 𝜃𝑟), 𝑂𝑟 ∈ R, (2)

here 𝑥 is the observation vector, 𝑂𝑟 is the output, and 𝜃𝑟 is the set of
earning parameters of the hypothesis ℎ.
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Broadly speaking, there are different approaches of classification
like supervised, unsupervised classification, few-shot, one-shot and so
on. Here, we only discuss supervised and unsupervised classification
problems. In supervised learning, the building of hypothesis ℎ is super-
vised based on the known output labels provided in the training data
samples, while as in unsupervised learning hypothesis ℎ is generated
without any supervision as no known output values are available with
the training data. This approach, also known as clustering, generates
the hypothesis ℎ based on the similarities and dissimilarities present in
the training data.

Generally speaking, the goal of generating the hypothesis ℎ in
Machine learning area is that it should perform better when applied
to unknown data. The performance of the model is measured with
respect to the area in which the model is applied. Combining the
predictions from several models has proven to be an elegant approach
for increasing the performance of the models. Combination of several
different predictions from different models to make the final prediction
is known as ensemble learning or ensemble model. The ensemble learn-
ing involves multiple models combined in some fashion like averaging,
voting such that the ensemble model is better than any of the indi-
vidual models. To prove that average voting in an ensemble is better
than individual model, Marquis de Condorcet proposed a theorem
wherein he proved that if the probability of each voter being correct
is above 0.5 and the voters are independent, then addition of more
voters increases the probability of majority vote being correct until
it approaches 1 (Condorcet, 1785). Although Marquis de Condorcet
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proposed this theorem in the field of political science and had no idea
of the field of Machine learning, but it is the similar mechanism that
leads to better performance of the ensemble models. Assumptions of
Marquis de Condorcet theorem also holds true for ensembles (Hansen
and Salamon, 1990). The reasons for the success of ensemble learning
include: statistical, computational and representation learning (Diet-
terich, 2000), bias–variance decomposition (Kohavi and Wolpert, 1996)
and strength-correlation (Breiman, 2001).

In this era of machine learning, deep learning automates the ex-
traction of high-level features via hierarchical feature learning mech-
anism wherein the upper layer of features are generated on the pre-
vious set of layer/layers. Deep learning has been successfully applied
across different fields since the ImageNet Large Scale Recognition
Challenge (ILSVRC) competitions (Russakovsky et al., 2015; Krizhevsky
et al., 2012) and has achieved state-of-art performance. It has ob-
tained promising results in object detection, semantic segmentation,
edge detection and number of other domains. However, given the
computational cost, the training of deep ensemble models is an uphill
task. Different views have been provided to understand how the deep
learning models learn the features like learning through hierarchy
of concepts via many levels of representation (Deng and Yu, 2014;
Goodfellow et al., 2016; LeCun et al., 2015). Given the advantages
of deep learning models from deep architectures, there are several
bottlenecks like vanishing/exploding gradients (Hochreiter, 1991; Glo-
rot and Bengio, 2010) and degradation problem (He et al., 2016)
which prevent to reach this goal. Recently, training deep network’s
has become feasible through the Highway networks (Srivastava et al.,
2015) and Residual networks (He et al., 2016). Both these networks
enabled to train very deep networks. The ensemble learning has been
recently known to be strong reason for enhancing the performance of
deep learning models (Veit et al., 2016). Thus, the objective of deep
ensemble models is to obtain a model that has best of both the ensemble
and deep models.

There exist multiple surveys in the literature which mainly focus on
the review of ensemble learning like learning of ensemble models in
classification problems (Zhao et al., 2005; Rokach, 2010; Gopika and
Azhagusundari, 2014; Yang et al., 2010), regression problems (Mendes-
Moreira et al., 2012; Ren et al., 2015) and clustering (Vega-Pons and
Ruiz-Shulcloper, 2011). Review of both the classification and regression
models was given in Ren et al. (2016). Comprehensive review of the
ensemble methods and the challenges were given in Sagi and Rokach
(2018). Though Sagi and Rokach (2018) provided some insight about
the deep ensemble models but could not give the comprehensive review
of the deep ensemble learning while as Cao et al. (2020) reviewed the
ensemble deep models in the context of bioinformatics. The past decade
has successively evolved different deep learning strategies which have
lead to the exploration and innovation of these models in multiple areas
like health care, speech, image classification, forecasting and other
applications. Broadly speaking, ensemble learning approaches have
followed classical methods, general methods and different fusion strate-
gies for improving the performance of the models. Since deep learning
models are computation and data extensive, hence, ensemble deep
learning models need special attention while exploring the comple-
mentary information of multiple algorithms into a uniform framework.
Ensemble deep learning models need to handle multiple questions like
how to induce diversity among the baseline models, how to keep the
training time as well the models complexity lower for the practical
applications, how to fuse the predictions of the complementary algo-
rithms. Multiple studies have handled these problems differently. In
this review paper, we comprehensively review the different approaches
used to handle the aforementioned problems. In this paper, we give a
comprehensive review of deep ensemble models. To the best of our
knowledge, this is the first comprehensive review paper on deep
ensemble models.

The rest of this paper is organized as follows: Section 3 discusses the
theoretical aspects of deep ensemble learning, Section 4 discusses the
different approaches used in deep ensemble strategies, applications of
deep ensemble methods are given in Section 5 and finally conclusions
and future directions are given in Section 6 (see Fig. 1).
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2. Research methodology

The studies in this review are searched from the Google Scholar
and Scopus search engines. The papers are the result of ensemble
learning, ensemble deep learning, deep ensemble learning, deep en-
sembles keywords. The articles where screened based on the title and
abstract, followed by the screening of full-text version. The articles
are elaborated based on the ensemble learning and deep learning
approaches.

3. Theory

The various reasons which have been justified for the success of
ensemble learning can be discussed under the following subheadings:

3.1. Bias–variance decomposition

Initially, the success of ensemble methods was theoretically investi-
gated for regression problems. Krogh and Vedelsby (1995) and Brown
et al. (2005a) proved via ambiguity decomposition that the proper
ensemble classifier guarantees a smaller squared error as compared
to the individual predictors of the classifier. Ambiguity decomposition
was given for single dataset based ensemble methods, later on, mul-
tiple dataset bias–variance–covariance decomposition was introduced
in Brown et al. (2005a), Geman et al. (1992), Brown et al. (2005b) and
Pedro (2000) and is given as:

𝐸[𝑜 − 𝑡]2 = 𝑏𝑖𝑎𝑠2 + 1
𝑀

𝑣𝑎𝑟 + (1 − 1
𝑀

)𝑐𝑜𝑣𝑎𝑟,

𝑏𝑖𝑎𝑠 = 1
𝑀

∑

𝑖
(𝐸[𝑜𝑖] − 𝑡),

𝑣𝑎𝑟 = 1
𝑀

∑

𝑖
𝐸[𝑜𝑖 − 𝐸[𝑜𝑖]]2, (3)

𝑐𝑜𝑣𝑎𝑟 = 1
𝑀(𝑀 − 1)

∑

𝑖

∑

𝑗≠𝑖
𝐸[𝑜𝑖 − 𝐸[𝑜𝑖]][𝑜𝑗 − 𝐸[𝑜𝑗 ]],

here 𝑡 is target, 𝑜𝑖 is the output of 𝑖th model and 𝑀 is the ensemble
ize. Here, 𝑏𝑖𝑎𝑠 term measures the average difference between the base
earner and the model output, 𝑣𝑎𝑟 indicates their average variance, and
𝑜𝑣𝑎𝑟 is the covariance term measuring the pairwise difference of the
ase learners.

Ensemble methods have been supported by several theories like
ias–variance (Kohavi and Wolpert, 1996; Wolpert, 1997), strength cor-
elation (Breiman, 2001), stochastic discrimination (Kleinberg, 1990),
nd margin theory (Schapire et al., 1998). These theories provide the
quivalent of bias–variance–covariance decomposition (Pisetta, 2012).

The above given equations of decomposition error cannot be di-
ectly applied to the datasets with discrete class labels due to their
ategorical nature. However, alternate ways to decompose the error in
lassification problems are given in Kohavi and Wolpert (1996), Kong
nd Dietterich (1995), Friedman (1997), Breiman (1998) and James
2003).

Multiple approaches like bagging, boosting have been proposed for
enerating the ensemble methods. Bagging reduces the variance among
he base classifiers (Breiman, 1996b) while as boosting based ensembles
ead to the bias and variance reduction (Breiman, 1996a; Zhang and
hang, 2008).

.2. Statistical, computational and representational aspects

Dietterich provided Statistical, Computational and Representational
easons (Dietterich, 2000) for success of ensemble models. The learning
odel is viewed as the search of the optimal hypothesis ℎ among the

everal hypothesis in the search space. When the amount of data avail-
ble for the training is smaller compared to the size of the hypothesis
pace, the statistical problem arises. Due to this statistical problem, the

earning algorithm identifies the different hypothesis which gives same
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Fig. 1. Layout of the paper.
performance on the training samples. Ensembling of these hypothesis
results in an algorithm which reduces the risk of being a wrong classi-
fier. The second reason is computational wherein a learning algorithm
stucks in a local optima due to some form of local search. Ensemble
model overcomes this issue by performing some form of local search
via different starting points which leads to better approximation of
the true unknown function. Another reason is representational wherein
none of the hypotheses among the set of hypothesis is able to represent
the true unknown function. Hence, ensembling of these hypothesis via
some weighting technique results into the hypothesis which expands
the representable function space.

3.3. Diversity

One of the main reasons behind the success of ensemble methods
is increasing the diversity among the base classifiers and the same
thing was highlighted in Dietterich (2000). Different approaches have
been followed to generate diverse classifiers. Different methods like
bootstrap aggregation (bagging) (Breiman, 1996b), Adaptive Boosting
(AdaBoost) (Freund and Schapire, 1996), random subspace (Baran-
diaran, 1998), and random forest (Breiman, 2001) approaches are
followed for generating the multiple datasets from the original dataset
to train the different predictors such that the outputs of predictors are
diverse. Attempts have been made to increase diversity in the output
data wherein multiple outputs are created instead of multiple datasets
for the supervision of the base learners. ‘Output smearing’ (Breiman,
2000) is one of this kind which induces random noise to introduce
diversity in the output space.

4. Ensemble strategies

The different ensemble strategies have evolved over a period of
time which results in better generalization of the learning models. The
ensemble strategies are broadly categorized as follows:

4.1. Bagging

Bagging (Breiman, 1996b), also known as bootstrap aggregating,

is one of the standard techniques for generating the ensemble-based

3

Fig. 2. Bagging.

algorithms. Bagging is applied to enhance the performance of an en-
semble classifier. The main idea in bagging is to generate a series
of independent observations with the same size, and distribution as
that of the original data. Given the series of observations, generate an
ensemble predictor which is better than the single predictor generated
on the original data. Bagging increases two steps in the original models:
First, generating the bagging samples and passing each bag of samples
to the base models and second, strategy for combining the predictions
of the multiple predictors. Bagging samples may be generated with or
without replacement. Combining the output of the base predictors may
vary as mostly majority voting is used for classification problems while
the averaging strategy is used in regression problems for generating the
ensemble output. Fig. 2 shows the diagram of the bagging technique.
Here, 𝐷𝑖 represents the bagged datasets, 𝐶𝑖 represents the algorithms
and 𝐹𝑒𝑛𝑠 calculates the final outcome.

Random Forest (Breiman, 2001) is an improved version of the
decision trees that uses the bagging strategy for improving the predic-
tions of the base classifier which is a decision tree. The fundamental
difference between these two methods is that at each tree split in

Random Forest, only a subset of features is randomly selected and
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Fig. 3. Boosting.

Fig. 4. Stacking.

onsidered for splitting. The purpose of this method is to decorrelate
he trees and prevent over-fitting. Breiman (2001) showed heuristically
hat the variance of the bagged predictor is smaller than the original
redictor and proposed that bagging is better in higher dimensional
ata. However, the analysis of the smoothing effect of bagging (Buja
nd Stuetzle, 2000) revealed that bagging does not depend on the data
imensionality.

Bühlmann and Yu (2002) gave theoretical explanation of how bag-
ing gives smooth hard decisions, small variance, and mean squared
rror. Since bagging is computationally expensive, hence subbagging
nd half subbagging (Bühlmann and Yu, 2002) were introduced. Half
ubbagging, being computationally efficient, is as accurate as the bag-
ing.

Several attempts tried to combine bagging with other machine
earning algorithms. Kim et al. (2002) used bagging method to generate
ultiple bags of the dataset and multiple support vector machines
ere trained independently with each bag as the input. The output of

he models is combined via majority voting, least squares estimation
eighting and double layer hierarchical approach. In the double layer
ierarchical approach, another support vector machines (SVM) is used
o combine the outcomes of the multiple SVM’s efficiently. Tao et al.
2006) used asymmetric bagging strategy to generate the ensemble
odel to handle the class imbalance problems. A case study of bagging,

oosting and basic ensembles (Mao, 1998) revealed that at higher
ejection rates of samples boosting is better as compared to bagging and
asic ensembles. However, as the rejection rate increases the difference
isappears among the boosting, bagging and basic ensembles. Bagging
ased multilayer perceptron (Ha et al., 2005) combined bagging to
4

train multiple perceptrons with the corresponding bag and showed
that bagging based ensemble models perform better as compared to
individual multilayer perceptron. In Gençay and Qi (2001), the analysis
of the bagging approach and other regularization techniques revealed
that bagging regularized the neural networks and hence provide better
generalization. In Khwaja et al. (2015), bagged neural networks (BNNs)
was proposed wherein each neural network was trained over different
dataset sampled randomly with replacement from original dataset and
was implemented for the short term load forecasting. Unlike Random
forest (Breiman, 2001) which uses majority voting for aggregating
the ensemble of decision trees, bagging based survival trees (Hothorn
et al., 2004) used Kaplan–Meier curve to predict the ensemble output
for breast cancer and lymphoma patients. In Alvear-Sandoval and
Figueiras-Vidal (2018), ensembles of stacked denoising autoencoders
for classification showed that the bagging and switching technique in
a general deep machine results in improved diversity.

Bagging has also been applied to solve the problem of imbalanced
data. Roughly Balanced Bagging (Hido et al., 2009) tries to equalize
each class’s sampling probability in binary class problems wherein the
negative class samples are sampled via negative binomial distribution,
instead of keeping the sample size of each class the same number.
Neighborhood Balanced Bagging (Błaszczyński and Stefanowski, 2015)
incorporated the neighborhood information for generating the bagging
samples for the class imbalance problems. Błaszczyński and Stefanowski
(2015) concluded that applying conventional diversification is more
effective when applied at the last classification methods. Both roughly
balanced Bagging and Neighborhood Balanced Bagging have not been
explored in deep learning architectures. Thus, these approaches can be
exploited to handle the class imbalance problems via deep ensemble
models.

The theoretical and experimental analysis of online bagging and
boosting (Oza, 2005) showed that the online bagging algorithm can
achieve similar accuracy as the batch bagging algorithm with only a
little more training time. However, online bagging is an option when
all training samples cannot be loaded into the memory due to memory
issues.

Although ensembling may lead to increase in the computational
complexity, but bagging possesses the property that it can be paralleled
and can lead to effective reduction in the training time subject to
the availability of hardware for running the parallel models. Since
deep learning models have high training time, hence optimization of
multiple deep models on different training bags is not a feasible option
(see Table 1).

4.2. Boosting

Boosting technique is used in ensemble models for converting a
weak learning model into a learning model with better generalization.
Fig. 3 shows the diagram of the boosting technique. The techniques
such as majority voting in case of classification problems or a linear
combination of weak learners in the regression problems results in
better prediction as compared to the single weak learner. Boosting
methods like AdaBoost (Freund and Schapire, 1996) and Gradient
Boosting (Friedman, 2001) have been used across different domains.
AdaBoost uses a greedy technique for minimizing a convex surrogate
function upper bounded by misclassification loss via augmentation, at
each iteration, the current model with the appropriately weighted pre-
dictor. AdaBoost learns an effective ensemble classifier as it leverages
the incorrectly classified sample at each stage of the learning. AdaBoost
minimizes the exponential loss function while as the Gradient boosting
generalized this framework to the arbitrary differential loss function.

Boosting, also known as forward stagewise additive modeling, was
originally proposed to improve the performance of the classification
trees. It has been recently incorporated in the deep learning models
to further improve their performance.

Boosted deep belief network (DBN) (Liu et al., 2014) for facial
expression recognition unified the boosting technique and multiple
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Table 1
Bagging based ensemble models.
Years Authors Contribution

1996 Breiman (1996b) Proposed the idea of Bagging
1998 Mao (1998) Case study of bagging, boosting and basic ensembles
2000 Buja and Stuetzle

(2000)
Theoretical analysis of bagging

2001 Breiman (2001) Bagging with random subspace Decision trees and ensembling outputs via majority voting
2001 Gençay and Qi (2001) Study of Bayesian regularization, early stopping and Bagging
2002 Kim et al. (2002) Bagging with SVM’s and ensembling outputs via SVM’s, majority voting and least squares estimation
2002 Bühlmann and Yu

(2002)
Theoretical justification of Bagging, proposed subbagging and half subagging

2004 Hothorn et al. (2004) Bagging with decision trees and ensembling outputs via Kaplan–Meier curve
2005 Oza (2005) Theoretical and experimental analysis of online bagging and boosting
2006 Tao et al. (2006) Proposed asymmetric bagging with SVM’s and ensembling outputs SVM’s
2009 Hido et al. (2009) Roughly balanced bagging on decision trees and ensembling outputs via majority voting
2005,
2015

Ha et al. (2005),
Khwaja et al. (2015)

Bagging with Neural networks and ensembling outputs via majority voting

2015 Błaszczyński and
Stefanowski (2015)

Neighborhood balanced bagging ensembling outputs via majority voting
DBN’s via objective function which results in a strong classifier. The
model learns complex feature representation to build a strong classifier
in an iterative manner. Deep boosting (Cortes et al., 2014) is an
ensemble model that uses the deep decision trees. It can also be used
in combination with any other rich family classifier to improve the
generalization performance. In each stage of the deep boosting, the
decisions of which classifier to add and what weights should be chosen
depends on the (data-dependent) complexity of the classifier to which
it belongs. The interpretation of the deep boosting classifier is given
via structural risk minimization principle at each stage of the learning.
Multiclass Deep boosting (Kuznetsov et al., 2014) extended the Deep
boosting (Cortes et al., 2014) algorithm to theoretical, algorithmic, and
empirical results to the multiclass problems. Due to the limitation of the
training data in each mini batch, Boosting CNN may overfit the data.
To avoid overfitting, incremental Boosting CNN (IBCNN) (Han et al.,
2016) accumulated the information of multiple batches of the training
data samples. IBCNN uses decision stumps on the top of single neurons
as the weak learners and learns weights via AdaBoost method in each
mini batch. Unlike DBN (Liu et al., 2014) which uses image patch for
learning the weak classifiers, IBCNN trains the weak classifiers from the
fully connected layer i.e. the whole image is used for learning the weak
classifiers. To make the IBCNN model more efficient, the weak learners
loss functions are combined with the global loss function.

Boosted CNN (Moghimi et al., 2016) used boosting for training the
deep CNN. Instead of averaging, least squares objective function was
used to incorporate the boosting weights into CNN. Moghimi et al.
(2016) also showed that CNN can be replaced by network structure
within their boosting framework for improving the performance of
the base classifier. Boosting increases the complexity of training the
networks, hence the concept of dense connections was introduced
in a deep boosting framework to overcome the problem of vanish-
ing gradient problem for image denoising (Chen et al., 2018b). Deep
boosting framework was extended to image restoration in Chen et al.
(2019b) wherein the dilated dense fusion network was used to boost
the performance.

The convolutional channel features (Yang et al., 2015) generated
the high level features via CNN and then used boosted forest for final
classification. Since CNN has high number of hyperparameters than
the boosted forest, hence the model proved to be efficient than end-
to-end training of CNN models both in terms of performance and
time. Yang et al. (2015) showed its application in edge detection,
object proposal generation, pedestrian and face detection. A stagewise
boosting deep CNN (Walach and Wolf, 2016) trains several models of
the CNNs within the offline paradigm boosting framework. To extend
the concept of boosting in online scenario’s wherein only a chunk
of data is available at given time, Boosting Independent Embeddings
Robustly (BIER) (Opitz et al., 2017) was proposed to cope up the online
scenario’s. In BIER, a single CNN model is trained end-to-end with an
5

online boosting technique. The training set in the BIER is reweighed
via the negative gradient of the loss function to project the input
spaces (images) into a collection of independent output spaces. To make
BIER more robust, Hierarchical Boosted deep metric learning (Waltner
et al., 2019) incorporated the hierarchical label information into the
embedding ensemble which improves the performance of the model on
the large scale image retrieval application. Using deep boosting results
in higher training time, to reduce the warm-up phase of training which
trains the classifier from scratch deep incremental boosting (Mosca
and Magoulas, 2017) used transfer learning approach. This approach
leveraged the initial warm-up phase of each incremental base model
of the ensemble during the training of the network. To reduce the
training time of boosting based ensembles, snapshot boosting (Zhang
et al., 2020a) combined the merits of snapshot ensembling and boosting
to improve the generalization without increasing the cost of training.
Snapshot boosting trains each base network and combines the out-
puts via meta learner to combine the output of base learners more
efficiently.

Literature shows that the boosting concept is the backbone behind
well-known architectures like Deep Residual networks (He et al., 2016;
Siu, 2019), AdaNet (Cortes et al., 2017) . The theoretical background
for the success of the Deep Residual networks (DeepResNet) (He et al.,
2016) was explained in the context of boosting theory (Huang et al.,
2018). The authors proposed multi-channel telescoping sum boosting
learning framework, known as BoostResNet, wherein each channel is a
scalar value updated during rounds of boosting to minimize the multi-
class error rate. The fundamental difference between the AdaNet and
BoostResnet is that the former maps the feature vectors to classifier
space and boosts weak classifiers while the latter used multi-channel
representation boosting. Moreover, BoostResNet is more efficient than
DeepResnet in terms of computational time.

The theory of boosting was extended to online boosting in Beygelz-
imer et al. (2015) and provided theoretical convergence guarantees.
Online boosting shows improved convergence guarantees for batch
boosting algorithms.

The ensembles of bagging and boosting have been evaluated in
González et al. (2020). The study evaluated the different algorithms
based on the concept of bagging and boosting along with the avail-
ability of software tools. The study highlighted the practical issues and
opportunities of their feasibility in ensemble modeling (see Table 2).

4.3. Stacking

Ensembling can be done either by combining outputs of multiple
base models in some fashion or using some method to choose the ‘‘best"
base model. Fig. 4 shows the stacking technique. Stacking is one of
the integration techniques wherein the meta-learning model is used to
integrate the output of base models. If the final decision part is a linear



M.A. Ganaie, M. Hu, A.K. Malik et al. Engineering Applications of Artificial Intelligence 115 (2022) 105151

t
p
w
m
s

1
Y
p
d
a
l
u
l
a
d
s
n
t
d
t
e
D
a
o
n
t
f
p
h
f
n
o
a
m
s
S
o
s
i
d
i
m
r
l

Table 2
Boosting based ensemble models.
Years Authors Contribution

2014 Liu et al. (2014) Boosted deep belief network (DBN) as base classifiers for facial expression recognition.
2014 Cortes et al. (2014) Decision trees as base classifiers for binary class classification problems.
2014 Kuznetsov et al. (2014) Decision trees as base classifiers for multiclass classification problems.
2015 Yang et al. (2015) Ensemble of CNN and boosted forest for edge detection, object proposal generation, pedestrian and face detection.
2016 Moghimi et al. (2016) Boosted CNN
2016 Walach and Wolf

(2016)
CNN Boosting applied to bacterila cell images and crowd counting.

2017 Opitz et al. (2017) Boosted deep independent embedding model for online scenarios.
2017 Mosca and Magoulas

(2017)
Transfer learning based deep incremental boosting.

2017 Han et al. (2016) Boosting based CNN with incremental approach for facial action unit recognition.
2018 Chen et al. (2018b) Deep boosting for image denoising with dense connections.
2019 Chen et al. (2019b) Deep boosting for image restoration and image denoising.
2019 Waltner et al. (2019) Hierarchical boosted deep metric learning with hierarchical label embedding.
2020 Zhang et al. (2020a) Snapshot boosting.
model, the staking is often referred to as ‘‘model blending’’ or simply
‘‘blending’’. The concept of stacking or stacked regression was initially
given by Wolpert (1992). In this technique, the dataset is randomly split
into 𝐽 equal parts. For the 𝑗th-fold cross-validation one set is used for
esting and the rest are used for training. With these training testing
air subsets, we obtain the predictions of different learning models
hich are used as the meta-data to build the meta-model. Meta-model
akes the final prediction, which is also called the winner-takes-all

trategy.
Stacking is a bias reducing technique (Leblanc and Tibshirani,

996). Following Wolpert (1992), Deep convex net (DCN) (Deng and
u, 2011) was proposed which is a deep learning architecture com-
osed of a variable number of modules stacked together to form the
eep architecture. Each learning module in DCN is convex. DCN is
stack of several modules consisting of linear input units, hidden

ayer non-linear units, and the second linear layer with the number of
nits as that of target classification classes. The modules are connected
ayerwise as the output of the lower module is given as input to the
djacent higher module in addition to the original input data. The
eep stacking network (DSN) enabling parallel training on very large
cale datasets was proposed in Deng et al. (2012c), the network was
amed stacking based as it shared the concept of ‘‘stacked generaliza-
ion" (Wolpert, 1992). The kernelized version of DCN, known as kernel
eep convex networks (K-DCN), was given in Deng et al. (2012a), here
he number of hidden layer approach infinity via kernel trick. Deng
t al. (2012a) showed that K-DCN performs better as compared to the
CN. However, due to kernel trick the memory requirements increase
nd hence may not be scalable to large scale datasets. Also, we need to
ptimize the hyperparameters like the number of levels in the stacked
etwork, the kernel parameters to get the optimal performance of
he network. To leverage the memory requirements, random Fourier
eature-based kernel deep convex network (Huang et al., 2013) ap-
roximated the Gaussian kernel which reduces the training time and
elps in the evaluation of K-DCN over large scale datasets. A framework
or parameter estimation and model selection in kernel deep stacking
etworks (Welchowski and Schmid, 2016) is based on the combination
f model-based optimization and hill-climbing approaches. Welchowski
nd Schmid (2016) used data-driven framework for parameter esti-
ation, hyperparameter tuning and model selection in kernel deep

tacking networks. Another improvement over DSN was Tensor Deep
tacking Network (T-DSN) (Hutchinson et al., 2012), here in each block
f the stacked network, large single hidden layer was split into two
maller ones and then mapped bilinearly to capture the higher-order
nteractions among the features. Comprehensive evaluation, the more
etailed analysis of the learning algorithm and T-DSN implementation
s given in Hutchinson et al. (2013). Sparse coding is another popular
ethod that is used in the deep learning area. The advantage of sparse

epresentation is numerous, including robust to noise, effective for
earning useful features, etc. Sparse Deep Stacking Network (S-DSN)
6

is proposed for image classification and abnormal detection (Li et al.,
2015; Sun et al., 2018). Li et al. (2015) and Sun et al. (2018) stacked
many sparse simplified neural network modules (SNNM) with mixed-
norm regularization, in which weights are solved by using the convex
optimization and the gradient descent algorithm. In order to make
sparse SNNM learning the local dependencies between hidden units, Li
et al. (2017a) split the hidden units or representations into different
groups, which is termed as group sparse DSN (GS-DSN). The DSN idea
is also utilized in the Deep Reinforcement Learning field. Zhang et al.
(2020b) employed DSN method to integrate the observations from the
formal network: Grasp network and Stacking network based on Q-
learning algorithm to make an integrated robotic arm system do grasp
and place actions. Wang et al. (2020) stacked blocks multiple times to
increase the performance of the neural architecture search task. Zhang
et al. (2019a) presents a deep hierarchical multi-patch network for
image deblurring via stacking approach.

Since there is no temporal representation of the data in DSNs, they
are less effective to the problems where temporal dependencies exist in
the input data. To embed the temporal information in DSNs, Recurrent
Deep Stacking Networks (R-DSNs) (Palangi et al., 2014) combined the
advantages of DSNs and Recurrent neural networks (RNN). Unlike RNN
which uses Back Propagation through time for training the network, R-
DSNs use Echo State Network (ESN) to initialize the weights and then
fine-tuning them via batch-mode gradient descent. A stacked extreme
learning machine was proposed in Zhou et al. (2015). Here, at each
level of the network ELM with the reduced number of hidden nodes
was used to solve the large scale problems. The number of hidden
nodes was reduced via the principal component analysis (PCA) reduc-
tion technique. Keeping in view the efficiency of stacked models, the
number of stacked models based on support vector machine have been
proposed (Wang et al., 2019d,a; Li et al., 2019b). Traditional models
like Random Forests have also been extended to deep architecture,
known as deep forests (Zhou and Feng, 2017), via stacking concept.

In addition to DSNs, there are some novel network architectures
proposed based on the stacking method, Low et al. (2019) contributed a
stacking-based deep neural network (S-DNN) which is trained without
a backpropagation algorithm. Kang et al. (2020) presented a model by
stacking conditionally restricted Boltzmann machine and deep neural
network, which achieved significant superior performance with fewer
parameters and fewer training samples.

4.4. Negative correlation based deep ensemble methods

Negative correlation learning (NCL) (Liu and Yao, 1999) is an
important technique for training the learning algorithms. The main
concept behind the NCL is to encourage diversity among the individual
models of the ensemble to learn the diverse aspects of the training data.
NCL minimizes the empirical risk function of the ensemble model via
minimization of error functions of the individual networks. NCL (Liu
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and Yao, 1999) was evaluated for regression as well as classification
tasks. The evaluation used different measures like simple averaging and
winner-takes-all measures on classification tasks and simple average
combination methods for regression problems. The authors figured out
that winner-takes-all is better as compared to simple averaging in NCL
ensemble models.

Shi et al. (2018) proposed deep negative correlation learning ar-
chitecture for crowd counting known as D-ConvNet i.e. decorrelated
convolutional networks. Here, counting is done based on regression-
based ensemble learning from a pool of convolutional feature mapped
weak regressors. The main idea behind this is to introduce the NCL
concept in deep architectures. Robust regression via deep NCL (Zhang
et al., 2019b) is an extension of Shi et al. (2018) in which theoretical
insights about the Rademacher complexity are given and extended to
more regression-based problems.

Buschjäger et al. (2020) formulated a generalized bias–variance de-
composition method to control the diversity and smoothly interpolates.
They present the Generalized Negative Correlation Learning (GNCL)
algorithm, which can encapsulate many existing works in literature and
achieve superior performance.

The NCL can also be employed for incremental learning tasks.
Muhlbaier and Polikar (2007) employed a dynamically modified
weighted majority voting strategy to combine the sub-classifiers. Tang
et al. (2009) proposed a negative correlation learning (NCL) based
approach for ensemble incremental learning.

4.5. Explicit/implicit ensembles

Ensembling of deep neural networks does not seem to be an easy
option as it may lead to increase in computational cost heavily due to
the training of multiple neural networks. High performance hardware’s
with GPU acceleration may take weeks of weeks to train the deep
networks. Implicit/Explicit ensembles obtain the contradictory goal
wherein a single model is trained in such a manner that it behaves
like ensemble of training multiple neural networks without incurring
additional cost or to keep the additional cost as minimum as possible.
Here, the training time of an ensemble is same as the training time
of a single model. In implicit ensembles, the model parameters are
shared and the single unthinned network at test times approximates
the model averaging of the ensemble models. However, in explicit
ensembles model parameters are not shared and the ensemble output
is taken as the combination of the predictions of the ensemble models
via different approaches like majority voting, averaging and so on.

Dropout (Srivastava et al., 2014) creates an ensemble network by
randomly dropping out hidden nodes from the network during the
training of the network. During the time of testing, all nodes are active.
Dropout provides regularization of the network to avoid overfitting and
introduces sparsity in the output vectors. Overfitting is reduced as it
trains exponential number of models with shared weights and provides
an implicit ensemble of networks during testing. Dropping the units
randomly avoids coadaptation of the units by making the presence
of a particular unit unreliable. The network with dropout takes 2 − 3
imes more time for training as compared to a standard neural network.
ence, a balance is to be set appropriately between the training time of

he network and the overfitting. Generalization of DropOut was given
n DropConnect (Wan et al., 2013). Unlike DropOut which drops each
utput unit, DropConnect randomly drops each connection and hence,
ntroduces sparsity in the weight parameters of the model. Similar to
ropOut, DropConnect creates an implicit ensemble during test time by
ropping out the connections (setting weights to zero) during training.
oth DropOut and DropConnect suffer from high training time. To
lleviate this problem, deep networks with Stochastic depth (Huang
t al., 2016b) aimed to reduce the network depth during training while
eeping it unchanged during testing of the network. Stochastic depth
s an improvement on ResNet (He et al., 2016) wherein residual blocks
re randomly dropped during training and bypassing these transforma-
ion blocks connections via skip connections. Swapout (Singh et al.,
7

2016) is a generalization of DropOut and Stochastic depth. Swapout
involves dropping of individual units or to skip the blocks randomly.
Embarking on a distinctive approach of reducing the test time, distilling
the knowledge in a network (Hinton et al., 2015) transferred the
‘‘knowledge" from ensembles to a single model. Gradual DropIn or
regularized DropIn Smith et al. (2016) of layers starts from a shallow
network wherein the layers are added gradually. DropIN trains the
exponential number of thinner networks, similar to DropOut, and also
shallower networks.

All the aforementioned methods provided an ensemble of networks
by sharing the weights. There have been attempts to explore explicit
ensembles in which models do not share the weights. Snapshot en-
sembling (Huang et al., 2017a) develops an explicit ensemble without
sharing the weights. The authors exploited good and bad local min-
ima and let the stochastic gradient descent (SGD) converge 𝑀-times
to local minima along the optimization path and take the snapshots
only when the model reaches the minimum. These snapshots are then
ensembled by averaging at multiple local minima for object recogni-
tion. The training time of the ensemble is the same as that of the
single model. The ensemble out is taken as the average of the output
of the snapshot outputs at multiple local minimas. Random vector
functional link network (Pao et al., 1994; Malik et al., 2022) has also
been explored for creating the explicit ensembles (Shi et al., 2021)
where different random initialization of the hidden layer weights in
a hierarchy diversifies the ensemble predictions.

Explicit/implicit produce ensembles out of a single network at the
expense of base model diversity (Cao et al., 2020) as the lower level fea-
tures across the models are likely to be the same. To alleviate this issue,
branching based deep models (Han et al., 2017) branch the network to
induce more diversity. Motivated by different initializations of the neu-
ral networks leads to different local minima, Xue et al. (2021) proposed
deep ensemble model wherein ensemble of fully convolution neural
network over multiloss module with coarse fine compensation module
resulted in better segmentation of central serous chorioretinopathy
lesion. Multiple neural networks with different initializations, multiple
loss functions resulted in better diversity in an ensemble (see Table 3).

4.6. Homogeneous & heterogeneous ensembles

Homogeneous ensemble (HOE) and heterogeneous ensemble (HEE)
involve training a group of base learners either from the same family
or different families, as shown in Fig. 5 and Fig. 6, respectively. Hence,
each model of an ensemble must be as diverse as possible, and each
base model must perform better than the random guess. The base
learner can be a decision tree, neural network, or any other learning
model.

In homogeneous ensembles, the same base learner is used multiple
times to generate the family of base classifiers. However, the key issue
is to train each base model such that the ensemble model is as diverse as
possible, i.e. no two models are making the same error on a particular
data sample. The two most common ways of inducing randomness
in a homogeneous ensemble are either sampling of the training set
multiple times, thereby training each model on a different bootstrapped
sample of the training data or sampling the feature space of the training
data and train each model on a different feature subset of the training
data. In some ensemble models like Random forest (Breiman, 2001)
used both these techniques for introducing diversity in the ensemble of
decision trees. In neural networks, training models independently with
different initialization of the models also induces diversity. However,
deep learning models have high training costs and hence, training of
multiple deep learning models is not a feasible option. Some attempts,
like horizontal vertical voting of deep ensembles (Xie et al., 2013) have
been made to obtain ensembles of deep models without independent
training. Temporal ensemble (Laine and Aila, 2016) trains multiple
models with different input augmentation, different regularization and

different training epochs. Training of multiple deep neural networks
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Table 3
Implicit/Explicit ensembles.
Year Authors Contribution

2013 Wan et al. (2013) Introduced DropConnect (Random skipping of connections)
2014 Srivastava et al. (2014) Introduced Dropout (Random skipping of units)
2016 Huang et al. (2016b) Deep networks with Stochastic depth (Random skipping of blocks)
2016 Singh et al. (2016) Introduced Swapout (Hybrid of Dropout and Stochastic depth approach)
Fig. 5. Homogeneous ensemble (HOE) has models based on the same algorithm, but each individual model are fed with distinct datasets.
Fig. 6. The components in heterogeneous ensemble (HEE) share the same dataset but
onsists of various algorithms.

or image classification (Ciregan et al., 2012) and for disease pre-
iction (Grassmann et al., 2018) showed that better performance is
chieved via an ensemble of multiple networks and averaging the
utputs. Despite these models, training multiple deep learning models
or ensemble is an uphill task as millions or billions of parameters
eed to be optimized. Hence, some studies have used deep learning in
ombination with traditional models to build heterogeneous ensemble
odels, enjoying the benefits of lower computation and higher diver-

ity. Heterogeneous ensemble for default prediction (Li et al., 2018) is
n ensemble of the extreme gradient boosting, deep neural network and
ogistic regression. Heterogeneous ensemble for text classification (Kil-
mci and Akyokus, 2018) is an ensemble of multivariate Bernoulli
aïve Bayes (MVNB), multinomial naïve Bayes (MNB), support vector
achine (SVM), random forest (RF), and convolutional neural net-
ork (CNN) learning algorithms. Using different perspectives of data,
odel and decision fusion, heterogeneous deep network fusion (Tabik

t al., 2020) showed that complex heterogeneous fusion architectures
re more diverse and hence, show better generalization performance.
urthermore, Seijo-Pardo et al. (2017) employed both homogeneous
nd heterogeneous ensembles for feature selection. Zhao et al. (2010)
uggested that the heterogeneous bagging based ensemble strategy per-

orms better than boosting based Learn++ algorithms and some other

8

NCL methods. Other examples that employed homogeneous ensemble
methods were used to deal with the presence of incremental tasks, such
as concept drift (Minku et al., 2009), power load forecasting (Qiu et al.,
2018; Grmanová et al., 2016), myoelectric prosthetic hands surface
electromyogram characteristics (Duan and Dai, 2017), etc. Das et al.
(2016) proposed an ensemble incremental learning with pseudo-outer-
product fuzzy neural network for traffic flow prediction, real-life stock
price, and volatility predictions, etc.

4.7. Decision fusion strategies

Ensemble learning trains several base learners and aggregates the
outputs of base learners using some rules. The rule used to combine
the outputs determines the effective performance of an ensemble. Most
of the ensemble models focus on the ensemble architecture followed by
their naive averaging to predict the ensemble output. However, naive
averaging of the models, followed in most of the ensemble models,
is not data adaptive and leads to less optimal performance (Ju et al.,
2018) as it is sensitive to the performance of the biased learners. As
there are billions of hyperparameters in deep learning architecture, the
issue of overfitting may lead to the failure of some base learners. Hence,
to overcome these issues, approaches like Bayes optimal classifier and
super learner have been followed (Ju et al., 2018).

The different approaches followed in the literature for combining
the outputs of the ensemble models are:

4.7.1. Unweighted model averaging
Unweighted averaging of the outputs of the base learners in an

ensemble is the most followed approach for fusing the decisions in
the literature. Here, the outcomes of the base learners are averaged to
get the final prediction of the ensemble model. Deep learning architec-
tures have high variance and low bias, thus, simple averaging of the
ensemble models improve the generalization performance due to the
reduction of the variance among the models.

The averaging of the base learners is performed either on the

outputs of the base learners directly or on the predicted probabilities
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of the classes via softmax function:

𝑃 𝑗
𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗 (𝑂𝑖) =

𝑂𝑗
𝑖

∑𝐾
𝑘=1 𝑒𝑥𝑝(𝑂

𝑗
𝑘)

(4)

where 𝑃 𝑗
𝑖 is the probability outcome of the 𝑖th unit on the 𝑗th base

learner, 𝑂𝑗
𝑖 is the output of the 𝑖th unite of the 𝑗th base learner and 𝐾

is the number of the classes.
Unweighted averaging is a reasonable choice when the performance

of the base learners is comparable, as suggested in He et al. (2016),
Simonyan and Zisserman (2014) and Szegedy et al. (2015). However,
when the ensemble contains heterogeneous base learners naive un-
weighted averaging may result in suboptimal performance as it is
affected by the performance of the weak learners and the overconfident
learners (Ju et al., 2018). The adaptive metalearner should be good
enough to adaptively combine the strengths of the base learners as some
learners may have lower overall performance but maybe good at the
classification of certain subclasses and hence, leading to better overall
performance.

4.7.2. Majority voting
Similar to unweighted averaging, majority voting combines the

outputs of the base learners. However, instead of taking the average
of the probability outcomes, majority voting counts the votes of the
base learners and predicts the final labels as the label with the majority
of votes. In comparison to unweighted averaging, majority voting is
less biased towards the outcome of a particular base learner as the
effect is mitigated by majority vote count. However, favoring of a
particular event by most of the similar base learners or dependent base
learners leads to the dominance of the event in the ensemble model. In
majority voting, the analysis by Kuncheva et al. (2003) showed that the
pairwise dependence among the base learners plays an important role
and for the classification of images, the prediction of shallow networks
is more diverse as compared to the deeper networks (Choromanska
et al., 2015). Hence, Ju et al. (2018) hypothesized that the performance
of the majority voting based shallows ensemble models is better as
compared to the majority based deep ensemble models.

Voting methods have also started to be integrated with semi-
supervised deep learning. Li et al. (2017b) proposed an ensemble
semi-supervised deep acoustic models for in automatic speech recogni-
tion. Wang et al. (2019c) explored an ensemble self-learning method
to enhance semi-supervised performance and extract adverse drug
events from social media in Liu et al. (2018). In the semi-supervised
classification area, the author proposed a deep coupled ensemble
learning method which is combined with complementary consistency
regularization and gets the state of the art performance in Li et al.
(2019a). Some results have also been achieved with semi-supervised
ensemble learning on some datasets where the annotation is costly. Pio
et al. (2014) employed an ensemble method to improve the reliability
of miRNA:miRNA predicted interactions.

Furthermore, the multi-label classification (Tsoumakas and Katakis,
2007) problem is also a major point addressed by the voting method,
a typical application is the RAndom 𝑘-labELsets (RAKEL) algorithm
(Tsoumakas and Vlahavas, 2007). The author trained several single-
label classifiers using small random subsets of actual labels. Then the
final output is carried out by a voting scheme based on the predictions
of these single classifiers. There are also many variants of RAKEL
proposed in recent years (Moyano et al., 2019; Kimura et al., 2016;
Wang et al., 2021). Shi et al. (2011) proposed a solution for multi-
label ensemble learning problem, which construct several accurate and
diverse multi-label based basic classifiers and employ two objective
functions to evaluate the accuracy and diversity of multi-label base
learners. Another work (Li et al., 2013) proposed an ensemble multi-
label classification framework based on variable pairwise constraint
projection. Xia et al. (2021) proposed a weighted stacked ensemble

scheme that employs the sparsity regularization to facilitate classifier o

9

selection and ensemble construction. Besides, there are many appli-
cations of ensemble multi-label methods. Some publications employ
multi-label ensemble classifiers to explore the protein, such as protein
subcellular localization (Guo et al., 2016), protein function predic-
tion (Yu et al., 2012), etc. The Muli-label classifier is also utilized in
predicting the drug side effects (Zhang et al., 2015), predicting the
gene prediction (Schietgat et al., 2010), etc. Moreover, there is another
critical ensemble multi-label algorithm called ensemble classifier chains
(ECC) (Read et al., 2011). This method involves binary classifiers linked
along a chain. The first classifier is trained using only the input data,
and then each subsequent classifier is trained on the input space and
all previous classifiers in the chain. The final prediction is obtained
by the integration of the predictions and selection above a manually
set threshold. Chen et al. (2017) propose an ensemble application of
convolutional and recurrent neural networks to capture both the global
and local textual semantics and to model high-order label correlations.

4.7.3. Bayes optimal classifier
In Bayesian method, hypothesis ℎ𝑗 of each base learner with the

onditional distribution of target label 𝑡 given 𝑥. Let ℎ𝑗 be the hy-
pothesis generated on the training data 𝐷 evaluated on test data (𝑥, 𝑡),

athematically, ℎ𝑗 (𝑡|𝑥) = 𝑃 [𝑦|𝑥, ℎ𝑗 , 𝐷]. With Bayes rule, we have

(𝑡|𝑥,𝐷) ∝
∑

ℎ𝑗

𝑃 [𝑡|ℎ𝑗 , 𝑥,𝐷]𝑃 [𝐷|ℎ𝑗 ]𝑃 [ℎ𝑗 ] (5)

nd the Bayesian Optimal classifier is given as:

𝑟𝑔𝑚𝑎𝑥
𝑡

∑

ℎ𝑗

𝑃 [𝑡|ℎ𝑗 , 𝑥,𝐷]𝑃 [𝐷|ℎ𝑗 ]𝑃 [ℎ𝑗 ], (6)

here 𝑃 [𝐷|ℎ𝑗 ] = 𝛱(𝑡,𝑥)∈𝐷ℎ𝑗 (𝑡|𝑥) is the likelihood of the data under ℎ𝑗 .
owever, due to overfitting issues this might be not a good measure.
ence, training data is divided into two sets-one for training the model
nd the other for evaluating the model. Usually validation set is used
o tune the hyperparameters of the model.

Choosing prior probabilities in Bayes optimal classifier is difficult
nd hence, usually set to uniform distribution for simplicity. With
large sample size, one hypothesis tends to give larger posterior

robabilities than others and hence the weight vector is dominated by
single base learner and hence Bayes optimal classifier would behave

s the discrete super learner with a negative likelihood loss function.

.7.4. Stacked generalization
Stacked generalization (Wolpert, 1992) works by deducing the bi-

ses of the generalizer(s) with respect to a provided learning set. To
btain the good linear combination of the base learners in regression,
ross-validation data and least squares under non-negativity constraints
as used to get the optimal weights of combination (Breiman, 1996c).
onsider the linear combination of the predictions of the base learners
1, 𝑓2,… , 𝑓𝑚 given as:

𝑠𝑡𝑎𝑐𝑘𝑖𝑛𝑔(𝑥) =
𝑚
∑

𝑗=1
𝑤𝑗𝑓𝑗 (𝑥) (7)

here 𝑤 is the optimal weight vector learned by the meta learner.

.7.5. Super learner
Inspired by the cross validation for choosing the optimal clas-

ifier, Van der Laan et al. (2007) proposed super learner which is
eighted combination of the predictions of the base learner. Unlike

he stacking approach, it uses cross validation approach to select the
ptimal weights for combining the predictions of the base learners.

With smaller datasets, cross validation approach can be used to
ptimize the weights. However, with the increase in the size of the
ata and the number of base learners in the model, it may not be a
easible option. Instead of optimizing the V-fold cross validation, single
plit cross validation can also be used for optimizing the weights for

ptimal combination (Ju et al., 2019). In deep learning models, usually,
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Fig. 7. The process of consensus clustering. An ensemble of different clustering results can be combined by a consensus approach.
validation set is used to evaluate the performance instead of using the
ross validation.

Another application field for super learner is in Reinforcement
earning With the development of Deep learning, some researchers
ave implemented deep reinforcement learning, which combines deep
earning with a Q-learning algorithm (Mnih et al., 2013). Ensemble
ethods in deep Q learning have decent performance. Chen et al.

2018a) proposed an ensemble network architecture for deep reinforce-
ent learning. The integrated network includes Temporal Ensemble

nd Target Values Ensemble. Develop a human-like chat robot is a
hallenging job, by incorporating deep reinforcement learning and
nsemble method, Cuayáhuitl et al. (2019) integrated 100 deep rein-
orcement learning agents, the agents are trained based on clustered
ialogues. They also demonstrate the ensemble of DRL agents has
etter performance than the single variant or Seq2Seq model. Stock
rading is another topic where ensemble deep reinforcement learning
as achieved a promising result. Carta et al. (2020) found the sin-
le supervised classifier is inadequate to deal with the complex and
olatile stock market. They employed hundreds of neural networks to
re-process the data, then they combined several reward-based meta
earners as a trading agency. Moreover, Yang et al. (2020) trained an
nsemble trading agency based on three different metrics: Proximal
olicy Optimization (PPO), Advantage Actor–Critic (A2C), and Deep
eterministic Policy Gradient (DDPG). The ensemble strategy combines

he advantages of the three different algorithms. Besides, some re-
earchers try to use ensemble strategy to solve the disease-prediction
roblem. The proposed model in Tang et al. (2016) consists of several
ub-models which are in response to different anatomical parts.

.7.6. Consensus
Unsupervised learning is another group of machine learning tech-

iques. The fundamental difference between it and supervised learning
s that unsupervised learning usually handles training samples without
orresponding labels. Therefore, the primary usage of unsupervised
earning is to do clustering. The reason why ensemble methods are
mployed is to combine some weak clusters into strong one. To create
iverse clusters, several approaches can be applied: using different
ampling data, using different subsets of the original features, and
mploying different clustering methods (Şenbabaoğlu et al., 2014).
ometimes, even some random noise can be added to these base
odels to increase randomness, which is good for ensemble methods

ccording to Bian and Wang (2007). After receiving all the outputs
rom each cluster, various consensus functions can be chosen to obtain
he final output based on the user’s requirement (Vega-Pons and Ruiz-
hulcloper, 2011). The ensemble clustering is also known as consensus
lustering Fig. 7.

Zhou and Tang (2006) explored ensemble methods for unsupervised
earning and developed four different approaches to combine the out-
uts of these clusters. In recent years, some new ensemble clustering
ethods have been proposed that illustrated the priority of ensemble

earning (Huang et al., 2017b; Zheng et al., 2010; Huang et al., 2016a).
ost of the clustering ensemble method is based on the co-association
atrix solution, which can be regarded as a graph partition problem.

esides, there is some research focus on integrating the deep structure

10
and ensemble clustering method. Liu et al. (2015, 2016) firstly showed
that ensemble unsupervised representation learning with deep structure
can be applied in large scale data. Then the author combined the
method with auto-encoder and extends it to the vision field. Shaham
et al. (2016) first demonstrated that some crowdsourcing algorithms
can be replaced by a Restricted Boltzmann Machine with a single
hidden neuron, then propose an RBM-based Deep Neural Net (DNN)
used for unsupervised ensemble learning. The unsupervised ensemble
method also makes some contribution to the field of Natural Language
Processing. Alami et al. (2019) demonstrated that the ensemble of
unsupervised deep neural network models that use Sentence2Vec rep-
resentation as the input has the best performance according to the
experiments. Hassan et al. (2019) proposed a module that includes
four semantic similarity measures, which improves the performance on
the semantic textual similarity (STS) task. The unsupervised ensem-
ble method is also widely used for tasks that lack annotation, such
as the medical image. Ahn et al. (2019) proposed an unsupervised
feature learning method integrated ensemble approach with a tradi-
tional convolutional neural network. Lahiri et al. (2016) employed
unsupervised hierarchical feature learning with ensemble sparsely au-
toencoder on retinal blood vessels segmentation task, meanwhile, Liu
et al. (2019) also propose an unsupervised ensemble architecture to
automatically segment retinal vessel. Besides, there are also some
ensemble deep methods working on localization predicting for long
non-coding RNAs Cao et al. (2018). Hu and Suganthan (2022) extended
the ensemble random vector functional link to unsupervised tasks. The
authors employ manifold regularization to re-represent the original
features, and then use the Kuhn–Munkre algorithm with consensus
clustering to ensemble the clustering results from multiple hidden
layers.

4.7.7. Query-by-committee
Active Learning is another popular topic in the deep learning area,

which is also often used in conjunction with semi-supervised learning
and ensemble learning. The key sight of this is to make the algorithm
learning from less annotated data. Some conventional active learning
algorithms, such as Query-By-Committee (as shown in Fig. 8), have
already adopted the idea of ensemble learning. Melville and Mooney
(2003, 2004) explored an ensemble method that builds a diverse com-
mittee. Beluch et al. (2018) discussed the power of ensembles for active
learning is significantly better than Monte-Carlo Dropout and geometric
approaches. Sharma and Rani (2018) show some applications in drug-
target interaction prediction. Ensemble active learning is also available
to conquer the concept drift and class imbalance problem (Zhang et al.,
2018).

5. Applications

In this section, we briefly present the applications of deep ensemble
models across different domains in a tabular form. Ensemble deep
models have been implemented in several domains and therefore,
in broad sense, we have classified the application domains into five

categories, i.e., health care, speech, image classification, forecasting
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Table 4
Applications in health care.

Year Author Title Approach Area

2014 Zheng et al. (2014) HIBAG—HLA genotype imputation with attribute bagging Bagging Genotype Imputation
2014 Cortes et al. (2014) Deep Boosting Boosting Classification
2015 Zhang et al. (2015) Predicting drug side effects by multi-label learning and ensemble

learning
Decision Fusion Predict the drug side effects

2016 Guo et al. (2016) Human protein subcellular localization with integrated source and
multi-label ensemble classifier.

Decision Fusion Protein subcellular localization
prediction

2016 Lahiri et al. (2016) Deep neural ensemble for retinal vessel segmentation in fundus
images towards achieving label-free angiography

Decision Fusion Medical image segmentation

2017 Cabria and Gondra (2017) MRI segmentation fusion for brain tumor detection Heterogeneous ensemble MRI segmentation
2018 Grassmann et al. (2018) A deep learning algorithm for prediction of age-related eye disease

study severity scale for age-related macular degeneration from color
fundus photography

Homogeneous ensemble Disease prediction

2018 Cao et al. (2018) The lnclocator: a subcellular localization predictor for long
non-coding RNAs based on a stacked ensemble classifier

Decision Fusion Subcellular localization predictor

2018 Sharma and Rani (2018) Be-dti’: Ensemble framework for drug target interaction prediction
using dimensionality reduction and active learning

Active learning Drug target interaction prediction

2019 Ahn et al. (2019) Unsupervised feature learning with k-means and an ensemble of
deep convolutional neural networks for medical image classification

Decision Fusion Medical image classification

2019 Liu et al. (2019) Unsupervised ensemble strategy for retinal vessel segmentation. Unsupervised Medical image classification
2020 Shalbaf and Vafaeezadeh (2021) Automated detection of COVID-19 using ensemble of transfer

learning with deep convolutional neural network based on CT scans
Heterogeneous Ensemble Detection of COVID-19

2020 Ali et al. (2020) A smart healthcare monitoring system for heart disease prediction
based on ensemble deep learning and feature fusion

Boosting Heart disease prediction

2021 Zhou et al. (2021) The ensemble deep learning model for novel COVID-19 on CT
images

Heterogeneous Ensemble Detection of COVID-19

2021 Li et al. (2020) Intelligent Fault Diagnosis by Fusing Domain Adversarial Training
and Maximum Mean Discrepancy via Ensemble Learning

Heterogeneous Ensemble Fault diagnosis

2021 Das et al. (2021) Automatic COVID-19 detection from X-ray images using ensemble
learning with convolutional neural network

Heterogeneous Ensemble Detection of COVID-19

2022 Sukegawa et al. (2022) Identification of osteoporosis using ensemble deep learning model
with panoramic radiographs and clinical covariates

Decision Fusion Identification of osteoporosis

2022 Gao et al. (2022) Vessel segmentation for X-ray coronary angiography using ensemble
methods with deep learning and filter-based features

Boosting Vessel segmentation

2022 Rath et al. (2022) Improved heart disease detection from ECG signal using deep
learning based ensemble model

Heterogeneous Ensemble Heart disease detection

2022 Tanveer et al. (2022) Classification of Alzheimer’s Disease Using Ensemble of Deep Neural
Networks Trained Through Transfer Learning

Heterogeneous Ensemble Classification of Alzheimer’s
Disease

2022 Rai and Chatterjee (2022) Hybrid CNN-LSTM deep learning model and ensemble technique for
automatic detection of myocardial infarction using big ECG data

Heterogeneous Ensemble Detection of myocardial infarction

2022 Ganaie and Tanveer (2022) Ensemble deep random vector functional link network using
privileged information for Alzheimer’s disease diagnosis

Implicit ensemble Diagnosis of Alzheimer’s disease
Fig. 8. Query-by-committee in Active Learning. Sampling with replacement is used to
artition the labeled training data set into training splits. The committee determines
hether to label the data based on the output of several algorithms.

nd the rest models are listed in others category. Table 4 gives the infor-
ation about the ensemble deep models that have been implemented

n health care domain. Here, several papers are based on heterogeneous
nsemble technique. It reveals that using different family’s models
nto a single frame perform better in health care domain. Recently,
nsemble deep techniques have been successful and have shown good
11
performance in health care domain. The models which have been
implemented for speech task have been given in Table 5 and most of the
ensemble approaches are based on stacking technique. Table 6 contains
the ensemble deep models that have been implemented in speech areas.
Models that have been implemented in forecasting and other domains
have been given in Table 7 and Table 8, respectively. Fig. 9 shows
the percentages of the application domains. The statistics reveals that
different ensemble deep techniques have been used in different areas.
A larger number of models, i.e. 27% of the ensemble deep models,
have been implemented in health care domain and 5.6% percent of
the models for speech application and 22.5% of the models for image
classification task. Moreover, 9% models have been used in forecasting
and 36% in other applications areas, i.e., information retrieval, emotion
recognition, text categorization and so on. Fig. 10 shows the ensemble
strategies in percentage. In ensemble learning, there are several ways to
integrate the outcomes of the models in an ensemble. In the literature,
researchers have proposed different techniques of decision fusion ac-
cording to different areas of application. Bagging, boosting and stacking
are the classical ensemble techniques. Based on these three techniques,
researchers have developed several other techniques also. Boosting
(18.2%), stacking (12.5%) and bagging (4.5%) techniques have been
implemented in ensemble deep framework. Heterogeneous and implicit
ensemble are also popular for making an efficient ensemble model and
their contribution are as follows 11.4% and 10.2%, respectively. The
rest ensemble techniques are, i.e. unsupervised (3.4%), NCL (3.4%),
reinforcement (1.1%), active learning (1.1%), explicit ensemble (1.1%)
and homogeneous ensemble (3.4%).
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Table 5
Applications in speech.

Year Author Title Approach Area

2012 Tur et al. (2012) Towards deeper understanding: Deep convex networks for semantic
utterance classification

Stacking Semantic Utterance Classification

2012 Deng et al. (2012b) Use of kernel deep convex networks and end-to-end learning for
spoken language understanding

Stacking Spoken Language Understanding

2014 Deng and Platt (2014) Ensemble deep learning for speech recognition Stacking Speech Recognition
2014 Palangi et al. (2014) Recurrent Deep-Stacking Networks for sequence classification Stacking Sequence classification
2017 Li et al. (2017b) Semi-supervised ensemble DNN acoustic model training Decision Fusion Speech Recognition
Table 6
Applications in image classification.

Year Author Title Approach Area

2012 Ciregan et al. (2012) Multi-column deep neural networks for image classification Homogeneous ensemble Classification
2013 Wan et al. (2013) Regularization of Neural Networks using DropConnect Implicit ensemble Image recognition
2014 Srivastava et al. (2014) Dropout: a simple way to prevent neural networks from overfitting Implicit Ensemble Computer vision, speech recognition

document classification and
computational biology

2014 Liu et al. (2014) Facial expression recognition via a boosted deep belief network Boosting Facial expression recognition
2015 Li et al. (2015) Sparse deep stacking network for image classification Stacking Image Classification
2015 Yang et al. (2015) Convolutional channel features Boosting Pedestrian detection, face detection,

edge detection and object proposal
generation

2016 Moghimi et al. (2016) Boosted Convolutional Neural Networks Boosting Classification
2016 Huang et al. (2016b) Deep networks with stochastic depth Implicit ensemble Classification
2016 He et al. (2016) Deep residual learning for image recognition Implicit ensemble classification, and object detection
2016 Singh et al. (2016) Swapout: Learning an ensemble of deep architectures Implicit ensemble classification
2016 Smith et al. (2016) Gradual dropin of layers to train very deep neural networks Implicit ensemble Classification
2016 Laine and Aila (2016) Temporal ensembling for semi-supervised learning Homogeneous ensemble Classification
2016 Tang et al. (2016) Inquire and diagnose: Neural symptom checking ensemble using

deep reinforcement learning
Decision Fusion Inquire symptoms and diagnose diseases

2017 Huang et al. (2017a) Snapshot ensembles: train 1, get M for free Explicit ensemble Classification
2017 Mosca and Magoulas (2017) Deep incremental boosting Boosting Classification
2018 Beluch et al. (2018) The power of ensembles for active learning in image classification Decision Fusion Image classification
2019 Amin-Naji et al. (2019) Ensemble of CNN for multi-focus image fusion Decision Fusion Image Classification
2019 Li et al. (2019a) Semi-supervised deep coupled ensemble learning with classification

landmark exploration.
Decision Fusion Image classification

2020 Wang et al. (2020) Particle swarm optimization for evolving deep neural networks for
image classification by evolving and stacking transferable blocks.

Stacking Image Classification
Table 7
Applications in forecasting.

Year Author Title Approach Area

2014 Qiu et al. (2014) Ensemble deep learning for regression and time series forecasting Decision Fusion Regression and Time Series
Forecasting

2016 Grmanová et al. (2016) Incremental ensemble learning for electricity load forecasting Decision Fusion Electricity load forecasting
2017 Qiu et al. (2017) Empirical Mode Decomposition based ensemble deep learning for

load demand time series forecasting
Decision Fusion Load demand forecasting

2017 Liu et al. (2017) A Flood Forecasting Model Based on Deep Learning Algorithm via
Integrating Stacked Autoencoders with BP Neural Network

Stacking Flood Forecasting

2018 Qiu et al. (2018) Ensemble incremental learning random vector functional link
network for short-term electric load forecasting.

Decision Fusion Electric load forecasting

2020 Carta et al. (2020) A multi-layer and multi-ensemble stock trader using deep learning
and deep reinforcement learning

Implicit ensemble Stock trader

2020 Yang et al. (2020) Deep reinforcement learning for automated stock trading: An
ensemble strategy

Decision Fusion Stock trading agency

2021 Bhusal et al. (2021) Deep ensemble learning-based approach to real-time power system
state estimation

Stacking Electric Power

2022 Singla et al. (2021) An ensemble method to forecast 24-h ahead solar irradiance using
wavelet decomposition and BiLSTM deep learning network

Decision Fusion Forecasting
Fig. 9. Ensemble-based approach in different areas. Data from Tables 4 to 8.
12
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Table 8
Other applications.

Year Author Title Approach Area

2013 Deng et al. (2013) Deep stacking networks for information retrieval Stacking Information Retrieval
2014 Kuznetsov et al. (2014) Multi-class deep boosting Boosting Classification
2014 Wang et al. (2014) Sentiment classification The contribution of ensemble learning Bagging, Boosting Sentiment classification
2015 Zareapoor and

Shamsolmoali (2015)
Application of Credit Card Fraud Detection: Based on Bagging Ensemble
Classifier

Bagging Credit Card Fraud Detection

2016 Yin et al. (2017) Recognition of emotions using multimodal physiological signals and an
ensemble deep learning model

Decision Fusion Emotions Recognition

2016 Liu et al. (2016) A deep learning approach to unsupervised ensemble learning Decision Fusion Clustering
2016 Walach and Wolf

(2016)
Learning to count with CNN boosting Boosting Object counting in images

2017 Han et al. (2016) Incremental boosting convolutional neural network for facial action unit
recognition

Boosting Facial action unit recognition

2017 Chen et al. (2017) Ensemble application of convolutional and recurrent neural networks for
multi-label text categorization

Decision Fusion Text Categorization.

2017 Opitz et al. (2017) Bier-boosting independent embeddings robustly Boosting Image retrieval
2018 Shi et al. (2018) Crowd Counting with Deep Negative Correlation Learning Negative correlation learning Crowd Counting
2018 Kazemi et al. (2018) Novel genetic-based negative correlation learning for estimating soil

temperature
Negative correlation learning Soil Temperature Estimation

2018 Randhawa et al. (2018) Credit Card Fraud Detection Using AdaBoost and Majority Voting Boosting Credit Card Fraud Detection
2018 Sun et al. (2018) Sparse Deep Stacking Network for Fault Diagnosis of Motor Stacking Fault Diagnosis
2018 Chen et al. (2018b) Deep boosting for image denoising Boosting Image denoising
2018 Li et al. (2018) Heterogeneous ensemble for default prediction of peer-to-peer lending in

China
Heterogeneous ensemble Default prediction

2018 Kilimci and Akyokus
(2018)

Deep learning-and word embedding-based heterogeneous classifier
ensembles for text classification

Heterogeneous ensemble Classification

2018 Liu et al. (2018) SSEL-ADE: a semi-supervised ensemble learning framework for extracting
adverse drug events from social media

Decision Fusion Extracting adverse drug events

2019 Martín et al. (2019) Android malware detection through hybrid features fusion and ensemble
classifiers: The AndroPyTool framework and the OmniDroid dataset

Decision Fusion Android malware detection

2019 Cuayáhuitl et al. (2019) Ensemble-based deep reinforcement learning for chatbots Reinforcement Chat robot
2019 Chen et al. (2019b) Real-world image denoising with deep boosting Boosting Image denoising
2019 Waltner et al. (2019) HiBsteR: Hierarchical Boosted Deep Metric Learning for Image Retrieval Boosting Image Retrieval
2019 Wang et al. (2019b) AdaBoost-based security level classification of mobile intelligent terminals AdaBoost Security Level Classification
2019 Chen et al. (2019a) Novel Hybrid Integration Approach of Bagging-Based Fisher’s Linear

Discriminant Function for Groundwater Potential Analysis
Bagging Groundwater Potential Analysis

2019 Shi et al. (2021) Random vector functional link neural network based ensemble deep
learning

Implicit ensemble Classification

2019 Zhang et al. (2019a) Deep stacked hierarchical multi-patch network for image deblurring Stacking Deblurring Image
2019 Alami et al. (2019) Enhancing unsupervised neural networks based text summarization with

word embedding and ensemble learning
Decision Fusion Text summarization

2019 Hassan et al. (2019) Uests: An unsupervised ensemble semantic textual similarity method Decision Fusion Semantic textual similarity
2020 Zhang et al. (2020b) Grasp for stacking via deep reinforcement learning Stacking Robotic arm control
2020 Zhang et al. (2020a) Snapshot boosting: a fast ensemble framework for deep neural networks Boosting Computer vision (CV) and the

natural language processing (NLP)
tasks

2021 Tsogbaatar et al. (2021) DeL-IoT: A deep ensemble learning approach to uncover anomalies in IoT Decision Fusion IoT
2022 Wen et al. (2020) A new ensemble convolutional neural network with diversity

regularization for fault diagnosis
Snapshot ensemble learning Fault diagnosis

2022 Hu and Suganthan
(2022)

Representation Learning Using Deep Random Vector Functional Link
Networks for Clustering

Decision Fusion Clustering
Fig. 10. Analysis of the applications of various ensemble methods. Data from Tables 4 to 8.
13
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6. Conclusions and future works

In this paper, we reviewed the recent developments of ensem-
ble deep learning models. The theoretical background of ensemble
learning has been elaborated to understand the success of ensemble
learning. The various approaches ranging from traditional ones like
bagging, boosting to the recent novel approaches like implicit/explicit
ensembles, heterogeneous ensembles, have led to better performance of
deep ensemble models. We also reviewed the applications of the deep
ensemble models in different domains.

Although deep ensemble models have been applied across different
domains, there are several open problems which can be explored in the
future to fill the gap. Big data (Zhou et al., 2014) is still a challenging
problem, one can explore the benefits of deep ensemble models for
learning the patterns using the techniques like implicit deep ensemble
to maximize the performance in both time and generalization aspects.

Deep learning models are difficult to train than shallow models
as large number of weights corresponding to different layers need to
be tuned. Creating deep ensemble models may further complicate the
problem. Hence, randomized models can be explored to overcome the
training cost. Bagging based deep ensemble may incur heavy training
time for optimizing the ensemble models. Hence, one can investigate
the alternate ways of inducing diversity in the base models with lesser
training cost. Randomized learning modules like random vector func-
tional link network (Pao et al., 1994) are best suited for creating the
ensemble models as randomized models lead to a significant variance
reduction. Also, the hidden layers are randomly initialized, hence, can
be used to create deep ensembles without incurring any additional
cost of training (Shi et al., 2021). Randomized modules can be further
explored using different techniques like implicit/explicit ensembles (Shi
et al., 2021), stacking based ensembles (Katuwal and Suganthan, 2019).
However, there are still open directions which can be worked upon like
negative correlation learning, heterogeneous ensembles and so on.

Implicit/explicit ensembles are faster compared to training of mul-
tiple deep models. However, creating diversity within a single model is
a big challenge. One can explore the methods to induce more diversity
among the learners within these ensembles like branching based deep
models (Han et al., 2017). Investigate the extension of explicit/implicit
ensembles to traditional models.

Following the stacking based approach, Deep convex net (DCN)
(Deng and Yu, 2011), traditional methods like random forest (Breiman,
2001; Zhou and Feng, 2017), support vector machines (Wang et al.,
2019d,a; Li et al., 2019b) have been extended to deep learning archi-
tectures which resulted in improved performance. One can investigate
these traditional models for creating the deep ensemble models.

Another big challenge of ensemble deep learning lies in model
selection for building the ensemble architecture, homogeneous and
heterogeneous ensembles represent two different ways for choosing the
model. However, to answer how many different algorithms, and how
many base learners in the ensemble architecture, are still problem-
dependent. Finding a criterion for model selection in ensemble deep
learning should be an important target for researchers in the next few
years. Since most of the models focus on developing the architectures
with little attention towards how to combine the base learners pre-
diction is still unanswered. Hence, one can investigate the effect of
different fusion strategies on the prediction of an ensemble output.

For unsupervised ensemble learning or consensus clustering, the
ensemble approaches include but are not limited to: Hyper-graph par-
titioning, Voting approach, Mutual information, etc. Consensus clus-
tering is a powerful tool and it can improve performance in most
cases. However, there are many concerns remain to be tackled, it
is exquisitely sensitive, which might assert as an apparent structure
without obvious demarcation or declared cluster stable without cluster
resistance. Besides, current method cannot handle some complex but
possible scenarios, such as the boundary samples are assigned to the
single cluster, clusters do not intersect and the methods are not able to
14
represent outliers. These are the possible research directions for future
work.

The problem of semi-supervised ensemble domains has not been
extensively studied yet, and most of the literature shows that semi-
supervised ensemble methods are mainly used in cases where there is
insufficient labeling data. Also, combining the semi-supervision with
some other machine learning methods, such as active learning, is a
direction for future research.

Reinforcement learning is another popular topic recently. The idea
of integrating model-based reinforcement learning with ensemble learn-
ing has been used with promising results in many applications, but
there is little integration of planning & learning-based reinforcement
learning with ensemble learning methods.
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