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Abstract

Machine Learning aims to find a model that searches through the hypothesis space to find a
hopefully optimal hypothesis that best predicts a wanted outcome. Its generalization errors occur
due to being affected, primarily by noise, bias, variance, and covariance.

Models may be formed by a variety of algorithms, namely, Neural Networks. Despite their
accomplishments, these are generally referred to as a method with low bias and high variance,
hence, unstable. Ensemble Learning, a thriving research area in terms of predictive performance,
strives to tackle the variance issue by combining multiple models. In turn, it obtains more accu-
rate, stable, and robust predictions. However, the ensemble’s success is dependant on the data’s
nature, estimators’ characteristics, estimators’ generation strategy, and the predictions’ integration
mechanism for which there is no exact way to decide the most appropriate.

Some ensemble techniques are estimator agnostic, while others are not. The field of Decision
Tree Ensembles has had many developments lately. Moreover, with recent years’ Neural Network
and Deep Learning success, Ensemble Learning also received new contributions. However, there
is an evident lack of theorized proposals and systematic researches specifically on combining the
most complementary existing strategies (paired strengths that most reduce each ensemble error
component in conjunction). The few that exist are, in the majority, practical applications to con-
crete scenarios, tweaks to existing Decision-Tree specific frameworks, or very narrow and limited
approaches. Given that Decision Tree Ensembles have demonstrably been proven to have excel-
lent results in prediction accuracy improvement (very high performance), there is an expectation
of adding value in the field of Neural Network Ensembles.

Stemming from the existing dissected literature, this thesis focuses on exploring and evolving
the Neural Network Ensemble’s state-of-the-art in the field of Supervised Learning, namely for
Regression problems. The bottom line is to verify if combining the existing approaches leads to
any performance improvement. Moreover, investigate which configurations and characteristics are
the most appropriate.

As a result, we propose a hybrid Neural Network Ensemble combining framework that per-
forms a complete error decomposition in bias, variance, and covariance on each algorithm to find
the most promising ways to combine the most complementary existing strategies, aiming to take
what is best from each strategy.

Creating multiple new and innovative hybrid ensemble algorithms involved a theoretical step
of conceptualization and modularization. More concretely, and excluding varying training data
ensemble techniques, more than 60 different algorithm combinations were developed.

Extensive experimental results with multiple datasets confirmed the theoretical assumptions
that combining multiple already established Neural Network Ensemble strategies yields a clear
and meaningful performance increase compared to the constituent base models and the respective
original architectures they are based on. From the multitude of proposed new Neural Network
Ensemble hybrid strategies, the best-performing ones decreased the global error, on average, from
12% to 17% versus their original architectures.
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Particularly, combining Snapshot, Negative Correlation Learning, and Dropout offers the most
notable results, but also, adding those three algorithms to other Ensemble Learning strategies
improves their performance distinctly. However, if one searches for specific error component
reduction on specific ensemble architectures, other combinations may be advisable to avoid some
technique’s pitfalls.

Therefore, and given that the experiments were considered statically valid and trustworthy,
it is proven that combining different ensemble approaches is a plausible and consistent way of
improving predictive capability with plenty of evolving potential.
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Resumo

O intuito de Machine Learning é encontrar um modelo que pesquisa através do espaço de
hipóteses de forma a encontrar uma hipótese adequada que melhor prevê um resultado desejado.
Os seus erros de generalização ocorrem devido a ser afetado, principalmente, por ruído, bias,
variância e covariância.

Os modelos podem ser formados por uma variedade de algoritmos, a saber, Redes Neuronais.
Apesar das suas conquistas, estas são geralmente referidas como um método com baixo bias e
alta variância, portanto, instáveis. Ensemble Learning, uma área de investigação próspera em
termos de desempenho preditivo, tem como objetivo resolver o problema da variância combinando
múltiplos modelos. Por sua vez, obtém-se previsões mais precisas, estáveis e robustas. No entanto,
o sucesso do Ensemble depende da natureza dos dados, das características dos modelos de base,
da estratégia de geração dos modelos de base e do mecanismo de integração de previsões para os
quais não há uma maneira exata de decidir qual o mais apropriado.

Algumas técnicas de Ensemble Learning são agnósticas relativamente aos modelos de base,
enquanto outras não. A área de Ensemble Learning para Árvores de Decisão teve muitos desen-
volvimentos recentemente. Além disso, com o sucesso das Redes Neuronais e Deep Learning
nos últimos anos, Ensemble Learning também recebeu novas contribuições. No entanto, há uma
evidente falta de propostas teorizadas e pesquisas sistemáticas especificamente sobre como com-
binar as estratégias existentes mais complementares (qualidades emparelhadas que oferecem uma
maior redução de cada componente erro em conjunto). As poucas que existem são, na sua maio-
ria, aplicações práticas a cenários em concreto, pequenos ajustes em estruturas específicas para
Árvores de Decisão ou abordagens muito estreitas e limitadas. Dado que Decision Tree Ensem-
bles apresentam demonstrativamente excelentes resultados na melhoria da exatidão das previsões
(desempenho muito elevado), há a expectativa de poder adicionar valor na área de Neural Network
Ensembles.

Partindo da literatura existente dissecada, esta tese centra-se em explorar e evoluir o estado da
arte de Neural Network Ensembles no campo de Aprendizagem Supervisionada, nomeadamente
para problemas de Regressão. Resumindo, pretende-se verificar se combinar abordagens exis-
tentes leva a alguma melhoria de desempenho. Além disso, investigar quais as configurações e
características mais adequadas.

Como resultado, propomos uma framework híbrida de combinação de Neural Network Ensem-
bles que realiza uma decomposição de erro de completa em bias, variância e covariância em cada
algoritmo de forma a encontrar as maneiras mais promissoras de combinar as estratégias existentes
mais complementares, com o objetivo de retirar o melhor de cada estratégia.

A criação de vários novos e inovadores algoritmos híbridos de Ensemble envolveu uma etapa
teórica de conceptualização e modelação. Mais concretamente, e excluindo técnicas de variação
de dados de treino para Ensembles, mais de 60 diferentes combinações de algoritmos foram de-
senvolvidas.
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Os resultados de vastas experiências em múltiplos conjuntos de dados confirmaram os pressu-
postos teóricos de que combinar de múltiplas estratégias já estabelecidas de Neural Network En-
sembles produz um aumento de desempenho claro e significativo em comparação com os modelos
de base constituintes e as respetivas arquiteturas originais nas quais se baseiam. Da multiplicidade
de novas estratégias híbridas de Neural Network Ensembles propostas, as de melhor desempenho
diminuíram o erro global, em média, de 12% a 17% em comparação com as suas arquiteturas
originais.

Em particular, combinaçar Snapshot, Negative Correlation Learning e Dropout oferece os
resultados mais notáveis, mas também, adicionar estes três algoritmos a outras estratégias de En-
semble Learning melhora seu desempenho de forma distinta. No entanto, se se procurar por uma
redução em específico de alguma componente de erro em certas arquiteturas de Ensemble, outras
combinações podem ser aconselháveis de forma a evitar alçapões de algumas técnicas.

Portanto, e dado que as experiências foram consideradas estatisticamente válidas e confiáveis,
prova-se que combinar diferentes abordagens de Ensemble é uma forma plausível e consistente de
melhorar a capacidade preditiva tendo muito potencial de evolução.

Keywords: Machine Learning, Supervised Learning, Neural Networks, Ensemble Learning
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1.1 Context

The emergence of data gathering propelled the need to derive insight from, usually, concealed

meanings and patterns. A plausible way to achieve this goal is to use Machine Learning (ML)

algorithms[1] which have an increasingly ubiquitous influence in everyone’s lives.

ML aims to study and develop computer algorithms that improve automatically through data

to carry out specific tasks [2]. More concretely, ML strives, normally, to find a single model

that searches through the hypothesis space to find a hopefully optimal hypothesis that expertly

predicts a wanted outcome. It can be traced back to 1959 by Arthur Samuel 1, an American IBMer
2 and pioneer in AI [3]. Since then, many advances have been made, and its use has widened.

This widespread adoption can be seen from the top echelons of public quoted companies to the

emerging startups and even single individuals due to the personal computer democratization.

Provided the task is simple, it is possible to explicitly program algorithms that guide the ma-

chine on how to execute all the required steps to solve the problem at hand, in which case, there

1https://history.computer.org/pioneers/samuel.html
2https://www.ibm.com/pt-en

1

https://history.computer.org/pioneers/samuel.html
https://www.ibm.com/pt-en
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is no learning needed on the computer’s part [4]. For more advanced tasks, it is increasingly chal-

lenging for a human to craft the required algorithms manually. It might be more beneficial to

let the machine develop its algorithm instead of having humans specifying every step needed [2].

This is a clear contrast from being explicitly programmed to do so [5].

ML employs numerous strategies to train computers on accomplishing tasks where no entirely

satisfactory algorithm is available [4].

1.2 Problem

However, ML’s benefits also carry risks [1]. One of which is that even if the hypothesis space

contains very well-suited hypotheses for a single reality, it may be challenging to find a sole model

that generalizes well for multiple realities. In other words, it may be affected by errors composed

of noise, bias, and variance. Therefore, there is no guarantee that the chosen model properly

performs on examples not observed during the training phase [1] [4].

Models may be formed by a variety of algorithms, namely, Neural Networks [6] (NNs). These

are highly flexible non-linear methods capable of modeling complex data relationships [7]. How-

ever, they are highly sensitive to initial conditions, training algorithm’s characteristics, Network

characteristics, theoretical training dataset variance, and training cost [7]. Also, having low bias

and high variance makes them be viewed as unstable [8].

Ensemble Learning (EL) is a successful research area in terms of predictive performance.

By introducing the Ensemble technique, one can tackle the variance problem (lower predictions’

overall variance) through “redundancy” introduction, specifically combining multiple models [9].

In turn, it is possible to obtain more accurate, stable, and robust predictions.

Nevertheless, NN allow for multiple configurations [8], and the Ensemble’s success depends

on the data’s nature, estimators’ characteristics, estimators’ generation strategy, and the predic-

tions’ integration mechanism for which there is no exact way to decide the most appropriate.

Also, Ensembles are highly dependant on their constituent estimators’ diversity and accuracy.

This means that each model may require a different knowledge of the hypothesis space to make

distinct predictions/errors, thus providing slightly different forecasts for the Ensemble to aggregate

over.

1.3 Motivation

Keeping in mind the above considerations, the Ensembles’ field has had many developments

over the years, with lots of published literature about Decision Tree Ensembles. Moreover, with

recent years’ NNs and Deep Learning (DL) success, EL also received new contributions.

However, the current Ensemble’s landscape suffers from an evident lack of systematic re-

searches, formulated hypotheses, theorized proposals, and implemented Neural Network Ensem-

ble (NNE) approaches, specifically combining the most complementary existing and established

strategies (paired strengths that most reduce each ensemble error component in conjunction). The
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few that exist (section 3.3.3) are unlike what is put forward in this research, but further support the

NNE’s combination promising evolution path.

As a matter of fact, most studies are practical applications to concrete scenarios, tweaks to

existing Decision-Tree specific frameworks, or very narrow and limited approaches rather than

proposing new NNE hybrid frameworks from scratch that allow for multiple innovative combina-

tions of algorithms with a complete error decomposition (bias, variance, and covariance), aiming

to harvest each strategy’s best characteristics. Given that Decision Tree Ensembles have demon-

strably been proven to have excellent results in prediction accuracy improvement (very high per-

formance), there is an expectation of adding value in the field of NNEs [8].

Consequentially, programmers would benefit from an increase in model performance and

achieved results. More broadly, global societies would inherently profit from increased perfor-

mance and reliability materialized in everyday devices.

So, there is a distinct need to evolve the current state-of-the-art.

1.4 Hypothesis

Being a research emphasis work, it focuses on exploring and evolving state-of-the-art tech-

niques applied to NNEs in the field of Supervised Learning, namely for Regression problems,

ideally by enhancing the performance of existing algorithms on tabular data. More concretely, this

thesis proposes to test the following hypothesis:

Is it possible to improve the existing state-of-the-art

Neural Network Ensemble approaches by combining them?

Knowing that Neural Network Ensembles allow for multiple

configurations and have different characteristics,

which are the most appropriate?

1.5 Methodology

It is a logical scheme with predefined steps to guide this thesis on testing the aforementioned

hypothesis.

Before tackling the problem, it is necessary to have a profound and thorough knowledge basis

of the ensemble’s field of study current state-of-the-art. It is here that the need for a prelimi-

nary study arises. Only after that is it possible to ascertain the final results’ trustworthiness and

statistical relevance. Therefore, the following steps were followed:
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• Systematic Literature Review - consisted of a quick, direct internet search, followed by a

thorough exploration in recognized citation indexes (such as “Scopus” 3, “Web of Science”
4, and “CiteSeerX” 5) of NN’s, EL’s, and, more profoundly, NNE’s related researches in the

Supervised Learning field applied to regression modeling problems;

• Critical Analysis - after obtaining a multitude of articles and technical reviews, a quick

analysis was performed to remove irrelevant documents. After that, an in-depth analysis

was conducted to select documents that best apply to this thesis context;

• Preliminary Study - a meticulous knowledge apprehension of the current state-of-the-art

trends and limitations to lay the foundations for the work to be developed. More specifically,

fully understanding the referred field, the most common approaches, as well as some not so

well recognized but leading the research line. Appendix 2, and 3 condense the required

knowledge to understand this thesis, thus, act “almost” like a standalone document that can

serve as an end-to-end structured survey.

Under the banner of the Preliminary Study, pursue a research line orientated towards over-

coming those shortcomings by theorizing and implementing innovative state-of-the-art ensemble

architectures. Then, systematically assess and conclude from the multiple proposed algorithms’

empirical and performance results if they constitute an improvement over the current techniques.

Finally, elaborate on each of the new algorithms’ time requirements.

1.6 Outline

This thesis is divided into four other chapters:

• Ensemble Learning (Chapter 2, p. 5) - extensively describes the field of EL and its present

status;

• Neural Network Ensembles (Chapter 3, p. 33) - comprehensively explains NNEs, as well

as its current state-of-the-art. This chapter act as a direct “catalyst” for the work to be de-

veloped. More specifically, it introduces the basic theory of NNEs, its multiple approaches

and established algorithms, and, in the end, analyzes various practical applications;

• A framework to construct Neural Network Ensembles for regression (Chapter 4, p. 49)

- describes the proposed solution;

• Conclusions and Future Work (Chapter 5, p. 75) - focuses on making the work’s summary,

synthesize its main ideas, and draw the final conclusions. In other words, it serves as the

thesis wrap-up.

3https://www.scopus.com/home.uri
4https://webofknowledge.com/
5https://citeseerx.ist.psu.edu/index

https://www.scopus.com/home.uri
https://webofknowledge.com/
https://citeseerx.ist.psu.edu/index
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2.6.2 Weighted Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.3 Meta-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Some EL techniques are estimator-specific (only work with particular base model algorithms),

while others are not. This section explores general and Decision-Tree specific EL concepts and

methods.

One can “train many different candidate networks and then . . . select the best . . . and discard

the rest. There are two disadvantages [to] such an approach. First, all of the effort involved

in training the remaining networks is wasted. Second, . . . the network which had [the] best

performance on the validation set might not be the one with the best performance on new test

data” [6]. Furthermore, “it is generally impossible to know a priori which model will perform best

for a given prediction problem and data set” [10].

Considering that there are already many different algorithms fitted on the dataset and each one

has its strengths and weaknesses, why not, rather than using just a single model, use some or all

group models to obtain an even more comprehensive predictive performance?

Ensemble’s principal hypothesis is that when a myriad (concrete finite set) of trained models

on the same problem are rightly combined [11], they give rise to a strong learner [12] [13].

“Instead of looking for the best set of features and the best [estimator], now we look for the

best set of [estimators] and then the best combination method. One can imagine that very soon,

we will be looking for the best set of combination methods and then the best way to use them all”

[13].

The intuition follows the “Unity is strength” saying. It simulates what is done when an ex-

pert panel in a human decision-making process combines their opinions. The fact is that the best

single model “knows less” regarding the data compared to all other discarded models collectively

combined. Combining models makes it possible to lower predictions’ overall variance while main-

taining bias low simultaneously [14] [15].

Ambiguity decomposition has proven that a good ensemble guarantees lesser squared error

than individual base learners [16] [17]. In this way, generalization error is reduced, and better

performance is achieved [18] [6].

There are varying elements to build an ensemble [9], such as training data, estimators’ char-

acteristics, estimators’ generation strategy, and predictions’ integration mechanism. Despite the

intricacies of each step, varying the first three elements have the objective of promoting estimator

diversity.

The ensemble was not proposed in a single research project, but rather a continuous and sys-

tematic process with a broad discussion among researchers [19] [20] [21] [22].
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2.1 Error Diagnosis

Despite some concepts being often used interchangeably regarding single models and ensem-

bles, they have different meanings.

2.1.1 Single Model

A model’s intrinsic generalization error has its causes rooted in statistical noise, bias, and

variance [15].

Bias is the contrast between the correct predictions and the model’s predictions for the given

data points. Low bias means the model’s predictions are very close to the actual values (intricate

model) and high bias (naive model) otherwise [15].

Variance is the model prediction’s variability for a provided set of data points. Simply put, it

describes how much a model changes when trained using different dataset sections due to small

data sensitivity fluctuations (e.g., noise and specific observations). After being run several times,

low variance occurs when the model’s predictions do not vary much and high variance otherwise

[15].

Statistical noise, also known as noise, denotes unexplained random variability in a data sam-

ple. Noisy data is meaningless data due to the presence of excessive variation. Often, and posi-

tively, the noisy data portion within a dataset is negligible.

The Bias-Variance Trade-off issue demonstrates that bias may be diminished to the detriment

of augmented variance in any single Network and vice-versa (Fig. 2.1) [15]. These two usually

change in opposing ways.

Figure 2.1: Bias-variance trade-off 6

Focusing on a different subject, the model needs to have sufficient freedom degrees to “under-

stand” the problem’s data underlying complexities. Nonetheless, it is paramount to minimize the

freedom degrees to circumvent high variance and, so, be further robust. Table 2.1 explores this

topic thoroughly.

6https://www.programmersought.com/article/89934748226/, last accessed on 2021-01-21

https://www.programmersought.com/article/89934748226/
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Overfitting Just Right Underfitting

Symptoms
- Training error much

smaller than test error
- Small training error
- High variance

- Training error slightly
smaller than the test
error

- Training error close
to the testing error

- High training error
- High bias

Regression

Figure 2.2: Overfitting in
Regression 7.

Figure 2.3: OK fit in Re-
gression 7.

Figure 2.4: Underfitting
in Regression 7.

Deep Learning

Figure 2.5: Overfitting in
Deep Learning 7.

Figure 2.6: OK fit in Deep
Learning 7.

Figure 2.7: Underfitting
in Deep Learning 7.

Solutions - Regularize
- Get more data

- Complexify model
- Add more features
- Train longer

Table 2.1: Comparison of model fitting across the various domains.

Hence, the model choice is critical to obtain good results.

2.1.2 Ensemble

An ensemble’s intrinsic generalization error has its causes rooted in statistical noise, bias,

variance, and covariance [15] [23] [17] [24].

Apart from statistical noise in the single model context, which retains its original meaning in

the ensemble context, the remaining error metrics have their definitions altered.

Bias is the average discrepancy between the ensemble’s output and the base learner’s outputs.

Variance is the average disagreement between the base learner’s outputs. The lower it is, the

more stable, robust, and reliable the respective estimators become, and vice-versa.

Covariance, also known as Joint Variance, measures the joint variability (degree of entangle-

ment/interdependence) between two random variables [25] [26]. Simply put, the covariance sign

7https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tip
s-and-tricks, last accessed on 2021-01-21

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks
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displays the linear relationship tendency between variables [27]. Mathematically, it measures the

mean pairwise difference between the different base learners. If two base learners’ predictions

vary in the same direction, then their covariance is positive [28]. Opposingly, if they differ in op-

posite directions, their covariance is negative [28]. If they vary independently one from the other,

covariance is zero [28].

Global Error, composed of noise, bias, variance, and covariance, measures the average gen-

eralization error of each individual estimator. It can be analyzed from three different perspectives.

Exploring the mathematical side, the ensemble’s estimator outputs for some input x are defined

as the M estimators’ predictions simple average for x after having been separately trained (Eqn.

2.1).

f (M)
ens (x) =

1
M

M

∑
m=1

fm(x;zN
(m)) (2.1)

where Let f1, ..., fM denote M estimators, where the mth estimator is separately trained on zN
(m),

m = 1, ..., M

The training set’s sample size is assumed to be uniformly N. Note that training set zN
(m), is

a realization of a random sequence ZN
(m) and that ZN

(m), m = 1, ..., M, have the same distribution

p(x,y); however, they cannot always be assumed to be mutually independent. The ensemble

output for some input x is defined as the Simple Average of M estimators’ outputs for x after being

separately trained.

Bias-variance-covariance decomposition has been analyzed through multiple mathematical
breakdowns [15] [26] [23] [17] [24]. Although ensembles have been supported by numerous the-

ories such as strength correlation [29], stochastic discrimination [30], bias-variance [16] [31] [32],

and margin theory [33], these provide equivalent insight as the stated bias-variance-covariance

relation (Eqn. 2.2) [34] [26].

The multiple error components are analyzed in Eqn. 2.2, and the Global Error is dissected in

Eqn. 2.3.

GErr( f (M)
ens ) = Exo{

1
M

Var(Xo)+(1− 1
M
)Cov(Xo)+Bias(Xo)

2}+σ
2 (2.2)

where Var(Xo), Cov(Xo), Bias(Xo), and σ2 are average

conditional variance, conditional covariance, conditional bias

averaged over M estimators, and noise, respectively:
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Var(Xo) =
1
M

M

∑
m=1

Var{ fm|Xo}

Cov(Xo) =
1

M(M−1) ∑
m

∑
m′ 6=m

Cov{ fm, fm′ |Xo}

Bias(Xo) =
1
M

M

∑
m=1

Bias{ fm|Xo}

Here fm denotes fm(X0;ZN
(m)). Using the following average generalization error averaged over

M estimators,

GErr =
1
M

M

∑
m=1

(EX0{Var{ fm|X0}+Bias{ fm|X0}2}+σ
2) (2.3)

However, there are two caveats:

• the 2.2 equation cannot be directly applied to classification problems due to their categorical

nature as it needs to be derived [31] [35] [36] [37] [38];

• the error decomposition equation assumes Simple Average (section 2.6.1) as the prediction

integration mechanism [26]. This assumption might skew the bias, variance, and covariance

distribution slightly when using Weighted Average (section 2.6.2). A possible future solu-

tion would be to derive the mathematical formula for Weighted Average, apply it to each

base learner, and validate the referred hypothesis. Undoubtedly, the error value would not

be affected. Still, it would be more challenging because the weights are calculated during

the ensemble training, at which time the error decomposition is no longer useful.

The combination of different bias-variance values is summed up in Tables 2.2 and 2.3.

Low Variance High Variance

Low Bias
Figure 2.8: Low bias and
Low variance (adapted
from 8).

The ideal case. Best re-
sults are consistently ob-
tained

Figure 2.9: Low bias and
High variance (adapted
from 8).

On average, accurate but
inconsistent results

Table 2.2: Comparison of Bias-Variance values - 1.
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High Bias Figure 2.10: High
bias and Low variance
(adapted from 8).

On average, consistent but
not accurate results

Figure 2.11: High
bias and High variance
(adapted from 8).

Neither accurate nor con-
sistent results

Table 2.3: Comparison of Bias-Variance values - 2.

2.2 Background concepts on Ensemble Learning

2.2.1 Base learner

Also known as Base Model or Estimator, it acts as the building block for designing more

complex models. Each one extracts complex, often implicit, data relations. Ideally, they have skill

in random ways, or, in other words, they have diversity among each other [16] [39].

More generally, the desire for somewhat under-optimized models is valid for ensemble mem-

bers’ selection. The “members of the committee should not individually be chosen to have an

optimal trade-off between bias and variance. Instead, they should have a relatively smaller bias

since the extra variance can be removed by averaging” [6]. Also, “[for] learning in large ensem-

bles, it is advantageous to use under-regularized students, which actually over-fit the training data

. . . in particular if the individual students are subject to noise in the training process. Choosing

students with a wide range of regularization parameters makes this improvement robust against

changes in the unknown level of noise in the training data” [40].

2.2.2 Homogeneous / Heterogeneous ensembles

Homogeneous means every estimator originates from the equivalent algorithm. Oppositely,

Heterogeneous means different algorithms induce some or all estimators.

Some may interpret that heterogeneous ensembles may provide better generalization perfor-

mances considering their estimators come from “different families of models” thus have distinct

data perspectives, internal workings, and decision fusion strategies. However, no concrete study

corroborates this belief.

8https://medium.com/@itbodhi/bias-and-variance-trade-off-542b57ac7ff4, last accessed
on 2021-01-21

https://medium.com/@itbodhi/bias-and-variance-trade-off-542b57ac7ff4
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2.2.3 Meta-model

Also known as Meta-algorithm, it is an algorithm that learns other algorithms. In other words,

it decides how to take a set of other (typically, but not necessarily non-meta) base models (level

0) to construct a Meta-model out of those (level 1). To achieve that, it adaptively combines or

weights the component algorithms’ outputs, commonly viewed as black-boxes (taking input and

producing their outputs with the inner workings hidden) to make a final prediction [41].

In practice, Meta-model techniques’ performances are dependant, in addition to the ensem-

ble’s usual requirements (section 2.2.4), on having a simple Meta-model that provides smooth

prediction interpretations that offset individual models’ deficiencies, customarily leading to better

overall performance [1]. Hence, linear models are often used as the combiner but may be any al-

gorithm such as NNs [42]. This combiner algorithm learns when to trust and how to best combine

each base learner’s predictions by conditionally deciding to weigh them differently [43]. In prac-

tice, this translates into determining how best to map the learner’s determinations into an upgraded

output [44].

In regression modeling tasks, the Meta-model is also referred to as Meta-regressor.

2.2.4 Measure of Success

The ensemble’s success depends on the training data’s nature, estimators’ characteristics, esti-

mators’ generation strategy, and the predictions’ integration mechanism [45].

If base learners make highly correlated predictions, the ensemble’s accuracy will hardly im-

prove over a single base learner. In addition to this, if base learners do not make correct predictions,

the ensemble will also struggle to make correct predictions.

Deep down, the ensemble works appropriately because the member models yield a degree

of accuracy (better than random guess) and diversity (disagree among each other with different

output values) [46] [11] [47] [16]. Building a good ensemble is an exercise of carefully balancing

the accuracy and correlation of base learners’ predictions.

By not looking at the same input space (slightly different datasets) [46], it allows each unstable

model to apprehend varying viewpoints of the input/hypothesis space, thus gaining different capa-

bilities/knowledge, making different minor assumptions about solving a predictive modeling task,

and promoting estimator disagreement. Consequentially, they make distinct predictions/errors and

display low mutual prediction correlation (uncorrelated) [16]. Finally, the resulting ensemble has a

more diversified estimator collection, which provides slightly different forecasts to combine. Ac-

cordingly, it better understands the whole training dataset and achieves more reliable performance

[48].

Combining several base learners’ outputs is only helpful if they are diverse and disagree on

some inputs. Therefore, it is crucial to promote it among the base models even if at the expense

of a moderate increase in their individual error rate values since it is expected to improve the

ensemble’s performance [9] [49]. On the other hand, keeping a small number of base models
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allows for faster training (most computationally expensive step in the NN architecture) and may

also improve results [50] [51].

Note, grid search or other tuning techniques, typically, should not be used in the base mod-

els. It would obtain highly tuned base learners with low or zero mutual variety, hampering the

ensemble’s effectiveness.

2.2.5 Advantages

The advantages of using ensembles are multiple:

• the final result is not decided by a single member but by a committee [52]. On the first

hand, this makes the ensemble significantly more reliable and robust, meaning it has better

adaptability to the true unknown function approximation and predictive performance, on

average, compared to any single model [53] [8] as individual member weaknesses and errors

are “averaged out” by other members’ strengths [46];

• it improves stability since the final model is less susceptible to the training scheme choice,

initial conditions (e.g., random initial weights), training data’s specificities, or the single

training run serendipity [7]. Improved stability means the ensemble is consistently more

accurate [54];

• for the same increase in computation, the ensemble may be more efficient at improving

overall accuracy because it uses that increase on two or more methods rather than increasing

resources for a single method broadly;

• it is remarkably flexible. There is no limit on the number of models to use. This num-

ber may vary based on the complexity of the problem and model. However, as the num-

ber of ensemble models increases, performance typically improves monotonically, although

with consecutive diminishing gains. Nonetheless, improvements are more pronounced with

greater diversity;

• it is possible to add/remove estimators iteratively;

• not all base learners necessarily need to finish on time, thus introducing a kind of graceful

degradation where a single model loss is not disastrous for conceiving reliable predictions

[55];

• it “has been empirically observed that certain ensemble techniques often do not overfit the

model, even when the ensemble contains thousands of [estimators]” [41];

• ensembles have a wide range of potential applications and validity.

These theoretical benefits and practical successes have established reasons in statistical, com-

putational, and representational terms [48].
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Therefore, at the time of writing, heterogeneous ensembles are one of the most robust ap-

proaches to improve ML algorithms, giving a 1%-3% increase in accuracy on top of that of the al-

ready tuned models. So, ensembles are the dominant approach, provided that predictive capability

is the most crucial factor. In fact, they are the preeminent winning tactic for top ML competitions

(appendix C). “Machine-learning competitions, particularly on Kaggle, [see] winners [using] huge

ensembles of models that inevitably beat any single model, no matter how good” [56].

2.2.6 Disadvantages

There are a few disadvantages to using ensembles:

• it may be resource and time-intensive, depending on the model’s complexity and training

data size, compared to a single model prediction [9]. In fact, EL algorithms are, without

a doubt, more complex models if their number of parameters is taken as the complexity

measure;

• it is even more challenging to characterize and explain predictions.

Not to forget that there is the likelihood that the ensemble’s performance is superior to that of

the best-performing base model. Nevertheless, this is not guaranteed [9]. In that case, the best-

performing base learner should be used instead, given its lower complexity, if looking for accuracy

only. Note that the ensemble can still offer lower variance, thus, higher stability [9].

2.3 Varying Training Data

Varying the data choice used in each ensemble’s model provides each estimator with a different

framing or view of the problem [9]. In practice, it is possible to generate training sets to promote

an ensemble of diverse estimators by extracting different data (rows) or features (columns) from

the original dataset.

These techniques assume individual models trained with higher diverse sets result in higher

diverse models. However, it is essential to understand that a higher training dataset diversity is

an insufficient condition on its own to generate individual models with higher diversity. In other

words, training set diversity promotes but does not guarantee model diversity. Hence they are not

guaranteed conductors to the ensemble’s overall performance increase.

Simultaneously, these methods only primarily focus on mutual model diversity and not indi-

vidual accuracy in itself. In other words, they expect that promoting diversity at the expense of,

sometimes, lowering individual performance may, in the end, improve the ensemble’s results.

2.3.1 Random Splits

Refers to repeatedly performing random splits on a dataset to build different train and test sets

for each base learner [1] [57].
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2.3.2 K-fold Cross-training

Similar to K-fold Cross-validation [4], it divides the dataset into k equally sized folds. All

observations may be utilized during the model’s training as each base learner is fitted on k− 1

different folds and may be tested on the remaining k fold (holdout set) [16]. Remember that k is

equal to the number of estimators.

2.3.3 Pasting

Also known as Random Dataset Sampling, the base learners are fitted on training dataset

random samples without replacement, without necessarily being contiguous, and with a smaller

size than the original set. Best employed when the memory constraints do not allow the training

set to be fitted.

Pasting “takes small pieces of the data, grows a predictor on each small piece, and then pastes

these predictors together. A version is given that scales up to terabyte data sets. The methods are

also applicable to online learning” [58].

2.3.4 Bootstrapping

Refers to a robust and accurate statistical method to estimate and evaluate a model’s skill

when making predictions on unseen data, typically in small data samples [59]. In other words, it

estimates statistical population scores in comparison to a sole original dataset estimation based on

the realizations of the models [60]. These are presented as estimate statistics summary, including

variance, mean, standard deviation, and empirical non-parametric confidence intervals of some

statistical estimators based on multiple bootstrap samples [60] [61].

Despite Bootstrapping not being an Ensemble-specific strategy, it may be utilized as such.

In this case, a Bootstrap sample is a randomly resampled (with replacement) subset of selected

training points from the full training dataset [46]. In practice, each time an item is chosen from the

initial data, it is not excluded. Any element has the same probability of being selected repeatedly;

hence, some observations may be duplicated or not appear at all.

The models are fitted using slightly different training data perspectives as (almost) always a

slightly different training dataset is generated following a Gaussian distribution (central tendency)

[62]. This promotes base model diversity [4].

It also allows for good statistical “approximate properties”, such as representative and inde-

pendent identically distributed (i.i.d.) samples extracted from a distribution [1]. Representative

means the original dataset size N ought to be ample to apprehend the majority of the underly-

ing distribution intricacy and ensure meaningful sample statistics can be calculated confidently

[1]. Independence means that the size N ought to be sufficiently large when confronted with the

bootstrap sample size B not to be over correlated [1].

Theoretically, the “averaging” action is performed across the (nearly) i.i.d. fitted base learners.

Hence, it preserves the expected value and reduces variance (standard deviation/error) [1]. It is

essential to keep in mind that this is only an approximation.
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As a byproduct, the “samples not selected are usually referred to as the “out-of-bag” (OOB)

samples. For a given iteration of bootstrap resampling, a model is built on the selected samples

and is used to predict the out-of-bag samples” [4]. It allows one, without any additional data

observations, to estimate the generalization performance.

Best employed when:

• there is not sufficient data to acquire an un-biased model performance estimation applying

the train-test split evaluation;

• there is a requirement for a sound estimate of performance on unseen data. If not, then a

single train-test split can be used;

• the computational cost of fitting two or more estimators on the training sample is not pro-

hibitive. If not, all available resources should be put into fitting a single model.

2.3.5 Random Subspace

Also known as Random Input Feature Subspace, base learners are fitted on datasets built from

randomly collected training data feature space subsets (feature selection) [49] [45]. Although

the input subset’s random selection may induce a lower training precision, the models’ diversity

gained improves the ensemble’s performance [49] [9] [4].

It may be used with any ML algorithm. However, it is better suited to models more susceptible

to considerable changes in the input features, such as K-Nearest Neighbors and Decision Trees.

2.3.6 Random Patches

Combines both Pasting and Random Subspace ensembles. Base models are fitted on random

training data patches (subsets of rows and columns, representing samples and features, respec-

tively) [63].

2.4 Varying Base Models’ Characteristics

Varying the choice of base model comprises multiple possibilities as each algorithm has dif-

ferent strengths and weaknesses [9]. Additionally, each one has its respective definable parameters

with pros and cons both on its own and in conjuncture with others. Thus, it creates an even greater

possibility space with multiple different options from which to choose.

2.5 Varying Base Models’ Generation Strategy

Varying the estimator’s generation techniques aims to create multiple different models, each

with predictions of its own that form the ensemble.
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2.5.1 Bagging

Also known as Bootstrap AGGregating or BAGGed Decision Trees, it comprises Bootstrapping

(section 2.3.4) and prediction integration mechanism concepts in a deterministic manner (Alg. 1)

[60] [54]. The estimators are homogeneous (section 2.2.2) independent models, usually, but not

mandatory, consisting of Decision Trees [9].

A “natural way to reduce the variance and hence increase the prediction accuracy of a statisti-

cal learning method is to take many training sets from the population, build a separate prediction

model using each training set, and average the resulting predictions. . . . Of course, this is not prac-

tical because we generally do not have access to multiple training sets. Instead, we can bootstrap”

[60].

Algorithm 1 Bagging
Input: training sample S, test sample T, number of base learners M
Output: final prediction P

1: for m = 1 to M do
2: Sm = bootstrap sample from S
3: train base learner hm on Sm

4: end for
5: P = ∑

M
m=1 pred(T )base_learner_m/M

Fitting truly independent models cannot, in practice, be achieved because it requires too much

data. So, Bagging relies on good different bootstrap samples to fit “almost” independent base

learners [64]. Each estimator is fitted with different bootstrap samples based on the original

dataset (normally of the same size) [54] in parallel [4], independently from each other, exploiting

the base learners’ autonomy (Fig. 2.12). Due to its nature, it is considered a variance reduction
algorithm. The final prediction depends on the problem at hand. The Simple Average of the mem-

bers’ predicted probabilities is performed (regression modeling problems). For small ensembles,

there may be a lack of sample meaningfulness.

Figure 2.12: Bagging (adapted from 9).
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A significant advantage is that Bagging rarely overfits [9]. Also, it works best with small or

medium-size datasets [45] and unstable base models [9]. In other words, models with a modest

variance, thus somewhat conditioned on the training data specificities [9].

“If perturbing the learning set can cause significant changes in the predictor constructed, then

bagging can improve accuracy” [54]. However, the “evidence, both experimental and theoretical,

is that bagging can push a good but unstable procedure a significant step towards optimality. On

the other hand, it can slightly degrade the performance of stable procedures” [54].

It is relevant to note that Bagging does not overfit as rapidly as AdaBoost in high noise sce-

narios [48].

2.5.1.1 Random Forest

It is a Random Patches variation (inherently, Bagging variation) and an Estimator-specific
ensemble for Decision/Regression Trees. It brings together various concepts [29], offering high

predictive performance and simple hyper-parameter tuning [64].

Multiple Random Forest characteristics contribute to its success:

• it leverages multiple unpruned Decision Trees’ power [29] instead of relying on a single

Tree and expecting the correct conclusion was made at each split. Furthermore, by being

unpruned, they exhibit the aforementioned benefits [4] [64];

• equal to Bagging [29], it fits, in parallel and independently, N Decision Trees on N randomly

selected bootstrap samples from a larger dataset [4];

• Random Input Feature Subspace Selection refers to a “small tweak that decorrelates the

trees” [60] [29]. It involves selecting a subset of input features based on the Random Se-

lection algorithm on which the split is then performed. Diving deeper, instead of splitting

at each node at similar features progressively, the features are reduced to a random subset

that may be considered at each split point. This differentiation level makes the Trees more

different, resulting in a greater, more diverse ensemble to aggregate over [60] [4];

• optimal split point greedy selection.

Subsequently, the hyperparameters are the number of Decision Trees, their depth, the number

of random features to consider at each split point, and minimum improvement to loss [60].

As a side note, it may be used for imbalanced datasets [65].

2.5.1.2 Extra Trees

Also known as Extremely Randomized Trees, it is a Random Forest variation and an Estimator-
specific ensemble for Decision/Regression Trees. The difference is that it uses a simpler algorithm

to construct Decision Trees [66]. Nevertheless, it often achieves equal or even better performance

than the Random Forest algorithm.
9https://www.kdnuggets.com/2019/09/ensemble-learning.html, last accessed on 2021-01-21

https://www.kdnuggets.com/2019/09/ensemble-learning.html
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It creates a vast amount of unpruned Decision Trees fitted on the whole dataset [66]. Also,

each split point is chosen at random, and for each one, Random Input Feature Subspace Selection

is employed instead of seeking the most discriminative ones [66]. This makes the Decision Trees

in the ensemble more diverse [66].

There are only a few key hyperparameters to configure, more specifically, the number of De-

cision Trees as base learners and the amount of input features to select and consider at each split

point, randomly.

The Simple Average of the members’ predictions is performed (regression modeling prob-

lems).

2.5.2 Boosting

Also known as Hypothesis Boosting, it is built iteratively and incrementally to turn weak learn-

ers into strong learners (Alg. 2) [9]. The intuition is that to consult several doctors that base their

diagnosis on a deterministic integration of prior diagnoses results.

Has his roots in the PAC learning model, in the enigma “Can a set of weak learners create a

single strong learner?” [67], and in the subsequent hypothesis that it is possible for “an efficient

algorithm for converting [(boosting)] relatively poor hypotheses into very good hypotheses” [67].

In other words, a weak learner (e.g., perform better than random chance) may be bettered by

altering it. Later, it expanded to the concept of observation filtering, neglecting observations the

weak learner can manage and concentrating on producing new models to tackle the problematic

leftovers [68]. This lead to its first proto development [69] and later a proper architecture [37].

Algorithm 2 Boosting
Input: training sample S, test sample T, number of weak learners M
Output: final prediction P

1: initialize weights wn

2: for m = 1 to M do
3: fit weak learner hm on weighted data sample
4: aggregate weak learner to the ensemble
5: “update” the training dataset
6: end for
7: P = ∑

M
m=1 weightbase_learner_m× pred(T )base_learner_m

In practical terms, it learns how to optimize each model’s advantages by refocusing attention

and building upon prior chain models to fix the current prediction errors and “updating” the train-

ing dataset [68] [69] [70]. Models are sequentially fit one at a time, hence, dependent on the

fitted models in previous steps (Fig. 2.13) [71]. This is to exploit weak learners’ dependence by

considering the strengths and weaknesses of previous models when fitting the current one. Con-

sequentially, subsequent models will perform better than their predecessors. Thus, theoretically, it

is possible to achieve a flawless model. Due to its nature and not neglecting its capacity to reduce

variance, it is considered a bias reduction algorithm.
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In regression modeling problems, the final prediction is the Weighted Average of the members’

predictions.

Figure 2.13: Boosting (adapted from 10).

However, some information has to be defined as to how the weak learners will be sequentially

fitted. More pointedly, which information from preceding learners needs to be considered when

fitting the current model, how to aggregate to the previous models the current one, and the specific

algorithms to use.

A “very surprising finding is that performing more boosting iterations can reduce the error on

new data long after the error of the combined [estimators] on the training data has dropped to zero”

[72].

It is also relevant to note that Boosting has a potential bias for some “difficult” samples. There-

fore, this method is sometimes unstable.

Several Boosting variations and third-party library implementations co-exist in parallel, each

with its unique characteristics.

2.5.2.1 AdaBoost

Also known as Adaptive Boosting, it is a Boosting-based ensemble algorithm and, perhaps,

its first successful and most representative implementation (Alg. 3) [69]. It considers homoge-

neous (section 2.2.2) independent weak learners, normally, but not mandatory, Decision Trees,

specifically Decision Stumps [60] [73]. It successfully finds the best base model at each itera-

tion by solving the exact “local” optimization problem and having the original dataset sample’s

and model’s weights varying proportionally to their ensemble error contribution and performance,

respectively [74]. It is then added to the strong model [75].

The algorithm is designated “AdaBoost because, unlike previous algorithms, it adjusts adap-

tively to the errors of the weak hypotheses” [69].

More specifically, there are two sets of weights. The first set is assigned to each data point

based on the current ensemble’s results meaning its distribution is over-represented by the patterns

that earlier learners incorrectly recognize. More concretely, higher weight is given to incorrectly

predicted data (boosted [74]) and less weight otherwise [4] [69]. This ensures they have a greater

likelihood of being incorporated in the next model’s training set, making the sampled data geared

10https://www.kdnuggets.com/2019/09/ensemble-learning.html, last accessed on 2021-01-21

https://www.kdnuggets.com/2019/09/ensemble-learning.html
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towards increasingly hard-to-predict instances [74]. Subsequently, learners will focus their train-

ing intensities on harder and harder observations fitted up to that moment to correct prior models’

prediction mistakes. The second set is assigned to each learner based on its scalar evaluation met-

ric (coefficient) and indicates how much it ought to be considered in the ensemble. Each learner’s

error rate is calculated as the misclassified examples sum of the weights [60]. Higher weight is

given to weak learners with better results and less weight otherwise [60] [64] [69]. Hence, previous

sequence models weight the final prediction by their demonstrated accuracy [76] [77] [78].

Algorithm 3 AdaBoost
Input: training sample S, test sample T, number of weak learners M
Output: final prediction P

1: initialize weights wn to 1
#S

2: for m = 1 to M do
3: sm = weighted sample from S
4: fit a weak learner hm(x) on sm by minimizing weighted error function Jm

5: compute JM = ∑
#S
n=1 wn[hm(xn) 6= tn]

6: compute εm = JM/∑
#S
n=1 wn

7: evaluate the update coefficient - αm = log 1−εm
εm

8: add weak learner multiplied by the update coefficient to the ensemble
9: update the weights: wm+1

n = wm
n exp(αm1[hm(xn) 6= tn])

10: end for
11: P = ∑

M
m=1 weightbase_learner_m× pred(T )base_learner_m

Despite being initially just one architecture for classification problems, currently, there have

been regression proposed variations (AdaBoost.R2 [77], and L2Boost [79]). These derived ver-

sions essentially differ in their loss function preference and how each instance’s weights, at each

iteration, are redefined.

In regression modeling problems, the final prediction is the Weighted Average of the estima-

tors’ predictions.

Despite its achievements, it is computationally expensive. Often it is prolonged to train a

model due to being a sequential algorithm, hence, difficult to parallelize. On top of that, it was

demonstrated that having a very large number of outliers become performance detrimental. A

possible solution is to employ Gentle AdaBoost [80].

2.5.2.2 Gradient Boosting

Also known as Gradient Tree Boosting, it is an Estimator-specific ensemble for Decision/Re-

gression Trees and an AdaBoost variation formulated as a numerical optimization problem to a

differentiable and arbitrary amount of loss functions (Alg. 4) [78]. It is one of the most robust

methods to build predictive models [81] [82].

Some traits distinguish Gradient Boosting from AdaBoost:
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• it does not change the observations’ selection or distribution. Rather, it aims to solve the

sequential conundrum by casting the Boosting procedure as a numerical optimization prob-

lem;

• for each distinct loss function, the model does not need to be inferred. The aim is to reduce

the model’s loss gradient as the model is fit (much like a NN) by combining base models

through a GD like procedure, more specifically, “functional gradient descent” (or “gradient

descent with functions”) [60] [1].

It is considered a stage-wise additive model. A “stagewise strategy is different from stepwise

approaches that readjust previously entered terms when new ones are added” [83]. At a time,

a fresh estimator is added, while the existing models are frosted and left unchanged. This weak

learner is fitted in opposition to the current fitting error gradient of the ensemble observations. The

resulted comparison is referred to as pseudo-residual (Fig. 2.14). For each sole observation, these

designate in which course to update and “fix” the ensemble by lowering its prediction error. They

can be seen as the weak learners’ “targets”.

Figure 2.14: Pseudo-residual intuition (adapted from 11).

Multiple Gradient Boosting characteristics contribute to its success. It involves four elements:

• an arbitrary differentiable loss function to be minimized depending on the sort of problem

being tackled (regression problems, e.g., squared error);

• Regression Decision Stump as the weak learners that later evolve into larger Trees with 4-

to-8 levels. They are greedily constructed, starting from the root, by taking the best split

points according to the minimization loss or the purity rates (e.g., Gini index) [64];

• an additive model to append base models. The aforementioned model to minimize the

residual loss employs a GD optimization procedure [78] when appending the greedily con-

structed Trees;

• shrinkage, also known as Learning Rate (LR) , “reduces the influence of each individual tree

and leaves space for future trees to improve the model” [84]. “Each update is simply scaled
11https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-

c9214a10a205, last accessed on 2021-01-21

https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
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by the value of the “learning rate parameter v”. . . . Decreasing the value of v increases

the best value for M [meaning the number of trees]. . . . The v−M trade-off is clearly

evident; smaller values of v give rise to larger optimal M-values. . . . These results are fairly

universal” [83].

Algorithm 4 Gradient Boosting
Input: number of weak learners M, training sample S, test sample T
Output: final prediction P

1: initialize pseudo-residuals to the observation values
2: for m = 1 to M do
3: fit best possible weak learners by gradient opposite approximation on S
4: compute current weak learner optimal shrinkage s
5: compute new pseudo-residuals
6: end for
7: P = ∑

M
m=1 weightbase_learner_m× pred(T )base_learner_m

However, it may still be computationally expensive and prolonged to train a model, exasper-

ated by massive datasets. Additionally, utilizing a naive Gradient Boosting procedure (greedy

algorithm) can quickly overfit. Therefore, it might be helpful to employ regularization methods

(section A.5.4). These penalize multiple algorithm sections and usually improve its performance.

Also, bootstrap aggregation, Tree constraints (depth and number), and weighted updates (LR [83]

[84]) are viable options.

2.5.2.3 Penalized Gradient Boosting

It is a Gradient Boosting variation that adds further constraints on Parameterized Trees. It does

not use CART. Instead, it leverages a modified Regression Tree version with numeric values as the

leaf node’s constituents, allowing regularization functions (e.g., L1 and L2 (section A.5.4.4)).

The added “regularization term helps to smooth the final [learned] weights to avoid over-

fitting. Intuitively, the regularized objective will tend to select a model employing simple and

predictive functions” [85].

2.5.2.4 Stochastic Gradient Boosting

It is a Gradient Boosting variation that adopts a Stochastic Gradient Descent (SGD) method

(section A.3.2.2).

A few alternatives to Stochastic Boosting can be employed. Before generating each Tree or,

one may subsample rows or columns. Moreover, before contemplating doing a split, one may,

even further, subsample columns. Normally, aggressively sub-sampling (e.g., selecting only half

of the data) is positive in decreasing Tree mutual correlation. According to “user feedback, using

column sub-sampling prevents over-fitting even more so than the traditional row sub-sampling”

[84].
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2.5.2.5 XGBoost

Also known as Extreme Gradient Boosting, it is an Estimator-specific ensemble library for

Decision/Regression Trees and a Penalized Gradient Boosting/Stochastic Gradient Boosting vari-

ation that provides a very efficient/effective implementation. Typically expected to be significantly

faster than other native approaches [85], it addresses the speed and performance problems of GBM

by introducing many techniques that dramatically accelerate model training.

Compared to the GBM, XGBoost “refers to the engineering goal to push the limit of compu-

tations resources for Boosted Tree algorithms” [86].

Therefore, the three primary reasons to use XGBoost are superior model performance, memory

occupation, and execution speed [87]. Having such qualities allows it to dominate regression

predictive modeling problems on tabular datasets (appendix C) [85]. “Among the 29 challenge

winning solutions, 3 published [on] Kaggle’s blog during 2015, 17 solutions used XGBoost. . . .

The success of the system was also witnessed in KDDCup 2015 12, where XGBoost was used by

every winning team in the top-10” [85].

Multiple XGBoost characteristics contribute to its success [85]:

• it harnesses regularization, in contrast to the standard Boosting implementations, to reduce

overfitting (depth and values in leaves). Precisely, it predicts a loss function with an added

regularization term;

• parallel and independent processing;

• it has high flexibility, which allows the definition of custom optimization objectives and

evaluation criteria;

• it handles missing data;

• Tree pruning consists of splitting up to max_depth and later backward prune the Tree by

removing no positive gain splits;

• different training set bootstrap samples used to fit each Decision Tree;

• a random subset of input variables in each Tree split point is taken, ensuring each ensemble

added Tree is skillful and more broadly diverse.

XGBoost may also be used with Random Forest in a level-wise approach (Fig. 2.15).

Figure 2.15: Level-Wise approach 13

12https://www.kdd.org/kdd-cup

https://www.kdd.org/kdd-cup
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It repurposes and harnesses the computational efficiencies implemented in the library for train-

ing Random Forest models [85]. Given that it derives from the Random Forest algorithm, it is

necessary to define some parameters, specifically, the number of input features and weak learners

to consider.

2.5.2.6 CatBoost

Also known as Category Gradient Boosting, developed at Yandex 14, it is an AdaBoost varia-

tion and an Estimator-specific ensemble library for Decision/Regression Trees which provides a

very efficient/effective Gradient Boosting implementation [88].

It offers several positives and features [88], such as:

• good quality with default parameters - less time spent on parameter tuning;

• categorical feature support - less time spent on data pre-processing;

• fast prediction;

• quick and scalable GPU version;

• enhanced accuracy - diminished model overfitting through novel Gradient Boosting scheme.

2.5.2.7 LGBM

Also known as Light Gradient Boosted Machine or , LightGBM, developed at Microsoft 15, it

is an Estimator-specific ensemble library for Decision/Regression Trees which provides a very

efficient/effective Gradient Boosting implementation. It consists of Gradient Boosting Decision

Trees (GBDT) with GOSS or DART and EFB. This results in a training algorithm with improved

predictive performance and dramatically faster by up to 20x [89].

The training algorithm may be accelerated depending on the way the various Decision Trees

are generated. Namely, the number of features (columns) and the number of examples (rows) in the

train set, since split points for each feature and value have to be analyzed throughout development.

“If we can reduce #data or #features, we will be able to substantially speed up the training of

GBDT” [89].

Gradient-based One-Side Sampling (GOSS) is a modification to the Gradient Boosting method

[89]. It focuses attention on training examples resulting in a larger gradient while excluding the

remaining, because the first play a relevant part in the information gain computation process [89].

The model is then updated with those instances, and the rest are dropped. “GOSS can obtain

[a] quite accurate estimation of the information gain with a much smaller data size” [89]. While

other algorithms work in a level-wise approach pattern, GOSS works in a leaf-wise approach (Fig.

2.16). This speeds up learning and reduces the method’s computational complexity.

13https://medium.com/analytics-vidhya/gradient-boosting-lightgbm-xgboost-and-cat
boost-kaggle-challenge-santander-f3cf0cc56898, last accessed on 2021-01-21

14https://yandex.com/dev/catboost/index/?turbo=true
15https://www.microsoft.com/en-us/research/project/lightgbm/

https://medium.com/analytics-vidhya/gradient-boosting-lightgbm-xgboost-and-catboost-kaggle-challenge-santander-f3cf0cc56898
https://medium.com/analytics-vidhya/gradient-boosting-lightgbm-xgboost-and-catboost-kaggle-challenge-santander-f3cf0cc56898
https://yandex.com/dev/catboost/index/?turbo=true
https://www.microsoft.com/en-us/research/project/lightgbm/
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Figure 2.16: Leaf-Wise approach (adapted from 16).

Exclusive Feature Bundling (EFB) is an approach for bundling sparse mutually exclusive fea-

tures that infrequently use non-zero values concurrently to lessen the overall features number [89].

This resembles a type of automatic feature selection.

Multiple Additive Regression Trees (MART) is a GBDT precursor [89].

Dropouts meet Multiple Additive Regression Trees (DART) brings together the concept of

NN’s Dropout (section A.5.4.3) [90].

2.5.2.8 Histogram Based Gradient Boosting

It is an Estimator-specific ensemble for Regression Trees and an alternative method to im-

plement Gradient Tree Boosting, sparked by LightGBM, which uses efficient data structures to

optimize the building procedure.

“Instead of finding the split points on the sorted feature values, histogram-based algorithm

buckets continuous feature values into discrete bins and uses these bins to construct feature his-

tograms during training. Since the histogram-based algorithm is more efficient in both memory

consumption and training speed, we will develop our work on its basis” [89].

2.5.3 Bagging vs Boosting

The base models’ selection needs to be consistent with the way to aggregate them. Given that

they have low bias and high variance, an aggregating scheme favoring reducing the ensemble’s

variance (e.g., Bagging) should be considered. On the other hand, if they have low variance and

high bias, an aggregating scheme favoring reducing the ensemble’s bias (e.g., Boosting) should be

considered. Tables 2.4 and 2.5 compares Bagging and Boosting’s attributes and characteristics.

Bagging

1. Weights - equal
2. Training set - independent and random
3. Improves variance - “variance reduction” algorithm
4. Parallel - intensive parallelization techniques can be used if required
5. Overfitting - appears to be somewhat immune to training dataset

overfitting given the learning algorithm’s stochastic nature
6. Stability - can improve models’ performance

Table 2.4: Comparison of Bagging and Boosting algorithms’ characteristics - 1.

16https://medium.com/analytics-vidhya/gradient-boosting-lightgbm-xgboost-and-cat
boost-kaggle-challenge-santander-f3cf0cc56898, last accessed on 2021-01-21

https://medium.com/analytics-vidhya/gradient-boosting-lightgbm-xgboost-and-catboost-kaggle-challenge-santander-f3cf0cc56898
https://medium.com/analytics-vidhya/gradient-boosting-lightgbm-xgboost-and-catboost-kaggle-challenge-santander-f3cf0cc56898
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Boosting

1. Weights - exist
2. Training Set - conditioned on the prior step’s results
3. Improves bias - “bias reduction” algorithm
4. Parallelization - not possible (sequential)
5. Overfitting - may increase
6. Stability - when effective is better than Bagging; when

not can accelerate performance deterioration
Table 2.5: Comparison of Bagging and Boosting algorithms’ characteristics - 2.

2.5.4 Stacking

Ensembles are usually static structures. This means the ensemble members’ combining mech-

anism is input independent, hence, only dependant on the members’ outputs. Given multiple ML

models that are skillful on a problem, but in different ways, how to choose the most reliable mod-

els? Stipulating optimal models’ weights manually or, indeed, heuristically is a complex process.

One possible solution is to use further radical methods that learn how to best weight sub-model

predictions [41]. The aim is to improve both bias and variance by discovering the optimal route to

combine base learners [91].

Also known as Model Stacking or Stacked Generalization, it is a non-linear Meta-model com-

biner algorithm that evolved from the Weighted Average ensemble (Alg. 5) [43]. It replaces the

linear weighted sum model used to combine the base learners’ out-of-fold predictions made during

K-fold Cross-validation [42] [64].

Algorithm 5 Stacking
Input: training data S, test sample T, number of base learners M
Output: final prediction P

1: Step 1: learn base-level base learners
2: for m = 1 to M do
3: sm = sample from S according to the distribution
4: fit a base learner hm(x) on sm

5: end for
6: Step 2: construct new dataset of predictions
7: for i = 1 to #S do
8: Sh = x′i,yi, where x′i = h1(xi), . . . ,hM(xi)
9: end for

10: Step 3: learn the Meta-model H
11: P = ∑

M
m=1 weightbase_learner_m× pred(T )base_learner_m

Stacking “works by deducing the biases of the generalizers with respect to a provided learning

set. This deduction proceeds by generalizing in a second space whose inputs are (for example) the

guesses of the original generalizers when taught with part of the learning set and trying to guess

the rest of it, and whose output is (for example) the correct guess” [43].
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Looking at the algorithm from another perspective, it may be viewed as having two layers or

levels. The first level, level 0, contains N heterogeneous (section 2.2.2), independent base learners

[92] [43]. These are trained in parallel, independently, and deduce their biases concerning the

provided learning set [43]. The second level, level 1, attempts to find the optimal combination of

the first level models by training the combiner Meta-model algorithm on top of them [92] [43]. It

takes as inputs the previous layers’ models’ predictions attempting to generalize in a secondary

space [43]. The output is the final ensemble prediction (Fig. 2.17). The more each base learner

has to say, the better it is, and the more it will contribute to the final Stacking result [43] [72].

Figure 2.17: Stacking (adapted from 17).

To overcome the limitation that the training data has to be split into two folds, K-fold Cross-
training is employed 2.3.2.

On the other hand, no boundary is imposed on the amount of Stacking levels possible to

implement [93]. In this case, the procedure can be referred to as Multi-level Stacking. For each

different level Meta-model, a learning algorithm needs to be defined.

For a 3-level Stacking, the first layer fits N base learners on a dataset. Rather than fitting a

sole Meta-model on the learners’ predictions, the second layer fits M Meta-models trained to make

predictions according to the previous layer’s predictions. The third level fits one final Meta-model,

taking the M Meta-models’ predictions from the second layer as inputs and outputs predictions

based on those (Fig. 2.18). “When used with multiple generalizers, stacked generalization can be

seen as a more sophisticated version of cross-validation, exploiting a strategy more sophisticated

than cross validation’s crude winner-takes-all for combining the individual generalizers” [43].

Despite being possible to continue adding layers to the model, it may prove to be data ex-

pensive (if K-folds similar techniques are not employed) and time-consuming (if K-folds similar

techniques are employed) without necessarily guaranteeing better results [43].

17https://www.kdnuggets.com/2019/09/ensemble-learning.html, last accessed on 2021-01-21

https://www.kdnuggets.com/2019/09/ensemble-learning.html
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Interestingly, notwithstanding Stacking being portrayed as a method with more than one level

0 base model, it is possible to use it when there is just one level 0 model. In which circumstance,

the model in level 1 “is a scheme for estimating (and then correcting for) the error of a generalizer”

[43].

Figure 2.18: Deep Stacking (adapted from 18).

Optionally, in addition to the previous layers’ models’ predictions, the base models’ inputs

may also be added to the level 1 model, which some refer to as Deep Stacking [94]. It “allows

the model to select the right sub-model weights based on specific input variables . . . to boost

performance even further” [94]. This is done to uncover more rooted relationships linking sub-

models and offer higher accuracy than an ensemble of simple linear “stacked” models.

Stacking’s performance is dependent on the specifics of the Meta-model techniques (section

2.2.3).

2.5.4.1 Blending

It is a Stacking variation. Although both terms are often seen used interchangeably [95], they

represent different concepts. Blending has explicit rules for creating a Stacking model [96]. Rather

than having the Meta-model fitted on out-of-fold base model predictions, it is fitted on base model

predictions made on a small hold-out set (e.g., 10% of the training set).

Blending’s performance is dependent on the specifics of the Meta-model techniques (section

2.2.3).

Comparing to Stacking might be more advantageous to use considering less data is used over-

all, and it wards against information leaks because the base models and the stacker both use dif-

ferent data.

18https://www.kdnuggets.com/2019/09/ensemble-learning.html, last accessed on 2021-01-21

https://www.kdnuggets.com/2019/09/ensemble-learning.html
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2.5.4.2 Super Learner

Also known as Cross-validation Ensemble, it is a Stacking-specific configuration to K-fold

Cross-validation [10] [97] [98]. In this case, every estimator uses the equivalent K-fold data splits,

and the Meta-model is fitted on each estimator’s out-of-fold predictions to learn how to combine

them best [99] [100]. More specifically, every level 0 base learner is trained with different k− 1

folds and tested on the remaining k fold to obtain predictions used to train the Meta-model (Fig.

2.19).

Figure 2.19: Super Learner (adapted from [10]).

Basically, it employs cross-validation to decide the base learners’ optimal weights.

This model’s results are, almost guaranteed, better than the best-performing sole estimator,

with the possibility of performing better than any single model.

2.6 Prediction Integration Mechanism

There are multiple approaches to combine ensemble members’ outcomes [9]. Given that this

thesis revolves around regression, classification integration mechanisms will be left aside.

2.6.1 Average

Also known as Committee of Networks, Simple Average, or Raw Average, it is a non-trainable

integration mechanism where each models’ predictions equally contribute (equally distributed

weights) to the final ensemble prediction (Eqn. 2.4) [12] [69] [101] [53] [7].
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ỹ(x) = ∑
N
n=1 yn(x)/N (2.4)

where ỹ(x) is the Average ensemble prediction, N is the number of

ensemble members, yn is an ensemble member, and x is the input

observation

Starts by generating N independent models with possibly different hyperparameters (e.g., ini-

tial synaptic weight values are customarily taken from a distribution according to domain knowl-

edge or at random). After that, each model is trained and its predictions combined at test time

using Simple Average (regression modeling problems).

“The reason model averaging works is that different models will usually not make all the same

errors on the test set” [8]. “Owing to its simplicity and effectiveness, simple averaging is among

the most popularly used methods and represents the first choice in many real applications” [9].

It is sensible if the base learners’ performance is comparable or their predictions’ distributions

are (nearly) Gaussian [102] [103] [104] [72].

The main disadvantages are threefold:

• the average operation may cause a loss of information;

• for small ensembles, the sample of predictions may not be sufficiently large for the mode to

be meaningful;

• each model equally contributes to the final prediction, despite how expertly it actually be-

haved.

Also, some specific situations have been pointed out:

• if the ensemble includes heterogeneous base learners, then Simple Average may provide

suboptimal results. The reason is that it is affected by the weak learners’ and the overconfi-

dent learners’ performances;

• it has been stated that Simple Average is better than Weighted Average as the latter promotes

overfitting [105];

• Simple Average should be used for large ensembles since the global optimal generalization

error may be attained by individual models training set size optimization [40].

2.6.2 Weighted Average

It is a trainable integration mechanism often denoted as an extension of the Average ensemble,

aiming to tackle its inefficiencies [101].

The idea is that some estimators are expected to be more precise than others, and these should

be awarded a higher contribution share, whereas less skillful models should be awarded a lesser
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contribution share (Eqn. 2.5) [45] [9]. In practice, it uses the sub-models expect performance

to weigh each of their contributions for an improved combined ensemble prediction [106]. “The

weight of each [estimator] can be set proportional to its accuracy performance on a validation set”

[41]. Despite not performing so well, some estimators may still be useful, so they are kept around

[53]. In fact, some estimators may have poor overall performance but good results in certain input

subspaces, causing better overall performance.

Some base learners “will typically make better predictions than other members . . . expect to

be able to reduce the error still further if we give greater weight to some committee members than

to others . . . weighted combination of the predictions of the members” [6]. Concerning “smaller

ensembles, optimization of the ensemble weights can yield significant improvements in ensemble

generalization performance” [40].

ỹ(x;α)= ∑
N
n=1αn.yn(x)/sum(α) (2.5)

where ỹ(x;α) is the Weighted Average ensemble prediction, N is the

number of ensemble members, yn is an ensemble member, α

represents all base models’ weights, αn is the ensemble member’s

weight, and x is the input observation.

The weights are small positive values that sum up to a value that may be different from 1,

calculated by extracting the ensemble model’s, hopefully, optimal weights. Each one reflects a

base learner’s final predictive contribution or “trust” percentage [40]. They are neither fixed nor

previously imposed and, in truth, can be optimized during the training process. To add more

weight to a given model without calculating explicit weight coefficients, one can add a specific

model more than once to the ensemble.

Optimizing weights for smaller ensembles can bear considerably more solid generalization

performance compared to an optimal individual estimator employing all data [40]. Additionally,

to find the optimal weights, one can perform a weight grid search, use an optimization algorithm

on a holdout dataset, a linear model, or another ML model [45].

The final prediction is the estimators’ integrated predictions, where each one’s synaptic weights

are applied to each estimators’ output [6].

The Average ensemble described in section 2.6.1 is a special case of the Weighted Average

ensemble when all α from Eqn. 2.5 are equal to 1/M, with M being the ensemble size.

2.6.3 Meta-model

Refer to section 2.2.3.
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Some EL techniques are estimator-specific (only work with particular base model algorithms),

while others are not. This section explores Neural-Network specific EL concepts and methods.

NNEs gained attention as soon as they were put forward [46]. For that reason, since 1990,

many researchers have focused on the aforementioned domain by putting forward multiple papers

proposing new methods for NNEs. At 1993’s Neural Information Processing Conference, a whole

discussion, particularly for NNEs (Fig. 3.1), entitled “put it together” was taken.

33
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Figure 3.1: Basic Ensemble architecture of NNs [107].

“Most Neural Network algorithms achieve sub-optimal performance specifically due to the

existence of an overwhelming number of sub-optimal local minima” [101]. A NNE combines a

limited number of NNs [40], and it is, in practice, one reliable approach to resolve NN’s variance

and drastically improve predictions and generalization capability [46] [108]. Moreover, it can

predict unknown samples with high adaptability [46].

Diversity means they have reached different local minima, with a different set of final weights,

thus making distinct prediction errors [53]. It is proved that if the ensemble’s NNs are indepen-

dent of one another, then as the amount of combined Networks tends to infinity, it is possible to

reduce the expected error to zero. However, such assumptions rarely hold a place in practice since

independence cannot be wholly guaranteed [46].

Provided input x ∈ Rm follows distribution p(x), if the output corresponding to x is d(x), the

output corresponding to individual NN fi(i = 1,2, ...,N) is fi(x), the weigh corresponding to fi(x)

is ωi, so the NNE’s output fensemble(x) corresponding to x is equal to Eqn. 3.1.

fensemble(x) = ∑
N
i=1 ωi fi(x) (3.1)

and, the NNE’s generalization error is given by Eqn. 3.2.

Eensemble =
∫

P(x)( fensemble(x)−d(x))2dx (3.2)

Through theoretical analysis of NNE’s computational formula [40], Eqn. 3.3 analyzes the

relation between the ensemble’s generalization error and diversity.

Eensemble = Eaverage−Aensemble (3.3)
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where Eensemble is the ensemble’s generalization error, Eaverage is the weighted

average of the individual NN’s generalization error, and Aensemble is the

ensemble’s diversity.

Eqn. 3.4 provides an inference on Eqn. 3.3.

Eensemble ≤ Eaverage (3.4)

Moreover, increasing Aensemble shows it is effectively conceivable to decrease the NNE’s gen-

eralization error.

However, the NNE algorithm is conditioned on both NN’s and Ensemble’s disadvantages (sec-

tion A.6 and 2.2.6).

In order to compare NNEs, it is useful to define a comparison threshold. More specifically, this

could be a baseline method, a single NN with the same architecture as ensemble’s NNs. A more

audacious option would be to confront the NNE’s performance with a sole NN whose weights

represent the ensemble base model’s total average weight amount. More specifically, authenticate

if averaging an abundance of shallow models performs stabler than an equivalent single deep NN

(section A.7).

At present, reviews on NNEs are uncommon. Relevant ones include an introduction to ensem-

ble models [109], a survey on the experts’ mixture [110], a survey on modern trends in single and

multiple ensemble models [111], and a survey on ensemble approaches for regression [112].

As a side note, Appendix A presents a profound explanation of the NNs’ workings and how

they can be optimized.

NNE introduces multiple specific steps on top of those provided by general ensembles (section

2.3, 2.4, and 2.5) to tackle the various disadvantages of NNs (section A.6): training data, base
models’ characteristics, and base models’ generation strategy.

3.1 Varying Training Data

It is possible to explore various training techniques (section 2.3) to promote mutual model

diversity. K-fold Cross-training (section 2.3.2) and Bootstrapping (section 2.3.4) can be used in

small Networks. However, it may take longer with deeper Networks.

It is also possible to incorporate other algorithms’ characteristics in the NN’s training proce-

dure. In addition to training the NNs with different data points (rows in a dataset) (section 2.3.3

and 2.3.1), one could train the NNs with different features (columns in the dataset), as seen in

the Random Subspace 2.3.5, Random Patches 2.3.6, and Random Forest’s Random Input Feature

Selection (section 2.5.1.1). The objective is to avoid overfitting particular features and provide an

additional performance boost. It was found that an ensemble of identical NNs fitted on distinct
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feature subsets is slightly more fruitful than an ensemble of distinct NNs fitted on the equivalent

subset [113].

One study from 2007 reviewed the “relationship between the ensemble and its component

Neural Networks . . . with the goal of creating a set of nets for an ensemble with the use of a

sampling technique. . . . [Each] net in the ensemble is trained on a different sub-sample of the

training data” [114].

3.2 Varying Base Models’ Characteristics

Refers to varying the models’ characteristics (section 2.4) to get more considerable mutual

diversity. Particularly, differences in Network type, topology [115] [116], “random initializa-

tion, random selection of mini-batches, hyperparameters, or outcomes of non-deterministic imple-

mentations of Neural Networks are enough to cause different members of the ensemble to make

partially independent errors” [8]. Changing training specificities (e.g., regularization or LR) and

properties (e.g., number of layers in NN, learning algorithm, initial weights, or loss function) [117]

[46] also are enough to promote diversity (section A.5).

3.2.1 Implicit Ensembles

Implicit ensembles train a single model, which behaves like an ensemble of multiple mod-

els. Also, the model parameters (weights) are shared, and the original Network approximates the

ensemble models’ averaging.

The advantage is to keep the ensemble’s training time equal to that of a single model by

maintaining the additional cost as low as possible while also promoting diversity.

3.2.1.1 Neural Network Weight Sharing

In this case, “each individual model in . . . [the] ensemble layer corresponds to weights in the

ensemble layer optimized in different directions. . . . By adopting [a] weight sharing approach,

the results show . . . [it] can notably improve the accuracy and stability of the original Neural

Networks with ignorable extra time and space overhead” [118].

3.2.1.2 Dropout

Despite not being an Ensemble-specific strategy, it can be considered an implicit ensemble

variation that allows for overfitting reduction and, more importantly, intuitively, simulates having a

large number of slightly different Network architectures (section A.5.4.3). This promotes diversity

during the ensemble’s NN estimators learning process and leads to better generalization capacity

by randomly dropping a given percentage of Nodes.

Table 3.1 presents a couple of ensemble researches where Dropout is applied.
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Paper Summary

Dropout and
DropConnect
based Ensemble
of Random
Vector Functional
Link Neural
Network (2019)

“Random Vector Functional Link (RVFL) Neural Network with closed
form solution is a randomized Neural Network suitable to use as [esti-
mators] of the ensemble because of its extremely fast training time,
good generalization and innate randomization in its architecture. . . .
This study proposes an ensemble of RVFL Neural Networks by intro-
ducing additional regularization / randomization . . . via . . . Dropout
and DropConnect. . . . Experiments . . . [show the] ensemble performs
better than other RVFL based ensembles” [119].

Uncertainty-aware
Deep Learning
Forecast using
Dropout-based
Ensemble Method
(2019)

A “probabilistic forecast technique . . . [which] focuses on deep learn-
ing . . . achieves generality by using dropout. . . . [Implementation]
shows how the dropout technique is utilized to realize an ensemble
method” [120].

Table 3.1: Overview of Dropout-related researches.

3.2.2 Explicit Ensembles

Like implicit ensembles, explicit ensembles train a single model, which behaves like an en-

semble of multiple estimators. Still, explicit ensemble estimator parameters’ (weights) are not

shared, and the output is the ensemble model’s prediction integration.

3.2.2.1 Horizontal Integration

It builds a sequence of multiple models from contiguous training epochs and integrates their

predictions with the Simple Average mechanism (sec. 2.6.1) [11]. In practice, it averages the

Network’s state over the last several iterations.

Each subsequent model can be saved during the referred procedure, and a subset of the best

learners may be taken for the ensemble construction by analyzing their learning curves.

“Slightly inferiorly trained networks are a free by-product of most tuning algorithms; it is

desirable to use such extra copies even when their performance is significantly worse than the

best performance found. Better performance yet can be achieved through careful planning for

an ensemble prediction by using the best available parameters and training different copies on

different subsets of the available database” [46].

This “smoothed” weights version over the last steps can be seen, intuitively, as a bowl-shaped

objective with the Network bouncing near the mode so that the average has a greater probability

of occurring close to it somewhere.

It is a cheap way of obtaining an extra 1%-2% performance. However, Horizontal Integration

suffers from a lack of estimator variety.
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3.2.2.2 Snapshot

It provides an ensemble with accurate and diverse learners, which can be collected from a

single training run, not necessarily from contiguous training epochs, with each one providing

predictions without incurring additional training costs [46] [121].

It “is an optimization process [that] visits multiple local minima before converging to a final

solution. . . . [It] takes model snapshots at these various minima and averages their predictions”

[121]. Pointedly, it “lowers the learning rate at a very fast pace, encouraging the model to converge

towards its first local minimum. . . . [By updating] the learning rate at each iteration rather than at

every epoch [it] improves the convergence of short cycles, even when a large initial learning rate

is used” [121].

A major benefit is that finding “much flatter solutions [than] a single model . . . leads to better

generalization than conventional training . . . achieves notable improvement in test accuracy . . .

improves generalization” [122].

Normally used when a model demands ample computational resources in its training stage,

namely, weeks or months because it is composed of very deep models or huge datasets. It is

“extremely easy to implement . . . [and] has almost no computational overhead” [122].

3.2.2.3 Stochastic Gradient Descent with Warm Restarts

Also known as SGDR, it is a Snapshot extension that takes a step forward in promoting model

diversity and providing faster learning in an SGD environment (section A.3.2.2).

SGDR falls under the umbrella of Aggressive LR schedules. Starting with a generous LR

value, it implements a simulated learning process restart policy that aggressively, swiftly, and

systematically resets it to a near-zero value before suddenly increasing it anew to the maximum

[123]. In other words, it forces the optimization procedure to cycle during a sole training run

[124].

“Converge M times to [multiple] local minima along its optimization path, . . . then restart the

optimization with a large learning rate to escape the current local minimum . . . [and] attempt to

find another possibly better local minima” (Fig. 3.2) [121].

Figure 3.2: Cosine Annealing Cycles. X-axis denotes the LR and the y-axis denotes the epochs
(adapted from 19)
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Eqn. 3.5 represents the Cosine Annealing LR Schedule.

α(t) = α0
2 (cos(π .mod(t−1,[T/M])

[T/M] )+1) (3.5)

where α(t) is the LR at the epoch t, α0 is the max LR,

M is the amount of cycles, T is the total amount of epochs, mod is the

module function, π is the pi numeric value, cos is the cosine function,

and square brackets is the floor function.

Fig. 3.3 compares the commonly used LR schedule with Snapshot’s LR schedule.

Figure 3.3: Comparison of Standard LR and Cyclic LR Schedules. The left image follows a
constant LR optimization path towards a single local minima (blue color). The right image ag-
gressively varies the LR forcing irregular LR optimization paths to visit multiple local minima to
more successfully find the global minima (orange color) and induce diversity 20.

This subjects the model weights to dramatic changes converging to very different values with

different respective Network performances each, thus “practically eliminating the need to ex-

perimentally find the best values and schedule for the global learning rates” [125]. The best-

performing weights can be saved as “checkpoints” for the ensemble.

Obtained “good results with SGDR, mainly by using . . . ensembles of snapshots from [the]

SGDR’s trajectory” [121]. Also, “Warm restarts . . . [schedule] the learning rate to achieve com-

petitive results . . . roughly two to four times faster” [124].

Alternatively, it may inject an oscillating amount of noise through multiple epochs to avoid

getting stuck in the same local minima.

19https://medium.com/udacity-pytorch-challengers/ideas-on-how-to-fine-tune-a-pre
-trained-model-in-pytorch-184c47185a20, last accessed on 2021-01-21

20https://towardsdatascience.com/advanced-topics-in-neural-networks-f27fbcc638ae,
last accessed on 2021-01-21

https://medium.com/udacity-pytorch-challengers/ideas-on-how-to-fine-tune-a-pre-trained-model-in-pytorch-184c47185a20
https://medium.com/udacity-pytorch-challengers/ideas-on-how-to-fine-tune-a-pre-trained-model-in-pytorch-184c47185a20
https://towardsdatascience.com/advanced-topics-in-neural-networks-f27fbcc638ae
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Another aspect is that it also provides re-use of small random “good weights” that work as

initiating points in the following LR rounds.

3.2.2.4 Polyak averaging

Also known as Polyak-Ruppert Averaging or Temporal Averaging, it “has been shown to im-

prove the convergence of standard SGD” [126].

It aims to save multiple sets of noisy weights from various models seen close to the training

phase’s end and then average those into a single NN (Fig. 3.4) [127] [128]. This translates into

finding the best-performing set of weights [129]. Also, attempts to calm down the noisy optimiza-

tion process due to hyperparameters choice (e.g., LR) [8]. In other words, it aims to average an

abundance of shallow models so that the single NN performs stabler.

Figure 3.4: Polyak Averaging (adapted from 21).

Eqn. 3.6 represents Polyak Averaging.

θn =
1
N ∑

N
n θn (3.6)

where θn is the weight at iteration n, and N is the number of iterations.

An optimization algorithm may “leap back and forth across a valley several times without ever

visiting a point near [its] bottom” [8]. The fundamental breakthrough was reached on “the para-

doxical idea [that] a slow algorithm having less than optimal convergence rate must be averaged”

[127]. If one takes a Neural Network group that has “converged to local minima and [applies]

averaging, [one] can construct an improved estimate. One way to understand this fact is to con-

sider that, in general, networks [that] have fallen into different local minima will perform poorly in

different regions of feature space, and thus their error terms will not be strongly correlated” [101].

Averaging of all locations “on either side should be close to the bottom of the valley” [8].

“Alternatively, an exponential moving average over the parameters can be used, giving higher

weight to more recent parameter values” [126].

21https://towardsdatascience.com/advanced-topics-in-neural-networks-f27fbcc638ae,
last accessed on 2021-01-21

https://towardsdatascience.com/advanced-topics-in-neural-networks-f27fbcc638ae
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Going further, it is possible to define a Weighted Average and even a Weighted Average with
exponential decay. This last approach linearly increases the models’ weights the more recent they

are.

3.2.3 Implicit and Explicit Ensembles Overview

Both implicit and explicit ensembles produce base learners from a sole NN at the cost of

mutual diversity since low-level estimator features are expected to be similar [130]. To tackle the,

somewhat, lack of diverseness, one may employ branching-based deep models [131] or SGWR

with Cosine Annealing LRs [124] [121].

3.3 Varying Base Models’ Generation Strategy

The following techniques refer to base model generation approaches (section 2.5). However,

only some are compatible with NNs. These comprise Bagging (section 2.5.1) and Boosting (sec-

tion 2.5.2), particularly AdaBoost (section 2.5.2.1). Furthermore, Stacking (section 2.5.4) and its

variations, Blending (section 2.5.4.1) and Super Learner (section 2.5.4.2), are also applicable.

3.3.1 Negative Correlation Learning

Also known as NCL, it seems to have the highest potential as it has recently gained momentum

and been improved upon with multiple studies.

The training process trains all the Networks synchronously, interactively22, and dependently23.

Consequentially it makes each model locally coupled with the others.

More importantly, it minimizes the ensemble’s empirical risk function by adjusting the NN’s

objective function (mean squared error (MSE)) with a penalty term, expressing the ensemble NNs’

correlation [132]. In practice, a “bias” is attached to the error function. When generating a model

for the ensemble, the added penalty term to the NN’s objective function promotes a negative

correlation (NC) between the new model and the previously generated models [133] [134]. Note,

do not mistake NCL’s bias with statistical bias.

Basically, it promotes interaction, mutual model diversity, and lower predictions’ overall cor-

relation [133] [135] [136] [137] [138]. Therefore, it can be considered a synchronous observation

method.

Eqn. 3.7 symbolizes the NCL’s error function and Eqn. 3.8 expresses the NCL’s penalty term.

ei =
1
2( fi−d)2 +λ pi (3.7)

where ei is the adjusted error function, fi is the model’s predicted

22Interactively means the NCL algorithm analyses the base learner’s training.
23Dependently means the NCL algorithm mutually exchanges information across base learners.
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output, d is the models’ target output, λ is the neuron’s bias

coefficient, and pi is the penalty term

pi = ( fi− f )∑ j 6=i( f j− f ) (3.8)

where pi is the penalty term, fi is the model’s predicted output,

and f is the ensemble’s average output.

Adjusting the penalty term grants the possibility to tune the NNs’ diversity. However, the

detriment is that the λ variable, which is particularly relevant for the NNE’s performance, has

issues [139].

Since NCL is very much concerned with the NN’s internal characteristics, particularly the

objective training function, it may only exclusively be employed with NNs, hence, not applicable

to other architectures.

Tables 3.2, 3.3, 3.4, 3.5, and 3.6 show multiple relevant selected papers. The first one acts as

the precursor of the following researches.

Paper Summary
Ensemble Learning
Using Decorrelated
Neural Networks
(1996)

“[Decorrelates the] network training method for improving the quality of
regression learning. . . . Individual networks are trained by backpropagati-
on . . . to have their errors linearly decorrelated. . . . Outputs are then line-
arly combined. . . . Results show . . . lower MSE” [133].

A cooperative en-
semble learning
system (1998)

A “new cooperative Ensemble Learning system (CELS). . . encourages
different individual networks . . . to learn different parts. . . of the training
data so . . . the ensemble [learns] training data better. . . . [This] tends to
create negatively correlated networks . . . trained simultaneously . . . [with
an] opportunity for [cooperation and specialization]. . . . Experiments . . .
demonstrate . . . CELS produces NNEs with good generalisation ability.”
[140].

Ensemble learning
via negative cor-
relation(1999)

“[NCL] attempts to train individual networks in an ensemble and combi-
nes them in the same learning process. . . . All the individual networks in
the ensemble are trained simultaneously and interactively through corre-
lation penalty terms. . . . [This] can create negatively correlated networks
to encourage specialisation and cooperation. . . . Results show . . . [it] can
produce Neural Network Ensembles with good generalisation ability” [134].

Simultaneous trai-
ning of negatively
correlated neural
networks in an
ensemble (1999)

“Cooperative Ensemble Learning system (CELS) . . . encourages . . . indi-
vidual networks in an ensemble to learn different parts . . . of a training
data . . . so . . . the ensemble can learn the . . . data better. . . . Networks
are trained simultaneously rather than independently or sequentially . . .
providing opportunity for . . . interaction with each other and to specialize
using a correlation penalty term in the error function. . . . Results show
that CELS can produce NNEs with good generalization ability” [136].

Table 3.2: Overview of Negative Correlation Learning related researches - 1.
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Evolutionary en-
sembles with ne-
gative correlation
learning (2000)

“Evolutionary ensembles with negative correlation learning (EENCL) . . .
addresses the issues of automatic determination of the number of indivi-
dual Neural Networks (NNs) in an ensemble and the exploitation of the
interaction between individual NN design and combination. . . . EENCL
encourages . . . individual NNs . . . to learn different parts . . . of the train-
ing data so that the ensemble can learn better the entire training data. . . .
Cooperation and specialization among different individual NNs . . . is
considered during the individual NN design. . . . [It also] provides an
opportunity for different NNs to interact with each other and to speciali-
ze. Experiments . . . demonstrate . . . [it] can produce NN ensembles with
good generalization ability” [141].

Negative correlation
learning and the
ambiguity family of
ensemble methods
(2003)

By “removing an assumption made in the original work, NC can be
shown to be a derivative technique of the Ambiguity decomposition by
Krogh and Vedelsby. . . . From this formalisation . . . (calculate parame-
ter bounds), [it] shows significant improvements. . . . Success lies in resca-
ling an estimate of ensemble covariance . . . [showing] that during this re-
scaling, NC [term] varies smoothly between a single neural network and
an ensemble system” [142].

Method of
incremental
construction of
heterogeneous neural
network ensemble
with negative
correlation(2004)

A “new method for [incrementally] constructing a heterogeneous neural
network ensemble (HNNE) based on heterogeneous Neural Network with
negative correlation. . . . [The] proposed method adjusts both the . . . ar-
chitecture of the individual networks and the . . . weights. . . . Improves
the accuracy of the member Neural Networks while increasing diversity
. . . and decreasing the generalization error of [the] ensemble. . . . [It]
consists of two parts . . . [dynamically] constructing the best heterogene-
ous Neural Networks (BHNN) [based on negative learning] and constru-
cting [the] HNNE. . . . Results . . . show the error rate can be improved by
HNNE . . . better than Boosting, Bagging and other network ensemble
methods.” [143].

Fast Neural Network
Ensemble Learning
via negative-correla-
tion data correction
(2005)

A “new negative correlation (NC) learning method. . . . [The] advantages
are . . . 1) [requiring] much less communication overhead than the stan-
dard NC method . . . 2) . . . applicable to ensembles of heterogenous net-
works” [144].

Negatively Correlated
Neural Network
Ensemble with
Multi-population
Particle Swarm
Optimization
(2005)

“Multi-population particle swarm optimization (MPPSO) algorithm trains
negatively correlated Neural Network Ensembles. . . . Each sub-swarm is
responsible for training a . . . network . . . [with its] architecture . . . auto-
matically configured . . . and simultaneously / successively [exchanging]
information among them. . . . Performance of ensemble is improved. . . .
Results show that MPPSO . . . is an effective and practical method.” [145].

A preliminary study
on negative correlation
learning via
Correlation-Corrected
Data (NCCD)
(2005)

A “cooperative Neural Network Ensemble Learning method based on Ne-
gative Correlation learning. . . . [It] enables easy integration of various
network models and reduces communication bandwidth significantly for
effective parallel speedup. . . . Comparison with the best Negative Corre-
lation learning method . . . demonstrates comparable performance at si-
gnificantly reduced communication overhead” [146].

Table 3.3: Overview of Negative Correlation Learning related researches - 2.
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Evolutionary random
neural ensembles
based on negative
correlation learning
(2007)

“Incorporates bootstrap of data, random feature subspace and evolutiona-
ry algorithm with negative correlation learning . . . [promoting] diversity
. . . of individual NNs . . . [to] learn different parts . . . of the training da-
ta so that the ensemble can learn better the entire training data. . . . [It]
emphasizes . . . cooperation among different individual NNs . . . thus im-
proves the generalization . . . out-of-bag (OOB) estimation. . . . Another
benefit of this algorithm . . . [is that] performance . . . is better than the
performance of other ensemble algorithms” [147].

Analyzing Anti–
-correlation in
Ensemble Learning
(2007)

“Proposes an alternative anti–correlation measure, RTQRT–NCL, which
shows significant improvements . . . particularly with larger ensembles”
[148].

A comparative study
of data sampling
techniques for
constructing neural
network ensembles
(2009)

A “negative correlation learning that implicitly encourages different net-
works to [learn] different training spaces is shown as better or at least
comparable to Bagging and Boosting that explicitly create different train-
ing spaces” [149].

Regularized negative
correlation learning
for Neural Network
ensembles (2009)

“NCL . . . introduces a correlation penalty term to the cost function of
each individual network so that each . . . minimizes its . . . MSE together
with the correlation of the ensemble. . . . When λ=1 . . . [it] only mini-
mizes the MSE without regularization. . . . [That is] why NCL is prone to
overfitting. . . . Tuning the correlation parameter λ [when λ=1] . . . can-
not overcome the overfitting problem. . . . [This research] proposes . . . re-
gularized negative correlation learning (RNCL) . . . which incorporates
an additional regularization term . . . [which] decomposes the ensemble’s
training objectives, including MSE and regularization, into a set of sub-
-objectives . . . implemented by an individual Neural Network. . . . Also
. . . [it] provides an automatic algorithm to optimize regularization para-
meters. . . . Experiments demonstrate that RNCL achieves better perfor-
mance than NCL, especially when the noise level is nontrivial in the da-
ta set” [150].

Multiobjective neural
network ensembles
based on regularized
negative correlation
learning (2010)

“Multiobjective regularized negative correlation learning (MRNCL) . . .
incorporates an additional regularization term [in] the ensemble and uses
the evolutionary multiobjective algorithm to design ensembles. . . . [It
also] defines . . . crossover and mutation operators and adopts nondomi-
nated sorting algorithm with fitness sharing and rank-based fitness as-
signment. . . . Experiments . . . demonstrate that MRNCL achieves better
performance than NCL, especially when the noise level is nontrivial in
the data set” [151].

A new selective
Neural Network
ensemble with
negative correlation
(2012)

“Hierarchical pair competition-based parallel genetic algorithm (HFC-
-PGA) . . . aim . . . to achieve . . . the best Neural Network . . . also a di-
versity of potential Neural Networks . . . selected to build an ensemble
such that the generalization error is minimized and the negative correlati-
on is maximized” [152].

Table 3.4: Overview of Negative Correlation Learning related researches - 3.
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Combining features
of negative
correlation
learning
with mixture of
experts in proposed
ensemble methods
(2012)

“NCL and mixture of experts (ME) . . . employ different special error fun-
ctions for the simultaneous training of NNs to produce negatively correlated
NNs. . . . [They] have different but complementary features, so . . . a hybrid
system . . . may be better than each of its basis approaches. . . . Two appro-
aches are proposed . . . (1) G-NCL, a dynamic combiner of ME . . . combi-
nes the outputs of base experts in the NCL method . . . [with] weights esti-
mated dynamically from the inputs . . . (2) [mixture of negatively correla-
ted experts], MNCE, . . . [has the] capability of parameter [controlling] for
NCL . . . in the error function of ME, . . . [enabling] efficiently adjustment
between experts . . . to establish better balance in bias-variance covariance
trade-offs. . . . Thus, [it] improves the generalization ability. . . . Results
show [this] . . . method . . . improved performance over the original metho-
ds” [153].

Fast decorrelated
Neural Network
ensembles with
random weights
(2014)

“NCL aims to produce ensembles with sound generalization capability
through controlling the disagreement among base learners’ outputs . . . usu-
ally implemented by using feed-forward Neural Networks with error back-
-propagation algorithms (BPNNs). However, it suffers from slow conver-
gence, [due to] local minima problem and model uncertainties caused by the
initial weights and the setting of learning parameters. To achieve a better so-
lution . . . [this papers] employs . . . random vector functional link (RVFL)
networks as . . . base models. [These] are generated randomly . . . [with a]
cost function defined for NCL. . . . Results indicate . . . [this] approach out-
performs other ensembling techniques” [154].

A niching
evolutionary
algorithm with
adaptive negative
correlation learning
for Neural Network
ensemble (2017)

Proposes an “evolutionary algorithm with adaptive negative correlation
learning . . . in which the penalty coefficient λ is set to dynamically change
during training . . . with the purpose of appropriately controlling the trade-
-off between the diversity and accuracy in the ensemble. Further, a modified
dynamical fitness sharing method is applied to preserve the diversity of po-
pulation during training. . . . Results show that [the] method can be used to
design a satisfactory NN ensemble and outperform related works” [155].

Regularizing deep
Neural Networks
with an ensemble-
-based decorrelation
method (2018)

The “Ensemble-based Decorrelation Method (EDM) . . . is motivated by the
idea to . . . improve generalization capacity of DNNs. EDM can be applied
to hidden layers in fully connected Neural Networks . . . [by treating] each
hidden layer as an ensemble of several base learners [and] dividing all the
hidden units into several non-overlap groups . . . viewed as . . . base learners.
EDM encourages DNNs to learn more diverse representations by minimizing
covariance between all base learners during the training. . . . Results . . . de
monstrate that EDM can . . . reduce the overfitting and improve the genera-
lization capacity of DNNs” [156].

Crowd Counting
with Deep Negative
Correlation Lear-
ning (2018)

“Deep convolutional networks (ConvNets) have achieved unprecedented per-
formances. . . . However, their adaptations to crowd counting on single ima-
ges are still in their infancy and suffer from severe over-fitting. . . . [A] new
learning strategy to produce generalizable features [through] deep negative
correlation learning . . . deeply learns a pool of decorrelated regressors . . .
through managing their intrinsic diversities. . . . [It] is [an] end-to-end-train-
able [algorithm]. . . . Extensive experiments . . . indicate the superiority of
D-ConvNet . . . compared . . . [to] state-of-the-art methods.” [157].

Table 3.5: Overview of Negative Correlation Learning related researches - 4.
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Nonlinear Regressi-
on via Deep Negative
Correlation Learning
(2021)

“[In] deep learning, two common solutions exist [for nonlinear regression
problems] i) [employ] a robust loss function . . . jointly optimizable with
the deep [CNN], ii) . . . ensemble of deep networks. . . . [The former] im-
proves performance [but] lacks due to . . . limitation of choosing a single
hypothesis . . . [and the] latter suffers from much larger computational
complexity. . . [This paper] proposes to regress via an efficient “divide
and conquer” manner . . . [viewed as a] generalization of negative corre-
lation learning. . . . Without extra parameters . . . [the] proposed method
controls bias-variance-covariance trade-off systematically and usually . . .
each base model is . . . “accurate” and “diversified”. . . . Each sub-problem
. . . has less . . . complexity and thus is easier to optimize. . . . Experiments
demonstrate superiority over challenging baselines [and] versatility” [157].

Generalized Negati-
ve Correlation Lear-
ning for Deep En-
sembling (2021)

“Numerous works on decomposing . . . loss functions [but] exact mathema-
tical connection is rarely exploited. . . . For ensembling . . . formulate . . .
bias-variance decomposition for arbitrary . . . differentiable loss functions
. . . [and] derive a Generalized Negative Correlation Learning (GNCL) al-
gorithm which offers explicit control over the ensemble’s diversity and
smoothly interpolates between . . . independent training and joint training.
. . . Discusses under which circumstances training of an ensemble of Neural
Networks might fail and what ensembling method should be favored depen-
ding on the choice of the individual networks.” [158].

Table 3.6: Overview of Negative Correlation Learning related researches - 5.

3.3.2 Boosting Neural Network Ensemble

One interesting yet far from completely researched option is combining multiple Boosting

variations and implementations (section 2.5.2.2, section 2.5.2.6, section 2.5.2.7, section 2.5.2.5)

with DL (section A.7).

3.3.3 Combining strategies for ensemble generation

There are multiple proposed approaches to combine strategies for generating ensembles, each

offering different breakthroughs from those presented in this work.

MultiBoosting combines AdaBoost with wagging, a variant of Bagging using C4.5 as the base

learners achieving better results and execution time than the constituent algorithms [159].

Multistrategy Ensemble Learning investigates the hypothesis that accuracy improvement is

due to base learners’ increased diversity. So three new multistrategy EL techniques were developed

with results showing they are, on average, more accurate than their base strategies [160].

Cocktail ensemble uses a hybrid mechanism for combining multiple individual ensembles via

pairwise combination with a regression error-ambiguity decomposition. In other words, it resem-

bles an ensemble of ensembles. Results show that the proposed approach outperforms the individ-

ual ensembles, two other methods of ensemble combination, and two state-of-the-art regression

approaches [161].
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3.4 Applications

Since the NNE was first proposed, multiple researchers have focused their efforts and attention

on further development. In that spirit, they produced an open-ended stream of in-depth studies

and various approaches. At the present day, NNE techniques have been comprehensively and

successfully adopted for broad practical purposes and grew into a relevant ML research field.

Tables 3.7 and 3.8 present some known applications.

Paper Summary
Fast license plate cha-
racter recognition ba-
sed on AdaBoost
(2010)

“Used dynamic adaptive weight cutting method to fast train AdaBoost,
and obtained good recognition effect” [162]

Research of P2P
traffic identification
based on neural
network ensemble
(2010)

“Used dynamic weighted ensemble methods to P2P traffic identificati-
on” [163]

AdaBoost based
ensemble of neural
networks in analog
circuit fault
diagnosis (2010)

“Proposed a new NNE method based on AdaBoost, and applied it to
analog circuit fault diagnosis” [164]

Performance of
global-local hybrid
ensemble versus
Boosting and Bag-
ging ensembles
(2013)

“Presented a global-local hybrid ensemble, which employs both local
and global learners, and compares its performance against Bagging
and Boosting” [165]

Hebbian ensemble
Neural Network for
robot movement
control (2013)

“Proposed Hebbian NNE with large information capacity for complex
maneuver representations applied in robot movement control” [166]

Fast decorrelated neu-
ral network ensembles
with random weights
(2014)

“Combined random vector functional link networks with the least squa-
re method and the Negative correlation learning strategy for fast buil-
ding of decorrelated NNE” [154]

A novel decorrelated
Neural Network en-
semble algorithm for
face recognition
(2015)

“Described a NNE based on two-dimensional Neural Networks with
random weights incorporated with the negative correlation ensemble le-
arning strategy for building the final system for face recognition” [167]

Table 3.7: Overview of Practical Applications of NNEs - 1.
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Applying the ensem-
ble artificial neural
network-based hybrid
data-driven model to
daily total load fore-
casting (2015)

“Created a hybrid data-driven NNE model, calibrated via multi-obje-
ctive optimization algorithm, that combines partial mutual information-
based input variable selection with NNE-based output estimation and k-
-nearest neighbor regression-based output error estimation for short-
-term electricity load forecasting” [168]

Table 3.8: Overview of Practical Applications of NNEs - 2.

Other applications include multi-target regression (Hadavandi et al. [169]), distributed training

(Zhang and Zhong [170]), time series (Kourentzes et al. [171] and Smith and Jin [172]), evolu-

tionary techniques (Tian et al. [173], Soares et al. [174], and Zhao et al. [175]), and reinforcement

learning (Faußer and Schwenker [176]).
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A thorough testing infrastructure was created to confirm how best to combine current state-of-

the-art NNE strategies.

This framework has three steps. It starts by evaluating the error decomposition of Tables 4.1

and 4.2 ensemble techniques in bias, variance, and covariance [26]. Then, it identifies the most

complementary existing strategies (most reduce each ensemble error component in conjunction).

Finally, it combines these strategies to create a multitude of new ensemble algorithms.

The following list presents this thesis’ premises:

• the NN estimator uses a ReLU activation function in the input layer with a number of neu-

rons according to the number of train set’s features, MAE as the loss function, and AdaGrad

as the optimizer;

• the estimator’s structure and parameters are consistent throughout all ensemble algorithms

and test levels for computational simplicity and comparison trustworthiness. In other words,

the Network architecture is not a variable affecting the final results;

49
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• each ensemble has five estimators, and has been averaged five times except for Snapshot

(and derived architectures) which have been averaged 15 times for improved results stability;

• different regression datasets for each of the two levels of the framework;

• holdout with 80% for training and 20% for testing as resampling method;

• datasets’ categorical values are one-hot encoded using scikit− learn 24;

• missing values are removed by dropping their respective instances;

• features are scaled not to skew the algorithm’s internal workings;

• two baselines: (1) a single NN with the same architecture as the ensemble’s base estimators,

and (2) the Simple Average of the base learners results;

• Level-1’s tests are corroborated by Level-0’s results evaluated through error decomposition;

• ensemble error decomposition in bias, variance, and covariance serves as an insight into

understanding which ensemble strategies most reduce each individual error component,

thus elucidating on which strategies should be merged to reduce all components the most

throughout;

• each component on a stacked bar graph refers to the average of the normalized sum of that

component for each of its Level’s dataset;

• the right y-axis of heatmap graphs refers to the percentage difference between a given line’s

algorithm on a particular dataset and the NN single model baseline (first row). -1.0 means

the error has diminished 100%, and 3.0 means the error increased at least 300%;

• stacked bar graphs with multiple versions of the same algorithm use the individual, non-

merged, default version of that same algorithm as the comparison metric;

• the framework is powered by sklearn 24, Keras 25, and TensorFlow 26. It is essential to

understand that Keras is a high-level API, that runs on top of Tensor f low, designed to be

fast and easy to use, hence perfect for quick implementations. However, more complex

designs are often impossible to create with Keras alone, thus requiring Tensor f low. This is

a high and low-level framework used for high-performance models and large datasets, thus

ideal for DL (section A.7) researches;

• given that every collected dataset is entirely and freely available/maintained online, confi-

dentially issues are not a thing. Nonetheless, they should be used responsibly and ethically;

• note that the provided URLs were used to gather the datasets, but they may also be collected

from various other sources. Nonetheless, the referred URLs are stable, meaning they are

expected to host the data indefinitely;

• datasets are licensed under the CC0 license; I bear the responsibility for rights violations or

infringements regarding the datasets and adherence to the data license;

https://paperswithcode.com/datasets/license
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• csv file format is used regarding the datasets. However, some of them were in different

formats, namely, txt, so they had to be converted;

• although AdaBoost.R2, Gradient Boosting (Histogram), LGBM, CatBoost, and XGBoost

use Decision Trees instead of NNs as base learners, they have only been added in the Level-

0 because some of their characteristics can add value in other algorithms, so they are used

for performance comparison.

4.1 Level-0

This level’s tests essentially consist of plainly implementing the current most recognized and

established Neural-Network Ensemble specific and general algorithms (Tables 4.1 and 4.2). Ev-

ery ensemble algorithm has its particular characteristics that aim to vary the training data (section

3.1), estimators’ characteristics (section 3.2), estimators’ generation strategy (section 3.3), and

the prediction integration mechanism (section 2.6). So, it is essential to analyze which ensemble

architectures most diminish each error component and, hopefully, discover which of their charac-

teristics are most responsible for that reduction.

Ensemble Algorithm Tests Designation GEN INT BL SEC REF
Simple Average average Par SA NN 2.6.1 [12]
Random Splits rand_split0.X Par SA NN 2.3.1
K-fold Cross-training cross_training Par SA NN 2.3.2 [16]
Random Subspace rand_subspace0.X Par SA NN 2.3.5 [49]
Pasting pasting0.X Par SA NN 2.3.3 [58]

Random Patches
pasting0.X
+rand_subspace0.X

Par SA NN 2.3.6 [63]

Horizontal Averaging horizontal_avg Str SA NN 3.2.2.1 [11]
Polyak Averaging polyak_avg Str SA NN 3.2.2.2 [127]
Snapshot with Cosine
Annealing Learning
Rates

snapshot Str SA NN
3.2.2.2
3.2.2.3

[121]

NCL ncl0.X Seq SA NN 3.3.1 [133]
Dropout dropoutX Par SA NN 3.2.1.2 [177]
Bagging bagging Par SA NN 2.5.1 [54]
AdaBoost(.R2) adaboost_scratch Seq WA NN 2.5.2.1 [77]
AdaBoost(.R2) adaboost_nn Seq WA NN 2.5.2.1 [77]

Table 4.1: Overview of Generation Mode (GEN), Integration Method (INT), framework’s Base
Learner (BL), section (SEC), and main reference (REF) for the main ensemble methods for

regression. Par stands for Parallel, Str for Stream (base models generated from the same original
base learner), Seq for Sequential, SA for Simple Average, WA for Weighted Average, DT for
Decision Trees, and NN for Neural Networks. The suffix X indicates the hyperparameter(s) of

the method in the experiments - 1.

24https://scikit-learn.org/stable/
25https://keras.io/
26https://www.tensorflow.org/

https://scikit-learn.org/stable/
https://keras.io/
https://www.tensorflow.org/
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Ensemble Algorithm Tests Designation GEN INT BL SEC REF
Super Learner super_learner Par WA NN 2.5.4.2 [10]
Blending blending Par WA NN 2.5.4.1 [96]
Stacking stacking_nn Par WA NN 2.5.4 [43]
AdaBoost(.R2) adaboost_default Seq WA DT 2.5.2.1 [77]
Gradient Boosting gradient_boosting Seq WA DT 2.5.2.2 [78] [178]
Gradient Boosting
Histogram

gradient_boosting_hist Seq WA DT 2.5.2.8 [179]

LGBM lgbm Seq WA DT 2.5.2.7 [89]
CatBoost catboost Seq WA DT 2.5.2.6 [88]
XGBoost xgboost Seq WA DT 2.5.2.5 [85]
Random Forest rand_forest Par SA DT 2.5.1.1 [29]
Extra Trees extra_trees Par SA DT 2.5.1.2 [66]

Table 4.2: Overview of Generation Mode (GEN), Integration Method (INT), framework’s Base
Learner (BL), section (SEC), and main reference (REF) for the main ensemble methods for

regression. Par stands for Parallel, Str for Stream (base models generated from the same original
base learner), Seq for Sequential, SA for Simple Average, WA for Weighted Average, DT for
Decision Trees, and NN for Neural Networks. The suffix X indicates the hyperparameter(s) of

the method in the experiments - 2.

Ten different datasets listed in Table 4.3 are used. These give statistical confidence as the

empirical results meet the theoretical assumptions.

name
no. of

samples
no. of

features
categorical

features
missing

data
origin

fried delve 40768 10 no no 27

energydata complete 19735 29 yes no 28

bike sharing/hour 17389 16 yes no 28

student 395 31 no no 28

friedman 1200 5 no no 29

mv 40768 10 no no 29

atltime1004a 17812 7 yes no 30

triazines 186 61 no no 31

fruitfly 125 5 no no 31

add10 9792 11 no no 32

Table 4.3: Level-0 datasets’ information.

Looking at Fig. 4.1, and broadly speaking, it is clear to see that ensembles, almost as a whole,

lower predictions’ overall variance while maintaining bias low simultaneously. In this way, the

generalization error is lowered, and better performance is achieved.

27https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
28https://archive.ics.uci.edu/ml/datasets.php
29https://sci2s.ugr.es/keel/category.php?cat=reg#sub2
30http://users.stat.ufl.edu/~winner/data/atltime1004a.dat
31https://www.openml.org/search?sort=runs&order=desc&type=task&from=100&q=+taskty

pe.tt_id%3A2
32https://www.cs.toronto.edu/~delve/data/

https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://archive.ics.uci.edu/ml/datasets.php
https://sci2s.ugr.es/keel/category.php?cat=reg#sub2
http://users.stat.ufl.edu/~winner/data/atltime1004a.dat
https://www.openml.org/search?sort=runs&order=desc&type=task&from=100&q=+tasktype.tt_id%3A2
https://www.openml.org/search?sort=runs&order=desc&type=task&from=100&q=+tasktype.tt_id%3A2
https://www.cs.toronto.edu/~delve/data/
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Figure 4.1: Individual ensemble results. NNE results have a white background, while Decision
Tree Ensemble results have a grey background. The wider red dashed line and narrower red dashed
line depict the Single NN baseline error threshold and the Simple Averaging ensemble baseline
error threshold, respectively.

As expected, Simple Average achieved better results than the single model baseline. Due to

their characteristics, Horizontal Averaging and Polyak Averaging performed poorly since contigu-

ous epoch estimators suffer from a lack of diversity. Surprisingly Snapshot with SGDR (Cosine

Annealing LRs) performed exceptionally well in reducing covariance, variance, and specifically,

bias. So it is possible to infer that aggressively varying the LR of NNs is a successful way

of promoting estimators’ diversity. Other notable results were Dropout (p = 0.2%), and NCL

(lambda = 0.55), which slightly lowered the error compared to the Average ensemble.

The base models’ selection needs to be consistent with the way to aggregate them. If the

base models have low bias and high variance, an aggregating scheme that favors reducing the

ensemble’s variance (e.g., Bagging) should be considered. Otherwise, an aggregating scheme

favoring reducing the ensemble’s bias (e.g., Boosting) should be considered when high bias and

low variance base models exist. Given that the NN single model exhibits both a relatively high

bias and variance, both mentioned ensemble strategies are worth exploring.

Surprisingly, Bagging failed to improve results compared to Simple Average. One can con-

clude that bootstrap sampling faltered in promoting the expected estimator diversity in these spe-

cific datasets. Regarding Bagging variants, despite Random Forest performing pretty well by

reducing variance, covariance, and most noticeably bias, Extra Trees came out on top. Given

that these two variants performed positively, Random Subspace and other techniques that vary the

training data are worth exploring for NNs. The rest either (1) were already explored (models fitted

on the full dataset), (2) had bad empirical results (Bootstrapping), or (3) do not directly apply to
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NNs (optimal split point selection algorithms).

On the other hand, Boosting achieved the best results throughout almost all different imple-

mentations. These results clearly show that refocusing subsequent models’ attention on remaining

difficult observations and using a Weighted Average final prediction according to each estimator’s

respective performance are exceptional ensemble strategies. AdaBoost.R2 manifested the best

global error value closely followed by XGBoost. Curiously, CatBoost smashed bias but increased

variance, while XGBoost smashed variance but failed to reduce bias as much as CatBoost.

Almost all Decision Tree Boosting methods reduced covariance and, very appreciable, bias

and variance while NN Boosting Methods lowered bias and covariance but increased variance.

Comparing Decision Tree AdaBoost.R2 (default) with NN AdaBoost.R2, the latter achieved worse

results than the former. A possible avenue to improve the latter’s performance is to vary its es-

timators’ characteristics. Given that AdaBoost.R2, XGBoost, and CatBoost performed the best,

but also, Gradient Boosting and LGBM manifested positive results, adding regularization terms

to the NNs (e.g., Dropout), Random Subspace, and Weighted Average are worth exploring. The

rest either (1) do not directly apply to NNs (default parameters, split points, and individual NN

pruning), (2) do not apply to the specific baseline (does not suffer from overfitting), (3) do not

offer advantages due to the dataset characteristics (no categorical features and no missing data),

(4) have already been explored (parallel/independent processing) or (5) perform poorly on NNs

(Bootstrapping).

Note that the Decision Tree single model and Decision Tree ensembles’ results are better

than the NN baseline and NNEs’ results, respectively, because (1) it is easier for Decision Trees to

perform well on default hyperparameters, (2) the adopted NN estimator architecture is very simple

and trained on few epochs, and (3) some datasets may have too few samples.

Meta-model techniques depend on having a simple model that provides smooth prediction

interpretations that offset individual models’ deficiencies for better performance. For that rea-

son, Super Learner and Blending, which use a linear Meta-model, achieved the best results, with

the former edging out the latter. However, both obtained the worst variance results, particularly

Blending. Stacking, which uses a non-linear Meta-model (NN), had disappointing results. Hence,

linear Meta-models are, in this case, superior to non-linear Meta-models. Also, one might won-

der that Blending’s characteristics (fit a linear Meta-model on estimators’ holdout set predictions)

lower bias but promote variance, and Super Learner’s characteristics (out-of-fold predictions amid

K-fold Cross-validation) lower bias and increase variance, but more positively. Consequentially,

Super Learner’s results indicate a better global error reduction when compared with Blending and

Stacking.

Regarding the specific numerical results, Table 4.4 depicts every error component thoroughly.
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Algorithm Bias2 Variance Covariance Error
single_model_neural_network 0.33 0.766 0.004 1.099
average 0.298 0.049 0.584 0.931
rand_split 0.2 0.368 0.06 0.628 1.057
cross_training 0.398 0.06 0.623 1.08
rand_subspace 0.5 0.326 0.047 0.566 0.939
rand_subspace 0.75 0.324 0.071 0.65 1.044
pasting 0.5 0.444 0.062 0.611 1.117
pasting 0.75 0.4 0.07 0.654 1.124
pasting 0.5 + rand_subspace 0.5 0.5 0.081 0.672 1.253
pasting 0.5 + rand_subspace 0.75 0.525 0.082 0.705 1.313
pasting 0.75 + rand_subspace 0.5 0.425 0.07 0.66 1.156
pasting 0.75 + rand_subspace 0.75 0.401 0.07 0.652 1.123
horizontal_avg 0.337 0.059 0.663 1.059
polyak_avg 0.337 0.059 0.664 1.06
snapshot 0.027 0.017 0.481 0.525
ncl 0.55 0.288 0.043 0.554 0.885
bagging 0.326 0.051 0.587 0.965
adaboost_scratch 0.272 0.039 0.577 0.887
adaboost_nn 0.175 0.058 0.522 0.756
super_learner 0.042 0.155 0.546 0.742
blending 0.107 0.266 0.527 0.9
stacking_nn 0.7 0.074 0.665 1.439
dropout 20 0.283 0.029 0.538 0.85
single_model_decision_tree 0.008 0.663 0.004 0.675
adaboost_default 0.01 0.011 0.491 0.512
gradient_boosting 0.104 0.033 0.58 0.717
gradient_boosting_hist 0.104 0.027 0.569 0.7
lgbm 0.104 0.027 0.57 0.7
catboost 0.003 0.103 0.539 0.645
xgboost 0.052 0.008 0.479 0.54
rand_forest 0.019 0.027 0.557 0.604
extra_trees 0.009 0.019 0.517 0.545

Table 4.4: Individual ensemble numerical results.

Some varying training data ensemble techniques offer positive characteristics, except for Boot-

strapping (Bagging) and K-fold Cross-training. Also, Random Split (section 2.3.1) result’s in-

creased estimator diversity did not compensate for the loss of available training data (Fig. 4.2).
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Figure 4.2: Comparison of different Random Split configurations.

Pasting, Random Subspace, and Random Patches suffered from a lack of samples and features

to select different subsets or combinations. Therefore, more thorough testing with selected datasets

with enough samples/features was performed to obtain more insightful results. Results, as seen in

Fig. 4.3, show that these techniques alone do not promote better performance.

Figure 4.3: Comparison of different Pasting, Random Subspace and Random Patches configura-
tions.

In actuality, varying the number of features beyond a certain threshold is slightly better than

varying the number of samples for individual estimators. Not surprisingly, when combined, these

techniques harm performance.
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There is a caveat. Performance improvements using these techniques are very dependant (1)

on the dataset and (2) on the randomness of the selected variables. So these techniques may still

be helpful in particular circumstances.

Analyzing the individual dataset error results (Fig. 4.4), it is clear that most algorithms consis-

tently perform across the datasets, either good or bad, with few outliers (except Gradient Boosting

and LGBM).

Two findings are worth noting:

• with the existing configuration, Stacking performs poorly across all datasets, and on some

occasions, it behaves pretty disastrously;

• LGBM and Gradient Boosting algorithms have similar error values across all datasets since

the former stems from the latter.

Figure 4.4: Ensemble heatmap error results. X-axis reflects each dataset utilized.

On the whole, this level’s experiments revealed that:

• most ensemble algorithms surpass the Single Model baseline, but only some consistently

improve on the Simple Average Ensemble baseline bias-variance-covariance components;
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• some techniques offer marginal improvements, while others significantly and complemen-

tarily reduce one or more error components;

• varying the ensemble NNs’ characteristics, particularly aggressively varying the LR, offers

exceptional results;

• NCL and Dropout consistently top the Simple Average ensemble;

• Meta-model techniques also manifest very good results.

Bottom line, the best-performing NNE algorithms were Snapshot with SGDR, Super Learner,

and Blending ensembles. Additionally, since Dropout and NCL achieved better performance than

the Simple Average ensemble and can combine with other algorithms, they are considered plausi-

ble and promising candidates for the next level’s experiments.

4.2 Level-1

This level starts by (1) pair-wise merging every previous level’s NNEs with the referred most

promising approaches, and (2) dive deep into merging all possible combinations of the previ-

ous level’s best-performing NNE algorithms with the referred most promising approaches. More

specifically, the aim is to discover if it is possible and beneficial to combine multiple ensemble

methods or their individual characteristics to build a single ensemble architecture that exhibits

performance increases.

Twenty different datasets, listed in Tables 4.5 and 4.6, and distinct from those used in the

previous level, are used to ensure independent results.

name
no. of

samples
no. of

features
categorical

features
missing

data
origin

auto price 159 16 no no 33

auto mpg 398 8 no yes 33

cpu act 8192 22 no no 33

cpu small 8192 13 no no 33

housing boston 506 14 no no 33

housing
california

20460 9 no no 33

machine cpu 209 7 no no 33

pole telecomm 15000 49 no no 33

stock airplane
companies

950 10 no no 33

wisconsin
breast cancer

194 33 no no 33

ailerons 13750 41 no no 33

airfoil self-noise 1503 6 no no 34

combined cycle
power plant

9568 5 no no 34

Table 4.5: Level-1 datasets’ information - 1.
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name
no. of

samples
no. of

features
categorical

features
missing

data
origin

real estate
valuation

414 8 no no 34

yacht
hydrodynamics

308 7 no no 34

insurance 1338 7 yes no 35

concrete
compressive
strength

1030 9 no no 36

electrical
maintenance

1056 5 no no 36

house 16h 22784 17 no no 36

pole
telecommunications

14998 27 no no 36

Table 4.6: Level-1 datasets’ information - 2.

However, first, it is required to discover the best p and lambda hyperparameter values, re-

spectively, for Dropout and NCL. After extensive testing on Dropout ensemble and Dropout em-

powered NNEs, p = 0.15 was found to be the best value (error equal to 1.34), with p = 0.2 and

p = 0.45 following right behind (error equal to 1.352 and 1.356 respectively) (Fig. 4.5).

Figure 4.5: Comparison of Dropout empowered ensembles with different p values.

Analogously, after extensive testing on NCL ensemble and NCL empowered NNEs, lambda=

0.55 was found to be the best value (Fig. 4.6).
33https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
34https://archive.ics.uci.edu/ml/datasets.php
35https://www.kaggle.com/mirichoi0218/insurance
36https://sci2s.ugr.es/keel/category.php?cat=reg#sub2

https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
https://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/mirichoi0218/insurance
https://sci2s.ugr.es/keel/category.php?cat=reg#sub2
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Figure 4.6: Comparison of NCL empowered ensembles with different lambda values.

4.2.1 Algorithm Hypothesis Formulation

This is the theoretical step to idealize, modulate, and adjust the proposed innovative algo-

rithms.

These are divided between (1) integrating the previous level’s most promising approaches with

every other NNE method, including the referred best-performing NNE algorithms (Alg. 6, 8, 9,

10, 11, 12, 13, 14, and 15), and (2) integrating the previous level’s most promising approaches

with the previous level’s best-performing NNE algorithms mutually combined (Alg. 7, 16, and

17).

Average_NCL_Dropout and Snapshot_NCL_Dropout are thoroughly explained in this section

(Alg. 6 and 7). The remaining proposed Level-1’s hybrid algorithms are depicted in appendix D.

Algorithm 6 Average_NCL_Dropout
Input: number of estimators M, Dropout percentage p
Output: final prediction p

1: create M NN estimators with p value
2: for m = 1 to M do
3: perform NCL procedure between estimator m and L[: m] estimators
4: on a train_set
5: end for
6: use Simple Average to integrate saved estimators’ test_set predictions
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Algorithm 7 Snapshot_NCL_Dropout
Input: number of estimators M, number of training epochs N, Dropout percentage p
Output: result YM(x)

1: create M NN estimators with p value
2: for n = 1 to N do
3: if (N - n) < M then
4: save copy of current original model
5: perform one epoch of NCL procedure between original model and
6: saved estimators on a train_set with a SGDR policy
7: else
8: train original model one epoch on a train_set with a SGDR policy
9: end if

10: end for
11: use Simple Averaging to integrate saved estimators’ test_set predictions

4.2.2 Results

Fig. 4.7, and, more concretely, Fig. 4.8 compare the effects of pair-wise merging every pre-

vious level’s NNEs with the referred most promising approaches. By looking at the proposed

algorithms, it is clear that, almost always, joining NCL and Dropout to each default version im-

proves results the most, and in the case which it does not, joining only NCL has the number one

spot. Therefore, exploring the previous level’s best-performing NNE algorithms and most promis-

ing approaches is a reasonable option.

Figure 4.7: Proposed Dropout, NCL, and Dropout+NCL empowered NNE algorithms’ results.
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Figure 4.8: Proposed Dropout, NCL, and Dropout+NCL empowered NNE algorithms’ error vari-
ation results.

At this point, and according to Fig. 4.7, there have been created 56 different hybrid algorithms,

which, almost all, improve on their respective default version’s performance. Nonetheless, many

more algorithms could be generated by merging different training data varying techniques and

estimators’ characteristics. However, the first did not show promising results, and the second

diverges from this thesis scope.

Fig. 4.9 (a subset of Fig. 4.7) and Fig. 4.10 (a subset of Fig. 4.8) compare the effects of

joining techniques of the previous level’s best-performing NNE algorithms. Fig. 4.11, 4.12, and

4.13 compare the referred effects on bias, variance, and covariance, respectively.

Figure 4.9: Best-performing proposed Dropout, NCL, and Dropout+NCL empowered NNE algo-
rithms’ results.
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Figure 4.10: Best-performing proposed Dropout, NCL, and Dropout+NCL empowered NNE al-
gorithms’ error variation results.

Figure 4.11: Best-performing proposed Dropout, NCL, and Dropout+NCL empowered NNE al-
gorithms’ bias variation results.

Figure 4.12: Best-performing proposed Dropout, NCL, and Dropout+NCL empowered NNE al-
gorithms’ variance variation results.
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Figure 4.13: Best-performing proposed Dropout, NCL, and Dropout+NCL empowered NNE al-
gorithms’ covariance variation results.

It is clear to see that Snapshot, Blending, and Super Learner benefit, typically, from being

empowered with both NCL and Dropout, both individually and in conjunction. Also, if NCL has

better results than Dropout, then NCL+Dropout usually has worse performance than that of NCL

but better than Dropout, and vice-versa. Regarding the Snapshot ensemble, joining it with Dropout

offers the best results. Opposingly, Meta-model strategies tend to benefit from NCL alone, and

when Dropout is employed, it worsens their performance. As a side note, Simple Average stays in

the middle ground, meaning that it is improved the most by using NCL with Dropout.

Diving deeper into each error component, NCL alone achieves the best results in bias reduc-

tion comparing to Dropout, either alone or in combination. The case in which it did not was

on Snapshot ensemble, ending in second place and closely behind NCL+Dropout. Looking at

variance, typically, Dropout reduces it the most in Simple Average and Snapshot ensembles, while

Meta-model approaches prefer the NCL+Dropout combination. Finally, covariance in Meta-model

strategies is reduced the most by NCL, whether in Snapshot methods Dropout gives the best re-

sults.

Regarding the specific numerical results (Tables 4.7 and 4.8), snapshot_dropout_15 compared

to snapshot reduced error by 13.5%, blending_dropout_15 compared to blending reduced error

by 12.1%, and super_learner_dropout_15 compared to super_learner reduced error by 16.9%.

Algorithm Bias2 Variance Covariance Error
average 0.936 0.376 0.653 1.965
average_ncl_55_dropout_15 0.753 0.472 0.69 1.915
average_ncl_55 0.74 0.499 0.731 1.97
average_dropout_15 0.949 0.371 0.67 1.99

Table 4.7: Best-performing proposed Dropout, NCL, and Dropout+NCL empowered NNE algo-
rithms’ error numerical results - 1.
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Algorithm Bias2 Variance Covariance Error
snapshot 0.152 0.109 0.266 0.526
snapshot_ncl_55_dropout_15 0.13 0.12 0.249 0.499
snapshot_ncl_55 0.134 0.1 0.239 0.472
snapshot_dropout_15 0.141 0.087 0.227 0.455
blending 0.02 0.693 0.387 1.101
blending_ncl_55_dropout_15 0.018 0.678 0.278 0.974
blending_ncl_55 0.01 0.703 0.255 0.968
blending_dropout_15 0.052 0.693 0.398 1.143
super_learner 0.086 0.574 0.361 1.022
super_learner_ncl_55_dropout_15 0.091 0.441 0.352 0.884
super_learner_ncl_55 0.079 0.457 0.313 0.849
super_learner_dropout_15 0.101 0.457 0.32 0.878

Table 4.8: Best-performing proposed Dropout, NCL, and Dropout+NCL empowered NNE algo-
rithms’ error numerical results - 2.

Figure 4.14: Best-performing proposed hybrid NNE algorithms’ results.

Fig. 4.14 shows the results of combining all compatible previous level’s best-performing NNE

algorithms and the most promising approaches. Results show that Snapshot (stream models) ben-

efit the most from employing Dropout since it acts from the beginning of their training while NCL

has too few epochs, close to the training run’s end, to promote mutual model diversity and lower

predictions overall correlation. On the other hand, independent models benefit the most from NCL

because it promotes mutual model diversity from the ground up.

Looking at individual methods, Dropout and NCL had similar performance outcomes as both

finished last. The latter decreased bias the most while the former reduced variance and covariance
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slightly more. Snapshot performs the best by reducing covariance ponderously and squashing bias

and variance, thus acting as a bias/variance reduction algorithm. Blending, which ended second

performance-wise, reduced covariance, but more importantly, smashed bias at the expense of a

more pronounced increase in variance hence categorized as a bias reduction algorithm. Super

Learner acts as the middle ground between Snapshot and Blending by reducing bias more than the

former but less than the latter and variance otherwise. Its covariance reduction was similar to that

of Blending.

Examining the framework’s combination mechanism, Dropout adds to each algorithm’s esti-

mators, Dropout layers with a specific p value. NCL trains the algorithm’s estimators according to

the initially proposed method, and Snapshot generates many stream estimators. Optionally, once

harvested, the stream estimators can be trained with an NCL policy to promote diversity regarding

the original model. NCL can also be used without Snapshot. In this case, the base learners are

entirely independent. Dropout, Snapshot, and NCL (combined) algorithms’ estimators may be

mutually integrated with the Simple Average approach or merged with a linear Meta-model algo-

rithm. If Blending is used, the estimators make holdout set predictions that fit the Meta-model.

On the other hand, if Super Learner is adopted, the estimators make out-of-fold predictions amid

K-fold Cross-validation that fit the Meta-model.

Turning attention to the combined algorithms results, snapshot_ncl_dropout was the best

across the board, performance-wise, since (1) Snapshot already possessed the best individual

model performance and (2) NCL and Dropout further helped in lowering every error component.

Regarding Blending, merging it with Dropout or NCL reduces variance and covariance but raises

bias, especially with NCL.

On the other hand, merging Blending with Snapshot lowers bias and covariance but increases

variance. So, the various Blending combination possibilities typically exhibit the referred com-

bined characteristics that contribute to blending_snapshot_ncl_dropout having the best perfor-

mance in the subset of Blending techniques.

Combining Super Learner with Dropout lowers bias and variance, and combining it with NCL

lowers both components even further, in particular, variance at the expense of slightly raising co-

variance. Merging Super Learner with Snapshot strongly reduced covariance but increased bias

and, especially, variance. Consequentially, the multiple Super Learner combination possibilities

typically exhibit the referred combined characteristics that contribute to super_learner_snapshot_ncl_dropout

having the best performance in the subset of Super Learner techniques.

Regarding the specific numerical results (Table 4.9), snapshot_ncl_dropout compared to snapshot

reduced error by 10.1%, blending_snapshot_ncl_dropout compared to blending reduced error by

15.6%, and super_learner_snapshot_ncl_dropout compared to super_learner reduced error by

14.6%.
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Algorithm Bias2 Variance Covariance Error
single_model 0.87 0.941 0.0 1.812
dropout 0.83 0.077 0.841 1.748
ncl 0.814 0.085 0.863 1.762
ncl_dropout 0.837 0.081 0.843 1.761
snapshot 0.101 0.025 0.549 0.674
snapshot_dropout 0.093 0.017 0.511 0.621
snapshot_ncl 0.1 0.017 0.514 0.631
snapshot_ncl_dropout 0.093 0.012 0.501 0.606
blending 0.016 0.208 0.622 0.846
blending_dropout 0.021 0.184 0.579 0.784
blending_ncl 0.03 0.172 0.533 0.735
blending_snapshot 0.006 0.215 0.52 0.741
blending_ncl_dropout 0.02 0.18 0.592 0.792
blending_snapshot_dropout 0.032 0.241 0.55 0.824
blending_snapshot_ncl 0.012 0.207 0.502 0.72
blending_snapshot_ncl_dropout 0.007 0.196 0.511 0.714
super_learner 0.098 0.133 0.608 0.839
super_learner_dropout 0.084 0.127 0.6 0.811
super_learner_ncl 0.082 0.107 0.624 0.813
super_learner_snapshot 0.11 0.201 0.535 0.845
super_learner_ncl_dropout 0.087 0.117 0.587 0.791
super_learner_snapshot_dropout 0.122 0.185 0.552 0.859
super_learner_snapshot_ncl 0.035 0.182 0.509 0.726
super_learner_snapshot_ncl_dropout 0.034 0.173 0.51 0.716

Table 4.9: Best-performing proposed hybrid NNE algorithms’ numerical results.

Analyzing the individual dataset error results (Fig. 4.15 and 4.16), it is clear that most algo-

rithms consistently perform across the datasets, either good or bad.

It is important to note that there was a case in which almost every proposed algorithm per-

formed worse than the baselines but since this was an isolated case, it is considered an outlier.
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Figure 4.15: Best-performing proposed Dropout, NCL, Dropout+NCL empowered NNE algo-
rithms’ heatmap error results.

Figure 4.16: Best-performing proposed hybrid NNE algorithms’ heatmap error results.
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On the whole, having explored and discussed the merits of combining the previous layer’s best-

performing NNE algorithms (Snapshot, Blending, and Super Learner) and the most promising

approaches (NCL and Dropout), it is possible to state that adding to the existing ensemble strate-

gies:

• NCL/Dropout, both individually and in conjunction, improves results;

• NCL+Dropout works best most of the time, and when it doesn’t, NCL alone has a slight

edge, except for Snapshot ensembles where Dropout alone works best;

• NCL gives the best bias results, except in Snapshot and Blending, where NCL+Dropout

works best;

• Dropout gives the best variance and covariance results, except in Meta-model strategies,

where NCL works best at the expense of, occasionally, lightly increasing covariance.

Also:

• Snapshot reduces bias and especially variance and covariance, while Blending reduces bias

more pronouncedly at the expense of increased variance. Super Learner stays balanced, as

each error component reduction stays between that of Snapshot and Blending;

• Snapshot displays the best results with Dropout since it acts from the beginning of their

training while NCL has too few epochs, close to the training run’s end, to promote mutual

model diversity. Independent models benefit the most from NCL because it promotes mutual

model diversity from the ground up;

• snapshot_ncl_dropout is the best algorithm since (1) Snapshot already possessed the best

individual model performance, and (2) NCL+Dropout further helped lower complemen-

tary error components. blending_snapshot_ncl_dropout was the best blending subset algo-

rithm, and super_learner_snapshot_ncl_dropout the best Super Learner subset algorithm;

• every Snapshot combination outperformed all other Blending and Super Learner proposed

architectures. Nonetheless, it does not make Snapshot the absolute winner in all circum-

stances. Since Blending and Super Learner offer a second space generalization, improving

their current Meta-model or adding subsequent generalization levels is a possible avenue

into improving results. Furthermore, given that the results difference between Snapshot

and Blending/Super Learner best-performing combination algorithms are not significant, it

is reasonable to assume that subsequent improvements to these Meta-model variants would

likely outperform Snapshot. A counterargument is to harvest Snapshot’s models at detached

epochs and improve the existing Snapshot’s varying LR policy.

Bottom line, experimental results confirm performance increases from combining multiple

established algorithms as the developed ensembles showed better performance than the original

constituent counterparts. Merging the best-performing methods resulted in a lower global error

value, as each technique was complementary in lowering one or more ensemble error components.
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4.3 Statistical Validation

Friedman test is employed to ascertain if repeated and related measurements consistently fol-

low the same distribution [180]. Specifically, explore the statistically significant difference be-

tween the means of more than two groups with the same subject observation to ensure random

event independent observations.

Its null hypothesis is that the multiple paired samples follow the same distribution. This as-

sumption’s rejection means that at least one paired sample follows a different distribution.

Looking at Table 4.10, particularly the p value, every experiment rejected the null hypothesis

by surpassing the defined type I error of 0.05. So, it proved that the observation values (ensemble

architecture’s errors) from multiple runs (different datasets) have different means, follow differ-

ent distributions, and, inherently, are statically valid. In other words, there is enough proof to

conclude that different types of ensemble algorithms lead to statistically significant differences in

their global error values.

Experience stat p
Fig. 4.1 206.254 8.845e-28
Fig. 4.3 112.976 5.798e-07
Fig. 4.7 1028.134 2.369-167
Fig. 4.9 144.651 2.773e-23
Fig. 4.14 215.686 3.001e-33

Table 4.10: Friedman tests

Given that the experiments’ p-values are statistically significant, the Nemenyi posthoc test,

which returns the p-values for each pairwise mean comparison, can be executed to determine the

specific groups with different means [181]. Fig. 4.17, 4.18, 4.19, 4.20, and 4.21 clearly show that

many algorithms have a high pairwise p value denoting they have statistically similar means. The

reason is that most algorithms’ global error values are clustered around two groups, high and low

values, without many in between. Naturally, algorithms inside those clusters will have a high p

value between one another, while comparing algorithms that belong to different clusters show a

low mutual p value. Note that high and low values mean better performing and worse performing

algorithms, respectively.

Note that the right y-axis of heatmap graphs refers to the mean similarity percentage between

a given line’s and column’s algorithm. 0 means they are statistically non-similar, and 1.0 means

they are statistically equal.
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Figure 4.17: Individual ensemble Nemenyi test matrix.

Figure 4.18: Different configurations of Pasting, Random Subspace and Random Patches algo-
rithms’ Nemenyi test matrix.
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Figure 4.19: Proposed Dropout, NCL, and Dropout+NCL empowered NNE Nemenyi algorithms’
test matrix.

Figure 4.20: Best-performing proposed Dropout, NCL, and Dropout+NCL empowered NNE al-
gorithms’ Nemenyi test matrix.
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Figure 4.21: Best-performing proposed hybrid NNE algorithms’ Nemenyi test matrix.
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4.4 Time analysis

This section provides a time analysis of the pro-
posed models. Note that a performance increase
is worth considering the application domain as-
sociated costs. For example, spending another
hour training to forecast tomorrow’s weather
better is quite useful. On the other hand, spend-
ing the same hour training a predictive model on
what a stock is worth in 15 minutes is entirely
useless.
Looking at Tables 4.11 and 4.12, it is clear that
ensembles increase the time spent compared to
a single model. In addition to this, one can de-
rive other conclusions. Super Learner, NCL,
AdaBoost_nn, and Stacking_nn take the longest
time to execute, in this precise order. In fact, the
first takes almost twice as much as the last. Be-
sides, NCL tends to take, on average, three to
five times longer to train compared to the same
algorithm without the NCL segment.
Given that performance increases are only
worthwhile if the respective time increase is
not prohibitory, combining algorithms that in-
clude Super Learner, NCL, AdaBoost_nn, or
Stacking_nn may be considered not advanta-
geous comparing to other similar performing al-
gorithms which execute faster (Tables 4.4, 4.7,
4.8 4.9, 4.11, and 4.12). However, this is just
a rough guide as only specific dataset perfor-
mance, time results, and personal judgment give
the final decision.

name time (sec)
single_model_neural_network 0.966
rand_split 0.2 4.799
cross_training 4.811
rand_subspace .5 5.079
rand_subspace .75 5.079
pasting .5 4.585
pasting .75 5.101
pasting .5 + rand_subspace .5 4.994
pasting .5 + rand_subspace .75 4.555

Table 4.11: Comparison of established and pro-
posed algorithms time spent - 1.

name time (sec)
pasting .75 + rand_subspace .5 4.830
pasting .75 + rand_subspace .75 4.807
horizontal_avg 2.301
polyak_avg 3.461
snapshot 1.720
snapshot_dropout 1.781
snapshot_ncl 2.015
snapshot_ncl_dropout 1.975
average 6.126
dropout_20 4.224
ncl 13.227
ncl_dropout 13.176
bagging 5.036
adaboost_nn_scratch 20.391
adaboost_nn 18.852
blending 2.805
blending_dropout 2.868
blending_ncl 12.918
blending_snapshot 2.315
blending_ncl_dropout 13.222
blending_snapshot_dropout 2.007
blending_snapshot_ncl 2.132
blending_snapshot_ncl_dropout 2.306
super_learner 10.810
super_learner_dropout 9.956
super_learner_ncl 77.420
super_learner_snapshot 7.544
super_learner_ncl_dropout 78.247
super_learner_snapshot_dropout 7.401
super_learner_snapshot_ncl 96.507
super_learner_snapshot_ncl_dropout 95.435
stacking_nn 10.187
single_model_decision_tree 0.104
adaboost_default 0.076
gradient_boosting 0.043
gradient_boosting_hist 0.137
lgbm 2.626
catboost 0.174
xgboost 1.482
rand_forest 0.084
extra_trees 0.07

Table 4.12: Comparison of established and proposed
algorithms time spent - 2.
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This thesis treated a multitude of topics and their respective intricacies. This chapter revisits

the initial formulated hypothesis, presents the final drawn results’ conclusions, enumerates the

main contributions, and elaborates on future work ideas.

Initially, the primary identified problem was a lack of systematic researches, formulated hy-

potheses, and theorized proposals about NNEs. Concretely, how to best combine the most com-

plementary existing strategies (paired strengths that most reduce each ensemble error component

in conjunction) by decomposing the ensemble error in bias, variance, and covariance to harvest

each strategies’ best qualities.

So, the fundamental idea was to prove the advantage of combining already established NNE

strategies in Regression problems that improve the performances of its constituent models and the

respective original architectures they are based on.

5.1 Hypothesis Revisited

Looking back at the original formulated hypothesis:

Is it possible to improve the existing state-of-the-art

Neural Network Ensemble approaches by combining them?

75
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Knowing that Neural Network Ensembles allow for multiple

configurations and have different characteristics,

which are the most appropriate?

Regarding the first hypothesis, comprehensive experimental results with numerous datasets con-

firmed the theoretical assumptions by revealing a clear and meaningful performance increase from

combining various algorithms, as each technique method is complementary in lowering the vari-

ous ensemble error components. Furthermore, from the multitude of proposed new NNE hybrid

strategies, the best-performing ones decreased the global error and increased performance, on av-

erage, from 12% to 17% versus their original constituent algorithms.

Regarding the second hypothesis, having explored and discussed the merits of the current

NNE approaches, we learned that combining Snapshot, NCL, and Dropout offers the most notable

overall error reduction, hence giving the best results. Additionally, adding those three algorithms

to other ensemble strategies improves their performance the most. However, if one searches for

specific error component reduction on specific ensemble architectures, other combinations may

be advisable to avoid some technique pitfalls. e.g., NCL reduces bias more pronouncedly while

Dropout reduces variance and covariance more.

Therefore, and given that the experiments were considered statically valid and trustworthy

according to Friedman and Nemenyi’s test results, it is proven that combining different ensemble

approaches is a plausible and consistent way of improving predictive capability.

5.2 Contributions

All told, the main contributions are:

Preliminary study
Following this contextualization, state-of-the-art generic Ensemble and NNE techniques

and trends were thoroughly explored, as well as their limitations, summarized in a Pre-

liminary Study which stands as a structured survey on its own.

Complete Ensemble Error Decomposition
Performs an ensemble prediction error decomposition in bias, variance, and covariance to

find the most promising ways of combining the most complementary existing strategies.

Innovative Algorithms
Multiple new and innovative hybrid ensemble algorithms were theorized, modulated, ad-

justed, and implemented for this thesis-specific context. More concretely, and excluding

varying training data techniques, more than 60 different algorithm combinations were

developed.

Hybrid Ensemble Combining Framework
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Automatically constructs new NN Regression Ensembles that improve the performances

of its constituent models and the respective original architectures they are based on. It

also performs the complete ensemble error decomposition and a time analysis.

5.3 Social Impact

Regarding this work’s broader impact, the advances presented in this thesis are not socially

good or bad inherently. The proposed new methods are complementary to the currently existing

ones. Likewise, their social impact is dependant on their use rather than on themselves.

5.4 Future Work

This thesis’s results are exciting but constitute only a first step into understanding NNE al-

gorithms and how to combine them best. Some topics can be considered for future work as we

believe they have plenty of evolving potential and are sensible/possible to be explored given all

that was learned, in particular:

Boosting NNs

Pursue research efforts into converting Decision-Tree specific Ensemble architectures into

NNEs. Namely, this avenue refers to Boosting strategies since Random Forest (and its

variants) (1) already has its NN compatible characteristics harvested, and (2) its whole

training strategy is designed for Decision Trees. On the other hand, Boosting gave ex-

ceptional results and its training strategy is entirely compatible with NNs, as seen with

AdaBoost. However, other Boosting implementations such as Gradient Boosting, Light-

GBM, CatBoost, and XGBoost have not yet been integrated with NNs. Altering these

libraries from the ground up would create hybrid NN Boosting Ensemble algorithms with

improved performance, e.g. XGBoost_Snapshot_NCL_Dropout.

Parallelize NCL

Despite NCL having better results than the Simple Average Ensemble, it took longer to

execute. A parallel strategy could be employed to scale up the algorithm, splitting it

into several threads and changing the NN’s training strategy. Although it could improve

overall performance, it would undoubtedly improve significantly the time consumed.

Extending to other estimators

All the work presented in this thesis revolved around NNs. However, all the theory and ra-

tionale holds for other types of ensemble estimators, e.g., Decision Trees or KNN. There-

fore extending this work to other base models, namely unstable ones, is a promising av-

enue for developing other research endeavors.

Classification extension
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Despite the developed framework being devised for regression modeling problems, it may

also be used as a proxy to generate ensembles for classification problems. This would re-

quire a few alterations specifically in the error decomposition formula, dataset treatment,

and NN specifications.
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Appendix A

Neural Network

(Artificial) Neural Networks ((A)NN) belong to the soft computing techniques field and try

to represent computing intelligence by seeking to emulate the human brain’s mechanisms [8].

They are also referred to as universal approximants since they follow the universal approx-

imation theorem [182]. Consequentially, they are highly flexible non-linear methods capable of

learning complex relationships between variables and mapping a near-infinite number of functions

(given enough resources and time). Independently of the functions’ complexity, a finite NN can

approximate any boundary, theoretically, with any required accuracy. So, they can be considered

a ME.

Also, NNs are not explicitly programmed to perform a specific task (e.g., rule-based) [1].

Instead of having a fixed architecture, the NN learns how to perform a task independently by

adjusting its parameters [8].

Owning to numerous recent technological advantages such as distributed information storage,

massive parallel processing, self-learning, self-adapted abilities, and several others, NNs have

been widely used throughout.

A.1 Machine Representation

In computer science, the Neuron, also known as Node, gets its input values from either the

input layer or any previous hidden layers’ neurons. It then processes them and, finally, generates

an output signal to the output layer or any following hidden layers’ neurons (Fig. A.1) [8].

The external inputs are analogous to the human body’s sensors (eyes, nose, ears, or tongue).

In a NN, they are independent variables X1, X2, ..., Xi. Each set of them corresponds to a single

dataset row.
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Figure A.1: Neural Network 37

Synapses represent the interconnections between neurons in different layers [8]. Each connec-

tion is assigned a set of weights representing the NN’s learning. These are adjusted during the

Networks’ training and are crucial in determining which values get passed along.

Output Value is the outcome of a neuron [8]. More specifically, the predicted value according

to a particular set of input of features. This value can be qualitative (e.g., price of a house) or

categorical.

A.1.1 Perceptron

First proposed in 1957 [183], it is the most straightforward type of NN able to learn how to

perform a task. It consists of a single NN input layer with X1, X2, ..., Xi as entry points, a single

hidden layer with one neuron, and, lastly, an output layer that predicts a final result (Fig. A.2).

Figure A.2: Perceptron 38

A.1.2 Hidden Layer

It is utilized to add further complexity and building flexibility, thus, predictive power to the

NNs [8].

In practice, it allows the model to transform the input features into a different set of features

and present an apprehended representation of low input data resolution [1]. In other words, hidden
37https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning, last

accessed on 2021-01-21
38https://miro.medium.com/max/810/1*7pwA1DjBw6JDkwZQecUNiw.png, last accessed on 2021-01-

21

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning
https://miro.medium.com/max/810/1*7pwA1DjBw6JDkwZQecUNiw.png
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layers’ neurons are used to pick up hidden feature associations at multiple abstraction levels, which

may prove helpful in making better final predictions.

Additionally, they can output their internal representations directly [1].

A.2 Neuron mechanics

The neuron takes the weighted sum of all inputs [4]. By noting i the ith Network’s layer and j

the jth hidden layer unit, each Node’s mathematical operation is represented by Eqn. A.1.

z[i j] = φ(∑K
k=1 w[i j]

k x[i j]
k +b[i j]) (A.1)

where z is the neuron’s output, K is the number of input synapses, w is the

synapse’s weight, x is the synapse’s input value, b is the neuron’s bias

coefficient, and φ is the activation function.

A.2.1 Activation function

It is a mathematical operation used by each NN’s neuron to produce a final decision based on

the z value [8]. There are several different kinds, but each maps the weighted sum to an output

value. The final decision is then passed to the next layer’s Nodes (Table A.1).

Threshold Sigmoid Tanh ReLU

Figure A.3: Thresh-
old activation function
(adapted from 39).

Figure A.4: Sigmoid
activation function
40

Figure A.5: Tanh ac-
tivation function 40

Figure A.6: ReLU ac-
tivation function 40

f (z) = 0 i f x < 0,and
f (z) = 1 i f x≥ 0

f (z) = 0.5 i f z = 0 f (z) = 1−e−2z

1+e−2z
f (z) = max(0,z)

Table A.1: Comparison of activation functions.

39https://www.andreaperlato.com/aipost/the-activation-function/, last accessed on 2021-01-
21

40https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning, last
accessed on 2021-01-21

https://www.andreaperlato.com/aipost/the-activation-function/
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning


100 Neural Network

Tanh is also known as Hyperbolic Tangent, and ReLU is also known as Rectified Linear Unit.

A standard workflow uses the rectifier function for the hidden layers [8].

A.2.2 Cost function

Commonly used to assess model performance, it represents a numerical judgment of how

incorrect the NN predictions are or to what extent the model outputs correctly predict the actual

outputs [4]. If the cost function is reduced, it means the NN’s mistakes are also diminishing and,

in turn, making more accurate predictions.

In practice, the NN’s predicted output y is compared to the target output y. Their differences

are quantified, and the error is computed.

A.3 Propagation

It is divided between Forward and Backpropagation.

A.3.1 Forward propagation

Data is entered into the NN’s input layer, passed through the hidden layers (activate neurons

based on their weights and disseminate their activations), and, finally, the output layer produces a

prediction f(x) or y (Fig. A.7, section A.2).

Figure A.7: Forward Propagation Model (adapted from 41).

A.3.2 Backpropagation

Also known as Backward Propagation, the cost function’s loss is minimized by passing it

back through the NN, starting from the output and ending in the input layer (Fig. A.8) [4].

Figure A.8: Backpropagation Model (adapted from 42).

41https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-a
nd-tricks, last accessed on 2021-01-21

42https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-a
nd-tricks, last accessed on 2021-01-21

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
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A.3.2.1 Gradient Descent

Also known as Batch Gradient Descent or GD, it is a global search algorithm (brute force

approach) that discovers the best set of weights [8]. However, it does not harness gradient calcula-

tion’s computational advantages, thus requiring many evaluation functions compared to gradient-

based approaches [8].

GD computes the loss function’s gradient concerning the weights, checks if the slope is either

positive or negative (down or uphill), and, using the chain rule, optimally and concurrently updates

the weights in the opposite direction. In other words, the weights are renewed according to their

error responsibility and in the course that offers the biggest loss error (or cost function) decrease

considering the targets and predictions (Fig. A.9). However, it involves trying out multiple input

feature combinations, recording their costs, and identifying the minimal cost combination.

The derivative concerning the weight w is calculated by employing the chain rule (Eqn. A.2).

∂L(z,y)
∂w = ∂L(z,y)

∂a × ∂a
∂ z × ∂ z

∂w (A.2)

where L is the loss, α is the LR, z is the neuron’s weighted inputs,

y is the neuron’s output, and w is the synapse’s weight.

Inherently, the GD’s update rule (concerning the cost function) follows the Eqn. A.3.

w←− w−α× ∂L(z,y)
∂w (A.3)

The LR determines by how much the weights are updated.

Figure A.9: Gradient Descent 43

43https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning,
last accessed on 2021-01-21

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-supervised-learning
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This approach may be viable when working with convex cost functions, relatively smooth

error manifolds, perceptrons with a handful of features, and datasets unaffected by erroneous data

or outliers. In this case, the algorithm moves somewhat directly towards an optimum solution,

either local or global [8].

However, updating weights during training is customarily not according to the entire training

data at once because of computation complexities and noise issues. Also, NNs have an enormous

number of local minima but only a subset of which will be global [101]. Since GD is determin-

istic, the cost function’s optimizer will tend to discover local minimum rather than global. This

means the algorithm’s computed weights will not accurately represent the optimal values for max-

imum prediction accuracy as the cost could be lower. Also, GD has to go through all the training

instances every time an update is performed. As the number of instances increases, it becomes

too inefficient and time-consuming. Being an NP-complete problem [184], GD is not for practical

NNs.

Fortunately, there are more efficient ways to compute optimal weight values for a NN to min-

imize its cost, namely, SGD.

A.3.2.2 Stochastic Gradient Descent

Also known as SGD, it feeds individual dataset rows into the Network, and their weights are

updated after each iteration on an observation basis [8]. Hence, SGD assists in evading the obstacle

of converging to local rather than global minima.

In practical terms, it does not require the function to be convex. This is because the SGD

algorithm has much higher fluctuations stirred up. After all, it analyses one row at a time.

It is also faster since it does not have to memory load all data before computing weights.

A.3.2.3 Mini-batch gradient descent

Acts as a middle point between GD and SGD [8]. The updating step is performed on mini-

batches. In practice, the weights are computed using batches of rows instead of all dataset rows.

The NN’s weights are updated as an aggregate after processing all batch observations.

A.4 NN Workflow

After initializing the NN’s weights, Fig. A.10’s steps are followed sequentially, from left to

right.
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Figure A.10: NN workflow (adapted from 44).

Once the entire training data set has passed through the Network or the loss error stops reducing

(early stopping), an epoch (from 2. to 6.) is complete.

A.5 Tuning

A.5.1 Epochs

It is the number of cycles in the NN’s training process [56]. The epoch is repeated as many

times as necessary to achieve a sufficiently low-cost function output. After the last epoch, the

training is over.

A.5.2 Input variables range

Input variables need to be standardized or normalized before they are fed to the NN [1].

Table A.2 compares these two methods.

Standardization Normalization
x−µB

σB

where x is the input observation, µB is
the batch’s mean, and σB is the batch’s
standard deviation

x−min(x)
max(x)−min(x)

where x is the input observation, min() is
the minimum function, and max() is the
maximum function

Table A.2: Comparison of standardization and normalization.

Both techniques ensure that all input variables occupy roughly the same range of values [1].

In turn, an outlier for one feature does not skew the results of the NN.

Batch Normalization is a particular case of Normalization. The authors refer to it as “internal

covariate shift”, which changes the inputs’ distribution during training by scaling the previous

layer’s outputs (Eqn. A.4) [185]. Customarily done before a non-linear layer or after a fully

connected layer, it strives to correct a batch by providing more significant LRs, diminishing an

influential dependence on the initialization, and accelerating the Network’s training process.

44https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-a
nd-tricks, last accessed on 2021-01-21

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
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x′i = γ
xi−µB√

σ2
B+ε

+β (A.4)

where x′i is the normalized input observation, xi is the input observation,

γ and β are parameters to be learned, µB is the batch’s mean, σ2
B is the

batch’s variance, and ε is a numerical stability constant.

A.5.3 Learning Rate

Also known as α or LR, it means at which velocity are the weights updated [8].

Figure A.11: Comparison of multiple learning rate values (adapted from 45).

Choosing the initial LR can be challenging and require careful experimentation (Fig. A.11).

An LR schedule, an update mechanism to decay it over time, is also difficult to set in advance as

it does not adapt to data dynamics [56]. In fact, the same LR is applied to all parameters, which

might be learning at different rates, making it very hard to get out of a saddle point [56].

It may either be static or adaptively adjusted. Adaptive LR allows the LR to fluctuate while

training a model, thus, “fine-tuning” the model during training [8]. This may diminish its elapsed

time and enhance the optimal solution. Despite Adam optimizer being commonly usually used,

others may also be serviceable (Tables A.3 and A.4).

Method Explanation Update of w Update of b

Momentum
- 2 parameters to tune
- Improvement on SGD
- Dampens oscillations

w−α vdw b−αvdb

Table A.3: Comparison of adaptive learning rate methods - 1.

45https://medium.com/analytics-vidhya/cyclical-learning-rates-a922a60e8c04, last
accessed on 2021-01-21

https://medium.com/analytics-vidhya/cyclical-learning-rates-a922a60e8c04
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RMSprop
- Root Mean Square propagation
- Speeds up the learning algorithm

by controlling oscillations
w−α

dw√
sdw

b−α
db√
sdb

Adam
- Adaptive Moment estimation
- 4 parameters to tune
- Most popular method

w−α
vdw√
sdw+ε

b−α
vdb√
sdb+ε

Table A.4: Comparison of adaptive learning rate methods - 2.

Remark: other methods include SGD, Adagrad, and Adadelta [123].

A.5.4 Regularization

It is a technique that usually causes slight alterations in the learning algorithm that leads to

different local minima promoting diversity and reducing overfitting [4]. Instead of discovering the

best model parameters for a particular circumstance, the “best” model is a larger model appropri-

ately regularized. In turn, the resulting model is simpler, more robust against training data noise,

has more stable predictions, therefore, exhibiting better generalization capabilities [56].

It is an “ill-posed [problem] if small changes in [its] information cause large changes in the

solution. This instability . . . makes solutions unreliable because small measurement errors or

uncertainties in parameters may be greatly magnified and lead to wildly different responses. . . .

The idea behind regularization is to use supplementary information to restate an ill-posed problem

in a stable form” [186].

From the field of ML, the concept of regularization consists of penalizing coefficients [4]. In

DL, it actually penalizes the Nodes’ weight matrices (among others) [8].

The NN has a broad spectrum of regularization parameters. A proper guideline is to design an

under-constrained NN structure and apply regularization to lessen the overfitting likelihood.

A.5.4.1 Data Augmentation

Increases the data amount by adding new synthetic data based on existing data or lightly mu-

tated replicas of existing data [8]. There is a close relationship with oversampling/undersampling

in data analysis [4].

A.5.4.2 Limit the Number of Units

The amount of neuron units in a NN’s layer M is an adjustable parameter to get the best

predictive performance. A possible avenue is to limit M hence giving rise to a simpler model.

However, due to local minima, the generalization error is not a mere function of M. Accord-

ingly, there is the need to control it to avoid overfitting.
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A.5.4.3 Dropout

It is one of the most exciting types of regularization techniques. Since its release in 2014 [177],

it has risen to become one of the most commonly adopted DL (section A.7) methods to introduce

randomness.

As a NN learns, neighboring neurons start to rely on each other’s contexts somewhat, leading

to overfitting obstacles. This is referred to as co-adaptation [8]. Dropout prevents it by making

a neuron’s particular unit presence unreliable by randomly dropping it with probability p > 0. If

a Node is dropped, there are no incoming/outgoing weights to/from this Node (Fig. A.12) [177].

This implies that their contribution to neurons’ downstream activation is temporally dismissed, and

any neuron’s weight updates are not applied, resulting in diverse internal independent learned rep-

resentations. In turn, there is a reduction in specific weight dependency and better generalization

capacity [8].

Figure A.12: Comparison of regular NN and Dropout NN [177].

When training the Network, Dropout forces perturbations to circumvent excessively relying

on particular feature sets [8] by implementing two tricks:

• it shares parameters across all Networks;

• for each training instance, it samples a distinct NN.

So each iteration has a diverse set of Nodes resulting in a diverse set of outputs [56].

It is relevant to note that some Nodes may be switched off more than others, but since this is

executed repeatedly, on average, each Node will get equal treatment [56]. Also, note that Dropout

is only performed during training time. During test time, every Node is always present (Fig. A.13).

Figure A.13: Dropout: training vs testing (adapted from [177]).
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In addition to reducing overfitting, it also introduces sparsity in the output vectors.

A.5.4.4 Weight Regularization

It is a generic approach that tries to limit the model’s capacity and encourages it to be less

complicated (Eqn. A.5). Assuming that smaller weight matrices’ values lead to simpler models,

the loss function is updated with a regularization term λ . This value penalizes the model according

to the weights’ magnitude, making sure they are not extremely large [56].

wt+1 = wt−α∇wJ−λwt (A.5)

where wt is the weight at step t +1, wt is the weight at step t,

α is the LR, ∇wJ is the gradient with respect to w,

and λ is the regularization term.

Weight regularization may be applied to a previously trained Network without any regulariza-

tion. Table A.5 sums up these methods.

Lasso / L1 Ridge / L2 / Tikhonov Elastic Net

- Expects the model to use
some inputs more than
others

- Good for variable selection
and model compression

- Penalize weights absolute
value

- Shrinks coefficients to 0

- Model encouraged to use
all inputs without leaning
too heavily on any specific
one

- Weight decaying
- Makes coefficients smaller

- Lasso and Ridge combination
- Trade-off between variable

selection and small
coefficients

- Beneficial if the amount of
predictors is greater than the
amount of observations

Figure A.14: Lasso 46 Figure A.15: Ridge 46 Figure A.16: Elastic Net 46

...+λ ||θ ||1
λ ∈ IR

...+λ ||θ ||22
λ ∈ IR

...+λ [(1−α)||θ ||1 +α||θ ||22]
λ ∈ IR, α ∈ [0,1]

Table A.5: Comparison of weight regularization methods.
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L1 and L2 are considered a type of “explicit regularization” [187].

A.5.4.5 Bias Regularization

From an intuition standpoint, it is similar to weight regularization. However, it tries to reduce

the model’s bias [188]. It is commonly used if there is a requirement for the output function to

pass through or close to the origin [188].

A.5.4.6 Activity Regularization

Also known as Representation Regularization or Sparse Feature Learning, it is a generic ap-

proach similar to weight regularization because both add penalties to the NN. However, activity

regularization “places a penalty on the activations of the units in a Neural Network [output layer],

encouraging [them] to be small and sparse” [8]. This activation penalty is a real value employed

per layer or only at the output layer.

Given that the algorithm penalizes the output layer’s results, it tries to reduce the model’s

weights and bias [188]. Table A.6 examines multiple approaches.

L1 vector norm L2 vector norm

- Sum of the absolute activation values
- Encourages sparsity (some observation
values may become zero)

- Sum of the squared activation values
- Encourages small activations values

Table A.6: Comparison of activity regularization methods.

Commonly used when there is a requirement for the output to be smaller (or closer to 0) [188].

A.5.4.7 Weight Constraint Regularization

Weight regularization and activity regularization add penalties that encourage the NN to have

smaller weights. Oppositely, weight constraint is a generic method that forces NNs to have smaller

weights. In practice, it checks the weights’ magnitudes and scales them to a value below a prede-

fined threshold.

Also, weight constraint allows for more aggressive Network configurations, such as very high

LRs, which allow the Network to produce more comprehensive weight updates [189].

Some constraint examples include:

• force the vector norm to be 1 (e.g., the unit norm);

• limit the vector norm’s maximum size (e.g., the maximum norm);

• limit the vector norm’s minimum and maximum size (e.g., the min_max norm).

46https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tip
s-and-tricks, last accessed on 2021-01-21

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks
https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks
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Note that Maximum Norm, also known as MaxNorm or Max-Norm, is less aggressive than

other norms such as the unit norm. “It typically improves the performance of stochastic gradient

descent training of Deep Neural Nets” [177].

A common example is to use weight constraint regularization with Dropout regularization

[177].

A.5.4.8 Early Stopping

A major difficulty regarding NN training is how long to train them. Too little means the model

will underfit the training and the test sets [4]. On the other hand, too much training means the

model will overfit the training dataset and have reduced test set performance [4]. The solution is

to halt the training method once a plateau is reached from a validation loss standpoint (sufficiently

small reduction) or starts to increase over several epochs on a validation set to improve the gener-

alization capability [8]. In this case, before the final epoch reaches, the training ends since there is

no point in further training the model (Fig. A.17).

It may be considered a type of “implicit regularization” [187], much like using a smaller

Network with less capacity.

Figure A.17: Early Stopping 47

A.6 Disadvantages

Despite the NN’s benefits, there are also drawbacks such as:

• susceptible to their original conditions, such as random initial weights and training data’s

statistical noise;

• guaranteeing diverse (even random) weights does not automatically guarantee higher di-

versity or noticeable differences due to the Network’s optimization problem difficulty, the

stochastic learning algorithm characteristic, and the sheer amount of different input-output

mapping possibilities [190] [191] [115] [7];

47https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-a
nd-tricks, last accessed on 2021-01-21

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
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• no direct way to find the best architecture;

• learn via a stochastic learning algorithm, a tough optimization method that may miss con-

vergence, in which case, it does not find the best-performing set of weights;

• in the case of getting stuck in a local minima, there is no optimal convergence at all;

• high computational cost in the training phase, thus, time-consuming and slow convergence

speed;

• favor requiring vast training data amounts to make reasonable predictions;

• low flexibility for complex problem-solving means that its computational cost grows ever

larger as the problem’s size increases, hindering proper scaling and further development;

• “black box” distribution of knowledge is essentially manifested in an abstract digital man-

ner, causing difficulty while understanding the predictions;

• perhaps more important, generally have low bias and high variance, hence, unstable.

A.7 Deep Learning

Represents computational models comprised of multiple hidden layers (section A.1.2) [56].

This is a more compact version of a Network with the same number of units but being shallow.

In fact, every single Node may be visualized as an individual model. So, Deep Neural Networks

(DNN), in addition to “stacking” predictions, also “stack” data feature representations [8].

In practice, stacking layers allows the model to wreak the benefits of multiple hidden layers

combined. Even though this is not theoretically proved, as there is neither a good theory for why

extensive Networks work nor what is going on inside, it is “somewhat” empirically demonstrated

[56].

However, “first, they are hard to interpret, and second, they suffer from overfitting” since

they may overcomplicate a relatively simple problem [8]. Also, as mentioned in section A.6, the

NN’s training phase is, typically, a costly procedure [7]. This is exacerbated in DL because a vast

amount of weights correspond to different layers needing tuning [192].



Appendix B

Decision Tree

It is a fast algorithm, present in ensemble methods as base learners, which employs a greedy lo-

cal optimization approach [193] and uses a sequence of interrogations to make predictions. Several

factors must be considered, such as what features to make decisions upon and the decision-making

threshold.

High entropy implies low homogeneity and low entropy otherwise. The main objective is to

minimize entropy. So, the splitting stops when parent_entropy - child_entropy < threshold, which

indicates homogeneity [1].

Trees may be categorized based on their depth:

• Pruned Tree, also known as Shallow Tree or General Tree, is a Decision Tree with few

depths [1]. So, it manifests a high bias and low variance;

– Decision Stump is a single split, one-level Pruned Tree variation with an aggressive

sub-sampling policy [1]. It is commonly associated with being a weak learner.

• Unpruned Decision Tree, also known as Deep Tree or Specific Tree, is a Decision Tree with

lots of depths, if not fully grown [1]. So, it manifests a low bias and high variance. This is

accomplished by slightly overfitting the training data, making each Tree further altered with

less correlated predictions between one another.

Classification And Regression Trees (CART) are Decision Trees for classification and regres-

sion predictive modeling problems [60] [4] [72].

It is composed of Binary Trees [194]. A sole input variable x depicts the root node, and its split

point (considering the variable is numeric) arises leaf nodes. These comprise an output variable y

applied to produce an input variable selection prediction.

The splitting procedure consists of a recursive binary numerical method that divides the input

space using input variable selection until a suitable Tree is constructed. The specific split points

are chosen with a greedy algorithm that minimizes the cost function.

The squared error sum over every training data point within the box is the cost function (re-

gression predictive modeling problems, Eqn. B.1).
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sum(y− y)2 (B.1)

where y is the model’s predicted output, y is the model’s

target output, and sum() is the sum function.

The stopping criterion lets the Decision Tree grasp the moment to quit splitting as it strives

its way down. It, obviously, strongly influences the performance of the Tree. More specifically, a

minimum count of each leaf node assigned training instances or a dataset tunned training members

count. Lastly, a pruning method is employed to establish the final Decision Tree complexity,

namely, the number of Tree splits.

Simpler Trees are often favored. It is so since they are less prone to overfitting the data and

more straightforward to understand.



Appendix C

Kaggle Competitions

C.1 Kaggle dominating algorithms

Gradient Boosted Machines and NNs have dominated recent Kaggle competitions, as seen in

Table C.1.

Competition Type Winning ML Library / Algorithm

Liberty Mutual Regression XGBoost

Caterpillar Tubes Regression Keras + XGBoost + Reg. Forest

Diabetic Retinopathy Image SparseConvNet + RF

Avito CTR XGBoost

Taxi Trajectory 2 Geostats Classic NN

Grasp and Lift EFG Keras + XGBoost + other CNN

Otto Group Classification Stacked ensemble of 35 models

Facebook IV Classification sklearn GBM

Table C.1: Overview of dominant algorithms in Kaggle competitions

C.2 Kaggle Top Competitior comment

Giuliano Janson, a top Kaggle competitor, at Quora (2016), 48 commented that “there is really

no way you can win most Kaggle competitions without a very strong ensemble. As good as your

best individual model is, it won’t match a good ensemble”.

48available at: https://www.quora.com/What-machine-learning-approaches-have-won-\most-
Kaggle-competitions
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C.3 Netflix $1M ML competition

Netflix hosted a $1M ML competition49. The prize included teams attempting to improve on

Netlix’s native algorithm recommendation predictions. The team that obtained a 10% performance

(Fig. C.1) increase was awarded a $1M prize.

Figure C.1: Netflix $1M machine competition rankings 50

49available at: https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars
-part-1-55838468f429

50https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-
55838468f429, last accessed on 2021-01-21

https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429


Appendix D

Hybrid Algorithms’ Pseudocode

Algorithm 8 Random_Split_NCL_Dropout
Input: size of random split training dataset r, number of estimators M, Dropout percentage p
Output: final prediction p

1: create M NN estimators with p value
2: for m = 1 to M do
3: perform NCL procedure between estimator m and L[: m]
4: estimators on a random train_subset with contiguous data samples of size r
5: end for
6: use Simple Averaging to integrate saved estimators’ test_set predictions

Algorithm 9 Cross_Training_NCL_Dropout
Input: number of estimators M, Dropout percentage p
Output: result YM(x)

1: create M NN estimators with p value
2: divide training dataset in M folds
3: for m = 1 to M do
4: train estimator m on M−1 folds using NCL procedure between
5: estimator m and L[: m] estimators
6: end for
7: use Simple Averaging to integrate saved estimators’ test_set predictions

Algorithm 10 Random_Subspace_NCL_Dropout
Input: number of random selected features f, number of estimators M, Dropout percentage p
Output: final prediction p

1: create M NN estimators with p value
2: for m = 1 to M do
3: perform NCL procedure between estimator m and L[: m] estimators
4: on a train_set with f features
5: end for
6: use Simple Averaging to integrate saved estimators’ test_set predictions
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Algorithm 11 Pasting_NCL_Dropout
Input: size of pasting training dataset p, number of estimators M, Dropout percentage p
Output: final prediction p

1: create M NN estimators with p value
2: for m = 1 to M do
3: perform NCL procedure between estimator m and L[: m]
4: estimators on a random train_subset of size p
5: end for
6: use Simple Averaging to integrate saved estimators’ test_set predictions

Algorithm 12 Random_Patches_NCL_Dropout
Input: number of random selected features f, size of pasting training dataset p, number of estima-
tors M, Dropout percentage p
Output: final prediction p

1: create M NN estimators with p value
2: for m = 1 to M do
3: perform NCL procedure between estimator m and L[: m]
4: estimators on a random train_subset of size p with f features
5: end for
6: use Simple Averaging to integrate saved estimators’ test_set predictions

Algorithm 13 Horizontal_Averaging_NCL_Dropout
Input: number of estimators M, number of training epochs N, Dropout percentage p
Output: result YM(x)

1: create M NN estimators with p value
2: for n = 1 to N do
3: if (N - n) < M then
4: save copy of current original model
5: perform one epoch of NCL procedure between original model and
6: saved estimators on a train_set
7: else
8: train original model one epoch on a train_set
9: end if

10: end for
11: use Simple Averaging to integrate saved estimators’ test_set predictions



Hybrid Algorithms’ Pseudocode 117

Algorithm 14 Polyak_Averaging_NCL_Dropout
Input: number of estimators M, number of training epochs N, Dropout percentage p
Output: result YM(x)

1: create M NN estimators with p value
2: for n = 1 to N do
3: if (N - n) < M then
4: save copy of current original model
5: perform one epoch of NCL procedure between original model and
6: saved estimators on a train_set
7: else
8: train original model one epoch on a train_set
9: end if

10: end for
11: average saved estimators into a single estimator
12: use single estimator to make test_set predictions

Algorithm 15 Bagging_NCL_Dropout
Input: training sample S, number of estimators M, Dropout percentage p
Output: final prediction p

1: create M NN estimators with p value
2: for n = 1 to N do
3: Sm = bootstrap sample from S
4: if (N - n) < M then
5: perform one epoch of NCL procedure between original model and
6: saved estimators on a Sm set
7: save copy of current original model
8: else
9: train original model one epoch on a Sm

10: end if
11: end for
12: use Simple Averaging to integrate saved estimators’ test_set predictions
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Algorithm 16 Blending_Snapshot_NCL_Dropout
Input: number of estimators M, number of training epochs N, Dropout percentage p
Output: result YM(x)

1: create M NN estimators with p value
2: for n = 1 to N do
3: if (N - n) < M then
4: save copy of current original model
5: perform one epoch of NCL procedure between original model and
6: saved estimators on a train_set
7: else
8: train original model one epoch on a train_set
9: end if

10: end for
11: fit Blending’s linear meta-model with saved estimators’ val_set predictions
12: use Blending’s meta-model to perform test_set predictions

Algorithm 17 Super_Learner_Snapshot_NCL_Dropout
Input: number of estimators M, number of training epochs N, Dropout percentage p, number of
folds F
Output: result YM(x)

1: create M NN estimators with p value
2: divide training dataset in training and validation datasets
3: for n = 1 to N do
4: if (N - n) < M then
5: save copy of current original model
6: perform one epoch of NCL procedure between original model and
7: saved estimators on a train_set
8: else
9: train original model one epoch on a train_set

10: end if
11: end for
12: divide validation dataset in F folds
13: for f = 1 to F do
14: save k fold test set target
15: for m = 1 to M do
16: train estimator m on f −1 folds using NCL procedure between
17: estimator m and L[: m] estimators
18: save k fold test set estimator m prediction
19: end for
20: end for
21: fit meta-model on previously saved estimators predictions and targets
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Abstract

Ensemble Learning is a thriving research area in terms of predictive performance.
Its algorithms use strategies that vary in complexity to combine models, leading
to an increase in performance. Also, some techniques are base learner agnostic
while others are not. For example, Negative Correlation Learning relies on Neural
Networks. The proposed framework blends different strategies to generate Neural
Network ensemble methods for regression, aiming to take the best of each strat-
egy, hence boosting the ensemble performance. More specifically, it implements
established ensemble algorithms, analyses their capabilities through bias-variance-
covariance error decomposition, and creates many new techniques by combining
different strategies with complementary strengths. Extensive experiments with
multiple groups of different datasets showed that combining multiple strategies
yields better results. The best-performing algorithms decreased model error, on
average, from 12% to 17% versus their constituent strategies.

1 Introduction

Ensemble Learning is a successful research area in terms of predictive performance. The goal is
to combine multiple base learners predictions in a single, more robust, prediction. Some of the
methods that had initial success used simple yet effective approaches to generate ensembles (e.g.,
Bagging [2] and AdaBoost [9]). Later, the combination of some of these strategies, sometimes with
slight modifications, resulted in new methods also very well succeeded (e.g., Random Forest [4] as a
combination of Bagging and Randomized Trees, or MultiBoosting [31] as a combination of wagging,
a variant of Bagging and AdaBoost).

Some of these methods were designed for unstable base learners, as is the case of Decision Trees and
Neural Networks. Some other methods for a specific base learner, for instance, Random Forests were
explicitly designed for Decision Trees, and Negative Correlation Learning [25] for Neural Networks.
With the recent success of Neural Networks and Deep Learning, Ensemble Learning also received
new contributions to the already existing ones. It is the case of Snapshot [14] and Dropout [28] as
strategies used to generate Neural Network ensembles.

Motivated by the works of Geoffrey Webb [31], and Geoffrey Webb & Zijian Zheng [32] we present
a hybrid framework to generate Neural Network Ensembles for regression.

The main contributions are:
• to use an ensemble error decomposition to find the most promising ways of combining the

most complementary strategies in a single ensemble method;
• to construct new Neural Network regression ensembles that improve its constituent models’

performances.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



2 Revising Ensemble Learning for Regression

Ideally, base learners yield a degree of accuracy and diversity to make uncorrelated predictions so
that the ensemble works appropriately. Specifically for Neural Networks, it means they converged to
different local minima, making different prediction errors. If base learners make highly correlated
predictions, the accuracy of the ensemble will hardly improve over a single base learner. If base
learners do not make correct predictions, the ensemble will also struggle to make correct predictions.
Building a good ensemble is an exercise of carefully balancing the correlation and accuracy of base
learners’ predictions.

There are different approaches to build an ensemble, such as training data, base model characteris-
tics, base model generation strategy, and prediction integration mechanism. Varying the first three
elements have the objective of promoting estimator diversity. It is possible to vary the base models’
characteristics, as each definable parameter has its pros and cons both independently and in con-
juncture with others. There is a vast possibility space with multiple different options from which to
choose. More specifically, network type, topology, different random initialization, random selection
of mini-batches, training specificities, and different outcomes of non-deterministic implementations
of Neural Networks are enough to promote diversity.

2.1 General Ensemble techniques

Varying each estimator’s training data provides a different framing of the problem. Despite Boot-
strapping not being an ensemble-specific strategy, it may be utilized by repeatedly sampling with
replacement dataset instances. Also, Pasting uses a smaller dataset, without demanding contiguous
data samples, for each estimator [3], Random Subspace employs a random input feature subspace
policy on each estimator’s dataset [13], and Random Patches merges Random Subspace with Pasting
[20]. Random Splits repeatedly samples from a dataset with a random data split both train and test
sets, with contiguous data samples, for each weak learner. K-fold Cross-Training splits the dataset
into k equally sized folds, feeds each estimator a different set k − 1 folds, and may test it on the
remaining holdout fold [17]. Note that k is the number of estimators.

Bagging is a variance reduction ensemble algorithm that uses bootstrap samples to fit independent
parallel base learners [2]. There are multiple Bagging-based architectures. For example, Random
Forest [4] leverages unpruned Decision Trees fitted on bootstrap samples, random input feature
selection at each split point, and a greedy algorithm for optimal split point selection. Also, Extra
Trees harnesses unpruned Decision Trees fitted on the entire dataset, random input feature selection
at each split point, and randomly selected split points [12].

Boosting is, primarily, a bias reduction ensemble algorithm that builds upon prior chain models, fixes
current prediction errors through attention refocusing (updates the dataset), and learns how to optimize
each model’s advantages. As a result, it turns weak learners into strong learners. There are multiple
Boosting-based approaches such as AdaBoost, which at each iteration solves a "local" optimization
problem and assigns weights to the data points and estimators based on their shown ensemble error
contribution and performance respectively [10]. Despite being developed for classification problems,
Drucker [8] proposed a regression version named AdaBoost.R2.

The literature is prolific in Boosting techniques for Decision Trees. Gradient Boosting employs a
numerical optimization problem to a differentiable arbitrary amount of loss functions, an additive
model to append base learners, and a shrinkage term to control each estimator’s influence [21]
[22]. LightGBM (LGBM) leverages attention focusing on training examples resulting in a larger
gradient while excluding the remaining, a type of automatic feature selection, and a similar concept
to Dropout [15]. CatBoost leverages good default parameters, categorical feature support, and a
Gradient Boosting scheme that tackles overfitting [7]. XGBoost harnesses a loss function with an
added regularization term for overfitting reduction, custom optimization objectives and evaluation
criteria for high flexibility, Decision Trees fitted on bootstrap samples, and random input feature
selection at each split point [5]. Furthermore, it adds missing data handling, parallel/independent
processing, and pruning to remove no positive gain splits.

However, optimal model weights and predictions are difficult to find; thus, meta-model approaches
that generalize in a second space to discover the optimal route for estimator combination are worthy of
exploring. Stacking fits a meta-model on the base models’ out-of-fold predictions [33]. Blending fits
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a linear meta-model on the base models’ holdout set predictions [1]. Super Learner is an application
to k-fold cross-validation where all models use the same k-fold data splits and a meta-model is fit on
estimators’ out-of-fold predictions [30].

2.2 Neural Network Specific Ensemble Techniques

Despite Dropout not being an ensemble-specific strategy, we can use it as such. It promotes diversity
during the learning process of each Neural Network in the ensemble by randomly dropping a given
percentage of nodes [28].

Snapshot generates an ensemble with estimators that visited multiple local minima but not necessarily
from contiguous training epochs [14]. Stochastic Gradient Descent with Warm Restarts (SGDR)
promotes even greater Snapshot diversity. This approach aggressively cycles the learning rate, thus
avoiding individual estimators getting stuck in the same local minima [19] [27]. Another alternative
that stems from Snapshot is Polyak Averaging, which averages into a single Network multiple sets of
noisy weights from contiguous training epochs close to the end of a training run [24].

Negative Correlation Learning, motivated by the works of Naonori Ueda and Ryohei Nakano [29],
is a reliable strategy to promote mutual model diversity and lower the correlation between base
learners predictions. When generating a model for the ensemble, the added penalty term to the
Neural Network’s objective function promotes a negative correlation between the new model and the
previously generated models [25] [18].

There are various options for varying the base models’ prediction integration strategy. Simple
Averaging combines independent base learner’s predictions with equally distributed weights [6].
Simple Averaging of models extracted from contiguous training epochs close to the end of a training
run is defined as Horizontal Averaging [34]. Still, it might be helpful to consider each respective base
learners’ demonstrated accuracy in determining the final result, thus using Weighted Average.

Adopted prediction generation and integration methods are summed up in Table 1.

2.3 Combining strategies for ensemble generation

There are multiple proposed approaches to combine strategies for generating ensembles, each offering
different breakthroughs from those presented in this work.

MultiBoosting combines AdaBoost with wagging, a variant of Bagging using C4.5 as the base
learners achieving better results and execution time than the constituent algorithms [31].

Multistrategy Ensemble Learning investigates the hypothesis that accuracy improvement is due to
base learners’ increased diversity. So three new multistrategy Ensemble Learning techniques were
developed with results showing they are, on average, more accurate than their base strategies [32].

Cocktail ensemble uses a hybrid mechanism for combining multiple individual ensembles via
pairwise combination with a regression error-ambiguity decomposition. In other words, it resembles
an ensemble of ensembles. Results show the proposed approach outperforms the individual ensembles,
two other methods of ensemble combination, and two state-of-the-art regression approaches [35].

2.4 Ensemble Error Decomposition

There are two main formulas for ensemble generalization error decomposition in regression. First,
Krogh [17] decomposes the error metric in bias and variance, and the second by Ueda [29] decomposes
it in bias, variance, and covariance. This last approach is employed since it decomposes the error in
greater detail.

Bias measures the average difference between the ensemble’s output and the base learner’s outputs.
Variance indicates the average disagreement between the base learner’s outputs. The lower it is,
the more stable, robust, and reliable the respective estimators become, and vice-versa. Covariance
measures the pairwise difference between different base learners.

However, there are two caveats. First, the above error generalization decomposition equations cannot
be directly applied to classification problems due to their categorical nature [16]. Second, the error
decomposition equation assumes the use of Simple Averaging as the prediction integration strategy
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Table 1: Overview of Generation Mode (GEN), Integration Method (INT), Base Learner used in our
framework (BL), and main reference (REF) for the main ensemble methods for regression. Par

stands for Parallel, Str for Stream (means that we generate the base models from the same original
base learner), Seq for Sequential, SA for Simple Average, WA for Weighted Average, DT for

Decision Trees, and NN for Neural Networks. The suffix X indicates the hyperparameter(s) of the
method in the experiments.

Ensemble Algorithm Tests Designation GEN INT BL REF
Simple Averaging average Par SA NN [6]

Random Splits rand_split0.X Par SA NN sec. 2.1
K-fold Cross-training cross_training Par SA NN [17]

Random Subspace rand_subspace0.X Par SA NN [13]
Pasting pasting0.X Par SA NN [3]

Random Patches pasting0.X
+rand_subspace0.X Par SA NN [20]

Horizontal Averaging horizontal_avg Str SA NN [34]
Polyak Averaging polyak_avg Str SA NN [24]

Snapshot with Cosine
Annealing Learning Rates snapshot Str SA NN [14]

Negative Correlation Learning ncl0.X Seq SA NN [25]
Dropout dropoutX Par SA NN [28]
Bagging bagging Par SA NN [2]

AdaBoost(.R2) adaboost_scratch Seq WA NN [8]
AdaBoost(.R2) adaboost_nn Seq WA NN [8]
Super Learner super_learner Par WA NN [30]

Blending blending Par WA NN [1]
Stacking stacking_nn Par WA NN [33]

AdaBoost(.R2) adaboost_default Seq WA DT [8]
Gradient Boosting gradient_boosting Seq WA DT [21] [22]

Gradient Boosting Histogram gradient_boosting_hist Seq WA DT [26]
LGBM lgbm Seq WA DT [15]

CatBoost catboost Seq WA DT [7]
XGBoost xgboost Seq WA DT [5]

Random Forest rand_forest Par SA DT [4]
Extra Trees extra_trees Par SA DT [12]

[29]. This assumption might skew the bias, variance, and covariance distribution slightly when
applying Weighted Averaging. Deriving this decomposition for Weighted Averaging would be more
challenging due to the estimation of the ensemble error decomposition before the learning process,
where the ensemble learns the weights.

3 A framework to construct Neural Network ensembles for regression

This framework has three steps. First, it evaluates the error decomposition of the Table 1 ensemble
techniques in bias, variance, and covariance [29]. Second, it identifies the most complementary
pairs of strategies in terms of ensemble error component reduction. Third, combines these pairs of
strategies to create a multitude of new ensemble algorithms.

The following list presents the premises of our work:
• the Neural Network estimator uses a ReLU activation function in the input layer with a

number of neurons according to the number of train set’s features, MAE as the loss function,
and AdaGrad as the optimizer;

• the estimator’s structure and parameters are consistent throughout all ensemble algorithms
and test levels for computational simplicity and comparison trustworthiness. In other words,
the Network architecture is not a variable affecting the final results;

• each ensemble has five estimators;
• each ensemble algorithm has been averaged five times except for Snapshot (and derived

architectures) which have been averaged 15 times for improved results stability;
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• different datasets for each of the two levels of the framework;
• holdout with 80% for training and 20% for testing as resampling method;
• datasets’ categorical values are one-hot encoded using scikit− learn 1;
• missing values are removed by dropping their respective instances;
• we present two baselines: (1) a single Neural Network with the same architecture as the

ensemble’s base estimators, and (2) the simple average of the base learners results;
• each component on a stacked bar graph refers to the average of the normalized sum of that

component for each dataset;
• the framework is powered by Keras 2 and TensorF low 3;
• although AdaBoost.R2, Gradient Boosting (Histogram), LGBM, CatBoost, and XGBoost

use Decision Trees instead of Neural Networks as base learners, they have only been added
in the Level-0 because some of their characteristics can add value in other algorithms, so
they are used for performance comparison.

3.1 Level-0

Since this level’s tests essentially consist of plainly implementing established ensemble algorithms
(Table 1), we use ten datasets, which gives statistical confidence as the empirical results meet the
theoretical assumptions.
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Figure 1: Level-0 results. Neural Network ensemble results have a white background, while decision
tree ensemble results have a grey background.

Looking at Figure 1, and broadly speaking, it is clear to see that ensembles, almost as a whole,
lower predictions’ overall variance while keeping bias low at the same time. In this way, we lower
generalization error and achieve better performance.

As expected, Simple Averaging achieved better results than the baseline. Due to their characteristics,
Horizontal Averaging and Polyak Averaging performed poorly since contiguous epoch estimators
suffer from a lack of diversity. Surprisingly Snapshot with SGDR (Cosine Annealing Learning
Rates) performed exceptionally well in reducing covariance, variance, and specifically, bias. So it is
possible to infer that aggressively varying the learning rate of Neural Networks is a successful way
of promoting estimators’ diversity. Other notable results were Dropout (p = 20%), and Negative
Correlation Learning (lambda = 0.55) that managed to lower error slightly comparing to the Average
ensemble.

The base models’ selection needs to be consistent with the way to aggregate them. If the base models
have low bias and high variance, we should consider an aggregating scheme favoring reducing the

1https://scikit-learn.org/stable/
2https://keras.io/
3https://www.tensorflow.org/
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ensemble’s variance (e.g., Bagging). We should consider an aggregating scheme favoring reducing
the ensemble’s bias (e.g., Boosting) when we have high bias and low variance base models. Given
that the single model exhibits both a relatively high bias and variance, both mentioned ensemble
strategies are worth exploring.

Surprisingly, Bagging failed to improve results comparing to Simple Averaging. One can conclude
that bootstrap sampling faltered in promoting the expected estimator diversity in these specific
datasets. Regarding Bagging variants, despite Random Forest performing pretty well by reducing
variance, covariance, and most noticeably bias, Extra Trees came out on top. Nonetheless, given that
these two variants performed positively, Random Subspace and other techniques that vary the training
data are worth exploring for Neural Networks. The rest either (1) were already explored (models
fitted on the full dataset), (2) had bad empirical results (bootstrapping), or (3) do not directly apply to
Neural Networks (optimal split point selection algorithms).

On the other hand, Boosting achieved the best results throughout almost all different implementations.
These results clearly show that refocusing subsequent models’ attention on remaining difficult
observations and using a weighted average final prediction according to each estimator’s respective
performance are exceptional ensemble strategies. AdaBoost.R2 manifested the best global error
value closely followed by XGBoost. Curiously, CatBoost smashed bias but increased variance, while
XGBoost smashed variance but failed to reduce bias as much as CatBoost.

Almost all Decision Tree Boosting methods reduced covariance and, very appreciable, bias and
variance while Neural Network Boosting Methods lowered bias and covariance but increased variance.
Comparing Decision Tree AdaBoost.R2 (default) with Neural Network AdaBoost.R2, the latter
achieved worse results than the former. A possible avenue to improve the latter’s performance is to
vary its estimators’ characteristics. Given that AdaBoost.R2, XGBoost, and CatBoost performed the
best, adding regularization terms to the Neural Networks (e.g., Dropout) and Random Subspace are
worth exploring. The rest either (1) do not directly apply to Neural Networks (default parameters, split
points, and individual Neural Network pruning), (2) do not apply to the specific baseline (does not
suffer from overfitting), (3) do not offer advantages due to the dataset characteristics (no categorical
features and no missing data), (4) have already been explored (parallel/independent processing) or (5)
perform poorly on Neural Networks (bootstrapping).

Note that tree-based ensembles’ results are better than the Neural Network ensembles’ results because
(1) it is easier for Decision Trees to perform well on default hyperparameters, (2) the adopted Neural
Network estimator architecture is very simple and trained on few epochs, and (3) some datasets may
have too few samples.

Meta-model techniques depend on having a simple model that provides smooth prediction interpreta-
tions that offset individual models’ deficiencies for better performance. For that reason, Super Learner
and Blending, which use a linear meta-model, achieved the best results, with the former edging out
the latter. However, both obtained the worst variance results. Stacking, which uses a non-linear
meta-model (Neural Network), had disappointing results. Hence, linear meta-models are, in this
case, superior to non-linear meta-models. Also, one might wonder that Blending’s characteristics
(fit a linear meta-model on estimators’ holdout set predictions) lower bias but promote variance.
Super Learner (out-of-fold predictions during k-fold cross-validation) also lowers bias and increases
variance but at a larger scale than Blending. However, Super Learner’s results still indicate a better
global error reduction when compared with Stacking and Blending (sec. 2.1).

Some varying training data ensemble techniques offer positive characteristics, except for Bootstrap-
ping (Bagging) and K-fold Cross-training. Also, Random Splits’ (sec. 2.1) increased estimator
diversity did not compensate for the loss of available training data. Pasting, Random Subspace,
and Random Patches suffered from a lack of samples and features to select different subsets or
combinations. Therefore, we performed more thorough testing with selected datasets with enough
samples/features to obtain more insightful results. Results show that these techniques alone do not
promote better performance.

Nevertheless, varying the number of features above a certain threshold is slightly better than varying
the number of samples for individual estimators. When combined, these techniques harm performance.
However, there is a caveat. Performance improvements using these techniques are very dependant (1)
on the dataset and (2) on the randomness of the selected variables. So these techniques may still be
helpful in particular circumstances.
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Bottom line, this level’s best-performing methods were Snapshot with SGDR, Super Learner, and
Blending ensembles. Additionally, since Dropout and NCL achieved better performance than the
Simple Averaging ensemble and could combine with other algorithms, we considered them plausible
and promising candidates for the next level’s experiments.

3.2 Level-1

In this level, we merge the previous level’s best-performing methods and promising approaches. We
use twenty datasets different from those used in the previous level to ensure independent results.

However, first, it is required to discover the best p and lambda hyperparameter values, respectively,
for Dropout and NCL. After extensive testing on Dropout ensemble and Dropout empowered Neural
Network ensembles, we found p = 15 to be the best value, with p = 20 following right behind. Anal-
ogously, after extensive testing on NCL ensemble and NCL empowered Neural Network ensembles,
we found lambda = 0.55 to be the best value.
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Figure 2: Level-1 results. Dropout, NCL, and Dropout+NCL empowered Level-0 ensembles.

Figure 2 compares the effects of joining techniques of the previous level’s best-performing methods.
Individual (non-merged) strategies serve as the comparison metric. It is clear to see that Snap-
shot, Blending, and Super Learner benefit, typically, from being empowered with both NCL and
Dropout, both individually and in conjunction. Also, if NCL has better results than Dropout, then
NCL+Dropout usually has worse performance than that of NCL but better than Dropout, and vice-
versa. Regarding the Snapshot ensemble, joining it with Dropout offers the best results. Opposingly,
meta-model strategies tend to benefit from NCL alone, and when Dropout is employed, it worsens
their performance. As a side note, Simple Averaging stays in the middle ground, meaning that it is
improved the most by using NCL with Dropout.

Diving deeper into each error component, NCL alone achieves the best results in bias reduction
comparing to Dropout, either alone or in combination. The case in which it did not was on Snapshot
ensemble, ending in second place and closely behind NCL+Dropout. Looking at variance, typically,
Dropout reduces it the most in Simple Averaging and Snapshot ensembles, while meta-model
approaches prefer the NCL+Dropout combination. Finally, covariance in meta-model strategies is
reduced the most by NCL, whether in Snapshot methods Dropout gives the best results.

Regarding the specific numerical results, snapshot_dropout_15 compared to snapshot reduced
error by 13.5%, blending_dropout_15 compared to blending reduced error by 12.1%, and
super_learner_dropout_15 compared to super_learner reduced error by 16.9%.
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Figure 3: Level-1 results. Dropout, NCL, Snapshot, Blending, and Super Learner algorithm combina-
tion.

Figure 3 shows the results of combining all compatible previous level’s best-performing and promising
methods. Results show that stream models benefit the most from employing Dropout since it acts
from the beginning of their training while NCL has too few epochs, close to the training run’s end, to
promote mutual model diversity. On the other hand, independent models benefit the most from NCL
because it promotes mutual model diversity from the ground up.

Looking at individual methods, Dropout and NCL had similar performance outcomes as both
finished last. The latter decreased bias the most while the former reduced variance and covariance
slightly more. Snapshot performs the best by reducing covariance ponderously and squashing bias
and variance, thus acting as a bias/variance reduction algorithm. Blending, which ended second
performance-wise, reduced covariance, but more importantly, smashed bias at the expense of a more
pronounced increase in variance hence categorized as a bias reduction algorithm. Super_Learner acts
as the middle ground between Snapshot and Blending by reducing bias more than the former but less
than the latter and variance otherwise. Its covariance reduction was similar to that of Blending.

Examining the framework’s combination mechanism, Dropout adds to each algorithm’s estimators,
Dropout layers with a specific p value. NCL trains the algorithm’s estimators following the initially
proposed method, and Snapshot generates many stream estimators. Optionally, once harvested,
we can train these stream estimators with an NCL policy to promote diversity. We can also use
NCL without Snapshot. In this case, the base learners are entirely independent. Dropout, Snapshot,
and NCL (combined) algorithms’ estimators may be mutually integrated with a simple averaging
approach or merged with a linear meta-model algorithm. If we use Blending, the estimators make
holdout set predictions that fit the meta-algorithm. If Super Learner is adopted, the estimators make
out-of-fold predictions during k-fold cross-validation that fit the meta-algorithm.

Turning attention to the combined algorithms results, snapshot_ncl_dropout was the best across the
board, performance-wise, since (1) Snapshot already possessed the best individual model performance
and (2) NCL and Dropout further helped in lowering every error component. Regarding Blending,
merging it with Dropout or NCL reduces variance and covariance but raises bias, especially with
NCL. On the other hand, merging Blending with Snapshot lowers bias and covariance but increases
variance. So, the various Blending combination possibilities typically exhibit the referred combined
characteristics that contribute to blending_snapshot_ncl_dropout having the best performance in
the subset of Blending techniques.

Combining Super_Learner with Dropout lowers bias and variance, and combining it with NCL lowers
both metrics even further, in particular, variance at the expense of slightly raising covariance. Merging
Super_Learner with Snapshot strongly reduced covariance but increased bias and, especially, variance.
Consequentially, the multiple Super Learner combination possibilities typically exhibit the referred
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combined characteristics that contribute to super_learner_snapshot_ncl_dropout having the best
performance in the subset of Super Learner techniques.

Regarding the specific numerical results, snapshot_ncl_dropout compared to snapshot reduced
error by 10.1%, blending_snapshot_ncl_dropout compared to blending reduced error by 15.6%,
and super_learner_snapshot_ncl_dropout compared to super_learner reduced error by 13.5%.

On the whole, every Snapshot combination outperformed all other Blending and Super Learner
proposed architectures. Nonetheless, it does not make Snapshot the absolute winner in all circum-
stances. Since Blending and Super Learner offer a second space generalization, improving their
current meta-model or adding subsequent generalization levels is possible. Given that the results
difference between Snapshot and Blending/Super Learner best-performing combination models are
not that dissimilar, it is reasonable to assume that subsequent improvements to these meta-model
variants would likely outperform Snapshot. A counterargument is to harvest Snapshot’s models at
detached epochs and improve the existing Snapshot’s varying learning rate policy.

3.3 Statistical Validation

Friedman test is employed to ascertain if repeated, and related measurements consistently follow
the same distribution [11]. Its null hypothesis is that the multiple paired samples follow the same
distribution. This assumption’s rejection means that at least one paired sample follows a different
distribution.

Every experiment rejected the null hypothesis by surpassing the defined type I error of 0.05. So,
it proved that the observation values (ensemble architecture’s errors) from multiple runs (different
datasets) have different means, follow different distributions, and, inherently, are statically valid. In
other words, there is enough proof to conclude that different types of ensemble algorithms lead to
statistically significant differences in their global error values.

Given that the experiments’ p-values are statistically significant, Nemenyi posthoc test, which returns
the p-values for each pairwise mean comparison, can be executed to determine the specific groups
with different means [23]. Results revealed that many algorithms have a high pairwise p value
denoting they have statistically similar means. The reason is that most algorithms’ global error values
are clustered around two groups, high and low values, without many in between. Naturally, algorithms
inside those clusters will have a high p value between one another while comparing algorithms that
belong to different clusters show a low mutual p value. Note that high and low values mean better
performing and worse performing algorithms, respectively.

4 Conclusions and future work

The fundamental idea in this paper was to prove the advantage of combining already established
Neural Network ensemble strategies in regression problems to improve their performance. So, we
created multiple new architectures with the help of a hybrid ensemble combining framework.

We discuss each technique’s merits, with only some consistently improving the Simple Averaging
ensemble’s bias-variance-covariance metrics. Experimental results confirm performance increases
from combining multiple algorithms as the developed ensembles showed better performance than
the original constituent counterparts. Merging the best-performing methods resulted in a lower
global error value, as each technique was complementary in lowering one or more ensemble error
components.

Finally, although we dealt with Neural Networks, all the theory and rationale holds for other types
of ensemble estimators, e.g., Decision Trees or KNN. In addition to this, the developed framework
can also be used as a proxy to generate ensembles for classification despite the ensemble error
decomposition being specific for regression.

The code and datasets used to produce this work are available in the supplementary material. Regard-
ing the broader impact of this work: the advances presented in this paper are not socially good or bad
inherently; we propose new methods that are complementary to the currently existing ones. Likewise,
the social impact depends on the use case rather than the method itself.
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A Code

The developed code is hosted at https://anonymous.4open.science/r/DISS-26C3/, along
with all the required datasets and evaluation procedures for as long as it is needed.

B Error decomposition

This section explains in detail the implemented ensemble error decomposition formula as depicted in
[29].

f
(M)
ens (x) = 1

M

∑M
m=1 fm(x; zN(m))

where Let f1, ..., fM denote M estimators, where the mth estimator is separately trained on zN(m),
m = 1, ..., M

The training set’s sample size is assumed to be uniformly N . Note that the training set zN(m), is a
realization of a random sequence ZN

(m) and that ZN
(m), m = 1, ..., M , have the same distribution

p(x, y); however, we cannot always assume them to be mutually independent. The ensemble output
for some input x is the linear average of M estimators’ outputs for x after being separately trained.

So, we have the following decomposition for the ensemble generalization error [29]:

f
(M)
ens (x) = 1

M

∑M
m=1 fm(x; zN(m))

GErr(f
(M)
ens ) = Exo

{ 1
M V ar(Xo) + (1− 1

M )Cov(Xo) +Bias(Xo)
2}+ σ2

where V ar(Xo), Cov(Xo), Bias(Xo), and σ2 are average
conditional variance, conditional covariance, conditional bias

averaged over M estimators and noise, respectively:




V ar(Xo) =
1

M

M∑

m=1

V ar{fm|Xo}

Cov(Xo) =
1

M(M − 1)

∑

m

∑

m′ 6=m

Cov{fm, fm′ |Xo}

Bias(Xo) =
1

M

M∑

m=1

Bias{fm|Xo}

C Datasets

This section thoroughly lists every dataset used in the Scientific paper’s Level-0 (Table 2) and Level-1
(Tables 3 and 4) experiments, their respective characteristics, and changes made to them.

Given that every collected dataset is entirely and freely available/maintained online, confidentially
issues are not a thing. As such, they are licensed under the CC0 license. Nonetheless, they should
be used responsibly and ethically. Therefore, we bear the responsibility for rights violations or
infringements regarding the datasets and adherence to the data license.

Regarding data organization, we use the csv file format regarding the datasets. However, some of
them were in different formats, namely, txt, so they had to be converted. They fall under the category
of regression modeling tasks. Categorical values are one-hot encoded, missing values are removed
by dropping their respective instances, and features are scaled not to skew the algorithm’s internal
workings.

Note that we utilized the provided URLs to gather the datasets, but they may also be collected from
various other sources. Despite that, the referred URLs are stable, meaning they are expected to host
the data indefinitely. Also, the data is available/maintained in the datasets folder accessible by the
URL from Appendix A.
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Table 2: Level-0 Datasets’ Information

name no. of
samples

no. of
features

categorical
features

missing
data origin

fried delve 40768 10 no no 1

energydata complete 19735 29 yes no 2

bike sharing/hour 17389 16 yes no 2

friedman 1200 5 no no 3

mv 40768 10 no no 3

atltime1004a 17812 7 yes no 4

triazines 186 61 no no 5

fruitfly 125 5 no no 5

student 395 31 no no 2

add10 9792 11 no no 6

Table 3: Level-1 Datasets’ Information - 1

name no. of
samples

no. of
features

categorical
features

missing
data origin

auto price 159 16 no no 7

auto mpg 398 8 no yes 7

cpu act 8192 22 no no 7

cpu small 8192 13 no no 7

housing boston 506 14 no no 7

housing
california 20460 9 no no 7

machine cpu 209 7 no no 7

pole telecomm 15000 49 no no 7

stock airplane
companies 950 10 no no 7

1https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
2https://archive.ics.uci.edu/ml/datasets.php
3https://sci2s.ugr.es/keel/category.php?cat=reg#sub2
4http://users.stat.ufl.edu/~winner/data/atltime1004a.dat
5https://www.openml.org/search?sort=runs&order=desc&type=task&from=100&q=+tasktype.tt_id%3A2
6https://www.cs.toronto.edu/~delve/data/
7https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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Table 4: Level-1 Datasets’ Information - 2

name no. of
samples

no. of
features

categorical
features

missing
data origin

wisconsin
breast cancer 194 33 no no 7

ailerons 13750 41 no no 7

airfoil self-noise 1503 6 no no 8

combined cycle
power plant 9568 5 no no 8

concrete
compressive
strength

1030 9 no no 10

real estate
valuation 414 8 no no 8

yacht
hydrodynamics 308 7 no no 8

insurance 1338 7 yes no 9

electrical
maintenance 1056 5 no no 10

house 16h 22784 17 no no 10

pole
telecommunications 14998 27 no no 10

D Vary training data

This section presents the comparison results of bias, variance, and covariance for the Scientific paper’s
Level-0’s data varying techniques (Figure 4).

Figure 4: Level-0 Pasting, Random Subspace and Random Patches results

8https://archive.ics.uci.edu/ml/datasets.php
9https://www.kaggle.com/mirichoi0218/insurance

10https://sci2s.ugr.es/keel/category.php?cat=reg#sub2

12



E Hybrid algorithms

This section depicts the pseudocode of the Scientific paper’s Level-1’s developed hybrid algorithms.

Algorithm 1 Snapshot_NCL_Dropout
Input: number of estimators M, number of training epochs N, Dropout percentage d
Output: final prediction p

1: create M neural network estimators with d value
2: for n = 1 to N do
3: if (N - n) < M then
4: save copy of current original model
5: perform one epoch of NCL procedure between original model and
6: saved estimators on a train_set with a SGDR policy
7: else
8: train original model one epoch on a train_set with a SGDR policy
9: end if

10: end for
11: use simple averaging to integrate saved estimators’ test_set predictions

Algorithm 2 Super_Learner_Snapshot_NCL_Dropout
Input: number of estimators M, number of training epochs N, Dropout percentage d, number of folds
F
Output: final prediction p

1: create M neural network estimators with d value
2: divide training dataset in training and validation datasets
3: for n = 1 to N do
4: if (N - n) < M then
5: save copy of current original model
6: perform one epoch of NCL procedure between original model and
7: saved estimators on a train_set
8: else
9: train original model one epoch on a train_set

10: end if
11: end for
12: divide validation dataset in F folds
13: for f = 1 to F do
14: save k fold test set target
15: for m = 1 to M do
16: train estimator m on f − 1 folds using NCL procedure between
17: estimator m and L[: m] estimators
18: save k fold test set estimator m prediction
19: end for
20: end for
21: fit meta-model on previously saved estimators predictions and targets
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Algorithm 3 Blending_Snapshot_NCL_Dropout
Input: number of estimators M, number of training epochs N, Dropout percentage d
Output: final prediction p

1: create M neural network estimators with d value
2: for n = 1 to N do
3: if (N - n) < M then
4: save copy of current original model
5: perform one epoch of NCL procedure between original model and
6: saved estimators on a train_set
7: else
8: train original model one epoch on a train_set
9: end if

10: end for
11: fit Blending’s linear meta-model with saved estimators’ val_set predictions
12: use Blending’s meta-model to perform test_set predictions

F Numerical results

This section thoroughly lists every error component value of the Scientific paper’s Level-0 (Table 5)
and Level-1 (Tables 6 and 7) experiments.

Table 5: Scientific paper Figure 1 numerical results.
Algorithm Bias2 Variance Covariance Error
single_model 0.401 0.896 0.004 1.229
average 0.336 0.051 0.584 0.933
rand_split 0.2 0.413 0.062 0.628 1.059
cross_training 0.458 0.062 0.623 1.083
rand_subspace 0.5 0.353 0.049 0.566 0.941
rand_subspace 0.75 0.38 0.074 0.65 1.047
pasting 0.5 0.464 0.064 0.611 1.119
pasting 0.75 0.438 0.071 0.654 1.126
pasting 0.5 + rand_subspace 0.5 0.529 0.084 0.672 1.256
pasting 0.5 + rand_subspace 0.75 0.589 0.084 0.705 1.314
pasting 0.75 + rand_subspace 0.5 0.46 0.074 0.66 1.159
pasting 0.75 + rand_subspace 0.75 0.442 0.073 0.652 1.126
horizontal_avg 0.39 0.064 0.663 1.064
polyak_avg 0.39 0.064 0.664 1.065
snapshot 0.044 0.019 0.481 0.526
ncl 0.55 0.303 0.048 0.554 0.89
bagging 0.363 0.054 0.587 0.967
adaboost_scratch 0.311 0.041 0.577 0.89
adaboost_nn 0.173 0.061 0.522 0.758
super_learner 0.1 0.157 0.546 0.745
blending 0.173 0.274 0.527 0.907
stacking_nn 0.701 0.078 0.665 1.442
dropout 20 0.302 0.031 0.538 0.851
adaboost_default 0.025 0.018 0.491 0.519
gradient_boosting 0.17 0.034 0.58 0.717
gradient_boosting_hist 0.166 0.027 0.569 0.7
lgbm 0.166 0.027 0.57 0.7
catboost 0.029 0.105 0.539 0.647
xgboost 0.062 0.013 0.479 0.544
rand_forest 0.057 0.042 0.557 0.619
extra_trees 0.042 0.028 0.517 0.554
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Table 6: Scientific paper Figure 2 numerical results.
Algorithm Bias2 Variance Covariance Error
average 0.936 0.376 0.653 1.965
average_ncl_55_dropout_15 0.753 0.472 0.69 1.915
average_ncl_55 0.74 0.499 0.731 1.97
average_dropout_15 0.949 0.371 0.67 1.99
snapshot 0.152 0.109 0.266 0.526
snapshot_ncl_55_dropout_15 0.13 0.12 0.249 0.499
snapshot_ncl_55 0.134 0.1 0.239 0.472
snapshot_dropout_15 0.141 0.087 0.227 0.455
blending 0.02 0.693 0.387 1.101
blending_ncl_55_dropout_15 0.018 0.678 0.278 0.974
blending_ncl_55 0.01 0.703 0.255 0.968
blending_dropout_15 0.052 0.693 0.398 1.143
super_learner 0.086 0.574 0.361 1.022
super_learner_ncl_55_dropout_15 0.091 0.441 0.352 0.884
super_learner_ncl_55 0.079 0.457 0.313 0.849
super_learner_dropout_15 0.101 0.457 0.32 0.878

Table 7: Scientific paper Figure 3 numerical results.
Algorithm Bias2 Variance Covariance Error
single_model 0.87 0.941 0.0 1.812
dropout 0.83 0.077 0.841 1.748
ncl 0.814 0.085 0.863 1.762
ncl_dropout 0.837 0.081 0.843 1.761
snapshot 0.101 0.025 0.549 0.674
snapshot_dropout 0.093 0.017 0.511 0.621
snapshot_ncl 0.1 0.017 0.514 0.631
snapshot_ncl_dropout 0.093 0.012 0.501 0.606
blending 0.016 0.208 0.622 0.846
blending_dropout 0.021 0.184 0.579 0.784
blending_ncl 0.03 0.172 0.533 0.735
blending_snapshot 0.006 0.215 0.52 0.741
blending_ncl_dropout 0.02 0.18 0.592 0.792
blending_snapshot_dropout 0.032 0.241 0.55 0.824
blending_snapshot_ncl 0.012 0.207 0.502 0.72
blending_snapshot_ncl_dropout 0.007 0.196 0.511 0.714
super_learner 0.098 0.133 0.608 0.839
super_learner_dropout 0.084 0.127 0.6 0.811
super_learner_ncl 0.082 0.107 0.624 0.813
super_learner_snapshot 0.11 0.201 0.535 0.845
super_learner_ncl_dropout 0.087 0.117 0.587 0.791
super_learner_snapshot_dropout 0.122 0.185 0.552 0.859
super_learner_snapshot_ncl 0.035 0.182 0.509 0.726
super_learner_snapshot_ncl_dropout 0.034 0.173 0.51 0.716

G Detailed dataset results

This section presents for both the Scientific paper’s Level-0 and Level-1, each datasets individual
error results for every algorithm through the use of a heatmap.

Note that the right y-axis of heatmap graphs refers to the percentage difference between a given line’s
algorithm on a particular dataset and the single model. -1.0 means the error has diminished 100%,
and 3.0 means the error increased at least 300%.
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Analyzing the individual dataset error results (Figure 5), it is clear that most algorithms consistently
perform across the datasets, either good or bad, with few outliers (except Gradient Boosting and
LGBM).

Two findings are worth noting. First, with the existing configuration, stacking performs poorly across
all datasets, and on some occasions, it behaves pretty disastrously. Second, LGBM and Gradient
Boosting algorithms have similar error values across all datasets since the former stems from the
latter.

Figure 5: Scientific paper Figure 1 heatmap error results.

Analyzing the individual dataset error results (Figures 6 and 7), it is clear that most algorithms
consistently perform across the datasets, either good or bad.

It is important to note that there was a case in which every proposed algorithm performed worse than
the baselines but since this was an isolated case, it is considered an outlier.

Figure 6: Scientific paper Figure 2
heatmap error results.

Figure 7: Scientific paper Figure 3
heatmap error results.

H Statitical tests

This section thoroughly depicts every Friedman (Table 8) and Nemenyi (Figures 8, 9, 10, and 11) test
employed in the Scientific paper’s Level-0 and Level-1 experiments.
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Note that the right y-axis of heatmap graphs refers to the mean similarity percentage between a given
line’s and column’s algorithm. 0 means they are statistically non-similar, and 1.0 means they are
statistically equal.

Table 8: Friedman tests
Experience stat p

Scientific paper Figure 1 199.348 6.559e-27
Figure 4 112.976 5.798e-07

Scientific paper Figure 2 144.651 2.773e-23
Scientific paper Figure 3 215.686 3.001e-33

Figure 8: Scientific paper Figure 1 Nemenyi
test matrix.

Figure 9: Figure 4 Nemenyi test matrix.

Figure 10: Scientific paper Figure 2 Nemenyi test
matrix.

Figure 11: Scientific paper Figure 3 Nemenyi test
matrix.
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