98 research outputs found

    Control of synchronization regimes in networks of mobile interacting agents

    Get PDF
    We investigate synchronization in a population of mobile pulse-coupled agents with a view towards implementations in swarm robotics systems and mobile sensor networks. Previous theoretical approaches dealt with range and nearest neighbor interactions. In the latter case, a synchronization-hindering regime for intermediate agent mobility was found. In the present work, we investigate the robustness of this intermediate regime under practical scenarios. We show that synchronization in the intermediate regime can be predicted by means of a suitable metric of the phase response curve. Furthermore, we study more realistic K-nearest neighbors and cone of vision interactions, showing that it is possible to control the extent of the synchronization-hindering region by appropriately tuning the size of the neighborhood. To assess the effect of noise, we analyze the propagation of perturbations over the network and draw an analogy between the response in the hindering regime and stable chaos. Our findings reveal the conditions for the control of clock or activity synchronization of agents with intermediate mobility. In addition, the emergence of the intermediate regime is validated experimentally using a swarm of physical robots interacting with cone of vision interactions

    Firefly-Inspired Synchronization in Swarms of Mobile Agents

    Get PDF
    Synchronization can be a necessary prerequisite to perform coordinated actions or reach consensus in decentralized multi-agent systems, such as robotic swarms and sensor networks. One of the simplest distributed synchronization algorithms is firefly synchronization, also known as pulse-coupled oscillator synchronization. In this framework, each agent possesses an internal oscillator and the completion of oscillation cycles is signaled by means of short pulses, which can be detected by other neighboring agents. This thesis focuses on a realistic mode of interaction for practical implementations, in which agents have a restricted field of view used to detect pulses emitted by other agents. The effect of agent speed on the time required to achieve synchronization is studied. Simulations reveal that synchronization can be fostered or inhibited by tuning the agent (robot) speed, leading to distinct dynamical regimes. These findings are further validated in physical robotic experiments. In addition, an analysis is presented on the effect that the involved system parameters have on the time it takes for the ensemble to synchronize. To assess the effect of noise, the propagation of perturbations over the system is analyzed. The reported findings reveal the conditions for the control of clock or activity synchronization in swarms of mobile agents

    Scale invariance in natural and artificial collective systems : a review

    Get PDF
    Self-organized collective coordinated behaviour is an impressive phenomenon, observed in a variety of natural and artificial systems, in which coherent global structures or dynamics emerge from local interactions between individual parts. If the degree of collective integration of a system does not depend on size, its level of robustness and adaptivity is typically increased and we refer to it as scale-invariant. In this review, we first identify three main types of self-organized scale-invariant systems: scale-invariant spatial structures, scale-invariant topologies and scale-invariant dynamics. We then provide examples of scale invariance from different domains in science, describe their origins and main features and discuss potential challenges and approaches for designing and engineering artificial systems with scale-invariant properties

    Robots as actors in a film : No War, A Robot Story

    Get PDF
    Will the Third World War be fought by robots? This short film is a light-hearted comedy that aims to trigger an interesting discussion and reflexion on the terrifying killer-robot stories that increasingly fill us with dread when we read the news headlines. The fictional scenario takes inspiration from current scientific research and describes a future where robots are asked by humans to join the war. Robots are divided, sparking protests in robot society... will robots join the conflict or will they refuse to be employed in human warfare? Food for thought for engineers, roboticists and anyone imagining what the upcoming robot revolution could look like. We let robots pop on camera to tell a story, taking on the role of actors playing in the film, instructed through code on how to "act" for each scene

    Scale-Free Dynamics in Animal Groups and Brain Networks

    Get PDF
    Collective phenomena fascinate by the emergence of order in systems composed of a myriad of small entities. They are ubiquitous in nature and can be found over a vast range of scales in physical and biological systems. Their key feature is the seemingly effortless emergence of adaptive collective behavior that cannot be trivially explained by the properties of the systemÂŽs individual components. This perspective focuses on recent insights into the similarities of correlations for two apparently disparate phenomena: flocking in animal groups and neuronal ensemble activity in the brain. We first will summarize findings on the spontaneous organization in bird flocks and macro-scale human brain activity utilizing correlation functions and insights from critical dynamics. We then will discuss recent experimental findings that apply these approaches to the collective response of neurons to visual and motor processing, i.e., to local perturbations of neuronal networks at the meso- and microscale. We show how scale-free correlation functions capture the collective organization of neuronal avalanches in evoked neuronal populations in nonhuman primates and between neurons during visual processing in rodents. These experimental findings suggest that the coherent collective neural activity observed at scales much larger than the length of the direct neuronal interactions is demonstrative of a phase transition and we discuss the experimental support for either discontinuous or continuous phase transitions. We conclude that at or near a phase-transition neuronal information can propagate in the brain with similar efficiency as proposed to occur in the collective adaptive response observed in some animal groups.Fil: Ribeiro, Tiago L.. National Institute Of Mental Health; Estados UnidosFil: Chialvo, Dante Renato. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Ciencias FĂ­sicas. - Universidad Nacional de San MartĂ­n. Instituto de Ciencias FĂ­sicas; Argentina. Center for Complex Systems & Brain Sciences; ArgentinaFil: Plenz, Dietmar. National Institute Of Mental Health; Estados Unido

    Interactive rhythms across species: The evolutionary biology of animal chorusing and turn-taking

    No full text
    The study of human language is progressively moving toward comparative and interactive frameworks, extending the concept of turn‐taking to animal communication. While such an endeavor will help us understand the interactive origins of language, any theoretical account for cross‐species turn‐taking should consider three key points. First, animal turn‐taking must incorporate biological studies on animal chorusing, namely how different species coordinate their signals over time. Second, while concepts employed in human communication and turn‐taking, such as intentionality, are still debated in animal behavior, lower level mechanisms with clear neurobiological bases can explain much of animal interactive behavior. Third, social behavior, interactivity, and cooperation can be orthogonal, and the alternation of animal signals need not be cooperative. Considering turn‐taking a subset of chorusing in the rhythmic dimension may avoid overinterpretation and enhance the comparability of future empirical work

    Evolutionary swarm robotics: a theoretical and methodological itinerary from individual neuro-controllers to collective behaviours

    Get PDF
    In the last decade, swarm robotics gathered much attention in the research community. By drawing inspiration from social insects and other self-organizing systems, it focuses on large robot groups featuring distributed control, adaptation, high robustness, and flexibility. Various reasons lay behind this interest in similar multi-robot systems. Above all, inspiration comes from the observation of social activities, which are based on concepts like division of labor, cooperation, and communication. If societies are organized in such a way in order to be more efficient, then robotic groups also could benefit from similar paradigms

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so
    • 

    corecore