

 University of Groningen

An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a
Swarm of Miniaturized Robots
Haghighat, Bahar; Boghaert, Johannes; Minsky-Primus, Zev ; Ebert, Julia; Liu, Fanghzheng;
Nisser, Martin; Ekblaw, Ariel; Nagpal, Radhika
Published in:
Swarm Intelligence

DOI:
10.1007/978-3-031-20176-9_2

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Haghighat, B., Boghaert, J., Minsky-Primus, Z., Ebert, J., Liu, F., Nisser, M., Ekblaw, A., & Nagpal, R.
(2022). An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm
of Miniaturized Robots. In M. Dorigo , H. Hamann , M. López-Ibáñez, J. García-Nieto, A. Engelbrecht , C.
Pinciroli, V. Strobel, & C. Camacho-Villalón (Eds.), Swarm Intelligence: 13th International Conference,
ANTS 2022 Málaga, Spain, November 2–4, 2022 Proceedings (pp. 14-28). (Lecture Notes in Computer
Science; Vol. 13491). Springer Verlag. https://doi.org/10.1007/978-3-031-20176-9_2

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

https://doi.org/10.1007/978-3-031-20176-9_2
https://research.rug.nl/en/publications/bb6883ca-ffe0-4a44-9ea9-117a02a6e426
https://doi.org/10.1007/978-3-031-20176-9_2

Marco Dorigo · Heiko Hamann ·
Manuel López-Ibáñez · José García-Nieto ·
Andries Engelbrecht · Carlo Pinciroli ·
Volker Strobel · Christian Camacho-Villalón (Eds.)

LN
CS

 1
34

91

Swarm Intelligence
13th International Conference, ANTS 2022
Málaga, Spain, November 2–4, 2022
Proceedings

Lecture Notes in Computer Science 13491

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Marco Dorigo • Heiko Hamann •

Manuel López-Ibáñez • José García-Nieto •

Andries Engelbrecht • Carlo Pinciroli •

Volker Strobel • Christian Camacho-Villalón (Eds.)

Swarm Intelligence
13th International Conference, ANTS 2022
Málaga, Spain, November 2–4, 2022
Proceedings

123

Editors
Marco Dorigo
Université Libre de Bruxelles
Brussels, Belgium

Heiko Hamann
University of Lübeck
Lübeck, Germany

University of Konstanz
Konstanz, Germany

Manuel López-Ibáñez
University of Manchester
Manchester, UK José García-Nieto

University of Málaga
Málaga, Spain

Andries Engelbrecht
Stellenbosch University
Stellenbosch, South Africa Carlo Pinciroli

Worcester Polytechnic Institute
Worcester, MA, USAVolker Strobel

Université Libre de Bruxelles
Brussels, Belgium Christian Camacho-Villalón

Université Libre de Bruxelles
Brussels, Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-20175-2 ISBN 978-3-031-20176-9 (eBook)
https://doi.org/10.1007/978-3-031-20176-9

© Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3971-0507
https://orcid.org/0000-0002-2458-8289
https://orcid.org/0000-0001-9974-1295
https://orcid.org/0000-0003-2985-3480
https://orcid.org/0000-0002-0242-3539
https://orcid.org/0000-0002-2155-0445
https://orcid.org/0000-0003-2974-9827
https://orcid.org/0000-0002-0182-3469
https://doi.org/10.1007/978-3-031-20176-9

Preface

These proceedings contain the papers presented at ANTS 2022, the Thirteenth Inter-
national Conference on Swarm Intelligence, which took place during November 2–4,
2022. The conference was hosted by the University of Málaga, Spain. The ANTS series
started in 1998 with the First International Workshop on Ant Colony Optimization
(ANTS’98). Since then ANTS, which is held bi-annually, has gradually become an
international forum for researchers in the wider field of swarm intelligence. In 2004,
this development was acknowledged by the inclusion of the term “Swarm Intelligence”
(next to “Ant Colony Optimization”) in the conference title. Starting in 2010, the
ANTS conference has been officially devoted to the field of swarm intelligence as a
whole, without any bias towards specific research directions; this is reflected in the
current title of the conference.

This volume contains 33 papers selected from 45 initial submissions. Of these, 19
were accepted as full-length papers and 14 were accepted as short papers. This cor-
responds to an overall acceptance rate of 73%. Also included in this volume are four
extended abstracts.

Each paper was subject to peer review and decisions on acceptance were based on
the reviews of at least three experts in the field. Papers of members of the organizing
committee were handled by a conflict-of-interest chair.

All the contributions were presented as posters. The full-length papers were also
presented orally in a plenary session. Selected extended versions of the best papers
presented at the conference will be published in a special issue of the journal Swarm
Intelligence.

We take this opportunity to thank the large number of people that were involved in
making this conference a success. We express our gratitude to the authors who con-
tributed their work, to the members of the international Program Committee, and to the
additional referees for their qualified and detailed reviews.

We hope the reader will find this volume useful both as a reference to current
research in swarm intelligence and as a starting point for future work.

August 2022 Marco Dorigo
Heiko Hamann

Manuel López-Ibáñez
José García-Nieto

Andries Engelbrecht
Carlo Pinciroli
Volker Strobel

Christian Camacho-Villalón

Organization

Organizing Committee

General Chairs

Marco Dorigo Université Libre de Bruxelles, Belgium
Heiko Hamann University of Konstanz, Germany

Local Organization and Publicity Chairs

Manuel López-Ibáñez University of Málaga, Spain
José García-Nieto University of Málaga, Spain

Technical Program Chairs

Andries Engelbrecht Stellenbosch University, South Africa
Carlo Pinciroli Worcester Polytechnic Institute, USA

Publication Chair

Volker Strobel Université Libre de Bruxelles, Belgium

Paper Submission Chair

Christian Camacho-Villalón Université Libre de Bruxelles, Belgium

Program Committee

Ashraf Abdelbar Brandon University, Canada
Martyn Amos Northumbria University, UK
Jacob Beal BBN Technologies, USA
Giovanni Beltrame Polytechnique Montréal, Canada
Tim Blackwell Goldsmiths, University of London, UK
Darko Bozhinoski Delft University of Technology, The Netherlands
Alexandre Campo Université Libre de Bruxelles, Belgium
Marco Castellani University of Birmingham, UK
Stephen Chen York University, Canada
Christopher Cleghorn University of the Witwatersrand, South Africa
Maurice Clerc Independent Consultant on Optimisation, France
Leandro Coelho Pontifícia Universidade Católica do Parana, Brazil
Carlos Coello Coello CINVESTAV-IPN, Mexico

Sanjoy Das Kansas State University, USA
Guido de Croon Delft University of Technology, The Netherlands
Gianni Di Caro Carnegie Mellon University, USA
Karl Doerner University of Vienna, Austria
Mohammed El-Abd American University of Kuwait, Kuwait
Eliseo Ferrante Vrjie Universitat Amsterdam, The Netherlands
Simon Garnier New Jersey Institute of Technology, USA
Roderich Gross University of Sheffield, UK
Kyle Harrison University of New South Wales Canberra, Australia
Kiyohiko Hattori University of Electro-Communications, Japan
Mary Katherine Heinrich Université Libre de Bruxelles, Belgium
Tim Hendtlass Swinburne University, Australia
Yara Khaluf Ghent University, Belgium
Simone Ludwig North Dakota State University, USA
Vittorio Maniezzo University of Bologna, Italy
Alcherio Martinoli École Polytechnique Fédérale de Lausanne,

Switzerland
Massimo Mastrangeli Delft University of Technology, The Netherlands
Michalis Mavrovouniotis University of Cyprus, Cyprus
Yi Mei Victoria University of Wellington, New Zealand
Bernd Meyer Monash University, Australia
Nicolas Monmarché Université de Tours, France
Roberto Montemanni Istituto Dalle Molle di Studi sull’Intelligenza

Artificiale, Switzerland
Frank Neumann University of Adelaide, Australia
Ben Niu Shenzhen University, China
Ann Nowe Vrije Universiteit Brussel, Belgium
Kazuhiro Ohkura Hiroshima University, Japan
Michael Otte University of Maryland, USA
Jacopo Panerati University of Toronto, Canada
Konstantinos Parsopoulos University of Ioannina, Greece
Orit Peleg University of Colorado Boulder, USA
Paola Pellegrini IFSTTAR, France
Gilbert Peterson US Air Force Institute of Technology, USA
Michal Pluhacek Tomas Bata University in Zlin, Czech Republic
Günther Raidl Vienna University of Technology, Austria
Pawel Romanczuk Humboldt University of Berlin, Germany
Andreagiovanni Reina Université Libre de Bruxelles, Belgium
Andrea Roli University of Bologna, Italy
Erol Şahin Middle East Technical University, Turkey
Roman Senkerik Tomas Bata University in Zlin, Czech Republic
Kevin Seppi Brigham Young University, USA
Thomas Stützle Université Libre de Bruxelles, Belgium
Dirk Sudholt University of Passau, Germany
Munehiro Takimoto Tokyo University of Science, Japan
Mohamed S. Talamali Sheffield Hallam University, UK

viii Organization

Danesh Tarapore University of Southampton, UK
Guy Theraulaz Paul Sabatier University, France
Dhananjay Thiruvady Deakin University, Australia
Vito Trianni Italian National Research Council, Italy
Elio Tuci Université de Namur, Belgium
Ali Emre Turgut Université Libre de Bruxelles, Belgium
Vivek Shankar

Varadharajan
Polytechnique Montréal, Canada

Mostafa Wahby University of Lübeck, Germany
Rolf Wanka Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Justin Werfel Harvard University, USA
Carsten Witt Technical University of Denmark, Denmark
Masahito Yamamoto Hokkaido University, Japan
Zhi-Hui Zhan South China University of Technology, China

Additional Reviewers

Nicolas Bredeche Sorbonne University, France
Nicolas Coucke Université Libre de Bruxelles, Belgium
Edmund Hunt University of Bristol, UK
Raina Zakir Université Libre de Bruxelles, Belgium

Organization ix

Contents

Full Papers

A Geometry-Sensitive Quorum Sensing Algorithm for the Best-of-N Site
Selection Problem . 1

Grace Cai and Nancy Lynch

An Approach Based on Particle Swarm Optimization for Inspection
of Spacecraft Hulls by a Swarm of Miniaturized Robots 14

Bahar Haghighat, Johannes Boghaert, Zev Minsky-Primus, Julia Ebert,
Fanghzheng Liu, Martin Nisser, Ariel Ekblaw, and Radhika Nagpal

Automatic Design of Multi-objective Particle Swarm Optimizers. 28
Daniel Doblas, Antonio J. Nebro, Manuel López-Ibáñez,
José García-Nieto, and Carlos A. Coello Coello

Automatic Extraction of Understandable Controllers from Video
Observations of Swarm Behaviors . 41

Khulud Alharthi, Zahraa S. Abdallah, and Sabine Hauert

Benchmarking Performances of Collective Decision-Making Strategies
with Respect to Communication Bandwidths in Discrete Collective
Estimation . 54

Qihao Shan and Sanaz Mostaghim

Best-of-N Collective Decisions on a Hierarchy . 66
Fabio Oddi, Andrea Cristofaro, and Vito Trianni

Collective Decision-Making for Conflict Resolution
in Multi-Agent Pathfinding. 79

Sebastian Mai and Sanaz Mostaghim

Controlling Robot Swarm Aggregation Through a Minority
of Informed Robots . 91

Antoine Sion, Andreagiovanni Reina, Mauro Birattari, and Elio Tuci

Decentralized Multi-Agent Path Finding in Warehouse Environments
for Fleets of Mobile Robots with Limited Communication Range 104

Abderraouf Maoudj and Anders Lyhne Christensen

Decomposition and Merging Co-operative Particle Swarm Optimization
with Random Grouping . 117

Alanna McNulty, Beatrice Ombuki-Berman, and Andries Engelbrecht

Dynamic Spatial Guided Multi-Guide Particle Swarm Optimization
Algorithm for Many-Objective Optimization. 130

Weka Steyn and Andries Engelbrecht

Extracting Symbolic Models of Collective Behaviors with Graph Neural
Networks and Macro-Micro Evolution . 142

Stephen Powers, Joshua Smith, and Carlo Pinciroli

Learning Resilient Swarm Behaviors via Ongoing Evolution 155
Aadesh Neupane and Michael A. Goodrich

Mind the Gap! Predictive Flocking of Aerial Robot Swarm in Cluttered
Environments . 171

Giray Önür, Ali Emre Turgut, and Erol Şahin

Moving Mixtures of Active and Passive Elements with Robots that Do Not
Compute . 183

Gopesh Yadav Dosieah, Anıl Özdemir, Melvin Gauci,
and Roderich Groß

Real-Time Coordination of a Foraging Robot Swarm Using Blockchain
Smart Contracts . 196

Alexandre Pacheco, Volker Strobel, Andreagiovanni Reina,
and Marco Dorigo

Robot Swarms Break Decision Deadlocks in Collective Perception
Through Cross-Inhibition . 209

Raina Zakir, Marco Dorigo, and Andreagiovanni Reina

Self-organized Chain Formation of Nano-Drones in an Open Space. 222
Agata Barciś, Michał Barciś, Enrico Natalizio, and Eliseo Ferrante

The Hidden Benefits of Limited Communication and Slow Sensing
in Collective Monitoring of Dynamic Environments 234

Till Aust, Mohamed S. Talamali, Marco Dorigo, Heiko Hamann,
and Andreagiovanni Reina

Short Papers

A Novel Time-of-Flight Range and Bearing Sensor System for Micro Air
Vehicle Swarms . 248

Cem Bilaloğlu, Mehmet Şahin, Farshad Arvin, Erol Şahin,
and Ali Emre Turgut

An Adaptive Metric Model for Collective Motion Structures in Dynamic
Environments . 257

Stef Van Havermaet, Pieter Simoens, and Yara Khaluf

xii Contents

An Extension of the iMOACOR Algorithm Based on Layer-Set Selection . . . 266
Ashraf M. Abdelbar, Thomas Humphries,
Jesús Guillermo Falcón-Cardona, and Carlos A. Coello Coello

Binary Particle Swarm Optimization for Selective Cell Switch-Off in
Ultra-Dense 5G Networks . 275

Juan Jesús Espinosa-Martínez, Jesús Galeano-Brajones,
Javier Carmona-Murillo, and Francisco Luna

Choeur Synthétique: An Art Installation Based on Swarm Robotics. 284
Muhanad Alkilabi, Arnaud Eeckhout, Mauro Vitturini,
Marie du Chastel, Marine Warzée, Jean-Yves Rousseaux,
Antoine Hubermont, Timoteo Carletti, and Elio Tuci

Component Swarm Optimization Using Virtual Forces for Solving Layout
Problems . 292

Juliette Gamot, Romain Wuilbercq, Mathieu Balesdent,
Arnault Tremolet, Nouredine Melab, and El-ghazali Talbi

Constant Bearing Flocking . 300
Cristino de Souza Junior, Tiziano Manoni, and Eliseo Ferrante

Distributed Sorting in Complex Environments . 308
Mohammed Abdullhak and Andrew Vardy

Effect of Different Communication Affordances on the Emergence
of Collaboration Strategies in an Online Multiplayer Game 316

Hala Khodr, Nicolas Wagner, Barbara Bruno, Aditi Kothiyal,
and Pierre Dillenbourg

Generating and Analyzing Collective Step-Climbing Behavior
in a Multi-legged Robotic Swarm . 324

Daichi Morimoto, Motoaki Hiraga, Kazuhiro Ohkura,
and Masaharu Munetomo

Modeling Immune Search Through the Lymphatic Network 332
Jannatul Ferdous, G. Matthew Fricke, and Melanie E. Moses

Optimization of a Self-organized Collective Motion in a Robotic Swarm 341
Mazen Bahaidarah, Fatemeh Rekabi Bana, Ali Emre Turgut,
Ognjen Marjanovic, and Farshad Arvin

Response Threshold Distributions to Improve Best-of-N Decisions in
Minimalistic Robot Swarms . 350

Swadhin Agrawal, Sujit P. Baliyarasimhuni, and Andreagiovanni Reina

Contents xiii

Stability-Guided Particle Swarm Optimization. 360
Andries Engelbrecht

Extended Abstracts

Animals Are Not Particles: Towards a Second Generation
of ‘Hetero-Swarm’ Robotics . 371

Marina Papadopoulou, Ines Fürtbauer, and Andrew J. King

Applying PSO to Find Optimal Strategy for 3D Chip Layout Design. 373
Katarzyna Grzesiak-Kopeć and Maciej Ogorzałek

Particle Swarm Optimization Applied to the Direct Aperture Optimization
Problem on Radiotherapy . 375

Gonzalo Tello-Valenzuela, Mauricio Moyano, Keiny Meza-Vasquez,
and Guillermo Cabrera-Guerrero

Search Space Illumination of Robot Swarm Parameters
for Trustworthiness . 378

James Wilson and Sabine Hauert

Author Index . 381

xiv Contents

A Geometry-Sensitive Quorum Sensing
Algorithm for the Best-of-N Site Selection

Problem

Grace Cai(B) and Nancy Lynch

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
gracecai@mit.edu, lynch@csail.mit.edu

Abstract. The house hunting behavior of the Temnothorax albipennis
ant allows the colony to explore several nest choices and agree on the
best one. Their behavior serves as the basis for many bio-inspired swarm
models to solve the same problem. However, many of the existing site
selection models in both insect colony and swarm literature test the
model’s accuracy and decision time only on setups where all potential site
choices are equidistant from the swarm’s starting location. These models
do not account for the geographic challenges that result from site choices
with different geometry. For example, although actual ant colonies are
capable of consistently choosing a higher quality, further site instead of
a lower quality, closer site, existing models are much less accurate in this
scenario. Existing models are also more prone to committing to a low
quality site if it is on the path between the agents’ starting site and a
higher quality site. We present a new model for the site selection problem
and verify via simulation that is able to better handle these geographic
challenges. Our results provide insight into the types of challenges site
selection models face when distance is taken into account. Our work will
allow swarms to be robust to more realistic situations where sites could
be distributed in the environment in many different ways.

1 Introduction

Swarms of birds, bees, and ants are able to coordinate themselves to make deci-
sions using only local interactions [3,14,18]. Modelling these natural swarms has
inspired many successful swarm algorithms [7]. One such bio-inspired algorithm
comes from the house hunting behavior of ants. Models of the ants’ behavior
when selecting a new nest serve as the basis for swarm algorithms which seek to
select the best site out of a discrete number of candidate sites in space [17].

Many variations of the best-of-N site selection problem have been studied
for swarms [22]. For example, when sites are of equal quality, choosing one is
a symmetry-breaking problem [9,23]. Situations with asymmetric site qualities
and costs (where higher quality sites have a higher cost of being chosen) have
also been studied – for example, when one of two candidate sites is significantly
larger than the other (making it harder for agents to detect other agents favoring
the larger site, even when it is of higher quality) [4].
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 1–13, 2022.
https://doi.org/10.1007/978-3-031-20176-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_1&domain=pdf
http://orcid.org/0000-0001-5929-4347
http://orcid.org/0000-0003-3045-265X
https://doi.org/10.1007/978-3-031-20176-9_1

2 G. Cai and N. Lynch

However, most site selection models are mainly tested on small numbers
of candidate nest sites that are equidistant from the agents’ starting location
(also known as the home nest) [6,15]. In many applications of the site selection
problem such as shelter seeking, sites will not be distributed so uniformly.

This equidistant setup fails to capture two important geographical details
that existing algorithms struggle with in making accurate decisions. Firstly, nests
that are closer to the home nest are advantaged because they are more likely to
be found. Even so, house hunting ants can still choose higher quality sites that
are much further than lower quality, closer sites. We have found that existing
site selection models often commit to the closer site even when there is a better,
further option. Secondly, using sites equidistant from the home nest eliminates
the possibility of some nests being in the way of others. Site selection models
often trigger consensus on a new site after a certain quorum population of agents
have been detected in it. If a low quality nest is on the path from the home nest
to a high quality nest, agents travelling between the home nest and the high
quality nest could saturate the path and detect a quorum for the lower quality
nest that is in the way instead of the highest quality nest.

This paper aims to create a new algorithm that can successfully account for
a more varied range of nest distributions, allowing agents to successfully choose
higher quality nests even when they have the disadvantage of being further from
the agents’ starting location or there are other lower quality nests in the way. The
model should also perform with similar accuracy compared to existing models on
the default setup with equidistant candidate nest sites. We show via simulation
that incorporating a quorum threshold that decreases with site quality allows
for increased accuracy compared to previous models. We also show that setups
where candidate sites are in the way of each other or are of similar quality can
make it harder for site selection models to produce accurate results.

Section 2 describes the house hunting process of ants and overviews existing
swarm models. Section 3 describes our model. We provide details on the imple-
mentation of our model, test accuracy and decision time in different geographic
situations, and report the results in Sect. 4. We discuss these results in Sect. 5.
Lastly, we suggest future work in Sect. 6. The full simulation code can be found
at [1].

2 Background

2.1 Ant House Hunting

When the T. albipennis ants’ home nest is destroyed, the colony can find and
collectively move to a new, high quality nest. To do so, T. albipennis scouts first
scan the area, searching for candidate nests. When a nest is found, the scouts
wait a period of time inversely proportional to the nest quality before returning
to the home nest. There, they recruit others to examine the new site in a process
known as forward tandem running. Tandem runs allow more ants to learn the
path to a new site in case the ants decide to move there. When an ant in a
candidate nest encounters others in the site at a rate surpassing a threshold

Geometry-Sensitive Algorithm for N-Site Selection 3

rate (known as the quorum threshold), ants switch their behavior to carrying
other members of the colony to the new nest. Carrying is three times faster than
tandem runs and accelerates the move to the new nest [13,14].

This decision-making process allows ants to not only agree on a new nest, but
also to choose the highest quality nest out of multiple nests in the environment.
This is true even if the high quality nest is much further from the home nest
than the low quality nest [8,19]. Franks [8] found that with a low quality nest
30 cm from home and a high quality nest 255 cm from home, 88% of ant colonies
successfully chose the high quality nest even though it was 9 times further.

2.2 House Hunting and Site Selection Models

To better study the ants’ behavior, models have been designed to simulate how
ants change behavior throughout the house hunting process [15,24]. These mod-
els, initiated by Pratt [15], allow simulated ants to probabilistically transition
through four phases – the Exploration, Assessment, Canvassing, and Transport
phases. The Exploration represents when the ants are still exploring their envi-
ronment for new sites. When an ant discovers a site, it enters the Assessment
phase, in which it examines the quality of the site and determine whether to
accept or reject it. If the ant accepts the site, it enters the Canvassing phase,
which represents the process of recruiting other ants via forward tandem runs.
Finally, if a quorum is sensed, the ant enters the Transport phase, which repre-
sents the carrying behavior used to move the colony to the new site.

These models, however, assume that when an ant transitions from the Explo-
ration phase to the Assessment phase, it is equally likely to choose any of the
candidate nest sites to assess. This assumes that any nest is equally likely to
be found, which is unlikely in the real world because sites closer to the home
nest are more likely to be discovered. To our knowledge, house hunting models
have not tried to model situations where nests have different likelihoods of being
found, as is the case when nests have different distances from the home nest [24].

The corresponding problem to house hunting in robot swarms is known as the
N -site selection problem [22]. Agents, starting at a central home site, must find
and choose among N candidate nest sites in the environment and move to the
site with highest quality. Unlike house hunting models, which do not physically
simulate ants in space, swarm models set up ants in a simulated arena and let
them physically explore sites and travel between them.

Inspired by ant modelling, [6] and [17] have modeled swarm agents using
four main states – Uncommitted Latent, Uncommitted Interactive, Favoring
Latent, and Favoring Interactive (with [6] adding a fifth Committed state to
emulate having detected a quorum). Uncommitted Latent agents remain in the
home nest while Uncommitted Interactive agents explore the arena for candidate
sites. Favoring Interactive agents have discovered and are favoring a certain site
and recruit other agents to the site, while Favoring Latent agents remain in the
new site to try and build up quorum. Agents probabilistically transition between
these states based on environmental events (e.g. the discovery of a new site) and
eventually end up significantly favoring a new candidate nest or committed to

4 G. Cai and N. Lynch

it. Other swarm models for N-site selection typically use a similar progression
through uncommitted, favoring, and committed type phases [12].

One setup where a high quality site was twice as far as a low quality one was
successfully solved in [17], but for the most part these models and their variations
have mainly been tested in arenas with two candidate sites equidistant from the
home nest [2,6,11,16]. Our model aims to analyze the behavior of these models
in more varied site setups and improve upon them.

3 Model

We first describe our new discrete geographical model for modeling swarms.
Then we discuss the individual restrictions, parameters, and agent algorithms
needed for the house hunting problem specifically.

3.1 General Model

We assume a finite set R of agents, with a state set SR of potential states. Agents
move on a discrete rectangular grid of size n × m, formally modelled as directed
graph G = (V,E) with |V | = mn. Edges are bidirectional, and we also include
a self-loop at each vertex. Vertices are indexed as (x, y), where 0 ≤ x ≤ n − 1,
0 ≤ y ≤ m − 1. Each vertex also has a state set SV of potential states.

We use a discrete model so the model can be simulated in a distributed
fashion on each vertex to reduce computation time.

Local Configurations: A local configuration C ′(v) captures the contents vertex
v. It is a triple (sv,myagents, srmap), where sv ∈ SV is the vertex state of v,
myagents ⊆ R is the set of agents at v, and srmap : myagents → SR assigns
an agent state to each agent at v.

Local Transitions: The transition of a vertex v may be influenced by the local
configurations of nearby vertices. We define an influence radius I, which is
the same for all vertices, to mean that vertex indexed at (x, y) is influenced by
all valid vertices {(a, b)|a ∈ [x − I, x + I], b ∈ [y − I, y + I]}, where a and b are
integers. We can use this influence radius to create a local mapping Mv from local
coordinates to the neighboring local configurations. For a vertex v at location
(x, y), we produce Mv such that Mv(a, b) → C ′(w) where w is the vertex located
at (x + a, y + b) and −I < a, b < I. This influence radius is representative of a
sensing and communication radius. Agents can use all information from vertices
within the influence radius to make decisions.

We have a local transition function δ, which maps all the information asso-
ciated with one vertex and its influence radius at one time to new information
that can be associated with the vertex at the following time. It also produces
directions of motion for all the agents at the vertex.

Geometry-Sensitive Algorithm for N-Site Selection 5

Formally, for a vertex v, δ probabilistically maps Mv to a quadruple of the
form (sv1,myagents, srmap1, dirmap1), where sv1 ∈ SV is the new state of the
vertex, srmap1 : myagents → SR is the new agent state mapping for agents
at the vertex, and dirmap1 : myagents → {R,L,U,D, S} gives directions of
motion for agents currently at the vertex. Note that R, L, U , and D mean right,
left, up, and down respectively, and S means to stay at the vertex. The local
transition function δ is further broken down into two phases as follows.

Phase One: Each agent in vertex v uses the same probabilistic transition function
α, which probabilistically maps the agent’s state sr ∈ SR, location (x, y), and the
mapping Mv to a new suggested vertex state sv′, agent state sr′, and direction of
motion d ∈ {R,L,U,D, S}. We can think of α as an agent state machine model.

Phase Two: Since agents may suggest conflicting new vertex states, a rule L
is used to select one final vertex state. The rule also determines for each agent
whether they may transition to state sr′ and direction of motion d or whether
they must stay at the same location with original state sr.

Probabilistic Execution: The system operates by probablistically transi-
tioning all vertices v for an infinite number of rounds. During each round,
for each vertex v, we obtain the mapping Mv which contains the local con-
figurations of all vertices in its influence radius. We then apply δ to Mv to
transition vertex v and all agents at vertex v. For each vertex v we now have
(svv,myagentsv, srmapv, dirmapv) returned from δ.

For each v, we take dirmapv, which specifies the direction of motion for each
agent and use it to map all agents to their new vertices. For each vertex v, it’s
new local configuration is just the new vertex state svv, the new set of agents at
the vertex, and the srmap mapping from agents to their new agent states.

3.2 House Hunting Environment Model

The goal of the house hunting problem is for agents to explore the grid and select
the best site out of N sites to migrate to collectively. We model sites as follows.

A set S, |S| = N of rectangular sites are located within this grid, where
site si has lower left vertex (x1

i , y
1
i) and upper right vertex (x2

i , y
2
i). Each site si

also has a quality si.q ∈ [0, 1]. To represent these sites, we let the vertex state
set be SV = S ∪ {∅} for each vertex, indicating which site, if any, the vertex
belongs to. Furthermore, we denote the site s0 to be the home nest. In the initial
configuration, all agents start out at a random vertex in the home nest, chosen
uniformly from among the vertices in that nest.

3.3 Agent States and Transition Function

The agent state set SR is best described in conjunction with the agent transition
function α. Agents can take on one of 6 core states, each a combination of one of
three preference states (Uncommitted, Favoring, Committed), and two activity
states (Nest, Active). The state model can be seen in Fig. 1.

6 G. Cai and N. Lynch

UA UN

FA
i

FN
i FN

j=i

PN

PA

P
S
i v

i (1−
x)

β

PN

PA

DsjPij

DsiPji

P
S
i v

ix

UA

UN

FN
i

FA
i

CA
i

CN
i

0.5(PQi + PQ)

0
.5(P

Q
i
+

P
Q
)

0.5(PQi + PQ)

0
.5(P

Q
i
+

P
Q
)

0.5P
Qi

0.
5P

Q
i

0.5P
Qi

0.
5P

Q
i

Fig. 1. State model. {U,F,C} denote preference states. The superscript {N,A} denotes
the activity state, and a subscript i denotes that an agent is favoring or committed to
site i. The transitions for Uncommitted and Favoring states are shown on the left, and
transitions from Uncommitted and Favoring to Committed states are on the right.

Uncommitted Nest (UN) agents stay in the home nest to prevent too many
agents from flooding the environment. They have a chance of transitioning to
Uncommitted Active (UA) agents, which try to explore the arena and discover
new sites. UA agents move according to the Levy flight random walk, which has
been shown to be used by foraging ants [21]. UN agents transition to UA with
probability PA, and UA agents transition to UN agents with probability PN . This
results in an expected x = PA

PA+PN
percent of uncommitted agents are active,

whereas 1 − x agents remain in the nest. Prior work [17] lets PN = 9PA = L,
where L is the inverse of the average site round trip time, chosen to promote
sufficient mixing. This leads to 10% of the agent population being active.

Uncommitted Active agents have a chance PSi
of discovering a new nest,

which is 1 if a new nest is within influence radius and 0 otherwise. If they
discover a nest si, they explore and accept it with probability si.q (the quality
of si). They then have an x% chance of transitioning to Favoring Active, and a
(1 − x)% chance of transitioning to Favoring Nest.

Favoring agents (FA
i , FN

i) prefer the site si that they discovered. Favoring
Active (FA

i) agents remain in site si to build quorum. Favoring Nest (FN
i) agents

return to the home nest to recruit others to site si. Favoring Nest agents tran-
sition to Active with the same probability PA and Favoring Active agents tran-
sition back to Nest agents with probability PN , creating the same effect where
an expected 90% of the favoring agent population is FA

i while the rest are FN
i .

FN
i agents have a probability β of abandoning their nest, which is 1 if the

time spent without seeing other agents surpasses tβ . FA
i agents can be inhibited

by other FA
i agents as follows. The chance an agent favoring nest i is converted

to favoring nest j is DrjPij , where the factor of D is the probability of agents
messaging each other (to prevent excessive messaging). rj is the number of agents
favoring sj that have the agent within their influence radius. After an agent hears
of the new site sj , it visits the site to evaluate sj .q and changes its preference to
sj if sj .q > si.q. Thus, the condition Pij is 1 when sj .q > si.q and 0 otherwise.

Geometry-Sensitive Algorithm for N-Site Selection 7

UA agents and FN
i agents can detect a quorum and commit to a site when q

agents in the site are within their influence radius. The quorum size scales with
site value as q = �(qMIN −qMAX)∗si.q+qMAX
, where qMAX and qMIN are the
maximum and minimum possible quorum threshold respectively. The condition
PQ is 1 when quorum is satisfied and 0 otherwise. Agents in any Favoring or
Uncommitted state will transition to the committed state, if they encounter an
agent already in quorum. The condition PQi

is 1 when another quorum agent
for si is encountered and 0 otherwise. Furthermore, agents have an 1

2 chance of
transitioning to Committed Active (CA

i) and a 1
2% chance of Committed Nest

CN
i after having detected or been notified of a quorum.

CN
i agents head to the home nest to inform others of the move, while CA

i

agents randomly wander the grid to find stragglers. Agents in quorum states
continue to wander until they have sensed quorum for tQ time steps, whereupon
they return to the new selected site si.

The resulting agent state set SR is a product of the 6 core states needed in the
state model as well as a number of auxiliary variables such as an agent’s destina-
tion, the names of the sites it favors or has sensed quorum for, and parameters
for an agent’s random walk when exploring the grid.

Since in the house hunting problem (unlike other problems like task alloca-
tion), an agent never modifies the environment, an agent’s proposed new vertex
state is always the same as the old vertex state. Therefore, phase two of δ is not
needed to reconcile conflicting vertex state suggestions from agents.

The transition function α, which for each agent returns a proposed new vertex
state sv′, agent state sr′ and direction of motion works as follows. The agent
never modifies the grid, so sv′ = sv. The agent state sr′ and direction d are
calculated according to the core transitions and the auxiliary variables needed
to keep track of those transitions. For example, when an agent is headed towards
a site, the direction d is calculated to be the next step towards the site. When
an agent is staying within a site, the direction d is calculated to be a random
walk within the site boundaries.

The total set of variables parameters is {PA, PN ,D, tQ, tβ , qMIN , qMAX}, as
well as the site locations (x1

i , y
1
i), (x

2
i , y

2
i) and quality si.q. In Sect. 4, we explore

how changes in qMIN , qMAX , and the site locations and quality impact the
accuracy, decision time, and split decisions made by the model.

4 Results

The model was tested in simulation using Pygame, with each grid square repre-
senting 1 cm2. Agents moved at 1 cm/s, with one round representing one second.
We chose this speed because even the lowest cost robots are still able to move at
1 cm/s [20]. Agents had an influence radius of 2. All simulations were run using
100 agents, and a messaging rate of 1/15. We let the abandonment timeout
tβ = 5

L and the quorum timeout tQ = 1
L .

For each set of trials, we evaluated accuracy (the fraction of agents who chose
the highest quality nest), decision time (the time it took for all agents to arrive

8 G. Cai and N. Lynch

at the nest they committed to), and split decisions (the number of trials where
not all agents committed to the same nest).

4.1 Further Nest of Higher Quality

House hunting ants are capable of choosing further, higher quality sites over
closer, lower quality ones [8]. When the far site and the near site are of equal
value, ants consistently choose the closer one. To test our model’s ability to
produce the same behavior, we replicated the experimental setups in [8].

Three different distance comparisons were tested, with a further, higher qual-
ity nest of quality 0.9 being 2x, 3x, and 9x as far as a lower quality nest of quality
0.3 on the path from the high quality nest to the home nest. We included a con-
trol setup for each of these distance comparisons where both the far and close
nest were quality 0.3. The arena size was N = 16,M = 80 for the 2x case,
N = 18,M = 180 for the 3x case, and N = 18, M = 300 for the 9x case.

We tested our model using two different quorum parameters. In one test, we
had qMIN = qMAX = 4, intended to represent the behavior of previous models
with a fixed quorum threshold. In the other setup, qMIN = 4 and qMAX = 7,
allowing our model to use the new feature of scaling the quorum threshold with
site quality. We ran 100 trials for each set of parameters.

Fig. 2. Decision Time and Accuracy for far nests 2, 3, and 9 times as far from the
home nest. Fixed quorum indicates the fixed threshold value of 4, and scaled quorum
indicates qMIN = 4, qMAX = 7. The accuracy for the actual ants is taken from [8].

As seen in Fig. 2, using a scaled threshold significantly improved accuracy
from using a fixed one. In the control case, both the fixed and scaled quorum
threshold achieved high accuracy, with all accuracies being greater than 99%.
In cases where the far site was of higher quality, the decision time for fixed
and scaled quorum was comparable. However, the scaled quorum threshold took
significantly (Welch’s T-test, p = 0.05) more time in the control case to decide.

Furthermore, as seen in Fig. 2, our model successfully chose the further site
with comparable (or significantly higher in the 9x case) accuracy than ants
themselves, indicating that our model is on par with the ants.

Geometry-Sensitive Algorithm for N-Site Selection 9

4.2 Effects of Lower Quality Nest Being in the Way

To isolate the effects of the low quality nest being in the way of the high quality
nest, we tested our model where the high quality nest (quality 0.9) was one of
{2, 3, 4, 5, 6, 7, 8, 9} times further than the low quality nest (quality 0.3), but in
opposite directions of the home nest. We compared model performance when the
low quality nest was in the way of the home nest. We ran tests with N = 18,
M = 300, with the low quality nest always 30 cm from home. We again tested a
fixed (qMIN = qMAX = 4) and scaled (qMIN = 4, qMAX = 7) quorum threshold
on these setups. 100 trials were conducted for each set of parameters.

Fig. 3. Decision Time and Accuracy for far nests 2–9 times further than the close nest
for both fixed and scaled quorums. In the in-the-way setup, the home nest, low quality
nest, and high quality nest were lined up in that order. In the out of way setup, the
low quality nest, home nest, and high quality nest were lined up in that order.

Figure 3 shows that for the out-of-way setup, the scaled quorum performs
significantly (Welch’s T-test, p = 0.05) more accurately than the fixed quorum
on all far nest distances. For the in-the-way setup, the scaled quorum performs
significantly better (Welch’s T-test, p = 0.05) when the far nest is 3x further or
more. Note it is harder for the fixed quorum to solve the in-the-way problem
accurately compared to the out-of-way problem (Welch’s T-test, p = 0.05). It is
likewise harder for the scaled quorum to solve the in-the-way problem when the
far nest is {3, 4, 6, 7, 8, 9} times further (Welch’s T-test, p = 0.05), showing that
the in-the-way problem is harder to solve for site selection algorithms.

For distances 3x or further, there is no significant difference between the
decision times for the fixed out-of-way, scaled out-of-way, and scaled in-the-way
setups. For distances 5x and further, the fixed quorum takes significantly less
time than the other setups but suffers in decision accuracy (Welch’s T-test,
p = 0.05) compared to the other three setups.

4.3 Effects of Magnitude of Difference in Site Quality

Because site quality affects the quorum threshold, we expect it to be harder
for agents to correctly choose a high quality far site when it is only slightly

10 G. Cai and N. Lynch

better than nearby lower quality sites. This is because the difference in quorum
threshold is less pronounced for sites of similar quality. For two equidistant nests,
the algorithm should consistently choose the best site as it has in past work, so
the absolute difference in site quality should not matter.

To test these effects, we used the setup in Sect. 4.1 where the further nest
was 2x (60 cm) as far as the in-the-way close nest (30 cm), and compared it to an
equidistant setup where both candidate nests were 30 cm away from the home
nest in opposite directions. We tested both a fixed quorum qMAX = qMIN = 4
and a scaled quorum on these setups qMAX = 7, qMIN = 4. We varied the quality
of the near nest in the set of potential values {0.3, 0.6, 0.9}, corresponding to
quorum thresholds of {6, 5, 4} respectively, with the far nest having quality 1.0.
(In the equidistant case, we varied the quality of one nest while the other had
quality 1.0.) Fig. 4 shows the resulting accuracy and decision time.

Fig. 4. Decision Accuracy and Time given varying differences in site quality between
the near and the far nest.

As predicted, a smaller difference in site quality/quorum threshold led to
significantly (Welch’s T-test, p = 0.05) lower decision accuracy for the non-
equidistant setup. In the equidistant setup, agents were able to achieve a near-
100% outcome regardless of magnitude of differences in site quality. However,
in the unbalanced setup, we confirmed that for larger differences in site quality,
the algorithm comes to a more accurate decision, showing that non-equidistant
candidate nest setups cause sensitivity to absolute site value differences that
can’t be seen in the equidistant setup.

5 Discussion

The results demonstrate our model’s ability to improve accuracy when choosing
from a higher quality, further site and a lower quality, closer site. This improve-
ment comes at the cost of a higher decision time when converging on a lower
quality site, because the quorum threshold for low quality sites is higher in our
model. This higher decision time is reasonable and represents hesitance when
committing to a poor quality option in the hopes of finding a better one.

Geometry-Sensitive Algorithm for N-Site Selection 11

Our model also demonstrated the extra difficulty that comes with a lower
quality site being in the path from the home nest to a high quality site. Quali-
tative observation showed that agents travelling back and forth between the far
site and the home nest often unintentionally contributed to a quorum in the
poor quality, in-the-way site as they travelled through it. We showed that using
a scaled quorum threshold as opposed to a fixed one is an effective way of sig-
nificantly increasing decision accuracy. However, even if the closer, poor quality
site is completely out of the way of the far, high quality site, Fig. 3 shows that
using a scaled quorum can still help to improve accuracy.

Figure 4 shows that our model is still successful when candidate sites are
equidistant from home, as is most commonly tested. We also show that an
equidistant setup is not influenced by the absolute difference between candi-
date site qualities. Contrarily, in the setup with a further, high quality nest, it is
harder to make an accurate decision the smaller the quality difference between
the high and low quality nests. Note that it is also less grievous of an error to
choose the low quality nest when the quality difference is small.

We observed a shorter decision time in conjunction with lower accuracy,
similar to the time-accuracy trade-off in natural swarms [5,10]. In each set of
100 trials run, there were at most 2 split decisions, indicating our model succeeds
in keeping the swarm together even when migrating to the further nest.

6 Future Work

While our model has made strides in being more accurate when choosing between
sites with different geographical distributions, many site setups have yet to be
tested. Future work could introduce obstacles to the environment, or try to adapt
the house hunting model to an arena with continuous site values.

Our model suggests that a quorum threshold that scales with site quality
leads to more accurate site selection. Future work could explore if actual ants
do the same and use this information to create more accurate models.

Lastly, while our model is hard to analyze without making simplifications
(because it involves agents physically moving in space), future work could try
to develop analytical bounds. One method we envision is simplifying the chance
of each site being discovered to a fixed probability and trying to model agent
population flow between the different model states, similar to [16], which does
this for candidate sites all with an equal chance of discovery.

Acknowledgements. This work was supported by NSF awards CCF-1461559, CCF-
1810758, and CCF-2139936.

References

1. Cai, G.: Geometric Swarm Modelling (2022). https://doi.org/10.5281/zenodo.
6508646

https://doi.org/10.5281/zenodo.6508646
https://doi.org/10.5281/zenodo.6508646

12 G. Cai and N. Lynch

2. Cai, G., Sofge, D.: An urgency-dependent quorum sensing algorithm for N-site
selection in autonomous swarms. In: Proceedings of the 18th International Confer-
ence on Autonomous Agents and MultiAgent Systems, pp. 1853–1855 (2019)

3. Camazine, S., Visscher, P.K., Finley, J., Vetter, R.S.: House-hunting by honey bee
swarms: collective decisions and individual behaviors. Insectes Soc. 46(4), 348–360
(1999)

4. Campo, A., Garnier, S., Dédriche, O., Zekkri, M., Dorigo, M.: Self-organized dis-
crimination of resources. PLoS ONE 6(5), e19888 (2011)

5. Chittka, L., Dyer, A.G., Bock, F., Dornhaus, A.: Bees trade off foraging speed for
accuracy. Nature 424(6947), 388 (2003)

6. Cody, J.R., Adams, J.A.: An evaluation of quorum sensing mechanisms in collective
value-sensitive site selection. In: 2017 International Symposium on Multi-Robot
and Multi-Agent Systems (MRS), pp. 40–47 (2017). https://doi.org/10.1109/MRS.
2017.8250929

7. Fan, X., Sayers, W., Zhang, S., Han, Z., Ren, L., Chizari, H.: Review and clas-
sification of bio-inspired algorithms and their applications. J. Bionic Eng. 17(3),
611–631 (2020)

8. Franks, N.R., et al.: Can ant colonies choose a far-and-away better nest over an
in-the-way poor one? Anim. Behav. 76(2), 323–334 (2008)

9. Hamann, H., Schmickl, T., Wörn, H., Crailsheim, K.: Analysis of emergent symme-
try breaking in collective decision making. Neural Comput. Appl. 21(2), 207–218
(2012)

10. Heitz, R.P.: The speed-accuracy tradeoff: history, physiology, methodology, and
behavior. Front. Neurosci. 8, 150 (2014)

11. Khurana, S., Sofge, D.: Quorum sensing re-evaluation algorithm for N-site selection
in autonomous swarms. In: ICAART (1), pp. 193–198 (2020)

12. Parker, C.A.C., Zhang, H.: Cooperative decision-making in decentralized multiple-
robot systems: the best-of-N problem. IEEE/ASME Trans. Mechatron. 14, 240–251
(2009)

13. Pratt, S.C.: Behavioral mechanisms of collective nest-site choice by the ant tem-
nothorax curvispinosus. Insectes Soc. 52(4), 383–392 (2005)

14. Pratt, S.C.: Quorum sensing by encounter rates in the ant Temnothorax albipennis.
Behav. Ecol. 16(2), 488–496 (2005)

15. Pratt, S.C., Sumpter, D.J., Mallon, E.B., Franks, N.R.: An agent-based model
of collective nest choice by the ant Temnothorax albipennis. Anim. Behav. 70(5),
1023–1036 (2005)

16. Reina, A., Marshall, J.A., Trianni, V., Bose, T.: Model of the best-of-N nest-site
selection process in honeybees. Phys. Rev. E 95(5), 052411 (2017)

17. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design
pattern for decentralised decision making. PLoS ONE 10(10), e0140950 (2015)

18. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In:
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 25–34 (1987)

19. Robinson, E.J., Smith, F.D., Sullivan, K.M., Franks, N.R.: Do ants make direct
comparisons? Proc. R. Soc. B: Biol. Sci. 276(1667), 2635–2641 (2009)

20. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system
for collective behaviors. In: 2012 IEEE International Conference on Robotics and
Automation, pp. 3293–3298. IEEE (2012)

21. Sims, D.W., Humphries, N.E., Bradford, R.W., Bruce, B.D.: Lévy flight and Brow-
nian search patterns of a free-ranging predator reflect different prey field charac-
teristics. J. Anim. Ecol. 81(2), 432–442 (2012)

https://doi.org/10.1109/MRS.2017.8250929
https://doi.org/10.1109/MRS.2017.8250929

Geometry-Sensitive Algorithm for N-Site Selection 13

22. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-N problem in robot swarms:
formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017)

23. Wessnitzer, J., Melhuish, C.: Collective decision-making and behaviour transi-
tions in distributed ad hoc wireless networks of mobile robots: target-hunting.
In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL
2003. LNCS (LNAI), vol. 2801, pp. 893–902. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-39432-7_96

24. Zhao, J., Lynch, N., Pratt, S.C.: The power of social information in ant-colony
house-hunting: a computational modeling approach. bioRxiv, pp. 2020-10 (2021)

https://doi.org/10.1007/978-3-540-39432-7_96
https://doi.org/10.1007/978-3-540-39432-7_96

An Approach Based on Particle Swarm
Optimization for Inspection of Spacecraft
Hulls by a Swarm of Miniaturized Robots

Bahar Haghighat1,2(B), Johannes Boghaert1,3, Zev Minsky-Primus1,
Julia Ebert1, Fanghzheng Liu4, Martin Nisser4, Ariel Ekblaw5,

and Radhika Nagpal1,2

1 Harvard University, Boston, MA, USA
bahar.haghighat@princeton.edu

2 Princeton University, Princeton, NJ, USA
3 Swiss Federal Institute of Technology in Zürich (ETHZ), Zürich, Switzerland

4 Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
5 MIT Media Lab Space Exploration Initiative, Cambridge, MA, USA

Abstract. The remoteness and hazards that are inherent to the oper-
ating environments of space infrastructures promote their need for auto-
mated robotic inspection. In particular, micrometeoroid and orbital
debris impact and structural fatigue are common sources of damage to
spacecraft hulls. Vibration sensing has been used to detect structural
damage in spacecraft hulls as well as in structural health monitoring
practices in industry by deploying static sensors. In this paper, we pro-
pose using a swarm of miniaturized vibration-sensing mobile robots real-
izing a network of mobile sensors. We present a distributed inspection
algorithm based on the bio-inspired particle swarm optimization and evo-
lutionary algorithm niching techniques to deliver the task of enumera-
tion and localization of an a priori unknown number of vibration sources
on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a
swarm of simulated cm-scale wheeled robots. These are guided in their
inspection task by sensing vibrations arising from failure points on the
surface which are detected by on-board accelerometers. We study three
performance metrics: (1) proximity of the localized sources to the ground
truth locations, (2) time to localize each source, and (3) time to finish the
inspection task given a 75% inspection coverage threshold. We find that
our swarm is able to successfully localize the present sources accurately
and complete the predefined inspection coverage threshold.

1 Introduction

Many industries, such as agriculture, bridge and wind turbine maintenance, and
space exploration are actively investing in robotic inspection [8–10,24]. The over-
arching goal is to reduce the risk, cost, and service downtime by supporting
human inspection. Deploying robots becomes particularly useful when inspection
must be carried out in dangerous conditions or over extended periods of time. In
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 14–27, 2022.
https://doi.org/10.1007/978-3-031-20176-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-20176-9_2

A Particle Swarm Optimization Approach for Inspection by a Robot Swarm 15

particular, long-term space infrastructure deployments will benefit from robotic
inspection [3]. Across a long deployment time, damages caused by structural
fatigue and micrometeoroid and orbital debris (MMOD) become non-negligible
[16]. Identifying and mending such damages before they become a source of major
structural failure is critical. As an example, the International Space Station (ISS)
has now been in operation for over two decades. As the structure ages, failures
arise [1,16]. In the near future, this could also apply to the Lunar Gateway space
station and the lunar surface Base Camp of NASA’s Artemis program. Regular
inspection is instrumental to extending lifetime of such deployments.

Vibration sensing and analysis methods are widely used in structural health
monitoring [30,33]. In aerospace applications, in particular, the accelerometer-
based Wing Leading Edge Impact Detection System (WLEIDS) was set up and
flown on all shuttle flights after the 2003 fatal accident of the Columbia space
shuttle. Currently, more than 80 accelerometers are in operation on the ISS for
structural dynamics monitoring [33]. The underlying theoretical methods for
vibration analysis are based on the vibration response or modal analysis of an
a priori known structure [6,13]. The signal processing and failure identification
methods depend on the specific target systems [38]. Standard practices typically
involve deployment of a large set of static sensors with fixed sampling rates [15].

An automated inspection task may be performed by using a network of static
sensors (deployed pre- or post-construction) or a single mobile robot (deployed
post-construction). There are, however, multiple benefits in using a swarm of
mobile robots. Swarms are known for their resilience to failure of individual units.
Compared to fixed sensor networks, used in many environmental monitoring
applications, robot swarms provide dynamic and flexible coverage performances
[7]. Minimizing the complexity and cost of the individual robotic units is required
for achieving low-cost swarm operations. This drive for simplicity has been the
motivation behind employing bio-inspired algorithms and miniaturized robots.

An automated inspection task can be formulated based on the well-studied
source localization task [11,21,23], that involves three components: (i) finding
a cue, (ii) tracing the cue to a source location, and (iii) confirming a localized
source. We formulate our inspection task as a repetition of a source localization
task until a termination condition is reached. This requires two high-level search
behaviors: a local search behavior to localize a new source in the search space
and a global search behavior to maximize exploration and coverage of the search
space. In what follows, we briefly review the literature for both search behav-
iors. Global search methods aim to maximize coverage through (i) a random
or (ii) a systematic exploration of the search space. Lévy flights and Brownian
motion random walks explore a search space randomly [27,28,36]. The basic
lawnmower problem in an unobstructed environment and the traveling sales-
man problem are examples of systematic exploration methods. Being NP-hard
[4,5], there is no guaranteed way to determine the optimal solution to these
problems in order to cover the search space, however, near optimal solutions are
possible [20]. Local search methods aim to localize a source [19]. Three main
categories of these search methods can be identified: (i) reactive, (ii) heuristic

16 B. Haghighat et al.

cognitive, and (iii) probabilistic cognitive methods. Reactive search methods,
such as gradient-based and bug algorithms, guide the search by relying solely
on the latest observations made by the robots. These methods are typically sim-
ple and require little memory and computational resources [31,34,37], but have
been shown to perform poorly in complex search scenarios [11,21]. Cognitive
methods combine incoming observations with previously gathered information
to guide the search [19]. Heuristic cognitive search methods see the source
localization problem as an optimization problem. The objective function to be
optimized can, in the case of an odor source localization problem for instance,
be the gas concentration sensed by the robots [19]. Heuristic methods typically
lend themselves well to multi-robot search scenarios [19]; by design, their mathe-
matical optimization counterparts deploy multiple agents as candidate solutions
that explore the search space. The most known bio-inspired example of heuris-
tic optimization methods are the Particle Swarm Optimization (PSO) [14] and
the Cuckoo Search (CS) [39]. PSO-based multi-robot search has been studied
in [18,32]. Probabilistic cognitive search methods use probabilistic inference
to derive the distribution of the cue in the search space [19,37]. This derivation
requires a known dispersion model for any given cue and environment [19] and is
often based on the Bayesian inference framework, such as Hidden Markov Models
(HMMs) [29] and Particle Filters (PFs) [22]. Another example in this category is
infotaxis, which uses an entropy-reduction principle [35]. Probabilistic cognitive
search methods are applicable only as long as their underlying model assump-
tions hold and accurate cue dispersion models are available; for this reason, these
methods remain less applicable to localizing failure sources using vibration cues.

We believe that small-scale vibration-sensing robot swarms have a great
potential for a variety of structural health monitoring tasks. In this work, we
contribute towards realizing such potential by presenting a simulation and algo-
rithmic framework that enables a simulated swarm of miniaturized robots to
inspect simplified spacecraft hull surface models. To the best of our knowledge,
our work is the first to propose and demonstrate the utility of vibration-sensing
surface-inspecting robot swarms. We plan to conduct and present real robot
experiments in future works. In this work, we contribute and combine two main
elements:

– Localizing an a priori unknown number of failure sources: Unlike
source localization, in inspection tasks the number of failure sources is a
priori unknown. We address this by employing a PSO-based heuristic local
search as well as a coverage maximizing Lévy random walk global search.

– Using vibration sensing for localizing the failure sources: Compared
to odor sensing paradigms, vibration sensing remains under-addressed in
autonomous inspecting robot swarms. We employ a realistically modeled
vibration signal (ANSYS software) on simplified spacecraft surface sections.

2 Problem Statement

We formally define the inspection task that we set out to undertake as the
repeated localization of any multitude of failure sources on a 2.5D (a 2D curved)

A Particle Swarm Optimization Approach for Inspection by a Robot Swarm 17

Fig. 1. We use a realistic model of the Rovable robot in our simulation experiments.
The real Rovable robot (b, d) and its simulation model created in Webots (a, c) have
similar physical properties. For scale, each wheel is 12mm in diameter.

surface in orbit, using a swarm of robots that sense the vibration signal as a cue,
until a termination condition based on the overall surface coverage level is met.

A failure source is then defined as a feature that disturbs the normal function-
ing of a system. Detecting a failure source requires knowledge of the functional
state of the system. We hypothesize that failure sources such as cracks and fis-
sures on the surface result in creation of specific vibration signal profiles that
are detectable in the presence of endemic or induced vibration energy [2]. In
our modeling of the failure sources, we further simplify the points of mechanical
failure as sources of induced vibration applying force to the surface following
a sinusoidal pattern at a frequency 1Hz, which falls within the mid-frequency
range of the vibratory regime of the ISS [25]. The amplitude of the sinusoidal
load, set to 1N, is chosen such that the resulting acceleration values are within
the ISS acceleration spectrum ranging from below a micro-g to 10 milli-g [25].
The cue is then the acceleration signal that is sensed during the inspection task.

3 Simulation Framework

Our simulation framework serves as the virtual environment in which we deploy
and study our inspecting robot swarm. Two main software components are used:
the ANSYS software, which we use for creating realistic vibration signals propa-
gating on a surface that models a shell structure in orbit, and the Webots robotic
simulator [26], which we use for simulating the operation of our robots.

Within Webots, we have three main components: (i) a realistic robot model
of a 3-cm sized 4-wheeled robot with magnetic wheels, (ii) ferromagnetic target
surfaces that the robots traverse to inspect, and (iii) a (supervisor controller)
script that passes on the vibration data to the robots, emulating the function
of a black box that contains an acceleration sensor and a processing unit that
returns the maximum observed acceleration amplitude. The robot model shown
in Fig. 1 is based on the Rovable robot. Originally designed as a mobile wearable
robot, Rovables can sense acceleration using their on-board IMUs [12]. Rovables
are capable of wireless communication and low-power localization using their
wheel encoders and on-board IMUs for inertial-based navigation. The robots
are able to carry loads of 1.5N and can adhere to ferromagnetic surfaces using

18 B. Haghighat et al.

Fig. 2. We use a cylindrical surface of 4m length in ANSYS to model a simplified
spacecraft hull and empirically tune the elastic support parameter to 10−4 N/mm3 and
the load case amplitude to 1N to mimic the vibration regime of the ISS [25]. Vibration
propagation is strongly biased along the axial length.

their magnetic pincher-wheels. A newer version of the robot is equipped with a
vertically-mounted linear actuator for inducing vibrations, which could poten-
tially be utilized as an alternative to using endemic vibrations energy. All basic
operations of Rovables have been tested in zero gravity conditions in multiple
real-life parabolic flights. In this paper, we study the zero gravity conditions in
simulation. Within Webots, the Rovable proto file captures the physical proper-
ties of the real robot, such as mass, center of mass, and surface contact properties.

The simulated Rovables are additionally assumed to have knowledge of the
map of the environment as well as their own locations on the map using a
global positioning sensor. Knowledge of the map is a realistic assumption because
spacecraft hulls are routinely modeled in extensive detail. A loss-free infinite-
range communication channel is also assumed between the robots. The robots
share their locations on the map and use this information for collision avoidance.

Within ANSYS, we use the Transient Analysis to subject the surface model
to a sinusoidal load case of 1N at 1Hz representing a vibration source. To rep-
resent the placement of the surface model in orbit, we use an elastic support
boundary condition that involves the notion of foundation stiffness expressed
in N/mm3. This is typically used to model soil supported or submersed struc-
tures. We empirically set the foundation stiffness parameter to 10−4 N/mm3 by
running a series of simulations and evaluating the results in discussion with a
human expert. The resulting deformation amplitude for the applied load case
is 13µm. Figure 2 shows the surface model used for the empirical calibrations.
In order to reduce the computational cost of the data processing and export
pipeline, we create data files that approximate the time-dependent acceleration
data obtained from ANSYS with 2D Gaussian distributions that represent the
amplitude of the acceleration data on the surface. This data is then retrieved by
the (supervisor controller) script in our Webots simulation and is passed to the
simulated robots according to their location at each simulation step.

A Particle Swarm Optimization Approach for Inspection by a Robot Swarm 19

Algorithm 1. Inspection Algorithm Overview
1: run Lévy Random Walk (RW) � Initialize
2: while coverage < 75% do
3: if robot in collision then � Collision avoidance
4: run Collision Avoidance (CA)
5: else if cue picked up or recruited into niche then � Local search
6: run Particle Swarm Optimization (PSO)
7: if cue is a source then � Source confirmation
8: declare source
9: run Directed Walk (DW) � Re-initialization

10: return to Lévy Random Walk (RW)
11: end if
12: else
13: run Lévy Random Walk (RW) � Global search
14: end if
15: update coverage � Update coverage
16: end while

4 Proposed Algorithm

The overall structure of our inspection algorithm is shown in Algorithm1. We
use a multi-modal variation of the PSO algorithm that takes advantage of a niche
formation behavior to allow parallel search for multiple sources as our local search
strategy combined with a random walk approach as our global search strategy.
Formation of niches happens simultaneously as the robots switch from global to
local search upon sensing a cue. We do not consider merging of the niches, if
robots from two niches come close they repel each other. There are four main
control states in the algorithm, which we explain briefly in this paragraph and
in more detail in the following ones. In the absence of any prior sensing of a cue,
the robots start in the Random Walk (RW) state, performing an unbiased Lévy
random walk around the environment until they sense a cue. Upon sensing a
cue, the robot will start performing a biased random walk in the Particle Swarm
Optimization (PSO) state while simultaneously forming a niche by recruiting a
second robot for a second opinion on the source location. Once a robot is finished
localizing a source, it starts in the Directed Walk (DW) state and moves to an
unexplored area in the environment and the niche is dismantled. The robot will
execute the Collision Avoidance (CA) state at any point in time if it is closer than
a threshold distance to a static obstacle or moving robot in the environment.

For each particle i, dimension j, and time step t, the PSO velocity update
is:

vt
ij = ω ∗ vt−1

ij + c1 ∗ rnd()t × (
pbestij − xt−1

ij

)
+ c2 ∗ rnd()t × (

gbestij − xt−1
ij

)
(1)

where pbest and gbest are respectively the positions of the best values observed
by the individual i and the corresponding niche. The inertia term ω = 0.15, c1 =
0.35, and c2 = 0.5 are weights that balance exploration and exploitation in the
search space. The niche formation behavior is part of the local search behavior

20 B. Haghighat et al.

and allows for confirming an identified source location. Here, we consider niches
of size 2. In particular, once a robot is in the vicinity of a source and starts
the PSO state, it engages in niche formation by recruiting its nearest neighbor
within a maximum range of 1m. The recruited robot then starts in PSO state.

After localizing a source, a robot engages in a directed walk behavior, mov-
ing towards unexplored parts of the environment. This is achieved by using a
sliding window approach to identify the least covered areas and then performing
a roulette wheel sampling where the likelihood of selecting a less covered goal
position increases quadratically and inversely with surface coverage level there.
Upon localization, a source is marked on the coverage map as a circular obstacle
region with a radius determined by the range a cue was first perceived from by
an approaching robot, deterring the robots from the cue of a discovered source.

Collision avoidance is performed using the artificial potential field (APF)
method based on (i) a map of the environment in which the boundaries of the
arena and the obstacles are known and (ii) by communicating with other robots
to obtain their location on the map. Each obstacle contributes a repulsive term
to update a robot’s velocity. The repulsive term i in dimension j for robot r is:

vr
i,j = wi ×

(
1
dr
i

− 1
θi

)
×

(
xj−pi,j

(dr
i)

3

)
(2)

where di is the distance from the robot to obstacle i, xj is the robot’s position
in dimension j and pi,j is the closest point on obstacle i in dimension j. The
threshold θi is the distance to the obstacle i below which the robot will engage
in collision avoidance. The threshold and weight values depend on the obstacle.
There are three obstacle types: (i) static, which includes the arena boundaries
and the obstacles (w = 0.075m, θ = 5 × 10−4), (ii) dynamic, which includes a
moving robot (w = 0.12m, θ = 3×10−4), and (iii) niche, which includes a robot
that is part of a niche (w = 0.75m, θ = 5 × 10−4).

Given enough time, we would like that all the sources present in the search
environment be successfully localized. We employ a Lévy random walk for the
global search behavior. The Lévy random walk assigns a random orientation
(angle) and a random step length (magnitude) to the robot, following a Lévy
distribution. This exploratory random walk guarantees full coverage of the search
environment asymptotically. We terminate the inspection based on a predefined
coverage threshold and using a coverage map that is shared between the robots.

The shared coverage map is represented as a grid-based map of 10 × 10 cm
cells. As the robots move across the surface, sense the acceleration cue, and localize
sources, they update the shared coverage map using their internal sensor model.
We use a simplified sensor model that is a two dimensional Gaussian distribution
of N (μ = 0m, σx = σz = 0.1m). To update the coverage map based on a single
robot’s observation, the sensor model Gaussian distribution centered around the
location of the reporting robot is superimposed on the coverage map by comparing
the coverage value in the map and the coverage value from the sensor model at each
point. The coverage value in the map is then replaced by the maximum of the two
values. The same update rule is applied for merging coverage information from
multiple robots to update the shared coverage map (Fig. 3).

A Particle Swarm Optimization Approach for Inspection by a Robot Swarm 21

Fig. 3. The columns show different angles of the two surfaces shown in the rows.
We study two surface models in our simulation experiments in Webots, one with no
obstacles in Scenario I (top row) and one with three cuboid obstacles in Scenario II
(bottom row). The three vibration sources and the cue spread are visualized. The
acceleration cue spread is affected by the presence of obstacles.

5 Simulation Experiments

We used the Amazon Web Services (AWS) cloud platform for batch simulations.
Each simulation instance was launched on a 4-core CPU with 8GB of RAM.

5.1 Experimental Objectives

Our desired objective for a given inspection experiment is threefold. We would
like that the swarm succeeds (i) in localizing all the sources (localization success),
(ii) in reaching the coverage threshold for terminating the inspection (termina-
tion success), and (iii) that all of the robots in the swarm manage to maneuver
around in the search space, without getting lost or stuck, sensing the cue to the
source locations while avoiding obstacles (maneuverability success).

To quantify the swarm performance on these aspects, we take inspiration from
metrics used in the fields of source localization and target search and consider
three performance metrics [17,40]. In each scenario, we quantify (i) the source
localization accuracy, that is the proximity of a confirmed source location to its
ground truth location, (ii) the time to find each source present in the search
space, and (iii) the time to reach the coverage threshold termination criterion.
To gain insight into the control dynamics of the inspecting swarm, we look at
the time the robots spend in each of the control states described in Sect. 4.

5.2 Experimental Scenarios

The real-world inspection problem that underlies our research is a complicated
undertaking. Within the scope of this work, we study two simplified problems.
We consider two experimental scenarios. In each scenario, we deploy a swarm of
size N = 8 robots to inspect the surfaces for sources of vibration.

22 B. Haghighat et al.

Scenario I comprises a 2.5D curved cylindrical surface with projected flat
dimensions of 4×4m. The ANSYS simulations involve a full cylindrical surface of
2mm thickness, 4m radius, and 6m axial length. The surface section is a quarter
of the full cylinder with the arena edges 1m away from the cylinder edges. The
sources of vibration are at locations (x = 2m, z = 3m), (x = 1m, z = 1m), and
(x = 3.5m, z = 0.5m) on the projected surface reference frame, with the origin
at the top-left corner. The entire surface is subject to a foundation stiffness of
10−4 N

mm3 , and the mesh is sized uniformly with cells of 10×10 cm. At the location
of each vibration source, we apply a sinusoidal load case with an amplitude of
1N and frequency 1Hz. The peak amplitude at steady state at each mesh node,
i.e. after roughly 9.75s, is then used for constructing the 2D Gaussian signal used
in Webots (see Sect. 3). For Scenario I, we use N (μ = 0m, σx = 0.15m, σz =
0.45m) scaled by 0.7708 for all three sources. For Scenario II, we use N (μ =
0m, σx = 0.1m, σz = 0.25m) scaled by 0.6511 at location (x = 2m, z = 3m) and
N (μ = 0m, σx = 0.15m, σz = 0.45m) scaled by 0.7334 and 0.7359 at locations
(x = 1m, z = 1m) and (x = 3.5m, z = 0.5m), respectively.

Scenario II is an extension of Scenario I; we further increase the geometri-
cal complexity of the search environment by introducing three cuboid obstacles
representing features such as ridges or add-on sections on the surface.

6 Results

We obtained the results of 100 trials of the two simulation experimental scenarios
described in Sect. 5. The random seed was fixed per robot. The robots’ starting
positions were randomized per trial. By simulating swarms of various sizes and
observing the effect of robot density on inspection performance, we chose the
swarm size N = 8. For the sake of brevity, those studies are not discussed here.

Figure 4 visualizes how presence of obstacles impacts the robots trajectories
and their coverage performance by comparing two trials of the two scenarios.

The swarm performance results are shown in Fig. 5. We considered the three
performance metrics described in Sect. 5: (i) source localization accuracy, (ii)
time to localize each source and to reach the %75 coverage threshold, and (iii)
time spent in each of the four main control states. In both experimental scenar-
ios, we observed that the experimental objectives we laid out in Sect. 5.1 were
successfully achieved. In particular, the robots managed to successfully localize
all three vibration sources in the environment while traversing the 2.5D surfaces,
performing obstacle avoidance, and sensing the vibration cue. The complexity of
the search environment increases from Scenario I to Scenario II. This increase in
complexity clearly affects the inspection completion time, i.e., the time the %75
coverage threshold is reached, as well as the time each of the three sources are
discovered (indicated by Si for i = {1, 2, 3} in Fig. 5b, f). This is also visible in
the time progress of discovering sources as shown in Fig. 5d, h, where the solid
line and shaded area represent the average and one standard deviation interval
over 100 trials, respectively. The same effect can be noted by comparing the
time spent in the RW control state between the two scenarios (Fig. 5c, g). We can

A Particle Swarm Optimization Approach for Inspection by a Robot Swarm 23

Fig. 4. Obstacles affect robot trajectories and overall coverage maps. Trajectory and
coverage plots for two trials of Scenario I (a, c) and Scenario II (b, d) are compared.
Trajectory of each robot is depicted in a different color (a, b). Higher coverage level is
shown in warmer color (c, d). Upon localization, a source is marked on the coverage
map as a circular region with a radius determined by the range a cue was first perceived
from by an approaching robot. Because the spread of the cue is larger along the z axis,
the size of the marked regions differ depending on the direction of approach. (Color
figure online)

Fig. 5. The robots manage to successfully achieve all the experimental objectives laid
out in Sect. 5.1. The presence of obstacles negatively impacts the swarm’s temporal
performance but appears to have minimal impact on the source localization accuracy.
We study three main performance metrics in Scenario I (top row) and Scenario II
(bottom row): the localization accuracy (a, e), the time elapsed before the discovery
of a source and before reaching the %75 coverage threshold (b, f), and the time spent
by the robots in each of the four main control states (c, g). The plots show results for
100 simulation experiments per scenario.

explain the variation in source localization accuracy (Fig. 5a, e) by considering
three main factors. First, the more time the robots spend in the PSO versus the
CA control state, the higher their chances will be to achieve a better localization

24 B. Haghighat et al.

accuracy. Second, the interplay between the shape and spread of the cue and the
placement of the sources in the arena plays a significant role in how accurately
a source can be localized. Lastly, the various parameters of the inspection algo-
rithm determine how the robots find their way to the localized sources. These
parameters were all empirically set and none was systematically optimized. We
hypothesize that their optimal values may depend on the overall geometry of
the search environment and that by optimizing our inspection algorithm param-
eters, such as the PSO coefficients, the random walk step size, the APF collision
avoidance parameters, the niche size, and the maximum niche recruitment range
we can enhance the various swarm performance metrics, including the source
localization accuracy.

7 Conclusion

We developed a simulation and algorithmic framework that enables studying a
swarm of vibration sensing miniaturized wheeled robots that inspect simplified
surface models of spacecraft hulls in order to localize points of mechanical fail-
ure. We modeled points of mechanical failure as sources of vibration. The robots
sense vibration signals propagating through the surface as a cue for localizing
sources of vibration. We simulated realistic vibration signal propagation using
the ANSYS software, then simplified data transfer by fitting 2D Gaussian func-
tions to the simulation results. We used the Webots robotic simulator to study
the performance of our inspecting robot swarm in two experimental scenarios
involving three sources on 2.5D cylindrical surfaces in presence and absence of
obstacles on the surface. Our results support the viability of robot swarms for
surface inspection tasks based on sensing vibration signals through the surface.

Our future work will involve leveraging and extending the modeling and algo-
rithmic framework we developed here for studying scenarios of higher complex-
ity. First, given a specific search environment, we plan to leverage the simulation
framework developed in this work to perform a parameter optimization in order
to find the set of algorithmic parameters that result in improved performance
metrics. Second, we plan to develop a fully automated simulation pipeline to
facilitate randomized studies of a variety of environments with different geome-
tries. In particular, we plan to automate the process of simulating the vibration
signal from ANSYS such that the data is directly accessible by the simulated
robots within Webots. Third, we plan to implement realistic constraints in the
communication range and bandwidth of the simulated robots within Webots.

Our hope is that this work supports and inspires studies of vibration-sensing
robot swarms as a flexible solution for structural surface inspection applications.

Acknowledgements. We thank Dr. Harald Wild from ETH Zürich for his help
with the ANSYS simulations. This work was supported by a Swiss National Sci-
ence Foundation (SNSF) postdoctoral fellowship award P400P2_191116, an Office of
Naval Research (ONR) grant N00014-22-1-2222, and a National Aeronautics and Space
Administration (NASA) grant 80NSSC21K0353.

A Particle Swarm Optimization Approach for Inspection by a Robot Swarm 25

References

1. Russian cosmonauts find new cracks in ISS module. Reuters (2021). https://www.
reuters.com/lifestyle/science/russian-cosmonauts-find-new-cracks-iss-module-
2021-08-30/

2. Abu-Mahfouz, I., Banerjee, A.: Crack detection and identification using vibration
signals and fuzzy clustering. Procedia Comput. Sci. 114, 266–274 (2017)

3. Aloor, J.J., Sajeev, S., Shakya, A.: Space Robotics versus Humans in Space (2020)
4. Arkin, E.M., Fekete, S.P., Mitchell, J.S.: Approximation algorithms for lawn mow-

ing and milling. Comput. Geom. 17(1–2), 25–50 (2000). A preliminary version of
this paper was entitled The lawnmower problem and appears in the Proceedings
of the 5th Canadian Conference on Computational Geometry, Waterloo, Canada,
pp. 461–466 (1993)

5. Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering
salesman problem. Discret. Appl. Math. 55(3), 197–218 (1994)

6. Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M., Inman, D.J.:
A review of vibration-based damage detection in civil structures: from traditional
methods to Machine Learning and Deep Learning applications. Mech. Syst. Signal
Process. 147, 107077 (2021)

7. Bayat, B., Crasta, N., Crespi, A., Pascoal, A.M., Ijspeert, A.: Environmental mon-
itoring using autonomous vehicles: a survey of recent searching techniques. Curr.
Opin. Biotechnol. 45, 76–84 (2017). https://doi.org/10.1016/j.copbio.2017.01.009

8. Bualat, M., et al.: Autonomous robotic inspection for lunar surface operations. In:
Laugier, C., Siegwart, R. (eds.) Field and Service Robotics, vol. 42, pp. 169–178.
Springer, Cham (2008)

9. Carbone, C., Garibaldi, O., Kurt, Z.: Swarm robotics as a solution to crops inspec-
tion for precision agriculture. KnE Eng. 3(1), 552 (2018)

10. Carrillo-Zapata, D., et al.: Mutual shaping in swarm robotics: user studies in fire
and rescue, storage organization, and bridge inspection. Front. Robot. AI 7, 53
(2020)

11. Chen, X., Huang, J.: Odor source localization algorithms on mobile robots: a review
and future outlook. Robot. Auton. Syst. 112, 123–136 (2019)

12. Dementyev, A., et al.: Rovables: miniature on-body robots as mobile wearables.
In: Proceedings of the 29th Annual Symposium on User Interface Software and
Technology, Tokyo Japan, pp. 111–120. ACM (2016). https://dl.acm.org/doi/10.
1145/2984511.2984531

13. Doebling, S., Farrar, C., Prime, M., Shevitz, D.: Damage identification and health
monitoring of structural and mechanical systems from changes in their vibration
characteristics: a literature review. Technical report LA-13070-MS, 249299 (1996).
https://doi.org/10.2172/249299

14. Eberhart, R., Kennedy, J.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

15. Ganesan, V., Das, T., Rahnavard, N., Kauffman, J.L.: Vibration-based monitoring
and diagnostics using compressive sensing. J. Sound Vib. 394, 612–630 (2017)

16. Hyde, J.L., Christiansen, E.L., Lear, D.M.: Observations of MMOD impact damage
to the ISS. In: International Orbital Debris Conference. No. JSC-E-DAA-TN75127
(2019)

17. Jain, U., Tiwari, R., Godfrey, W.W.: Multiple odor source localization using
diverse-PSO and group-based strategies in an unknown environment. J. Comput.
Sci. 34, 33–47 (2019)

https://www.reuters.com/lifestyle/science/russian-cosmonauts-find-new-cracks-iss-module-2021-08-30/
https://www.reuters.com/lifestyle/science/russian-cosmonauts-find-new-cracks-iss-module-2021-08-30/
https://www.reuters.com/lifestyle/science/russian-cosmonauts-find-new-cracks-iss-module-2021-08-30/
https://doi.org/10.1016/j.copbio.2017.01.009
https://dl.acm.org/doi/10.1145/2984511.2984531
https://dl.acm.org/doi/10.1145/2984511.2984531
https://doi.org/10.2172/249299

26 B. Haghighat et al.

18. Jatmiko, W., Sekiyama, K., Fukuda, T.: A PSO-based mobile sensor network for
odor source localization in dynamic environment: theory, simulation and measure-
ment. In: 2006 IEEE International Conference on Evolutionary Computation, Van-
couver, BC, Canada, pp. 1036–1043. IEEE (2006). https://doi.org/10.1109/CEC.
2006.1688423

19. Jing, T., Meng, Q.H., Ishida, H.: Recent progress and trend of robot odor source
localization. IEEE Trans. Electr. Electron. Eng. tee.23364 (2021)

20. Karapetyan, N., Benson, K., McKinney, C., Taslakian, P., Rekleitis, I.: Efficient
multi-robot coverage of a known environment. In: 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1846–1852 (2017).
http://arxiv.org/abs/1808.02541

21. Kowadlo, G., Russell, R.A.: Robot odor localization: a taxonomy and survey. Int.
J. Robot. Res. 27(8), 869–894 (2008)

22. Li, J.G., Meng, Q.H., Li, F., Zeng, M., Popescu, D.: Mobile robot based odor source
localization via particle filter. In: Proceedings of the 48h IEEE Conference on Deci-
sion and Control (CDC) held jointly with 2009 28th Chinese Control Conference,
Shanghai, China, pp. 2984–2989. IEEE (2009)

23. Lilienthal, A., Loutfi, A., Duckett, T.: Airborne chemical sensing with mobile
robots. Sensors 6(11), 1616–1678 (2006)

24. Liu, Y., Hajj, M., Bao, Y.: Review of robot-based damage assessment for offshore
wind turbines. Renew. Sustain. Energy Rev. 158, 112187 (2022)

25. McPherson, K., Hrovat, K., Kelly, E., Keller, J.: ISS researcher’s guide: acceleration
environment. Technical report, National Aeronautics and Space Administration

26. Michel, O.: WebotsTM: professional mobile robot simulation. arXiv:cs/0412052
(2004)

27. Palyulin, V.V., Chechkin, A.V., Metzler, R.: Levy flights do not always optimize
random blind search for sparse targets. Proc. Natl. Acad. Sci. 111(8), 2931–2936
(2014)

28. Pang, B., Song, Y., Zhang, C., Wang, H., Yang, R.: A swarm robotic exploration
strategy based on an improved random walk method. J. Robot. 2019, 1–9 (2019)

29. Pang, S., Farrell, J.: Chemical plume source localization. IEEE Trans. Syst. Man
Cybern. Part B (Cybern.) 36(5), 1068–1080 (2006)

30. Park, J.: Special feature vibration-based structural health monitoring. Appl. Sci.
10(15), 5139 (2020)

31. Persson, E., Anisi, D.A.: A Comparative study of robotic gas source localization
algorithms in industrial environments. IFAC Proc. Vol. 44(1), 899–904 (2011)

32. Pugh, J., Martinoli, A.: Inspiring and modeling multi-robot search with particle
swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, Honolulu, HI,
USA, pp. 332–339. IEEE (2007)

33. Richards, W.L., Madaras, E.I., Prosser, W.H., Studor, G.: NASA applications of
structural health monitoring technology. In: International Workshop on Structural
Health Monitoring, No. DFRC-E-DAA-TN11102 (2013)

34. Russell, R., Bab-Hadiashar, A., Shepherd, R.L., Wallace, G.G.: A comparison of
reactive robot chemotaxis algorithms. Robot. Auton. Syst. 45(2), 83–97 (2003)

35. Vergassola, M., Villermaux, E., Shraiman, B.I.: Infotaxis as a strategy for searching
without gradients. Nature 445(7126), 406–409 (2007)

36. Viswanathan, G.M., Buldyrev, S.V., Havlin, S., da Luz, M.G.E., Raposo, E.P.,
Stanley, H.E.: Optimizing the success of random searches. Nature 401(6756), 911–
914 (1999)

37. Voges, N., Chaffiol, A., Lucas, P., Martinez, D.: Reactive searching and infotaxis
in odor source localization. PLoS Comput. Biol. 10(10), e1003861 (2014)

https://doi.org/10.1109/CEC.2006.1688423
https://doi.org/10.1109/CEC.2006.1688423
http://arxiv.org/abs/1808.02541
http://arxiv.org/abs/cs/0412052

A Particle Swarm Optimization Approach for Inspection by a Robot Swarm 27

38. Fan, W., Qiao, P.: Vibration-based damage identification methods: a review and
comparative study. Struct. Health Monit. 10(1), 83–111 (2011)

39. Yang, X.S., Deb, S.: Cuckoo search via Levy flights. In: 2009 World Congress on
Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, pp. 210–
214. IEEE (2009)

40. Zhang, J., Gong, D., Zhang, Y.: A niching PSO-based multi-robot cooperation
method for localizing odor sources. Neurocomputing 123, 308–317 (2014)

Automatic Design of Multi-objective
Particle Swarm Optimizers

Daniel Doblas1, Antonio J. Nebro1,2(B) , Manuel López-Ibáñez3 ,
José Garćıa-Nieto1,2 , and Carlos A. Coello Coello4

1 ITIS Software, Universidad de Málaga, Málaga, Spain
{dandobjim,ajnebro,jnieto}@uma.es

2 Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga,
Málaga, Spain

3 Alliance Manchester Business School, University of Manchester, Manchester, UK
manuel.lopez-ibanez@manchester.ac.uk

4 Departamento de Computación, CINVESTAV-IPN, Mexico City, Mexico
ccoello@cs.cinvestav.mx

Abstract. Multi-objective particle swarm optimizers (MOPSOs) have
been widely used to deal with optimization problems having two or more
conflicting objectives. As happens with other metaheuristics, finding the
most adequate parameters settings for MOPSOs is not a trivial task,
and it is even harder to choose structural components that determine the
algorithm’s design. Thus, it is an open question whether automatically-
designed MOPSOs can outperform the best human-designed MOP-
SOs from the literature. In this paper, we first design and develop
a component-based architecture and an algorithmic template, called
AMOPSO, for the auto-design and auto-configuration of MOPSOs using
jMetal and we integrate it with irace, an automatic-configuration tool.
Second, by taking as our starting point two algorithms (OMOPSO and
SMPSO), we conduct a study focused on automatically generating three
AMOPSO variants by using different well-known multi-objective bench-
marking problem families (ZDT, DTLZ, and WFG) as training problems
for automatic design, and then we analyze whether they improve upon
the initial versions of the algorithms and how their components differ.
Experiments show that the two AMOPSO variants obtained from using,
respectively, the ZDT and DTLZ problems for training are able to sta-
tistically outperform the SMPSO and OMOPSO algorithms in all three
benchmark families previously indicated.

1 Introduction

Multi-objective particle swarm optimizers (MOPSOs) are popular techniques to
solve optimization problems composed of two or more conflicting objectives [17],
and new proposals appear regularly in international conferences and journals.
In this context, given the large number of possible algorithm’s combinations
and configurations, it is often unclear what are the best design choices and

c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 28–40, 2022.
https://doi.org/10.1007/978-3-031-20176-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_3&domain=pdf
http://orcid.org/0000-0001-5580-0484
http://orcid.org/0000-0001-9974-1295
http://orcid.org/0000-0003-2985-3480
http://orcid.org/0000-0002-8435-680X
https://doi.org/10.1007/978-3-031-20176-9_3

Automatic Design of Multi-objective Particle Swarm Optimizers 29

parameters settings to use in practice or which ones have the strongest impact
on performance.

The automatic design and parameter configuration of metaheuristics [20] is
an open research line that has as its main goal to provide users of these algorithms
with tools able to obtain accurate configurations automatically. This way, given
a set of problems to be solved, instead of using quick-search exhaustive (time-
consuming) methods to configure a metaheuristic manually by performing pilot
tests where the values of the parameters are adjusted in an ad-hoc manner, the
idea is to use statistically-driven automatic configuration tools.

Our motivation emerges in the typical scenario where, given a set of problems
to be solved, an expert user of a given algorithm can afford to set its parameters
manually by performing pilot tests in which the parameter values are adjusted in
some way, using experience or intuition. This is usually a trial-and-error process
in which a limited number of configurations is explored, possibly suffering from
human biases and incorrect assumptions. If we consider another scenario in which
a non-expert user of the algorithm intends to solve a problem in a certain domain,
such user will not have the experience to even attempt such a trial-and-error
process and will simply use the default algorithmic parameters taken from the
literature.

In this paper, we propose an auto-design framework that allows instantiating
many different variants of multi-objective Particle Swarm Optimizers (MOP-
SOs), some of them already available from the literature. In this framework,
choosing a design and tuning the parameters of a MOPSO are conducted by
means of irace [11], an automatic configuration tool, with the goal of identify-
ing good configurations for well-known multi-objective continuous optimization
benchmarks. For testing purposes, we study which design options, in combina-
tion with parameters settings, actually contribute the most to the performance
of the automatically generated algorithms by comparing them with other con-
figurations that instantiate well-known MOPSOs from the literature.

In this regard, the current paper is contextualized by the involvement of
authors in the proposal of SMPSO [13] (an algorithm that remains as a very com-
petitive Pareto-based MOPSO), the design and implementation of the jMetal
framework for multi-objective optimization with metaheuristics [14], and the
development of the irace package for automatic algorithm configuration [11].
Our objectives are then twofold: first, we aim to provide a software platform for
MOPSO auto-configuration combining jMetal and irace and; second, we aim to
conduct a study on the performance of algorithms generated from the developed
auto-configurable MOPSO (AMOPSO) on three classic benchmarks of continu-
ous optimization problems.

Our work follows the line started in [15], in which the combination of jMetal
and irace to provide an auto-designed and auto-configurable version of NSGA-
II [5] was described. In this regard, few similar studies have been presented in
past references [4,10]. In the former, a context-free grammar approach was used
to implement the algorithms and two tools were used for the auto-tuning: gram-
matical evolution and irace; the DTLZ benchmark problems [6] were used and
SMPSO was chosen as a reference algorithm. Although we share similar goals,

30 D. Doblas et al.

we rely on the use of jMetal, so that the resulting software becomes available to
the community in a release of a framework which is widely known in the field;
additionally, we consider a wider set of configurable features, as well as structural
algorithmic component decisions in the generation of new variants. PSO-X [4] is
comparable to the scale of our proposed framework by including a comprehensive
number of characteristics of PSO, but it is focused on single-objective algorithms,
so structural decisions concerning external archive management (including the
role of archived particles in the velocity update) are not taken into account.

The remainder of this article is organized as follows. The next section is
devoted to introduce the software tools used to develop the proposed framework.
Section 3 describes the design and development decisions taken to generate the
auto-MOPSO approach. Our experimental settings, as well as our comparisons
and discussions are given in Sect. 4. Finally, our conclusions and some possible
future steps in this research line are described in Sect. 5.

2 Software Tools

In this section, we briefly describe jMetal and irace, which are the two software
tools we have used in this work.

jMetal [7,14] is an open source, Java-based framework for multi-objective
optimization with metaheuristics that has become a widely used tool for many
researchers in the area. The jMetal project started in 2006 and it is contin-
uously evolving, and the main topic that is guiding currently its evolution is
to adapt it to enable the auto-configuration and auto-design of multi-objective
metaheuristics.

Elitist iterated racing, in particular the implementation available in the irace
package [11] from version 2.0 and higher, is a method for the automatic con-
figuration of optimization algorithms, i.e., to find accurate settings of a given
algorithm for a given set of training instances of a problem. In this context,
an algorithm configuration is a complete assignment of values to all required
parameters of an algorithm. In irace, algorithm configurations are sampled from a
sampling distribution, uniformly at random at the beginning, but biased towards
the best configurations found in later iterations. At each iteration, the generated
configurations and the “elite” ones from previous iterations are raced [3] by eval-
uating them on training problem instances. A statistical test is used to decide
which configurations should be eliminated from the race, taking into account
that an elite configuration cannot be outperformed by a configuration evaluated
in fewer problem instances. When the race terminates, the surviving configura-
tions become elites for the next iteration and are used to bias the sampling of
new configurations. A complete description of elitist iterated racing is provided
in its original paper [11].

3 Approach for Developing an Auto-configurable
MOPSO

A number of MOPSOs are included in jMetal, from which two remarkable ver-
sions are OMOPSO [18] and SMPSO [13]. These algorithms are still considered

Automatic Design of Multi-objective Particle Swarm Optimizers 31

as very competitive, and are both characterized by using an external archive
to store the non-dominated solutions after the search process. Although they
share a common PSO template, they are not ready to be used for automatic
configuration because the template is not designed to configure its internal com-
ponents in a flexible way, nor it allows to build a particular MOPSO instance in
a declarative manner, which is a requirement for using automatic configuration
methods.

The adopted approach to deal with these limitations is the same as applied
in [15]. We have designed a new template for MOPSOs where their internals are
represented as components that can be easily combined. The template is based
on t1the pseudo-code included in Algorithm1.

Algorithm 1. Pseudo-code of the MOPSO template.
createInitialSwarm()
evaluateSwarm()
initializeVelocity()
initializeLocalBest()
initializeGlobalBest()
while terminationConditionIsNotMet() do

updateVelocity()
updatePosition()
perturbation() // mutation
evaluateSwarm()
updateGlobalBest()
updateLocalBest()

end while
returnGlobalBest()

We can observe that the run() method follows the steps of a generic MOPSO
algorithm, including a perturbation phase. All the components of a MOPSO
are instances of classes representing them, so creating a particular MOPSO will
consist of creating an instance of the ParticleSwarmOptimizationAlgorithm class
with its concrete components.

There is a catalog of components of each type. The current components are
taken from the implementations of OMOPSO and SMPSO but, with the purpose
of only generating valid algorithmic designs while at the same time allowing a
high degree of flexibility in the number of available designs, we have made some
assumptions and some features of the algorithms have been relaxed. This way,
we consider that all the auto-designed MOPSOs (AMOPSOs from now on) have
an external bounded archive to store the non-dominated solutions found in the
search, and that an archive will be used to store the global best particles. The
type of archive is an available design choice. In addition, the perturbation is
based on applying a mutation operator with a given frequency.

Both OMOPSO and SMPSO can be created using the template by selecting
their proper components, but for OMOPSO we have made two simplifications

32 D. Doblas et al.

regarding its original implementation. First, OMOPSO uses an archive based on
epsilon dominance, but we have removed this feature because the epsilon value
must be adjusted per problem and the size of the epsilon archive cannot be
fixed beforehand. Second, the perturbation in the original OMOPSO combines
uniform and non-uniform mutation; we simplify this scheme by adopting the
perturbation of SMPSO, based on applying polynomial-based mutation.

The full set of configurable parameters in our AMOPSO framework and their
domains is shown in Table 1. In this paper, we fixed the value of several com-
ponents and parameters of the framework, as described in the caption (e.g.,
defaultVelocityInitialization and defaultGlobalBestUpdate in the case of veloci-
tyInitialization and globalBestUpdate, respectively) because currently our frame-
work does not contain useful alternatives to those components, but we mention
them as our plan is to add additional choices in the near future. We describe
briefly the parameters in the following.

We assume in this study that the archive size is fixed to 100 particles and
the swarm size can range between 10 and 200. There are three choices for the
bounded external archive, which adopt different schemes to remove solutions
of the archive when it becomes full. The crowdingDistanceArchive is based on
applying the crowding distance density estimator of NSGA-II [5], the hypervol-
umeArchive applies the hypervolume contribution [1], and the spatialSpreadDe-
viationArchive was proposed in the FAME algorithm [19].

There are three strategies to initialize the swarm: random, based on a latin
hypercube sampling, and the scheme used in scatter search algorithms (see for
example [16]). The speeds of the particles are initialized by default to 0.0. The
perturbation is based on applying a mutation operator to the particles of the
swarm with a frequency F between 1 and 10 (i.e., particles in the positions F ,
2F , 3F , . . . , in the swarm), and there are three mutation operators to choose
from, with their corresponding control parameters. As the mutation probability
is problem dependent and it is usually set to 1/n (where n is the number of
problem variables), we have defined a mutationProbabilityFactor, which is a value
between 0.0 and 2.0, in such a way that the effective mutation probability will
be the multiplication of that factor and 1/n.

There are four strategies for computing the inertia weight: constant (a value
between 0.1 and 1.0), random, linear increasing and linear decreasing, the three
last with minimum and maximum weight values in the ranges [0.1, 0.5] and
[0.5, 1.0], respectively.

The two alternatives for velocity updating are the default one, corresponding
to the classical scheme that is used in OMOPSO, and the constraint speed
mechanism applied in SMPSO (see [13,18] for further details). The C1 and C2
coefficients take values from the ranges [1.0, 2.0] and [2.0, 3.0], respectively.

Automatic Design of Multi-objective Particle Swarm Optimizers 33

Table 1. Parameter space of AMOPSO. In addition, archiveSize = 100, veloci-
tyInitialization = defaultVelocityInitialization, perturbation = frequencySelection-
MutationBasedPerturbation, localBestInitialization = defaultLocalBestInitialization,
globalBestInitialization = defaultGlobalBestInitialization, globalBestUpdate = default-
GlobalBestUpdate, localBestUpdate = defaultLocalBestUpdate, positionUpdate =
defaultPositionUpdate.

Parameter Domain

swarmSize [10, 200] ⊂ N

externalArchive { crowdingDistanceArchive, hypervolumeArchive,
spatialSpreadDeviationArchive }

swarmInitialization { random, latinHypercubeSampling, scatterSearch }
mutation { uniform, polynomial, nonUniform }

mutationProbabilityFactor [0.0, 2.0] ⊂ R

mutationRepairStrategy { random, round, bounds }
uniformMutationPerturbation [0.0, 1.0] ⊂ R if mutation=uniform

polynomialMutationDistributionIndex [5.0, 400.0] ⊂ R if mutation=polynomial

nonUniformMutationPerturbation [0.0, 1.0] ⊂ R if mutation=nonUniform

mutationFrequency [1, 10] ⊂ N

inertiaWeightComputingStrategy { constant, random, linearIncreasing, linearDecreasing }
weight [0.1, 1.0] ⊂ R

weightMin [0.1, 0.5] ⊂ R

weightMax [0.5, 1.0] ⊂ R

velocityUpdate { defaultVelocityUpdate, constrainedVelocityUpdate }
c1Min [1.0, 2.0] ⊂ R

c1Max [2.0, 3.0] ⊂ R

c2Min [1.0, 2.0] ⊂ R

c2Max [2.0, 3.0] ⊂ R

globalBestSelection { binaryTournament, random }
velocityChangeWhenLowerLimitIsReached [−1.0, 1.0] ⊂ R

velocityChangeWhenUpperLimitIsReached [−1.0, 1.0] ⊂ R

The default policies for initializing and updating the local best are that each
particle is its local best at the beginning and the local best is updated if the
particle dominates it. The selection of the global best consists in taking solutions
from the external archive by applying a random or a binary tournament scheme.

The default position update also applies the classical strategy, but if the
resulting position of a particle is lower than the lower bound of the allowed
position values, the position of the particle is set to the lower bound value and
the velocity is changed by multiplying if by value in the range [−1, 1]. The same
applies in the case of the upper bound.

4 Experimentation

In this section, we intend to validate our proposal of combining jMetal and irace
and the AMOPSO template. Our goals are: (1) to quantify the improvements

34 D. Doblas et al.

that can be obtained with automatically designed MOPSOs with AMOPSO over
SMPSO and OMOPSO when solving the three classical problem benchmark
families ZDT [21], DTLZ [6] and WFG [8] (in all cases, we focus on problems
with two objectives); and (2) to analyze the configurations found to determine
common patterns in components and parameters or to identify whether some of
them appear to be particularly relevant.

The first step is to use irace with the AMOPSO template by considering
the design space detailed in Table 1. The two configurations of AMOPSO that
reproduce SMPSO and OMOPSO have been included in irace as initial config-
urations. Each run of an AMOPSO configuration on a single problem instance
stops after 25 000 solution evaluations and returns 100 solutions. When a run
finishes, irace receives as fitness value the product of the normalized hypervol-
ume (that is, 1−HVof/HVrf, where HVof and HVrf stand for the hypervolumes
of the obtained front and reference front, respectively) times the IGD+ [9] qual-
ity indicators corresponding to those 100 solutions. Such a fitness metric was
proposed previously in the context of the automatic design of multi-objective
evolutionary algorithms [2]. Since functions within a benchmark family are quite
different from each other and we wish to generate a configuration that performs
well for all functions and, hopefully, generalizes over them, we define a block of
instances as evaluating a configuration on each individual function within the
benchmark. The racing approach within irace dynamically decides how many
runs per block are necessary to discard a configuration (the minimum is 5 runs
per block). Each execution of irace was stopped after 100 000 AMOPSO runs,
which required roughly 7 h of computation time on a 128-core Linux virtual
machine. Using this setup, we executed irace three times, one per benchmark
problem family, leading to three different configurations of AMOPSO. We refer
to them as AMOPSOz, AMOPSOd, and AMOPSOw, where the subscripts z, d,
and w refer to the ZDT, DTLZ and WFG benchmark families.

The second step is to perform a comparative study on all three problem fam-
ilies between SMPSO, OMOPSO and the AMOPSO designs obtained from each
benchmark. We include NSGA-II in this study to use its results as a baseline.
It is configured with a population size of 100 and the variation operators are
SBX (probability: 0.9, distribution index: 20.0) and polynomial-based mutation
(probability: 1/n, distribution index: 20.0). Our methodology consisted in per-
forming 25 independent runs per configuration and reporting the median and
interquartile range of the hypervolume quality indicator values. The Friedman’s
ranking and Holm’s post-hoc multiple-comparisons tests (at a 5% level of sig-
nificance) have been applied to check if there are significant differences between
the distribution of results.

4.1 Analysis of the AMOPSO Configurations Found

Table 2 details the parameters settings of SMPSO, OMOPSO and the AMOPSO
designs for each of the benchmarks. At a first glance, we observe that there are
two common components in the AMOPSO variants: the hypervolume contri-
bution-based external archive and the uniform mutation. While the benefits of

Automatic Design of Multi-objective Particle Swarm Optimizers 35

Table 2. Settings of the MOPSO algorithms. (CD: crowding distance, HV: hypervol-
ume contribution, LHS: latin hypercube sampling, SS: scatter search). The subscripts
z, d, and w in AMOPSO stand, respectively, for the designs generated from the ZDT,
DTLZ and WFG problems.

Parameter SMPSO OMOPSO AMOPSOz AMOPSOd AMOPSOw

swarmSize 100 100 22 11 43

externalArchive CD CD HV HV HV

swarmInitialization Random Random Random SS LHS

mutation Polynomial Polynomial Uniform Uniform Uniform

mutationProbabilityFactor 1.0 1.0 0.06 0.12 0.18

mutationRepairStrategy Bounds Round Random Random Round

polynomialMutDistIndex 20.0 20.0 N/A N/A N/A

uniformMutPerturbation N/A N/A 0.60 0.72 0.18

nonUniformMutationPert N/A N/A N/A N/A N/A

mutationFrequency 6 6 8 8 7

inertiaWeightStrategy Constant Random Lin.Inc Constant Lin.Inc.

weight 0.1 N/A N/A 0.11 N/A

weightMin N/A 0.1 0.19 N/A 0.23

weightMax N/A 0.5 0.82 N/A 0.64

velocityUpdate Constr Default Constr Constr Default

c1Min 1.5 1.5 1.73 1.80 1.19

c1Max 2.5 2.0 2.49 2.46 2.22

c2Min 1.5 1.5 1.32 1.05 1.29

c2Max 2.5 2.0 2.15 2.54 2.20

velocityChangeLowerLimit −1.0 −1.0 0.18 0.14 −0.98

velocityChangeUpperLimit −1.0 −1.0 −0.32 −0.75 −0.78

adopting an archive using the hypervolume to store the global best particles
were analyzed in [12], the adoption of uniform mutation is not so common as, in
general, polynomial-based mutation seems to be the most widely used mutation
operator in the context of continuous multi-objective optimization.

A remarkable observation is that the swarm sizes are considerably smaller
than the usual setting (i.e., if S solutions are to be found, both the swarm and
the external archive have a size of S). This means that the algorithms foster the
intensification of the search, performing a higher number of internal iterations.

We also observe that the AMOPSOz and AMOPSOd configurations share
most of the components and many of their parameter values have roughly similar
ranges, suggesting that either of these AMOPSO variants could have similar
performance with the ZDT and DTLZ problems. The values of the parameters
that adjust the velocity when the particle positions go out of range are striking;
while in SMOPSO and OMOPSO these values are −1.0, resulting in velocity
reversal, the velocity adjustments in AMOPSOz and AMOPSOd in the case of
the lower limits are very small, so that the resulting velocity is very significantly
reduced.

36 D. Doblas et al.

T
a
b
le

3
.
M

ed
ia

n
a
n
d

in
te

rq
u
a
rt

il
e

ra
n
g
e

o
f
th

e
h
y
p
er

v
o
lu

m
e

q
u
a
li
ty

in
d
ic

a
to

r
va

lu
es

o
f
th

e
co

m
p
a
re

d
a
lg

o
ri

th
m

s.
C

el
ls

w
it

h
d
a
rk

g
ra

y
b
a
ck

g
ro

u
n
d

a
n
d

li
g
h
t

g
ra

y
b
a
ck

g
ro

u
n
d

re
p
re

se
n
t,

re
sp

ec
ti

v
el

y,
th

e
b
es

t
a
n
d

se
co

n
d

b
es

t
in

d
ic

a
to

r
va

lu
es

.

N
S
G

A
II

S
M

P
S
O

O
M

O
P

S
O

A
M

O
P

S
O

z
A

M
O

P
S
O

d
A

M
O

P
S
O

w

Z
D

T
1

6
.6

0
e

−
0
1
4
.9
e
−
0
4

6
.6

2
e

−
0
1
1
.0
e
−
0
4

6
.6

1
e

−
0
1
3
.2
e
−
0
4

6
.6

2
e

−
0
1
7
.7
e
−
0
6

6
.6

2
e

−
0
1
4
.8
e
−
0
6

6
.6

2
e

−
0
1
1
.3
e
−
0
4

Z
D

T
2

3
.2

6
e

−
0
1
3
.3
e
−
0
4

3
.2

9
e

−
0
1
1
.6
e
−
0
4

3
.2

8
e

−
0
1
3
.3
e
−
0
4

3
.2

9
e

−
0
1
1
.6
e
−
0
5

3
.2

9
e

−
0
1
1
.3
e
−
0
5

3
.2

9
e

−
0
1
6
.7
e
−
0
5

Z
D

T
3

5
.1

5
e

−
0
1
3
.0
e
−
0
4

5
.1

5
e

−
0
1
4
.7
e
−
0
4

5
.1

4
e

−
0
1
1
.5
e
−
0
3

5
.1

6
e

−
0
1
1
.4
e
−
0
5

5
.1

6
e

−
0
1
1
.2
e
−
0
5

5
.1

6
e

−
0
1
4
.7
e
−
0
3

Z
D

T
4

6
.5

7
e

−
0
1
4
.5
e
−
0
3

6
.6

1
e

−
0
1
1
.9
e
−
0
4

0
.0

0
e

+
0
0
0
.0
e
+
0
0

6
.6

2
e

−
0
1
1
.0
e
−
0
5

6
.6

2
e

−
0
1
1
.5
e
−
0
5

0
.0

0
e

+
0
0
0
.0
e
+
0
0

Z
D

T
6

3
.9

0
e

−
0
1
2
.0
e
−
0
3

4
.0

1
e

−
0
1
7
.7
e
−
0
5

4
.0

1
e

−
0
1
5
.6
e
−
0
5

4
.0

1
e

−
0
1
1
.3
e
−
0
5

4
.0

1
e

−
0
1
1
.9
e
−
0
5

4
.0

1
e

−
0
1
1
.5
e
−
0
5

D
T

L
Z
1

4
.9

0
e

−
0
1
4
.6
e
−
0
3

4
.9

4
e

−
0
1
4
.2
e
−
0
4

0
.0

0
e

+
0
0
0
.0
e
+
0
0

4
.9

5
e

−
0
1
3
.4
e
−
0
5

4
.9

5
e

−
0
1
1
.9
e
−
0
5

0
.0

0
e

+
0
0
0
.0
e
+
0
0

D
T

L
Z
2

2
.0

9
e

−
0
1
3
.4
e
−
0
4

2
.1

0
e

−
0
1
8
.9
e
−
0
5

2
.1

0
e

−
0
1
1
.8
e
−
0
4

2
.1

1
e

−
0
1
9
.0
e
−
0
5

2
.1

1
e

−
0
1
1
.2
e
−
0
5

2
.1

1
e

−
0
1
1
.4
e
−
0
4

D
T

L
Z
3

0
.0

0
e

+
0
0
5
.2
e
−
0
2

2
.1

0
e

−
0
1
1
.2
e
−
0
1

0
.0

0
e

+
0
0
0
.0
e
+
0
0

2
.1

1
e

−
0
1
1
.3
e
−
0
1

2
.1

1
e

−
0
1
2
.7
e
−
0
3

0
.0

0
e

+
0
0
0
.0
e
+
0
0

D
T

L
Z
4

2
.0

9
e

−
0
1
2
.1
e
−
0
1

2
.1

0
e

−
0
1
1
.1
e
−
0
4

2
.1

0
e

−
0
1
4
.5
e
−
0
4

2
.1

1
e

−
0
1
3
.2
e
−
0
5

2
.1

1
e

−
0
1
1
.7
e
−
0
5

2
.1

1
e

−
0
1
2
.7
e
−
0
4

D
T

L
Z
5

2
.1

1
e

−
0
1
2
.9
e
−
0
4

2
.1

2
e

−
0
1
1
.0
e
−
0
4

2
.1

2
e

−
0
1
1
.0
e
−
0
4

2
.1

3
e

−
0
1
7
.7
e
−
0
5

2
.1

3
e

−
0
1
6
.1
e
−
0
6

2
.1

2
e

−
0
1
1
.7
e
−
0
4

D
T

L
Z
6

1
.8

3
e

−
0
1
4
.6
e
−
0
2

2
.1

2
e

−
0
1
5
.8
e
−
0
5

2
.1

2
e

−
0
1
5
.6
e
−
0
5

2
.1

3
e

−
0
1
5
.9
e
−
0
6

2
.1

3
e

−
0
1
6
.9
e
−
0
6

2
.1

3
e

−
0
1
1
.1
e
−
0
5

D
T

L
Z
7

3
.3

4
e

−
0
1
2
.0
e
−
0
4

3
.3

5
e

−
0
1
1
.1
e
−
0
4

3
.3

4
e

−
0
1
3
.3
e
−
0
4

3
.3

5
e

−
0
1
6
.8
e
−
0
6

3
.3

5
e

−
0
1
4
.8
e
−
0
6

3
.3

5
e

−
0
1
1
.2
e
−
0
4

W
F
G

1
4
.8

2
e

−
0
1
1
.1
e
−
0
1

1
.1

6
e

−
0
1
6
.0
e
−
0
3

1
.9

5
e

−
0
1
7
.9
e
−
0
2

1
.3

2
e

−
0
1
3
.1
e
−
0
2

1
.2

7
e

−
0
1
7
.0
e
−
0
3

3
.6

3
e

−
0
1
1
.4
e
−
0
1

W
F
G

2
5
.6

1
e

−
0
1
2
.7
e
−
0
3

5
.6

1
e

−
0
1
1
.2
e
−
0
3

5
.6

4
e

−
0
1
1
.4
e
−
0
4

5
.6

4
e

−
0
1
1
.3
e
−
0
4

5
.6

4
e

−
0
1
2
.6
e
−
0
4

5
.6

5
e

−
0
1
4
.4
e
−
0
5

W
F
G

3
4
.9

2
e

−
0
1
6
.0
e
−
0
4

4
.9

3
e

−
0
1
3
.8
e
−
0
4

4
.9

4
e

−
0
1
1
.5
e
−
0
4

4
.9

5
e

−
0
1
1
.8
e
−
0
5

4
.9

5
e

−
0
1
1
.9
e
−
0
5

4
.9

5
e

−
0
1
4
.0
e
−
0
6

W
F
G

4
2
.1

7
e

−
0
1
4
.7
e
−
0
4

2
.0

2
e

−
0
1
2
.4
e
−
0
3

2
.0

8
e

−
0
1
1
.7
e
−
0
3

2
.0

9
e

−
0
1
2
.8
e
−
0
3

2
.0

9
e

−
0
1
2
.6
e
−
0
3

2
.1

5
e

−
0
1
4
.9
e
−
0
3

W
F
G

5
1
.9

5
e

−
0
1
4
.5
e
−
0
4

1
.9

6
e

−
0
1
5
.5
e
−
0
5

1
.9

6
e

−
0
1
9
.1
e
−
0
5

1
.9

7
e

−
0
1
4
.2
e
−
0
5

1
.9

7
e

−
0
1
4
.4
e
−
0
5

1
.9

7
e

−
0
1
6
.4
e
−
0
5

W
F
G

6
2
.0

2
e

−
0
1
1
.4
e
−
0
2

2
.0

9
e

−
0
1
4
.0
e
−
0
4

2
.1

0
e

−
0
1
7
.3
e
−
0
5

2
.1

1
e

−
0
1
1
.3
e
−
0
5

2
.1

1
e

−
0
1
3
.2
e
−
0
5

2
.1

1
e

−
0
1
1
.7
e
−
0
5

W
F
G

7
2
.0

9
e

−
0
1
3
.5
e
−
0
4

2
.0

9
e

−
0
1
4
.5
e
−
0
4

2
.1

0
e

−
0
1
1
.0
e
−
0
4

2
.1

1
e

−
0
1
1
.1
e
−
0
5

2
.1

1
e

−
0
1
1
.2
e
−
0
5

2
.1

1
e

−
0
1
4
.2
e
−
0
6

W
F
G

8
1
.4

6
e

−
0
1
2
.1
e
−
0
3

1
.4

8
e

−
0
1
1
.9
e
−
0
3

1
.4

7
e

−
0
1
1
.1
e
−
0
3

1
.5

1
e

−
0
1
1
.0
e
−
0
3

1
.5

1
e

−
0
1
1
.1
e
−
0
3

1
.5

1
e

−
0
1
1
.1
e
−
0
3

W
F
G

9
2
.3

7
e

−
0
1
1
.6
e
−
0
3

2
.3

5
e

−
0
1
6
.3
e
−
0
4

2
.3

7
e

−
0
1
9
.8
e
−
0
4

2
.3

9
e

−
0
1
1
.4
e
−
0
3

2
.4

0
e

−
0
1
1
.3
e
−
0
3

2
.4

1
e

−
0
1
1
.3
e
−
0
3

Automatic Design of Multi-objective Particle Swarm Optimizers 37

4.2 Comparative Analysis of the MOPSO Variants

We proceed to compare the three automatically-designed AMOPSO configura-
tions (AMOPSOz, AMOPSOd, and AMOPSOw) with NSGA-II, SMPSO, and
OMOPSO. We evaluate all algorithms on all three benchmark families (ZDT,
DTLZ and WFG). In the case of the AMOPSO variants, we expect that each
variant will perform well on the benchmark used for automatically designing it.
If, in addition, a variant performs well on the other two benchmark families, it
will provide evidence that the performance of that variant generalizes to other
problems, i.e., that AMOPSO variant would be a robust MOPSO.

Table 4. Average Friedman’s rankings with Holm’s Adjusted p-values (0.05) of com-
pared algorithms for ZDT, DTLZ and WFG. Symbol * indicates the control algorithm
and column at right contains the overall ranking of positions with regards to IHV .

IHV Hypervolume

Algorithm Friedman′sRank Holm′sAdj−p

*AMOPSOd 2.048 -

AMOPSOz 2.048 0.05e+00

AMOPSOw 3.214 0.25e−02

SMOPSO 4.429 0.17e−02

OMOPSO 4.500 0.13e−02

NSGAII 4.762 0.01e−02

We report in Table 3 the values of the hypervolume quality indicator, where
the best (highest) and second best values are highlighted in dark and light grey
background, respectively. From this table, we can observe that the results of
the AMOPSOz and AMOPSOd configurations are close in the ZDT and DTLZ
problems, confirming the observation made in the previous section about the
similarities of their configurations, and the AMOPSOw design only gets the
best results in some of the WFG instances. According to the statistical Fried-
man’s ranking and Holm’s non-parametric tests (see Table 4), AMOPSOz and
AMOPSOd perform similarly without significant differences in their distribu-
tion results, although showing the former higher ranking (hence acting as con-
trol algorithm denoted with *). The remaining variants AMOPSOw, SMPSO,
OMOPSO, and NSGA-II show statistically lower performances, since the null
hypothesis in Holm’s test is rejected in their case.

Additionally, we have applied the Wilcoxon rank-sum test at a 5% level of sig-
nificance (not included for space constraints) and it confirms that the difference
between AMOPSOz and AMOPSOd is not significant in 14 out the 21 prob-
lems. The tests between AMOPSOz and SMPSO, whose hypervolume values in
Table 3 are close in the ZDT and DTLZ problems, states that the differences are
significant in all the cases but one; regarding AMOPSOd and SMPSO, all the
differences are significant.

38 D. Doblas et al.

From this analysis, our selection would be either AMOPSOz or AMOPSOd,
as both yield the best overall approximations of the Pareto front in the three
benchmarks according to Table 3. We were able to find a robust MOPSO variant
by using their five and seven benchmark instances (respectively) for training,
while reaching also competitive performance with regards to testing all the con-
sidered problems. In the case of AMOPSOw, it just shows competitive perfor-
mance for training WFG instances, but not for testing ZDT and DTLZ ones,
which indicates some degree of over-fitting to this specific benchmark family.

5 Conclusions and Future Work

We have presented an approach to combine jMetal with the irace package to pro-
vide a tool for the automatic design and configuration of multi-objective particle
swarm optimizers (MOPSO). Our proposal is based on developing a template
for MOPSOs, called AMOPSO, by using the base components of the OMOPSO
and SMPSO optimizers which are enriched with three possible external archives,
three mutation operators, four strategies for computing the inertia weight, and
two schemes for the update of the velocity. The resulting design space has been
encoded as a parameter space to be tuned by irace to find the best design of
AMOPSO given a set of input problems. The criterion used by irace to assess
the performance of a given setting is the product of the normalized hypervolume
and the IGD+ indicator.

To validate our approach, we have considered three well-known benchmark
problems (ZDT, DTLZ, and WFG) and we have found three different variants of
AMOPSO for each of them (named AMPOSOz, AMOPSOd, and AMOPSOw).
The analysis of the configurations of these auto-designed MOPSO algorithms
reveals that common components include the use of an external archive based
on the hypervolume contribution density estimator, the adoption of uniform
mutation, and a reduced swarm size (between 11 and 43), while the external
archive allows the algorithms to return a Pareto front approximation of 100
solutions.

These variants have been compared with respect to NSGA-II, SMPSO, and
OMOPSO by computing the hypervolume quality indicator on three benchmark
families. The results show that the AMOPSO variants found with the ZDT and
DTLZ problems rank first according to the statistical Friedman ranking test,
and both algorithms reach a competitive overall performance on all the problems
adopted.

There are a number of lines for future work. We are particularly interested in
an in-depth analysis of the AMOPSO configurations to determine which param-
eters have the highest influence in the search. Extending our study to cope with
large-scale multi-objective problems and to apply the acquired experience to
address the optimization of real-world problems are issues that we are interested
in tackling.

Automatic Design of Multi-objective Particle Swarm Optimizers 39

Acknowledgements. This work has been partially funded by the Spanish Ministry
of Science and Innovation via Grant PID2020-112540RB-C41 (AEI/FEDER, UE) and
the Andalusian PAIDI program with grant P18-RT-2799. M. López-Ibáñez is a “Beatriz
Galindo” Senior Distinguished Researcher (BEAGAL 18/00053) funded by the Span-
ish Ministry of Science and Innovation (MICINN). Carlos A. Coello Coello gratefully
acknowledges support from CONACyT grant no. 2016-01-1920 (Investigación en Fron-
teras de la Ciencia 2016).

References

1. Beume, N., Naujoks, B., Emmerich, M.T.M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007).
https://doi.org/10.1016/j.ejor.2006.08.008

2. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatically designing state-of-
the-art multi- and many-objective evolutionary algorithms. Evol. Comput. 28(2),
195–226 (2020). https://doi.org/10.1162/evco a 00263

3. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Langdon, W.B., et al. (eds.) Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2002, pp. 11–18.
Morgan Kaufmann Publishers, San Francisco (2002)

4. Camacho-Villalón, C.L., Stützle, T., Dorigo, M.: PSO-X: a component-based
framework for the automatic design of particle swarm optimization algorithms.
IEEE Trans. Evol. Comput. (2021). https://doi.org/10.1109/TEVC.2021.3102863

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
https://doi.org/10.1109/4235.996017

6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.)
Evolutionary Multiobjective Optimization. AI&KP, pp. 105–145. Springer, London
(2005). https://doi.org/10.1007/1-84628-137-7 6

7. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multi-objective opti-
mization. Adv. Eng. Softw. 42(10), 760–771 (2011). https://doi.org/10.1016/j.
advengsoft.2011.05.014

8. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5),
477–506 (2006). https://doi.org/10.1109/TEVC.2005.861417

9. Ishibuchi, H., Masuda, H., Nojima, Y.: A study on performance evaluation ability of
a modified inverted generational distance indicator. In: Silva, S., Esparcia-Alcázar,
A.I. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2015, pp. 695–702. ACM Press, New York (2015)

10. de Lima, R.H.R., Pozo, A.T.R.: A study on auto-configuration of multi-objective
particle swarm optimization algorithm. In: Proceedings of the 2017 Congress on
Evolutionary Computation (CEC 2017), pp. 718–725. IEEE Press, Piscataway
(2017). https://doi.org/10.1109/CEC.2017.7969381

11. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002

https://doi.org/10.1016/j.ejor.2006.08.008
https://doi.org/10.1162/evco_a_00263
https://doi.org/10.1109/TEVC.2021.3102863
https://doi.org/10.1109/4235.996017
https://doi.org/10.1007/1-84628-137-7_6
https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1016/j.advengsoft.2011.05.014
https://doi.org/10.1109/TEVC.2005.861417
https://doi.org/10.1109/CEC.2017.7969381
https://doi.org/10.1016/j.orp.2016.09.002

40 D. Doblas et al.

12. Nebro, A.J., Durillo, J.J., Coello Coello, C.A.: Analysis of leader selection strate-
gies in a multi-objective Particle Swarm Optimizer. In: Proceedings of the 2013
Congress on Evolutionary Computation (CEC 2013), pp. 3153–3160. IEEE Press,
Piscataway (2013). https://doi.org/10.1109/CEC.2013.6557955

13. Nebro, A.J., Durillo, J.J., Garćıa-Nieto, J., Coello Coello, C.A., Luna, F.,
Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimiza-
tion. In: 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria
Decision-Making (MCDM), pp. 66–73 (2009). https://doi.org/10.1109/MCDM.
2009.4938830

14. Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jMetal multi-objective opti-
mization framework. In: Jiménez Laredo, J.L., Silva, S., Esparcia-Alcázar, A.I.
(eds.) Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion, GECCO Companion 2015, pp. 1093–1100. ACM Press, New York (2015)

15. Nebro, A.J., López-Ibáñez, M., Barba-González, C., Garćıa-Nieto, J.: Automatic
configuration of NSGA-II with jMetal and irace. In: López-Ibáñez, M., Auger,
A., Stützle, T. (eds.) Proceedings of the Genetic and Evolutionary Computation
Conference Companion, GECCO Companion 2019, pp. 1374–1381. ACM Press,
New York (2019). https://doi.org/10.1145/3319619.3326832

16. Nebro, A.J., Luna, F., Alba, E., Dorronsoro, B., Durillo, J.J., Beham, A.: AbYSS:
adapting scatter search to multiobjective optimization. IEEE Trans. Evol. Comput.
12(4) (2008)

17. Reyes-Sierra, M., Coello Coello, C.A.: Multi-objective particle swarm optimizers:
a survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)

18. Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimiza-
tion using crowding, mutation and ε-dominance. In: Coello Coello, C.A., Hernández
Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4 35

19. Santiago, A., Dorronsoro, B., Nebro, A.J., Durillo, J.J., Castillo, O., Fraire, H.J.:
A novel multi-objective evolutionary algorithm with fuzzy logic based adap-
tive selection of operators: fame. Inf. Sci. 471, 233–251 (2019). https://doi.
org/10.1016/j.ins.2018.09.005. https://www.sciencedirect.com/science/article/pii/
S0020025518306959

20. Stützle, T., López-Ibáñez, M.: Automated design of metaheuristic algorithms. In:
Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272,
pp. 541–579. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-
4 17

21. Zitzler, E., Thiele, L., Deb, K.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.
1162/106365600568202

https://doi.org/10.1109/CEC.2013.6557955
https://doi.org/10.1109/MCDM.2009.4938830
https://doi.org/10.1109/MCDM.2009.4938830
https://doi.org/10.1145/3319619.3326832
https://doi.org/10.1007/978-3-540-31880-4_35
https://doi.org/10.1016/j.ins.2018.09.005
https://doi.org/10.1016/j.ins.2018.09.005
https://www.sciencedirect.com/science/article/pii/S0020025518306959
https://www.sciencedirect.com/science/article/pii/S0020025518306959
https://doi.org/10.1007/978-3-319-91086-4_17
https://doi.org/10.1007/978-3-319-91086-4_17
https://doi.org/10.1162/106365600568202
https://doi.org/10.1162/106365600568202

Automatic Extraction of Understandable
Controllers from Video Observations

of Swarm Behaviors

Khulud Alharthi1,3(B) , Zahraa S. Abdallah2 , and Sabine Hauert1,2

1 Bristol Robotics Laboratory, University of Bristol, Bristol, UK
khulud.alharthi@bristol.ac.uk

2 Department of Engineering Mathematics, University of Bristol, Bristol, UK
3 Department of Computer Science, College of Computers and Information

Technology, Taif University, Taif, Saudi Arabia

Abstract. Swarm behavior emerges from the local interaction of agents
and their environment often encoded as simple rules. Extracting the rules
by watching a video of the overall swarm behavior could help us study
and control swarm behavior in nature, or artificial swarms that have
been designed by external actors. It could also serve as a new source of
inspiration for swarm robotics. Yet extracting such rules is challenging
as there is often no visible link between the emergent properties of the
swarm and their local interactions. To this end, we develop a method
to automatically extract understandable swarm controllers from video
demonstrations. The method uses evolutionary algorithms driven by a fit-
ness function that compares eight high-level swarm metrics. The method
is able to extract many controllers (behavior trees) in a simple collec-
tive movement task. We then provide a qualitative analysis of behaviors
that resulted in different trees, but similar behaviors. This provides the
first steps toward automatic extraction of swarm controllers based on
observations.

1 Introduction

Swarm behavior emerges from simple rules which govern the interaction among
the agents and between each agent with their surrounding environment. Birds
flocking, fish schooling, and bee foraging are examples of swarm behaviors found
in natural systems [25]. Inspiration has been taken from these natural systems
to design robot swarms. Swarm robotics could be used in fire and rescue, storage
organization, bridge inspection. Also, in a biomedical application where swarms
of large numbers of miniature robots coordinate to detect, monitor, or treat
medical conditions [4,22,24]. Swarm behavior is designed by defining the rules
of local interaction between agents and their environment [3].

Extracting an understandable controller by watching a video of the overall
swarm behavior can serve many purposes. It can be considered a design paradigm

Z. S. Abdallah and S. Hauert—Both authors have contributed equally to the work.
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 41–53, 2022.
https://doi.org/10.1007/978-3-031-20176-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_4&domain=pdf
http://orcid.org/0000-0002-0565-2249
http://orcid.org/0000-0002-1291-2918
http://orcid.org/0000-0003-0341-7306
https://doi.org/10.1007/978-3-031-20176-9_4

42 K. Alharthi et al.

of swarm robotics by allowing for the automatic extraction of use-able rules for
robot swarms just based on a demonstrated behavior of artificial or natural
swarms. In addition, the readability of the controller can provide the swarm
engineer with the ability to understand, control, or adapt the rules to new robots.
Moreover, the method can be used to analyze the natural swarm system. For
example, extracting these rules can help behavioral ecology studies interpret how
these rules developed and whether the same rules evolved across different species
[18]. Another application involves understanding the motion of a particular cell
system, which can provide insight into the influence of new medical intervention
on this system [9]. This method could also be also used to control natural swarm
systems or learn the behavior directly from an online setting [2].

Using existing video observations of swarm behaviors as a source of learning
has been investigated in several works. In the imitation learning context, a video
of an ideal behavior is used to train a controller mostly in form of a neural
network to produce a swarm imitating the demonstrated behavior [5,7,14,16,20,
23,27–29]. For the second context, video observations were used to learn about
biological swarm behavior by analyzing their trajectories to investigate what
components of the individual controller were crucial for the emergent behavior
seen in different species [1,8,12,17,18,24,26].

Most of the proposed works do not provide high-level, understandable rules
that can easily be adopted to external systems. In this work, we develop a method
to automatically extract understandable controllers from a video observation of
swarm behavior. The only input to the proposed method is the video observation
of the swarm behavior with no information on the type of the swarm and no
requirement of a training dataset. The extracted controller takes the form of a
behavior tree to favour human readability [13,15]. An evolutionary algorithm is
used to produce a similar emergent behavior to the original observed behavior.
The fitness of the evolutionary algorithm is defined as the similarity between
two behaviors assessed using eight swarm motion metrics.

The paper is organized as follows. Section 2 introduces an overview of the
related works. Section 3 presents the components of the proposed extraction
method of the swarm’s local controller based on a video observation. Our results
are analyzed and discussed in Sect. 4.

2 Related Works

The use of a video observation of swarm behavior as a source of learning can be
beneficial in several ways. It can be considered an automatic design approach
for swarm robotics. Also, it can provide insight into the underlying biologi-
cal swarm mechanism. Thus, the human readability of the learned controller is
highly regarded. In this section, we review works that used video observation to
learn a swarm behavior.

Robot swarms are often seen as simple with (a) multiple robots that have
(b) simple capabilities and (c) only local perception where (d) all of them col-
lectively work to achieve specific behavior. Designing swarm behaviors that fit

Understandable Controller Extraction from Video Observations of Swarms 43

these characteristics comes with three important benefits: robustness, flexibility,
and scalability [3,21]. Designing the rules that make up a swarm robot’s local
controller is done either manually or by a careful definition of optimization’s
objective function to find the rules automatically [3,10]. In either case, expertise
about the desired swarm behavior is needed. Imitation learning eliminates this
requirement and allows the extraction of the swarm controller from a demon-
stration of the desired emergent swarm performance.

Imitation Learning provides the robots with the ability to learn directly
from an expert demonstration. This establishes a learning paradigm between
the swarm robots as a learner and the original swarm behavior presented in a
video as the teacher [23]. Different forms of these three components of imitation
learning: the expert swarm demonstration, the learner swarm, and the learning
mechanism have been proposed in several works. A teacher could take the form
of offline behavioral data consisting of states and actions at different time steps.
This behavioral data can be generated from a simulation of the target behav-
ior. Depending on the sensing capabilities of the target behavior, the dataset
could include images [14,27] or other inferred state descriptors [16,20,29]. The
teaching data can also be generated by capturing the live behavior from a bio-
logical swarm [20,28]. A robot demonstrator in an online learning environment
is another form of the teacher in the imitation learning process [5,7]. The imi-
tation learning process either aims to train a machine learning model that can
map the sensed information into action [16,27], to translate the observed trajec-
tory into performable form and copy it to the learner robot directly [5,29], or
to optimize a local controller using inverse reinforcement learning [28]. Most of
the works conducted in offline imitation learning for swarms focus on extract-
ing swarm controllers in different variations of neural network form, which are
known to lack interpretability. These variations include: Graph Neural Network
[29], Convolutional Neural Network (CNN) [27], Feed-Forward Neural Network
[16], Recurrent Neural Network [20] or a mixture of them [14].

Some of the studies that propose methods to extract rules from video obser-
vations of swarms have a different goal than imitation learning. While imitation
learning aims to gain the extracted rules as a learned task that produce the col-
lective behavior robustly in the same or different environment, these works are
only concerned with understanding the mechanism of the behavior observed in
the video. Observation-based rule extraction uses parameter fitting techniques
such as Bayesian inference, force matching and additive mixture [8,12,18]. These
techniques receive an input of trajectories from the observed swarm behavior and
rules with associated parameters. They then produce values for these parameters
to indicate the impact of each of these rules on the emergent behavior. These
rules include simple actions such as collision avoidance and aligning velocity.
Strategies that the individual of the swarm follow all the time such as follow-
ing a leader, following its neighbors or only following their own rules have been
extracted and tested using fish and baboon observations [1,26].

Work by [17] proposed a turning-like classifier to differentiate between an
imitated sample from the assessed controller and the original sample from the

44 K. Alharthi et al.

original controller. A co-evolutionary algorithm is used to optimize both the
classifier to classify original behavior as original and behavior from the assessed
controller as duplicate and also to optimize the assessed controller to deceive the
classifier by making it classify their behavior as the original. Another method
used a single monitoring robot to infer the parameter of the predefined rule of
the swarm in a shared simulation setting [24].

Most of the proposed works do not provide high-level, understandable rules
that can easily be adopted to external systems. This paper aims to not only imi-
tate the behavior but also to provide human-readability of the local rules that
lead to the observed behavior. In addition, no assumptions were made about the
demonstrated behavior other than considering it is a swarm behavior. In this
work, we aim to extract an understandable swarm controller in the form of a
behavior tree with nine motion action nodes from a swarm video observation
using an evolutionary algorithm and eight swarm metrics. The extracted behav-
ior tree will explain the swarm observation using the list of leaf nodes built in
the system. The no-context aspect of our extraction method with rich options
of leaf nodes will make it applicable to a wide range of swarm observations.
This work serves as a first step toward extracting more complex behavior trees
with different leaf node types such as motion actions, transportation actions,
communication, and sensing actions we aim to pursue in future works.

3 Methodology

Extracting robot controllers that result in an observed swarm behavior can be
defined as an optimization problem with the following formula:

min distance (OriginalSwarmMetrics,AssessedSwarmMetrics) (1)

where:

Original Swarm Metrics is a vector of metrics describing the swarm motion
presented in the video demonstration.

Assessed Swarm Metrics is a vector of metrics describing the swarm motion
generated by simulating a behavior tree to be assessed.

The aim is to minimize the distance between the two vectors, with the assump-
tion that if rules assessed generate swarm behaviors with similar metrics, then
imitation has been successful. The controller extraction method starts by com-
puting metrics describing the original swarm behavior. The next steps involve
using the evolutionary method to optimize a behavior tree by: for each indi-
vidual in the initial population, generating random behavior trees, simulating
each individual copied over the homogeneous swarm, then measuring the met-
rics resulting from the swarm behavior, and assigning a fitness based on the
distance between this assessed swarm metrics and the original swarm metrics.
As generations evolve, high-performing behavior trees are selected, mutated, and
crossed over to generate behavior trees that have similar metrics as the original
swarm behavior. Figure 1 shows the general framework of the proposed method.

Understandable Controller Extraction from Video Observations of Swarms 45

Fig. 1. Extraction method with artificial evolution to discover behavior trees that
generate swarm behaviors with swarm metrics similar to those of the original swarm
behavior.

3.1 Behavior Tree Controller

Swarm controllers in the form of behavior trees are implemented as a sequence
node with three leaf nodes. The sequence node prompts each of its leaf nodes
from left to right to execute and return success notifications unless any failure
happens in any of the leaf nodes [15]. Leaf nodes can be any of the following
nine types:

– Aggregation: move in the direction of neighboring robots.
– Dispersion: move away from neighbouring robots.
– Separation: avoid collision with neighbouring robots.
– Clustering: move towards the nearest robot to form multiple clusters.
– Random motion: move in the random direction.
– South-East force: move to the south-east direction.
– South-West force: move to the south-west direction.
– North-East force: move to the north-east direction.
– North-West force: move to the north-west direction.

A library of random controllers is generated to fill the initial population needed
by the evolutionary algorithm. Each behavior tree is generated by randomly
selecting three of the nine leaf node options.

3.2 Controller Execution

To produce the swarm trajectories for each swarm controller, a 2D simulation
environment is built using C++ with OpenGL and python Matplotlib. The

46 K. Alharthi et al.

simulation environment includes a square area (8m × 8m) and 20 swarm agents.
Swarm agents are simulated as a circle with a radius of 25 cm where the sensory
range of each robot is 50 cm. Agents can move in any direction based on the
velocity vector resulting from the execution of the behavior tree with a speed
of 1m/s. Each swarm controller is simulated for 100 time-steps (100 s) where at
each time step the behavior tree is ticked to update the swarm behavior.

3.3 Swarm Metrics

The swarm behavior produced from the optimal behavior tree controller should
look like the original behavior. Some useful metrics to describe the swarm behav-
ior at a macro level can be found in [11,13,19]. Swarm metrics in this work are
used to quantify swarm behaviors based on video observations of a swarm. The
metrics are computed using only swarm trajectories and are meant to describe a
swarm and its resulting trajectories. Four categories of metrics were considered:
motion metrics, sparsity metrics, density metrics, and a connectivity metric. A
description of these metrics is provided in the following list. In this description,
each agent is defined as a where, a is a composite of two vectors that store the
location of the agent a in the x and the y direction. distance is computed using
Euclidean distance and n is the total number of agents in the swarm. Each of
these metrics is a time-series vector as they are computed at each time-step.

Motion Metrics: This category of metrics is used to capture the direction,
magnitude and frequency of the swarm motion. It includes three metrics: the
center of mass, the maximum swarm shift and the swarm mode index.
1-Center of mass is computed as the average overall agent locations in the x
and the y direction.
2-Maximum swarm shift is computed as the maximum distance moved among
all agents measured at each time-step t.
3-Swarm mode index is used to measure the frequency of the swarm motion.
It is computed as the distance between the center of mass and the swarm mode
at each time-step t. The swarm mode is defined as a location in the x and the y
direction with maximum frequency among all agents’ locations. The frequency
of location l in the x or the y direction is computed using the following formula

Frequency(l) =
n∑

i=1

1

distance(l,li)<0.1

(2)

Sparsity Metrics: These metrics describe how sparse the swarm is quantified
using two metrics: the longest path and the maximum radius.
4-Longest path is the maximum distance traveled from the origin among all
agents.
5-Maximum radius is defined as the maximum distance among the distances
between center of mass of the swarm and each agent.

Understandable Controller Extraction from Video Observations of Swarms 47

Density Metrics: Two metrics are used to capture the density, the average
local density, and the average nearest neighbour distance.
6-Average local density is the sum of the number of agents in the local radius
r of each agent averaged over the total number of agents.
7-Average nearest neighbour distance is the sum of the distance to the
nearest neighbour of each agent averaged over the total number of agents.

Connectivity Metric: if the swarm state in each time-step t is considered a
graph, with the nodes being the agents, then the connectivity of the swarm can
be computed using the 8-Beta index. The beta index is a metric that measures
the connectivity of the graph by dividing the number of paths between nodes
by the number of nodes in the graph. For the swarm beta index, the path is
assumed to be connecting two agents if the distance between them is less than
the average distance. Average distance is computed as the sum of the distances
among all the agents over the total number of agents.

3.4 Fitness Function

The fitness function measures how similar the original swarm behavior is to
the assessed swarm behavior based on the swarm metrics extracted from the
recorded trajectories. It is defined as the euclidean distance between the original
and assessed swarm metric vectors.

√∑

i

(OriginalSwarmMetricsi −AssessedSwarmMetricsi)2 (3)

Metrics are normalized to ensure each metric contributes equally to the fitness.
For each metric, we store the maximum and a minimum values recorded over the
whole population of the first generation and use it to normalize over the entire
evolutionary run.

3.5 Evolutionary Algorithm

Genetic programming (GP) has been used to evolve behavior trees using oper-
ations that take into consideration their hierarchical structure [13,15]. In this
work, behavior trees are evaluated by the fitness function where the goal of
evolution is to minimize fitness. Elitism is used to copy the best three behav-
ior trees to the next generation without any change. The remaining individuals
are selected using tournament selection with a tournament size of three. The
next steps include applying single-point crossover and single-point mutation with
rates as shown in Table 1. In the single-point crossover, the cross point is chosen
randomly and the two behavior trees swap their leaf nodes. The Mutation is
done by choosing a random leaf node and changing its type to any of the other
leaf node types. The behavior tree with the best fitness function in the final
generation will then be chosen as the extracted swarm controller.

48 K. Alharthi et al.

Table 1. Evolutionary parameters

Parameter Value

Population size 50
Generations number 30
Elitism size 3
Tournament size 3
Crossover rate 0.5
Mutation rate 0.3

4 Results

In this section, we test the capability of the swarm metrics to capture the simi-
larity of two swarm trajectories, we then evaluate the performance in correctly
extracting original behavior trees. Finally, we provide a qualitative analysis of
successful extractions, and extractions resulting in different trees.

4.1 Evaluation of Swarm Metrics

As a first step, we aimed to see which swarm metrics were useful in differ-
entiating between similar or different behavior trees. To this end, we plot the
discrimination power of each metric in Sect. 3.3 by comparing their values in two
settings. First, the difference between metrics vectors of two swarm trajectories
produced by the same controller is computed. In the second setting, the differ-
ence was computed based on two swarm trajectories produced by two different
randomly generated controllers. 100 pairs of swarm trajectories were used in
each setting. Figure 2 shows the ability of each metric to assess the similarity
of two swarm observations. This result shows the distance between metrics for
two different swarm behaviors resulting from two different trees is larger than
the distance between metrics resulting from the same tree. Thus, demonstrating
their discrimination potential. Although some metrics show a higher capability
to discriminate than others, each of them can provide a different contribution to
the fitness function.

4.2 Performance of the Controller Extraction Method

To quantify the performance of the extraction method, we randomly generate
100 behavior trees, each one used as the original swarm behavior from which a
behavior tree needs to be extracted. To have a meaningful behavior, generations
of the original behavior trees were constrained by preventing leaf nodes that
have a canceling effect on each other from being presented in the same behav-
ior tree such as aggregation node and dispersion node. The simulated swarm
trajectories of these behavior trees are then used as an input to the controller
extraction method. A Jaccard index is used to evaluate the produced controller

Understandable Controller Extraction from Video Observations of Swarms 49

Fig. 2. The discrimination power of swarm metrics is apparent when the distance
between metrics for swarm behaviors generated from the same behavior trees is smaller
than the metrics coming from two different behavior trees.

by assessing the similarity of the extracted controller to the original behavior
tree. This metric is used as ground truth to assess the exact similarity between
behavior trees, and can not be used in the fitness which captures indirect met-
rics that can be extracted from the video observations. The Jaccard index is a
measure of similarity between two texts and is computed by dividing the inter-
section of characters between the two strings over the union of all the characters
[6]. When the Jaccard index is one, the two strings are the same, whereas zero
indicates they are completely different. Here behavior trees are represented as
strings. The method was able to achieve 0.868 average Jaccard similarity over
the 100 behavior trees where 75 behavior trees out of 100 were the exact copy
of the original behavior trees. The rest can be grouped into two groups. A high
similarity group with a Jaccard index larger than or equal to 0.5 which includes
18 extracted controllers. The last 7 controllers have a Jaccard index less than 0.5
and are in the low similarity group. However, no controller was extracted with a
zero similarity. That means the extracted controller in the worst-case will have
at least one of the nodes the same as the original controller. Table 2 shows a
summary of the method’s performance. There is a significant improvement over
the first generations as shown by the best fitness of all the 100 behavior trees
in Fig. 3. The average fitness also demonstrates some learning but with larger

Table 2. Performance measures of the controller extraction method

Accuracy 75
Controllers with high similarity 18
Controllers with low similarity 7
Average Jaccard Index (all) 0.868

50 K. Alharthi et al.

Fig. 3. The learning curve of the best fitness (in green) and the average fitness (in red)
over the 30 generations shows a successful minimization of the distance between the
original and the assessed swarm behavior metrics. (Color figure online)

distribution values than the best fitness. Increasing the number of leaf nodes
of the behavior tree will increase the search space as well as the complexity of
the problem. The performance of this method was tested against more complex
behaviors coming from behavior trees with 4, 5 and 6 leaf nodes. The results
obtained show the potential of this method as it was able to extract 70 exact
behavior trees with four leaf nodes, 57 behavior trees with five and 43 with
six leaf nodes. Although with 6 leaf nodes, the Jaccard similarity was 0.778,
no controller was extracted with zero similarity. For each of these 43 extracted
controllers, the method was able to search around 3,000 possibilities of behavior
trees, which is not trivial space.

4.3 Qualitative Behavioral Analysis

An example of a produced controller along with the original controller is pre-
sented in Fig. 4. The original behavior tree includes: random motion node, aggre-
gation node and North-East node. Aggregation node and North-East node were
extracted successfully while random node was not. Overall, the random node
faced a failed extraction 22 times out of 37. In 18 cases, the random node was
confused with a separation node as shown in this example. This is not surprising
since combining separation node and leaf nodes with opposite behavior such as
aggregation and clustering could look similar to the motion of the random node.
Separation nodes itself were wrongly extracted in just three cases out of 26.

Understandable Controller Extraction from Video Observations of Swarms 51

Aggregation, dispersion, clustering and all the directional nodes except north-
east node had zero failed extractions. In general, the directional nodes tend to
be over-extracted even when they are not present in the original controller.

Fig. 4. An example of the output of the method with a high Jaccard similarity includes
three screenshot of the controller and the behavior from the right to the left. The orig-
inal behavior tree and their simulated behavior are shown in red whereas the extracted
behavior tree and the imitated behavior are presented in green. (Color figure online)

5 Conclusion

Swarm behaviors in natural systems are inspiring in terms of their ability to
provide these systems with robustness and flexibility. Extracting the rules from
such systems is crucial for both the engineering of swarm robotics and the inter-
pretability of the underlying dynamics of the swarm systems whether natural
or artificial. Such extractions are also useful to understand and control artificial
systems after observation. In this study, we developed an understandable swarm
controller extraction method using an evolutionary algorithm and eight swarm
metrics. To evaluate the method, we constructed a swarm dataset where each
sample contains a behavior tree as swarm controller and corresponding simu-
lated swarm trajectories. Our experimental results show the method can exactly
extract 75 behavior trees out of 100 behavior trees while obtaining a 0.868 aver-
aged Jaccard similarity. These results show the potential of the method in appli-
cations ranging from robotics to biology. In the future, more complex behavior
trees and more action nodes will be considered such as transportation, commu-
nication and sensing nodes.

52 K. Alharthi et al.

References

1. Amornbunchornvej, C., Berger-Wolf, T.: Framework for inferring following strate-
gies from time series of movement data. ACM Trans. Knowl. Discov. Data 14(3),
35:1–35:22 (2020)

2. Bonnet, F., et al.: Robots mediating interactions between animals for interspecies
collective behaviors. Sci. Robot. 4(28), eaau7897 (2019)

3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

4. Carrillo-Zapata, D., et al.: Mutual shaping in swarm robotics: user studies in fire
and rescue, storage organization, and bridge inspection. Front. Robot. AI 7, 53
(2020)

5. Chatty, A., Gaussier, P., Kallel, I., Laroque, P., Alimi, A.M.: Learning by imitation
for the improvement of the individual and the social behaviors of self-organized
autonomous agents. In: Tan, Y., Shi, Y., Mo, H. (eds.) ICSI 2013. LNCS, vol.
7929, pp. 44–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38715-9_6

6. Chung, N., Miasojedow, B., Michał, S., Gambin1, A.: Jaccard/Tanimoto similarity
test and estimation methods for biological presence-absence data. BMC Bioinform.
20 (2019)

7. Erbas, M.D., Bull, L., Winfield, A.F.T.: On the evolution of behaviors through
embodied imitation. Artif. Life 21(2), 141–165 (2015)

8. Eriksson, A., Nilsson Jacobi, M., Nyström, J., Tunstrøm, K.: Determining interac-
tion rules in animal swarms. Behav. Ecol. 21(5), 1106–1111 (2010)

9. Ferguson, E.A., Matthiopoulos, J., Insall, R.H., Husmeier, D.: Inference of the
drivers of collective movement in two cell types: dictyostelium and melanoma. J.
R. Soc. Interface 13(123), 20160695 (2016)

10. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and
challenges. Front. Robot. AI 3, 29 (2016)

11. Harriott, C., Seiffert, A., Hayes, S., Adams, J.: Biologically-inspired human-swarm
interaction metrics. Proc. Hum. Factors Ergon. Soc. Ann. Meeting 58, 1471–1475
(2014)

12. Herbert-Read, J.E., Perna, A., Mann, R.P., Schaerf, T.M., Sumpter, D.J.T., Ward,
A.J.W.: Inferring the rules of interaction of shoaling fish. Proc. Natl. Acad. Sci.
108(46), 18726–18731 (2011)

13. Hogg, E., Hauert, S., Harvey, D., Richards, A.: Evolving behaviour trees for super-
visory control of robot swarms. Artif. Life Robot. 25(4), 569–577 (2020). https://
doi.org/10.1007/s10015-020-00650-2

14. Hu, T.K., Gama, F., Chen, T., Wang, Z., Ribeiro, A., Sadler, B.: VGAI: end-to-end
learning of vision-based decentralized controllers for robot swarms, pp. 4900–4904
(2021)

15. Jones, S., Studley, M., Hauert, S., Winfield, A.: Evolving behaviour trees for swarm
robotics. In: Groß, R., et al. (eds.) Distributed Autonomous Robotic Systems.
SPAR, vol. 6, pp. 487–501. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-73008-0_34

16. Li, J., Tan, Y.: A two-stage imitation learning framework for the multi-target
search problem in swarm robotics. Neurocomputing 334, 249–264 (2019)

17. Li, W., Gauci, M., Groß, R.: Turing learning: a metric-free approach to infer-
ring behavior and its application to swarms. Swarm Intell. 10(3), 211–243 (2016).
https://doi.org/10.1007/s11721-016-0126-1

https://doi.org/10.1007/978-3-642-38715-9_6
https://doi.org/10.1007/978-3-642-38715-9_6
https://doi.org/10.1007/s10015-020-00650-2
https://doi.org/10.1007/s10015-020-00650-2
https://doi.org/10.1007/978-3-319-73008-0_34
https://doi.org/10.1007/978-3-319-73008-0_34
https://doi.org/10.1007/s11721-016-0126-1

Understandable Controller Extraction from Video Observations of Swarms 53

18. Mann, R.P.: Bayesian inference for identifying interaction rules in moving animal
groups. PLoS ONE 6(8), e22827 (2011)

19. Manning, M.D., Harriott, C.E., Hayes, S.T., Adams, J.A., Seiffert, A.E.: Heuristic
evaluation of swarm metrics’ effectiveness. In: Proceedings of the Tenth Annual
ACM/IEEE International Conference on Human-Robot Interaction Extended
Abstracts, p. 17–18 (2015)

20. Maxeiner, H.: Imitation learning of fish and swarm behavior with Recurrent Neural
Networks. Master’s thesis, Dahlem Center for Machine Learning and Robotics
(2019)

21. Nedjah, N., Junior, L.S.: Review of methodologies and tasks in swarm robotics
towards standardization. Swarm Evol. Comput. 50, 100565 (2019)

22. Peyer, K.E., Zhang, L., Nelson, B.J.: Bio-inspired magnetic swimming microrobots
for biomedical applications (2012)

23. Prorok, A., Blumenkamp, J., Li, Q., Kortvelesy, R., Liu, Z., Stump, E.: The holy
grail of multi-robot planning: learning to generate online-scalable solutions from
offline-optimal experts. arXiv abs/2107.12254 (2021)

24. Ruangdech, S., Hauert, S., Homer, M.: Inferring swarm models using a single mon-
itoring robot. In: Artificial Life Conference Proceedings, no. 31, pp. 278–279 (2019)

25. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application.
In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_2

26. Schaerf, T.M., Herbert-Read, J.E., Ward, A.J.W.: A statistical method for iden-
tifying different rules of interaction between individuals in moving animal groups.
J. R. Soc. Interface 18(176), rsif.2020.0925, 20200925 (2021)

27. Schilling, F., Lecoeur, J., Schiano, F., Floreano, D.: Learning vision-based flight in
drone swarms by imitation. IEEE Robot. Autom. Lett. 4(4), 4523–4530 (2019)

28. Yu, X., Wu, W., Feng, P., Tian, Y.: Swarm inverse reinforcement learning for
biological systems. In: 2021 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pp. 274–279 (2021)

29. Zhou, S., Phielipp, M.J., Sefair, J.A., Walker, S.I., Amor, H.B.: Clone swarms:
learning to predict and control multi-robot systems by imitation. In: 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 4092–4099 (2019)

https://doi.org/10.1007/978-3-540-30552-1_2

Benchmarking Performances of Collective
Decision-Making Strategies with Respect
to Communication Bandwidths in Discrete

Collective Estimation

Qihao Shan(B) and Sanaz Mostaghim

Chair of Computational Intelligence, Faculty of Informatics,
Otto von Guericke University, Magdeburg, Germany

{qihao.shan,sanaz.mostaghim}@ovgu.de

Abstract. Multi-option collective decision making is an emergent topic
of study within the field of swarm intelligence. Many strategies have been
proposed to enable decentralized and localized decision-making behav-
iors in intelligent swarms. However, many proposed strategies have very
different requirements on the communication bandwidth and paradigm,
which make a clear and fair comparison difficult. In this paper, we seek to
investigate the performances of several promising decision-making algo-
rithms in a discrete collective estimation scenario when the communica-
tion bandwidth and paradigm are controlled. The considered algorithms’
performances are gauged via error, consensus time and failure rate.
Among the considered algorithms, we have observed that distributed
Bayesian belief sharing (DBBS) has superior performances in all three
metrics, especially at higher communication bandwidths. On the other
hand, ranked voting with Borda count (RV-BC) has comparable perfor-
mances to the baseline algorithms at lower bandwidths, while slightly
outperforms at higher bandwidths. We have concluded that the direct
belief fusion mechanism that underpins DBBS is an efficient use of com-
munication bandwidths in the experimental scenario investigated here.
However, among the considered algorithms, its message size scales the
quickest with the number of available options, which can potentially limit
its viability.

1 Introduction and Related Works

In the study of swarm intelligence, collective decision making refers to the process
where a swarm of agents reaches a particular global state using only local inter-
actions among the agents as well as between the agents and the environment.
Within the field of collective decision making, best-of-n problems encompass the
class of decision-making scenarios with discrete options, from which the agents
attempt to form a singular consensus on the most suitable one based on their
interactions with the surrounding environment and each other [8]. In this paper,
we focus on the discrete collective estimation scenario [5], which serves as a
multi-option extension to the binary collective perception problem [7].
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 54–65, 2022.
https://doi.org/10.1007/978-3-031-20176-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_5&domain=pdf
http://orcid.org/0000-0002-2968-3306
http://orcid.org/0000-0002-9917-5227
https://doi.org/10.1007/978-3-031-20176-9_5

Benchmarking CDM Strategies w.r.t. Communication Bandwidths 55

Many decision-making strategies inspired by naturally existing intelligent
swarms have been proposed to perform decision making in best-of-n problems,
such direct modulation of voter-based decisions (DMVD) [9] and direct mod-
ulation of majority-based decisions (DMMD) [10]. These opinion-based algo-
rithms are characterized by an individual agent having an explicit representa-
tion of a favored option and trying to recruit its peers to its opinion during
the decision-making process. There are also decision-making strategies proposed
that take inspiration from sensor fusion as well as electoral process, such as dis-
tributed Bayesian belief sharing (DBBS) [5] and ranked voting algorithms [4].
These decision-making strategies were proposed to specifically address the multi-
option decision-making scenario of discrete collective estimation. They seek to
convey the relative preferences of the options by agents using direct commu-
nication, which can result in a higher communication bandwidth compared to
the opinion-based methods such as DMVD and DMMD. On the other hand,
DMVD and DMMD both require the agents to possess and broadcast uniquely
identifying indices in their locality, which limits the scalability of the system. In
contrast, DBBS in its current form, and ranked voting algorithms potentially,
can function without uniquely identifying indices for the agents. These differ-
ences in communication bandwidth and paradigm make it difficult to accurately
assess the viability of these decision-making strategies.

To provide a fair and accurate comparison among the various decision-making
strategies, benchmark studies need to be conducted on them at similar communi-
cation bandwidths and communication paradigms. In this paper, we aim to gauge
the performances of collective decision-making strategies from the perspective
of communication bandwidths used, and observe the performances of considered
algorithms in a discrete collective estimation scenario when the communication
bandwidths are kept at equal levels and the communication paradigm kept to
strictly peer-to-peer without identifiers.

2 Problem Statement

In this paper, we investigate a discrete collective estimation scenario. It has
been used in previous studies on this topic [4,5]. It is a multi-option extension
to the binary collective perception scenario investigated in [7] and a discrete
variant of the continuous collective estimation problem investigated in [6]. The
experimental environment is as shown in Fig. 1 (left), the arena is covered in black
and white tiles, with the proportion of black tiles referred to as the fill ratio. N
mobile robots roam the arena, whose task is to collectively determine the most
likely fill ratio out of a series of H hypotheses. The robots can only communicate
with their peers within a limited distance, and also only detect the color of the
arena ground directly beneath themselves. The communication paradigm here is
strictly peer-to-peer, and is only in the form of one robot broadcasting a message
and another robot receiving it. An individual robot has no uniquely identifying
indices. If multiple robots within a neighborhood are broadcasting at the same
time, a random message would be picked up by a receiving robot.

56 Q. Shan and S. Mostaghim

Fig. 1. Illustration of experimental scenario (left) and arena patterns under concen-
trated distribution of environmental features (right)

In [4,5], Shan et al. has utilized decision-making strategies based on belief
fusion and ranked voting respectively to perform the required task. They have
also used a modified version of direct comparison (DC) and DMVD as baselines,
due to their applications in binary collective perception problems shown in [1,
7]. We have modified the considered algorithms such that they have the same
communication paradigm, and communication bandwidths that can be easily
adjusted using parameters. Details will be presented in the next section.

Similar to previous literature on discrete collective estimation [5], we test
the considered algorithms in two different environmental scenarios. The first is
an environment where the distribution of tiles is random (Fig. 1 left), and the
second is where black-color tiles are concentrated in distribution (Fig. 1 right).

3 Methodology

In this section, we present the details of the decision-making algorithms inves-
tigated in this paper. We will cover the decision-making mechanisms of each
strategy considered and how we are controlling the communication bandwidth
to achieve a fair comparison. For all decision-making strategies described here,
the robots used a Bayesian statistics-based mechanism to compute the qualities
of considered options. They are also programmed to perform random walk inside
the arena by a low-level controller.

3.1 Control Mechanisms for Environmental Exploration

For all considered decision-making strategies, the robots use the same mechanism
to explore the environment and obtain their own estimates of the likelihood of
individual hypotheses on the fill ratio. The latter serves as the option qualities.
These are the same as previous papers on the subject [4,5], and we will briefly
cover them here.

The low-level mechanism that controls the movement of the robots is a finite-
state machine with two possible motion states as shown in Table 1. At every
control loop, a robot makes an observation of the color of the ground beneath

Benchmarking CDM Strategies w.r.t. Communication Bandwidths 57

Table 1. Low-level control mechanism used to implement random walk

Motion Transition condition

A. Moving Forward Timer exp(40)s or Obstacle Detected
B. Turn in Random Direction Timer unif(0, 4.5)s

itself, if it is moving forward in motion state A. Observation collection is limited
to during forward motion in order to prevent an agent from collecting multiple
observations at the same location. An observation is stored in vector ob that can

be
[
0
1

]
or

[
1
0

]
depending on the color observed.

A robot’s belief on the likelihoods of the fill ratio hypotheses are stored in
vector ρ

n
, where each entry refers to the estimated likelihood of a corresponding

hypothesis. After each observation, ρ
n

is modified as follows.

ρ
n
= Normalize(ρ

n
◦ (K · ob)) (1)

K =

⎡
⎢⎢⎣
0.05 0.95
0.15 0.85
· · ·
0.95 0.05

⎤
⎥⎥⎦ (2)

Matrix K is of size H × 2 and encodes all considered fill ratio hypotheses,
where the first column represents white color and the second black color.

3.2 Opinion-Based Strategies: DC and DMVD

Algorithm1 shows our implementation of DC and DMVD algorithms. Both algo-
rithms are modified from implementations in binary collective perception sce-
narios [1,7], and they serve as baseline algorithms to gauge the performances of
the other two recently proposed algorithms.

In line 4–6, robot n sample the color of the arena floor beneath itself and
modifies its internal belief ρn on the likelihood of every fill ratio hypothesis.
In line 7, the robot tries to collect the opinion of a random neighbor within
its communication radius. If more than one robot nearby is broadcasting, the
message from a random robot is received. In line 8–10, the robot updates its own
opinion dn using its corresponding decision rule. In line 11, the robot randomly
mutates its current opinion to a neighboring hypothesis at a probability set by
the mutation rate τ .

In previous implementations of the two algorithms, the robots use explo-
ration and dissemination periods of configurable lengths to control the relative
frequency of message transfer and decision making. In this paper, we use the
parameter φ, denoting the broadcasting probability, to achieve similar effects. In
line 12 of both algorithms, the robot broadcasts its opinion randomly for the rest
of the control loop. We simulate the communication such that at any instant,

58 Q. Shan and S. Mostaghim

Algorithm 1: Opinion-based Strategies: DC and DMVD
Input : Initialized belief of robot n: ρ

n
Output: Converged decision: dn

1 Initialize dn with random valid values
2 Set broadcasting probability: φ and mutation probability: τ
3 while Decisions in swarm have not converged do
4 if Robot n is moving forward in motion State A then
5 ob = CollectObservation
6 ρ

n
= Normalize(ρ

n
◦ (K · ob))

7 (dm, ρm,dm) = CollectRandomNeighborOpinion
8 if dm is collected then
9 DC : If ρm,dm > ρn,dn : dn = dm

10 DMVD: dn = dm

11 dn = RandomChoice([dn + 1, dn − 1], τ)
12 Broadcast dn, ρn,dn randomly at probability DC: φ; DMVD: φ × ρn,dn

there is a certain probability for the robot to be broadcasting its opinion. For
DMVD, this probability is the product of a configurable parameter φ and the
computed quality of the robot’s current opinion ρn,dn

. While for DC, it is just
the parameter φ.

3.3 Ranked Voting-Based Strategy

Algorithm2 shows our implementation of a ranked voting-based decision-making
algorithm. We consider the best performing voting system investigated in pre-
vious work on the subject [4], Borda count, with similar modifications made to
bring exploration and dissemination processes into one control loop.

The robot performs the same exploration actions in Algorithm2 line 5–7 to
modify its own belief ρ

n
. It exchanges its opinion with its peers using the vector

ballot. It contains the ranking of all available options starting from 0. The robot
first attempt to collect a random neighbor’s opinion ballot′m in Algorithm2 line 8.
Then in Algorithm 2 line 10 it tallies the result and updates its decision dn using
a Borda count voting system. RV-BC is subject to the same random mutation as
in DMVD and DC shown in line 11 of Algorithm 2. ballot is then updated in line
14 of Algorithm2, which produces a ranking of all available options using the
internal belief of the robot ρ

n
. However, the current decision dn would always be

placed first in the ranking, regardless of its quality computed by the robot. The
communication bandwidth of RV-BC is tuned via two parameters, broadcasting
probability φ and ballot length η. The effect of φ is the same as in the previous
subsection. On the other hand, when the ballot length η is smaller than the
number of options, the robot shortens its ballot to length η by removing the
least preferred options in line 13–14 of Algorithm 2. The shortened ballot is
referred to as ballot′ in the pseudocode.

Benchmarking CDM Strategies w.r.t. Communication Bandwidths 59

Algorithm 2: Ranked Voting with Borda Count (RV-BC)
Input : Initialized belief of robot n: ρ

n
Output: Converged decision: dn

1 Initialize dn with random valid values
2 Set broadcasting probability: φ, ballot length: η and mutation probability: τ
3 Initialize ballotn with ηs
4 while Decisions in swarm have not converged do
5 if Robot n is moving forward in motion State A then
6 ob = CollectObservation
7 ρ

n
= Normalize(ρ

n
◦ (K · ob))

8 ballot′
m = CollectRandomNeighborOpinion

9 if ballot′
m is collected then

10 dn = argmin(ballotn + ballot′
m)

11 dn = RandomChoice([dn + 1, dn − 1], τ)
12 ballotn = MakeBallot(dn, ρ

n
)

13 ballot′
n = ballotn

14 ballot′
n[ballot′

n > η] = η
15 Broadcast ballot′

n randomly at probability φ × ρn,dn

3.4 Belief Fusion-Based Strategy: DBBS

Algorithm3 shows our implementation of the DBBS algorithm, the implementa-
tion here is very similar to in [5], with the broadcasting probability φ similarly
added.

The DBBS algorithm differs from other considered algorithms in that the
robots share its belief ρ

n
with each other and make the decision independently

based on the combined beliefs of themselves and their peers in line 11 of Algo-
rithm3. The belief fusion process is controlled by two parameters λ and μ. λ is
the decay rate of previously recorded beliefs of neighbors when adding new beliefs
to the record (Algorithm3 line 8), and μ is the decay rate of neighbors’ beliefs
when computing the outgoing message ξ

n
(Algorithm3 line 9). Both parameters

tune the level of positive feedback in the decision-making process among the
robots and should be set between 0 and 1.

4 Experiments and Results

In this section, we cover our experimental setup, including the assumptions and
parameter settings used to control the communication bandwidths of the con-
sidered algorithms. Afterwards, we present our experimental results.

4.1 Experimental Setup

Our experiments are done in a simulated physics-based environment, as shown
in Fig. 1 (left). It is 2-dimensional with a 2m × 2m arena covered by 400 tiles.
We simulate 20 mobile robots with the specification of e-pucks [3]. They have a

60 Q. Shan and S. Mostaghim

Algorithm 3: Distributed Bayesian Belief Sharing (DBBS)
Input: Initialized belief of robot n: ρ

n
, record of neighbors’ beliefs : ρ′

n
Output: Converged decisions: dn

1 Set parameters: λ, μ and broadcasting probability: φ
2 while Decisions in swarm have not converged do
3 if Robot n is moving forward in motion State A then
4 ob = CollectObservation
5 ρ

n
= Normalize(ρ

n
◦ (K · ob))

6 ξ
m

= CollectRandomNeighborOpinion
7 if ξ

m
collected then

8 ρ′
n
= Normalize(ρ′λ

n
◦ ξ

m
)

9 ξ
n
= ρ

n
◦ ρ′μ

n

10 Broadcast ξ
n

randomly at probability φ

11 dn = MaxIndex(ρ
n

◦ ρ′
n
)

linear speed of 0.16m/s and a rotational speed of 0.75 rad/s. The communication
range is set to 0.5m. The length of a control loop is set to 1 s.

Table 2. Assumptions on the message format and sizes for all considered algorithms

Decision-making strategy Message format

DMVD short int (16 bits)
DC short int + float (48 bits)
DBBS H× float (320 bits)
RV-BC η× short int (16η bits)

In this paper, when the robots are performing any considered algorithm, they
use the message formats listed in Table 2 during their communication. We assume
the robots are programmed using c++, and consider data types available for
c++ for the message transfer and subsequent computation of the communication
bandwidth used. In DMVD, the robots exchange only the index of their current
decisions during dissemination, and we assume that the information is stored in
a short int variable of 16 bits. Similarly, in DC, the robots exchange the index of
their current decisions as well as the estimated qualities, which are stored using
a short int and a float respectively, adding to a total of 48 bits. In DBBS, the
robots exchange the estimated qualities of all considered options, which consists
of H float variables, where H is the number of options. In this paper H = 10,
thus the message size is 320 bits. And finally, in RV-BC, the robots exchange the
rankings of the options, which is stored in η short int variables, with η being
the ballot length parameter.

We investigate the performances of considered algorithms at 4 different band-
width levels as shown in Table 3, together with the parameter settings for all

Benchmarking CDM Strategies w.r.t. Communication Bandwidths 61

Table 3. Parameter settings for each investigated algorithm to reach the considered
bandwidths levels

Decision-making strategy Bandwidths
1.6 bits/s 3.2 bits/s 8 bits/s 16 bits/s

DMVD φ = 0.1 φ = 0.2 φ = 0.5 φ = 1

DC φ = 0.1/3 φ = 0.2/3 φ = 0.5/3 φ = 1/3

DBBS φ = 0.005 φ = 0.01 φ = 0.025 φ = 0.05

RV-BC η = 10 φ = 0.01 φ = 0.02 φ = 0.05 φ = 0.1

RV-BC φ = 0.1 η = 1 η = 2 η = 5 η = 10

considered algorithms to limit the communication bandwidths to those levels.
In previous related works on collective perception [2] and discrete collective
estimation [4,5], it has been observed that there is a trade-off between decision-
making speed and accuracy. Thus, at each bandwidth level, we vary the other
parameters that are independent of communication bandwidth for each con-
sidered algorithms and plot the Pareto frontiers of performances for different
levels of communication. For DC, DMVD and RV-BC, the Pareto frontiers are
obtained using the settings of τ = {0, 0.01, 0.02, ...0.08}, while for DBBS, the
Pareto frontiers are obtained using the settings of λ = {0.5, 0.6, 0.7, 0.8, 0.9} and
μ = {0, 0.2, 0.4, 0.6, 0.8, 1}. We also assess the reliability of considered algorithms
via the failure rates, which measures the proportion of experimental runs that
fails to achieve a consensus within a time limit of 1200 s.

4.2 Experimental Results

The experimental results and the obtained Pareto frontiers between mean con-
sensus time and mean absolute error are plotted in Fig. 2. The color coding of
markers represents the failure rates.

As shown in Fig. 2(a), at the lowest considered bandwidth of 1.6 bits/s, all
considered algorithms display clear trade-offs between decision speed and accu-
racy. They are also able to keep failure rates low at less than 0.1 for most
parameter settings, except for DC with τ settings higher than 0.03 where the
failure rates increase rapidly and approach 1 when τ ≥ 0.05. This is contrary to
the more reliable performances of DC observed in [5]. Compared to DC, DMVD
has comparable performances at high consensus time and can outperform DC at
low consensus time. It also has lower failure rates across all parameter settings.
Among the considered algorithms, DMVD can reach a consensus the fastest at
low τ settings, although at a cost of higher error. DBBS is able to reach an error
of zero in a shorter time than other considered algorithms, but has a hard time
further reducing its consensus time. RV-BC has relatively poor performances in
terms of decision time at error at this bandwidth level and its Pareto frontier is
largely dominated by those of DBBS and DMVD. The upper left section of the
Pareto frontier, produced by limiting the communication probability φ, results

62 Q. Shan and S. Mostaghim

0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

M
ea

n
C

on
se

ns
us

 T
im

e
/s a) mean BW = 1.6 bits/s

+ DC
x DMVD
o DBBS

=10
=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6
0

200

400

600

b) mean BW = 3.2 bits/s

0

0.2

0.4

0.6

0.8

1

F
ai

lu
re

 R
at

e

+ DC
x DMVD
o DBBS

=10
=0.1

0 0.2 0.4 0.6 0.8
Mean Absolute Error /0.1

0

200

400

M
ea

n
C

on
se

ns
us

 T
im

e
/s c) mean BW = 8 bits/s

+ DC
x DMVD
o DBBS

=10
=0.1

0 0.2 0.4 0.6 0.8 1
Mean Absolute Error /0.1

0

100

200

300

d) mean BW = 16 bits/s

0

0.2

0.4

0.6

0.8

1

F
ai

lu
re

 R
at

e

+ DC
x DMVD
o DBBS

=10
=0.1

Fig. 2. Experimental results obtained by the considered algorithms in random envi-
ronments

in very low error, but the consensus time is relatively high, while the lower right
section, produced by limiting the ballot size η, results in relatively high error
with not enough reduction in consensus time to outperform other considered
algorithms significantly.

As shown in Fig. 2(b–d), as the communication bandwidth increases, all con-
sidered algorithms experience improvements in their performances, and are able
to achieve progressively lower error at shorter decision time and lower failure
rate. Among them, DBBS has the most significant improvements and progres-
sively outperforms the other algorithms at the entire Pareto frontier at higher
bandwidths. On the other hand, RV-BC has significant improvements in its error,
but the algorithm has difficulties coming to a fast decision even at the highest
communication bandwidth of 16 bits/s. At the same time, the performances of
RV-BC become increasingly inelastic regarding the parameters and the results
largely cluster together.

The performances of considered algorithms in environments with concen-
trated feature distribution are shown in Fig. 3. It can be observed that all con-
sidered algorithms experience a significant performance drop in all three metrics
compared to in random environments. It is difficult for all algorithms to achieve
an error of zero without experiencing high failure rates. This is especially appar-
ent at low communication bandwidths shown in Fig. 3(a, b), where the data
points at the top-left side of the Pareto frontiers have failure rates approaching
1. As the communication bandwidth increases, all considered algorithms experi-
ence a decrease in failure rate and decision time, but an increase in error.

Among the considered algorithms, DBBS still outperforms the others during
most of the Pareto frontiers in terms of decision speed and accuracy, especially
at higher communication bandwidths. It is also able to achieve lower failure
rates at equivalent decision time, demonstrating its reliability in more difficult

Benchmarking CDM Strategies w.r.t. Communication Bandwidths 63

0 0.5 1 1.5
0

500

1000

M
ea

n
C

on
se

ns
us

 T
im

e
/s a) mean BW = 1.6 bits/s

+ DC
x DMVD
o DBBS

=10
=0.1

0 0.5 1 1.5
0

500

1000

b) mean BW = 3.2 bits/s

0

0.2

0.4

0.6

0.8

1

F
ai

lu
re

 R
at

e

+ DC
x DMVD
o DBBS

=10
=0.1

0 0.5 1 1.5 2
Mean Absolute Error /0.1

0

200

400

600

800

M
ea

n
C

on
se

ns
us

 T
im

e
/s c) mean BW = 8 bits/s

+ DC
x DMVD
o DBBS

=10
=0.1

0 0.5 1 1.5 2
Mean Absolute Error /0.1

0

200

400

600

800

d) mean BW = 16 bits/s

0

0.2

0.4

0.6

0.8

1

F
ai

lu
re

 R
at

e

+ DC
x DMVD
o DBBS

=10
=0.1

Fig. 3. Experimental results obtained by the considered algorithms in concentrated
environments

environments. On the other hand, RV-BC displays slightly worse performances
at lower bandwidths compared to DC and DMVD, while continue to display
inelastic performances at higher bandwidths.

5 Discussion

Comparing the performances observed above with the results obtained in pre-
vious works on discrete collective estimation [4,5], we see that when control-
ling the communication bandwidth and paradigm, DC experiences a signifi-
cant performance drop and is consistently comparable or worse compared to
DMVD all along the Pareto frontier. This demonstrates that directly transmit-
ting option qualities for comparison is not an efficient use of limited commu-
nication bandwidth. Also, DC suffers from the communication paradigm used
here that restricts communication to peer-to-peer, which reduces the number of
options seen by individual robots, and increasing the number of message trans-
missions needed for high-quality options to propagate among the robots. The
same effects are also observed for RV-BC, which displays different performances
compared to the results shown in [4]. However, despite its inelastic performances,
it is still able to outperform the baselines at higher consensus time, especially
at higher communication bandwidths. In contrast, DMVD is less impacted by
the restriction in communication bandwidth and paradigm. This is because it
only transmits the index of the chosen option to its peers, and the modulation of
communication probability enables good options to propagate in a locality even
when communication is only restricted to peer-to-peer.

DBBS still clearly outperforms the other considered algorithms when control-
ling the communication bandwidth, especially at higher bandwidths of 8 bits/s

64 Q. Shan and S. Mostaghim

and 16 bits/s. On the other hand, the difference is not as prevalent at lower band-
widths. This confirms the results obtained in [5]. However, it should be noted that
the results here are based on the assumptions regarding the message sizes made
above, which scales differently for different considered algorithms with respect
to the number of options. Therefore, when the number of options increase, the
message size needed for DBBS will increase proportionally while it will largely
be unaffected for DMVD and DC. Thus, there would exist a break-even point
for the number of options, beyond which DBBS would not be viable compared
to the baselines. RV-BC faces similar scaling message size when the number
of options increase. However, the proportional increase is smaller compared to
DBBS, since only the rankings need to be transmitted.

6 Conclusion

In this paper, we have investigated the performances of several collective
decision-making strategies in a discrete collective estimation problem when con-
trolling the communication bandwidth and paradigm. We aim to provide a fair
and accurate assessment of the performances of previously proposed decision-
making strategies that have different requirement to their communication band-
widths and paradigm. Thus, we have experimented on the considered algorithms
at four bandwidth levels, where the communication paradigm is also restricted
to only peer-to-peer. For every considered algorithm, we have varied the param-
eters that are independent of communication to plot the Pareto frontiers of their
accuracy vs speed trade-off in the decision-making process. We have also taken
into account of the reliability of considered algorithms using the failure rate.

Of the two newly proposed decision-making strategies, DBBS and RV-BC,
we have observed that DBBS displays superior performances compared to other
considered algorithms along the Pareto frontiers. On the other hand, RV-BC has
comparable performances with the two baseline algorithms used at low band-
widths. It surpasses the baselines at high bandwidths, but is inelastic in its
accuracy vs speed performance.

In future works, we aim to investigate how the performance relations pro-
duced here varies with the number of available options. Thus, we can provide
the complete assessment of the discussed algorithms, and find out the limit of
their relative viabilities.

References

1. Bartashevich, P., Mostaghim, S.: Benchmarking collective perception: new task
difficulty metrics for collective decision-making. In: Moura Oliveira, P., Novais, P.,
Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 699–711. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30241-2_58

2. Ebert, J.T., Gauci, M., Mallmann-Trenn, F., Nagpal, R.: Bayes bots: collective
Bayesian decision-making in decentralized robot swarms. In: 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 7186–7192 (2020).
https://doi.org/10.1109/ICRA40945.2020.9196584

https://doi.org/10.1007/978-3-030-30241-2_58
https://doi.org/10.1109/ICRA40945.2020.9196584

Benchmarking CDM Strategies w.r.t. Communication Bandwidths 65

3. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In:
Proceedings of the 9th Conference on Autonomous Robot Systems and Competi-
tions, vol. 1, no. 1, pp. 59–65 (2009). http://infoscience.epfl.ch/record/135236

4. Shan, Q., Heck, A., Mostaghim, S.: Discrete collective estimation in swarm robotics
with ranked voting systems. In: 2021 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pp. 1–8 (2021). https://doi.org/10.1109/SSCI50451.
2021.9659868

5. Shan, Q., Mostaghim, S.: Discrete collective estimation in swarm robotics with
distributed Bayesian belief sharing. Swarm Intell. 15(4), 377–402 (2021). https://
doi.org/10.1007/s11721-021-00201-w

6. Strobel, V., Dorigo, M.: Blockchain technology for robot swarms: a shared knowl-
edge and reputation management system for collective estimation. In: Swarm Intel-
ligence: 11th International Conference, ANTS 2018, Rome, Italy, 29–31 October
2018, Proceedings, vol. 11172, p. 425. Springer, Heidelberg (2018)

7. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of
environmental features in a robot swarm. In: Dorigo, M., et al. (eds.) ANTS 2016.
LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-44427-7_6

8. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-N problem in robot swarms:
formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017).
https://doi.org/10.3389/frobt.2017.00009

9. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making:
the weighted voter model. In: Proceedings of the 2014 International Conference on
Autonomous Agents and Multi-Agent Systems, AAMAS 2014, Richland, SC, pp.
45–52. International Foundation for Autonomous Agents and Multiagent Systems
(2014). https://doi.org/10.5555/2615731.2615742

10. Valentini, G., Hamann, H., Dorigo, M.: Efficient decision-making in a self-
organizing robot swarm: on the speed versus accuracy trade-off. In: Proceed-
ings of the 2015 International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2015, Richland, SC, pp. 1305–1314. International Foundation
for Autonomous Agents and Multiagent Systems (2015). https://doi.org/10.5555/
2772879.2773319

http://infoscience.epfl.ch/record/135236
https://doi.org/10.1109/SSCI50451.2021.9659868
https://doi.org/10.1109/SSCI50451.2021.9659868
https://doi.org/10.1007/s11721-021-00201-w
https://doi.org/10.1007/s11721-021-00201-w
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.3389/frobt.2017.00009
https://doi.org/10.5555/2615731.2615742
https://doi.org/10.5555/2772879.2773319
https://doi.org/10.5555/2772879.2773319

Best-of-N Collective Decisions
on a Hierarchy

Fabio Oddi1, Andrea Cristofaro1 , and Vito Trianni2(B)

1 DIAG, Sapienza University of Rome, Rome, Italy
fabio.oddi@uniroma1.it, cristofaro@diag.uniroma1.it

2 ISTC, National Research Council, Rome, Italy

Abstract. The best-of-N problem in collective decision making is com-
plex especially when the number of available alternatives is larger than
a few, and no alternative distinctly shines over the others. Addition-
ally, if the quality of the available alternatives is not a priori known and
noisy, errors in the quality estimation may lead to the premature selec-
tion of sub-optimal alternatives. A typical speed-accuracy trade-off must
be faced, which is hardened by the presence of several alternatives to
be analyzed in parallel. In this study, we transform a one-shot best-of-
N decision problem in a sequence of simpler decisions between a small
number of alternatives, by organizing the decision problem in a hierar-
chy of choices. To this end, we construct an m-ary tree where the leaves
represent the available alternatives, and high-level nodes group the low-
level ones to present a low-dimension decision problem. Results from
multi-agent simulations in both a fully-connected topology and in a spa-
tial decision problem demonstrate that the sequential collective decisions
can be parameterized to maximize speed and accuracy against different
decision problems. A further improvement relies on an adaptive approach
that automatically tunes the system parameters.

1 Introduction

Collective decisions are key in many natural and artificial systems, from bacteria
to social insects, from organizations to robot swarms [11,18,22,24]. A collective
decision requires that a group of agents agrees on a common solution to a given
problem. Generally speaking, a best-of-N collective decision problem presents
multiple alternative solutions, each characterized by a quality value representing
associated benefits and costs, and the best possible one must be chosen by a
(qualified) majority or through full consensus. Intuitively, the larger is the num-
ber N of alternatives, the harder is the problem of selecting the best one. This
is because a qualified majority is more difficult to form if individual choices can
spread across many competing alternatives, and because correctly evaluating and
comparing multiple alternatives becomes extremely cumbersome and can lead
to spreading of individual biases. Indeed, previous studies on collective decision
making revealed that increasing the number of alternatives negatively affects the

c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 66–78, 2022.
https://doi.org/10.1007/978-3-031-20176-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_6&domain=pdf
http://orcid.org/0000-0002-0757-2912
http://orcid.org/0000-0002-9114-8486
https://doi.org/10.1007/978-3-031-20176-9_6

Best-of-N Collective Decisions on a Hierarchy 67

ability to make accurate decisions. First, the parameter space in which a deci-
sion deadlock is possible is larger when N increases, suggesting that the system
may remain unable to collectively choose any alternative for a long time, and
that sub-optimal alternatives could be selected [16]. Second, the time taken to
select the best alternative increases exponentially with the number of available
alternatives, in adherence with the Hick-Hyman’s law of psychophysics [15].

In the face of the complexity of deciding among multiple alternatives, there is
evidence that the path towards decision does not directly lead to a crisp choice
of the best alternative [7]. Instead, it is likely that one or a group of alter-
natives is discarded quickly to reduce the problem dimensionality. This is the
case for choices among spatially distributed alternatives in both individuals and
collectives, where the feedback between body movements and decision making
allows to select out alternatives when their reachability decreases [23]. Similarly,
optimal decision heuristics in multi-alternative choice problems allow to focus
attention on a limited number of alternatives, often as small as two, reducing the
cognitive load for a comprehensive evaluation [6]. When evidence must be gath-
ered about the available alternatives, a speed-accuracy trade-off arises, where
higher accuracy can be achieved by collecting additional evidence, which slows
down decision making [5]. Selective attention to different alternatives can be
modulated according to value, which implies that low-quality alternatives are
sampled less often [9]. On the other hand, adaptive sampling of alternatives
postulates that increased sampling is dedicated to alternatives when quality
uncertainty is higher [8]. Both these mechanisms suggest that sequential sam-
pling and evidence accumulation in multi-alternative decision problems can lead
to focusing on just the most interesting options, putting aside less valuable ones.

Correlations between alternatives (e.g., spatial location) may require optimal
planning of the sampling effort. This problem has been addressed in robotics
mapping, where a multi-resolution adaptive sampling can optimize evidence
accumulation [10]. On the basis of the gathered evidence, (collective) decision
making can lead to optimal deployment of robots in the area where working
is most valuable [1,2]. In these studies, an m-ary tree is introduced to repre-
sent the spatial correlation between alternatives (i.e., areas where some work is
required). This representation also drives the resolution of the evidence accumu-
lation, enabling to observe multiple alternatives at the same time or to focus on
subgroups.

Inspired by the above considerations, we study whether collective decision
making can benefit from a hierarchical organization of the N available alter-
natives, which can direct the evidence accumulation and decision process. We
choose a hierarchical organization as the most straightforward way of aggregating
alternatives, by maintaining possible correlations (e.g., closeness in space) and
recursively creating macro-alternatives that group together some of the avail-
able options. Our working hypothesis is that a complex decision process can
be simplified by reducing it to a sequence of decisions between a smaller num-
ber of groups of alternatives. Evidence accumulation is performed at the group
level, hence with a reduced resolution (i.e., aggregating randomly sampled val-

68 F. Oddi et al.

ues within a group). Decisions are collectively taken following a decentralized
algorithm inspired by house-hunting honey bees [17], which can be controlled
by a single parameter describing the ratio of interactions with respect to indi-
vidual decision. We complete the algorithm with quorum sensing, which enables
to efficiently serialize the decision making process over the defined hierarchy
[14,21]. We show that the hierarchical approach allows to solve different decision
problems with the same parameterization, while the non-hierarchical approach
does not present a single parameterization that both maximizes accuracy and
is capable of breaking deadlocks among equivalent alternatives. These results
are robust to noisy evidence accumulation—owing to the possibility of agents to
share their local knowledge and collectively minimize the estimation error—and
to local quorum estimation. We also introduce an adaptive parameterization of
the collective decision-making algorithm based on the residual uncertainty about
the quality of alternatives. Thanks to this mechanism, it is possible to improve
the speed-accuracy trade-off for all tested hierarchies. Finally, we demonstrate
that the proposed approach can be adapted well to spatial best-of-N decisions.

2 Experimental Setup

2.1 Problem Description

In best-of-N decisions, N different alternatives are present, each characterized
by a quality value vi, i ∈ [1, N]. A group of M agents must collectively choose
the alternative with the highest quality, or one of the equal-best alternatives.
Without loss of generality, we assume that one alternative has maximum value
(here, vM = 10), while all other alternatives have the same, small value (vm =
κvM , κ ∈ [0, 1]). We consider that a decision has been made by the group of
agents when a quorum Q ∈ (0.5, 1] is reached for one of the alternatives, that is,
a minimum fraction Q of agents has selected the same alternative.

In our hierarchical problem formulation, the alternatives are organized in a
m-ary tree, that is, a tree where each parent node has at most m children. Each
alternative corresponds to a leaf node in the tree, while non-leaf nodes represent
groups of alternatives. Given N alternatives, the minimum depth of an m-ary
tree is D = �logm N�. Hence, a binary tree with depth D = 5 contains at most
N = 32 alternatives. Conversely, when m = N , the depth of the tree is D = 1
meaning that there is no hierarchical organization of the alternatives, which are
all children of the root node. A node at level d ∈ {0, . . . , D} of the tree entails
a decision between at most m alternatives. We consider here only perfect m-ary
trees, where each non-leaf node has exactly m child nodes and all leaf nodes
are at the same depth. A tree node is labeled by nd

j , where d is the depth and
j ∈ 1, . . . , md is an univocal index. The sub-tree defined by nd

j is referred to as
Sd

j . The root node (n0
1) is the starting point for collective decision making.

2.2 Collective Decision Process

The collective decision process extends a design pattern for decentralized decision
making [17] with quorum sensing to move at different tree depth. We start by

Best-of-N Collective Decisions on a Hierarchy 69

describing the ideal case in which agents have knowledge about the number and
quality of the alternatives, as well as about the number of agents that are in
their same sub-tree. Later, we relax these assumptions.

Agents with Perfect Knowledge. In the hierarchical collective decision
model, at any time t an agent i is characterized by a tuple ai = 〈si, ci〉, where
si is the node in which the agent resides, and ci is a desired destination node. If
ci = si, the agent is said to be “uncommitted at si”, that is, the agent has not
selected a desired destination. Otherwise, ci can be any children of si and the
agent is said to be “committed to ci”. At start, all agents are initialized with the
tuple 〈n0

1, n
0
1〉, that is, they are uncommitted at the root node. We denote with

Pd
j the sub-population of agents residing at any node in the sub-tree starting

from nd
j . Note that P0

1 is the entire agent population, with |P0
1 | = M .

Agents change their residence node only if a quorum of committed agents has
been reached for the child node they are committed to. Specifically, an agent i
residing in node si = nd

j and committed to the child node ci = nd+1
l moves

its residence to the latter if |Pd+1
l | ≥ QM . Once such a quorum is reached, all

committed agents change their residence node, ensuring that a large fraction of
the population moves down the hierarchical structure towards the leaf nodes.
This also means that agents never need to move back to the parent node (but
see below when imperfect quorum sensing is implemented). The process ends if
a quorum is reached for one of the leaf nodes representing one of the available
options. In other words, agents remain in their residing node unless a quorum is
reached, and then move to the selected child node. Given that a sufficiently large
quorum is the result of a collective decision, the agent population is expected to
perform a sequence of D decisions leading to the selection of one leaf node.

The commitment state of an agent changes according to stochastic processes
inspired by the decision process of house-hunting honeybees [17]. In particular,
we exploit the parameterization extensively studied in [15,16]. To this end, the
quality of a node must be considered, which must be a function of the group of
alternatives that a node represents. Here, we consider that the quality of a node
v(nd

j) is recursively computed as the maximum quality among the child nodes:

v(nd
j) = max

n∈C(nd
j)

v(n), (1)

where C(nd
j) is the set of child nodes of nd

j . This allows to propagate up in the
hierarchy the best value of the underlying alternatives represented in the leaf
nodes, without loosing in resolution. See Sect. 4 for a discussion.

At time t, an agent i uncommitted at nd
j (ai = 〈nd

j , n
d
j 〉) can spontaneously

become committed to a randomly selected child node nd+1
l with probability:

Pγ = k
v(nd+1

l)
vM

, (2)

where k is a tunable parameter chosen to scale the probability. At the same time,
the agent i may get recruited by another agent b ∈ Pd

j , with ab = 〈sb, cb〉. This is

70 F. Oddi et al.

implemented by choosing a random agent from Pd
j and computing the following

recruitment probability:

Pρ =
{

h v(cb)
vM

cb �= nd
j

0 otherwise
, (3)

where h is a scaling factor. Note that commitment and recruitment are evaluated
in parallel, requiring that Pγ + Pρ ≤ 1. Hence, we impose that h + k = 1.

When an agent i is committed to nd+1
l , it can spontaneously become uncom-

mitted at nd
j with an abandonment probability inversely proportional to quality:

Pα = k
1

1 + v(nd+1
l)

, (4)

where k is the same scaling factor as in (2). Also, the agent i may get inhibited
by another agent b ∈ Pd

j , with ab = 〈sb, cb〉. This is implemented by choosing a
random agent from Pd

j and computing the inhibition probability:

Pσ =
{

h v(cb)
vM

cb �= nd
j ∧ cb �= nd+1

l

0 otherwise
, (5)

where h is the same scaling factor as in (3). Also in this case, we must enforce
that Pα + Pσ ≤ 1, which is still the case if we ensure that h + k = 1.

Note that, with a flat hierarchy (D = 1), the collective decision process
reduces to the standard best-of-N decisions previously studied [15,16]. In anal-
ogy with previous work, we introduce a single control parameter r = h

k to tune
the relative strength of stochastic processes based on interactions with other
agents (i.e., recruitment and inhibition) with respect to spontaneous stochastic
processes (i.e., commitment and abandonment).

Estimation of the Alternative Quality. Moving beyond the ideal case pre-
sented above, we introduce here the more realistic case in which agents are aware
about the maximum number N of alternatives and their hierarchical organiza-
tion, but are not aware of their quality, which is perceived with noise. At every
decision step, an agent i makes an observation of a node n chosen according to
its state: if the agent is uncommitted at nd

j , it observes the child node selected
for the computation of the commitment probability (2). Otherwise, the agent
observes the desired destination ci. If the observed node n is a non-leaf node,
then a random leaf in the sub-tree of n is chosen for observation, and all parent
nodes are updated according to (1). Upon observation of a leaf node nD

j , agent
i updates its quality estimate ṽi according to a moving average:

ṽi(nD
j) ←

{
v(nD

j) + N(0, σD
j) tDj = 0

λṽi(nD
j) + (1 − λ)(v(nD

j) + N(0, σD
j) otherwise , (6)

where tDj counts the number of observations previously performed, λ represents
the smoothing factor and σD

j represents the variance of a Gaussian noise. This

Best-of-N Collective Decisions on a Hierarchy 71

simple exponential filter allows to rapidly converge on a stable estimation of the
quality of the alternatives, and also allows to adapt to changing qualities—a
possibility not explored in this study. Additionally, by limiting the observations
to the sub-tree where an agent resides, the estimation is focused on the relevant
alternatives, avoiding to waste time for those that have been discarded earlier.

To take advantage of the collective sensing abilities, agents exchange their
current estimates upon interaction: when agent i interacts with agent b, it
receives from b the quality estimates of all the N alternatives. These estimates
are treated in the same way as independent observations to update the indi-
vidual estimates with (6). Overall, this leads to a fast convergence towards the
average.

Quorum Sensing. If agents cannot reliably count how many agents are com-
mitted to a given node, an estimate can be obtained by keeping memory of the
last interactions. At every time step t, an agent i that interacts with another
agent b records in a list L a tuple 〈b, cb, tb = t〉. In case an element is present in
L with the same id b, the corresponding timestamp tb is updated. Finally, old
elements are purged from L when t − tb > TM , where TM is a maximum period
for retaining past interactions. As agents have only one interaction per time step,
it follows that |L| ≤ TM . Quorum sensing is implemented looking at the infor-
mation in L. An agent i committed to nd+1

l counts the number Ld+1
l of elements

in the list where cb ∈ Sd+1
l . If Ld+1

l is larger than a threshold LM , the agent has
recently interacted with a sample of the population with the same commitment.
Hence, the agent considers the quorum reached and changes its residing node to
si = nd+1

l . This estimation is however prone to errors, because of small samples
or because old information does not represent any more the current population.
Hence, a recovery mechanism allows robots to move to the parent node. Given
that L shrinks if an agent resides in a node in which the population is small
(e.g., when a real quorum was not actually reached), an agent uncommitted at
nd

j changes its residence to the parent node if |L| < Lm, where Lm < LM ≤ TM .

Adaptive Parameter Selection. The parameter r = h
k can determine if and

how fast the group converges to a shared choice [16]. High values correspond
to fast but possibly inaccurate decisions, as social information is given more
importance than individual quality estimation. To improve the decision making
process, social feedback should increase when the uncertainty about the avail-
able options decreases. Agents measure uncertainty by learning two independent
Gaussian models for each alternative—i.e., updating one model every second
observation. Then, the Hellinger distance Hd ∈ [0, 1] between the two is com-
puted and associated to the corresponding leaf node. Non-leaf nodes receive the
maximum distance of their children. High Hd corresponds to insufficient sam-
pling, hence high uncertainty. An agent i committed to nd+1

l uses the Hd(nd+1
l)

to compute a value ri = g(1−Hd), where g is a gain to adjust the range. During
the decision process, an agent i interacting with agent b receives from the latter

72 F. Oddi et al.

the value rb. This allows to tune the process strength after the uncertainty of the
interacting agent, where low uncertainty corresponds to stronger interactions.

Decision Making on a Spatial Hierarchy. We also consider the spatial case
in which agents have to identify the most valuable area within a given region. The
region is divided in N areas, and a hierarchical organization is imposed recur-
sively partitioning the region in smaller areas. The root node of the hierarchical
structure represents the whole region, which is partitioned in m sub-regions,
and each is recursively divided further until N areas are obtained. Similarly to
the non-spatial setup, only one area has maximum quality vM , while all other
areas have the same quality vm = κvM . We consider here the case of binary and
quad-trees, usually employed to represent a 2D space. Agents move according
to a random waypoint model [4]: an agent i selects a random position within
the region corresponding to the node ci within the hierarchy, and moves there
at constant speed. To focus on the effects of spatiality, we ignore collisions, as if
the agent body size were negligible with respect to the dimensions covered (e.g.,
in case of drones monitoring a large field [2]). In the future, this assumption can
be relaxed via efficient velocity-obstacle collision avoidance [3].

The decision process is implemented through space as follows. An agent i
randomly selects a position in ci and moves there. Once the random position is
reached, it broadcasts information about its ID i, its current state ai, the current
quality estimates for the N alternatives, and a timestamp ti. Broadcast messages
can be received within a limited communication radius Rc. Upon reception of a
new message, an agent re-broadcasts it, and stores the information in a list N of
detected neighbors, overwriting any older message from the same sender. Qual-
ity estimates are updated according to the information received from neighbors.
Messages older than TM are purged from N . When the agent reaches the desired
position, a noisy observation is made at the agent location, and the tree struc-
ture is updated accordingly. Then, the decision process takes place. If the agent
is uncommitted at nd

j , it computes the commitment probability for the child
node nd+1

l corresponding to the current agent position. A random neighbor is
selected from N and the recruitment probability is computed. Similarly, if the
agent is committed to nd+1

l , the abandonment probability is computed with the
latest quality estimate, and the inhibition probability from the randomly selected
neighbor from N . In any case, the information from the selected neighbor is used
to update the list L for quorum sensing, similarly which is implemented as in
the non-spatial case. Note that quorum is not computed on the list N because
to avoid overestimating the opinion of the local population, and to keep the
decision process aligned with the non-spatial case. Note also that in the spatial
case, decisions are taken only when a new observation is made at the randomly
selected position, contrary to the non-spatial case in which decisions occur at
any time step. Hence, the spatial case evolves slowly, but an equivalence can be
make looking at the average number of decisions made within the population.

Best-of-N Collective Decisions on a Hierarchy 73

3 Results

We measure accuracy as the percentage of runs (out of 100) in which the best
alternative—or one of the equal-best when κ = 1—was correctly identified by at
least QM agents. As a proxy for decision speed, we measure the convergence time
taken by the agents to reach a collective decision. To this end, we employ the
Kaplan-Meier estimator [12] to compute the empirical cumulative distribution of
convergence times, censoring the runs that do not converge within the maximum
allotted time. We fit a Weibull distribution and use the fitted function to compute
average and standard deviation of the convergence times.

First of all, we consider the non-spatial case in which agents have perfect
knowledge. We consider a relatively easy decision problem with κ = 0.75, a more
difficult one with κ = 0.85, and a symmetry breaking problem with κ = 1. The
parameter r = h

k is used as control parameter to tune convergence speed. Figure 1
shows how the accuracy varies across problems for different configurations were
flat, binary and quad-trees are employed (the latter only for N = 16). For any
value of N we tested, the binary tree provides the highest accuracy when r = 1.
A lower value (r = 0.5) is equally good unless N ≥ 16 and κ = 1, where several
runs do not terminate within the allotted time T . Indeed, when r is small,
the collective decision process cannot take full advantage of the positive and
negative feedback loops, making symmetry breaking very difficult. Conversely,
higher values of r may excessively rely on social information, which may lead to
a loss in accuracy when the decision problem is difficult (κ = 0.85).

Non-hierarchical structures (m = N) struggle to consistently provide good
results across all problem configurations, especially for large N . There exist
parameterizations leading to good results (e.g., when N = 16, r = 3 for κ ≤ 0.85,
or r = 5 for κ = 1), but no single one performs systematically well across different

Fig. 1. Accuracy of different hierarchical structures (m = 2, 4, N , indicated by line
type) for different values of κ ∈ {0.75, 0.85, 1} with varying number of options N and
parameter r (line color). Other parameters: M = 100, Q = 0.8, T = 1000 time steps.

74 F. Oddi et al.

Fig. 2. Performance evaluation over 100 independent runs of different hierarchical
structures (m = 2, 4, N) with varying number of options N (point color) and parame-
ter r (color intensity). For each value of N , the Pareto frontier is displayed connecting
points that are non-dominated. Dominated points are smaller than non-dominated
ones. Left: κ = 0.75. Right: κ = 0.85. Other parameters as in Fig. 1.

values of k and N . Similarly, the quad trees deployed for N = 16 display a good
overall performance for r = 3, but still not comparable with the binary trees.

Overall, we found that hierarchical decisions perform better as they allow
to serialize the best-of-N problem in a sequence of smaller problems, which can
be better parameterized to deal with different complexity levels. However, high
accuracy may come at the cost of slowing down the decision process, and this
could be especially the case if a long sequence of decisions must be performed.
In Fig. 2, we study the speed-accuracy trade-off for κ = 0.75 (left) and κ = 0.85
(right).1 In both cases, the hierarchical approach produces solutions that lay
on the Pareto frontier, often dominating non-hierarchical solutions. Hence, fast
convergence is ensured also in case of a sequence of D decisions.

When the quality of the alternatives is not known a priori, a (slow) estimation
is necessary from noisy observations. With hierarchical structures, estimation
errors may lead to wrong decision in the early stages (e.g., nearer to the tree
root) that cannot be easily recovered. Also, errors in quorum sensing can lead a
whole group down the wrong path. In such conditions, the flat hierarchy could be
advantaged. Our simulations demonstrate that estimation errors have an impact,
but still hierarchical structures provide a sensible advantage (see Fig. 3 and 4).
In this case, r = 0.5 performs best also when κ = 1, because small differences
between identical alternatives due to estimation errors get amplified, accelerating
convergence towards any option. For r ≥ 1, instead, estimation errors can lead to
a wrong decision especially when alternatives are similar (κ = 0.85). Flat trees
and quad trees instead do not present solutions that are systematically good,
similarly to the case in which agents could exploit perfect knowledge. The Pareto
diagrams in Fig. 4 highlight that noisy estimation leads to a loss in accuracy and
speed, especially with κ = 0.85. When N = 16, binary trees are not always
Pareto optimal, but lay close to the frontier and can be accepted.

1 For κ = 1, decision speed is very similar across different configurations, and the
trade-off is dominated by solutions with high r that quickly converge to any option.

Best-of-N Collective Decisions on a Hierarchy 75

Fig. 3. Accuracy over 100 independent runs of different hierarchical structures with
noisy observation and quorum sensing (M = 100, Q = 0.8, λ = 0.8, σD

j = 1, TM = 12,
LM = 10, Lm = 2, T = 1000 time steps). Black lines indicate the adaptive approach.

The slow evidence gathering process requires a small value of r to provide
good accuracy, but this leads to a slow collective decision process. An adaptive
approach can prove best if it gathers evidence to minimize uncertainties and
increases speed when sufficient information is available. By linking the parameter
r to the uncertainty, collective decisions can be both accurate and fast. Figure 3
and 4 show results of simulations with an adaptive approach, where the gain
g has been tuned to maximize decision accuracy. An adaptive approach proves
very advantageous especially with binary trees and complex decision problems,
where both accuracy and speed are improved (see Fig. 4 right).

Finally, we analyse a proof of concept where mobile agents need to select
the best area among N (see videos at [13]). Here, the adaptive approach is
employed. Results shown in Fig. 5 demonstrate that binary trees provide the
best solutions and also optimize the speed-accuracy trade-off. Hence, despite

Fig. 4. Pareto diagram corresponding to simulations with noisy observation and quo-
rum sensing. Left: κ = 0.75. Right: κ = 0.85. Other parameters as in Fig. 3.

76 F. Oddi et al.

Fig. 5. Left: Accuracy of the spatial simulations for different configurations. Right:
Pareto diagram for κ = 0.85. Other parameters: M = 100, Q = 0.8, λ = 0.8, σD

j = 1,
TM = 100, LM = 10, Lm = 2, T = 10000 time steps.

the spatial correlations that may slow down decision-making, the hierarchical
approach outperforms non-hierarchical configurations. Somewhat surprisingly,
quad trees do not lead to good performance, despite they are the best choice for
representing 2D spaces. Further studies should be performed to verify if different
parameterizations lead to better results.

4 Conclusions

This study demonstrates that collective decision making can benefit from a hier-
archical representation of the alternatives. A number of assumptions have been
made, such as the a priori knowledge of N and of the tree structure. Such assump-
tion can be relaxed, providing agents with the ability to build the hierarchy on
the fly—possibly in a collective, decentralized way—or discovering it through
observations, should this be related to the decision problem. Another assump-
tion is related to the propagation of the maximum value from the leafs up the
tree, which requires knowledge of what leaf is being observed from any non-leaf
node. If such knowledge is not available, all observations must be aggregated
at the non-leaf node, for instance via a (moving) average. This however reduces
the ability to distinguish between different alternatives at the beginning of the
process, as preliminary experiments have demonstrated (data not shown). We
hypothesize that, by means of an adaptive sampling approach (e.g., Thompson
sampling [20]), better alternatives could be sampled more frequently, leading to
approximate the propagation of the maximum value. This will be studied in the
future, along with implementation with Kilobots [19].

Acknowledgments. Vito Trianni acknowledges partial support from the project TAI-
LOR (H2020-ICT-48 GA: 952215).

Best-of-N Collective Decisions on a Hierarchy 77

References

1. Albani, D., Hönig, W., Nardi, D., Ayanian, N., Trianni, V.: Hierarchical task assign-
ment and path finding with limited communication for robot swarms. Appl. Sci.
11(7), 3115 (2021)

2. Albani, D., Manoni, T., Nardi, D., Trianni, V.: Dynamic UAV swarm deployment
for non-uniform coverage. In: Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2018, pp. 523–531 (2018)

3. Bareiss, D., van den Berg, J.: Generalized reciprocal collision avoidance. Int. J.
Robot. Res. 34(12), 1501–1514 (2015)

4. Bettstetter, C., Hartenstein, H., Pérez-Costa, X.: Stochastic properties of the ran-
dom waypoint mobility model. Wirel. Netw. 10(5), 555–567 (2004)

5. Bogacz, R.: Optimal decision-making theories: linking neurobiology with
behaviour. Trends Cogn. Sci. 11(3), 118–125 (2007)

6. Brown, S., Steyvers, M., Wagenmakers, E.J.: Observing evidence accumulation
during multi-alternative decisions. J. Math. Psychol. 53(6), 453–462 (2009)

7. Busemeyer, J.R., Gluth, S., Rieskamp, J., Turner, B.M.: Cognitive and neural
bases of multi-attribute, multi-alternative, value-based decisions. Trends Cogn. Sci.
23(3), 251–263 (2019)

8. Cassey, T.C., Evens, D.R., Bogacz, R., Marshall, J.A.R., Ludwig, C.J.H.: Adaptive
sampling of information in perceptual decision-making. PLoS ONE 8(11), e78993
(2013)

9. Gluth, S., Spektor, M.S., Rieskamp, J.: Value-based attentional capture affects
multi-alternative decision making. eLife 7, e39659 (2018)

10. Jin, L., Rückin, J., Kiss, S.H., Vidal-Calleja, T., Popović, M.: Adaptive-resolution
field mapping using Gaussian process fusion with integral kernels. IEEE Robot.
Autom. Lett. 7(3), 7471–7478 (2022)

11. Kameda, T., Toyokawa, W., Tindale, R.S.: Information aggregation and collective
intelligence beyond the wisdom of crowds. Nat. Rev. Psychol. 1, 345–357 (2022)

12. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations.
J. Am. Stat. Assoc. 53(282), 457–481 (1958)

13. Oddi, F., Cristofaro, A., Trianni, V.: Videos associated to “Best-of-N collective
decisions on a hierarchy” (2022). https://doi.org/10.5281/zenodo.6786939

14. Pavlic, T.P., Hanson, J., Valentini, G., Walker, S.I., Pratt, S.C.: Quorum sens-
ing without deliberation: biological inspiration for externalizing computation to
physical spaces in multi-robot systems. Swarm Intell. 15(1–2), 171–203 (2021)

15. Reina, A., Bose, T., Trianni, V., Marshall, J.A.R.: Psychophysical laws and the
superorganism. Sci. Rep. 8(1), 4387–8 (2018)

16. Reina, A., Marshall, J.A.R., Trianni, V., Bose, T.: Model of the best-of-N nest-site
selection process in honeybees. Phys. Rev. E 95(5), 052411–15 (2017)

17. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design
pattern for decentralised decision making. PLoS ONE 10(10), e0140950–18 (2015)

18. Ross-Gillespie, A., Kümmerli, R.: Collective decision-making in microbes. Front.
Microbiol. 5(54) (2014)

19. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost
robot with scalable operations designed for collective behaviors. Robot. Auton.
Syst. 62(7), 966–975 (2014)

20. Russo, D., Van Roy, B.: An information-theoretic analysis of Thompson Sampling.
J. Mach. Learn. Res. 17(1), 2442–2471 (2016)

https://doi.org/10.5281/zenodo.6786939

78 F. Oddi et al.

21. Saha, A., Marshall, J.A.R., Reina, A.: Memory and communication efficient algo-
rithm for decentralized counting of nodes in networks. PLoS ONE 16(11), e0259736
(2021)

22. Sasaki, T., Pratt, S.C.: The psychology of superorganisms: collective decision mak-
ing by insect societies. Annu. Rev. Entomol. 63(1), 259–275 (2018)

23. Sridhar, V.H., et al.: The geometry of decision-making in individuals and collec-
tives. Proc. Natl. Acad. Sci. U.S.A. 118(50), e2102157118 (2021)

24. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-N problem in robot swarms:
formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 1–43
(2017)

Collective Decision-Making for Conflict
Resolution in Multi-Agent Pathfinding

Sebastian Mai(B) and Sanaz Mostaghim

Faculty of Computer Science, Otto von Guericke University Magdeburg,
Magdeburg, Germany

{sebastian.mai,sanaz.mostaghim}@ovgu.de

Abstract. Multi-Agent Path Planning is important in many applica-
tions involving multiple mobile robots. In this paper, we present a novel
algorithm to solve the Multi-Agent Pathfinding problem by using Collec-
tive Decision-making and indirect communication (stigmergy). We call
this planning method Collective Conflict Resolution (CCR). The algo-
rithm has two components: A mechanism to create a prioritization graph
through collective decisions and a planning mechanism that is able to
plan paths consistent with the priorities given by the graph. The CCR
algorithm can be used both in global planning with full knowledge of
all paths, and in decentralized settings with limited knowledge and com-
munication. In our experiments, we compare our new planner with two
state-of-the-art algorithms: Conflict-based Search (CBS) and Prioritized
Planning. Furthermore, we analyze how a limited planning horizon can
affect the planning cost. The results show that the proposed method
offers a good trade-off between planning cost and solution quality, which
results in a better success rate compared to Prioritized Planning, which
sometimes does not find a solution. In addition, the algorithm is able to
achieve a good solution quality with lower cost compared to the more
complex CBS algorithm.

1 Introduction

Multi-Agent Pathfinding (MAPF) [20] is an important component of many
Multi-Agent Systems, for example in drone swarms [10] or automated warehouses
[9]. In this paper, we develop a novel approach to solve the MAPF problem by
using Swarm Intelligence techniques: Collective Decision-making (CDM) [8] and
(artificial) stigmergy. Our approach works similar to highway-based sub-optimal
MAPF solvers like [3,4], but does not require predesigned highways. The algo-
rithm consists of two components: (1) A prioritization (similar to those highways)
between agents, which is created through a series of collective decisions. (2) A
planning method that is able to plan paths consistent with the prioritization.
Both components together are used to compute conflict free plans for all agents
in a MAPF setting. The prioritization is attached to the map of the environment
and is an emergent property of the system. In addition, the prioritization is a
form of indirect communication between agents (stigmergy), similar to virtual
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 79–90, 2022.
https://doi.org/10.1007/978-3-031-20176-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_7&domain=pdf
http://orcid.org/0000-0002-2255-3277
http://orcid.org/0000-0002-9917-5227
https://doi.org/10.1007/978-3-031-20176-9_7

80 S. Mai and S. Mostaghim

pheromones. In our experiments, we use the MAPF-benchkmark provided by
[20]. We compare our planner to two other methods: Prioritized Planning [22]
and Conflict-based Search [18] and analyze the impact of the planning horizon.

The remainder of this paper is structured as follows: In the next section,
we will give a formal definition of the MAPF-problem and give an overview on
methods to solving the MAPF-problem. In Sect. 3, we present our algorithm.
Afterwards, we show the experiments used to analyze the algorithm and discuss
the results of our analysis. Finally, we conclude the paper and outline questions
for further research.

2 State of the Art

The problem of finding conflict-free paths for multiple agents with pre-defined
start and goal positions in a graph is defined as the Multi-Agent Pathfinding
Problem (MAPF) [20,21]. This problem is defined as follows: Given a roadmap-
graph G with nodes vn and edges em,n, we need to find conflict free paths
Πi = {πi(t)|∀t} for all agents, that connect start and goal. We call the set of
paths for all agent S = {Πi|∀i} a solution to the problem. Additionally, the
paths must be conflict free. A conflict can occur, when two agents use the same
node, or edge of the graph at the same time-step. In this paper, a conflict is
defined based on the condition of k-robust MAPF [1] with k ≤ 1: Two agents i
and j are in conflict if πi(t) = πj(t ± k). With k = 0 two agents occupy a node
at the same time. The k = 1 robustness prevents multiple types of edge-conflicts
(following conflict, swapping conflict, circular conflicts cf. [20,21]).

All the algorithms used within this paper use the same implementation of
two low-level planners: A* and Spacetime-A* [19]. The well-known A* algorithm
uses a heuristic function to perform a best-first search within the graph and is
able to find the shortest path from start to goal position. However, the A*
algorithm is not able to find paths in the presence of dynamic constraints, i.e.
agent i is not allowed to use node n at time t. If those (temporary) constraints
are present, we use the Spacetime-A* algorithm [19]. This algorithm expands
the original roadmap graph G in time. The result is the graph Gt where for
each node vn in G we have τ nodes vn(t). The edges in Gt are directed, and
connect two nodes vm(t), vn(t + 1) if the two nodes are connected by an edge in
G: em,n(t, t + 1) ∈ Gt ⇐⇒ em,n ∈ G. In addition, we add an edge en,n(t, t + 1)
that connects vn(t) to vn(t + 1). This edge represents waiting at node n. The
search in Gt makes it possible to include the dynamic constraints in planning, and
it is sufficient to use Gt as an implicit graph which does not consume additional
memory. Unfortunately, running Spacetime-A* is more costly than running the
normal A* due to a larger search-space and the heuristic function we use in
Spacetime-A*: The true cost of moving from node vn to the goal location in
G (which is found by running A*). To summarize: When planning paths for
multiple agents, there may occur some conflicts. Conflicts happen between two
agents i, j at a specific node vc and a specific time ti,c. From each conflict, a
higher level planner can create constraints, which exclude a node vc to be present
within the path of agent i at time tc: pi(tc) �= vc. If either agent i or j replan

Collective Decision-Making for Conflict Resolution in MAPF 81

their path with the new constraint, the original conflict is resolved. However,
new conflicts may occur which may require further replanning until eventually
all conflicts are resolved or no plan consistent with the constraints can be found.

One of the simplest methods to solve the problem is called Prioritized search
[22]. With this method, we create a priority order between agents. The highest
priority robot plans its path without constraints. From this first plan, we generate
dynamic constraints for planning the second robot’s path. In this manner, we
update the constraints and plan paths until we found a solution for all agents.
This approach is simple and can be distributed well - robots only need to know
their priority and communicate their plans to lower priority robots. However,
the solutions obtained by prioritized planning tend to be suboptimal, and it is
sometimes not possible to find a valid path for agents with lower priority.

The Conflict-based Search algorithm [18] revolves around finding and resolv-
ing conflicts. A conflict between two agents i and j at time t and node vn can
be resolved either by constraining the path of one of both agents i or j to omit
visiting node vn at time t. Each possible conflict resolution requires the algo-
rithm to recompute the path of exactly one agent and may induce new conflicts.
In the CBS algorithm, we use a best-first search on the constraints resolving
the conflicts. The CBS algorithm is optimal and complete, i.e., the algorithm is
able to find the optimal solutions for all solvable MAPF-problems. However, the
algorithm is expensive because it queries the Spacetime-A* algorithm often.

The notion of “highway-layouts” is used by [3,4] which modify the cost of
traveling along certain edges of the layout. This approach is able to reduce the
planning cost with a small impact in the solution quality, and inspired our app-
roach of generating a similar “highway-layout” through CDM. A similar concept
(direction maps) is used by [11]. [12] uses imitation learning to solve the MAPF
problem. A Graph-Neural Network can learn from an optimal MAPF solver and
tries to predict the optimal path from local information. In [16] a mathematical
model of fairness is used. The concept is based on building a solution with incom-
plete, local knowledge and the notion of privacy (agents do not disclose all their
internal information). In our work, we only use the sum-of-cost metric, to eval-
uate the quality of a solution. Different applications call for multiple objectives
(i.e. makespan, safety, ...) and some approaches exist, that use multi-objective
optimization to find a better trade-off between different objectives [14,23].

Other methods in Multi-Agent planning resolve conflicts locally, most notably
the velocity obstacle/reciprocal velocity obstacle [2]. This is similar to many
methods used in swarm robotics, like steering behaviors [17] or artificial potential
fields [7]. Those methods do not rely on deliberative planning, but rather use
virtual forces to compute control outputs that attract the robots towards their
goal. Some methods in SI use (virtual) pheromones for finding a short path
to a site of interest, notably Ant-Colony Optimization [5] or pheromone-based
foraging [6]. While those methods may be useful in the time expanded graph
to find collision free paths, they can not be applied to our problem without
modification because the methods rely on many agents traveling the same path
while in our problem, this would constitute a conflict that must be avoided at
high cost.

82 S. Mai and S. Mostaghim

Algorithm 1: Collective Conflict Resolution
input : Graph G, start positions πi(t = 0), goal positions πi(t = end)
output: S = {Πi|∀i}
constraints = ∅;
Gp = ({vn|∀vn ∈ G}, ∅) while conflicts �= ∅ do

S = compute paths(G, constraints);
C = find conflicts(S);
if ∃c ∈ C resolvable by Gp then

c = argmin tc ;
i, vc, tc = low priority agent(c) ;
constraints = constraints ∪ (i, vc, tc)

else
// Identify most urgent conflict

c = argmax
ci∈C

h(ci);

// Compute options and quality for CDM

Ω = {em,c, q(em,c)|∀m, c = vc};
// Apply decsion function

em,c = CDM(Ω);
// Remove edges from Gp and modify the cost in G and Gp

Gp = implement decision(em,c, Gp);
G, Gp = update cost(em,c, G, Gp);

end

end

3 Collective Conflict Resolution

In this section, we present the Collective Conflict Resolution (CCR) algorithm.
The algorithm finds a solution to the MAPF-problem by resolving conflicts
through a series of collective decisions. An outline of the CCR-algorithm is given
in Algorithm 1. The CCR algorithm is centered around detecting and resolving
conflicts and then replan paths based on the proposed resolution. In contrast to
CBS, the CCR algorithm does not search the full space of possible constraints
that potentially resolve a conflict. The CCR algorithm uses collective decision-
making to create a graph Gp, which we call priority-graph. Gp allows us to
prioritize agents based on their travel directions. When an agent involved in a
conflict travels in the direction indicated by Gp, other agents need to give way.

In the following, we describe how the agents use the priority-graph Gp to
avoid conflicts and how Gp is modified, when Gp does not yet contain priorities
for the next conflict.

3.1 Plan Paths Coherent with Gp

In this section, we assume that Gp is already populated and explain how the
path-planning process for each agent works. Each edge in Gp indicates an edge
that gives the right of way to enter a node vn in the roadmap G. We guarantee

Collective Decision-Making for Conflict Resolution in MAPF 83

that for each node vn ∈ G, at most one edge em,n exists in Gp. If the edge em,n

is present, it means that an agent i moving from node m to node n is allowed to
move and while another agent j that enters node n from another direction has
to wait until agent i has left or chose a different route).

At the beginning of path planning, each agent simply plans their path without
any constraints. Now all agents exchange their (local) plans with a fixed time
horizon τ and detect conflicts. In case a conflict is detected, we note the time tc
and location πi(t) of the conflict and try to resolve the conflict using Gp. This
works as follows: All agents check, if there is an edge going into the node where
the conflict occurs ∃ex,πi(tc). If the edge exists, we use the origin x of the edge
ex,πi(tc) to create a constraint for one of the agents. If πi(tc − 1) = x, agent i
has the right of way, and does not change its path, because it is using the edge
ex,πi(tc). In case πi(tc − 1) �= x, agent i will create a constraint to avoid node
πi(tc) at time tc because it is using a different edge to enter node πi(tc) and
this edge has no priority. In this case, the agent will create a new plan using
Spacetime A*, which adheres to the newly created constraint.

Figure 1 shows an example configuration with four agents. In this scenario,
we have four agents and their planned path. The first conflict is between the two
agents on C2 (green) and D3 (orange), which both plan to occupy the same node
at t = 1. In this case, there is one priority edge C2−→C3(gray arrow) which was
already added to Gp. This priority edge gives the right of way to the green agent
moving in the direction of the edge. This means the green agent will keep its
planned path, while the orange agent has to replan its path while avoiding node
C3 at t = 1. A solution to this problem could be that the agent waits at the
current position, entering C3 at t = 1. Because of the k-robustness, the agent
would then detect another conflict and replan its path again. If the agent waits
for another time-step, the conflict is resolved and the plan would be valid. The
orange agent would use the plan.

In the scenario, we also have another conflict. At t = 2, both the blue agent
F7 and the yellow agent F8, plan to occupy node D8 at t = 2. When two agents
are in conflict with each other, and �ex,πi(tc), we need to extend the graph Gp

(which is the case with the blue and yellow agent). This process is described in
the following.

3.2 Modify Gp Through Collective Decision-Making

The graph Gp is extended, if one or more conflicts are detected by the agents
within their time horizon τ . Because the decision space using all conflicts is
too large, we use multiple sequential decisions to add an edge in Gp. In this
process, first a conflict is chosen by computing the priority indicated as h(c) for
a conflict (Eq. 1). The priority is higher, when more agents use the location vc

of the conflict within their current path at any time. The priority is also higher,
when the conflict occurs at an earlier time tc. In the scenario from Fig. 1, three
agents plan to use the node at different times. Hence, the priority of this conflict
is h(c) = 1/2 + 1/2 + 1/6 = 7/6.

84 S. Mai and S. Mostaghim

Fig. 1. Example scenario with four agents (large circle) and their planned path (small
circle). The number within each circle show the time of each planned position. In the
current setting, we have one priority edge (gray arrow). Obstacles are shown in black.
(Color figure online)

Once a conflict is chosen, Collective Decision-making (CDM) is used to pri-
oritize one edge leading to node vc. In our application, we use CDM because
we need to find a consensus between agents and the estimation of the quality of
each solution uses local knowledge only known to each individual agent. In this
CDM-process, the quality of each option is computed using spatial A* (instead
of the more costly Spacetime-A*). This is denoted by L(·): The length of the
shortest path from start to goal-node in G, which only use those edges in G that
are either equal to the priority edge existing in Gp or where no priority edge in
Gp exists. If no path is found L(i, G,Gp) = ∞. The quality for one edge em,n is
then determined by the negated cost increase l for agent i (Eq. 2). Each agent
then references the loss of each option by the loss generated by the worst option
(Eq. 3). This means, agents that are not affected by any of the options compute a
quality of q(i, em,n) = 0 for all their options. In addition, options em,n that com-
pletely block the path of an agent have are discarded if there is another option
left because l(i, em,n) = ∞ for those options. If the agent has no options to find
a path before adding the new priority edge, we use a quality of q(i, em,n) = 0.
As a decision function, we use the direct-comparison method, which chooses the
option with the overall highest quality among all agents. In the future, we want
to know if decision-functions affect the quality of the solutions. Once an edge is
chosen, we update the graph Gp by adding the new edge and replan the paths
of all agents, to adhere to the newly created prioritization, before selecting the
next conflict for decision-making.

Collective Decision-Making for Conflict Resolution in MAPF 85

h(c) =
∑

∀πi(t)=vc

1
t

(1)

l(i, em,n) = L(i, G,Gp) − L(i, G,Gp ∪ {em,n}) (2)
q(i, em,n) = l(i, em,n) − min

∀ex,n∈G
l(i, ex,n) (3)

The graph Gp is created during the collaborative (re-)planning of the agents
and is an emergent property of the system. In case the agents rely on local
communication with their neighbors and the graph is persistent throughout the
whole experiment, we can also view the behavior as a form of stigmergy, where
agents communicate indirectly through Gp to other agents that are not within
the same neighborhood.

3.3 Limitations

Currently, when two agents use an edge to a node and both agents do not use the
prioritized travel-direction, both agents will avoid the node in their next planned
path. A better strategy could be used to resolve such second-order conflicts, but
is currently not part of our approach. In addition, the algorithm is not complete,
which means that for some scenarios it is impossible to find a solution, even when
infinite resources are available for planning.

While most components of the algorithm can be distributed to multiple com-
municating agents, the current implementation relies on Gp, which is a central-
ized component. In the future, this limitation may be overcome by directly using
the opinion of the agents. This has the drawback that the behavior of the system
is more dynamic, and it is harder to analyze the emerging behavior.

4 Experiments

We implemented our algorithm in Python1 and ran several experiments, using
the benchmark maps from [20]. For each map, we run each planner configuration
with 25 different scenarios, which are also provided by the benchmark [20].

Figure 2 shows the solution of our CCR planner for a scenario in the Maze
environment. The solution contains no conflicts (paths cross, but agents do not
occupy the same position at the same time). We can observe the prioritization
created by the CDM process. On the right side of the map, there is a narrow
passage in this passage, on agent was prioritized over the other and is able to
pass the area before the agent coming from the top of the image is able to travel
through the passage.

In addition, we see on the left of Fig. 2, that some of the agents pass each
other, and a type of lane structure emerged, where agents traveling in the same
direction use one lane and agents travelling in the other direction use another.

1 The code is available at https://www.ci.ovgu.de/Research/Codes.html. The bench-
mark files are available at https://mapf.info.

https://www.ci.ovgu.de/Research/Codes.html
https://mapf.info

86 S. Mai and S. Mostaghim

Fig. 2. CCR solution for the Maze environment. The black dots represent the starting
positions of the agents, gray arrows show the priorities from Gp after planning.

In Fig. 3 we see another solution created by our planner, where we can gain
more insight in the behavior of the planner. While the resulting plan is still
conflict-free, this example shows a counter intuitive relation between the priority
map and the plans of the agents. As an artifact of planning, sometimes priorities
are created which are not used by any agent. An example for that is the priority
at position x = 9, y = 6, which seemingly restricts the movement of the orange
agent, without another agent using its priority. This happens if another agent
replans its path despite having the priority (because another conflict requires to
change the path of an agent). In this example, we can also see a “roundabout”
emerging around the obstacle at position x = 12, y = 15.

In our experiments, we compare our CCR algorithm with two state-of-the art
MAPF-algorithms: CBS [18] which is a more expensive, optimal solver and pri-
oritized search [22] which uses less computational resources, but may not always
find a good solution. In addition, we implemented a limited-horizon version of
CBS [18], Prioritized Planning [22] and CCR, which ignores all conflicts beyond
the horizon for planning paths to the goal location. To measure the cost of path
planning, we count mean the number of times the (spatial) A* algorithm was

Collective Decision-Making for Conflict Resolution in MAPF 87

Fig. 3. CCR solution for the Room environment. The black dots represent the starting
positions of the agents, gray arrows show the priorities from Gp after planning.

used in one scenario and the mean number of times the Spacetime-A* algorithm
is called. In addition, we limit the run-time and memory-requirements for each
planning run. If we use a limited time-horizon, a new plan is created and the
behavior is simulated, if no horizon is used the plan does not change and is not
recomputed. The quality of a plan is measured using the sum-of-cost metric,
which is a common metric in many related approaches [20,21].

Table 1 shows the result of our experiments for the baseline CCR algorithm
and the results for CBS [18] and Prioritize Planning [22] in the same setting.
For each metric, we compute the mean value in each map and report the mean
performance over all maps in the table. The mean number of A* and Spacetime-
A* executions is only computed for the successful runs and in addition to the
number of A* and Spacetime-A* executions, we report the number of executions
normalized by the makespan (the length of the run on the particular map). We
can observe that none of the used algorithms were successful in all cases, due to
the limitations of the planner, and our constraints on computational resources.
However, the CCR algorithm is able to achieve a good success rate, close to
the success rate of CBS [18]. A key parameter when running the planner is the

88 S. Mai and S. Mostaghim

Table 1. Performance comparison of planners

τ Planner ST A* A* Sum of cost Success rate

∞ CBS 3369.53 (66.17) 593.09 (4.97) 1101.88 0.79

CCR 24.44 (0.52) 961.50 (15.87) 1108.67 0.77

Prioritized 10.00 (0.13) – 1253.22 0.47

3.0 CBS 1143.29 (6.51) 2382.61 (13.00) 1459.15 0.85

CCR 1227.47 (5.75) 2307.15 (20.41) 1439.48 0.76

10.0 CBS 4439.20 (61.09) 3962.44 (27.00) 1171.78 0.81

CCR 1044.20 (6.40) 3607.36 (33.13) 1165.60 0.77

time-horizon τ . Our algorithms are implemented to plan a complete path in case
τ = ∞. In this case, no replanning is required. The Prioritized planner, has
exactly ten calls to the Spacetime-A*, because paths for 10 agents are planned.
When we look at the same setting with the CCR algorithm, we see that only
few calls to the Spacetime-A* algorithm were necessary, while the A* algorithm
was called very often2. In contrast to that, the CBS algorithm uses the more
expensive Spacetime-A* algorithm much more often. The A* algorithm, which
is used in computing the true-cost heuristic used in Spacetime-A* is called less
often because the heuristic values are cached for the complete runtime of the
algorithm.

In case we use a time horizon of τ = 3 or τ = 10 steps, all conflicts beyond the
time horizon are ignored in the planning, but agents still plan their path to the
goal. New information becomes available as the agents move and communicate.
Hence, we recompute plans at every time-step. With τ = 3 we see that CBS and
CCR have similar cost and similar solution quality. While CBS is an optimal
algorithm, here we restrict the information available to the algorithm and loose
the properties of completeness and optimally. In addition, with a short planning
horizon τ the CBS algorithm is aware of only few conflicts, which are resolved
faster. The number in brackets show the number of A* and Spacetime-A* itera-
tions normalized by the makespan of the solution. This gives an indication, how
much computational effort is spent in each replanning step. We can observe that
throughout the experiments, the CCR algorithm uses the A* algorithm more
often (in creating Gp) and uses Spacetime-A* less often. When comparing the
different versions in terms of their time-horizon, we see that with a short time-
horizon CBS and CCR behave more similarly (in terms of their cost) and with a
longer time-horizon CBS has a higher complexity (more conflicts are detected)
but will also find better results.

2 We do not report the number of calls to the A* algorithm for Prioritized plan-
ning because we use a caching mechanism for the true-cost heuristic. In our imple-
mentation, this value can not be compared fairly between Prioritized Planning and
CBS/CCR.

Collective Decision-Making for Conflict Resolution in MAPF 89

5 Conclusion

In this paper, we present a novel algorithm to solve the Multi-Agent Pathfinding
Problem (MAPF) [20]. The algorithm uses a prioritization Graph Gp to resolve
conflicts through. This graph is created through a series of collective decisions
and is an emergent result of the planning process. The planner of each individual
robot is able to give way to other robots based on the priority graph. The
algorithm is designed in a way that allows agents to rely on local information
with the only exception of the priority graph Gp, which is shared between all
agents.

Our experiments show, that the algorithm is able to achieve a good trade-off
in planning effort and solution quality. In comparison to prioritized search [22]
our algorithm (CCR) is more costly to run, but has a better success rate. CBS
[18], is an algorithm which is guaranteed to find the optimal solution, but finding
a plan with CBS uses more computational resources than our approach.

In the future, we intend to integrate our planner in the DrivingSwarm frame-
work [15] with a discrete roadmap based on [13]. While planning is not a typical
application scenario for swarm intelligence, our research shows that the emergent
behavior present in Multi-Agent planning warrant questions for future research:
How do different decision strategies impact the planning performance? In this
work, we only use one decision function (direct comparison). In the future, we
hope to analyze the impact of different decision-making methods on the plan-
ning performance. In addition, future research is needed to understand how local
communication can replace the global information stored in the priority graph
Gp and which emergent effects are present if we reduce the (local) information
available to the agents.

References

1. Atzmon, D., Felner, A., Wagner, G., Stern, R., Bart, R.: k-robust multi-agent path
finding. In: SoCS, vol. 1, pp. 157–158 (2017)

2. van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time
multi-agent collision avoidance. In: Proceedings of IEEE International Conference
on Robotics and Automation, pp. 1928–1935 (2007)

3. Cohen, L., Koenig, S.: Bounded suboptimal multi-agent path finding using high-
ways. In: IJCAI International Joint Conference on Artificial Intelligence, January
2016, pp. 3978–3979 (2016)

4. Cohen, L., Uras, T., Koenig, S.: Feasibility study: using highways for bounded-
suboptimal multi-agent path finding. In: Proceedings of the 8th Annual Symposium
on Combinatorial Search, SoCS 2015, January 2015, pp. 2–8 (2015)

5. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances.
Technical report, TR/IRIDIA/2009-013, IRIDIA, Université Libre de Bruxelles,
Brussels, Belgium, May 2009

6. Font Llenas, A., Talamali, M.S., Xu, X., Marshall, J.A.R., Reina, A.: Quality-
sensitive foraging by a robot swarm through virtual pheromone trails. In: Dorigo,
M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS
2018. LNCS, vol. 11172, pp. 135–149. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7 11

https://doi.org/10.1007/978-3-030-00533-7_11
https://doi.org/10.1007/978-3-030-00533-7_11

90 S. Mai and S. Mostaghim

7. Gazi, V., Passino, K.M.: Swarm Stability and Optimization. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-18041-5

8. Hamann, H.: Swarm robotics: a formal approach (2018). https://doi.org/10.1007/
978-3-319-74528-2

9. Honig, W., Kiesel, S., Tinka, A., Durham, J.W., Ayanian, N.: Persistent and robust
execution of MAPF schedules in warehouses. IEEE Robot. Autom. Lett. 4(2),
1125–1131 (2019). https://doi.org/10.1109/LRA.2019.2894217

10. Honig, W., Preiss, J.A., Kumar, T.K., Sukhatme, G.S., Ayanian, N.: Trajectory
planning for quadrotor swarms. IEEE Trans. Rob. 34(4), 856–869 (2018). https://
doi.org/10.1109/TRO.2018.2853613

11. Jansen, M.R., Sturtevant, N.R.: Direction maps for cooperative pathfinding. In:
Proceedings of the 4th Artificial Intelligence and Interactive Digital Entertainment
Conference, AIIDE 2008, pp. 185–190 (2008)

12. Li, Q., Gama, F., Ribeiro, A., Prorok, A.: Graph neural networks for decentralized
multi-robot path planning (2019). http://arxiv.org/abs/1912.06095

13. Mai, S., Deubel, M., Mostaghim, S.: Multi-objective roadmap optimization for
multiagent navigation (2022)

14. Mai, S., Mostaghim, S.: Modeling pathfinding for swarm robotics. In: Dorigo, M.,
et al. (eds.) ANTS 2020. LNCS, vol. 12421, pp. 190–202. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60376-2 15

15. Mai, S., Traichel, N., Mostaghim, S.: Driving swarm: a swarm robotics framework
for intelligent navigation in a self-organized world. Accepted at ICRA 2022 (2022)

16. Raymond, A., Malencia, M., Paulino-Passos, G., Prorok, A.: Agree to disagree: sub-
jective fairness in privacy-restricted decentralised conflict resolution. Front. Robot.
AI 9, February 2022. https://doi.org/10.3389/frobt.2022.733876

17. Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game Devel-
opers Conference (1999). http://www.red3d.com/cwr/steer/gdc99/

18. Sharon, G., Stern, R., Felner, A., Sturtevant, N.: Meta-agent conflict-based search
for optimal multi-agent path finding. In: Proceedings of the 5th Annual Symposium
on Combinatorial Search, SoCS 2012, pp. 97–104 (2012)

19. Silver, D.: Cooperative pathfinding. In: Proceedings of the First Artificial Intel-
ligence and Interactive Digital Entertainment Conference, pp. 117–122 (2005).
http://www.aaai.org/Library/AIIDE/aiide05contents.php

20. Stern, R., et al.: Multi-agent pathfinding: definitions, variants, and benchmarks.
In: AAAI Conference on Artificial Intelligence (AAAI) (2019)

21. Surynek, P., Felner, A., Stern, R., Boyarski, E.: An empirical comparison of the
hardness of multi-agent path finding under the makespan and the sum of costs
objectives. In: Proceedings of the 9th Annual Symposium on Combinatorial Search,
SoCS 2016 (SoCS), January 2016, pp. 145–146 (2016)

22. Van Den Berg, J.P., Overmars, M.H.: Prioritized motion planning for multiple
robots. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS, pp. 430–435 (2005). https://doi.org/10.1109/IROS.2005.1545306

23. Weise, J., Mai, S., Zille, H., Mostaghim, S.: On the scalable multi-objective multi-
agent pathfinding problem. In: Accepted at Congress on Evolutionary Computing
CEC 2020 (2020)

https://doi.org/10.1007/978-3-642-18041-5
https://doi.org/10.1007/978-3-319-74528-2
https://doi.org/10.1007/978-3-319-74528-2
https://doi.org/10.1109/LRA.2019.2894217
https://doi.org/10.1109/TRO.2018.2853613
https://doi.org/10.1109/TRO.2018.2853613
http://arxiv.org/abs/1912.06095
https://doi.org/10.1007/978-3-030-60376-2_15
https://doi.org/10.3389/frobt.2022.733876
http://www.red3d.com/cwr/steer/gdc99/
http://www.aaai.org/Library/AIIDE/aiide05contents.php
https://doi.org/10.1109/IROS.2005.1545306

Controlling Robot Swarm Aggregation
Through a Minority of Informed Robots

Antoine Sion1 , Andreagiovanni Reina2 , Mauro Birattari2 ,
and Elio Tuci1(B)

1 Faculty of Computer Science, University of Namur, Namur, Belgium
{antoine.sion,elio.tuci}@unamur.be

2 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{andreagiovanni.reina,mauro.birattari}@ulb.be

Abstract. Self-organized aggregation is a well studied behavior in
swarm robotics as it is the pre-condition for the development of more
advanced group-level responses. In this paper, we investigate the design
of decentralized algorithms for a swarm of heterogeneous robots that
self-aggregate over distinct target sites. A previous study has shown that
including as part of the swarm a number of informed robots can steer
the dynamic of the aggregation process to a desirable distribution of
the swarm between the available aggregation sites. We have replicated
the results of the previous study using a simplified approach: we removed
constraints related to the communication protocol of the robots and sim-
plified the control mechanisms regulating the transitions between states
of the probabilistic controller. The results show that the performances
obtained with the previous, more complex, controller can be replicated
with our simplified approach which offers clear advantages in terms of
portability to the physical robots and in terms of flexibility. That is, our
simplified approach can generate self-organized aggregation responses in
a larger set of operating conditions than what can be achieved with the
complex controller.

1 Introduction

Swarm robotics can be defined as “the study of how a large number of relatively
simple physically embodied agents can be designed such that a desired collective
behavior emerges from the local interactions among the agents and between the
agents and the environment” [25]. Robot swarms aim to be robust, flexible and
scalable due to their decentralized nature and their large group size. Brambilla
et al. [2] and Schranz et al. [26] give an overview of the basic collective behaviors
that robot swarms can display in order to achieve complex tasks such as coor-
dinated motion, task allocation, self-assembly or aggregation, which is studied
in this paper. Aggregation is used to group the swarm in a location—for exam-
ple, to initiate a collaborative task that requires physical proximity among the
robots. Inspiration for self-organized aggregation can be found in animals such
as bees [29] or cockroaches [18].
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 91–103, 2022.
https://doi.org/10.1007/978-3-031-20176-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_8&domain=pdf
http://orcid.org/0000-0002-9901-3906
http://orcid.org/0000-0003-4745-992X
http://orcid.org/0000-0003-3309-2194
http://orcid.org/0000-0001-7345-671X
https://doi.org/10.1007/978-3-031-20176-9_8

92 A. Sion et al.

Several approaches have been studied in swarm robotics to achieve aggrega-
tion. A popular method is to control the robots through probabilistic finite-state
machines. Soysal and Şahin [28] analyzed the performance of a three-state finite-
state machine while varying different transitional probabilistic parameters. Vari-
ations of the controller yielded different aggregation behaviors highlighting the
importance of the evaluation metrics used such as cluster sizes or total distances
between robots. Cambier et al. [4] studied the influence of cultural propagation
in an aggregation scenario. Using a simple finite-state machine with two states,
robots communicated with each other to modify the probabilistic parameters of
their controllers. This behavioral plasticity has ensured adaptability to dynamic
environments and performed better than classical approaches. Simpler methods
have also been proposed to achieve self-organized aggregation as in [16] where
the only sensor available to the robots is a binary sensor informing them on the
presence of another robot in their line of sight. The controller did not require
computation and the parameters were chosen via a grid search. This approach is
validated with successful experiments with 1000 simulated robots and 40 phys-
ical robots. Francesca et al. [14] showed that self-organized aggregation can be
achieved by robots controlled by probabilistic finite-state machines that are gen-
erated automatically.

Artificial evolution has also been used to evolve controllers resulting in self-
organized aggregation [8]. Francesca et al. [15] evolved a neural network con-
troller to perform self-organized aggregation and showed that the dynamics of
the resulting collective behavior closely matches the one of a biological model
that describes how cockroaches select a resting shelter. Kengyel et al. [20] stud-
ied aggregation in heterogeneous robot swarms where each robot ran one among
four distinct behaviors inspired from aggregation in honeybees. The number
of robots running the alternative behaviors were varied using an evolutionary
algorithm. The results of the simulations show that through the cooperation of
different types of behaviors, the heterogeneous swarm performs better than its
homogeneous equivalent.

In this study, we revisit the methods illustrated in [13] to steer self-organized
aggregation responses with the use of informed robots. Generally speaking, the
use of informed individuals to steer the dynamic process leading to the group
response is a method to guide self-organisation in distributed systems inspired
by behaviors observed in biology. In a seminal study, Couzin et al. [6] studied the
influence of informed individuals in collective decision making in the context of
collective animal motion. The informed individuals had a preferred direction of
motion and biased the collective decision in that direction. The rest of the swarm
did not have any preferred direction of motion, nor was able to recognise informed
individuals as such. The study shows that the accuracy of the group motion
towards the direction known by the informed agents increases asymptotically as
the proportion of informed individuals increases, and that the larger the group,
the smaller the proportion of informed individuals needed to guide the group with
a given accuracy. A recent study on cockroaches [3] has shown that a minority of
individuals preferring one shelter over the other can influence the population to

Controlling Robot Swarm Aggregation with Informed Robots 93

reach a consensus for only one site. The technique of using informed individuals
to steer the collective dynamics has already been used in artificial systems with
various types of collective behaviors. For example, informed individuals have
been used in flocking [5,9,10] to guide the robot swarm in the desired direction,
in collective decision making [7,23] to achieve adaptability, and in self-organized
aggregation to differentiate between multiple sites [11–13,17].

In this paper, we replicate the experimental setup originally illustrated in [13]
by showing that equally effective aggregation dynamics can be obtained with a
largely simplified approach. The aggregation response described in [13] took
place in a circular arena with two aggregation sites, the black and the white site
(see Fig. 1a). The goal of the swarm was to distribute the robots between the
two sites in a desired proportion (e.g. 70% of the robots on the white site and
the remaining 30% on the black one) while minimizing the total proportion of
informed robots. Non-informed robots treated both sites in the same way while
informed robots were designed to systematically avoid one of the sites and to
rest on the other. The swarm comprised a certain proportion of informed robots,
among which there were those that selectively rested on the black site and those
that rested only on the white site. The study shows that the proportion of robots
on black/white site at the end of an aggregation process matches the proportion
of informed robots resting only on the black/white site relative to the number of
informed robots in the swarm (see Sect. 2 for more details). These aggregation
dynamics can be achieved using a relatively low percentage of informed robots
in the swarm—roughly 30% for a swarm of 100 robots.

In [13], the robots were controlled by a probabilistic finite-state machine illus-
trated in details in Sect. 2 and depicted in Fig. 1c. In this study, we question the
nature of the mechanisms regulating the transition from state Stay (S) to state
Leave (L), and the type of communication protocol involved in these mechanisms,
by suggesting an alternative solution that largely simplifies the rule regulating
the transition between these two states for non-informed robots. Following the
“Occam’s razor” principle, the solution we illustrate in this paper can represent a
preferable alternative to the more complex solution proposed in [13] and can help
the porting of the control system to the physical robots. Moreover, we remove
differences both in behavior and in communication capabilities between informed
and non-informed robots that, in our view, undermine the robustness of the aggre-
gation process. For example, in [13], non-informed robots rest on an aggregation
site if this is already inhabited by at least one informed robot that signals its pres-
ence on the site. Thus, an aggregation process can only be initiated by informed
robots. This can significantly delay the aggregation process, in particular in those
operating conditions in which the probability that an informed robot finds and
rests on an aggregation site is relatively low. Additionally, this makes the swarm
less robust to the loss of informed robots. In the extreme case of a loss of all
informed robots, there will be no aggregation at all. With our approach, aggre-
gation dynamics can emerge independently of the presence of informed robots.
This increases the range of group responses that the swarm can generate without
interfering with the effectiveness of the aggregation dynamics.

94 A. Sion et al.

Fig. 1. (a) The simulated circular arena with the robots (blue dots) and the aggre-
gation sites (black and white circles). (b) The Foot-bot robot [1]; image from www.
swarmanoid.org. (c) The probabilistic finite-state machine controlling the robot behav-
ior composed of three states; RW (Random Walk), S (Stay) and L (Leave). (Color
figure online)

2 Materials and Methods

The experiments are ran using ARGoS [21], which is one of the best-performing
simulators to run physics-based simulations for large-scale robot swarms [22].
The robots operate in a circular environment where the aggregation sites are
circular areas located at equal distance between the center of the arena and its
perimetric wall (Fig. 1a). One site is painted in black, the other in white; the
arena floor is grey. We perform our experiments with a simplified model of the
Foot-bot [1] (see Fig. 1b), a mobile robot that we equip with three types sensors:
a ground sensor, an array of proximity sensors, and the range-and-bearing sensor.
The ground sensor is located on the robot’s underside, to detect the color of the
ground; it returns 1, 0.5, and 0 when a robot is on a white, grey, and black floor,
respectively. The proximity sensors use infrared (IR) signals to detect obstacles
such as other robots or the arena walls. The range-and-bearing sensor is used by
the robots to exchange simple communication signals when they are located at
less than 0.8m from each other.

A trial starts with the robots randomly placed in the arena following a uni-
form distribution, and it terminates after 30,000 s. As in [13], the swarm of size
N is composed of informed robots (in proportion ρI) and non-informed ones
(in proportion 1 − ρI). During a trial, both informed and non-informed robots
move randomly in the environment at 10 cm/s. Non-informed robots can rest on
any aggregation site as soon as they enter into one of them. Informed robots
selectively avoid to rest on one site and rest only on the other one. There are
informed robots for black—which avoid to rest on the white site, and rest on
the black aggregation site only—and informed robots for white—which avoid
to rest on the black site, and rest on the white site only. Let Nsb be the num-
ber of informed robots for black, Nsw the number of informed robots for white,
ρsb = Nsb

Nsb+Nsw
the proportion of informed robots for black relative to the total

www.swarmanoid.org
www.swarmanoid.org

Controlling Robot Swarm Aggregation with Informed Robots 95

number of informed robots, and ρsw = 1−ρsb the proportion of informed robots
for white relative to the total number of informed robots. Firat et al. [13] demon-
strated that, with a relatively small proportion of informed robots in the swarm
(ρI ≈ 0.3) and for different values of ρsb and ρsw, the number of robots aggre-
gated on the black site is approximately equal to N ρsb, while the number of
those aggregated on the white site is approximately equal to N ρsw, for swarms
of size N = 50 and for N = 100. Our objective is to replicate this aggregation
dynamics with a largely simplified model illustrated below.

The primary difference between our model and the one introduced in [13]
resides in the way in which the robots communicate while within an aggrega-
tion site. In [13], communication is needed by the robots to count how many
informed robots are resting on the aggregation site within the communication
range. In our model, communication is needed by the robots to count how many
robots (including both informed and non-informed) are resting on the aggre-
gation site within the communication range. This small difference between the
two models derives from a rather substantial modification of the robots’ com-
munication system which we apply to the original model as illustrated in [13] to
improve the robustness and flexibility of the swarm’s behavior. In [13], informed
robots emits signals (i.e., one bit signal), while non-informed robots can only
receive these signals, they can not emit them. Contrary to [13], in our model,
informed and non-informed robots are functionally identical with respect to com-
munication; they can both send and receive signals. This implies that, contrary
to [13], in our model communication signals indicate only the presence of spa-
tially proximal robots within a site without saying anything about the identity
of the signal’s sender (i.e., whether it is an informed or a non-informed robot).
Therefore, the results of our study can generalise to application scenarios where
the communication is indirect, i.e., the robots count the neighbors in its view
range without the need of an exchange of messages and without the need of
distinguishing between informed and non-informed robots.

Both in [13] and in our model, the robots are controlled by a probabilistic
finite state-machine (hereafter PFSM, see Fig. 1c), which is updated every 2 s and
comprises three states: Random Walk (RW), Stay (S), and Leave (L). However,
in our model, the rules that regulate the transition between different states have
been modified with respect to the original implementation as illustrated in [13].
In the following, we describe the PFSM and we illustrate the modifications we
introduced with respect to [13].

At the beginning of a trial, the robots are in state RW. They explore the
environment while avoiding obstacles with an isotropic random walk based on
straight motion and random rotation. The robots move straight for 5 s at a
speed of 10 cm/s, and turn with turning angles taken from a wrapped Cauchy
distribution [19]. The probability density function is the following:

fω(θ, μ, ρ) =
1
2π

1 − ρ2

1 + ρ2 − 2ρ cos(θ − μ)
, 0 < ρ < 1, (1)

where μ is the average value of the distribution and ρ the skewness. With ρ = 0,
the wrapped Cauchy distribution becomes uniform and there is no correlation

96 A. Sion et al.

between the movement directions before and after a turn. With ρ = 1, we have
a Dirac distribution and the robot follows a straight line. Here we take ρ = 0.5.
During this behavior, when the proximity sensors detect an obstacle (the wall
or other robots), the robot stops and turns of an angle chosen uniformly in
the interval [−π, π]. After turning, if there is no obstruction ahead, the robot
resumes its normal random walk otherwise, it repeats the manoeuvre.

Both in our model and in [13], informed robots systematically transition from
state RW to the state S when they enter their preferred site, otherwise they move
randomly. While in S, informed robots rest on the aggregation site. The condition
that triggers the transition from state RW to the state S for non-informed
robots is different in our model with respect to [13]. In particular, in [13], non-
informed robots switch to state S if, while entering into an aggregation site,
they perceive the presence of informed robots at the site. Contrary to [13], in
our approach, non-informed robots systematically transition from state RW to
state S whenever they enter into an aggregation site regardless of the presence
of any other type of robot at the site. In both studies, when a robot enters an
aggregation site, it continues moving forward for 10 s to avoid a congestion of
robots on the perimeter of the site that could eventually hinder other robots
from entering. Then, it rests on the site.

Both in our model and in [13], informed robots never leave the state S.
That is, once an informed robot finds its preferred site, it never leaves the site.
Non-informed robots transition from state S to state L with a probability that is
computed differently with respect to [13]. In [13], non-informed robots transition
from state S to state L with a probability PLeave computed as

PLeave =

{
e−a(k−|n−x|) if n > 0,
1 if n = 0;

(2)

where n and x are the number of informed robots resting on the site within
communication distance at this moment and at the moment of joining this site,
respectively. Parameters a and k are fixed to a = 2 and k = 18. With Eq. (2),
the transition from state S to state L is based on the temporal variation in the
number of informed robots perceived at an aggregation site.

Contrary to [13], in our model the probability P
′
Leave that regulates the

transition from state S to state L for non-informed robots is computed as

P
′
Leave = αe−βn, (3)

with n the number of robots (including both informed and non-informed) within
communication distance, α = 0.5, and β = 2.251. Contrary to [13], P

′
Leave relies

on the fact that any type of robot in the swarm can broadcast and perceive
communication signals while resting on a site. This transforms P

′
Leave into some-

thing that depends on the estimated local density of (any type of) robots, while
1 The parameters α and β have been fine-tuned to achieve a symmetry-breaking behav-

ior in a homogeneous swarm of N = 100 non-informed robots using the same arena
setup illustrated in [13].

Controlling Robot Swarm Aggregation with Informed Robots 97

in [13] PLeave depends on the variation in the number of informed robots in the
neighborhood. Hence, PLeave requires the robots to use memory and distinguish
between types of robots, P

′
Leave does not.

Both in [13] and in our approach a robot in state L exits an aggregation site by
moving forward and avoiding obstacles. Once outside the site, it systematically
transitions to state RW.

To summarise, the main differences between the model illustrated in [13]
and our model are the following: (i) in [13] informed robots only emit signals
and non-informed robots only receive signals. In our models, both informed and
non-informed robots send and receive communication signals. (ii) In [13], non-
informed robots rest on a site only if they perceive the presence of informed
robots, and leave a site with a probability that depends on the variation in the
number of perceived informed robots. Hence, it requires memory of the past
and a comparison between the present and the past state. In our model, non-
informed robots systematically rest on an aggregation site, and they leave it with
a probability that is determined by the current local density of robots (regardless
of whether they are informed or non-informed) at the site. Therefore, our model
is reactive and does not require any form of memory. In the next section, we
show that the above mentioned modifications improve the robustness and the
behavioral flexibility of the swarm.

3 Results

In this section, we compare the performance of swarms of robots controlled by
the PFSM as originally illustrated in [13] and by our modified PFSM presented
in Sect. 2. We evaluate the two approaches in several different conditions given
by all the possible combinations of the parameters’ values listed in Table 1. In
particular, we vary the swarm size (N), the proportion of informed robots in
the swarm (ρI), and the proportion of black (ρsb) and white (ρsw) informed
robots. As in [13], while changing the swarm size, the swarm density has been
kept constant by changing the diameter of the arena and of the aggregation sites
(see Table 1 for details).

We recall that the task of the robots is to distribute themselves on each site
in a way that the robots resting on the black and white sites should be equal to
N ρsb and N ρsw, respectively, with the proportion of informed robots ρI being

Table 1. Parameters values

Experiment parameters Values

Swarm size (N) {50, 100}
Proportion of informed robots (ρI) {0.1, 0.2, 0.3, 0.4, 0.5}
Proportion of black informed robots (ρsb) {0.5, 0.6, 0.7, 0.8, 0.9, 1}
Arena diameter 12.9m (for N = 50), 19.2m (for N = 100)

Aggregation site diameter 2.8m (for N = 50), 4.0m (for N = 100)

98 A. Sion et al.

Fig. 2. Graphs showing the median over 20 trials of the number of robots on each site
at time t = 30, 000 s (end of trials) for N = 50 robots (top row) and N = 100 robots
(bottom row). For our approach the results are shown in (a) and (e) with reference to
the black site, and in (b) and (f) with reference to the white site. For the approach
in [13], the results are shown in (c) and (g) with reference to the black site, and in
(d) and (h) with reference to the white site. On all graphs, the y-axis refers to the
proportion of informed robots in the swarm (ρI) and the shades of grey refer to the
number of robots at each aggregation site with white indicating zero robots, and black
indicating 50 robots in graphs on top row, and 100 robots in graphs on bottom row.
The x-axis refers to (ρsb) in (a), (c), (e), and (g) and to (ρsw) in (b), (d), (f), and (h).

as small as possible. For each testing condition, and for each approach, we have
run 20 trials. Figure 2 shows, for both approaches, the median over 20 trials of
the number of robots resting on each site at the end of each trial (i.e., at time
t = 30, 000 s) for a swarm of N = 50 robots (see Fig. 2, graphs in top row)
and for a swarm of N = 100 robots (see Fig. 2, graphs in bottom row). For our
approach the results are shown in Figs. 2a and 2e with reference to the black
site, and in Figs. 2b and 2f with reference to the white site. For the approach
in [13], the results are shown in Figs. 2c and 2g with reference to the black site,
and in Figs. 2d and 2h with reference to the white site.

With a swarm of N = 50 robots, both approaches perform relatively well,
with the median of the number of robots resting on the black site increasing
for progressively higher values of ρsb (see Figs. 2a, and 2c) and decreasing for
progressively lower values of ρsw (see Figs. 2b and 2d). These trends can be
clearly observed, for both approaches, for any values of ρI , even for the smallest
tested value ρI = 0.1 (i.e., 10% of informed robots in the swarm). However, our
approach performs better than the approach in [13] for values of ρI > 0.3 and
ρsb > 0.8. In these conditions, our results are closer to the target robot distribu-
tions than the results obtained with the approach from [13] (see Figs. 2a, 2b, 2c,

Controlling Robot Swarm Aggregation with Informed Robots 99

Fig. 3. Graphs showing the interquartile range over 20 trials of the number of robots
on each site at t = 30,000 s (end of trial). See the caption of Fig. 2 for more details.

and 2d, top right corners). With a larger swarm size N = 100, our results are
closer to the target robot distributions for both ρI < 0.3 and ρsb < 0.7 (see
Figs. 2e, 2f, 2g, and 2h, bottom left corners) and for ρI > 0.3 and ρsb > 0.8 (see
Figs. 2e, 2f, 2g, and 2h, top right corners).

Figure 3 shows the interquartile ranges of the number of robots on each site
at t = 30, 000 s for both approaches for a swarm size of N = 50 (graphs in top
row) and N = 100 (graphs in bottom row). For low proportions of informed
robots (ρI < 0.3), our approach shows a slightly higher variability in the final
distribution of the swarms (Figs. 3a, 3b, 3e, and 3f) than the approach in [13] (see
Figs. 3c, 3d, 3g, and 3h). However, at higher proportions of informed robots(ρI >
0.3), the variability is roughly the same for the two approaches in the majority
of the parameter configurations.

With our modified approach, we have run further tests with a swarm entirely
made of non-informed robots (i.e., ρI = 0). The removal of informed robots from
the swarm prevents the model illustrated in [13] from generating robots’ aggre-
gates, as the transition from state random walk RW to the state stay S (i.e.,
resting on the aggregation site) of non-informed robots is triggered by the per-
ception of an aggregation site populated by informed robots. As shown in Fig. 4,
in our model, a swarm without informed robots can break the environmental
symmetry by repeatedly forming a single aggregate on either the black or the
white aggregation site. The median of the number of robots not resting on any
site at the end of the experiment is 4 with an interquartile range of 5. This
shows that the modifications we made to the system as originally illustrated
in [13] enlarges the swarm behavioral repertoire without loss of performance
with respect to the results shown in [13]. The results of our tests show that
our simplified model generates aggregates that match equally fine or even better

100 A. Sion et al.

Fig. 4. Graphs showing the frequency distribution of the number of robots on each
aggregation site, at the end of 50 runs, with each trial lasting t = 30,000 s, and without
informed robots in the swarm (ρI = 0). The swarm size is N = 100.

than in [13] the expected distributions of robots on each aggregation site for
each tested combination of values of ρI , ρsb, and ρsw. We show, however, that
our approach generates a slightly higher between-trials variability than the one
in [13]. This is due to the fact that when every robot can start the formation
of clusters in the sites, as it is in our approach, clusters composed exclusively of
non-informed robots can also appear. When the proportion of informed robots
is low, the disruptive effect of these types of aggregates on the desired aggrega-
tion dynamics increases as well as with the between trials variability. We also
show that, in the absence of informed robots in the swarm, the robots break the
environmental symmetry by repeatedly generating a single aggregate on either
the black or the white site. Since any aggregation behavior in the absence of
informed robots is precluded to the swarm as modelled in [13], we conclude that
the modifications introduced by us improve the robustness and the behavioral
flexibility of the swarm.

4 Conclusions

We proposed a simplified version of an existing aggregation method using
informed individuals in a swarm of robots. We have presented the results of
a comparative study that quantitatively evaluates the effectiveness of two dif-
ferent algorithms in driving the aggregation dynamics in swarms of heteroge-
neous robots made of informed and non-informed robots. The original approach,
illustrated in [13], is based on a finite-state machine controller by which individ-
ual robots only transit from state random walk RW (corresponding to random
diffusion in the environment) to state Stay S (corresponding to resting on an
aggregation site) when they end up on an aggregation site populated by informed
robots. Moreover, the robots transit from state Stay S to state Leave L (corre-
sponding to leaving the aggregation site) with a probability that depends on the
variation in the perceived number of informed robots at the site during resting,
thus requiring memory, however limited. The functional characteristics of this
finite-state machine are supported by a communication protocol in which only

Controlling Robot Swarm Aggregation with Informed Robots 101

informed robots can send signals and non-informed robots can receive signals.
We have replicated the study illustrated in [13] with a simplified finite-state
machine controller in which the robots rest on a site regardless of the presence
of informed robots, and they leave the site with a memoryless probability that
depends on the current perceived local density at the aggregation site of any type
of robots. Moreover, we have re-established a functional equivalence in commu-
nication capabilities between informed and non-informed robots. That is, in our
approach, there is no distinction in communication capabilities between the types
of robots, both can send and receive messages that signal their presence at an
aggregation site. This implementation choice allows the robots to estimate the
robot density in their neighborhood without any need of distinguishing between
robot types. Our comparative tests show that the swarms controlled by our app-
roach generate aggregation dynamics that are never less performing than [13],
and in some experimental conditions they are closer to the target robot distri-
butions than the one observed with the approach illustrated in [13]. We showed
that, our approach, contrary to the one introduced in [13], suffers from a slightly
higher between-trials variability in the number of robots resting at each aggre-
gation site at the end of a trial. We also show that our approach can generate a
larger set of aggregation dynamics than in [13], since in the absence of informed
robots the swarm controlled with our simplified approach systematically forms
a single aggregate in one of the aggregation sites, while the swarm controlled by
the approach in [13] never aggregates. Based on the “Occam’s razor” principle of
parsimony, we claim that due to its simplicity, effectiveness, and robustness to a
larger set of operating conditions, our approach should be favored over the one
introduced in [13] to control the aggregation dynamics using informed robots.

Future research directions will consider setups with three or more aggrega-
tion sites to verify if, with our approach, the expected distributions of robots
at the aggregation sites are attained in more complex environments. We also
plan to validate the approach illustrated in this paper with the physical robot
Kilobots [24] using the Kilogrid platform [30]. This will allow the study of the
convergence time of the system and the possible speedup of the dynamics [27].

Acknowledgements. This work was supported by Service Public de Wallonie
Recherche under grant n◦ 2010235 - ARIAC by DIGITALWALLONIA4.AI; by the
European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 681872); and by Belgium’s Wallonia-
Brussels Federation through the ARC Advanced Project GbO (Guaranteed by Opti-
mization). A. Reina and M. Birattari acknowledge the financial support from the
Belgian F.R.S.-FNRS, of which they are Chargé de Recherches and Directeur de
Recherches, respectively.

References

1. Bonani, M., et al.: The MarXbot, a miniature mobile robot opening new perspec-
tives for the collective-robotic research. In: 2010 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pp. 4187–4193. IEEE (2010)

102 A. Sion et al.

2. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://
doi.org/10.1007/s11721-012-0075-2

3. Calvo Mart́ın, M., Eeckhout, M., Deneubourg, J.L., Nicolis, S.C.: Consensus driven
by a minority in heterogenous groups of the cockroach periplaneta americana.
iScience 24(7) (2021). https://doi.org/10.1016/j.isci.2021.102723

4. Cambier, N., Albani, D., Frémont, V., Trianni, V., Ferrante, E.: Cultural evolution
of probabilistic aggregation in synthetic swarms. Appl. Soft Comput. 113, 108010
(2021). https://doi.org/10.1016/j.asoc.2021.108010

5. Çelikkanat, H., Şahin, E.: Steering self-organized robot flocks through externally
guided individuals. Neural Comput. Appl. 19(6), 849–865 (2010). https://doi.org/
10.1007/s00521-010-0355-y

6. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and
decision-making in animal groups on the move. Nature 433, 513–516 (2005).
https://doi.org/10.1038/nature03236

7. Masi, G.D., Prasetyo, J., Zakir, R., Mankovskii, N., Ferrante, E., Tuci, E.: Robot
swarm democracy: the importance of informed individuals against zealots. Swarm
Intell. 15(4), 315–338 (2021). https://doi.org/10.1007/s11721-021-00197-3

8. Dorigo, M., et al.: Evolving self-organizing behaviors for a swarm-bot. Auton.
Robot. 17(2), 223–245 (2004). https://doi.org/10.1023/B:AURO.0000033973.
24945.f3

9. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-
organized flocking with a mobile robot swarm: a novel motion control method.
Adapt. Behav. 20(6), 460–477 (2012). https://doi.org/10.1177/1059712312462248

10. Ferrante, E., Turgut, A.E., Stranieri, A., Pinciroli, C., Birattari, M., Dorigo,
M.: A self-adaptive communication strategy for flocking in stationary and non-
stationary environments. Nat. Comput. 13(2), 225–245 (2013). https://doi.org/
10.1007/s11047-013-9390-9

11. Firat, Z., Ferrante, E., Cambier, N., Tuci, E.: Self-organised aggregation in swarms
of robots with informed robots. In: Fagan, D., Mart́ın-Vide, C., O’Neill, M., Vega-
Rodŕıguez, M.A. (eds.) TPNC 2018. LNCS, vol. 11324, pp. 49–60. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04070-3 4

12. Firat, Z., Ferrante, E., Gillet, Y., Tuci, E.: On self-organised aggregation dynamics
in swarms of robots with informed robots. Neural Comput. Appl. 32(17), 13825–
13841 (2020). https://doi.org/10.1007/s00521-020-04791-0

13. Firat, Z., Ferrante, E., Zakir, R., Prasetyo, J., Tuci, E.: Group-size regulation in
self-organized aggregation in robot swarms. In: Dorigo, M., et al. (eds.) ANTS
2020. LNCS, vol. 12421, pp. 315–323. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-60376-2 26

14. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8(2), 89–112 (2014). https://doi.org/10.1007/s11721-014-0092-4

15. Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., Birattari, M.: Analysing an
evolved robotic behaviour using a biological model of collegial decision making.
In: Ziemke, T., Balkenius, C., Hallam, J. (eds.) SAB 2012. LNCS (LNAI), vol.
7426, pp. 381–390. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33093-3 38

16. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organized aggregation
without computation. Int. J. Robot. Res. 33(8), 1145–1161 (2014). https://doi.
org/10.1177/0278364914525244

https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1016/j.isci.2021.102723
https://doi.org/10.1016/j.asoc.2021.108010
https://doi.org/10.1007/s00521-010-0355-y
https://doi.org/10.1007/s00521-010-0355-y
https://doi.org/10.1038/nature03236
https://doi.org/10.1007/s11721-021-00197-3
https://doi.org/10.1023/B:AURO.0000033973.24945.f3
https://doi.org/10.1023/B:AURO.0000033973.24945.f3
https://doi.org/10.1177/1059712312462248
https://doi.org/10.1007/s11047-013-9390-9
https://doi.org/10.1007/s11047-013-9390-9
https://doi.org/10.1007/978-3-030-04070-3_4
https://doi.org/10.1007/s00521-020-04791-0
https://doi.org/10.1007/978-3-030-60376-2_26
https://doi.org/10.1007/978-3-030-60376-2_26
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.1007/978-3-642-33093-3_38
https://doi.org/10.1007/978-3-642-33093-3_38
https://doi.org/10.1177/0278364914525244
https://doi.org/10.1177/0278364914525244

Controlling Robot Swarm Aggregation with Informed Robots 103

17. Gillet, Y., Ferrante, E., Firat, Z., Tuci, E.: Guiding aggregation dynamics in a
swarm of agents via informed individuals: an analytical study. In: The 2019 Con-
ference on Artificial Life: A Hybrid of the European Conference on Artificial Life
(ECAL) and the International Conference on the Synthesis and Simulation of Liv-
ing Systems (ALIFE), pp. 590–597. MIT Press (2019). https://doi.org/10.1162/
isal a 00225

18. Jeanson, R., et al.: Self-organized aggregation in cockroaches. Anim. Behav. 69(1),
169–180 (2005). https://doi.org/10.1016/j.anbehav.2004.02.009

19. Kato, S., Jones, M.: An extended family of circular distributions related to
wrapped Cauchy distributions via Brownian motion. Bernoulli 19(1), 154–171
(2013). http://www.jstor.org/stable/23525635

20. Kengyel, D., Hamann, H., Zahadat, P., Radspieler, G., Wotawa, F., Schmickl, T.:
Potential of heterogeneity in collective behaviors: a case study on heterogeneous
swarms. In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.) PRIMA
2015. LNCS (LNAI), vol. 9387, pp. 201–217. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25524-8 13

21. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for
multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/
s11721-012-0072-5

22. Pitonakova, L., Giuliani, M., Pipe, A., Winfield, A.: Feature and performance
comparison of the V-REP, gazebo and ARGoS robot simulators. In: Giuliani, M.,
Assaf, T., Giannaccini, M.E. (eds.) TAROS 2018. LNCS (LNAI), vol. 10965, pp.
357–368. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96728-8 30

23. Prasetyo, J., De Masi, G., Ferrante, E.: Collective decision making in dynamic envi-
ronments. Swarm Intell. 13(3), 217–243 (2019). https://doi.org/10.1007/s11721-
019-00169-8

24. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost
robot with scalable operations designed for collective behaviors. Robot. Auton.
Syst. 62(7), 966–975 (2014). https://doi.org/10.1016/j.robot.2013.08.006

25. Şahin, E., Girgin, S., Bayindir, L., Turgut, A.E.: Swarm robotics. In: Blum, C.,
Merkle, D. (eds.) Swarm Intelligence. Natural Computing Series, pp. 87–100.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-74089-6 3

26. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors
and current applications. Front. Robot. AI 7, 36 (2020). https://doi.org/10.3389/
frobt.2020.00036

27. Sion, A., Reina, A., Birattari, M., Tuci, E.: Impact of the update time on the
aggregation of robotic swarms through informed robots (2022). Accepted to the
SAB 2022 Conference

28. Soysal, O., Şahin, E.: Probabilistic aggregation strategies in swarm robotic systems.
In: Proceedings 2005 IEEE Swarm Intelligence Symposium, SIS 2005, pp. 325–332
(2005). https://doi.org/10.1109/SIS.2005.1501639

29. Szopek, M., Schmickl, T., Thenius, R., Radspieler, G., Crailsheim, K.: Dynamics
of collective decision making of honeybees in complex temperature fields. PLoS
ONE 8(10), 1–11 (2013). https://doi.org/10.1371/journal.pone.0076250

30. Valentini, G., et al.: Kilogrid: a novel experimental environment for the Kilobot
robot. Swarm Intell. 12(3), 245–266 (2018). https://doi.org/10.1007/s11721-018-
0155-z

https://doi.org/10.1162/isal_a_00225
https://doi.org/10.1162/isal_a_00225
https://doi.org/10.1016/j.anbehav.2004.02.009
http://www.jstor.org/stable/23525635
https://doi.org/10.1007/978-3-319-25524-8_13
https://doi.org/10.1007/978-3-319-25524-8_13
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/978-3-319-96728-8_30
https://doi.org/10.1007/s11721-019-00169-8
https://doi.org/10.1007/s11721-019-00169-8
https://doi.org/10.1016/j.robot.2013.08.006
https://doi.org/10.1007/978-3-540-74089-6_3
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.1109/SIS.2005.1501639
https://doi.org/10.1371/journal.pone.0076250
https://doi.org/10.1007/s11721-018-0155-z
https://doi.org/10.1007/s11721-018-0155-z

Decentralized Multi-Agent Path Finding
in Warehouse Environments for Fleets

of Mobile Robots with Limited
Communication Range

Abderraouf Maoudj(B) and Anders Lyhne Christensen

SDU Biorobotics, MMMI, University of Southern Denmark (SDU), Odense, Denmark
{abma,andc}@mmmi.sdu.dk

Abstract. Mobile robots have already made their way into warehouses,
and significant effort has consequently been devoted to designing effective
algorithms for the related multi-agent path finding (MAPF) problem.
However, most of the proposed MAPF algorithms still rely on central-
ized planning as well as simplistic assumptions, such as that robots have
full observability of the environment and move at equal and constant
speeds. The resultant plans thus cannot be executed directly on physi-
cal robots where these assumptions generally do not hold. To mitigate
these issues, we consider the decentralized partially observable multi-
robot setting where robots do not have access to the full state of the
world. Instead, each robot coordinates with neighbors within a limited
communication range. In the proposed approach, each robot indepen-
dently plans its own path using A* without taking into account other
robots, and the robots then solve potential conflicts locally as they occur.
Experimental results obtained in various benchmark scenarios confirm
that the proposed decentralized approach is effective and scales well to
large numbers of robots.

1 Introduction

With the rapid development of low-cost sensors and computing devices, it is
becoming increasingly feasible to deploy large-scale systems of mobile transporta-
tion robots in industrial environments. Nowadays, many industrial applications
benefit from fleets of mobile robots transporting goods and materials between
workstations and storage pipes [27]. The increased use of robot fleets has given
rise to a number of challenging optimization problems, such as multirobot path
planning [24] and multirobot scheduling [1].

Planning conflict-free paths for a team of mobile robots, known as the multi-
agent path finding (MAPF) problem, remains a major challenge [15,20]. Given
a set of agents, each with a pre-specified initial location and a pre-specified goal
location in a known environment, MAPF is concerned with finding collision-
free paths for the agents such that certain objectives are minimized. MAPF is
inspired by real-world applications, such as automated warehouses [11], traffic
management [3], and valet parking [12].
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 104–116, 2022.
https://doi.org/10.1007/978-3-031-20176-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_9&domain=pdf
https://doi.org/10.1007/978-3-031-20176-9_9

Decentralized Cooperative Multi-Agent Path Finding 105

MAPF is NP-hard to solve optimally [25]. As a result, a significant amount
of research has been conducted and the resulting state-of-the-art algorithms can
be divided into four categories [7]:

Systematic search algorithms are centralized planning approaches, which
enable finding all possible solutions, including an optimal one. In this category,
numerous algorithms have been proposed, such as the branch-and-cut-and-price
(BCP) algorithm [5], pairwise symmetry reasoning [8], conflict-based search
(CBS) algorithms and their variants [8,9]—which are currently among the most
popular algorithms for solving the MAPF problem optimally. Although these
planners achieve optimal or bounded sub-optimal solutions, they often suffer
from a computational complexity that increases exponentially with the problem
size.

Rule-based algorithms, in which the agents move step-by-step following
ad-hoc rules [13]. For instance, the graph abstraction approach [16], the conflict
classification-based algorithm [26], biconnected graphs [21], and parallel-push-
and-swap (PPS) [17]. These algorithms are polynomial-time but can still fail to
find solutions within a reasonable amount of time for large instances.

Learning-based algorithms use reinforcement learning techniques for find-
ing cooperative and competitive behaviors for solving conflicts [15]. Different
learning-based algorithms have been proposed in literature for solving MAPF,
see for instance [2,18]. Even though learning-based approaches have proven to
be more robust to uncertainties in practical applications than the algorithms
discussed above, they do not provide guarantees on solution quality [13,18].

Priority-based algorithms, in which the MAPF problem is decomposed
into a series of single-agent path planning problems, where the agents plan their
paths sequentially according to a priority scheme. Popular algorithms include the
prioritized planning algorithm [14], searching with consistent prioritization [10],
the hierarchical cooperative A* approach (HCA), and priority inheritance with
backtracking [13]. The prioritized planning algorithm provides a practical solu-
tion to applications with large numbers of robots. However, the quality of the
resulting solutions depends on the choice of the prioritization scheme, especially
in dense environments with limited path choices [23].

The algorithms described above rely on simplistic assumptions and have dif-
ferent objectives. Most of them assume that robots always move at their nominal
speed, ignore kinematic constraints, and do not take into account imperfect plan-
execution capabilities [4]: in practical scenarios, a robot may need to slow down
or come to a complete halt when facing a challenging situation, such as entering a
narrow corridor or turning on the spot. The execution will therefore deviate from
the plan found offline, and variation in the robots’ speeds can thus significantly
affect the applicability of these approaches.

To overcome the aforementioned challenges, we propose a decentralized app-
roach based on online conflict resolution, wherein each agent autonomously plans
its path using A* while initially ignoring the other agents. Our approach does
thus not require the robots to have complete information about the state of the
environment. Instead, we consider that robots operate in a partially-observable

106 A. Maoudj and A. L. Christensen

Fig. 1. Example of a warehouse layout. (Color figure online)

world, where each robot can only communicate with neighbors within its vicin-
ity. Additionally, the proposed approach can be used in scenarios where agents
have a sequence of goals, which makes it promising for practical scenarios, where
agents are continually assigned new goal locations and are required to compute
paths online [2].

2 Environment Model and Assumptions

In many practical applications, the layout of a warehouse is fixed, and robots
can only move along a predefined roadmap [24]. Accordingly, in this study, we
consider automated warehouses with predefined roadmaps, in which a set of
m mobile robots {r1, ..., rm} perform their assigned transportation tasks. The
robots are assumed to know the roadmap and their own position and orientation
in the map. Figure 1 illustrates an example of a warehouse layout modelled as
a 36× 15 grid map: the red circles and yellow circles represent the robots and
their designated targets, respectively, the green squares represent obstacles, and
the black squares represent free space where the robot can move.

In real-world scenarios, wireless communication can be noisy and the robots
often have a limited field-of-view [2,19]. Therefore, to reduce the gap between
simulation and real-world scenarios, we assume that each robot can only access
the state of its neighbors within limited communication range (2 squares). At
each time step, if robot j is in communication range of robot i, we say that robot
j is in robot i’s neighborhood j ∈ N t

i .
A warehouse layout can be abstracted into an undirected graph G = (V,E),

where nodes V correspond to locations arranged in the grid and the edges E cor-
respond to straight lines between locations that can be traversed by the robots.
At every time step t, each robot i occupies one of the graph nodes nt

i, referred to
as the location of that robot at time t, and can choose to perform an action ai.
The action can be either move to an adjacent node or wait in its current node.
The multi-agent path finding problem consists of computing collision-free paths
for the team of agents from their current locations to their respective targets.
The objective is to minimize the sum-of-costs (or flow time), that is, the sum
over all agents of the time steps required to reach their target locations [22].

Decentralized Cooperative Multi-Agent Path Finding 107

3 Proposed Approach

In this section, we present our decentralized cooperative multi-agent path finding
approach (DCMAPF) enabling large-scale systems of autonomous mobile robots
to operate effectively in shared warehouse environments.

The proposed DCMAPF is presented in Algorithm 1. DCMAPF has two
phases: (i) Path planning and (ii) Execution and motion coordination. In the
first phase, the robots individually plan the shortest paths from their initial loca-
tion to their targets using A*. In the second phase, robots follow their planned
paths while detecting and resolving local conflicts at each time step. To reduce
the complexity of local coordination, we introduce a leader-follower concept for
adjacent robots moving in the same direction. At time step t, robot k is a fol-
lower of robot i if nt+1

k = nt
i. Since followers relay messages, a leader can have

an arbitrary number of followers, and the followers of robot i consist of robot
k and its followers. If a conflict occurs, the leader negotiates on behalf of itself
and its followers. Moreover, to achieve effective decentralized conflict resolution,
manually designed local rules are adopted that determine which robot should
be given priority. Giving priority to a robot means that it will move first, and a
robot occupying the next node in higher priority robot’s path must give way.

Hereinafter, the following concepts are used:

– remainingNodes: the local list of remaining nodes n0
i , ..., n

T
i in the planned

path for robot i. The list is updated at each time step (a node is removed)
and during conflict resolution (nodes are added if a robot needs to give way).

– giveWayNode: a free neighboring node that can be used by a robot to move
out of the way and allow another, higher priority robot to pass.

– numberRequestsMyNode: the number of robots having their nt+1
i or nt+2

i , ∀i ∈
{1, ...,m}, equal to the robot’s nt

id.
– numberFollowers: the number of followers of the robot.

Upon starting the execution, all the robots are located in their initial nodes.
In every time step, each robot i identifies all neighbors within communication
range and sends them its local data, such as its next node nt+1

i , remainingNodes,
and numberFollowers. After receiving data from its neighbors, the robot checks
for potential conflicts with its neighbors. Since conflict detection and handling
is done online, only the robot’s next node nt+1

i is used for conflict detection. If
a conflict is detected, the robots coordinate to solve the conflict as described in
Algorithms 2 and 3 (details can be found in Sect. 3.1), then each robot calcu-
lates its action ai and updates its remainingNodes accordingly. If no conflict is
detected and if a robot has any followers, it checks if its immediate follower’s
path is longer than its own. If so, the robot gives way to its follower if it has a
free neighboring node. This step is essential to avoid deadlocks in certain regions,
such as narrow corridors.

In the subsequent step, the robot’s action ai and its updated remainingNodes
list will be used in a post coordination process, see Algorithm 4. This process
is executed by the robots involved in resolving conflicts in the previous steps to
check for further potential conflicts resulting from their previous decisions. In

108 A. Maoudj and A. L. Christensen

Algorithm 1: Proposed DCMAPF approach
input: map, n0

myID, Targets[]

phase 1: Path planning
remainingNodes ← A∗(map, n0

myID, Targets[])
phase 2: Execution and motion coordination
while remainingNodes �= φ or neighbors.remainingNodes �= φ do

nt
myID ← remainingNodes[0]

pathLength ← Length(remainingNodes)
N t

myID ← GetNeighbors()
send(nt+1

myID,pathLength,numberFollowers,numberRequestsMyNode)
for i in N t

myID do
if (nt+1

myID = nt
i) and (nt+1

i = nt
myID) then

criticalNode ← {nt+1
myID, nt

i}
amyID ← Algorithm3(criticalNode, N t

myID)

else if (nt+1
myID = nt+1

i) then
criticalNode ← nt+1

myID

amyID ← Algorithm2(criticalNode, N t
myID)

else
//no conflict detected
nextAction ← move
follower← GetMyFollower()
if (follower.pathLength > pathLength) then

giveWayNode ←GetFreeNeighboringNode()
if (giveWayNode is not None) then

Insert the giveWayNode into remainingNodes

nt+1
myID ← remainingNodes[0]

send(nt+1
myID, plannedAction)

amyID ← PostCoordination(nt+1
myID,amyID)

if (amyID = move) then
move to nt+1

myID

Remove nt+1
myID from remainingNodes

this process, detected conflicts are resolved using the same steps and algorithms
as described above. Afterward, the robots involved in the negotiation process
send their calculated action ai and next node nt+1

i (∀i ∈ N t
i) to their neighbors.

Accordingly, leaders ensure that their followers adapt their actions to the out-
come of the negotiation process. Once a robot i has calculated its ai and updated
its remainingNodes, the robot moves to nt+1

i if ai = move, or remains stationary
in its current node nt

i if ai = wait. The steps presented in Algorithm 1 are
reiterated until all robots have reached their target.

Decentralized Cooperative Multi-Agent Path Finding 109

Fig. 2. Conflict illustrations and critical nodes. (a) Intersection conflicts, and (b) Oppo-
site conflict.

3.1 Cooperative Conflict Resolution Strategy

In this work, we divide potential conflicts into the two types illustrated in Fig. 2:
(i) intersection conflict and (ii) opposite conflict (swapping conflict). The inter-
section conflict occurs when two or more robots have planned to pass through
the same node in the same time step. In this type of conflict, there is only one
critical node, which is the shared next node in the robots’ paths. On the other
hand, an opposite conflict occurs when two robots are located on two adjacent
nodes and need to move in opposite directions. In this type of conflict, the robots’
current nodes are the critical nodes.

The conflict resolution strategy has two steps. First, the robots negotiate to
determine the highest priority robot (see below). In the second step, the robots
calculate their actions to give way to the highest priority robot and to then pass
through the critical node one by one.

Priorities: The procedure for defining the highest priority robot is based on six
rules that prevent congestion and reduce the number of additional giveWayNodes
necessary for the robots to pass through the critical node without collision. The
following rules are applied in order and determine priority:

– rule1: a robot occupying a critical node is given priority.
– rule2: a robot moving out of another robot’s way is given priority.
– rule3: the robot with the largest numberFollowers is given priority.
– rule4: a robot having a free neighboring node is given priority.
– rule5: the robot having the largest numberRequestsMyNode is given priority.
– rule6: the robot with the longest remaining path is given priority.

While the first three rules prevent deadlocks, the last three rules reduce the
number of additional giveWayNodes introduced in the robots’ path and thus
enable the robots to avoid one another in fewer time steps.

110 A. Maoudj and A. L. Christensen

Conflict-Dependent Action Selection:

Intersection conflict: Algorithm 2 details the action selection process. Once
the highest priority robot (PriorityAgent) has been determined, the node
nt+2
PriorityAgent is either free or occupied by another robot. In the first case,

the robot with higher priority passes through the critical node first and the
other robots have to wait in their current nodes for one time step. However,
in the second case, the robot occupying the node nt+2

PriorityAgent must give
way to the robot with higher priority to pass and the other robots wait for
one time step. The robot requested to move out of the way chooses a free
neighboring node. If no free neighboring node is found, the robot chooses the
node of another robot from its neighbors and informs the concerned neighbor
to move out of the way, and so on.

Opposite conflict: The approach to solve an opposite conflict is shown in
Algorithm 3. The robot with priority passes (i.e. its action ← move) and
the other robot moves out of the way to a free neighboring node. If no free
neighboring node is found, the robot with lower priority chooses the node of
its follower robot (move backward) and informs the follower to move out of
the way.

Note that any neighboring node calculated during the conflict resolution
process will be inserted as the first elements in the remainingNodes list of the
robot. Accordingly, if the robot’s action is move, then the robot selects the first
node in its remainingNodes.

4 Experimental Results and Performances Analysis

In this section, we present the results of an extensive set of experiments con-
ducted to assess the performance of DCMAPF. These tests were performed using
benchmark maps with varying sizes, obstacles densities, and number of robots.
We implemented DCMAPF in Python and the experiments were conducted on
a workstation equipped with an AMD Ryzen 9 5950X 16-core CPU @3.40GHz
and 32 GB RAM.

4.1 Benchmarks and Setup

For our experiments, we chose three types of maps, empty, random and ware-
house from the MAPF benchmark maps [20]. Specifically, we used the following
maps: empty-48-48, random-32-32-20, random-64-64-20, and warehouse-20-40-
10-2-2. For each combination of map and number of agents, we selected 25
scenarios from the MAPF benchmark.

We compared our DCMAPF approach to four state-of-the-art planners,
namely: CBS with its improvement technique [8] as an optimal planner,
EECBS [9] as a state-of-the-art bounded sub-optimal search-based planner, and
PIBT and PIBT+ [13] as prioritized planners. Note that, for all planners, the
implementations coded by their respective authors were used with default param-
eter settings [13]. The source code for these planners is available in [6].

Decentralized Cooperative Multi-Agent Path Finding 111

Algorithm 2: Solve intersection conflict
input : criticalNode, N t

i

output: amyID

step 1: Determine the highest priority agent
PriorityAgent←CheckPriorityRules()
Action ← Empty list
step 2: Calculate the action
Action[PriorityAgent] ←move
if (nt+2

PriorityAgent is Free) then
for i in N t

i and i �= PriorityAgent) do
Action[i]←wait

if criticalNode is not Free then
giveWayNode← GetFreeNeighboringNode()
Action[Agent occupying the criticalNode] ← move
Insert the giveWayNode into the remainingNodes of the agent

else
for i in N t

i do
if (nt

i = nt+2
PriorityAgent) then

Action[i]←move
giveWayNode← GetFreeNeighboringNode()
Insert the criticalNode into the remainingNodes set of the agent

else
Action[i]←wait

Return(Actions[myID])

Algorithm 3: Solve opposite conflict
input : criticalNode, N t

i

output: amyID

step 1: Determine the highest priority agent
PriorityAgent←CheckPriorityRules()
Action ← Empty list
step 2: Calculate the action
Action[PriorityAgent] ←move
for i in N t

i do
if (i �= PriorityAgent) then

Action[i]←move
giveWayNode← GetFreeNeighboringNode()
Insert the giveWayNode into the remainingNodes of the agent

Return(Actions[myID])

Our comparison metrics are sum-of-costs and success rate, which is the per-
centage of the MAPF instances solved within a runtime limit. It is important to
note that CBS, EECBS, PIBT and PIBT+ are centralized planners and have

112 A. Maoudj and A. L. Christensen

Algorithm 4: Post coordination
input : nt+1

myID,amyID

output: amyID

plannedAction ← amyID

step 1: Check for further potential conflicts
N ← GetNeighbors()
for i in N do

if (nt+1
myID = nt+1

i) and (the action of robot i is move) then
criticalNode← nt+1

myID

amyID ←Algorithm2(criticalNode, N t
myID)

step 2: Followers adapt their actions to those of their leader
Leader=GetAgentOccupyingNextNode(N t

myID)
if (aleader = wait) then

amyID ←wait

else if (aleader = move) and (nt+1
leader = nt

myID) then
amyID ←move
giveWayNode← GetFreeNeighboringNode()
Insert the giveWayNode into the remainingNodes of the agent

else
amyID ← plannedAction

Return(amyID)

access to the whole state of the system, whereas DCMAPF is a decentralized
approach where the robots’ decisions are based only on their local observation
and messages shared between robots within a limited communication range.
Since DCMAPF resolves conflicts online, we allowed a maximum of 300 time
steps for 32 and 48-sized maps, and 600 time steps for the other maps. The
other offline planners were given a time limit of 30 s to plan the paths for all
robots as is commonly used [13,20]. An execution was considered unsuccessful
if the robots failed to resolve a conflict or a planner failed to provide a solution
within the time limit.

4.2 Results

The obtained results are presented in Fig. 3. The first clear trend is that
the DCMAPF performs well in all maps no matter the map size or the number
of robots. Secondly, a prominent trend observed in all plots of the metric sum-of-
costs is that DCMAPF outperforms the prioritized planners PIBT and PIBT+.

In maps with low obstacle densities, such as empty-48-48, all planners have
very high success rates, except CBS that has lower success rate in most exper-
iments involving more than 100 robots. In terms of solution cost, DCMAPF
outperforms PIBT and PIBT+, and the results of DCMAPF are very close to
the sub-optimal planner EECBS since, in conflict resolution, robots with low
priority have enough space to give way to higher priority robots in fewer time
steps.

Decentralized Cooperative Multi-Agent Path Finding 113

Fig. 3. Comparative results in terms of success rate and sum-of-costs on four bench-
mark maps.

114 A. Maoudj and A. L. Christensen

In maps random-32-32-20 and random-64-64-20, the success rate of
the DCMAPF tends to decrease slightly as the maps become more challeng-
ing with higher obstacle densities and for higher numbers of robots. This is
mostly due to the decentralized nature of DCMAPF and each robot relies only
on a partial observation of the environment, which can result in robots getting
stuck in undesirable looping behavior in highly constrained maps. This could
be corrected by introducing a mechanism to detect and avoid this undesirable
behavior. However, in terms of solution quality, DCMAPF performs significantly
better than PIBT+.

Interesting results can be observed for the warehouse map, where DCMAPF
shows high performance and outperforms PIBT and PIBT+, and yields similar
results to those of the sub-optimal planner EECBS and the optimal planner CBS.

In summary, the performance of DCMAPF compares well with the central-
ized planners; the solution quality is significantly better than that of the pri-
oritized planners PIBT and PIBT+ with a high success rate in most cases,
except the highly constrained small map random-32-32-20 where the success
rate decreases slightly in experiments involving 200 robots. Moreover, despite
its decentralized nature and reliance on partial observation of the environ-
ment, DCMAPF yields good results compared to optimal and bounded sub-
optimal search-based planners in terms of solution quality. In a nutshell, the
obtained results highlight the effectiveness of DCMAPF and that decentralized
coordination is a promising approach to solve MAPF problems. Example runs
can be found in the supplementary video: https://youtu.be/5_5TdVuM8kI.

5 Conclusions

In this work, we presented a decentralized multi-agent path finding approach for
mobile robots with a limited communication range. In the proposed approach,
each robot plans its shortest path offline and then autonomously coordinates
with its neighbors to solve potential conflicts as they occur during task execu-
tion. Through an extensive set of experiments, we showed that the DCMAPF
produces competitive results compared to state-of-the-art centralized planners,
and therefore can be considered a promising decentralized approach to solve
MAPF problems. Future work will focus on implementing a strategy to avoid
robots getting stuck in undesirable looping behavior in highly constrained maps.

Acknowledgements. This work was supported by the Independent Research Fund
Denmark under grant 0136-00251B.

References

1. Bobanac, V., Bogdan, S.: Routing and scheduling in multi-AGV systems based on
dynamic banker algorithm. In: Proceedings of the 16th Mediterranean Conference
on Control and Automation, pp. 1168–1173. IEEE (2008)

https://youtu.be/5_5TdVuM8kI

Decentralized Cooperative Multi-Agent Path Finding 115

2. Damani, M., Luo, Z., Wenzel, E., Sartoretti, G.: PRIMAL_2: pathfinding via rein-
forcement and imitation multi-agent learning-lifelong. IEEE Robot. Autom. Lett.
6(2), 2666–2673 (2021)

3. Dresner, K., Stone, P.: A multiagent approach to autonomous intersection man-
agement. J. Artif. Intell. Res. 31, 591–656 (2008)

4. Hönig, W., et al.: Multi-agent path finding with kinematic constraints. In: Pro-
ceedings of the Twenty-Sixth International Conference on Automated Planning
and Scheduling (ICAPS), pp. 477–485. AAAI Press (2016)

5. Lam, E., Le Bodic, P.: New valid inequalities in branch-and-cut-and-price for multi-
agent path finding. In: Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), pp. 184–192. AAAI Press (2020)

6. Li, J.: Source code for CBS, EECBS and PIBT. https://github.com/Jiaoyang-Li/
CBSH2-RTC. https://github.com/Jiaoyang-Li/EECBS and https://github.com/
Kei18/pibt2

7. Li, J., Chen, Z., Harabor, D., Stuckey, P., Koenig, S.: Anytime multi-agent path
finding via large neighborhood search. In: International Joint Conference on Arti-
ficial Intelligence, pp. 4127–4135. IJCAI (2021)

8. Li, J., Harabor, D., Stuckey, P.J., Ma, H., Gange, G., Koenig, S.: Pairwise symme-
try reasoning for multi-agent path finding search. Artif. Intell. 301, 103574 (2021)

9. Li, J., Ruml, W., Koenig, S.: EECBS: a bounded-suboptimal search for multi-agent
path finding. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp.
12353–12362. AAAI Press (2021)

10. Ma, H., Harabor, D., Stuckey, P.J., Li, J., Koenig, S.: Searching with consistent
prioritization for multi-agent path finding. In: Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 7643–7650. AAAI Press (2019)

11. Ma, H., Li, J., Kumar, T., Koenig, S.: Lifelong multi-agent path finding for online
pickup and delivery tasks. In: Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 837–845. IFAAMAS
(2017)

12. Okoso, A., Otaki, K., Nishi, T.: Multi-agent path finding with priority for cooper-
ative automated valet parking. In: 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), pp. 2135–2140. IEEE (2019)

13. Okumura, K., Machida, M., Défago, X., Tamura, Y.: Priority inheritance with
backtracking for iterative multi-agent path finding. In: Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence (IJCAI-2019), pp.
535–542. IJCAI Organization (2019)

14. Rathi, A., Vadali, M., et al.: Dynamic prioritization for conflict-free path planning
of multi-robot systems. arXiv preprint arXiv:2101.01978 (2021)

15. Reijnen, R., Zhang, Y., Nuijten, W., Senaras, C., Goldak-Altgassen, M.: Combin-
ing deep reinforcement learning with search heuristics for solving multi-agent path
finding in segment-based layouts. In: 2020 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pp. 2647–2654. IEEE (2020)

16. Ryan, M.R.K.: Exploiting subgraph structure in multi-robot path planning. J.
Artif. Intell. Res. 31, 497–542 (2008)

17. Sajid, Q., Luna, R., Bekris, K.: Multi-agent pathfinding with simultaneous exe-
cution of single-agent primitives. In: International Symposium on Combinatorial
Search, vol. 3, no. 1, pp. 88–96. AAAI Press (2012)

18. Sartoretti, G., et al.: Primal: pathfinding via reinforcement and imitation multi-
agent learning. IEEE Robot. Autom. Lett. 4(3), 2378–2385 (2019)

19. Stephan, J., Fink, J., Kumar, V., Ribeiro, A.: Concurrent control of mobility and
communication in multirobot systems. IEEE Trans. Rob. 33(5), 1248–1254 (2017)

https://github.com/Jiaoyang-Li/CBSH2-RTC
https://github.com/Jiaoyang-Li/CBSH2-RTC
https://github.com/Jiaoyang-Li/EECBS
https://github.com/Kei18/pibt2
https://github.com/Kei18/pibt2
http://arxiv.org/abs/2101.01978

116 A. Maoudj and A. L. Christensen

20. Stern, R., et al.: Multi-agent pathfinding: definitions, variants, and benchmarks.
In: Symposium on Combinatorial Search (SoCS), pp. 151–158. AAAI Press (2019)

21. Surynek, P.: A novel approach to path planning for multiple robots in bi-connected
graphs. In: 2009 IEEE International Conference on Robotics and Automation, pp.
3613–3619. IEEE (2009)

22. Surynek, P., Felner, A., Stern, R., Boyarski, E.: Efficient SAT approach to multi-
agent path finding under the sum of costs objective. In: Proceedings of the Twenty-
second European Conference on Artificial Intelligence, ECAI, pp. 810–818. IOS
Press (2016)

23. Van Den Berg, J.P., Overmars, M.H.: Prioritized motion planning for multiple
robots. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 430–435. IEEE (2005)

24. Yu, D., Hu, X., Liang, K., Ying, J.: A parallel algorithm for multi-AGV systems.
J. Ambient. Intell. Humaniz. Comput. 13(4), 2309–2323 (2022)

25. Yu, J., LaValle, S.M.: Structure and intractability of optimal multi-robot path
planning on graphs. In: Proceedings of the Twenty-Seventh AAAI Conference on
Artificial Intelligence, pp. 1443–1449. AAAI Press (2013)

26. Zhang, Z., Guo, Q., Yuan, P.: Conflict-free route planning of automated guided
vehicles based on conflict classification. In: 2017 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 1459–1464. IEEE (2017)

27. Zhao, Y., Liu, X., Wang, G., Wu, S., Han, S.: Dynamic resource reservation based
collision and deadlock prevention for multi-AGV. IEEE Access 8, 82120–82130
(2020)

Decomposition and Merging Co-operative
Particle Swarm Optimization

with Random Grouping

Alanna McNulty1, Beatrice Ombuki-Berman1, and Andries Engelbrecht2(B)

1 Department of Computer Science, Brock University, St. Catharines, Canada
{am17xy,bombuki}@brocku.ca

2 Department of Industrial Engineering and Computer Science Division,
Stellenbosch University, Stellenbosch, South Africa

engel@sun.ac.za

Abstract. Particle swarm optimization (PSO) does not scale well to
large-scale optimization problems (LSOPs). A divide-and-conquer app-
roach towards solving LSOPs has been shown to be very effective in
scaling PSO, resulting in a family of co-operative PSO (CPSO) algo-
rithms. Recently, two adaptive co-operative PSO approaches have been
developed to improve performance on non-separable problems, namely
decomposition CPSO (DCPSO) and merging CPSO (MCPSO). Though
DCPSO and MCPSO were shown to perform competitively, they are
limited in their ability to explore variable groupings. This paper pro-
poses incorporating random grouping of decision variables into DCPSO
(RG-DCPSO) and MCPSO (RG-MCPSO) to better cope with complex
variable dependencies. These algorithms were compared to results from
five other decomposition-based approaches in order to determine if apply-
ing random grouping to DCPSO and MCPSO leads to an improvement
in performance. The empirical results show that when applied to func-
tion optimization problems, RG-DCPSO was able to achieve the best
overall final objective function values in environments with up to 1000
dimensions. The results also show that RG-MCPSO performs well for
non-separable objective functions in large-dimensional spaces with 500
and 1000 dimensions.

1 Introduction

Large scale optimization problems (LSOPs) are optimization problems contain-
ing many decision variables. Many real-world LSOPs exist in the fields of manu-
facturing, engineering, data mining, and vehicle routing. Generally, optimization
algorithms do not scale well to LSOPs. As a result, there have been many pro-
posed modifications to optimization algorithms to allow for better performance
for LSOPs. The main issue faced by optimization algorithms in LSOPs is referred
to as the “curse of dimensionality”: With a linear increase in the number of deci-
sion variables, the volume of the search space increases exponentially. In the case
of particle swarm optimization (PSO), the size of the search space makes it diffi-
cult for PSO to effectively search for the global optimum. As the number of deci-
sion variables increases, the particles become more likely to leave the search space
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 117–129, 2022.
https://doi.org/10.1007/978-3-031-20176-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_10&domain=pdf
http://orcid.org/0000-0002-0242-3539
https://doi.org/10.1007/978-3-031-20176-9_10

118 A. McNulty et al.

completely, requiring the use of methods such as boundary constraint handling
techniques to prevent swarm divergence [16]. A divide-and-conquer approach has
previously been used to scale PSO to LSOPs. Co-operative PSO (CPSO) is one
such approach, where the decision variables are divided into sub-swarms which
are optimized independently [23]. Decomposition CPSO (DCPSO) is done by
initializing an nx-dimensional1 swarm and decomposing it until each sub-swarm
optimizes a single decision variable. Merging CPSO (MCPSO) initializes a CPSO
and merges sub-swarms together at a fixed rate until all sub-swarms have been
merged into one swarm. DCPSO and MCPSO have been shown to improve the
scalability of PSO for LSOPs [4].

DCPSO and MCPSO are limited in their ability to consider variable depen-
dencies. The variable groupings are deterministic and rigid, and can result in
some inter-relations among dependent decision variables being missed. This
paper proposes incorporating random grouping [11] of decision variables into
DCPSO and MCPSO. Random grouping allows for a more dynamic and stochas-
tic approach towards finding variable dependencies, while adding little compu-
tational overhead to the established algorithms.

The rest of the paper is outlined as follows: Sect. 2 gives the necessary back-
ground information, Sect. 3 discusses the proposed variants of PSO for LSOPs,
Sect. 4 describes the experimental setup, Sect. 5 discusses the additional decom-
position approaches used for comparison, Sect. 6 gives the experimental results,
and Sect. 7 provides the final conclusion.

2 Background

The necessary background information on PSO and random grouping is provided
in this section.

2.1 Particle Swarm Optimization

PSO is based on the flocking behaviour of birds, originally developed as a way
to solve nx-dimensional continuous-valued, boundary constrained optimization
problems [8]. PSO has since been used in many applications, including neural
network training [8], generating aesthetically pleasing images [1], swarm robotics
[7], portfolio optimization [5], data clustering [24], RNA structure prediction [13],
among many others [6,9,18].

A PSO swarm is made up of particles, which move through the nx-
dimensional search space until a stopping criterion is met. Each particle’s posi-
tion within the search space is a possible solution. Each particle also maintains
its own velocity and personal best position. The velocity update function is as
follows:

vi(t + 1) = wvi(t) + c1r1i(t)(yi(t) − xi(t)) + c2r2i(ŷi(t) − xi(t)) (1)

1 nx is the number of decision variables.

DCPSO and MCPSO with Random Grouping 119

where vi(t) is the velocity of particle i at time t, xi is the particle’s current posi-
tion, yi is its personal best position, and ŷi is the neighbourhood best position.
Shi and Eberhart introduced w as the inertia weight in [19]. c1 is the cognitive
coefficient, and determines the influence of the particle’s current best position.
Similarly, c2 is the social coefficient, and determines the influence of the neigh-
bourhood best. Both r1 and r2 are random vectors with components sampled
uniformly over [0, 1]. The position update function is as follows:

xi(t + 1) = xi(t) + vi(t + 1) (2)

After each particle’s current position has been updated, the new position is
evaluated using the objective function. If the new position is better than the
old one, then the new position is taken to be that particle’s new personal best
position. Additionally, if a particle has a better position than the neighbourhood
best, the neighbourhood best is replaced with this particle.

The PSO algorithm as it was originally introduced by Kennedy and Eberhart
[8] runs into a problem referred to as the “curse of dimensionality” [23]. As the
number of decision variables increases, the performance deteriorates, because
with a linear increase in the number of decision variables, the size of search
space increases exponentially. In LSOPs, particles may also start leaving the
search space entirely, resulting in the swarm diverging [16].

Another problem experienced by PSO is referred to as “two steps forward
and one step back” [23]. If the search space has many decision variables, a par-
ticle moving closer to the minimum in one dimension can decrease the objective
function value of that particle even if the other dimensions worsen slightly. The
personal best position of that particle is still completely overwritten, resulting
in losing valuable information about the search space.

Oldewage et al. showed that stronger focus should be given on exploitation
rather than exploration when applying PSO to solve LSOPs [14]. Previously
introduced methods include applying velocity clamping to each particle [15],
and adjusting the values of control parameters to better fit large-dimensional
problems [17].

2.2 Co-operative Particle Swarm Optimization

The CPSO-S algorithm is a divide-and-conquer variation of PSO which splits
an n-dimensional swarm into n one-dimensional sub-swarms [23]. Each of the
resulting sub-swarms is optimized independently, using its own PSO. CPSO-S
was designed to minimize the effects of the “curse of dimensionality”.

CPSO is able to achieve stronger exploitation with respect to smaller sub-
spaces of the search space. The pseudocode for CPSO is given in Algorithm 1.
In this algorithm, nx is the number of decision variables, K is the number of
sub-swarms, Sk.ŷi is the neighbourhood best of the kth sub-swarm, Sk.xi is the
position of the ith particle in the current sub-swarm, Sk.yi is the current best
position of the ith particle in the current sub-swarm, Sk.ns is the number of
particles in the kth sub-swarm, f is the objective function, and b is the context
vector.

120 A. McNulty et al.

Algorithm 1. CPSO
K1 = nx modK and K2 = K − (nx modK);
Initialize K1�nx/K�-dimensional and K2�nx/K�-dimensional swarms;
while stopping criterion is not met do

for each sub-swarm Sk, k = 1, ...,K do
for each particle i = 1, ..., Sk.ns do

if f(b(k, Sk.xi)) < f(b(k, Sk.yi)) then
Sk.yi = Sk.xi;

end
if f(b(k, Sk.yi)) < f(b(k, Sk.ŷi)) then

Sk.ŷi = Sk.yi;
end

end
for each particle i = 1, ..., Sk.ns do

Update the velocity using Equation (1);
Update the position using Equation (2);

end
end

end

CPSO-SK allows the nx-dimensional problem to be sub-divided into K sub-
problems. The CPSO-S algorithm is a special case of CPSO-SK where K = nx.
The CPSO-S and CPSO-SK algorithms were introduced in [23].

The “context vector” is an important part of CPSO. Since the CPSO algo-
rithm requires that the swarm is subdivided into sub-swarms and the objective
function is only defined for an nx-dimensional problem, there is no objective func-
tion defined for the lower-dimensional sub-swarms. The current best positions of
each sub-swarm are stored in their corresponding indices of the context vector.
The objective function value of the context vector is then used to determine
the fitness of particles in sub-swarms. Once the CPSO-S is finished optimizing
the swarm, the context vector represents the global best position. The context
vector is illustrated in Fig. 1. One problem with the original CPSO approach
is stagnation [23]. Stagnation occurs when every sub-swarm becomes stuck in a
sub-optimal position. Since only one sub-swarm is being updated at a time, there
is no way for the particles in the other sub-swarms to recognize when the other
sub-swarms are stuck in a sub-optimal position. This problem does not occur
with PSO [23], since PSO updates all dimensions at the same time. Another
issue is variable dependencies, which are not properly addressed by CPSO since
sub-swarms are optimized independently of each other.

2.3 Random Grouping

Random grouping randomly groups decision variables into sub-groups. The main
benefit is that groupings of variables can be changed as the algorithm converges,
allowing for more variable groupings to be explored. Random grouping has pre-

DCPSO and MCPSO with Random Grouping 121

Fig. 1. An illustration of a context vector.

viously been incorporated into other biologically-inspired algorithms such as the
artificial bee colony (ABC) algorithm [26], cooperative coevolving particle swarm
optimization (CCPSO) [11], and has been shown to improve the performance of
evolutionary algorithms for non-separable problems [25].

2.4 Decomposition and Merging Co-operative Particle Swarm
Optimization

Decomposition CPSO (DCPSO) and merging CPSO (MCPSO) [4] were designed
to avoid the problems experienced by CPSO as discussed in Sect. 2.2. The goal
of these algorithms is to implement a balance between the exploration benefits
gained from PSO and the exploitation benefits gained from a CPSO by having
the decision variables grouped into different sub-swarms as the swarm converges.

DCPSO starts off with one nx-dimensional swarm, and decomposes the
swarm at regular intervals until there are nx one-dimensional swarms. The
decomposition approach leads to the exploitation benefits of using smaller sub-
spaces of the entire search space by systematically neglecting variable dependen-
cies. The fixed rate of decomposition is given by:

nf =
nT

1 + (log(n)
log(nk(t))

)
(3)

where nT is the maximum number of objective function evaluations which will
be done during the search process, nf is the number of fitness evaluations which
should be done between each decomposition step, n is the total number of dimen-
sions, and nk(t) is the number of sub-swarms from each decomposition step,
which is kept at a constant value of 2.

If a sub-swarm has an even number of dimensions, decomposing the swarm
is easy. If the sub-swarm has an odd number of dimensions, then decomposition
is done such that one sub-swarm contains �n

2 � decision variables and the second
sub-swarm contains the rest [4].

MCPSO is essentially the opposite of DCPSO. MCPSO starts off optimizing
the swarm as nx one-dimensional sub-swarms using a CPSO-S. The sub-swarms

122 A. McNulty et al.

are then merged at a fixed rate, given in Eq. (3). In the case of MCPSO, nf

is the number of fitness evaluations done between each merging step. MCPSO
continues to merge sub-swarms together until there is one nx-dimensional swarm.

The decomposition and merging approaches are illustrated in Fig. 2. Algo-
rithm 2 describes DCPSO and MCPSO. The decomposition and merging con-
dition is that a certain number of fitness evaluations has occurred since the
previous decomposition or merging, determined using Eq. (3).

Fig. 2. Illustration of DCPSO and MCPSO.

3 Proposed Variants

This section introduces the proposed variants of DCPSO and MCPSO. The
purpose of these two variants is to improve the performance of DCPSO and
MCPSO by minimizing the effect of sub-optimal decompositions or merges that
are done on the swarm. DCPSO and MCPSO are limited in their ability to
explore variable dependencies. Once new sub-swarms have been created, the
decision variables which are assigned to each sub-swarm remain fixed, thereby
imposing different degrees of independence assumptions on decision variables.
This can lead to DCPSO and MCPSO optimizing a sub-optimal swarm until
the next decomposition or merging step takes place.

To address this problem, it is proposed that random grouping be applied at a
fixed rate throughout the execution of DCPSO and MCPSO. Additional benefits
of using random grouping are that it adds little computational overhead because
all that is being changed is the groupings of decision variables, and no additional
information about the current behaviour of the swarm is required.

Algorithm 3 represents the changes made to DCPSO and MCPSO to incorpo-
rate random grouping. A random grouping condition determines when decision
variables are randomized over the sub-swarms. The random grouping condition
used is that a certain number of fitness evaluations have been used up since the

DCPSO and MCPSO with Random Grouping 123

Algorithm 2. DCPSO and MCPSO
while stopping criterion is not met do

if decomposition or merging condition is true then
randomly decompose or merge the sub-swarms;

end
for each sub-swarm Sk, k = 1, ...,K do

for each particle i = 1, ..., Sk.ns do
if f(b(k, Sk.xi)) < f(b(k, Sk.yi)) then

Sk.yi = Sk.xi;
end
if f(b(k, Sk.yi)) < f(b(k, Sk.ŷi)) then

Sk.ŷi = Sk.yi;
end

end
for each particle i = 1, ..., Sk.ns do

Update the velocity using Equation (1);
Update the position using Equation (2);

end
end

end

last grouping. When random grouping is incorporated into DCPSO it is referred
to as RG-DCPSO, and when random grouping is incorporated into MCPSO it
is referred to as RG-MCPSO.

4 Experimental Setup

This section gives all of the information regarding the experimental setup, includ-
ing parameters, benchmark functions, and statistical methods used.

4.1 Control Parameters

Values of w = 0.729 and c1 = c2 = 1.494 were used for each PSO algorithm.
These values have been shown to perform well in [27], and satisfy stability condi-
tions which guarantee that the swarm will reach an equilibrium state [3]. Every
individual PSO sub-swarm which was created (at initialization as well as at
every decomposition or merging step) contained 20 particles. The total number
of objective function evaluations used for each run was taken from [2], and is
3000×nx. Additionally, nk(t) was kept as a constant of two for both DCPSO and
MCPSO. Each algorithm was run 30 times on each function, and the average
final global objective function value was taken for comparison.

4.2 Statistical Methods

The Kruskal-Wallis test [10] was used in order to check if there is at least one pair
of algorithms on at least one problem whose performance differs with statistical

124 A. McNulty et al.

Algorithm 3. RG-DCPSO and RG-MCPSO
while stopping criteria is not met do

if random grouping condition is met then
randomize the dimensions across all sub-swarms;

end
if decomposition or merging condition is true then

decompose or merge each Sk into nk(t) sub-swarms;
end
for each sub-swarm Sk, k = 1, ...,K do

for each particle i = 1, ..., Sk.ns do
if f(b(k, Sk.xi)) < f(b(k, Sk.yi)) then

Sk.yi = Sk.xi;
end
if f(b(k, Sk.yi)) < f(b(k, Sk.ŷi)) then

Sk.ŷi = Sk.yi;
end

end
for each particle i = 1, ..., Sk.ns do

Update the velocity using Equation (1);
Update the position using Equation (2);

end
end

end

significance. If it was determined that there is a significant difference between
the results, the Mann-Whitney-Wilcoxon rank sum test [12] was used to compare
each of them pairwise in order to determine which algorithm performed best.
All statistical tests were run with a significance level of α = 0.05.

If an algorithm performed better than another using the pairwise Mann-
Whitney-Wilcoxon rank sum, then it “won”, and was given a point, likewise the
“losing” algorithm lost a point. If there was no statistically significant difference
in performance, then the algorithms “tied” and neither algorithm gained or lost
a point. The algorithms were then ranked according to the points each earned,
starting with number of wins, followed by the number of losses, and then the
number of ties. The ranking of algorithms was done separately for each bench-
mark problem type to demonstrate which algorithm performed best.

4.3 Benchmark Functions

All 20 benchmark functions from the CEC’2010 special session and competition
on large-scale global optimization were used [22]. This benchmark set contains a
variety of separable, partially-separable, and non-separable functions, and each
function can be extended to use any number of dimensions.

DCPSO and MCPSO with Random Grouping 125

4.4 The Random Grouping Condition of DCPSO and MCPSO

The random grouping condition, as mentioned in Sect. 3, is that a certain number
of fitness evaluations has passed since the previous random grouping. Therefore,
it was first necessary to find an appropriate number of fitness evaluations to
use up in between the random groupings before comparing RG-DCPSO and
RG-MCPSO to other algorithms. The performance measure used is the final
average objective function value of the algorithm after 30 independent runs.
The benchmark functions used were the functions from [22]. A brief comparison
study was carried out which compared performance using 10, 30, 100, 200, 250,
300, 350, 400, 500, and 3000 objective function evaluations between random
groupings. The asterisks in Table 1 indicate which value was found to have the
best performance among those tested for each problem size, and were used for
both RG-DCPSO and RG-MCPSO.

Table 1. Values used for random grouping condition

of dimensions 30 FE 250 FE 350 FE 3000 FE

30 *
100 * *
500 *
1000 *

5 Compared Decomposition-Based Approaches

This section lists each of the additional decomposition-based approaches
to CPSO which were compared to RG-DCPSO and RG-MCPSO: CPSO-S,
MCPSO, DCPSO, recursive differential grouping (RDG) [21], and random adap-
tive grouping (RAG) [20]. These algorithms were selected because they are also
decomposition-based, and have been used to compare to DCPSO and MCPSO
in previous studies [2]. Values of α = 10−12 and k = 10 were used for RDG,
because they were demonstrated to perform well in [21]. For RAG, a value of
T = 0.1 × nT , and a sub-swarm size of 10 were used because Sopov et al. have
demonstrated that these values lead to optimal results [20].

6 Experimental Results

This section summarizes the experimental results. Table 2 lists the points earned
by each algorithm. “Sep.” refers to the separable functions, “Single-Group” refers
to single-group partially separable functions, nx/2m refers to nx/2m-separable
functions, nx/m refers to nx/m-separable functions, and “Non-Sep.” refers to

126 A. McNulty et al.

non-separable functions. “Total” sums up the points earned by each algorithm
across all functions tested.

The points earned by each algorithm are listed in the order “W/L/T| Rank”,
where “W” indicates the number of wins, “L” indicates the number of losses, and
“T” indicates the number of ties. “Rank” refers to the final ranking of each algo-
rithm. The ranks should then be looked at column-wise to see which algorithm
performed best for each benchmark type. The top-ranked algorithm has its rank
indicated with a bold 1 for easier identification.

Table 2. Algorithm ranks (entries are given in the format W/L/T| Rank)

Algorithm name Sep. Single-Group nx/2m nx/m Non-Sep. Total

30 dimensions

CPSO-S 6/5/6| 5 3/16/11| 7 8/11/10| 5 3/15/6| 6 10/0/8| 2 30/47/41| 4

DCPSO 11/4/3| 2 21/2/7| 1 21/3/6| 2 18/1/5| 1 5/5/8| 4 76/15/29| 2

RG-DCPSO 13/3/3| 1 20/2/9| 2 22/3/6| 1 18/1/5| 1 10/0/10| 1 83/9/33| 1
MCPSO 7/5/6| 3 4/15/11| 6 9/11/10| 4 4/15/5| 5 3/6/9| 5 27/52/41| 6

RG-MCPSO 7/5/6| 3 5/14/10| 5 9/11/10| 4 2/15/7| 7 5/3/8| 3 28/48/41| 5

RDG 5/11/2| 6 14/16/0| 3 13/15/2| 3 14/10/0| 3 4/14/0| 7 50/66/4| 3

RAG 1/17/0| 7 12/14/4| 4 1/29/0| 6 10/12/2| 4 2/11/5| 6 26/83/11| 7

100 dimensions

CPSO-S 16/6/11| 3 10/16/4| 4 8/13/9| 4 6/13/5| 4 11/5/2| 2 51/53/31| 3

DCPSO 18/10/8| 4 23/2/5| 1 16/8/6| 2 16/7/1| 2 10/7/1| 3 83/34/21| 2

RG-DCPSO 24/7/10| 1 23/3/4| 2 30/0/1| 1 24/0/0| 1 18/0/0| 1 119/10/15| 1
MCPSO 17/7/12| 2 8/17/5| 5 8/11/11| 3 6/13/5| 4 9/6/3| 4 48/54/36| 4

RG-MCPSO 10/16/8| 5 6/21/3| 7 7/19/3| 7 5/16/3| 6 6/12/0| 5 34/84/17| 6

RDG 11/25/0| 6 8/21/1| 6 7/17/6| 6 14/8/2| 3 4/14/0| 6 44/85/9| 5

RAG 3/28/5| 7 14/12/4| 3 10/18/2| 5 5/19/0| 7 2/16/0| 7 34/93/11| 7

500 dimensions

CPSO-S 25/5/3| 1 6/16/8| 6 9/11/9| 5 5/11/8| 7 7/4/5| 4 52/47/33| 3

DCPSO 19/16/1| 5 24/3/3| 1 18/11/1| 2 12/9/3| 2 8/9/1| 5 81/48/9| 2

RG-DCPSO 27/12/0| 2 22/5/3| 2 23/7/1| 1 19/4/2| 1 12/6/2| 2 103/34 /8| 1
MCPSO 21/9/6| 3 7/15/8| 5 10/10/10| 4 5/10/9| 6 9/4/5| 3 52/48/38| 4

RG-MCPSO 18/14/4| 4 8/14/8| 4 11/10/9| 3 6/10/7| 4 11/3/4| 1 54/51/32| 5

RDG 6/30/0| 6 5/25/0| 7 13/17/0| 6 12/10/2| 3 5/12/1| 6 41/94/3| 6

RAG 3/33/0| 7 18/22/0| 3 6/24/0| 7 9/14/1| 5 2/16/0| 7 38/109/1| 7

1000 dimensions

CPSO-S 20/4/8| 2 6/16/16| 6 14/7/23| 4 10/10/26| 6 9/4/29| 4 68/41/102| 4

DCPSO 8/27/1| 6 19/6/6| 2 2/28/6| 7 0/23/7| 7 2/15/8| 7 31/99/28| 7

RG-DCPSO 23/12/5| 4 25/3/8| 1 20/9/11| 1 15/9/12| 1 13/7/12| 3 96/40/48| 1
MCPSO 20/7/9| 3 7/13/19| 5 15/6/28| 2 13/7/32| 3 11/4/35| 2 66/37/123| 3

RG-MCPSO 23/5/8| 1 8/13/16| 4 15/6/25| 3 12/8/29| 4 12/2/33| 1 70/34/111| 2

RDG 10/25/1| 5 5/25/1| 7 16/14/1| 5 14/8/3| 2 6/11/4| 5 51/83/10| 5

RAG 6/30/0| 7 18/12/0/3 9/21/0 /6 11/10/3| 5 4/14/3| 6 48/87/6| 6

DCPSO and MCPSO with Random Grouping 127

RG-DCPSO was consistently the top-performing algorithm across all
dimension sizes that were tested. DCPSO was second in 30−, 100−, and
500−dimensional environments. RG-DCPSO was the top-performing algorithm
for nx/m, nx/2m, and non-separable problems for 30− and 100−dimensional
environments. DCPSO was ranked first for the single-group functions in 30−,
100−, and 500−dimensional environments, with RG-DCPSO being second. In
1000−dimensional spaces, RG-DCPSO was ranked first and DCPSO was ranked
second for the single-group functions.

RG-MCPSO had poor relative performance for smaller-dimensional spaces,
but improved as the size of the search space increased. RG-MCPSO took over
for second position from DCPSO in 1000−dimensional problems. RG-MCPSO
was the best-performing algorithm for the non-separable problems with 500 and
1000 dimensions. An important note is that while the PSO parameters selected
for experimentation have been demonstrated to satisfy stability conditions, there
is a range of possible values which could be used. Therefore, a possible next step
would be to adjust the parameters of RG-MCPSO to see if this results in better
performance.

7 Conclusion

The purpose of this paper was to incorporate random grouping into DCPSO
and MCPSO. The final fitness values found by RG-DCPSO and RG-MCPSO
were compared to those found by five other decomposition-based PSO methods.
Search space sizes of 30, 100, 500, and 1000 were used for comparison, and to
demonstrate the ability of RG-DCPSO and RG-MCPSO to scale up to larger
problems.

Results have shown that RG-DCPSO resulted in significantly improved per-
formance for LSOPs. RG-MCPSO resulted for improved performance in large-
scale non-separable objective functions. The better performance of RG-DCPSO
is due to random grouping allowing for the greater exploration of variable depen-
dencies.

In future work, RG-DCPSO and RG-MCPSO should be evaluated on objec-
tive functions in environments with more than 1000 dimensions, as well as on
additional objective functions to ensure that they perform well in different envi-
ronments. Additional testing should also be done to find the exact number of
objective function evaluations which should be carried out between the ran-
dom groupings in both DCPSO and MCPSO. The performance of RG-MCPSO
improves as the number of dimensions increases, especially for the non-separable
problems. Due to the stochastic nature of PSO algorithms, the choice of param-
eters used has a large impact on the final performance of the algorithm. Thus,
experimenting with different PSO parameters which also satisfy stability condi-
tions, especially in the case of RG-MCPSO, would be beneficial in demonstrating
the full capabilities of the algorithms in optimizing functions in large-dimensional
spaces.

128 A. McNulty et al.

References

1. Barry, W.: Generating aesthetically pleasing images in a virtual environment using
particle swarm optimization. Ph.D. thesis, Brock University (2012)

2. Clark, M.: Comparative study on cooperative particle swarm optimization decom-
position methods for large-scale optimization. Master’s thesis, Brock University,
March 2021. https://dr.library.brocku.ca/handle/10464/15031

3. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm convergence: an empirical inves-
tigation. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp.
2524–2530. IEEE (2014)

4. Douglas, J., Engelbrecht, A.P., Ombuki-Berman, B.M.: Merging and decomposi-
tion variants of cooperative particle swarm optimization: new algorithms for large
scale optimization problems. In: Proceedings of the 2nd International Conference
on Intelligent Systems, Metaheuristics and Swarm Intelligence, pp. 70–77. ACM
(2018)

5. Erwin, K., Engelbrecht, A.P.: Set-based particle swarm optimization for portfolio
optimization. In: Dorigo, M., et al. (eds.) ANTS 2020. LNCS, vol. 12421, pp. 333–
339. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60376-2_28

6. Hajihassani, M., Armaghani, D.J., Kalatehjari, R.: Applications of particle swarm
optimization in geotechnical engineering: a comprehensive review. Geotech. Geol.
Eng. 36, 705–722 (2018)

7. Hereford, J.M.: A distributed particle swarm optimization algorithm for swarm
robotic applications. In: IEEE International Congress on Evolutionary Computa-
tion, pp. 1678–1685. IEEE (2006)

8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of Inter-
national Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

9. Khare, A., Rangnekar, S.: A review of particle swarm optimization and its appli-
cations in solar photovoltaic system. Appl. Soft Comput. 13(5), 2997–3006 (2013)

10. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. J.
Am. Stat. Assoc. 47(260), 583–621 (1952)

11. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimiza-
tion. IEEE Trans. Evol. Comput. 16(2), 210–224 (2012)

12. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18(1), 50–60 (1947)

13. Neethling, M., Engelbrecht, A.: Determining RNA secondary structure using set-
based particle swarm optimization. In: Proceedings of the IEEE Congress on Evo-
lutionary Computation (2006)

14. Oldewage, E.T.: The perils of particle swarm optimization in high dimensional
problem spaces. Master’s thesis, University of Pretoria (2017)

15. Oldewage, E.T., Engelbrecht, A.P., Cleghorn, C.W.: The merits of velocity clamp-
ing particle swarm optimisation in high dimensional spaces. In: Proceedings of the
IEEE Symposium Series on Computational Intelligence, pp. 1–8 (2017)

16. Oldewage, E.T., Engelbrecht, A.P., Cleghorn, C.W.: Boundary constraint handling
techniques for particle swarm optimization in high dimensional problem spaces. In:
Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.)
ANTS 2018. LNCS, vol. 11172, pp. 333–341. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00533-7_27

17. Oldewage, E.T., Engelbrecht, A.P., Cleghorn, C.W.: Movement patterns of a par-
ticle swarm in high dimensional spaces. Inf. Sci. 512, 1043–1062 (2020)

https://dr.library.brocku.ca/handle/10464/15031
https://doi.org/10.1007/978-3-030-60376-2_28
https://doi.org/10.1007/978-3-030-00533-7_27
https://doi.org/10.1007/978-3-030-00533-7_27

DCPSO and MCPSO with Random Grouping 129

18. Pluhacek, M., Senkerik, R., Viktorin, A., Kadavt, T., Zelinka, I.: A review of real-
world applications of particle swarm optimization algorithm. In: Proceedings of
the International Conference on Advanced Engineering Theory and Applications
(2017)

19. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In:
Proceedings of Evolutionary Programming VII, pp. 591–600 (2005)

20. Sopov, E., Vakhnin, A., Semenkin, E.: On tuning group sizes in the random adap-
tive grouping algorithm for large-scale global optimization problems. In: Proceed-
ings of the International Conference on Applied Mathematics Computational Sci-
ence, pp. 134–13411 (2018)

21. Sun, Y., Kirley, M., Halgamuge, S.K.: A recursive decomposition method for large
scale continuous optimization. IEEE Trans. Evol. Comput. 22(5), 647–661 (2018)

22. Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark functions for
the CEC 2010 special session and competition on large-scale global optimization
(2010)

23. Van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm
optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

24. Van der Merwe, D., Engelbrecht, A.: Data clustering using particle swarm opti-
mization. In: Proceedings of IEEE Congress on Evolutionary Computation, vol. 1,
pp. 215–220, December 2003

25. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using coopera-
tive coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

26. Zeng, T., et al.: Artificial bee colony based on adaptive search strategy and random
grouping mechanism. Expert Syst. Appl. 192, 116332 (2022)

27. Zhang, W., Ma, D., Wei, J., Liang, H.: A parameter selection strategy for particle
swarm optimization based on particle positions. Expert Syst. Appl. 41(7), 3576–
3584 (2014)

Dynamic Spatial Guided Multi-Guide
Particle Swarm Optimization Algorithm

for Many-Objective Optimization

Weka Steyn1 and Andries Engelbrecht2(B)

1 Department of Industrial Engineering, Stellenbosch University,
Stellenbosch, South Africa
wekasteyn@gmail.com

2 Department of Industrial Engineering and Computer Science Division,
Stellenbosch University, Stellenbosch, South Africa

engel@sun.ac.za

Abstract. The multi-guide particle swarm optimization (MGPSO)
algorithm utilizes random tournament selection in determining the
archive guide for the velocity update of a particle, choosing the least
crowded solution of a static number of solutions in the external archive.
This report aims to determine the feasibility of utilizing a linearly
decreasing tournament size with the aim of improving initial explo-
ration and final exploitation of the search space by the particle swarms.
The archive guide for a given particle is determined from the nearest
archive solutions with the aim of increasing swarm exploration efficiency.
The proposed dynamic spatial MGPSO algorithm is compared with the
original MGPSO algorithm and state-of-the-art algorithms specifically
designed to solve many-objective optimization problems. The results
show that the dynamic soatial guided MGPSO (DSG-MGPSO) scales
well to many-objective problems, with performance very competitive to
that of other many-objective optimization algorithms.

1 Introduction

The particle swarm optimization (PSO) algorithm is a metaheuristic swarm
intelligence optimization algorithm, first proposed by Kennedy and Eberhart
[10] to solve single-objective optimization problem by modelling the flocking
behaviour of birds. The PSO algorithm was further developed in multi-objective
variations used to solve multi-objective optimization problems (MOPs), includ-
ing the multi-guide particle swarm optimization (MGPSO) algorithm proposed
by Scheepers et al. [14]. The MGPSO algorithm was found to be very compet-
itive with other multi-objective optimization algorithms (MOAs), including the
non-dominated sorting genetic algorithm (NSGA-II) [4], multi-objective evolu-
tionary algorithm (MOEA) [19], speed constraint multi-objective particle swarm
optimization (SMPSO) algorithm [12], and velocity equated particle swarm opti-
mization (VEPSO) [13] algorithm.
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 130–141, 2022.
https://doi.org/10.1007/978-3-031-20176-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_11&domain=pdf
http://orcid.org/0000-0002-8508-1617
http://orcid.org/0000-0002-0242-3539
https://doi.org/10.1007/978-3-031-20176-9_11

Spatial Archive Guide Selection 131

Steenkamp and Engelbrecht scaled the MGPSO algorithm to many-objective
optimization problems (MaOPs) [17]. Erwin and Engelbrecht proposed the use
of random control parameter sampling [6] from the MGPSO stability regions
derived by Scheepers et al. [14]. This random sampling approach eliminated the
need for computationally costly control parameter tuning. The MGPSO algo-
rithm was found to perform competitively with other many-objective optimiza-
tion algorithms (MaOAs) [17]. In an attempt to improve the scalability of the
MGPSO algorithm to MaOPs, Steenkamp investigated the use of Knee-points
[20]; however, this did not improve the performance of the MGPSO [16].

The MGPSO algorithm proposed by Scheepers et al. [14] utilizes a static
archive selection size of two or three when determining the archive guide for
a particle. This paper proposes the use of a linearly decreasing archive size,
in conjunction with a spatial archive guide selection, as opposed to random
selection, in an attempt to improve the performance of the MGPSO algorithm.
The empirical results show that the proposed dynamic spatial guided MGPSO
(DSG-MGPSO) perform very well compared with the original MGPSO and other
many-objective algorithms.

Section 2 provides a brief overview of multi-objective optimization, the PSO
algorithm and the MGPSO algorithm, providing figures, definitions and pseudo-
code where needed. Section 3 provides greater insight to the proposed spatial
archive, followed by Sect. 4, detailing the breakdown of the experimental proce-
dure to be followed. Section 5 then showcases and discusses the obtained results.
Lastly, the paper concludes with Sect. 6, providing a brief summary of the con-
tent discussed in the report and the obtained results.

2 Background

This section serves to provide all necessary information regarding multi-objective
optimization problems and Pareto dominance (Sect. 2.1), many-objective opti-
mization (Sect. 2.2), PSO (Sect. 2.3) and MGPSO (Sect. 2.4).

2.1 Multi-Objective Optimization

MOPs are optimization problems that have two or three conflicting and depen-
dant objectives to be optimised. The solution for an MOP consists of multiple
Pareto optimal solutions. A MOP is generally defined as [18]:

minimize f(x), x ∈ [xmin, xmax]nx

subject to gm(x) = 0, m = 1, . . . , ng

hm(x) ≤ 0, m = ng + 1, . . . , ng + nh

(1)

where f(x) = (f1(x), . . . , fnk
(x))

The following definitions are important for dominance-based approaches
towards solving multi- and many-objective optimization problems.

132 W. Steyn and A. Engelbrecht

Definition 1: Pareto-Dominance. Assuming minimization, a decision vector
x1 dominates a decision vector, x2 (i.e. x1 ≺ x2), if and only if x1 is not worse
than x2 in all objectives, i.e. fk(x1) ≤ fk(x2),∀k = 1, . . . , nk, and x1 is strictly
better than x2 in at least one objective, i.e. ∃k = 1, . . . , nk : fk(x1) < fk(x2).

Definition 2: Pareto-Optimal. A decision vector x∗ ∈ F is Pareto-optimal
if there does not exist a decision vector, x �= x∗ ∈ F that dominates it. That
is, �k : fk(x) < fk(x∗). An objective vector, f∗(x), is Pareto-optimal if x is
Pareto-optimal.

Definition 3: Pareto-Optimal Set. The set of all Pareto-optimal decision
vectors form the Pareto-optimal set P ∗. That is, P ∗ = {x∗ ∈ F |�x ∈ F : x ≺
x∗}.

Definition 4: Pareto-Optimal Front. Given the objective vector, f(x), and
the Pareto-optimal solution set, P ∗, then the Pareto-optimal front, PF ∗ ⊆ O,
is defined as PF ∗ = {f = (f1(x∗), f2(x∗), . . . , fnk

(x∗))|x∗ ∈ P ∗}

2.2 Many-Objective Optimization

MaOPs consist of large numbers of objectives – at least four. According to
Hughes, with an increasing number of objectives comes an increased number
of non-dominated solutions, which decreases the ability of dominance-based
algorithms to settle around the true Pareto-front [9]. Hughes hypothesized
and proved that any Pareto-based optimization algorithm designed for multi-
objective optimization, whilst effective, lose integrity as the number of objectives
to be solved increases [9]. Due to the high computational cost of calculating accu-
rate solutions to MaOPs, it is of great interest to scale relatively computationally
inexpensive stochastic algorithms such as the MGPSO algorithm to accurately
approximate the Pareto-fronts of MaOPs.

2.3 Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm is a stochastic metaheuristic
optimization algorithm inspired by natural flocks, developed by Kennedy and
Eberhart [10], with the aim of solving single-objective optimization problems
(SOPs). Movement of a particle in a swarm is influenced by its current, personal
best, and neighbourhood best positions. Information about best positions found
thus far is shared amongst particles in a swarm by use of neighbourhood topolo-
gies, the efficiencies of which were compared in [5,7]. The velocity and position
update equations of the inertia PSO algorithm are [15]

vd
i (t + 1) = wvd

i (t) + c1r
d
1i(t)(y

d
i (t) − xd

i (t)) + c2r
d
2i(t)(ŷ

d
i (t) − xd

i (t)) (2)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (3)

Spatial Archive Guide Selection 133

where vd
i (t) and xd

i (t) represent the velocity and position of a particle i at itera-
tion t in dimension d, respectively. The elements of the random vectors, r1 and
r2, are sampled from a uniform distribution over [0,1], and the control param-
eters c1 and c2 are user specified values which determine how much weight is
given to a particle’s personal best, yi, and neighbourhood best, ŷi, position
respectively.

2.4 Multi-Guide Particle Swarm Optimization

The multi-guide particle swarm optimization (MGPSO) algorithm is a multi-
objective variation of the inertia PSO algorithm [15]. The MGPSO algorithm
utilises nk sub-swarms containing ns particles each, and introduces an external
archive of non-dominated solutions, which in turn serve as guides for the velocity
update equation of the MGPSO algorithm, which is defined as follows [14]:

vd
i,k(t + 1) = wvd

i,k(t) + c1r
d
1i,k(t)(y

d
i,k(t) − xd

i,k(t))

+ λi,kc2r
d
2i,k(t)(ŷ

d
i,k(t) − xd

i,k(t))

+ (1 − λi,k)c3rd3i,k(t)(â
d
i,k(t) − xd

i,k(t))

(4)

where âd
i,k(t) denotes the archive guide for dimension d of particle i in sub-

swarm k at iteration t. The archive trade-off coefficient λ controls the amount
of influence that the archive guide and neighbourhood best position has on the
velocity of a particle. Elements of the vector, r3, are uniformly sampled from
[0,1] and c3 is an additional control parameter.

The archive guide âd
i,k(t) is randomly selected from the external archive of

non-dominated solutions by means of tournament selection, where static tour-
nament sizes of two or three are used [14]. The least crowded candidate solution
is assigned as the archive guide to encourage exploration of the search space.

The MGPSO is summarized in Algorithm 1.

3 Proposed Dynamic Spatial Archive Guide

A spatial archive guide is proposed in the velocity update equation of the
MGPSO algorithm. The MGPSO algorithm proposed by Scheepers et al. [14]
randomly selects nt number of solutions from the archive, of which the least
crowded solution is selected as the archive guide for particle i. The archive solu-
tion partly determines the movement of the particle in the following iteration.
The archive-guide of the velocity update equation subtracts xi(t) from âi. The-
oretically, should âi be sufficiently far enough away from xi(t), this can cause
a strong positive acceleration of the particle in the direction of the assigned
archive guide. While this ensures a thorough exploration of the search space, it
is inefficient in the event that the particle at position xi(t) is assigned an archive
guide on the opposite end of the given search space, which can be more efficiently
explored by a closer particle.

134 W. Steyn and A. Engelbrecht

Algorithm 1. Multi-Guide Particle Swarm Optimization Algorithm
Input: Objective functions fk for k = 1, . . . , nk

Output: Archive of non-dominated solutions

for k → 1 to nk do
Initialize sub-swarm Sk to contain ns number of particles
for i → 1 to ns do

Initialize personal best as yi,k = xi,k

Evaluate fk(yi,k)
Initialize velocity as vi,k = 0
Initialize trade-off coefficients λi,k ∼ U(0, 1)
Initialize neighbourhood best position ŷi,k

for t → 1 to nt do
for k → 1 to nk do

for i → 1 to ns do
if fk(xi,k(t)) < fk(yi,k(t)) then

yi,k(t) = xi,k(t)

if fk(yi,k(t)) < fk(ŷi,k(t)) then
ŷi,k(t) = xi,k(t)

if xi,k(t) is non-dominated then
if archive is not at capacity then

insert xi,k(t) into the archive
remove dominated positions in the archive

if archive is at capacity then
remove most crowded position insert xi,k(t) into the archive
remove dominated positions in the archive

for k → 1 to nk do
for i → 1 to ns do

Select âi,k(t) form archive using tournament selection
for d → 1 to nd do

Calculate vd
i,k(t + 1) using equation (4)

xd
i,k(t + 1) = xd

i,k(t) + vd
i,k(t + 1)

Return Archive

The proposed method addresses this potential inefficiency by making each
particle aware of its proximity to every solution in the external archive, and only
considering the nt nearest solutions when determining the least crowded solution.
When selecting the archive guide âi,k for each particle i in each sub-swarm Sk,
the crowding distance of the external archive with respect to the selected archive
guide is determined. For each particle, the Euclidean-distance, e(xi,k(t),a(t)),
to each solution, a(t), in the archive is calculated. The Euclidean distances are
ranked in ascending order, and the external archive and the associated crowding
distances are ranked accordingly. The nt closest solutions are considered in the
tournament selection, with a larger crowding distance being favoured.

Spatial Archive Guide Selection 135

4 Experimental Procedure

The performance of the dynamic spatial guided MGPSO (DSG-MGPSO) is
compared against that of the controlling dominance area of solutions - speed
constraint multi-objective particle swarm optimization (CDAS-SMPSO) [2],
knee-point driven evolutionary algorithm (KnEA) [20], many-objective non-
dominated sorting genetic algorithm III (NSGA-III) [3], and the many-objective
evolutionary algorithm based on dominance and decomposition (MOEA/DD)
[11]. For comparison, the DSG-MGPSO algorithm is also compared against a
MGPSO with randomly sampled control parameter values, referred to as RMG-
PSO. Both MGPSO algorithms sample control parameter values to satisfy the
theoretically derived stability condition [6,14],

0 < c1 + λc2 + (1 − λ)c3 <
4(1 − w2)

1 − w +
(c21 + λ2c22 + (1 − λ)2c23)(1 + w)

3(c1 + λc2 + (1 − λ)c3)2
(5)

with |w| < 1; w is uniformly sampled from (−1, 1), λ is uniformly from (0,1).
The control parameters c1, c2 and c3 are uniformly sampled from (0,4).

Each algorithm is evaluated on 3, 5, 8, 10 and 15 objective WFG1 to WFG9

and DTLZ1 to DTLZ7 benchmark problems, and is executed for 30 independent
runs of 2000 iterations. The 3, 5, 8, 10 and 15 objective problems are evaluated
with 153, 126, 156, 110 and 135 candidate solutions respectively [17].

The solution sets achieved by each optimization algorithm are normalized in
the range [0,1], and evaluated using the hyper-volume (HV) [21] with the Nadir
point as reference, and the inverted generational distance (IGD) [1]. The mean
values achieved for both HV and IGD are then compared using the wins/losses
methodology proposed by Helbig and Engelbrecht [8]. This approach considers
each environment period individually, and compares measures of performance
for each algorithm across each individual change period. A Kruskal-Wallis test
is used to confirm if a statistical significant difference exist between the different
algorithms. If so, then pairwise Mann-Whitney-Wilcoxon rank sum tests with
Hol correction is used to asses differences between each pair of algorithms. A
win is rewarded to the superior algorithm and a loss to the inferior algorithm.

5 Empirical Analysis

This section discusses the results obtained from following the experimental pro-
cedure outlined in Sect. 4. Tables 1, 2, 3, 4 and 5 show the rankings of the algo-
rithms for each of the evaluated benchmark problems. For each benchmark prob-
lem, the number of wins and losses achieved per algorithm are shown. Algorithms
are ranked on the difference between wins and losses, with a rank of 1 being the
best result. It is important to note that algorithms can tie for the same ranking,
which indicates that there was no statistically significant difference between the
mean HV or IGD values achieved by two or more algorithms. Each algorithm is
given an overall (O) ranking for both HV and IGD per number of objectives.

136 W. Steyn and A. Engelbrecht

Table 1. 3-objective and 5-objective DTLZ ranking tables

3-objective DTLZ 5-objective DTLZ

HV IGD HV IGD

1 2 3 4 5 6 7 O 1 2 3 4 5 6 7 O 1 2 3 4 5 6 7 O 1 2 3 4 5 6 7 O

CDAS-SMPSO Wins 0 5 0 0 0 0 0 5 3 3 3 1 3 3 1 17 0 0 0 1 1 1 0 3 2 5 3 0 5 3 3 21

Losses 5 0 5 4 3 4 5 26 2 2 2 4 2 2 2 16 5 5 5 4 4 4 5 32 1 0 2 5 0 2 2 12

Rank 3 1 5 4 4 5 5 6 2 2 2 4 2 3 2 3 5 5 4 5 4 4 5 5 3 1 2 5 1 2 2 2

DSA-MGPSO Wins 2 4 4 4 4 5 4 27 4 4 4 4 4 5 4 29 3 1 4 3 4 4 4 23 2 1 4 3 3 4 4 21

Losses 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 3 0 0 0 0 0 4 1 3 0 1 1 0 0 6

Rank 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 4 1 2 1 1 1 1 3 3 1 2 2 1 1 1

KnEA Wins 2 2 3 3 0 3 2 15 2 2 2 3 2 2 1 14 5 3 1 0 0 0 3 12 5 3 1 1 0 2 0 12

Losses 0 3 2 2 3 2 2 14 3 3 3 2 3 3 2 19 0 2 4 5 5 5 2 23 0 1 3 4 4 3 4 19

Rank 1 4 2 2 4 3 3 3 3 3 3 2 3 4 2 4 1 3 3 6 5 5 2 4 1 2 3 4 4 3 4 4

MOEA/DD Wins 1 1 1 2 2 2 2 11 1 1 1 2 1 1 1 8 2 4 2 3 3 3 1 18 1 3 1 5 2 1 2 15

Losses 4 4 4 3 2 3 2 22 4 4 4 3 4 4 2 25 3 1 2 0 2 2 4 14 4 1 3 0 3 4 3 18

Rank 2 5 4 3 2 4 3 4 4 4 4 3 4 5 2 5 3 2 2 2 2 2 4 2 5 2 3 1 3 4 3 3

NSGA-II Wins 2 0 2 0 1 0 1 6 0 0 0 0 0 0 0 0 1 5 2 2 2 2 2 16 0 0 0 2 0 0 0 2

Losses 0 5 3 4 3 4 4 23 5 5 5 5 5 5 5 35 4 0 2 3 3 3 3 18 5 5 5 3 4 5 4 31

Rank 1 6 3 4 3 5 4 5 5 5 5 5 5 6 3 6 4 1 2 4 3 3 3 3 6 4 4 3 4 5 4 5

RMGPSO Wins 2 3 4 4 4 4 4 25 4 4 4 4 4 4 4 28 3 1 4 3 4 4 4 23 2 1 4 3 3 4 4 21

Losses 0 2 0 0 0 1 0 3 0 0 0 0 0 1 0 1 1 3 0 0 0 0 0 4 1 3 0 1 1 0 0 6

Rank 1 3 1 1 1 2 1 2 1 1 1 1 1 2 1 2 2 4 1 2 1 1 1 1 3 3 1 2 2 1 1 1

5.1 HV Results

In terms of HV, the results are as follows: The CDAS-SMPSO algorithm per-
formed worst overall for the 3-, 5- and 8-objective DTLZ benchmark problems.
The DSG-MGPSO algorithm was the best overall performing algorithm, achiev-
ing seven best overall rankings for the 3-, 5- and 10-objective DTLZ and the 3-,
5-, 8- and 10-objective WFG benchmark problems. The DSG-MGPSO achieved
a top three overall ranking for each of the evaluated benchmark problems in
terms of HV, with no worst overall rankings. Similar results were achieved by
the RMGPSO algorithm, with only three overall best rankings for the 3-,5- and
15-objective DTLZ benchmark problemss. The RMGPSO matched the perfor-
mance of the DSG-MGPSO with the 5-objective DTLZ. The KnEA managed
to achieve an overall top three rank for five of the 10 benchmark problems,
with two overall worst rankings for the 8- and 15-objective WFG benchmark
problems. The MOEA/DD was the worst performing algorithm, with five over-
all worst rankings for the 10- and 15-objective DTLZ, along with only two top
three rankings. Lastly, the NSGA-III managed one overall best ranking for the
15-objective WFG benchmark.

Spatial Archive Guide Selection 137

Table 2. 8-objective and 10-objective DTLZ ranking tables

8-objective DTLZ 10-objective DTLZ

HV IGD HV IGD

1 2 3 4 5 6 7 O 1 2 3 4 5 6 7 O 1 2 3 4 5 6 7 O 1 2 3 4 5 6 7 O

CDAS-SMPSO Wins 0 5 0 0 1 0 0 6 5 5 5 5 5 3 5 33 0 2 0 0 3 1 0 6 5 5 5 5 5 3 5 33

Losses 5 0 5 5 2 5 5 27 0 0 0 0 0 0 0 0 5 0 5 3 2 4 5 24 0 0 0 0 0 2 0 2

Rank 5 1 5 5 3 5 6 6 1 1 1 1 1 2 1 1 4 1 5 5 2 4 5 5 1 1 1 1 1 3 2 1

DSA-MGPSO Wins 4 0 4 2 4 4 2 20 2 2 4 3 3 3 3 20 4 2 4 4 4 4 2 24 0 1 2 2 3 4 2 14

Losses 0 3 0 2 0 0 3 8 1 2 1 1 1 0 1 7 0 0 0 0 0 0 2 2 3 2 2 2 1 0 2 12

Rank 1 5 1 3 1 1 4 2 3 3 2 2 2 2 2 2 1 1 1 1 1 1 3 1 5 4 3 3 2 1 4 2

KnEA Wins 2 0 1 1 0 1 5 10 1 0 1 2 0 1 1 6 2 2 1 3 1 2 4 15 3 4 1 4 0 2 1 15

Losses 3 3 4 4 5 4 0 23 4 5 3 3 4 3 4 26 2 0 4 1 3 3 1 14 2 1 3 1 4 3 4 18

Rank 3 5 4 4 5 4 1 5 5 5 4 4 4 4 4 5 2 1 4 3 3 3 2 3 3 2 5 2 4 3 5 3

MOEA/DD Wins 3 4 3 5 2 3 1 21 2 4 1 1 2 1 2 13 2 0 2 0 1 0 1 6 4 0 4 1 2 0 3 14

Losses 2 1 2 0 2 2 4 13 1 1 3 4 3 3 3 18 2 5 3 3 3 5 4 25 1 5 1 4 3 5 1 20

Rank 2 2 2 1 2 2 5 3 3 2 4 5 3 4 3 4 2 3 3 5 3 5 4 6 2 6 2 4 3 5 2 4

NSGA-II Wins 1 3 2 4 1 2 4 17 0 1 0 0 0 0 0 1 1 1 3 0 0 3 5 13 0 1 0 0 0 1 0 2

Losses 4 2 3 1 3 3 1 17 5 4 5 5 4 5 5 33 4 4 2 3 5 2 0 20 3 2 5 5 4 4 5 28

Rank 4 3 3 2 4 3 2 4 6 4 5 6 4 5 5 6 3 2 2 5 4 2 1 4 5 4 6 5 4 4 6 5

RMGPSO Wins 4 0 4 2 4 4 3 21 2 2 3 3 3 3 3 19 4 2 4 3 4 4 2 23 0 1 1 2 3 4 2 13

Losses 0 3 0 2 0 0 2 7 1 2 2 1 1 0 1 8 0 0 0 0 0 0 2 2 3 2 2 2 1 0 1 11

Rank 1 5 1 3 1 1 3 1 3 3 3 2 2 2 2 3 1 1 1 2 1 1 3 2 5 4 4 3 2 1 3 2

Table 3. 15-objective DTLZ and 3-objective WFG ranking tables

15-objective DTLZ 3-objective WFG

HV IGD HV IGD

1 2 3 4 5 6 7 O 1 2 3 4 5 6 7 O 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 O

CDAS-SMPSO Wins 0 5 0 2 2 1 0 10 5 5 5 4 5 3 5 32 1 2 3 2 1 2 2 2 3 18 2 2 3 2 0 2 2 1 3 17

Losses 5 0 5 3 2 4 5 24 0 0 0 0 0 2 0 2 3 2 2 3 3 3 3 3 2 24 1 2 2 3 4 3 3 3 2 23

Rank 6 1 5 3 2 5 6 5 1 1 1 1 1 3 1 1 5 3 3 3 3 3 4 3 2 4 2 3 3 3 5 3 4 3 2 4

DSA-MGPSO Wins 3 1 2 3 4 4 3 20 1 2 2 2 3 5 2 17 5 5 5 4 4 4 5 4 4 40 4 5 5 3 4 4 3 4 4 36

Losses 0 1 1 1 0 0 2 5 2 1 1 2 1 0 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

Rank 2 3 3 2 1 1 3 2 4 3 3 2 2 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1

KnEA Wins 2 2 2 5 2 3 4 20 1 2 1 4 0 2 1 11 0 2 1 3 3 3 3 3 2 20 0 2 1 5 3 3 3 3 2 22

Losses 3 1 1 0 2 1 1 9 2 3 4 0 5 3 4 21 5 2 4 2 2 2 2 2 3 24 5 2 3 0 2 2 0 2 3 19

Rank 4 2 3 1 2 3 2 3 4 4 5 1 5 4 4 5 6 3 5 2 2 2 3 2 3 3 5 3 4 1 2 2 2 2 3 3

MOEA DD Wins 3 0 2 0 1 0 1 7 4 0 2 1 2 0 4 13 1 1 0 0 0 0 0 0 0 2 2 1 0 0 0 0 0 0 0 3

Losses 1 5 0 4 4 5 4 23 1 5 1 4 3 5 1 20 2 4 5 5 5 4 5 5 4 39 1 4 5 5 3 4 5 3 4 34

Rank 3 5 2 4 3 6 5 6 2 6 3 3 3 6 2 4 4 4 6 5 4 4 6 5 4 6 2 4 5 5 4 4 6 4 4 6

NSGA-III Wins 1 1 1 0 0 2 5 10 0 1 0 0 1 1 0 3 4 0 2 1 1 0 1 1 0 10 1 0 1 1 1 0 1 0 0 5

Losses 4 2 4 4 5 3 0 22 5 3 5 5 4 4 5 31 1 5 3 4 3 4 4 4 4 32 1 5 3 4 3 4 4 4 4 32

Rank 5 4 4 4 4 4 1 4 6 5 6 4 4 5 5 6 2 5 4 4 3 4 5 4 4 5 5 4 4 3 4 5 5 4 5

RM-GPSO Wins 4 1 4 3 4 3 2 21 1 3 2 2 3 4 2 17 2 4 4 4 4 4 4 4 4 34 2 4 4 3 4 4 3 4 4 32

Losses 0 1 0 1 0 0 3 5 2 1 1 2 1 1 2 10 2 1 1 0 0 0 1 0 0 5 3 1 1 1 0 0 0 0 0 6

Rank 1 3 1 2 1 2 4 1 4 2 3 2 2 2 3 3 3 2 2 1 1 1 2 1 1 2 4 2 2 2 1 1 2 1 1 2

138 W. Steyn and A. Engelbrecht

Table 4. 5-objective and 8-objective WFG ranking tables

5-objective WFG 8-objective WFG

HV IGD HV IGD

1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 O

CDAS-SMPSO Wins 1 3 3 4 0 0 0 0 2 13 1 0 3 3 2 2 1 0 2 14 0 3 3 4 1 1 1 1 2 16 5 2 3 5 4 4 3 4 4 34

Losses 2 2 2 1 5 5 5 5 1 28 2 2 2 2 3 3 3 5 1 23 5 2 2 1 2 4 3 4 1 24 0 2 2 0 1 1 1 0 0 7

Rank 3 3 3 2 3 4 4 6 2 4 2 3 2 3 4 3 3 5 3 5 4 3 3 2 3 4 5 3 3 4 1 3 2 1 2 2 2 1 1 1

DSA-MGPSO Wins 4 5 5 1 1 4 3 5 2 30 4 5 4 0 0 0 0 1 0 14 4 5 5 1 4 4 4 4 4 35 1 5 4 1 1 1 0 4 0 17

Losses 0 0 0 2 1 0 1 0 1 5 0 0 0 3 4 4 3 3 4 21 0 0 0 2 0 0 0 0 0 2 3 0 0 3 2 3 3 0 4 18

Rank 1 1 1 4 2 1 2 1 2 1 1 1 1 5 5 4 4 4 5 4 1 1 1 4 1 1 1 1 1 1 3 1 1 5 4 4 3 1 5 3

KnEA Wins 0 2 1 5 5 3 5 3 5 29 0 0 0 5 5 5 5 5 5 30 3 1 1 0 0 0 0 0 0 5 0 0 0 1 0 0 0 0 3 4

Losses 5 3 4 0 0 2 0 2 0 16 5 2 4 0 0 0 0 0 0 11 2 3 4 5 5 5 5 5 5 39 5 4 4 2 5 3 3 5 1 32

Rank 5 4 5 1 1 2 1 3 1 3 3 3 4 1 1 1 1 1 1 1 2 4 5 6 5 5 6 4 6 6 4 4 4 4 6 5 3 4 3 6

MOEA DD Wins 1 0 0 1 1 1 1 2 0 7 1 0 0 4 3 3 3 4 2 20 1 0 0 5 2 2 1 2 1 14 3 2 0 4 5 5 5 3 3 30

Losses 3 5 5 2 1 3 3 3 4 29 2 2 4 1 2 1 1 1 1 15 3 5 5 0 2 3 1 2 4 25 1 2 4 1 0 0 0 2 0 10

Rank 4 6 6 4 2 3 3 4 3 6 2 3 4 2 3 2 2 2 3 2 3 5 6 1 2 3 4 2 5 5 2 3 4 2 1 1 1 2 2 2

NSGA-III Wins 2 1 2 0 1 1 1 1 0 9 1 0 2 0 4 3 3 3 2 18 1 1 2 1 1 3 2 2 2 15 3 0 2 2 1 3 3 1 2 17

Losses 2 4 3 5 1 3 3 4 4 29 2 2 3 3 1 1 1 2 1 16 3 3 3 2 3 2 1 2 2 21 1 4 3 2 2 2 1 3 3 21

Rank 2 5 4 6 2 3 3 5 3 5 2 3 3 5 2 2 2 3 3 3 3 4 4 4 4 2 3 2 4 3 2 4 3 3 4 3 2 3 4 4

RM-GPSO Wins 4 4 4 1 1 4 3 4 2 27 4 4 4 0 0 0 0 1 0 13 4 4 4 1 4 4 2 4 3 30 1 4 4 0 1 0 0 1 0 11

Losses 0 1 1 2 1 0 1 1 1 8 0 1 0 3 4 4 4 3 4 23 0 1 1 2 0 0 0 0 0 4 3 1 0 5 2 4 3 3 4 25

Rank 1 2 2 4 2 1 2 2 2 2 1 2 1 5 5 4 5 4 5 6 1 2 2 4 1 1 2 1 2 2 3 2 1 6 4 6 3 3 5 5

Table 5. 10-objective and 15-objective WFG ranking tables

10-objective WFG 15-objective WFG

HV IGD HV IGD

1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 O 1 2 3 4 5 6 7 8 9 O

CDAS-SMPSO Wins 0 1 3 0 1 1 1 2 0 9 4 2 3 5 3 5 2 5 3 32 0 3 2 1 0 0 1 1 1 9 4 2 3 5 4 5 3 4 5 35

Losses 3 3 2 1 3 3 2 2 2 21 0 3 2 0 1 0 1 0 1 8 3 0 3 4 5 4 4 4 4 31 0 1 2 0 0 0 0 0 0 3

Rank 3 4 3 4 3 3 2 2 3 4 1 3 2 1 2 1 2 1 2 1 3 1 4 4 3 5 5 5 4 5 1 3 2 1 1 1 2 1 1 1

DSA-MGPSO Wins 4 5 5 0 4 4 4 4 4 34 1 5 4 0 2 0 0 0 0 12 4 2 3 2 2 2 2 3 2 22 1 4 4 0 3 0 0 4 0 16

Losses 0 0 0 1 0 0 0 0 0 1 3 0 0 4 2 4 4 1 4 22 0 0 0 2 0 1 1 0 3 7 3 0 0 3 1 4 4 0 4 19

Rank 1 1 1 4 1 1 1 1 1 1 3 1 1 4 3 4 3 4 4 4 1 2 2 3 1 3 3 2 3 2 3 1 1 3 3 5 5 1 4 3

KnEA Wins 3 0 1 0 3 3 0 1 0 11 0 0 1 4 4 3 5 0 5 22 3 0 1 0 1 0 0 0 0 5 0 0 1 0 0 2 2 0 3 8

Losses 2 3 4 1 2 2 5 4 3 26 5 5 4 1 1 1 0 1 0 18 2 5 4 5 4 4 5 5 5 39 5 5 4 3 4 1 3 2 1 28

Rank 2 5 5 4 2 2 3 3 4 5 4 5 4 2 1 2 1 4 1 2 2 5 5 5 2 5 6 6 5 6 4 5 4 3 5 3 4 3 2 5

MOEA DD Wins 0 0 0 5 0 0 1 0 1 7 3 3 0 2 2 3 2 0 3 18 0 1 0 5 2 2 5 2 4 21 4 2 0 3 0 2 4 1 3 19

Losses 3 4 5 0 5 5 2 5 2 31 2 1 5 2 0 1 1 1 1 14 3 1 5 0 0 1 0 1 0 11 0 1 5 1 4 1 0 2 1 15

Rank 3 6 6 1 4 4 2 4 2 6 2 2 5 3 2 2 2 4 2 2 3 3 6 1 1 3 1 3 1 4 1 3 5 2 5 3 1 2 2 2

NSGA-III Wins 0 3 2 0 1 1 1 2 0 10 4 1 2 2 0 2 2 0 2 15 0 2 3 4 2 5 2 2 4 24 3 1 2 3 2 2 3 0 2 18

Losses 3 2 3 1 3 3 2 2 2 21 0 4 3 2 5 3 1 1 3 22 3 0 0 1 0 0 1 2 0 7 2 4 3 1 3 1 1 3 3 21

Rank 3 3 4 4 3 3 2 2 3 3 1 4 3 3 5 3 2 4 3 3 3 2 2 2 1 1 3 4 1 1 2 4 3 2 4 3 3 4 3 3

RM-GPSO Wins 4 4 4 0 4 4 4 4 4 32 1 3 4 0 1 0 0 0 0 9 4 1 3 2 2 2 2 4 3 23 1 2 4 0 3 0 0 0 0 10

Losses 0 1 1 1 0 0 0 0 0 3 3 1 0 4 3 4 4 1 4 24 0 3 0 2 0 1 1 0 2 9 3 0 0 3 0 4 4 2 4 20

Rank 1 2 2 4 1 1 1 1 1 2 3 2 1 4 4 4 3 4 4 5 1 4 2 3 1 3 3 1 2 3 3 2 1 3 2 5 5 3 4 4

5.2 IGD Results

In terms of IGD, the CDAS-SMPSO algorithm was the overall best perform-
ing algorithm, with a total of six overall best rankings for the 8-, 10- and
15-objective benchmark problems for both DTLZ and WFG. Furthermore, the
CDAS-SMPSO algorithm managed to achieve a best three ranking for eight of
the ten benchmark problems evaluated. The DSG-MGPSO was the second best
performing algorithm, performing identical to the CDAS-SMPSO; however with
a lower number of overall best rankings, which were for the 3- and 5-objective
DTLZ and the 3-objective WFG benchmark problems. The IGD results high-

Spatial Archive Guide Selection 139

light the advantage of using the spatial archive guide section, as the RMGPSO
only managed one overall best ranking for the 5-objective DTLZ, and then as a
tie with the DSG-MGPSO. Furthermore, the RMGPSO only managed six top
three rankings as opposed to the eight from the DSG-MGPSO, as well as two
overall worst rankings for the 5- and 10-objective WFG benchmark problems.
The KnEA managed to achieve one overall best ranking for the 5-objective WFG
benchmark problem and two worst overall rankings for the 8- and 15-objective
WFG benchmark problems. The KnEA managed to achieve five top three overall
rankings. The MOEA/DD achieved similar results to the KnEA, with no overall
best rankings and only one overall worst ranking for the 3-objective WFG. The
NSGA-III is the worst performing algorithm, with the least number of top three
best rankings and five overall worst rankings for all of the DTLZ benchmark
problems.

6 Conclusions

This article proposed the use of a spatial archive guide selection in an attempt to
improve the scalability of the MGPSO algorithm to MaOPs. The proposed DSG-
MGPSO algorithm was compared against other specifically designed MaOAs and
a random archive guide selected RMGPSO as a baseline. Each algorithm was
evaluated on the DTLZ and WFG benchmark problems for 3-, 5-, 8- 10- and
15-objectives. The obtained solution sets were evaluated for both HV and IGD,
and compared using the wins/losses process by Helbig and Engelbrecht [8], and
tabulated in ranking tables.

Both MGPSO variations were found to perform very well with regards to
HV when compared against the other MaOAs, with the spatial archive guide
selection providing slightly better performance over the regular RMGPSO algo-
rithm. In terms of HV, the spatial archive guide selection used in the DSG-
MGPSO far outperformed the RMGPSO algorithm, generally providing a more
well distributed solution set. However, the DSG-MGPSO was only the second
best performing algorithm in terms of IGD after the CDAS-SMPSO algorithm
– though better than RMGPSO.

Overall, the spatial archive guide selection successfully scaled the MGPSO
algorithm to better solve MaOPs, providing solution sets that are consistently
close to the true Pareto front. However, whilst these solutions are generally well
distributed, more work is needed in order to improve the distribution of solution
sets found by the DSG-MGPSO.

Acknowledgements. The authors thank the National Research Foundation (NRF)
for providing funding and the Centre for High Performance Computing (CHPC) for
providing computational resources.

140 W. Steyn and A. Engelbrecht

References

1. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolu-
tionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa,
G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–
697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7 71

2. De Carvalho, A.B., Pozo, A.: Measuring the convergence and diversity of cdas
multi-objective particle swarm optimization algorithms: a study of many-objective
problems. Neurocomputing 75(1), 43–51 (2012)

3. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

5. Engelbrecht, A.P.: Particle swarm optimization: global best or local best? In: Pro-
ceedings of the 11th Brazilian Congress on Computational Intelligence, pp. 124–
135. IEEE (2013)

6. Erwin, K., Engelbrecht, A.P.: A tuning free approach to multi-guide particle swarm
optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium (2021)

7. Günther, M., Nissen, V.: A comparison of neighbourhood topologies for staff
scheduling with particle swarm optimisation. In: Mertsching, B., Hund, M., Aziz,
Z. (eds.) KI 2009. LNCS (LNAI), vol. 5803, pp. 185–192. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04617-9 24

8. Helbig, M., Engelbrecht, A.P.: Analysing the performance of dynamic multi-
objective optimization algorithms. In: Proceedings of the IEEE Congress on Evo-
lutionary Computation, pp. 1531–1539 (2013)

9. Hughes, E.J.: Evolutionary many-objective optimisation: many once or one many?
In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp.
222–227 (2005)

10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

11. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimiza-
tion algorithm based on dominance and decomposition. IEEE Trans. Evol. Com-
put. 19(5), 694–716 (2014)

12. Nebro, A.J., Durillo, J.J., Garcia-Nieto, J., Coello, C.C., Luna, F., Alba, E.: Smpso:
a new pso-based metaheuristic for multi-objective optimization. In: Proceedings of
the IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-
Making, pp. 66–73 (2009)

13. Parsopoulos, K.E., Vrahatis, M.N.: Particle swarm optimization method in multi-
objective problems. In: Proceedings of the ACM Symposium on Applied Comput-
ing, pp. 603–607 (2002)

14. Scheepers, C., Engelbrecht, A.P., Cleghorn, C.W.: Multi-guide particle swarm opti-
mization for multi-objective optimization: empirical and stability analysis. Swarm
Intell. 13(3), 245–276 (2019)

15. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)

16. Steenkamp, C.: Multi-guide particle swarm optimization for many-objective opti-
mization problems. Master’s thesis, Stellenbosch University (2021)

17. Steenkamp, C., Engelbrecht, A.P.: A scalability study of the multi-guide particle
swarm optimization algorithm. Swarm Evol. Comput. 66, 100943 (2021)

https://doi.org/10.1007/978-3-540-24694-7_71
https://doi.org/10.1007/978-3-642-04617-9_24

Spatial Archive Guide Selection 141

18. Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary computation and convergence
to a pareto front. In: Late Breaking Papers at the Genetic Programming Confer-
ence, pp. 221–228 (1998)

19. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

20. Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-
objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2014)

21. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
- a comparative case study. In: Proceedings of the International Conference on
Parallel Problem Solving from Nature, pp. 292–301 (1998)

Extracting Symbolic Models of Collective
Behaviors with Graph Neural Networks

and Macro-Micro Evolution

Stephen Powers1(B) , Joshua Smith2 , and Carlo Pinciroli1

1 Department of Robotics Engineering, Worcester Polytechnic Institute,
Worcester, MA, USA

{spowers2,cpinciroli}@wpi.edu
2 Worcester, MA, USA

smith.josh.95@proton.me

Abstract. Collective behaviors are typically hard to model. The scale
of the swarm, the large number of interactions, and the richness and
complexity of the behaviors are factors that make it difficult to distill
a collective behavior into simple symbolic expressions. In this paper,
we propose a novel approach to symbolic regression designed to facil-
itate such modeling. Using raw and post-processed data as an input,
our approach produces viable symbolic expressions that closely model
the target behavior. Our approach is composed of two phases. In the
first, a graph neural network (GNN) is trained to extract an approxi-
mation of the target behavior. In the second phase, the GNN is used
to produce data for a nested evolutionary algorithm called macro-micro
evolution (MME). The macro layer of this algorithm selects candidate
symbolic expressions, while the micro layer tunes its parameters. Pre-
liminary experimental evaluation shows that our approach outperforms
competing solutions for symbolic regression, making it possible to extract
compact expressions for complex swarm behaviors.

1 Introduction

Biological collective systems, such as fish schools and bird flocks, typically involve
large numbers of individuals engaging in massively numerous interactions, with
non-linear effects that produce complex and coordinated swarm-level behaviors.
Identifying simple, yet effective, models to capture such interactions is typically
difficult and it involves non-trivial data analysis and hypothesis testing [3].

In this paper, we propose an automatic approach to symbolic regression
designed to facilitate modeling of collective behaviors. Given the raw data of the
collective behavior, e.g., the trajectories of the agents or information about their
pairwise interactions, our approach derives a human-readable symbolic expres-
sion that best approximates the input data. Our work is applicable to both
natural sciences (e.g., to discover new models of collective behaviors), and in

J. Smith—Independent Researcher.
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 142–154, 2022.
https://doi.org/10.1007/978-3-031-20176-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_12&domain=pdf
http://orcid.org/0000-0002-8918-8163
http://orcid.org/0000-0001-7695-0027
http://orcid.org/0000-0002-2155-0445
https://doi.org/10.1007/978-3-031-20176-9_12

Extracting Symbolic Models of Collective Behaviors 143

engineering (e.g., to extract approximate models of collective behaviors opti-
mized in a centralized manner).

Several works aim to produce interpretable behavioral models obtained
through optimization and evolutionary methods. Notable examples include the
variants of AutoMoDe [1,8], novelty search to discover collective behaviors in
minimalistic robots [2], grammatical evolution [7], and behavioral trees [11,15].
All these works produce a desired (and unknown) behavior for artificial agents
(robots), rather than extract interpretable models from existing data.

To the best of our knowledge, no work has been explicitly devoted to symbolic
regression for collective behaviors. Our main contribution is to propose the first
method to perform this task. Our approach is composed of two phases:

1. In the first phase, the input data, both raw and post-processed, is used to
train a graph neural network (GNN).

2. In the second phase, a symbolic expression is extracted using a nested genetic
algorithm we refer to as macro-micro evolution (MME). The fitness of the
symbolic expression is calculated using data generated by the GNN.

The power of our method comes from the combination of these two phases.
GNNs offer embeddings that are ideal to capture the many facets of collective
phenomena, such as pairwise interactions among agents, as well as diffusive and
aggregative processes across agents. The MME decomposes the problem of sys-
tem identification into two nested problems: (i) identification of the structure of
a parametric expression; and (ii) estimation of the parameter values.

For validation, we show that our approach can capture three compelling vari-
ants of collective behaviors: (i) Hexagonal shape formation among homogeneous
agents; (ii) Square shape formation among heterogeneous agents; (iii) Coordi-
nated motion behaviors (i.e., boids [17]), which combine pairwise interactions
and data aggregation.

We compare our approach with several state-of-the-art methods for sym-
bolic regression. Our analysis reveals that, while hexagonal shape formation can
be solved by most methods, our method solves it more efficiently. In addition,
our method is capable to attack problems, such as square shape formation and
coordinated motion, which are not solvable by existing methods.

Our paper is organized as follows: in Sect. 2 we review existing work on
symbolic regression and highlight the novelty of our approach. In Sect. 3 we
present our approach. In Sect. 4 we report the results of our analysis. We conclude
the paper in Sect. 5.

2 Related Work

Symbolic regression is ubiquitous in science and engineering. Given a data set,
the objective is to produce a symbolic expression (i.e., a mathematical formula)
that closely fits the data. The constant growth, in both size and number, of
available datasets makes it increasingly more desirable to automate this process.
Depending on the nature and size of the dataset, the search for suitable symbolic

144 S. Powers et al.

Fig. 1. Overview of our overall approach. An overview of MME can be seen in Fig. 2.

expressions can be hard. With complex, non-linear phenomena, the search space
of possible expressions may suffer from combinatorial explosion.

A common approach to symbolic regression involves genetic algorithms (GAs)
[16]. An expression is represented as a syntax tree formed by mathematical oper-
ators, fundamental functions, and operands. The GA modifies the expressions
through mutation and crossover. At each iteration, the expressions are ranked
according to metrics such as accuracy and expression complexity [4,9,14,23,24].
A prominent approach is Epsilon-Lexicase Selection [12].

AI Feynman [21] tames combinatorial explosion through a diverse suite of
techniques. Extensive tests performed on well-known physics equations yielded
near-perfect performance, surpassing Epsilon-Lexicase Selection. However, our
analysis in Sect. 4 shows that the performance of AI Feynman on datasets of
collective behaviors is far from satisfactory.

Neural networks [10,13,18,20,22] are another approach to model collective
behaviors. In particular, Cranmer et al. proposed a method to perform symbolic
regression in particle systems that uses a GNN as a surrogate model [6]. Similarly
to our approach, the output of the GNN is fed to an GA designed for symbolic
regression. Cranmer et al. employed Eureqa - a commercial suite of machine
learning algorithms - and a self-developed Python-based library (PySR) [5]. Both
Eureqa and PySR evolve the expression tree along with its parameters in a single
step. We build upon this work to show that a nested, hierarchical GA greatly
enhances the performance of symbolic regression.

3 Methodology

3.1 System Overview

As mentioned, our approach is comprised of two phases as shown in Fig. 1. In
the first, we train a GNN to act as a surrogate model to replicate the target
collective behavior. In the second, we employ a nested genetic algorithm, MME,

Extracting Symbolic Models of Collective Behaviors 145

to select appropriate symbolic expressions. The macro layer selects a parametric
expression, while the micro layer tunes the expression’s parameters. Data gener-
ated by the GNN is used in the MME to evaluate the fitness of each candidate
expression. All code can be found at https://github.com/NESTLab/Extracting-
Symbolic-Models-of-Collective-Behaviors.

3.2 Input: Data and Priors

Our approach accepts raw data as input. For example, in modeling collective
motion, one could feed our approach with the poses of the individual agents.
However, it is often possible to hypothesize that certain post-processed expres-
sions of the raw data might be handy, e.g., distance between agents or its inverse.
We call these expressions priors. Including priors eliminates the need to “redis-
cover” them, making symbolic regression faster and more accurate. We highlight
that, in practice, there is no harm in providing priors that are unrelated to the
final expression, because both phases are able to ignore the unnecessary inputs.
This makes it possible to create “libraries” of common priors taken from the
literature, taking advantage of our approach to identify the correct priors. This
creates an interesting feedback loop for researchers engaged in model identifica-
tion, as the type of inputs selected for the final expression offer insight on the
nature of the mechanisms involved in the target collective behavior.

3.3 Phase 1: Graph Neural Networks

Graphs are natural models of swarm behaviors. Each node typically represents
an agent and edges capture pairwise interactions and relationships. GNNs are
neural networks superimposed on a graph structure. In a GNN, nodes, edges, and
even the entire graph are associated with neural networks, respectively referred
to as the node model (φn), the edge model or message function (φe), and the
graph model (φg). The node model captures the individual behavior of an agent
i as a result of internal state and pairwise interactions with neighbors, e.g., the
sum of virtual forces in hexagonal formation. The output of the node model is
the node state xi. The edge model represents the interaction between two agents
i and j, e.g., the Lennard-Jones potential [19]. Its output is called a message yij .
The graph model aggregates the states xi and messages yij to yield a swarm-
level representation z, e.g., the regularity of the hexagonal pattern. These models
are the ultimate targets of symbolic regression, depending on the application at
hand. From a mathematical standpoint, a GNN can be formalized as follows:

xi[t + 1] = φn(xi[t],
∑

j∈Ni

yij [t])

yij [t + 1] = φe(xi[t], xj [t])
z[t + 1] = φg(xi[t + 1], . . . , yij [t + 1], . . .)

where Ni indicates the neighborhood of agent i and t is the iteration index.

https://github.com/NESTLab/Extracting-Symbolic-Models-of-Collective-Behaviors
https://github.com/NESTLab/Extracting-Symbolic-Models-of-Collective-Behaviors

146 S. Powers et al.

3.4 Phase 2: Symbolic Modeling with Macro-Micro Evolution

Fitness Function. MME is a nested evolutionary algorithm in which the outer
(macro) evolution selects the structure of an expression λ, and the inner (micro)
evolution tunes its parameters. Both evolutions use the same fitness function
f(λ), which linearly combines two functions fc(·) and fa(·) of the complexity
and the accuracy of λ according to a weight ρ ∈ [0, 1]:

f(λ) = ρ · fc(complexity(λ)) + (1 − ρ) · fa(accuracy(λ)). (1)

Complexity. To measure the complexity of an expression λ, we first associate
a cost to each operator. For example, additions and subtractions, being simple
operators, could be assigned a cost of 2; exponentiation of the form 2λ could
be assigned a cost of 20. The complexity of an expression is then calculated as
the sum of the costs of each operator that appears in it. The user can define
what operators should be considered, along with the costs to using them. As a
parameter to MME, the user can also assign a target complexity τ for the final
expression, which indicates the acceptable complexity of the final expression.
Tuning τ is a way to prevent overfitting. The function fc(·) that transforms the
complexity is defined as

fc(λ) =
max(0, complexity(λ) − τ)

τ
.

Accuracy. We determine an individual’s accuracy via the Mean Square Error
(MSE) between the answers generated by an expression λ and the data generated
by the GNN. Any expression λ that, once evaluated, results in an undefined or
infinite value, or a complex number, is discarded. To prevent large values of MSE
from rendering the contribution of complexity negligible, we define

h(λ) =
MSE(λ)

MSE(λworst)

where λworst represents the least accurate expression within the subset of sur-
viving expressions of the generation.

Micro-Macro Evolution. At the start of each generation, MME performs
selection and duplicate removal. Selection involves picking a subset of high-fitness
expressions (the “parents”) and the creation of “children” through crossover and
mutation. Two individuals are considered duplicates if they share the same struc-
ture, regardless of the value of their parameters. Two passes of scoring then occur.
The first pass ranks the new children and the surviving parents. Those that are
bound to survive to the next generation are then run through the second pass,
i.e., the micro-evolutionary algorithm, to determine the optimal parameter val-
ues as shown in Fig. 2. While this could theoretically result in long run times,
in practice the micro evolution reaches convergence in a small number of gener-
ations. No automatic stopping criteria is used; MME is allowed to complete the
number of generations specified.

Extracting Symbolic Models of Collective Behaviors 147

Fig. 2. Representation of the difference between macro and micro phases of MME.
Circular nodes (structural) are modified in the macro phase while triangular nodes
(parameters) are modified in the micro phase.

4 Experimental Evaluation

To validate the effectiveness of our approach, we considered three case studies
with complementary features: hexagonal shape formation, square shape forma-
tion, and coordinated motion. A video that showcases the resulting collective
behaviors found by our approach against the original models is available at
https://youtu.be/r6r5GBH7Iuk.

Hexagonal Shape Formation. Shape formation is a well-studied problem in
both natural and artificial swarms. The typical model that achieves hexagonal
shapes imagines a swarm of identical agents immersed in an isotropic virtual
potential field, in which the distance between pairs of agents induces an inter-
action force between them. The Lennard-Jones (LJ) potential [19] is one of the
most common models of interaction due to its simplicity:

VLJ(r; δ, ε) = 4ε

((
δ

r

)12

−
(

δ

r

)6
)

where r is the current distance between the agents, δ is the distance at which
the potential is zero, and ε is the depth of the minimum. Differently from the
electric and gravity potentials, the LJ potential has both an attractive and a
repulsive component. The LJ potential is a good testbed to verify that the edge
model φe of a GNN can correctly capture the interaction force between identical
individuals, and that MME can derive a satisfactory approximation of the virtual
interaction force FLJ = −∂VLJ(r; δ, ε)/∂r.

Square Shape Formation. A straightforward extension of hexagonal forma-
tion is square formation. We divide the agents into two categories, e.g., by color,
and use different LJ potentials depending on the color of the agents. If two inter-
acting agents belong to different categories (i.e., have different colors, referred
to as non-kin), their target distance is σ = 6

√
δ; if the agents belong to the same

https://youtu.be/r6r5GBH7Iuk

148 S. Powers et al.

category (kin), their target distance is
√
2σ. Square formation tests whether the

GNN can correctly classify the two types of interaction in its edge model φe, and
whether symbolic regression is able to construct appropriate expressions.

Coordinated Motion. Coordinated motion (flocking) is a compelling test case
for our approach, due to the complex symbolic form of the control law followed
by the agents. We use the classical boids model by Reynolds [17], in which the
speed of an agent is calculated as the weighted sum of three components that
account for separation, alignment, and cohesion. For an agent, separation is
defined as the average of the repulsion forces to neighbors that are closer than a
certain threshold. Alignment is defined as the average of the velocities (
vj) of the
neighbors j of an agent. Cohesion is a unit vector that points to the centroid of
the position of the neighbors. Combination of these three terms results in Eq. 2
where C, S, and A are user-defined weighted values of the cohesion, separation,
and alignment terms respectively, |N | is the number of neighbors,
xj is the
position of a neighbor in a boid’s local coordinate frame, and ||
xj || its length:

Fboids(
xj , . . . ,
vj , . . .) =
1

|N |
∑

j∈N

(
C

xj

||
xj || − S

xj

||
xj ||2 + A
vj

)
. (2)

Coordinated motion allows us to verify the ability of a GNN to capture pair-wise
inter-agent interaction in the edge model φe, as well as the aggregation of such
interaction in the node model φn.

Data Generation. We followed a similar methodology across the three case
studies. In all of them, we ran simulations to generate a sufficient amount of
data. The agents were represented as holonomic point-masses operating in two
dimensions with coordinates ranging between 0 and 1m. Motion wrapped around
the environment boundaries, making it a torus. For simplicity, the mass of each
robot was set to 1 kg, and we used a double integrator to determine dynamics.
The actuation was the acceleration vector of each robot. Sensing and commu-
nication were assumed noiseless, and their range was 0.5m. The σ parameter
for hexagonal shape formation was set to 0.13m. For square shape formation,
the parameters were σkin = 0.13m and σnon-kin =

√
2σkin. As for boids, we set

C = 2, S = 75, and A = 3. We used 20 agents for the shape formation experi-
ments and 50 for boids. Overall, for each setup, we ran 250 simulations, each 25
simulated seconds long. We recorded data at 10Hz for shape formation experi-
ments and 30Hz for boids. After the simulations, we post-processed positional
and angular data to be between 0 and 1 for all inputs. All data passed to the
GNN was represented in Cartesian coordinates.

Extracting Symbolic Models of Collective Behaviors 149

Fig. 3. The outputs of the GNN relative to the actual LJ potentials for the hexagonal
(left) and square formations (right), as well as the errors of the angle of the output
vector of the GNN in the hexagonal formation (middle)

4.1 Accuracy of GNN Models

GNN Configuration. We employed the same type of GNN in every experi-
ment. The GNN used 4 fully connected layers: input and output layers whose
sizes depend on the case study, and two hidden ones with 300 neurons each.

Hexagonal Lattice. We trained a GNN for 200 epochs with the Adam opti-
mizer. To validate its performance, we ran the trained GNN with two inputs.
The first input represents an agent at the origin of the world, and the second rep-
resents an agent at a random distance from the first. The output from the GNN
represents the virtual force on the first agent expressed in Cartesian coordinates.
Figure 3 (left) compares the magnitude of the force vector due to the original LJ
potential used in simulation with 4,500 random outputs from the GNN, showing
remarkable similarity between the two. Figure 3 (middle) reports the error in the
angle of the force vector between the GNN and the reference vector. The error
is next to zero in the range [0, 0.2]m, which corresponds to the area where the
interaction between agents is most significant. The error increases with distance
beyond this range.

Square Lattice. We established the same setup for the square lattice case.
We obtained the same amount of data as was obtained in the hexagonal lat-
tice experiment, with the addition of edge attributes. Connections between kin
neighbors were given an attribute of 1, while non-kin had an attribute of 2. We
generated 10,000 pairs of nodes separated by random distances (between 0.07m
and 0.4m) and provided them as input to the GNN. 5,000 data points contained
edge attributes of 1, and 5,000 data points contained an edge attribute of 2. The
magnitude of the forces generated by the GNN compared to the reference are
reported in Fig. 3 (right). The GNN correctly categorized the kin and non-kin
interactions, showing acceptable accuracy in capturing both potentials.

150 S. Powers et al.

Table 1. Symbolic models found with the considered approaches.

Case study Target equation Algorithm Resulting equation

Hex
(1.2e − 10

x12

)
−

(2.2e − 5

x6

)
MME

(8e − 9

x10.07

)
−

(9.8e − 6

x6.54

)

PySR
−

(
0.42 − 0.06

x

)

(x − 0.02)
(
8.14e8x11.66 − x + 0.272

) − 0.04

EpLex 2.38x − 1.3 +
(0.15

x

)

AIF

(
5.6e − 5

(
x +

x0.5

− (x + 2)

))0.5

Square (Kin)
(7.84e − 9

x12

)
−

(1.7e − 4

x6

)
MME

(6.8e − 7

x9.75

)
−

(1.9e − 5

x7.75

)

Square (Non-Kin)
(1.2e − 10

x12

)
−

(2.2e − 5

x6

)
MME

(1.58e − 9

x10.67

)
−

(4e − 6

x6.79

)

Boids 2
�x

||�x|| −
(

75

||�x||

)
�x

||�x|| + 3�̇x MME 0.59
�x

||�x|| −
(

1

||�x||

)
�x

||�x|| +

(
1

||�̇x||

)
�̇x

Boids. For the boids experiment, we initially attempted to train the GNN using
solely raw data, but observed degraded performance. We then decided to provide
the network with priors. These were the distance and velocity vectors (
x and
̇x)
of a neighbor relative to the individual of interest, as well as the magnitudes (||
x||
and ||
̇x||) and the inverse of the magnitudes(1/||
x|| and 1/||
̇x||). We also included
the normalized (
x/||
x|| and
̇x/||
̇x||) version of these vectors. An example of the
resulting behavior compared to the reference is in the aforementioned video.

4.2 Symbolic Models

We compared MME to three other state-of-the-art symbolic regression algo-
rithms: AIFeynman (AIF) [21], Epsilon-Lexicase (EpLex) [12], and PySR [5].
For all three evolutionary algorithms (MME, PySR, and EpLex), we used a
population size of 4,000, and limited the operators to add, subtract, multiply,
divide, and power. Each run was allowed a maximum of 200 generations. We
capped to 3 and 15 the minimum and maximum number of operands in an
expression for EpLex. AIFeynman was set up differently due to its capabilities.
The algorithm—to the best of our knowledge—does not consider power opera-
tors; as such, the only operators given to it were add, subtract, multiply, divide,
negate, and invert. We specified the maximum number of polynomial terms to
6, and allowed the interpolating neural network to train up to 200 epochs.

Hexagonal Lattice. To test the effectiveness of using symbolic regression to
reverse engineer the data generated by a GNN, we reused the 4,500 points shown
in Fig. 3 (left) as input to all four algorithms. Each algorithm was run 30 times
on the same data. We set a target complexity τ of 12 for MME, where the
average cost of operations used was equal to the arity of the operation, with the
exception of the power operator in which the exponent was an operation instead
of a constant being 20 instead of 2.

We calculated the error using the MSE in which all values were clipped
between −1 and 1. These specific values allowed for easier analysis. PySR

Extracting Symbolic Models of Collective Behaviors 151

Fig. 4. The error from 30 runs of each evolutionary algorithm related to the actual
Lennard-Jones expression (left) and the GNN-generated output (middle) as well as the
best output equation from each algorithm (right).

and EpLex created several solutions containing asymptotic sections within the
domain of interest. This yielded very high errors in these sections, which skewed
the results significantly. The errors from the 30 experiments are shown in Fig. 4
in relation to the actual LJ potential used in simulation and also to the GNN-
generated output data. The best expression plotted in Fig. 4 is that which has
the lowest MSE relative to the GNN output data. The best expression found
within the 30 runs for each of the four algorithms is also shown in Table 1. It
should be noted that AIFeynman resulted in low MSE solely due to the fact that
complex numbers were ignored in this analysis.

As seen in Table 1, the expressions generated by MME are remarkably similar
to the target equation in structure. The only difference between the resulting
expression and the target expression are the parameters, which, in a practical
scenario, may be manually tuned as needed. No other state-of-the-art algorithm
finds any expression remotely similar in structure to the target equation. Even
if the found expressions are technically accurate in terms of MSE, they are
unrecognizable when compared to the original reference.

Square Lattice. Considering the similarities between the square and hexag-
onal shape formations, only MME was tasked with finding the resulting equa-
tions shown in Table 1. Once again, MME finds symbolic expressions identical
in structure to the target equations. This case, however, provides an interest-
ing observation into the resulting expressions parameters. While the parameters
between the resulting expressions and the target expressions are different, in
each case, the ratio between kin and non-kin are very similar, which results in a
behavior that is indistinguishable from the original.

Boids. We used MME to find a symbolic expression from the data from the
GNN and the 12 priors described in Sect. 4.1. After running MME 10 times
on this data, we sorted solutions by complexity first and then by MSE. The top

152 S. Powers et al.

equation was simplified manually and can be found in Table 1. While not identical
to the target equation, the resulting expression shows a strong similarity—each
of the three terms (cohesion, separation, and alignment) can be clearly seen in
the final expression. The final expression does not fully reproduce the observed
flocking behavior of boids, but we believe this to be due to the weights assigned
to each term. Specifically, the weight of the separation term was found to be
rather small compared to that of the original equation which results in a tight
formation. This can easily be fixed by manual tuning.

5 Conclusion

We presented an automatic approach to extract symbolic models of collective
behaviors. Our approach combines GNNs to approximate unknown network
functions from data and grammatical evolution to manipulate symbolic expres-
sions. By employing MME, a nested genetic algorithm, we reproduced expres-
sions that closely match the references. We validated our approach using three
non-trivial case studies: hexagonal and square pattern formation, and collective
motion. Our approach works well where the state-of-the-art struggles.

Our approach does not remove the need for expert knowledge and ingenuity
in deriving models of collective behaviors from real data. Hypothesis testing and
experiment design remain in the hands of the researchers. However, automati-
cally producing viable candidate expressions facilitates the job. The expressions
we can produce are compact : our approach explicitly promotes short expressions,
which are human-readable and easier to analyze. Furthermore, our approach
offers the means to understand which parts of the input (i.e., raw data or priors
with a generic set of functions) matter. This offers informative feedback to drive
better hypothesis testing and experiment design.

Future work includes replacing the MSE with alternate methods of determin-
ing the accuracy of a signal, such as dynamic time warping and cross correlation
coefficients. Other machine learning techniques such as Turing Learning and
generative adversarial networks may also be used.

Acknowledgments. This work was funded by a DCRG grant from MathWorks, Inc.
Results in this paper were obtained in part using a high-performance computing system
acquired through NSF MRI grant DMS-1337943 to WPI.

References

1. Birattari, M., Ligot, A., Francesca, G.: AutoMoDe: a modular approach to the
automatic off-line design and fine-tuning of control software for robot swarms.
In: Pillay, N., Qu, R. (eds.) Automated Design of Machine Learning and Search
Algorithms. NCS, pp. 73–90. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-72069-8_5

2. Brown, D.S., Turner, R., Hennigh, O., Loscalzo, S.: Discovery and exploration of
novel swarm behaviors given limited robot capabilities. In: Groß, R., et al. (eds.)
Distributed Autonomous Robotic Systems. SPAR, vol. 6, pp. 447–460. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73008-0_31

https://doi.org/10.1007/978-3-030-72069-8_5
https://doi.org/10.1007/978-3-030-72069-8_5
https://doi.org/10.1007/978-3-319-73008-0_31

Extracting Symbolic Models of Collective Behaviors 153

3. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau,
E.: Self-Organization in Biological Systems. Princeton Studies in Complexity.
Princeton (2003)

4. Chen, Q., Zhang, M., Xue, B.: Feature selection to improve generalization of genetic
programming for high-dimensional symbolic regression. IEEE Trans. Evol. Com-
put. 21(5), 792–806 (2017). https://doi.org/10.1109/tevc.2017.2683489

5. Cranmer, M.: PySR: fast & parallelized symbolic regression in Python/Julia
(2020). https://doi.org/10.5281/zenodo.4041459

6. Cranmer, M.D., et al.: Discovering symbolic models from deep learning with induc-
tive biases. CoRR abs/2006.11287 (2020). https://arxiv.org/abs/2006.11287

7. Ferrante, E., Duéñez-Guzmán, E., Turgut, A.E., Wenseleers, T.: GESwarm: gram-
matical evolution for the automatic synthesis of collective behaviors in swarm
robotics. In: Proceedings of the 15th Annual Conference on Genetic and Evolution-
ary Computation, GECCO 2013, pp. 17–24. Association for Computing Machinery,
New York (2013). https://doi.org/10.1145/2463372.2463385

8. Francesca, G., et al.: AutoMoDe-chocolate: automatic design of control software
for robot swarms. Swarm Intell. 9(2), 125–152 (2015). https://doi.org/10.1007/
s11721-015-0107-9

9. Huang, Z., Zhong, J., Feng, L., Mei, Y., Cai, W.: A fast parallel genetic program-
ming framework with adaptively weighted primitives for symbolic regression. Soft.
Comput. 24(10), 7523–7539 (2019). https://doi.org/10.1007/s00500-019-04379-4

10. Kaufmann, R., Gupta, P., Taylor, J.: An active inference model of collective intel-
ligence. Entropy 23(7) (2021). https://doi.org/10.3390/e23070830, https://www.
mdpi.com/1099-4300/23/7/830

11. Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control
architecture in the automatic modular design of robot swarms. In: Dorigo, M.,
Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS
2018. LNCS, vol. 11172, pp. 30–43. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7_3

12. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In:
Proceedings of the Genetic and Evolutionary Computation Conference 2016 (2016).
https://doi.org/10.1145/2908812.2908898

13. Li, Q., Gama, F., Ribeiro, A., Prorok, A.: Graph neural networks for decentralized
multi-robot path planning. CoRR abs/1912.06095 (2019). http://arxiv.org/abs/
1912.06095

14. Motta, F.A., Freitas, J.M.D., Souza, F.R.D., Bernardino, H.S., Oliveira, I.L.D.,
Barbosa, H.J.: A hybrid grammar-based genetic programming for symbolic regres-
sion problems. In: 2018 IEEE Congress on Evolutionary Computation (CEC)
(2018). https://doi.org/10.1109/cec.2018.8477826

15. Neupane, A., Goodrich, M.: Learning swarm behaviors using grammatical evolu-
tion and behavior trees. In: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, pp. 513–520. International Joint Conferences
on Artificial Intelligence Organization, Macao (2019). https://doi.org/10.24963/
ijcai.2019/73

16. Orzechowski, P., La Cava, W., Moore, J.H.: Where are we now? In: Proceedings
of the Genetic and Evolutionary Computation Conference (2018). https://doi.org/
10.1145/3205455.3205539, http://dx.doi.org/10.1145/3205455.3205539

17. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: SIG-
GRAPH 1987: Proceedings of the 14th Annual Conference on Computer Graph-
ics and Interactive Techniques, pp. 25–34 (1987). https://doi.org/10.1145/37401.
37406

https://doi.org/10.1109/tevc.2017.2683489
https://doi.org/10.5281/zenodo.4041459
https://arxiv.org/abs/2006.11287
https://doi.org/10.1145/2463372.2463385
https://doi.org/10.1007/s11721-015-0107-9
https://doi.org/10.1007/s11721-015-0107-9
https://doi.org/10.1007/s00500-019-04379-4
https://doi.org/10.3390/e23070830
https://www.mdpi.com/1099-4300/23/7/830
https://www.mdpi.com/1099-4300/23/7/830
https://doi.org/10.1007/978-3-030-00533-7_3
https://doi.org/10.1007/978-3-030-00533-7_3
https://doi.org/10.1145/2908812.2908898
http://arxiv.org/abs/1912.06095
http://arxiv.org/abs/1912.06095
https://doi.org/10.1109/cec.2018.8477826
https://doi.org/10.24963/ijcai.2019/73
https://doi.org/10.24963/ijcai.2019/73
https://doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/3205455.3205539
http://dx.doi.org/10.1145/3205455.3205539
https://doi.org/10.1145/37401.37406
https://doi.org/10.1145/37401.37406

154 S. Powers et al.

18. Ried, K., Müller, T., Briegel, H.J.: Modelling collective motion based on the prin-
ciple of agency: General framework and the case of marching locusts. PLOS One
14(2), 1–21 (2019). https://doi.org/10.1371/journal.pone.0212044

19. Smit, B.: Phase diagrams of Lennard-Jones fluids. J. Chem. Phys. 96(11), 8639–
8640 (1992). https://doi.org/10.1063/1.462271

20. Tolstaya, E., Gama, F., Paulos, J., Pappas, G., Kumar, V., Ribeiro, A.: Learning
decentralized controllers for robot swarms with graph neural networks. In: Kael-
bling, L.P., Kragic, D., Sugiura, K. (eds.) Proceedings of the Conference on Robot
Learning. Proceedings of Machine Learning Research, 30 October–01 November
2020, vol. 100, pp. 671–682. PMLR (2020). https://proceedings.mlr.press/v100/
tolstaya20a.html

21. Udrescu, S.M., Tegmark, M.: AI Feynman: a physics-inspired method for sym-
bolic regression. Sci. Adv. 6(16), eaay2631 (2020). https://doi.org/10.1126/sciadv.
aay2631, https://www.science.org/doi/abs/10.1126/sciadv.aay2631

22. Ward, C.R., Gobet, F., Kendall, G.: Evolving collective behavior in an
artificial ecology. Artif. Life 7(2), 191–209 (2001). https://doi.org/10.1162/
106454601753139005

23. White, T., Salehi-Abari, A.: A swarm-based crossover operator for genetic program-
ming. Proceedings of the 10th Annual Conference on Genetic and Evolutionary
Computation - GECCO 2008 (2008). https://doi.org/10.1145/1389095.1389356

24. Zhong, J., Feng, L., Cai, W., Ong, Y.: Multifactorial genetic programming for
symbolic regression problems. IEEE Trans. Syst. Man Cybern. Syst. 50, 4492–
4505 (2020)

https://doi.org/10.1371/journal.pone.0212044
https://doi.org/10.1063/1.462271
https://proceedings.mlr.press/v100/tolstaya20a.html
https://proceedings.mlr.press/v100/tolstaya20a.html
https://doi.org/10.1126/sciadv.aay2631
https://doi.org/10.1126/sciadv.aay2631
https://www.science.org/doi/abs/10.1126/sciadv.aay2631
https://doi.org/10.1162/106454601753139005
https://doi.org/10.1162/106454601753139005
https://doi.org/10.1145/1389095.1389356

Learning Resilient Swarm Behaviors
via Ongoing Evolution

Aadesh Neupane(B) and Michael A. Goodrich

Department of Computer Science, College of Physical and Mathematical Sciences,
Brigham Young University, Provo, UT, USA

adeshnpn@byu.edu, mike@cs.byu.edu

Abstract. Grammatical evolution can be used to learn bio-inspired
solutions to many distributed mulitagent tasks, but the programs learned
by the agents are often not resilient to perturbations in the world. Biolog-
ical inspiration from bacteria suggests that ongoing evolution can enable
resilience, but traditional grammatical evolution algorithms learn too
slowly to mimic rapid evolution because they utilize only vertical, parent-
to-child genetic variation. Prior work with the BeTr-GEESE grammat-
ical evolution algorithm showed that individual agents who use both
vertical and lateral gene transfer rapidly learn programs that perform
one step in a multi-step problem even though the programs cannot per-
form all required subtasks. This paper shows that BeTr-GEESE can use
ongoing evolution to produce resilient collective behaviors on two goal-
oriented spatial tasks, foraging and nest maintenance, in the presence
of different types of perturbation. The paper then explores when and
why BeTr-GEESE succeeds, emphasizing two potentially generalizable
properties: modularity and locality. Modular programs enable real-time
lateral transfer, leading to resilience. Locality means that the appropriate
phenotypic behaviors are local to specific regions of the world (spatial
locality) and that recently useful behaviors are likely to be useful again
in the near future (temporal locality).

1 Introduction

Bees, ants, termites, and other biological collectives efficiently solve complex prob-
lems without centralized control like finding a new site, foraging, nest-building,
and protecting the colony, even when the environment fluctuates [21,60]. Such
biological collectives resiliently accomplish tasks1 in the presence of various per-
turbations that arise in the environment. Research has identified various resilience
mechanisms including stress-induced adaptation [39,50], local interaction [21],
task switching [59], lateral transfer [34], and modularity [71].

The purpose of this paper is to identify potentially generalizable proper-
ties that can enable grammatical evolution to use ongoing evolution to produce
1 Resilient task performance differs from ecological resilience in which population sizes

show resilience to variations [22] and from stability-based definitions of resilience in
which some property of a collective remains in a locally stable region [24].

c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 155–170, 2022.
https://doi.org/10.1007/978-3-031-20176-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_13&domain=pdf
https://doi.org/10.1007/978-3-031-20176-9_13

156 A. Neupane and M. A. Goodrich

resilient swarm behaviors. Evolutionary approaches are powerful tools for learning
bio-inspired swarm behaviors [12,15,79]. Grammatical evolution (GE) is a type
of algorithmic evolution where evolutionary operators act on a given grammar to
learn individual agent programs from the grammar. GE has been used to evolve
swarm behaviors [18,43,44], and most demonstrations first evolve solutions and
then deploy those learned solutions as fixed strategies. These fixed strategies can
fail or degrade when perturbations are introduced into the environment.

Biology suggests solutions to overcome performance degradation of fixed
strategies including stressed induced mutation, lateral gene transfer, and contin-
uous evolution in bacteria [23]. A simple view of rapid adaptation is (a) that indi-
vidual agents learn modular, circumstance-specific behaviors, and (b) that collec-
tive diversity allows suitable module exchange when circumstances change [30,76].
Ongoing evolution is unlikely to increase the resilience of many GE algorithms
for two reasons. First, many GE algorithms learn too slowly to rapidly adapt, as
demonstrated by the low rate of learning successful behaviors [19]. Second, the fit-
ness of many collective behaviors requires significant coordination among agents,
making it difficult to apportion fitness to the individual agents trying to learn how
to contributed to the collective task. Carefully constructed fitness functions (e.g.,
intrinsic and extrinsic motivators [44,62,77]) help solve the second problem but
are unlikely to be as useful in the presence of perturbations since new fitness func-
tions might be needed for each perturbation type.

A curious phenomenon in prior work on the BeTr-GEESE grammatical evolu-
tion algorithm suggests that the algorithm can be adapted to successfully apply
lateral gene transfer to produce collective resilience. Specifically, BeTr-GEESE
agents successfully perform collective foraging and nest maintenance while they
are evolving, but when learning stops the collective performs poorly [45]. Individ-
ual BeTr-GEESE agents do not learn programs that are sophisticated enough to
perform all required subtasks but instead rapidly learn modular behaviors that
perform only one subtask. The collective succeeds by using “time-multiplexing”
in which agents switch behaviors by laterally exchanging modules, allowing all
subtasks to be performed [45]. Time-multiplexing is a form of lateral gene trans-
fer [48] in which genetic material transfers between organisms, in contrast to
vertical gene transfer from parent to child.

This paper explores how BeTr-GEESE uses lateral gene transfer to produce
resilient swarm behaviors in two distributed, divisible and additive2 spatial tasks:
foraging and nest maintenance. Resilience is first demonstrated by applying var-
ious types of perturbations during evolution and then measuring resulting per-
formance. The concepts of modularity and locality are then used to explain how
resilience emerges. Modularity in evolutionary algorithms means geneotype-to-
phenotype mappings tend to associate specific phenotypic characteristics with
specific genes, in contrast to “general purpose” genes that exhibit complex phe-
notypes [76]. The divisible and additive nature of foraging and nest maintenance
mean that individual agents can evaluate the fitness of modular behaviors with-

2 Divisible and additive multiagent tasks can be broken into subtasks achievable by
individual programs that each contribute to the group problem to be solved [65].

Learning Resilient Swarm Behaviors via Ongoing Evolution 157

out requiring the cooperation of many agents. Locality is a concept from the field
of trace compression and cache design in computer architecture [57,63] in which
useful bytes of data cluster in time (temporal locality) and in adjacent memory
cells (spatial locality). In a multiagent collective solving a spatial task, tempo-
ral locality means that a (modular) behavior that has been useful in the recent
past is likely to be useful again soon, and spatial locality means that successful
(modular) behaviors are likely to be localized to certain regions of the world.

2 Related Work

The ability of biological collectives to solve problems with partial, uncertain
information has motivated AI researchers to mimic their behaviors [6,40,47,
55,56]. One way to create collective algorithms is to collect data from natu-
ral colonies and then create mathematical models that can be used in algo-
rithms [46,67,68]. Another way is to use evolutionary techniques to evolve agent
behaviors [11].

Evolutionary robot systems require the creation of agent controllers: (i) state-
machines [18,29,51,52], (ii) neural networks [7,14,38,72], (iii) behavior trees [32,
33], and (iv) controllers learned through genetic or grammatical evolution [4,18,
31,42]. Individuals in a swarm do not need to possess complex capabilities to
evolve effective swarm behaviors [31]. Even with favorable controller choices,
evolutionary algorithms, and fitness functions [41], evolved collective behaviors
often degrade when tested with real robots or in presence of uncertainties [26].

Modularity contributes to evolving resilient behaviors because (i) modular
organizations permit changes to one module without perturbing other modules
and (ii) modules can be combined and reused to create new functions [1,2,76,78].
In a modular system, a module has more frequent interaction within the subsys-
tem than outside the subsystem [61], so modularity is the measure of interaction
between different components in a system [53,61]. For example, a highly modu-
lar grammar enabled a GE algorithm to evolve better multiagent solutions [69].
Evolving resilience might require additional evolutionary operations, such as lat-
eral gene transfer [25,35,54]. Lateral transfer allows single agents to efficiently
evolve complex behaviors when rewards are sparse and delayed [16,37].

There are many evolutionary algorithms designed to learn resilient swarm
and multiagent behaviors [3,5,27,36,74,75]. Unfortunately, high fitness is not
equivalent to resilient behaviors and fittest individuals are easily disrupted by
genetic changes [64]. To the best of our knowledge, this paper is the first to eval-
uate the resilience of a grammatical evolution algorithm using ongoing evolution.

3 BeTr-GEESE Overview

BeTr-GEESE agents [45] use sense-act-update evolution steps to learn individual
behaviors or “programs” from a bio-inspired task grammar. During the sense
phase, agents exchange genes with (nearby) agents. The definition of “nearby” is
controlled by the grid size (GS) parameter, and the willingness to transfer genes
is controlled by the interaction probability (IP). During the act phase, an agent

158 A. Neupane and M. A. Goodrich

queries its storage pool to determine whether the pool size exceeds its storage
threshold (ST) parameter. If the threshold is exceeded, agents apply the select-
crossover-mutate genetic operations to the gene pool. During the update phase,
an agent replaces its current gene if there is a new gene with higher fitness.
BeTr-GEESE agents discard all other genes after updating and begin again.

Like other GE algorithms, BeTr-GEESE encodes genes as a sequence of inte-
ger codons. The codon sequence specifies the order in which grammar productions
are used to produce the agent controller phenotype. The BeTr-GEESE gram-
mar (see appendix) implements a behavior tree (BT) that has a postcondition,
precondition, action (PPA) structure [8], with leaf nodes that either test basic
properties of the environment (productions (7, 11)) or perform basic actions like
moving or picking up objects (production (14)). The names in productions (7,
11, 15) are self-explanatory given the descriptions of foraging and nest main-
tenance in Sect. 4.1. Each BT returns a success, failure, or running status that
encodes how successful the program has been in satisfying a post-condition.

Each agent acts in the environment using its phenotype program. BeTr -
GEESE rewards behaviors that promote genetic diversity and world exploration,
observe or accomplish subtasks, or avoid constraint violations. Phenotype fitness
is subjectively defined as At = 0.1(At−1) + (Et + Bt), where A0 = D. Pheno-
type fitness is evaluated over time, which is necessary because there is delay
between acting and receiving a reward. When agents exchange genes, they also
exchange the genes’ fitness values, making it possible for an agent to avoid “test-
ing” the phenotype because its fitness is known. Diversity fitness, D, promotes
gene diversity and is used when a gene is first created (t = 0) from either
the initial random population or through mutation and crossover of an existing
gene pool [58,70,73]; D is defined as the total number of unique behavior nodes
in the BT divided by the total possible behaviors. Exploration fitness [10], E,
promotes visiting new locations, and is defined as the number of unique world
locations visited by the agent. BT feedback fitness, B, is defined as the sum of
post-condition, constraint, and BT root node rewards. For each post-condition
or root node status returning success, a subjectively chosen reward of +1 occurs,
and −2 reward occurs if a constraint node returns failure.

4 Resilience Experiments

This section demonstrates that, when the BeTr-GEESE algorithm uses ongoing
evolution, agents are capable of solving problems that arise when the world or
the agents are perturbed. The next section explores why.

4.1 Experiment Design

Experiments were conducted using two tasks: foraging and nest maintenance.
Experiments use a population of 100 agents that move with speed of 2 units
per time step in a 100 × 100 grid environment with agent neighborhood sensing
defined by the grid size parameter GS = 10. A hub of radius ten is placed at

Learning Resilient Swarm Behaviors via Ongoing Evolution 159

the origin. A maximum of 12,000 evolution steps are allowed. Quoting from [45],
foraging requires agents to retrieve food from a source to a hub. A single foraging
site of radius ten with 100 “food” units is randomly placed at 30 units from the
hub. Task performance is the percentage of food at the hub. Nest maintenance
requires agents to move debris near the hub to anywhere farther than 30 units
from the hub. 100 “debris” objects are placed within ten units of the hub.

Parameters BeTr-GEESE

Parent-selection Most fit 50%
Mutation probability 0.01
Crossover probability 0.9
Crossover variable_onepoint [17,49]
Maximum depth of derivation tree 10 levels

The parameters in the table above are used in the experiments. These parame-
ters were subjectively selected from choices made in prior work on grammatical
evolution. Maximum tree depth is a practical parameter that limits the effect of
recursive dependencies in the grammar. PonyGE2 [17] was used to implement
GEESE-BT and BeTr-GEESE. BT controllers were created using py_trees [66],
and the swarm simulation environment was created using Mesa [28]. Experiments
ran on a machine with an i9 CPU, 64 GB RAM running 16 parallel threads.

The independent variable is perturbation type, described below [36]. The
first dependent variable is the power resilience metric [36], defined as the peak
success probability achieved before the maximum number of allowed evolution
steps T = 12000. The second dependent variable is an affine transformation
of the time efficiency (tθ) resilience measure [36], which is defined as the time
required for an algorithm to satisfy a given performance threshold θ = 80%.
Efficiency is defined as e = ((Tmax − tθ)/Tmax) ∗ 100 where Tmax = 12000.
Efficiency is set to zero for trials in which the threshold is not met.

4.2 Results

The four upper (respectively, lower) sub-plots in Fig. 1 show power (respectively,
efficiency) for each swarm task. Sixteen independent simulations were performed
for each experiment condition described below.

Ablation. An ablation perturbation reduces information, control, or possibili-
ties [36]. Adding obstacles is an ablation perturbation since obstacles reduce the
navigable space for the agents. In experiments, obs ∈ {1, 2, . . . , 5} obstacles are
added to the world at time t ∈ {1000, 2000, . . . , 11000}. Obstacles remain in the
world after their introduction. The experiment conditions are all combinations
of t and obs. The first column of Fig. 1 shows mean power and efficiency.

160 A. Neupane and M. A. Goodrich

Fig. 1. Efficiency and power over a range of perturbations for foraging and next main-
tenance; IP = 0.85, ST = 7, and GS = 10.

Addition. An addition perturbation increases the set of observable states or
actions [36]. An experiment was performed where new actions are added to the
BeTr-GEESE BNF grammar in Appendix A as follows:

This modification increases an agent’s action set by allowing an agent
to choose between locomotion behaviors with/without obstacle avoidance.
Two obstacles were randomly added to the environment at time t ∈
{1000, 2000, . . . , 11000}. The second column of Fig. 1 shows mean power and
efficiency.

Distortion. A distortion perturbation alters the probability with which states
or actions occur [36]. Altering IP changes how frequently agents evolve, dis-
torting probable states and actions. Experiment conditions used IP values in
{0.8, 0.85, 0.9, 0.99}. The third column of Fig. 1 shows mean power and efficiency.

Shift. A shift perturbation combines the effects of multiple instances of ablation,
addition, or distortion operations [36]. For the shift experiments, lateral transfer
is initially turned on but turned off at time step 1000 for a duration of Δ ∈
{1000, 2000, . . . , 4000} time steps, preventing an agent from collecting genes from
neighbors. The fourth column of Fig. 1 shows mean power and efficiency.

Learning Resilient Swarm Behaviors via Ongoing Evolution 161

4.3 Discussion

BeTr-GEESE agents show high resilience according to the power metric. Given
sufficient time, agents evolve solutions when perturbations occur. High power
persists across a range of perturbation types and parameters. The behaviors
are inefficient because evolving revised solutions rarely occurs quickly. A power-
efficiency tradeoff is observed, similar to optimality-robustness tradeoffs in con-
trol theory, where robust systems are often suboptimal [13,20]. Thus, ongoing
evolution makes BeTr-GEESE agents inefficient but with high resilience power.

5 What Enables Resilience?

The section’s goal is to identify properties of the BeTr-GEESE algorithm that
could potentially generalize to other problems and GE swarm algorithms. Under-
standing these properties also sheds light on the limitations of using ongoing
lateral transfer in GE to enable resilience.

5.1 Modularity

This subsection evaluates modularity properties of BeTr-GEESE. In prior
work [45], two GE algorithms were compared: BeTr-GEESE and GEESE-BT.
The two algorithms used the same genetic operators, the same parameter values
(IP = 0.85, ST = 7, and GS = 10), the same form of lateral transfer between
agents, the same basic actions, and the same preconditions and postconditions.
The algorithms differed in three ways. First, BeTr-GEESE’s grammar had a
CanMove constraint necessary when obstacles are present in the world. Sec-
ond, GEESE-BT’s grammar produced traditional BTs and BeTr-GEESE’s gram-
mar produced PPA-style BTs [8]. Third, BeTr-GEESE used the fitness function
described above, and GEESE-BT used both the fitness function above and task-
specific motivators.

In the prior work, foraging (respectively, nest maintenance) was considered
successful if more than 80% of the food is collected (respectively, debris is
removed) during the time period when agents were evolving. Success rate was
defined as the ratio of the number of successful evolution trials to the total num-
ber of trials. BeTr-GEESE’s success rate was 75%, more than eight times higher
than GEESE-BT even when GEESE-BT used the task-specific fitness functions.
Note that success requires each basic action (production 15) in the grammar.

Having established that BeTr-GEESE performs successfully while learning,
we now present new work that addresses whether the BeTr-GEESE grammar
is more modular than GEESE-BT’s grammar according to existing modularity
metrics [9,53,61]. The BeTr-GEESE and GEESE-BT grammars have the same
terminals with one exception: the CanMove constraint. The other terminals
encode the basic actions, preconditions, postconditions, and constraints. The
PPA structure encoded in BeTr-GEESE’s grammar redundantly includes checks
of constraints and postconditions, so 30 terminals appear on the right-hand-
side (RHS) of productions in contrast to 24 for GEESE-BT. The PPA structure

162 A. Neupane and M. A. Goodrich

also produces “wider” trees, and this requires more non-terminals (20 to 11).
BeTr-GEESE also has more productions and possible derivation trees, yielding a
higher value of McCabe cyclomatic complexity (44 to 27). Finally, BeTr-GEESE
averages fewer symbols on the RHS of productions (3.75 to 4.09) and produces
programs that are more difficult to understand according to the Halstead effort
metric (283.62 to 132.94). Thus, on one hand, these size modularity metrics
suggest that BeTr-GEESE’s grammar is less modular than GEESE-BT.

On the other hand, structural modularity metrics suggest that the BeTr-
GEESE grammar is more modular. Specifically, derivation trees for BeTr-GEESE
are more treelike (as opposed to more closely representing graphs) according to
the tree impurity metric (7.6% to 15.56%). Additionally, related functionalities
(non-terminals) in BeTr-GEESE are more logically grouped together according
to the nslev clustering metric (8 to 6) and according to the normalized count of
levels metric (40% to 36.36%). Derivation trees produced by the BeTr-GEESE
grammar have higher correlations between non-terminals, and these correlations
theoretically make it easier to learn syntactically correct programs.

Existing modularity metrics are ambiguous: BeTr-GEESE derivation trees
are complex but have some structural correlations that might enable learning. An
alternative notion of modularity is how well the task can be divided into “chunks”.
Both foraging and nest maintenance are divisible and additive [65]. They are
divisible because the multistep mission of finding, moving, and dropping objects
can be broken into subtasks. They are additive because individual agents can
independently contribute to the cumulative success of the group. Agents need not
all be coordinating to succeed, and no single agent has to perform all subtasks.
Thus, for example, an agent can (incorrectly) move an object to an undesirable
location, and another agent can move it to a desired location.

BeTr-GEESE uses the divisibility and additive properties to produce modu-
lar behaviors wherein genes only express simple actions. Each codon in a gene
represents a production number in the grammar, so the sequence of codons in the
gene encodes the derivation tree as a sequence of productions used to produce
a valid PPA-style BT. The size modularity metrics indicate an important prop-
erty of the derivation trees: many productions are needed for each simple action
in the tree. The limited gene size, no more than 100 codons per gene, inhibits
including all of the productions necessary for a valid, multi-action phenotype.

BeTr-GEESE limited gene expressiveness works well with its fitness function
to learn single action phenotypes. Indeed, the prior work reported that 98% of
the programs created by BeTr-GEESE had only one of the basic actions from
production (15), while successful programs produced by GEESE-BT included
all four. BeTr-GEESE fitness function includes feedback from the PPA-style BT
phenotype, inhibiting constraint violations, promoting the use of basic actions,
and rewarding successful subtask completion. Thus, even though BeTr-GEESE’s
derivation trees can be complex, the BT provides feedback that inhibit trees that
do not perform any subtasks and promote trees that can perform single subtasks.
Thus, BeTr-GEESE is modular in the sense that subtask-specific trees receive
rapid feedback, which works well with divisible and additive collective tasks.

Learning Resilient Swarm Behaviors via Ongoing Evolution 163

5.2 Locality

BeTr-GEESE allows modular behaviors to be quickly learned, but agents still
need to be able to perform all subtasks to successfully forage or maintain the
nest. This subsection shows that lateral transfer allows modular behaviors to
be changed so that individual agents can find, carry, and drop objects, thus
performing all necessary subtasks. The properties of lateral transfer is evaluated
by describing the locality characteristics of the algorithm.

We begin with temporal locality. Temporal locality is the notion that a gene,
and its associated phenotype, has a time window in which it is useful. A pheno-
type capable of performing a subtask must persist long enough for the subtask
to be accomplished (e.g., explore until a site is found, travel from site to hub).
But if an agent “holds onto” the gene too long then the agent cannot switch to
the next needed subtask. Recall that after a BeTr-GEESE agent has received a
sufficiently large number of genes through inter-agent interactions, it performs
the standard genetic operators, selects the most fit, and then discards all but the
most fit gene. Thus, how long a gene persists is determined by how frequently
agents meet and exchange genes through lateral transfer. The lower bound on
how long a gene persists is therefore controlled by: (i) how often agents are
within close enough range to exchange genes (GS), (ii) how often agents with
range exchange genetic information (IP), and (iii) the number of genes required
before an agent applies the genetic operators (ST). How often the agent are in
close range cannot be controlled directly, but IP and ST can be varied to control
for how often agents meet each other.

Fig. 2. a) Foraging (%) vs IP. ST = 7. b) Relationship between IP, ST, and foraging
(%).

Sixteen independent foraging runs were conducted for each value of IP and
ST, and the experiment results are summarised with box and whisker plots in
Fig. 2. Figure 2a) shows that with a high willingness to transfer genes to other
agents (IP > 0.8), the agents can change genes rapidly, promoting evolution
through lateral and vertical transfer. When IP < 0.6, the agents persist with

164 A. Neupane and M. A. Goodrich

current behaviors too long, slowing down evolution. Figure 2b) shows that when
ST is high, which means that agents must meet many other agents before evolv-
ing, agents are not able to change controllers quickly, and their performance goes
down. Both figures show that too much persistence hinders evolution.

Figure 3 shows that BeTr-GEESE agents exhibit spatial locality. The colors in
the figure indicate the most fit gene when agents perform the genetic operators.
The figure is constructed from the first 3000 evolution steps in one success-
ful simulation, but all successful simulations exhibit similar locality patterns.
The most fit gene selected by BeTr-GEESE agents depends on the location of
the environment. For example, the figure shows a uniform distribution of blue
explore-the-world behaviors. The figure also shows yellow clusters of carry-an-
object behaviors, green clusters of drop-an-object behaviors, and linear clouds
of move-towards and move-away behaviors. Clusters and clouds form around
and between the hub and food sites, enabling agents to meet and evolve rele-
vant controllers to solve particular sub-tasks at particular locations. The meeting
locations enable lateral transfer of useful genes, which tend to localize around
those regions of the world where specific subtasks are needed.

Fig. 3. Visualizing spatial locality: ST = 7, IP = 0.85, GS = 10, 3000 evolution steps.

6 Conclusion

The BeTr-GEESE grammatical evolution algorithm resiliently responds to envi-
ronment perturbations by enabling ongoing evolution. Rapid ongoing evolution
is possible because the algorithm uses a limited gene size, thereby producing
agent programs that are modular in the sense that they can only perform single
subtasks. These modular, subtask-specific programs can be exchanged through
lateral transfer to sequentially perform all required subtasks, which produces
resilient performance in divisible and additive group tasks like foraging and nest
maintenance. Switching between subtasks is enabled by lateral gene transfer, but
the behaviors of successful groups must exhibit temporal locality, meaning that
an agent must persist in a behavior long enough to perform basic functions but

Learning Resilient Swarm Behaviors via Ongoing Evolution 165

also meaning that agents cannot persist too long or else evolution is too slow.
Lateral transfer occurs at spatially local regions of the world where agents are
likely to meet, allowing location-specific behaviors to be adopted by neighbor-
ing agents. Ongoing evolution through lateral transfer of simple modules exhibits
resilience in the sense that agents can adapt to perturbations and still succeed in
their tasks, but this adaptation might be inefficient. Future work should explore
how modularity and locality in BeTr-GEESE can be applied not only to other
GE algorithms and other types of multiagent problems, but also to designing
efficient, fixed behaviors that produce resilient collective behaviors.

A PPA Grammar

166 A. Neupane and M. A. Goodrich

References

1. Bongard, J.: Morphological change in machines accelerates the evolution of robust
behavior. Proc. Natl. Acad. Sci. 108(4), 1234–1239 (2011)

2. Bongard, J.C.: Accelerating self-modeling in cooperative robot teams. IEEE Trans.
Evol. Comput. 13(2), 321–332 (2008)

3. Bredeche, N., Montanier, J.M., Liu, W., Winfield, A.F.: Environment-driven dis-
tributed evolutionary adaptation in a population of autonomous robotic agents.
Math. Comput. Model. Dyn. Syst. 18(1), 101–129 (2012)

4. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot.
Autom. 2(1), 14–23 (1986)

5. Canciani, F., Talamali, M.S., Marshall, J.A., Bose, T., Reina, A.: Keep calm and
vote on: swarm resiliency in collective decision making. In: Proceedings of Work-
shop Resilient Robot Teams of the 2019 IEEE International Conference on Robotics
and Automation (ICRA 2019), p. 4 (2019)

6. Cheng, J., Cheng, W., Nagpal, R.: Robust and self-repairing formation control for
swarms of mobile agents. In: AAAI, vol. 5 (2005)

7. Cliff, D., Husbands, P., Harvey, I., et al.: Evolving visually guided robots. From
Animals Animats 2, 374–383 (1993)

8. Colledanchise, M., Ögren, P.: Behavior trees in robotics and al: an introduction
(2018)

9. Črepinšek, M., Kosar, T., Mernik, M., Cervelle, J., Forax, R., Roussel, G.: On
automata and language based grammar metrics. Comput. Sci. Inf. Syst. 14, 309–
329 (2010)

10. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 1–33 (2013)

11. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.: Evolutionary robotics:
what, why, and where to. Front. Robot. AI 2, 4 (2015)

12. Doncieux, S., Mouret, J.B., Bredeche, N., Padois, V.: Evolutionary robotics: explor-
ing new horizons. In: Doncieux, S., Bredèche, N., Mouret, J.B. (eds.) New Horizons
in Evolutionary Robotics. Studies in Computational Intelligence, vol. 341, pp. 3–25.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18272-3_1

13. Doyle, J.C., Francis, B.A., Tannenbaum, A.R.: Feedback Control Theory. Courier
Corporation (2013)

14. Duarte, M., et al.: Evolution of collective behaviors for a real swarm of aquatic
surface robots. PLoS One 11(3), e0151834 (2016)

15. Eiben, A.E., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolution for
autonomous robotics (2010)

16. Engebråten, S.A., Moen, J., Yakimenko, O., Glette, K.: Evolving a repertoire of
controllers for a multi-function swarm. In: Sim, K., Kaufmann, P. (eds.) EvoAp-
plications 2018. LNCS, vol. 10784, pp. 734–749. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77538-8_49

17. Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill,
M.: PonyGE2: grammatical evolution in Python. In: Proceedings of the Genetic
and Evolutionary Computation Conference Companion, pp. 1194–1201 (2017)

18. Ferrante, E., Duéñez-Guzmán, E., Turgut, A.E., Wenseleers, T.: GESwarm: gram-
matical evolution for the automatic synthesis of collective behaviors in swarm
robotics. In: Proceedings of the 15th Annual GECCO Conference, pp. 17–24. ACM
(2013)

https://doi.org/10.1007/978-3-642-18272-3_1
https://doi.org/10.1007/978-3-319-77538-8_49
https://doi.org/10.1007/978-3-319-77538-8_49

Learning Resilient Swarm Behaviors via Ongoing Evolution 167

19. Ferrante, E., Turgut, A.E., Duéñez-Guzmán, E., Dorigo, M., Wenseleers, T.: Evo-
lution of self-organized task specialization in robot swarms. PLoS Comput. Biol.
11(8), e1004273 (2015)

20. Goh, C.K., Tan, K.C.: Evolving the tradeoffs between pareto-optimality and
robustness in multi-objective evolutionary algorithms. In: Yang, S., Ong, Y.S., Jin,
Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environments, vol.
51, pp. 457–478. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
49774-5_20

21. Gordon, D.M.: Ant Encounters. Princeton University Press, Princeton (2010)
22. Gunderson, L.H.: Ecological resilience-in theory and application. Annu. Rev. Ecol.

Syst. 31(1), 425–439 (2000)
23. Hall, J.P., Brockhurst, M.A., Harrison, E.: Sampling the mobile gene pool: innova-

tion via horizontal gene transfer in bacteria. Philos. Trans. Roy. Soc. B: Biol. Sci.
372(1735), 20160424 (2017)

24. Holling, C.S.: Engineering resilience versus ecological resilience. Eng. Ecol. Con-
straints 31(1996), 32 (1996)

25. Jablonka, E., Lamb, M.J.: Evolution in Four Dimensions, Revised Edition: Genetic,
Epigenetic, Behavioral, and Symbolic Variation in the History of Life. MIT Press,
Cambridge (2014)

26. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation
in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.)
ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59496-5_337

27. Johnson, M., Brown, D.S.: Evolving and controlling perimeter, rendezvous, and
foraging behaviors in a computation-free robot swarm. Technical report, Air Force
Research Laboratory/RISC Rome United States (2016)

28. Kazil, J., Masad, D., Crooks, A.: Utilizing python for agent-based modeling: the
mesa framework. In: Thomson, R., Bisgin, H., Dancy, C., Hyder, A., Hussain, M.
(eds.) SBP-BRiMS 2020. LNCS, vol. 12268, pp. 308–317. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-61255-9_30

29. König, L., Mostaghim, S., Schmeck, H.: Decentralized evolution of robotic behavior
using finite state machines. Intl. J. Intell. Comput. Cybern. 2(4), 695–723 (2009)

30. Koza, J.R.: Genetic programming as a means for programming computers by nat-
ural selection. Stat. Comput. 4(2), 87–112 (1994)

31. Kriesel, D.M.M., Cheung, E., Sitti, M., Lipson, H.: Beanbag robotics: robotic
swarms with 1-DoF units. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M.,
Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 267–274.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87527-7_26

32. Kucking, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control
architecture in the automatic design of robot swarms. In: ANTS 2018. IEEE (2018)

33. Kuckling, J., Van P., V., Birattari, M.: Automatic modular design of behavior
trees for robot swarms with communication capabilites. In: EvoApplications, pp.
130–145 (2021)

34. Lampe, D.J., Witherspoon, D.J., Soto-Adames, F.N., Robertson, H.M.: Recent
horizontal transfer of mellifera subfamily mariner transposons into insect lineages
representing four different orders shows that selection acts only during horizontal
transfer. Mol. Biol. Evol. 20(4), 554–562 (2003)

35. Lane, N.: The Vital Question: Energy, Evolution, and the Origins of Complex Life.
WW Norton & Company (2015)

https://doi.org/10.1007/978-3-540-49774-5_20
https://doi.org/10.1007/978-3-540-49774-5_20
https://doi.org/10.1007/3-540-59496-5_337
https://doi.org/10.1007/3-540-59496-5_337
https://doi.org/10.1007/978-3-030-61255-9_30
https://doi.org/10.1007/978-3-540-87527-7_26

168 A. Neupane and M. A. Goodrich

36. Leaf, J., Adams, J.A.: Measuring resilience in collective robotic algorithms. In:
Proceedings of the 21st International Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 1666–1668 (2022)

37. Lee, W.P.: Evolving complex robot behaviors. Inf. Sci. 121(1–2), 1–25 (1999)
38. Lewis, M.A., Fagg, A.H., Solidum, A.: Genetic programming approach to the con-

struction of a neural network for control of a walking robot. In: 1992 Proceedings
of IEEE International Conference on Robotics and Automation, pp. 2618–2623.
IEEE (1992)

39. Linksvayer, T.A., Janssen, M.A.: Traits underlying the capacity of ant colonies to
adapt to disturbance and stress regimes. Syst. Res. Behav. Sci.: Off. J. Int. Fed.
Syst. Res. 26(3), 315–329 (2009)

40. Mlot, N.J., Tovey, C.A., Hu, D.L.: Fire ants self-assemble into waterproof rafts to
survive floods. Proc. Natl. Acad. Sci. 108(19), 7669–7673 (2011)

41. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics:
a survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009)

42. Neupane, A., Goodrich, M.A.: Designing emergent swarm behaviors using behavior
trees and grammatical evolution. In: Proceedings of the 18th AAMAS Conference,
pp. 2138–2140 (2019)

43. Neupane, A., Goodrich, M.A.: Learning swarm behaviors using grammatical evo-
lution and behavior trees. In: IJCAI, pp. 513–520 (2019)

44. Neupane, A., Goodrich, M.A., Mercer, E.G.: GEESE: grammatical evolution algo-
rithm for evolution of swarm behaviors. In: Proceedings of the 20th Annual
GECCO Conference, pp. 999–1006 (2018)

45. Neupane, A., Goodrich, M.: Efficiently evolving swarm behaviors using grammati-
cal evolution with PPA-style behavior trees. In: From Cells to Societies: Collective
Learning Across Scales (2022)

46. Nevai, A.L., Passino, K.M., Srinivasan, P.: Stability of choice in the honey bee
nest-site selection process. J. Theor. Biol. 263(1), 93–107 (2010)

47. Noirot, C., Darlington, J.P.: Termite nests: architecture, regulation and defence. In:
Abe, T., Bignell, D.E., Higashi, M. (eds.) Termites: Evolution, Sociality, Symbioses,
Ecology, pp. 121–139. Springer, Dordrecht (2000). https://doi.org/10.1007/978-94-
017-3223-9_6

48. Ochman, H., Lawrence, J.G., Groisman, E.A.: Lateral gene transfer and the nature
of bacterial innovation. Nature 405(6784), 299–304 (2000)

49. O’neill, M., Ryan, C., Keijzer, M., Cattolico, M.: Crossover in grammatical evolu-
tion. Genet. Program. Evolvable Mach. 4(1), 67–93 (2003)

50. Perez, R., Aron, S.: Adaptations to thermal stress in social insects: recent advances
and future directions. Biol. Rev. 95(6), 1535–1553 (2020)

51. Petrovic, P.: Evolving behavior coordination for mobile robots using distributed
finite-state automata. In: Frontiers in Evolutionary Robotics. InTech (2008)

52. Pintér-Bartha, A., Sobe, A., Elmenreich, W.: Towards the light-comparing evolved
neural network controllers and finite state machine controllers. In: Proceedings of
the Tenth Workshop on Intelligent Solutions in Embedded Systems, pp. 83–87.
IEEE (2012)

53. Power, J.F., Malloy, B.A.: A metrics suite for grammar-based software. J. Softw.
Maint. Evol. Res. Pract. 16(6), 405–426 (2004)

54. Quammen, D.: The Tangled Tree: A Radical New History of Life. Simon and
Schuster, New York (2018)

55. Reid, C.R., Lutz, M.J., Powell, S., Kao, A.B., Couzin, I.D., Garnier, S.: Army ants
dynamically adjust living bridges in response to a cost-benefit trade-off. Proc. Natl.
Acad. Sci. 112(49), 15113–15118 (2015)

https://doi.org/10.1007/978-94-017-3223-9_6
https://doi.org/10.1007/978-94-017-3223-9_6

Learning Resilient Swarm Behaviors via Ongoing Evolution 169

56. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014)

57. Samples, A.D.: Mache: No-loss trace compaction. In: Proceedings of the 1989 ACM
SIGMETRICS International Conference on Measurement and Modeling of Com-
puter Systems, pp. 89–97 (1989)

58. Schwander, T., Rosset, H., Chapuisat, M.: Division of labour and worker size poly-
morphism in ant colonies: the impact of social and genetic factors. Behav. Ecol.
Sociobiol. 59(2), 215–221 (2005)

59. Seeley, T.D.: The Wisdom of the Hive: The Social Physiology of Honey Bee
Colonies. Harvard University Press (2009)

60. Seeley, T.D.: Honeybee Democracy. Princeton University Press, Princeton (2010)
61. Simon, H.A.: The Sciences of the Artificial, Reissue of the Third Edition with a

New Introduction by John Laird. MIT Press, Cambridge (2019)
62. Singh, S., Lewis, R.L., Barto, A.G., Sorg, J.: Intrinsically motivated reinforcement

learning: an evolutionary perspective. IEEE Trans. Auton. Ment. Dev. 2(2), 70–82
(2010)

63. Sorenson, E.S., Flanagan, J.K.: Evaluating synthetic trace models using locality
surfaces. In: Proceedings of the IEEE International Workshop on Workload Char-
acterization, pp. 23–33 (2002)

64. Soule, T.: Resilient individuals improve evolutionary search. Artif. Life 12(1), 17–
34 (2006)

65. Steiner, D.I.: Group Process and Productivity. Academic Press, Cambridge (1972)
66. Stonier, D., Staniaszek, M.: Behavior Tree implementation in Python (2021).

https://github.com/splintered-reality/py_trees/
67. Sumpter, D., Pratt, S.: A modelling framework for understanding social insect

foraging. Behav. Ecol. Sociobiol. 53(3), 131–144 (2003)
68. Sumpter, D.J.: Collective animal behavior. In: Collective Animal Behavior. Prince-

ton University Press (2010)
69. Swafford, J.M., O’Neill, M.: An examination on the modularity of grammars in

grammatical evolutionary design. In: IEEE Congress on Evolutionary Computa-
tion, pp. 1–8. IEEE (2010)

70. Toffolo, A., Benini, E.: Genetic diversity as an objective in multi-objective evolu-
tionary algorithms. Evol. Comput. 11(2), 151–167 (2003)

71. Toth, A., Robinson, G.: Evo-devo and the evolution of social behavior: brain gene
expression analyses in social insects. In: Cold Spring Harbor Symposia on Quanti-
tative Biology, vol. 74, pp. 419–426. Cold Spring Harbor Laboratory Press (2009)

72. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation
behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dit-
trich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7_93

73. Ursem, R.K.: Diversity-guided evolutionary algorithms. In: Guervós, J.J.M.,
Adamidis, P., Beyer, H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.)
PPSN 2002. LNCS, vol. 2439, pp. 462–471. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45712-7_45

74. Varughese, J.C., Thenius, R., Schmickl, T., Wotawa, F.: Quantification and anal-
ysis of the resilience of two swarm intelligent algorithms. In: GCAI, pp. 148–161
(2017)

75. Vistbakka, I., Troubitsyna, E.: Modelling autonomous resilient multi-robotic sys-
tems. In: Calinescu, R., Di Giandomenico, F. (eds.) SERENE 2019. LNCS, vol.
11732, pp. 29–45. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30856-8_3

https://github.com/splintered-reality/py_trees/
https://doi.org/10.1007/978-3-540-39432-7_93
https://doi.org/10.1007/3-540-45712-7_45
https://doi.org/10.1007/3-540-45712-7_45
https://doi.org/10.1007/978-3-030-30856-8_3
https://doi.org/10.1007/978-3-030-30856-8_3

170 A. Neupane and M. A. Goodrich

76. Wagner, G.P., Altenberg, L.: Perspective: complex adaptations and the evolution
of evolvability. Evolution 50(3), 967–976 (1996)

77. Wang, J.X., et al.: Evolving intrinsic motivations for altruistic behavior. arXiv
preprint arXiv:1811.05931 (2018)

78. Yamashita, Y., Tani, J.: Emergence of functional hierarchy in a multiple timescale
neural network model: a humanoid robot experiment. PLoS Comput. Biol. 4(11),
e1000220 (2008)

79. Zahadat, P., Hamann, H., Schmickl, T.: Evolving diverse collective behaviors inde-
pendent of swarm density. In: Proceedings of the Companion Publication of the
2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1245–1246
(2015)

http://arxiv.org/abs/1811.05931

Mind the Gap! Predictive Flocking
of Aerial Robot Swarm in Cluttered

Environments

Giray Önür1,3(B), Ali Emre Turgut1,3, and Erol Şahin2,3

1 Department of Mechanical Engineering, Middle East Technical University,
Ankara, Turkey

girayo@metu.edu.tr
2 Department of Computer Engineering, Middle East Technical University,

Ankara, Turkey
3 Center for Robotics and Artifical Intelligence (ROMER),

Middle East Technical University, Ankara, Turkey

Abstract. Flocking, coordinated movement of individuals, widely
observed in animal societies, and it is commonly used to guide robot
swarms in cluttered environments. In standard flocking models, robot
swarms often use local interactions between the robots and obstacles to
achieve safe collective motion using virtual forces. However, these mod-
els generally involve parameters that must be tuned specifically to the
environmental layout to avoid collisions. In this paper, we propose a
predictive flocking model that can perform safe collective motion in dif-
ferent environmental layouts without any need for parameter tuning. In
the model, each robot constructs a search tree consisting of its predicted
future states and utilizes a heuristic search to find the most promising
future state to use as the next control input. Flocking performance of the
model is compared against the standard flocking model in simulation in
different environmental layouts, and it is validated indoors with a swarm
of six quadcopters. The results show that more synchronized and robust
flocking behavior can be achieved when robots use the predicted states
rather than the current states of others.

1 Introduction

Flocking, the coherent motion of a group of individuals, is commonly encoun-
tered in animal societies [1] with schools of fish and flocks of birds demonstrating
impressive examples of coordinated motion [10,11]. Flocking has also been an
interest in artificial systems. One of the earliest attempts to implement flocking in
artificial systems is due to Reynolds [13]. In his model, flocking is modeled using
repulsion, velocity alignment, and attraction behaviors. Repulsion ensures colli-
sion avoidance, velocity alignment maintains the coherent motion, and attraction
keeps the flock together. Numerous flocking models have been proposed based
on these interactions to describe various systems such as animal groups [5] and
migrating cells [9].
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 171–182, 2022.
https://doi.org/10.1007/978-3-031-20176-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_14&domain=pdf
https://doi.org/10.1007/978-3-031-20176-9_14

172 G. Önür et al.

In the virtual force model [16], these behaviors are generated via virtual forces
exerted on the agents where the magnitude and direction of the forces depend
on the local interactions between neighboring agents. The virtual force model is
often used for implementing robot swarms in cluttered or confined environments
due to its reactivity, and low computational complexity [7,18]. However, these
implementations frequently involve parameters that must be tuned specifically
to the environmental layout. Consequently, sudden changes in the environmental
layout may cause collisions or decrease flocking performance, which makes these
models unreliable in real-world.

Recent studies [2,6] claim that natural swarms, such as schools of fish or
swarms of bats, use predicted future states of their neighbors rather than the
current states. In accordance with this claim, in [3] it was demonstrated that the
neural activity in bat’s brain encodes non-local navigational information up to
a few meters away from the bat’s present state during both random exploration
and goal-directed motion.

Inspired by the natural swarms, predictive flocking models based on dis-
tributed model predictive control (DMPC) have emerged since DMPC can han-
dle actuation constraints of robots and optimize flocking performance [8,14].
Previous work showed that aerial robot swarms using DMPC-based flocking
model could perform safe collective motion with noisy sensor measurements
in a cluttered environment [14] and in the presence of dynamic obstacles [8].
Although DMPC-based flocking models perform more robust collective motion
compared to standard flocking models, their onboard implementation remains a
challenge due to the computational complexity and the requirement of excessive
communication between robots.

In this paper, we propose a novel flocking model based on a predictive search
method that can perform safe collective motion in different environmental lay-
outs without parameter tuning. In the proposed model, robots can sense obsta-
cles and other robots within a limited range and only use the local information.
Each robot constructs a search tree consisting of their possible future states and
finds the trajectory that fulfills the flocking objectives by using a heuristic search
algorithm to determine its next move.

2 Methodology

Consider a swarm consisting of N robots with a radius ra moving in a 2D envi-
ronment. Robots can sense obstacles and other robots within a limited range, rs.
At each time step, Δt, the next velocity of the robot is determined according to
the updated information of the neighboring robots and obstacles. The number
of neighbors and obstacles closest to robot i are indicated by M and O, respec-
tively. Their values are limited to M ≤ Mmax and O ≤ Omax. The position and
velocity of robot i are denoted by pi and vi. The position of the point closest to
robot i on the boundary of obstacle k is indicated by ok. The distance between
robot i and its jth neighbor is denoted by dij = ‖pi − pj‖ − 2ra whereas the
distance between robot i and obstacle k is indicated by dik = ‖pi − ok‖ − ra.

Predictive Flocking of Aerial Robot Swarm in Cluttered Environments 173

Fig. 1. Illustration of a robot swarm in a 2D environment with (a) robot’s radius, head-
ing angle, position and velocity vectors, (b) sensing range, heading, relative distances,
and virtual forces.

vmig is defined as the migration velocity to the robots. Each robot moves in the
direction of its heading ui, with the heading angle θi calculated with respect
to the frame of reference (Fig. 1). Unit vectors along the x, y, and z-axis of the
frame of reference are denoted by x̂, ŷ and ẑ. The common frame of reference
is used for ease of description. In the following models, a robot can calculate its
next velocity using a local frame of reference and relative positions and velocities
of others.

2.1 Standard Flocking Model (SFM)

We extended the Active Elastic Sheet (AES) model [4], which uses spring-like
virtual interaction forces between robots, by adding an obstacle avoidance force
to prevent robot-obstacle collision and a migration force to provide migration
velocity. The total force acting on robot i is obtained as the sum of three forces
as:

f i = fr
i + fo

i + fm (1)

where fr
i is the inter-robot force, fo

i is the obstacle avoidance force and fm is
the migration force (Fig. 1b).

The spring-like inter-robot force is calculated as:

fr
i =

M∑

j=1

kr (dij − deq) uij (2)

where kr is the inter-robot force gain, deq is the equilibrium distance and uij is
the unit vector directed from robot i to its jth neighbor.

The obstacle avoidance force is calculated as:

fo
i =

O∑

k=1

−ko 1
d2ik

uik (3)

174 G. Önür et al.

where ko is the obstacle avoidance force gain and uik is the unit vector directed
from robot i to obstacle k. In [7], it has been shown that as the robot approaches
an obstacle, the obstacle avoidance force must increase significantly compared to
the inter-robot force to avoid the robot-obstacle collision. Thus, fo

i designated
as its magnitude increases exponentially as robot i gets closer to obstacle k,
whereas the magnitude of fr

i increases linearly as two robots get closer to each
other.

The migration force keeps the velocity of robots at the migration velocity
and it is calculated as:

fm = kmvmig (4)

where km is the migration force gain.
The linear speed of the robot is computed by projecting f i onto ui and

multiplying it by the linear speed gain kl as:

vi = kl(f i · ui). (5)

The angular speed of the robot is obtained by projecting f i onto the vector
perpendicular to its heading and multiplying it by the angular speed gain ka as:

ωi = ka(f i · u⊥
i). (6)

The linear speed is bounded between vmin and vmax whereas the angular
speed is bounded between −ωmax and ωmax. Then, the linear and angular veloc-
ities of robot i are obtained as:

vi = viui, (7)

ωi = ωiẑ. (8)

2.2 Predictive Flocking Model (PFM)

The predictive flocking model searches for a trajectory that fulfills the flock-
ing objectives only using local information. Each robot constructs a search tree
consisting of nodes that contain its possible future position and velocity states
where levels of the search tree represent future time steps.

Let the heading angle and speed of a parent node at the cth level of the search
tree be denoted by θc and vc, respectively. Then, the heading angle and speed
values of its child nodes at the next level of the search tree are calculated as:

θc+1
a = θc + aΔθ a ∈ Z : −A ≤ a ≤ A, (9)

vc+1
b = vc + bΔv b ∈ Z : −B ≤ b ≤ B (10)

where Δθ and Δv are the search step parameters, A and B are the parameters
that determine the number of considered reachable heading angle and speed
values at the next time step, respectively. Since the calculated heading angle

Predictive Flocking of Aerial Robot Swarm in Cluttered Environments 175

Fig. 2. Illustration of an example search tree for the parameters β = 2, d = 2, A = 1
and B = 0. p0 and v0 represent the current position and velocity of the robot. The
gray nodes are pruned, and the remaining nodes are expanded. The next velocity of
the robot is obtained as v1

−1,0 which is the first velocity state of the found trajectory.

and speed values should satisfy the actuation constraints of the robot, the speed
term vc+1

b is bounded between vmin and vmax, and the parameters are selected
as the constraints AΔθ ≤ ωmaxΔt and BΔv ≤ amaxΔt are satisfied where ωmax

and amax are the maximum angular speed and the maximum acceleration of the
robot. Then, the velocity and position states of the child nodes are calculated
as:

vc+1
a,b = vc+1

b

(
cos(θc+1

a)x̂ + sin(θc+1
a)ŷ

)
, (11)

pc+1
a,b = pc + Δtvc+1

a,b (12)

where pc is the position state of the parent node.
The positions of the neighboring robots at the cth level of the search tree are

predicted assuming their velocities remain the same as:

pc
j = p0

j + cΔtv0
j (13)

where p0
j and v0

j are the current position and velocity of the jth neighboring
robot.

The cost values of each node are calculated using the flocking heuristic func-
tions. For the ith node at the cth level of the search tree, pi and vi are taken as
the position and velocity states of the ith node whereas pj taken as the predicted
position of the jth neighboring robot at the cth level of the search tree.

176 G. Önür et al.

For consistency with SFM, the inter-robot heuristic function is designated in
the form of the spring potential energy function as:

hr
i =

M∑

j=1

wr (dij − deq)
2 (14)

where wr is the inter-robot heuristic coefficient.
Similarly, the obstacle avoidance heuristic function is taken as the potential

function of the obstacle avoidance force as:

ho
i =

O∑

k=1

wo 1
dik

(15)

where wo is the obstacle avoidance heuristic coefficient.
The migration heuristic is taken as the combination of the speed and direction

heuristic functions. The speed heuristic maintains the speed of the robots at
migration speed, and the direction heuristic moves robots towards the migration
direction. The speed and direction heuristics are calculated as:

hs
i = ws

∣∣‖vmig‖ − ‖vi‖
∣∣, (16)

hd
i = wd

(
1 − vmig · vi

‖vmig‖‖vi‖
)

(17)

where ws and wd are the speed and direction heuristic coefficients, respectively.
The sum of the inter-robot, obstacle avoidance, speed, and direction heuris-

tics is calculated as:

hu
i = hr

i + ho
i + hs

i + hd
i . (18)

The heuristic cost of the ith node is obtained as:

hi = hu
i + hp

i (19)

where hp
i is the heuristic cost of the parent node of the ith node.

To find a trajectory that meets the flocking objectives, each robot utilizes a
beam-search algorithm that expands only the β number of nodes with the lowest
heuristic cost at each level of the search tree and prunes the remaining nodes
to reduce the required time and memory for the search. The total number of
levels in the search tree, which determines the total number of predicted future
steps, is called the depth, d. The starting node of the search tree is represented
as node 0, whose states are the current position and velocity of the robot, and its
heuristic cost is taken as h0 = 0 since its value does not affect the search result.
The trajectory of the node with the smallest heuristic cost at the dth level of
the search tree is taken as the found trajectory. Each robot repeats the search
process within a short time interval, Δt, and takes its next velocity command
as the first velocity state of the found trajectory, as illustrated in Fig. 2.

Predictive Flocking of Aerial Robot Swarm in Cluttered Environments 177

Fig. 3. Simulated trajectories of (top) PFM and (bottom) SFM in (a) the first, (b) sec-
ond, and (c) third environment. Videos are available at https://tinyurl.com/Giray22.

3 Experimental Setup

We prepared three test environments consisting of a L × L rectangular arena
with cylindrical obstacles to compare SFM and PFM in kinematic simulations.
The first environment has low obstacle density, the second environment has
high obstacle density, and the third environment contains a wall consisting of
intertwined obstacles (Fig. 3).

2D Gaussian noise (μ = 0, σn = 0.02) is added to the positions and velocities
of the robots to test the robustness of the models. At the beginning of each test,
robots are randomly placed in the environment. The tests are completed when
all robots cross the finish line at yf , and the maximum time allowed to complete
a test is limited to tmax. Each test is repeated 10 times.

To test the applicability of PFM on real robots, we used a swarm of six
Crazyflie 2.1 quadcopters1 in an indoor flight arena populated with obstacles
and communicated with them using the Crazyswarm platform [12]. Positions of
the quadcopters are tracked using the Vicon motion capture system, and the
velocity commands are computed on a single computer in different threads to
mimic the decentralized behavior.
1 https://www.bitcraze.io/products/crazyflie-2-1/.

https://tinyurl.com/Giray22
https://www.bitcraze.io/products/crazyflie-2-1/

178 G. Önür et al.

Table 1. Parameters of PFM and SFM used in simulation and real robot tests.

Parameter wr wo ws wd deq Δθ Δv β d A B kr ko km kl ka

Unit 1/m2 m s/m − m rad m/s − − − − 1/m m2 s/m m/s rad/s

Value (Sim.) 50 1.5 2 2 1 0.1 0.02 2 2 2 3 25 1.5 10 0.1 0.1

Value (Real) 25 3 4 2 1 0.15 0.1 2 2 2 1 − − − − −

Table 2. Common parameters that are used in both simulation and real robot tests.

Parameter ra rs vmin vmax ωmax amax N Mmax Omax Δt tmax L yf vmig

Unit m m m/s m/s rad/s m/s2 − − − s s m m m/s

Value (Sim.) 0.07 2 0.05 2 6 2 12 4 2 0.05 150 14 10.5 1ŷ

Value (Real) 0.07 2 0.05 2 6 2 6 4 2 0.05 150 8 7.5 0.5ŷ

The parameters used in simulation and real robot tests are provided in
Tables 1 and 2.

The order, speed error, and proximity metrics are introduced based on pre-
vious work [15,17] to evaluate the performance of the flocking models. The
order metric measures the coherence of the heading directions of the neighboring
robots:

Θord =
N∑

i=1

M∑

j=1

vi · vj

NM‖vi‖‖vj‖ . (20)

Θord becomes 1 when the neighboring robots are perfectly aligned, and it
becomes −1 in case of complete disorder.

The speed error metric measures the normalized mean difference between the
speed of the robots and the desired migration speed:

Espd =
N∑

i=1

∣∣‖vmig‖ − ‖vi‖
∣∣

N‖vmig‖ . (21)

Espd becomes 0 when the robots’ speed is equal to the migration speed,
whereas its value gets larger when the difference between robots’ speed and
migration speed increases.

The proximity metric measures the normalized mean distance between the
robots and their neighbors:

Dprox =
N∑

i=1

M∑

j=1

dij
NMdeq

. (22)

Dprox becomes 1 when the mean inter-robot distance is equal to the equi-
librium distance. Its value decreases as the robots get closer to each other and
increases as they move away from each other.

Predictive Flocking of Aerial Robot Swarm in Cluttered Environments 179

Fig. 4. (a) The order, (b) speed error, and (c) proximity metric values of PFM and
SFM for the 10 times repeated tests in three different environments. Colored regions
illustrate the data distribution, and white dots within the colored regions represent the
median values.

4 Results and Discussion

The metric values of simulation tests for PFM and SFM in three different envi-
ronments are depicted in Fig. 4 as violin plots. In violin plots, the first 0.5 seconds
of each test are excluded in order to eliminate the initial transient period. PFM
has order values close to 1 in all environments, whereas the order values of SFM
decreased significantly in the second and third environments compared to the
first one due to the change in environmental conditions (Fig. 4a). The effect of
environmental change is further evident in the speed error metric; PFM has
almost zero speed error values, whereas the SFM has significantly large speed
error values in all environments (Fig. 4b). In the third environment, SFM only
completed half of the tests within the maximum allowed time, tmax, and com-
pleted the remaining ones 3 to 6 times slower than PFM because of the highly
reduced speed of the robots around the obstacle boundary. The performance of
PFM and SFM is close in terms of cohesion; both models kept the proximity
values close to 1 in all environments (Fig. 4c), and no collisions were observed
throughout the tests.

For a more detailed comparison of PFM and SFM, trajectories of robots in
three environments with the same initial positions are given in Fig. 3. While both
models have smooth trajectories in the first environment (Fig. 3a), the trajecto-
ries of SFM are distorted near obstacle boundaries in the second and third envi-
ronments (Fig. 3b, c). The order, normalized speed, and normalized inter-robot
distance plots for both models in the second environment are given in Fig. 5.
PFM completed the test faster than SFM by performing more ordered motion
(Fig. 5a) and tracking the migration speed much better (Fig. 5b) while maintain-
ing the mean inter-robot distance close to the equilibrium distance (Fig. 5c).

The results of the real robot test are given in Fig. 6. Similar to simula-
tion tests, PFM completed the real robot test with nearly perfect order val-
ues (Fig. 6b) by tracking the migration speed with small errors (Fig. 6c) while
keeping the mean inter-robot distance around the equilibrium distance (Fig. 6d).

180 G. Önür et al.

Fig. 5. (a) The order, (b) normalized speed, and (c) normalized inter-robot distance
of (top) PFM and (bottom) SFM in the second environment. The plots are grey-scaled
from the time PFM completes the task. In (b) and (c), solid lines are the mean values
of the normalized speed and normalized inter-robot distance, whereas shades represent
the maximum and minimum values. (Color figure online)

Fig. 6. (a) Trajectories of the quadcopters, (b) the order, (c) normalized speed, (d) nor-
malized inter-robot distance of PFM in a real robot test, and (e) Crazyflie 2.1 quad-
copter. In (c) and (d), solid lines are the mean values of the normalized speed and
normalized inter-robot distance, whereas shades represent the maximum and minimum
values. Video is available at https://tinyurl.com/Giray22.

Results of the tests showed that SFM might lead to oscillatory flocking behav-
ior in cluttered environments due to its reactivity, and this behavior has a neg-
ative impact on the coherence of the robot swarm. Moreover, it is observed that
the short-sightedness of SFM may cause robots to get stuck in obstacles and
swarm speed to slow down drastically. On the other hand, it has been shown
that PFM can achieve coherent flocking motion at desired migration speed in
different environments by allowing the robot swarm to move according to pre-
dicted future states.

https://tinyurl.com/Giray22

Predictive Flocking of Aerial Robot Swarm in Cluttered Environments 181

In this work, it is assumed that robots can only sense the closest point on the
boundary of an obstacle. Since planning long-range trajectories without knowing
the exact positions and shapes of the obstacles may be misleading, the depth
of the search tree is kept small. Furthermore, it is observed that increasing the
value of β does not improve the flocking behavior significantly for small depth
values. Therefore, small β and d values are used in both simulation and real
robot tests, reducing the required time for the trajectory search. Planning short-
range trajectories also let robots use the constant velocity assumption for their
neighbors, simplifying the prediction process and reducing the computational
cost of PFM.

5 Conclusion

In this study, we proposed a novel search-based predictive flocking model (PFM)
that only depends on local information of the neighboring robots and the environ-
ment. We compared PFM with the virtual force-based standard flocking model
(SFM) in different environments based on order, speed error, and proximity met-
rics. Results showed that the proposed PFM could perform successful flocking
behavior despite environmental differences, unlike SFM. We tested the appli-
cability of PFM on real robots with a swarm of six quadcopters in a cluttered
flight arena and validated that PFM works successfully with robot swarms as
in simulation. Future work will include the dynamic obstacle avoidance and the
application of the search-based prediction model for other collective behaviors
such as aggregation and foraging.

Acknowledgements. This work was partially supported by the EU H2020-FET
RoboRoyale (964492).

References

1. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraula, G., Bonabeau,
E.: Self-Organization in Biological Systems. Princeton University Press, Princeton
(2020)

2. Couzin, I.D.: Synchronization: the key to effective communication in animal col-
lectives. Trends Cogn. Sci. 22(10), 844–846 (2018)

3. Dotson, N.M., Yartsev, M.M.: Nonlocal spatiotemporal representation in the hip-
pocampus of freely flying bats. Science 373(6551), 242–247 (2021)

4. Ferrante, E., Turgut, A.E., Dorigo, M., Huepe, C.: Elasticity-based mechanism
for the collective motion of self-propelled particles with springlike interactions: a
model system for natural and artificial swarms. Phys. Rev. Lett. 111(26), 268302
(2013)

5. Fine, B.T., Shell, D.A.: Unifying microscopic flocking motion models for virtual,
robotic, and biological flock members. Auton. Robot. 35(2), 195–219 (2013)

6. Kong, Z., et al.: Perceptual modalities guiding bat flight in a native habitat. Sci.
Rep. 6(1), 1–10 (2016)

182 G. Önür et al.

7. Liu, Z., Turgut, A.E., Lennox, B., Arvin, F.: Self-organised flocking of robotic
swarm in cluttered environments. In: Fox, C., Gao, J., Ghalamzan Esfahani, A.,
Saaj, M., Hanheide, M., Parsons, S. (eds.) TAROS 2021. LNCS (LNAI), vol.
13054, pp. 126–135. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
89177-0 13

8. Lyu, Y., Hu, J., Chen, B.M., Zhao, C., Pan, Q.: Multivehicle flocking with collision
avoidance via distributed model predictive control. IEEE Trans. Cybern. 51(5),
2651–2662 (2019)

9. Méhes, E., Vicsek, T.: Collective motion of cells: from experiments to models.
Integr. Biol. 6(9), 831–854 (2014)

10. Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and
herds. Adv. Biophys. 22, 1–94 (1986)

11. Parrish, J.K., Viscido, S.V., Grunbaum, D.: Self-organized fish schools: an exami-
nation of emergent properties. Biol. Bull. 202(3), 296–305 (2002)

12. Preiss, J.A., Honig, W., Sukhatme, G.S., Ayanian, N.: Crazyswarm: a large nano-
quadcopter swarm. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3299–3304. IEEE (2017)

13. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In:
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 25–34 (1987)

14. Soria, E., Schiano, F., Floreano, D.: Distributed predictive drone swarms in clut-
tered environments. IEEE Robot. Autom. Lett. 7(1), 73–80 (2021)

15. Soria, E., Schiano, F., Floreano, D.: Predictive control of aerial swarms in cluttered
environments. Nat. Mach. Intell. 3(6), 545–554 (2021)

16. Spears, W.M., Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based
control of swarms of vehicles. Auton. Robot. 17(2), 137–162 (2004)

17. Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A.E., Vicsek, T.:
Optimized flocking of autonomous drones in confined environments. Sci. Robot.
3(20), eaat3536 (2018)

18. Virágh, C., et al.: Flocking algorithm for autonomous flying robots. Bioinspir.
Biomim. 9(2), 025012 (2014)

https://doi.org/10.1007/978-3-030-89177-0_13
https://doi.org/10.1007/978-3-030-89177-0_13

Moving Mixtures of Active and Passive
Elements with Robots that Do Not

Compute

Gopesh Yadav Dosieah1,4(B), Anıl Özdemir2,5, Melvin Gauci3,
and Roderich Groß1

1 Department of Automatic Control and Systems Engineering,
The University of Sheffield, Sheffield, UK

r.gross@sheffield.ac.uk
2 Department of Computer Science, The University of Sheffield, Sheffield, UK

3 Amazon.com, Inc., Seattle, USA
4 Dyson Technology Limited, Malmesbury, UK

5 Zebra Technologies, London, UK

Abstract. This paper investigates the problem of moving a mixture
of active and passive elements to a desired location using a swarm of
wheeled robots that require only two bits of sensory input. It examines
memory-less control strategies that map a robot’s sensory input to the
respective wheel velocities. Results from embodied simulations show that
the problem can be solved without robots having (i) to discriminate
between active and passive elements or (ii) sense other robots. Strategies
optimized for moving passive elements, or mixtures of active and passive
elements, performed robustly when changing the mixture of elements,
or scaling up the number of robots (up to 25) or elements (up to 100).
All strategies demonstrated to be fairly robust to noise and adaptable to
active elements of different dynamics. Given the simplicity of the robot
capabilities and strategies, our findings could be relevant in scenarios
where microscopic swarm robots need to manipulate mixtures of elements
of unknown dynamics, with potential applications in nanomedicine.

1 Introduction

Many studies examine the ability of swarms of robots to physically manipulate
their environment. For example, this could concern the cooperative transport of
an object that is too heavy to be effectively displaced by individual members of
the swarm [1,4,5,11,25,28]. In the following, we specifically focus on the ability
of swarms of robots to manipulate numerous elements at the same time.

In some application scenarios, the elements to be manipulated would be
entirely passive, as exerting no control over their movement. This would be the
case, for example, when collecting plastic waste in water bodies [20]. Beckers et
al. [2] study a group of robots equipped with C-shaped pushers. The latter enable
the robots to push and retain multiple, smaller objects even during turns. Each
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 183–195, 2022.
https://doi.org/10.1007/978-3-031-20176-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_15&domain=pdf
https://doi.org/10.1007/978-3-031-20176-9_15

184 G. Y. Dosieah et al.

robot moves in a straight line and rotates by a random angle when detecting
an obstacle or when the resistance met by its pusher exceeds a threshold. The
strategy is shown capable of clustering 81 objects in a bounded environment.
Melhuish et al. [15] propose an extension of this strategy enabling a group of
robots to spatially separate colored objects into distinct clusters. Kim and Shell
[10,21] studied a cluster task similar to [2]. As the robots are circular in shape,
careful design is required to prevent the formation of (possibly separate) clusters
along the boundary. The authors propose a strategy by which some robots are
‘diggers’, which follow walls and separate objects from the boundary, whereas
others are ‘twisters’, which act on ‘dug up’ objects, and push them towards the
center. This results in all objects ending up in a single cluster.

In other application scenarios, the elements to be manipulated may be active,
as exerting control over their movements. This would be the case, for example,
when shepherding groups of land mammals. The problem of shepherding a set of
active elements to a goal region has been addressed using single-robot systems [3,
6,22–24,26,27]. Vaughan et al. [26] propose a strategy to shepherd a flock of
ducks towards a goal. An external system is used to determine the position
of the flock, as well as the position and orientation of the robot. The robot
is attracted towards the flock, the further the latter is away from the goal,
the stronger the attraction. Moreover, it is repelled from the goal. This simple
behavior succeeds in driving the flock towards the goal. A number of studies use
distinct behaviors for (i) gathering the elements, and (ii) driving them towards
the goal, which are executed either in alternation or simultaneously. Gathering
maneuver include moving in arcs, zig-zags or orbiting. Driving maneuver include
approaching the flock in a straight line from a position opposite to the goal, or
performing gathering maneuver while gradually moving towards the goal [3,6,
22,24]. In [23], a robot shepherds a group of sheep agents. It relies only on
local sensing. It moves repeatedly behind the sheep robot that is furthest away
from the goal. Owing to a cohesion behavior however the sheep have no natural
tendency to split into separate groups. Studies considering a group of shepherd
robots include the work by Lien et al. [13] that demonstrated that a group of
shepherds outperformed a single one. Other examples are Miki & Nakamura [16]
and Lee & Kim [12] which study sets of simple rules to replicate common types of
shepherding behaviors. They both demonstrated that the active elements could
be herded by a swarm of robots without centralized coordination.

In our previous works [8], a computation-free paradigm for controlling swarms
of simple robots was proposed. It was subsequently used to design computation-
free controllers for swarms of robots to cluster passive elements [7], without
specifying a desired goal region. Moreover, it was used to design computation-
free controllers for swarms of robots to shepherd active elements towards a goal
region [18].

This paper goes beyond prior work in swarm robotics by considering for the
first time the problem of moving a loose mixture of active and passive elements
towards a goal region. This problem is important for real-world applications,
where the dynamics of the elements to be manipulated may not be known, or could

Moving Active and Passive Elements with Robots that Do Not Compute 185

Fig. 1. A group of shepherd agents (red) is tasked to herd a mixture of elements
of unknown dynamics towards a goal region (white) near a goal object (green). The
elements can be actively moving (blue) or purely passive (orange). (Color figure online)

vary among the elements. We hypothesize that a single set of rules exists that
requires no run-time memory and yet solves the problem irrespective of whether
the elements to be manipulated are (i) passive, (ii) active, or (iii) a mixture of
active and passive elements. We examine to what extent the controllers trained
for any one of these sub-problems generalize to the respective other sub-problems,
and hence, how the sub-problems compare in terms of complexity.

2 Methods

This section presents the problem formulation, the simulation setup used during
design and validation, the control strategies of the shepherd agents, and the
optimization process used for obtaining the parameters of the strategies.

2.1 Problem Formulation

The environment is an unbounded, planar, continuous space (see Fig. 1). It con-
tains m ≥ 1 shepherd agents, n ≥ 1 elements, of which na ≥ 0 are active and
np = n − na ≥ 0 are passive, as well as a goal object. The shepherd agents
and all elements have cylindrical bodies of identical dimensions and mass. The
goal object is stationary. It is also cylindrical, and assumed to be taller than the
shepherd agents and elements.

Each shepherd agent has two wheels that are placed equidistant from its
center. They can be controlled by setting a pair of normalized wheel speeds,
υ�, υr ∈ [−1, 1], where −1 and 1 represent the maximum backward and forward
speeds, respectively.

186 G. Y. Dosieah et al.

Fig. 2. Illustration of line-of-sight sensor implementation. Each shepherd agent obtains
two bits of sensory information. The first indicates whether the goal object is in front
of the robot (in the direct line of sight). The goal object is taller than any other
object, which allows the shepherd to detect it even when some other agents or elements
are placed in between. The second bit of sensory information indicates whether an
element is in front of the robot (in the direct line of sight). This is only the case, if the
nearest object is an element. The sensor does not distinguish between active or passive
elements.

The shepherd agent has two line-of-sight sensors pointing forward, and
assumed to have an infinite range.1 The sensors are discrete; they only return
the type of the first detected object in their direct line of sight (see Fig. 2). The
first sensor is used to detect the goal which is taller than the shepherd agents
and elements. This allows the shepherd agent to detect the goal if it is oriented
towards the goal. The second sensor is used to detect the active and passive
elements without distinguishing between them. For the sake of simplicity, we
assume that the shepherd agent obtains a single, combined sensor reading,

I =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if neither goal nor any element is detected;
1, if only an active or passive element is detected;
2, if only the goal is detected;
3, if both the goal and an active or passive element are detected.

(1)

The objective for the shepherds is to herd all elements toward the goal.
We define a goal region around the goal object (see Fig. 1) and assume that
an element has been successfully moved towards the goal, as long as its center
resides within the goal region at the end of the evaluation period. Note that the
goal region is not detectable by any of the agents, it merely serves for evaluation
purposes.

We consider three variants of the problem, also referred to as scenarios:

1. Active only scenario: all elements are active (na = n);
2. Passive only scenario: all elements are passive (np = n);
3. Combined scenario: elements of both types are present (na ≥ 1, np ≥ 1).

1 Throughout this work, we assume an unlimited sensing range; in practice, however,
nearly-identical results can be obtained if the sensing range is limited to a reasonably
high value. The effects of a limited sensing range in a similar setting were studied
in [8].

Moving Active and Passive Elements with Robots that Do Not Compute 187

2.2 Setup for Computational Experiments

Open-source robot simulator Enki [14] was used for all computational experi-
ments. All bodies are rigid. Their dynamics and kinematics are updated every
0.01 s. The sensors, control cycle, and actuation are updated every 0.1 s. The goal
object is a cylinder of 12.5 cm radius and 5 cm height. The goal region is a disk
of radius 50 cm. The shepherd agents are modelled as e-puck robots [17], which
have cylindrical bodies of 3.7 cm radius and 4.7 cm height, and weigh 152 g. The
active elements are modelled as e-puck robots too. The passive elements are
cylindrical bodies of identical dimensions and mass. Their friction coefficient
with the ground is 2.5.

The dynamics model of active elements are loosely inspired by the boids
model [19]. It comprises three behavioral components:

1. To weakly repel from nearby active and passive elements;
2. To strongly repel from any nearby shepherd agent;
3. To move randomly.

All components rely only on local sensing: Active element i has two neighbor-
hoods. The first, denoted by N el

i , comprises all other elements that are no more
than del = 10 cm away. The second, denoted by N sh

i , comprises all shepherds
that are no more than dsh = 50 cm away. The repulsion components can then be
expressed as

Fi = kel
∑

j∈N el
i

r̂ji

||xj − xi||2 + ksh
∑

j∈N sh
i

r̂ji

||xj − xi||2 , (2)

where coefficients kel = 100 and ksh = 500 model the strength of repulsion
from other elements and shepherds, respectively, xi is the position of focal ele-
ment i, xj is the position of any other element/agent within the corresponding
neighborhood, and r̂ji is the unit vector from element/agent j to element i.
We assume that the elements are indexed 1, 2, . . . , n and shepherd agents are
indexed n+1, n+2, . . . , n+m. The wheel speeds for the active element are then
calculated as:

(
vl

vr

)

=
(

C1 C2

C1 −C2

)(
fx

fy

)

, (3)

where C1 = 2.0 is a linear coefficient, C2 = 1.3 is an angular coefficient, and
fx and fy are the force components of Fi along the x- and y-axis in the focal
element’s coordinate frame (with the x-axis pointing towards the front of the
robot).

The final behavioral component (random walk) is realized by adding random
variables, which follow normal distributions X ∼ N (0, 1), to the speed values of
each wheel of the active element. Before applying the value to the actuator, it is
truncated to half the maximum speed of the e-puck robot (12.8 cm/s). Therefore,
in the default setup, the speed of the active elements are at most 50% of the
maximally possible speed of the shepherd agents.

188 G. Y. Dosieah et al.

2.3 Control Strategies of the Shepherd Agents

Each shepherd uses the same controller. The controller is fully reactive, that is,
it has no memory to store any values during run-time. It maps sensor reading I
directly onto a pair of normalized wheel speeds υ�, υr ∈ [−1, 1].

The complete parameterized controller can be written as v =
(υ�0 , υr0 , υ�1 , υr1 , υ�2 , υr2 , υ�3 , υr3), v ∈ [−1, 1]8, where (υ�0 , υr0) is the left and
right normalized wheel velocities when the combined sensor reading I = 0 and
so on (for a definition of I, see Eq. 1).

We design three control strategies—one for each variant of the problem. We
refer to them as Controller A (active only scenario), Controller P (passive
only scenario), and Controller A+P (combined scenario). The controller vari-
ants only differ in the choice of parameter values.

2.4 Optimization Process

To optimize the parameter values of the controller, the Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) [9] is employed. CMA-ES is a stochastic
method for optimization of non-linear, non-convex functions with continuous
domains. It self-adapts the variance of decision variables and the co-variances
between decision variables. In our case, the decision variables are the wheel speed
pairs for every possible value of sensory input, that is, v.

CMA-ES is conventionally unbounded, operating in the continuous space
R

d, where d = 8 is the problem dimension. However, as normalized wheel veloc-
ities are considered in the controller design, a way to map R

d �→ [−1, 1]d is
needed. This is achieved by using a sigmoid-based function on each wheel veloc-
ity, sig(v) = 1−e−v

1+e−v ,∀v ∈ R.
We set the initial solution to the zero vector v(0) = 0, population size to

λ = 20, and the initial step size to σ(0) = 0.72. These settings approximate a
uniform distribution over [−1, 1]d, as empirically demonstrated by Gauci et al.
[7] using Monte Carlo simulations. Each evolution runs for 500 generations.

Fitness Function. To evaluate the utility of candidate solutions, a fitness func-
tion is used. For the problem considered here, the fitness function has a dual pur-
pose. First, it shall reward candidate solutions that gather the elements, thereby
providing cohesion. Second, it shall reward candidate solutions for moving ele-
ments near to the goal. A corresponding metric is established, which at time t
is given by

f(t) =
1

4nr2

n∑

j=1

||x(t) − xj(t)||2 · ||x(t) − g||2, (4)

where r is the radius of the element body, x(t) is the centroid of all elements at
time t, xj(t) is the position of element j at time t, and g is the position of the
goal object.

Moving Active and Passive Elements with Robots that Do Not Compute 189

Table 1. Best controller for each scenario.

Controller I = 0 I = 1 I = 2 I = 3

Controller A (active elements only) υ� 0.459 0.995 0.738 −0.163

υr 0.983 0.161 −0.958 0.948

Controller P (passive elements only) υ� 0.997 0.925 −0.996 0.995

υr 0.632 1.000 −1.000 0.703

Controller A+P (combined scenario) υ� 0.592 1.000 0.729 0.794

υr 0.939 0.917 −0.998 0.983

Fig. 3. Sequence of snapshots showing three shepherd agents (red) moving five active
(blue) and five passive (orange) elements to the goal object (green). The shepherds use
controller A+P, which was specifically optimized for this scenario. (Color figure online)

Each simulation trial is associated with a weighted sum of the fitness values
at times t,

F (T) =
T∑

t=1

t · f(t), (5)

where T = 600 s is the total evaluation period (in simulated time). The weighted
sum rewards the speed at which the elements are gathered and driven towards
the goal while also rewarding ‘convergence’ towards a stable configuration.

The final fitness value is obtained as the mean F (T) score across N = 20
independent simulation trials. In each trial, the starting locations of all agents
and elements are sampled using a uniform distribution from within the initial-
ization region denoted in Fig. 1.

3 Results

We performed 30 evolutionary runs for each of the three problem variants. In all
simulation trials, m = 3 shepherd agents and n = 10 elements were used. The
number of active (na) and passive (na) elements were as follows:

1. na = 10, np = 0 in the active only scenario (to synthesize Controller A);
2. na = 0, np = 10 in the passive only scenario (to synthesize Controller P);
3. na = np = 5 in the combined scenario (to synthesize Controller A+P).

190 G. Y. Dosieah et al.

Fig. 4. Generalization and Scalability Analysis. Heat map showing the success
rate grouped by controller type and scenario. Average rates over 100 trials in which m
shepherd agents herd na active elements and np passive elements to the goal region.

For each scenario and for each of the 30 evolutionary runs, we post-evaluated
the highest rated control strategy 100 times with random starting configurations.
The best-rated controller from these post-evaluations is considered as the final
controller for that scenario.

The evolved control parameters are shown in Table 1. Figure 3 shows a
sequence of snapshots taken from a typical trial with Controller A+P. The
shepherds tend to orbit around the elements and the goal. This helps to gather
the elements and move them towards the goal region. A video showing represen-
tative trials for all controllers and scenarios is available on https://www.sheffield.
ac.uk/naturalrobotics/supp/2022-001.

3.1 Generalization and Scalability Analysis

Each controller is examined in all three scenarios, thereby testing to what extent
it generalizes beyond the specific scenario it was optimized for. For example,
Controller A, which was trained in the active only scenario, is tested here in
all three scenarios, including the passive only scenario and the combined scenario.
Moreover, to test scalability of the controllers, a range of configurations is con-
sidered. Specifically, the number of shepherds is chosen as m ∈ {5, 10, 15, 20, 25}

https://www.sheffield.ac.uk/naturalrobotics/supp/2022-001
https://www.sheffield.ac.uk/naturalrobotics/supp/2022-001

Moving Active and Passive Elements with Robots that Do Not Compute 191

Fig. 5. Varying Ratio Analysis. Times to completion (box plots) and success rates
(bar charts) for the three controllers as the ratio of active (na) to passive (np) elements
is varied (100 trials per setup).

and the number of elements is chosen as n ∈ {10, 20, 30, . . . , 100} (for the com-
bined scenario, we use na = np = n

2). Each of these configurations is tested
against each of the three controllers. For each setup, 100 independent trials are
conducted. Each trial lasts 1500 s.

Figure 4 shows the performance. Reported is the average success rate which is
defined as the percentage of elements inside the goal region at the end of the trial.
When only m = 5 shepherd agents are available, the performance of all three
controllers decreases as the number of elements na+np goes beyond 50. This can
be attributed to the limited time available for five shepherds to move a relatively
large herd, but possibly as well, though to a lesser extent, to the challenge
of containing the herd, while elements move at random. The performance for
Controller A and Controller P also drops when the number of shepherds m
is similar to, or even exceeds, the number of elements (na + np). Moreover,
Controller A struggles in the passive only scenario when np ≥ 60. This can be
attributed to the behaviors being insufficiently optimized for handling passive
elements: As the elements are no longer repelled by the shepherd, the latter has
to push the elements for them to move. However, we found that this is not an
issue in the combined scenario as the active elements help by pushing the passive
elements and the passive elements prevent the active elements from dispersing.
Controller A+P exhibited the best overall performance.

3.2 Varying Ratio Analysis

To analyse the controllers’ performance with different ratio of active and passive
elements, the latter is varied while keeping the total number of elements constant
(na + np = 10). The number of shepherds is set to m = 3. For each setup and
controller, 100 independent trials are conducted.

Figure 5 shows the time to completion, that is, the time by which the last
element enters the goal region, as well as the average success rates. As the fraction
of active elements increases, the times to completion tend to become shorter,
especially for Controller A and Controller A+P. For any pair of active and
passive elements (na, np), Controller A+P outperforms the other two controllers

192 G. Y. Dosieah et al.

Fig. 6. Varying Speed Analysis. Times to completion (box plots) and success rates
(bar charts) for the three controllers as the maximum speed of active elements is varied,
expressed relative to the maximum speed of shepherd agents (100 trials per setup).

in terms of completion times. However, for the (na = 0, np = 10) pair, its success
rate (96%) was slightly lower than that of the other two controllers (100%).

3.3 Varying Speed Analysis

To further examine to what extent the evolved controllers cope with elements
of different dynamic properties, we consider the impact of the maximum speed
of the active elements. We use m = 3 shepherds, na = 10 active elements and
no passive elements (np = 0). We choose the maximum speed of the active
elements as 0 × s, 0.125 × s, 0.25 × s, 0.5 × s, 1 × s, 2 × s, where s = 12.8 cm/s
is the maximum speed of the e-puck robot, and hence the maximum possible
speed that any shepherd agent could move. For each setup and controller, 100
independent trials are conducted.

Figure 6 shows the times to completion and the average success rates. The
performance is reasonably robust with respect to variations in speed. The best
performance both in terms of completion times and success rates is obtained
when the active elements use the default maximum speed (0.5 × s). This could
be because the controllers were specifically optimized for this setup. However, it
is also plausible that when the active elements are too slow, they require to be
pushed which may prove slightly less effective, whereas when the active elements
are too fast, they may disperse faster (using Eq. 2), and hence make it more
challenging to be contained by the shepherd agents.

3.4 Noise Analysis

To examine the robustness with respect to sensor noise, we conducted nine sets
of experiments, testing each controller on each scenario. Each of the two binary
sensor readings is subjected to (i) false-positive noise with probability p ∈ [0, 1]
(i.e. the sensors detect an object even though the object is not there) and (ii)
false-negative noise with probability p ∈ [0, 1] (i.e. the sensors do not detect an
object even though it is present).

Moving Active and Passive Elements with Robots that Do Not Compute 193

Fig. 7. Noise analysis. Success rates for the three controllers when subject to false-
positive (P) and false-negative noise (N); 100 trials per setup. (Color figure online)

Figure 7 shows the average success rates. All three controllers were particu-
larly robust to false-negative noise on the goal sensor (solid blue line). To identify
which conditions have the most adverse affect on performance, we ranked the
conditions (per controller) by the lowest noise level that caused the success rate
to drop to 50% (or below). Controller A and Controller P were most affected
by false-positive noise on the goal sensor (irrespective of the type of noise affect-
ing the element sensor). On the contrary, Controller A+P was most affected
by false-negative noise on the element sensor (irrespective of the type of noise
affecting the goal sensor).

4 Conclusions

This paper considered for the first time the problem of using a swarm of robots
to move a mixture of active and passive elements to a goal region. It showed
that this problem can be successfully addressed by robots that have only two
binary sensors that detect the presence of the goal and of the elements in front
of the robot, without having to distinguish between active and passive elements,
and without needing to perceive the other robots in the swarm. Each robot has
no run-time memory, and hence, on its own, is unable to learn the unknown
dynamics of the elements during run-time.

194 G. Y. Dosieah et al.

We evolved three controllers, one for an active elements only scenario, one for
a passive elements only scenario, and one for a combined scenario. The controllers
generalized well between these scenarios, expect for the controller optimized for
the active elements scenario, which did not perform well on the passive ele-
ments scenario. The controllers proved flexible, capable of dealing with elements
of different dynamics, and reasonably robust to sensory noise. Moreover, their
performance scaled well, as validated with up to 25 robots and 100 elements.

In the future, we intend to validate the controllers in physical experiments
with e-puck2 robots, and possibly extending the work to 3D environments. Fur-
ther studies could investigate the evolution of controllers for active elements with
non-identical dynamics.

References

1. Becker, A., Habibi, G., Werfel, J., Rubenstein, M., McLurkin, J.: Massive uniform
manipulation: Controlling large populations of simple robots with a common input
signal. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 520–527. IEEE (2013)

2. Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks:
stigmergy and collective robotics. In: Artificial Life IV: Proceedings of the Fourth
International Workshop on the Synthesis and Simulation of Living Systems, pp.
181–189. MIT Press (1994)

3. Bennett, B., Trafankowski, M.: A comparative investigation of herding algorithms.
In: Proceedings of the Symposium on Understanding and Modelling Collective
Phenomena (UMoCoP), pp. 33–38 (2012)

4. Chen, J., Gauci, M., Li, W., Kolling, A., Groß, R.: Occlusion-based cooperative
transport with a swarm of miniature mobile robots. IEEE Trans. Rob. 31(2), 307–
321 (2015)

5. Farivarnejad, H., Berman, S.: Multirobot control strategies for collective transport.
Annu. Rev. Control Robot. Auton. Syst. 5, 205–219 (2021)

6. Fujioka, K., Hayashi, S.: Effective shepherding behaviours using multi-agent sys-
tems. In: 2016 IEEE Region 10 Conference (TENCON), pp. 3179–3182 (2016)

7. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Clustering objects with robots
that do not compute. In: Proceedings of the 2014 International Conference on
Autonomous Agents and Multi-Agent Systems, pp. 421–428. International Foun-
dation for Autonomous Agents and Multiagent Systems (2014)

8. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organized aggregation
without computation. Int. J. Robot. Res. 33(8), 1145–1161 (2014)

9. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evol. Comput. 9, 159–195 (2001)

10. Kim, J.H., Shell, D.A.: A new model for self-organized robotic clustering: under-
standing boundary induced densities and cluster compactness. In: Proceedings -
IEEE International Conference on Robotics and Automation, pp. 5858–5863. IEEE
(2015)

11. Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robot.
Auton. Syst. 30(1–2), 85–101 (2000)

12. Lee, W., Kim, D.: Autonomous shepherding behaviors of multiple target steering
robots. Sensors 17, 2729 (2017)

Moving Active and Passive Elements with Robots that Do Not Compute 195

13. Lien, J.M., Rodŕıguez, S., Malric, J.P., Amato, N.M.: Shepherding behaviors with
multiple shepherds. In: Proceedings - IEEE International Conference on Robotics
and Automation, pp. 3402–3407 (2005)

14. Magnenat, S., Waibel, M., Beyeler, A.: Enki: an open source fast 2D robot simulator
(2009). https://github.com/enki-community/enki

15. Melhuish, C., Holland, O., Hoddell, S.: Collective sorting and segregation in robots
with minimal sensing. In: From Animals to Animats 5: Proceedings of the Fifth
International Conference on Simulation of Adaptive Behavior, pp. 465–470. MIT
Press (1998)

16. Miki, T., Nakamura, T.: An effective simple shepherding algorithm suitable for
implementation to a multi-mobile robot system. In: First International Conference
on Innovative Computing, Information and Control, vol. 3, pp. 161–165 (2006)

17. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In:
Proceedings of the 9th Conference on Autonomous Robot Systems and Competi-
tions, vol. 1, pp. 59–65 (2009)

18. Özdemir, A., Gauci, M., Groß, R.: Shepherding with robots that do not compute.
In: ECAL 2017: The Fourteenth European Conference on Artificial Life, pp. 332–
339 (2017)

19. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In:
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 25–34. ACM (1987)

20. Rojas, J.: Plastic waste is exponentially filling our oceans, but where are the robots?
In: 2018 IEEE Region 10 Humanitarian Technology Conference, R10-HTC, pp. 1–6
(2018)

21. Song, Y., Kim, J.-H., Shell, D.A.: Self-organized clustering of square objects by
multiple robots. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Engel-
brecht, A.P., Groß, R., Stützle, T. (eds.) ANTS 2012. LNCS, vol. 7461, pp. 308–315.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32650-9 32

22. Strömbom, D., et al.: Solving the shepherding problem: heuristics for herding
autonomous, interacting agents. J. R. Soc. Interface 11, 20140719 (2014)

23. Sueoka, Y., Ishitani, M., Osuka, K.: Analysis of sheepdog-type robot navigation
for goal-lost-situation. Robotics 7(2), 21 (2018)

24. Tsunoda, Y., Sueoka, Y., Sato, Y., Osuka, K.: Analysis of local-camera-based shep-
herding navigation. Adv. Robot. 32(23), 1217–1228 (2018)

25. Tuci, E., Alkilabi, M.H., Akanyeti, O.: Cooperative object transport in multi-robot
systems: a review of the state-of-the-art. Front. Robot. AI 5, 59 (2018)

26. Vaughan, R., Sumpter, N., Frost, A., Cameron, S.: Robot sheepdog project achieves
automatic flock control. In: Proceedings of the Fifth International Conference on
Simulation of Adaptive Behavior on From Animals to Animats, vol. 5, pp. 489–493
(1998)

27. Vaughan, R., Sumpter, N., Henderson, J., Frost, A., Cameron, S.: Robot control
of animal flocks. In: Proceedings of the 1998 IEEE International Symposium on
Intelligent Control (ISIC) held jointly with IEEE International Symposium on
Computational Intelligence in Robotics and Automation (CIRA) Intell, pp. 277–
282 (1998)

28. Wilson, S., Pavlic, T.P., Kumar, G.P., Buffin, A., Pratt, S.C., Berman, S.: Design of
ant-inspired stochastic control policies for collective transport by robotic swarms.
Swarm Intell. 8(4), 303–327 (2014)

https://github.com/enki-community/enki
https://doi.org/10.1007/978-3-642-32650-9_32

Real-Time Coordination of a Foraging
Robot Swarm Using Blockchain Smart

Contracts

Alexandre Pacheco(B) , Volker Strobel , Andreagiovanni Reina ,
and Marco Dorigo

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{alexandre.melo.pacheco,volker.strobel,andreagiovanni.reina,

marco.dorigo}@ulb.be

Abstract. We present a novel control scheme for robot swarms that
exploits the computation layer of a blockchain to coordinate the actions of
individual robots in real-time. To accomplish this, we deploy a blockchain
smart contract that acts as a “decentralized supervisor” during a swarm
foraging task. Our results show that using blockchain-based global coor-
dination rules can improve the foraging behavior of robot swarms, while
maintaining a decentralized, scalable, and democratic system in which
every robot contributes homogeneously to the decision-making process.

1 Introduction

The application of blockchain technology to robotic systems is a fast growing
research topic. Particularly, in swarm robotics, the most noteworthy advance-
ment was the recent introduction of a blockchain in order to achieve secure
consensus in the presence of Byzantine agents: in [19,27], it was shown that
blockchain-secured robot swarms can be deployed in situations where security
against unauthorized agents is paramount.

The introduction of a decentralized and secure database such as the block-
chain might have a strong impact on the field of swarm robotics. However, fur-
ther research is required to understand the extent of this impact, as well as its
potential drawbacks.

Ethereum [3] extended the application of blockchains from financial ledgers
to decentralized computing platforms. This means that the participants in the
Ethereum network can agree not only on the execution of financial transactions,
but also on the execution of computer programs known as smart contracts.

In this paper, we argue and validate the claim that smart contracts can be
very valuable when applied to the real-time coordination of robot swarms. In
this context, a smart contract is control code that is executed in a decentralized
manner by the swarm; that is, each robot executes the code independently and
the swarm comes to an agreement on its output. On a micro perspective, the
individual robots collect local information and deliver it to the smart contract by
broadcasting local messages. On a macro perspective, the smart contract extends
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 196–208, 2022.
https://doi.org/10.1007/978-3-031-20176-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_16&domain=pdf
http://orcid.org/0000-0001-5933-3553
http://orcid.org/0000-0003-2974-9827
http://orcid.org/0000-0003-4745-992X
http://orcid.org/0000-0002-3971-0507
https://doi.org/10.1007/978-3-031-20176-9_16

Coordination of Robot Swarms Using Blockchain 197

the swarms’ ability to self-organize by aggregating the input of the robots and
returning action policies on which the robots can act in real-time.

To demonstrate this, we deploy a blockchain smart contract to act as a
“decentralized supervisor” during a collective foraging task in which the swarm
needs to collect resources spread in an unknown environment. The robots broad-
cast messages—known as transactions—that contain information the robots
obtained from scouting the environment for resources and that should be
included in new blocks of the blockchain. The information about the environ-
ment contained in these transactions is aggregated by the smart contract into a
shared database of resource locations. The blockchain consensus protocol guar-
antees that these transactions are executed orderly and conflict-free, and that
all robots reach an agreement on the most recent state of this database. Further-
more, the smart contract distributes the available robots (recruits) to the various
resources, while (i) prioritizing resources with better quality; and (ii) limiting
the number of foragers per resource. These simple rules are shown to increase
the resource collection rate and energy efficiency during the task. As consen-
sus protocol we use proof-of-authority [29], which we have shown in previous
research [19] to be suitable for robot swarms since it requires low power and is
robust to network partitioning and temporary unavailability of robots.

The rest of the paper is organized as follows. In Sect. 2, we review related
works. In Sect. 3, we introduce the foraging task, the environment, and other
methods relevant for the implementation of the experiments: the simulations
software, the robot’s model, the blockchain, and the robot controllers. In Sect. 4,
we present and discuss the experimental results. In Sect. 5, we deliver the con-
clusions of this study.

2 Related Work

Cooperation in Foraging Robot Swarms. Foraging is one of the most studied
behaviors in swarm robotics because it models a wide range of application scenar-
ios, such as search and rescue, agriculture, mining, waste cleaning, and planetary
exploration. It can be described as the combination of two sub-tasks: searching
the environment for objects, and performing actions on those objects (e.g., trans-
portation, consumption, destruction, ...). In this work we focus on central place
foraging [13], where agents are tasked with finding and transporting objects back
to a target location (called “nest”).

Inspired by the foraging behavior of ants, which deposit pheromones along
paths leading to objects [5], robot swarm algorithms are most frequently based on
indirect communications (stigmergy). Researchers have attempted to mimic ant
behavior by using chemicals [24]; augmented reality pheromones [10]; and virtual
pheromones, which are advertised locally by robots with the role of pheromone
beacons [4,12,17]. The main advantages of these methods are scalability and
robustness; however, their implementation either requires specific equipment and
infrastructure (e.g., a smart environment or sensors/actuators for chemicals) or
reduces efficiency by allocating part of the swarm to play the role of beacons.

198 A. Pacheco et al.

Additionally, it has recently been shown that stigmergy is particularly fragile
when malicious agents are present [1].

For these reasons, some researchers have employed forms of explicit communi-
cation to coordinate the collective foraging behavior, inspired by the recruitment
dances that honeybees perform to signal foraging locations to peers [2,25].

Pitonakova et al. [21,22] compare swarms where robots recruit other robots
at the nest with swarms of individualist foragers. They show that when resources
are scarce or difficult to find, nest-site recruitment can be helpful to maximize
the total resources collected. Conversely, if resources are abundant, it may be
more advantageous to forage individually as this might prevent both physical
interference (when robots foraging for the same resources collide) and informa-
tional interference (when robots are misguided by incorrect social information).
Despite this insight, no coordination strategy nor methodology to enable the val-
idation of the information are proposed in order to limit or reduce interference.

Applications of Blockchain to Swarm Robotics. The application of blockchain
technology to robot swarms was demonstrated for the first time in [26–28],
where the authors presented a proof-of-concept (in simulation) showing how
blockchain-based smart contracts can be used to neutralize the negative effects
of Byzantine robots in a consensus problem. In [19] the authors presented the
first implementation of a blockchain in a swarm of real robots using proof-of-
authority consensus [3,29], which is shown to be suitable to robot swarms given
that it is energy efficient and robust to network partitioning.

Although these studies showcase the promise of smart contracts to achieve
generic swarm-wide agreements, it is not yet clear whether the network consen-
sus delay is too large to allow a wider range of applications—particularly, real-
time control. Some researchers have presented control architectures in which the
blockchain is maintained outside of the robot’s network [9]. This design is akin
to using an external control element (albeit, a distributed one in this case), and
does not grant the autonomy and fault-tolerance properties warranted in a robot
swarm. In this paper, we present a decentralized and autonomous robot swarm
that uses blockchain smart contracts for real-time coordination.

3 Methods

Task. The goal of the swarm is to retrieve resources from the environment and
deposit them at the nest. Resources have various qualities that yield a dif-
ferent reward when deposited. The performance of the swarm is measured in
terms of the total reward collected, and of the scouting efficiency, which is the
ratio between the reward collected and the distance traveled by the robots while
exploring the environment. Each experiment lasts 15 min.

Environment. The environment consists of a square arena with the nest located
at the center. The size of the arena is a function of the number of robots (i.e.,
we maintain a constant robot density of 3 robots per m2), and the nest occupies

Coordination of Robot Swarms Using Blockchain 199

Fig. 1. A frame from a simulation run for each resource patch distribution: SSP
(left), SBP (middle) and CSP (right). The patches are circles with items inside (the
resources). A gray background means that the patch is included in the blockchain
database, and the black dots above represent the remaining quantity of resources
according to the blockchain database. The brown circle and annulus in the center
are the nest and its deposit area, respectively. (Color figure online)

10% of the arena’s total area. The nest is divided into two areas (Fig. 1): an
external annulus, where robots can deposit resources; and an internal circle,
where robots can idle. The nest broadcasts a homing signal which allows the
robots to navigate to the nest from any location.

Resource patches are circular areas distributed randomly in an annulus cen-
tered on the nest and with radiuses 0.83 m and 1.44 m. Resources are individual
items contained in a patch that the robots can collect and deposit at the nest.
The patches can be of 4 different types (red, green, blue and yellow), and the
resources collected from each type yield a different reward (2, 4, 6 and 8, respec-
tively). Once a patch runs out of resources, an identical patch spawns elsewhere.

We consider three distributions of patches and resources in the environment.
In all distributions, approximately 3% of the environment area is covered with
patches, and there is an identical number of red, green, blue and yellow patches.

– Scattered small patches (SSP) The patches are distributed uniformly in
the annulus, have a diameter of 16cm and contain 10 resources (Fig. 1, left).

– Scattered big patches (SBP) The patches are distributed uniformly in the
annulus, have a diameter of 36cm and contain 15 resources (Fig. 1, middle).

– Clustered small patches (CSP) The patches are distributed according to
a normal distribution that is biased towards the upper left quadrant of the
arena, have a diameter of 16cm and contain 10 resources (Fig. 1, right).

200 A. Pacheco et al.

Simulation Setup. The simulation setup consists of the swarm robotics sim-
ulation software ARGoS [20]; the blockchain software Ethereum [3]; and the
virtualization software Docker [14]. The nodes of a custom Ethereum network
are executed in Docker containers. Each ARGoS robot controller is associated
with an Ethereum node, and can interact with the client application software
(geth). In this way, ARGoS interacts with the client-side of Ethereum, while the
maintenance of the blockchain is handled by the Docker containers.

We use Python wrappers for both ARGoS [11], and geth [8]. This allows the
robot control routines and interactions with the blockchain client to be fully
written in Python. Our code is available online [18].

Robot Model. The agent used in the simulations is a model of the Pi-puck
robot [15]. In previous research, we showed that the Pi-pucks are capable of
executing the blockchain software [19]. In order to perform the foraging task,
the Pi-pucks use infrared sensors for obstacle avoidance; a range-and-bearing
board for local peer discovery; a ground sensor for scouting resource patches;
and two motors for locomotion. The manipulation of resources is not modeled.

Blockchain Protocol. For a thorough understanding of blockchain technology, we
refer the readers to the papers on Ethereum [3] and Bitcoin [16]. Here we focus
on the two components of blockchain technology which are most relevant for this
work: consensus protocols and smart contracts.

The consensus protocol consists of the rules used by a blockchain network
to agree on the addition of new blocks of information to the blockchain. In
situations of conflict (known as blockchain forks), it also establishes the rule that
defines what becomes the current accepted state of the blockchain. To accomplish
this, proof-of-work, the original blockchain consensus protocol introduced with
Bitcoin [16], requires the expenditure of computational resources. As such, it
is often considered contraindicated for swarm robotics applications [23], which
typically consider robots with limited capabilities and resources [6].

In our research, we have decided to use proof-of-authority [29] as an alterna-
tive to proof-of-work. Proof-of-authority keeps a core of authorized and account-
able nodes which share the role of producing new blocks. In this protocol, anyone
can create a block and propose it to be added to the chain, but in order to be
considered a valid block three conditions must be met: (i) the difference between
the timestamp of two consecutive blocks must be at least t = Tb seconds (Tb is
called the block period); (ii) the block must be correctly signed by an authorized
node (known as a “sealer”) using its private key; and (iii) a sealer can only sign
one block every �N

2 � + 1 blocks (N is the number of sealers).
Every node in the network checks if a proposed block meets these conditions.

If this is the case, the node appends that block to its local copy of the blockchain.
The consensus protocol establishes that the current version of the blockchain is
the one which has the highest cumulative difficulty. Blocks which are signed
in-turn (i.e., that are signed by an appointed preferred sealer for that block),
contribute with a difficulty of 2; while other blocks contribute with 1.

Coordination of Robot Swarms Using Blockchain 201

When deploying a robot swarm it is important to consider that: (i) some
robots may be unavailable when the network is partitioned; and (ii) some robots
may join or leave the swarm during its operation. In the first situation, it is possi-
ble that the robots disconnected from the partition hosting the main blockchain
(which has the highest cumulative difficulty) operate on a different version of the
blockchain (i.e., a blockchain fork). Eventually, when the partitions reconnect,
the main blockchain is established by consensus and the transactions included
in the fork are rebroadcast. In the second situation, we note that the proof-of-
authority consensus protocol allows current sealers to democratically elect or
remove sealers, thus allowing for dynamic swarm sizes. In this paper, however,
we maintain constant swarm sizes and every robot is a sealer throughout the
duration of the experiment.

A blockchain smart contract is a computer program that is stored on the
blockchain, and that encapsulates code (its functions) and data (its state). Net-
work participants can execute its functions by broadcasting transactions to the
smart contract address, which in turn will change its state. It is the role of the
blockchain system to agree on the irrefutable execution of these state-altering
transactions in a decentralized manner.

Our smart contract allows robots: (i) to store information regarding discov-
ered resource patches; (ii) to enlist themselves as recruits in order to forage at a
certain patch; and (iii) to query information about the known resource patches.
Its programming code ensures that the information the robots provide is syn-
chronized without conflicts; that the highest-reward resources are prioritized for
foraging; and that there is a limit on the number of foragers per patch.

The robots can interact with functions by broadcasting transactions (to exe-
cute the function on the blockchain network), or by invoking calls (to execute
the function locally and read its output). Our smart contract has 3 functions:

– update patches(patches[]) The input is a list of formatted strings which
contain the relevant information about a patch: position, radius, quality, and
quantity of resources. If the position is unique (within an error margin) a new
resource is added to the database, otherwise an existing resource is updated.

– assign patch() If there are available patches (i.e., patches with fewer for-
agers than the maximum number allowed), then the transacting robot is
assigned as a forager to the highest quality patch.

– query patches() Returns a database of resources, including the current for-
agers for each resource.

Robot Controller. The robots are controlled by a finite-state machine. At each
simulation step, the robots perform a routine corresponding to their current
state, as well as a local peer discovery routine.

The finite-state machine starts at the state Scout and is composed of 5 states:

– Idle Wait for 30 s; then, transition to Scout.
– Scout Perform a random-walk, with a duration sampled from N (μ = 40 s,

σ = 2 s) and store the discovered patches in a list stored locally; then, broad-

202 A. Pacheco et al.

cast a transaction to execute update patches(scouted patches). Once the
transaction is included in a block, delete the list and transition to Plan.

– Plan Return to the nest using the homing signal and invoke a call to
query patches(). If assigned to forage a resource, transition to Search; oth-
erwise, broadcast a transaction to execute assign patch(), and wait until
it is included in a block. If the transaction fails (no resources available to
forage), transition to Idle.

– Search Navigate from the nest towards the direction of the assigned
patch and search its neighborhood for 10 s. If resources are found,
transition to Forage; otherwise broadcast a transaction to execute
update patches(depleted patch) and transition to Scout.

– Forage Collect a resource from the patch and navigate to the nest
using the homing signal. Then, broadcast a transaction to execute
update patches(current patch) to inform that one resource was removed.
Once the transaction is included in a block, deposit the resource and, if there
were more resources, transition to Search; otherwise, transition to Scout.

The local peer discovery routine enforces that all communications, including
blockchain synchronization, occur locally (up to 30 cm). Within this range, the
robots broadcast and receive IP addresses using infrared signals on the range-
and-bearing board. After receiving an IP address, robots use TCP to share their
enode—a unique URL used to identify and connect to nodes in the Ethereum
network. If the infrared signal is lost, the robot disconnects from that peer on the
blockchain network and deletes its IP address and enode from its local memory.
This peering scheme serves two purposes: (i) to ensure that communications are
only local and thus mimic a real-world swarm deployment where network parti-
tioning can occur; and (ii) to provide an additional layer of security which pre-
vents external agents from participating in the network (since the robots reject
connections which are not accompanied by the short-range infrared greeting).

4 Results and Discussion

In general, our goal is to show that a blockchain can extend the swarm’s ability
to self-organize, and thus improve its collective performance, while maintaining
the properties of a robot swarm: decentralization, scalability and adaptability.

The blockchain allows robots to agree on the state of the environment and
on a coordination strategy, without the need for delegated supervisors (in con-
trast with centralized or hybrid control). Since the proof-of-authority consensus
algorithm is robust to the unavailability of up to 50% of the network nodes, our
blockchain-coordinated robot swarm does not have a singular point-of-failure
and could be deployed in situations where a system that relies on information
traveling to and from supervisors would fail (for example, in environments with
limited or no communication infrastructure). In this sense, a blockchain enables
a decentralized and democratic swarm, in which all robots contribute homoge-
neously to the decision-making process.

Coordination of Robot Swarms Using Blockchain 203

On the downside, it is important to analyze the impact of consensus latency,
i.e., the time it takes for messages to be disseminated through the network and
for robots to reach agreements in this democratic process—as well as the costs
of data storage, since each robot keeps a local copy of the blockchain database.
These aspects could raise scalability concerns in terms of communication and
hardware requirements for robot swarms. In Sect. 4.1 we discuss these concerns,
and show that they are manageable for swarms of different sizes.

In foraging, cooperation is not always an advantage [22]. Sharing informa-
tion can lead to an increased rate of physical interference, for example, when the
robots forage the same resources rather than finding a balance between exploita-
tion and exploration. It may also lead to informational interference, which occurs
when robots propagate incorrect or outdated information (e.g., if a resource
patch becomes depleted during the time the information is being processed, or
if the robots’ sensors provide inaccurate positions).

The role of our smart contract supervisor is to improve the performance of the
swarm (in terms of the reward collected and the scouting efficiency) by aggre-
gating information about resource patches from the robot scouts, and assigning
resource patches to robot recruits—thus minimizing the impact from both forms
of interference. In Sect. 4.2 we report the performance results of a blockchain-
coordinated robot swarm and we compare them to those obtained with a swarm
of uncoordinated robots, which explore the environment and forage resources as
they discover them individually, in environments with different resource distri-
butions. In these experiments, we keep the swarm size constant (25 robots) and
analyze how performance changes as the maximum number of foragers that the
smart contract allows per patch increases.

4.1 Scalability

Consensus Latency. Figure 2 (left) shows the Block Reception Delay, which is
the difference between the timestamp at the moment a robot receives a block and
the timestamp at the moment the block was produced (in other words, the time
it took for a block to be disseminated through the network from its producer
to any other robot). Figure 2 (right) shows the Block Production Delay, which
is the difference of the timestamps between two consecutive blocks on the final
version of the blockchain. The first metric is calculated online by the robots,
while the second is calculated offline after the experiment is finished.

The block period (Tb) parameter sets the minimum required difference
between the timestamps of two consecutive blocks (see Sect. 3), and thus has a
big effect on the information delay introduced by the blockchain: if it is too high,
it reduces the possibility to employ the shared knowledge to perform time-critical
tasks. Conversely, if it is too low, it increases the frequency of block production
which leads to (i) higher costs of communication, computation, and data storage;
and (ii) an increased rate of blockchain forks which contain redundant, or more
dangerously, conflicting information. In Fig. 2 (left) we observe that a majority
of blocks are received within 2 s. This observation justifies our choice of Tb = 2 s,

204 A. Pacheco et al.

Fig. 2. The histograms represent cumulative probability distributions, and are gener-
ated from the combined data of all experiments performed in this study. Left: In 70%
of the instances a robot received a block, that block was produced less than 2 s earlier;
and in 100% of the instances, less than 15 s earlier. Right: The minimum and ideal
production delay is equal to Tb = 2 s. An additional delay occurs due to network delays
(e.g., temporary unavailability of the preferred block producer). In our experiments,
90% of the blocks were produced within 2 s to 3 s, which means that the blockchain is
operating as designed.

as there is a high chance that the previous block has been disseminated through
the network before it is time to produce the next block.

Data Storage. In previous research [19], we set the block period to 15 s. With
a block period of 2 s, we expect that the cost of storing the blockchain will be
higher since the amount of data stored depends on the number of blocks created
(as well as on the number of transactions performed by the robots).

Figure 3 (left) shows the data storage required by each robot, which is seen to
increase linearly with the number of robots in the swarm. On average, each robot
requires 8 MB for 15 min of operation, which we consider reasonable given current
data storage technology. Furthermore, the robots in our experiments are full
blockchain nodes, i.e., each robot stores the complete blockchain history. In a real
deployment this might not be necessary, since only the most recent information is
relevant for the robots’ operations, and the task of storing the blockchain history
can be delegated to external agents when connection is available, or it can be
segmented and stored by the robots in a distributed manner. In this case, the
hardware-limited robots would host light blockchain nodes [7], while remaining
able to verify the status of the blockchain and of the transactions by leveraging
cryptographic primitives. For these reasons, we do not expect data storage to
pose a scalability problem in a real deployment.

Performance. Figure 3 (right) shows that the swarm is capable of maintaining
performance (the total reward collected increases with the number of robots) as
the environment size, number of robots and quantity of resources scale accord-
ingly. However, we also observe decreasing performance returns (the total reward
collected increases sublinearly with the number of robots). Rather than a lim-
itation of our blockchain-coordinated approach, this seems to occur due to the
layout of the environment, which is prone to interference at the centrally located
nest when the swarm size increases.

Coordination of Robot Swarms Using Blockchain 205

Fig. 3. Left: The storage space required for each robot grows linearly with the number
of robots, at a rate of approximately 1 MB per 10 robots. Right: The collected reward
grows sublineary with the number of robots, due to the increasing rate of physical
interference at the centrally located nest. These experiments were repeated 25 times
using the SSP distribution.

4.2 Performance in Different Distributions

SSP Distribution. In this environment there is a large number of patches ran-
domly spread on the map. Previous research [22,30] indicates that individualist
foragers tend to perform well, or even better than cooperating robots (when the
benefits of cooperation do not overcome the negative effects of interference). In
Fig. 4 (left) the total reward collected saturates at 2 foragers per patch, but is
consistently higher than the non-collaborating swarm (‘NC’ in the x-axis). The
scouting efficiency can be significantly higher but also has a high spread. This
happens because cooperating robots, when lucky, will discover higher quality
patches and better allocate foragers to those resources.

SBP Distribution. The blockchain-coordinated swarm is capable to retrieve 50%
to 100% more reward, and to be twice more efficient in scouting for resources,
as seen in Fig. 4 (middle). In this environment, the advantage of coordination is
more pronounced since (i) the patches last longer as they contain more resources,
and (ii) they are larger in size and there is therefore less interference.

CSP Distribution. The blockchain-coordinated swarm is capable to retrieve more
than double of the reward and be 2 to 5 times more efficient during scouting,
as seen in Fig. 4 (right) than non-collaborating swarms. This occurs because
the scouting robots which move in the direction of the resource cluster are very
successful, while others robots do not find any resources. The ability to aggregate
and share information prevents unsuccessful robots from idling or wasting energy
performing redundant exploration. Conversely, given the tight aggregation of
resources, the foraging efficiency quickly drops as the number of recruits increases
above 3 due to physical interference between robots.

206 A. Pacheco et al.

Fig. 4. Performance results for three distributions: SSP (left), SBP (middle) and CSP
(right). The top row shows the reward collected by the swarm at the end of the exper-
iment, and the bottom row the scouting efficiency. The x-axis (number of foragers) is
a parameter in the smart contract which limits how many robots can be tasked as for-
agers for each resource patch. The uncoordinated robot swarm shows “NC”. A swarm
of 25 robots was used, and the experiments were repeated 10 times.

5 Conclusions

We showed that the coordination rules provided by a smart contract supervisor
can improve the performance of the robot swarm during the foraging task, while
keeping reasonable data storage costs and manageable delay in the control loop.
These are positive results that showcase the potential of deploying blockchains
for the real-time coordination of robot swarms in a wider range of scenarios.

The usage of a blockchain in a swarm robotics system enables a new class
of distributed control algorithms that use explicit communication and coordi-
nation, while preserving decentralization and local exchanges of information.
It is important to note the contrast between the macro perspective that is used
when creating smart contract supervisors and the micro perspective that is more
frequent in the design of robot swarm controllers. In our research, we present
the two approaches as complementary since the behavior of individual robots
emerges from local sensing and interactions, while the blockchain is regarded as
an additional layer that is reserved for high-level decision making.

Acknowledgements. This work was partially supported by the program of Concerted
Research Actions (ARC) of the Université libre de Bruxelles and by the Brussels-
Capital Region via the Brussels International contract n. BI-MB-531-004021. A. Reina

Coordination of Robot Swarms Using Blockchain 207

and M. Dorigo acknowledge support from the Belgian F.R.S.-FNRS, of which they are
Chargé de Recherches and Research Director, respectively.

References

1. Aswale, A., López, A., Ammartayakun, A., Pinciroli, C.: Hacking the colony: on the
disruptive effect of misleading pheromone and how to defend against it. In: Proceed-
ings of the 21st International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2022), pp. 27–34. International Foundation for Autonomous
Agents and Multiagent Systems, Richland (2022)

2. Biesmeijer, J.C., de Vries, H.: Exploration and exploitation of food sources by
social insect colonies: a revision of the scout-recruit concept. Behav. Ecol. Sociobiol.
49(2), 89–99 (2001). https://doi.org/10.1007/s002650000289

3. Buterin, V.: A next-generation smart contract and decentralized application
platform. Technical report, Ethereum Foundation (2014). https://github.com/
ethereum/wiki/wiki/White-Paper. Accessed 18 July 2019

4. Campo, A., et al.: Artificial pheromone for path selection by a foraging swarm
of robots. Biol. Cybern. 103(5), 339–352 (2010). https://doi.org/10.1007/s00422-
010-0402-x

5. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing
exploratory pattern of the argentine ant. J. Insect Behav. 3(2), 159–168 (1990).
https://doi.org/10.1007/BF01417909

6. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

7. Ethereum Foundation: Ethereum project (2017). https://ethereum.org
8. Ethereum Foundation: ethereum/web3.py: A Python interface for interacting with

the Ethereum blockchain and ecosystem (2022). https://github.com/ethereum/
web3.py

9. Fernandes, M., Alexandre, L.A.: Robotchain: using tezos technology for robot event
management. Ledger 4 (2019). https://doi.org/10.5195/ledger.2019.175. https://
www.ledgerjournal.org/ojs/ledger/article/view/175

10. Font Llenas, A., Talamali, M.S., Xu, X., Marshall, J.A.R., Reina, A.: Quality-
sensitive foraging by a robot swarm through virtual pheromone trails. In: Dorigo,
M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS
2018. LNCS, vol. 11172, pp. 135–149. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7 11

11. Hasselmann, K., Parravicini, A., Pacheco, A., Strobel, V.: KenN7/argos-python:
python wrapper for ARGoS3 simulator (2022). https://github.com/KenN7/argos-
python

12. Hoff, N., Wood, R., Nagpal, R.: Distributed colony-level algorithm switching for
robot swarm foraging. In: Martinoli, A., et al. (eds.) Distributed Autonomous
Robotic Systems, vol. 83, pp. 417–430. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-32723-0 30

13. Houston, A.I., McNamara, J.M.: A general theory of central place foraging for
single-prey loaders. Theor. Popul. Biol. 28(3), 233–262 (1985). https://doi.org/10.
1016/0040-5809(85)90029-2

14. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239) (2014)

https://doi.org/10.1007/s002650000289
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1007/s00422-010-0402-x
https://doi.org/10.1007/s00422-010-0402-x
https://doi.org/10.1007/BF01417909
https://ethereum.org
https://github.com/ethereum/web3.py
https://github.com/ethereum/web3.py
https://doi.org/10.5195/ledger.2019.175
https://www.ledgerjournal.org/ojs/ledger/article/view/175
https://www.ledgerjournal.org/ojs/ledger/article/view/175
https://doi.org/10.1007/978-3-030-00533-7_11
https://doi.org/10.1007/978-3-030-00533-7_11
https://github.com/KenN7/argos-python
https://github.com/KenN7/argos-python
https://doi.org/10.1007/978-3-642-32723-0_30
https://doi.org/10.1007/978-3-642-32723-0_30
https://doi.org/10.1016/0040-5809(85)90029-2
https://doi.org/10.1016/0040-5809(85)90029-2

208 A. Pacheco et al.

15. Mondada, F., et al.: The e-puck, a robot designed for education in engineering.
In: Gonçalves, P.J.S., Torres, P.J.D., Alves, C.M.O. (eds.) Proceedings of the 9th
Conference on Autonomous Robot Systems and Competitions, vol. 1, pp. 59–65.
IPCB: Instituto Politécnico de Castelo Branco (2009)

16. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

17. Nouyan, S., Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-
organized robot colonies. IEEE Trans. Evol. Comput. 13(4), 695–711 (2009).
https://doi.org/10.1109/TEVC.2008.2011746

18. Pacheco, A., Strobel, V.: teksander/geth-argos at ANTS2022. https://github.com/
teksander/geth-argos

19. Pacheco, A., Strobel, V., Dorigo, M.: A blockchain-controlled physical robot swarm
communicating via an ad-hoc network. In: Dorigo, M., et al. (eds.) ANTS 2020.
LNCS, vol. 12421, pp. 3–15. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-60376-2 1

20. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for
multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/
s11721-012-0072-5

21. Pitonakova, L., Crowder, R., Bullock, S.: Understanding the role of recruitment
in collective robot foraging. In: Proceedings of the 14th International Conference
on the Synthesis and Simulation of Living Systems (ALIFE 2014), pp. 264–271
(2014). https://doi.org/10.7551/978-0-262-32621-6-ch043

22. Pitonakova, L., Crowder, R., Bullock, S.: The information-cost-reward frame-
work for understanding robot swarm foraging. Swarm Intell. 12(1), 71–96 (2017).
https://doi.org/10.1007/s11721-017-0148-3

23. Reina, A.: Robot teams stay safe with blockchains. Nat. Mach. Intell. 2, 240–241
(2020). https://doi.org/10.1038/s42256-020-0178-1

24. Salman, M., Garzón Ramos, D., Hasselmann, K., Birattari, M.: Phormica: pho-
tochromic pheromone release and detection system for stigmergic coordination in
robot swarms. Front. Robot. AI 7 (2020). https://www.frontiersin.org/article/10.
3389/frobt.2020.591402

25. Seeley, T.D.: Division of labor between scouts and recruits in honeybee forag-
ing. Behav. Ecol. Sociobiol. 12(3), 253–259 (1983). https://www.jstor.org/stable/
4599586

26. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing Byzantine robots via block-
chain technology in a swarm robotics collective decision making scenario. In:
Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS 2018), pp. 541–549. International Foundation for
Autonomous Agents and Multiagent Systems, Richland (2018)

27. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Blockchain technology secures robot
swarms: a comparison of consensus protocols and their resilience to Byzantine
robots. Front. Robot. AI 7, 54 (2020). https://doi.org/10.3389/frobt.2020.00054

28. Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V.
(eds.): ANTS 2018. LNCS, vol. 11172. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7

29. Szilágyi, P.: EIP 225: clique proof-of-authority consensus protocol (2017). https://
github.com/ethereum/EIPs/issues/225. Accessed 10 May 2020

30. Wilson, E.O.: Sociobiology: The New Synthesis, Twenty-Fifth Anniversary Edition.
Harvard University Press, Cambridge (2000)

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/TEVC.2008.2011746
https://github.com/teksander/geth-argos
https://github.com/teksander/geth-argos
https://doi.org/10.1007/978-3-030-60376-2_1
https://doi.org/10.1007/978-3-030-60376-2_1
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.7551/978-0-262-32621-6-ch043
https://doi.org/10.1007/s11721-017-0148-3
https://doi.org/10.1038/s42256-020-0178-1
https://www.frontiersin.org/article/10.3389/frobt.2020.591402
https://www.frontiersin.org/article/10.3389/frobt.2020.591402
https://www.jstor.org/stable/4599586
https://www.jstor.org/stable/4599586
https://doi.org/10.3389/frobt.2020.00054
https://doi.org/10.1007/978-3-030-00533-7
https://doi.org/10.1007/978-3-030-00533-7
https://github.com/ethereum/EIPs/issues/225
https://github.com/ethereum/EIPs/issues/225

Robot Swarms Break Decision Deadlocks
in Collective Perception Through

Cross-Inhibition

Raina Zakir(B) , Marco Dorigo , and Andreagiovanni Reina

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{raina.zakir,marco.dorigo,andreagiovanni.reina}@ulb.be

Abstract. We study how robot swarms can achieve a consensus on the
best among a set of n possible options available in the environment.
While the robots rely on local communication with one another, fol-
low simple rules, and make estimates of the option’s qualities subject
to measurement errors, the swarm as a whole is able to make accu-
rate collective decisions. We compare the performance of two prominent
decision-making algorithms that are based, respectively, on the direct-
switching and the cross-inhibition models, both of which are well-suited
for simplistic robots. Most studies used these models to let robots achieve
consensus by solely relying on social interactions and ignored the aspect
of enabling robots to self-source information from the environment. How-
ever, in order to select the best option, we deem sampling environmental
information crucial for the successful performance of the task. Through
robot-swarm simulations, we show that swarms programmed with the
direct-switching model are only able to make consensus decisions in
asymmetric environments where options have different quality values.
Instead, using cross-inhibition, the robot swarm can also break decision
deadlocks and reach a consensus in symmetric environments with equal
quality options. We investigate the mechanistic causes of such differences
and we find that the time the robots spend in a state of indecision is a key
parameter to break the symmetry. This research highlights the impor-
tance of considering both social and environmental information when
studying collective decision-making.

1 Introduction

Swarm robotics is the research field that studies how to apply principles of swarm
intelligence [5] to the design of decentralised systems consisting of large numbers
of relatively simple robots that collectively perform tasks or solve problems [8].
As the robots within a swarm do not have global knowledge, the swarm’s collec-
tive behaviour emerges from the local interactions among the robots and from
the interactions the robots have with their surrounding environment. Collective
decision-making is a particular type of collective behaviour that is paramount to
achieve group coordination—as such it is very often found in group-living ani-
mals [6]. For example, honeybees make consensus decisions on the site where to
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 209–221, 2022.
https://doi.org/10.1007/978-3-031-20176-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_17&domain=pdf
http://orcid.org/0000-0002-2419-3789
http://orcid.org/0000-0002-3971-0507
http://orcid.org/0000-0003-4745-992X
https://doi.org/10.1007/978-3-031-20176-9_17

210 R. Zakir et al.

build their nest among several alternative locations [26], ants are able to collec-
tively select the shortest path from their nest to a profitable food source [10], and
flocks of birds on the move select the same direction of motion in a decentralised
way [3]. These natural systems have inspired the development of many different
types of algorithms to enable robot swarms to make consensus decisions, such
as selecting the aggregation site [27], selecting the direction of motion [7,9,17],
selecting the predominant environmental feature [33], or selecting the shortest
path for transporting items efficiently [29]. These algorithms need to be simple—
to run on simple robots—and, at the same time, robust to robot malfunctions
and flexible to changing environments—to work in real-life applications. A par-
ticularly important collective decision-making problem for swarm robotics is the
so-called “best-of-n problem” [34], that is, how the swarm can select the best
option among a set of n alternatives.

In this study, we consider the best-of-2 problem in which a minimalistic
robot swarm is tasked with making a consensus decision on an environmental
feature [33]. The environment floor is covered with yellow and blue tiles, and the
environmental feature to decide on is which is the predominant colour. There-
fore, the two colours represent the two alternative options to decide between,
and the abundance of each colour (i.e. the proportion of yellow, or blue, tiles)
represents the quality of the option. To achieve consensus on one of the two envi-
ronmental features, the robots utilise a minimalistic decision-making algorithm.
Each robot is committed to the option it considers the best and broadcasts
voting messages about this option to its neighbours. Robots apply the decision-
making algorithm to update their commitment to an option; the update can be
based on either social information (received from neighbours as voting messages)
or self-sourced information (obtained through independent exploration). Robots
receiving voting messages from their peers update their opinion (i.e. the option
to which they are committed) using minimalistic opinion update models. These
models are minimalistic in nature and are therefore a viable solution for reach-
ing consensus in simplistic robots. Periodically, robots choose to ignore social
information and self-source information from the environment by independently
switching their commitment to the option locally sensed in the environment.
The individual self-sourcing of information through independent exploration of
the environment can allow the swarm to achieve better adaptability in dynamic
environments [2,30,36] where qualities of options may change over time. How-
ever, self-sourcing information is a form of asocial behaviour that also increases
fluctuations (or noise) in the consensus formation [21,31] that may result in
decision deadlocks in certain decision-making algorithms [12,16,21]. Hence, the
opinion update models that are used in collective decision-making need to be
resilient to decision deadlocks when the amount of noise increases, either due to
the exploration of the environment to achieve adaptability or to other sources,
such as malfunctioning sensors on the robots that make them asocial (stub-
born or zealot) and threaten the resiliency of symmetry-breaking in collective
decision-making [14,15].

Robot Swarms Break Decision Deadlocks Through Cross-Inhibition 211

Based on the literature, one of the most widespread models for updating a
robot’s opinion upon receiving new social information is direct-switching [35],
in which a robot switches to a random neighbour’s opinion during the voting
phase. Direct-switching has been extensively used to engineer decentralised sys-
tems because of its simplicity and favourable tractability in minimalistic sys-
tems. However, theoretical studies on opinion dynamics [16] predict that direct-
switching leads to decision deadlocks in presence of noise (e.g. self-sourcing envi-
ronmental information). Despite being a highly relevant process in making deci-
sions on the best option, there has been limited research focusing on the impact
of self-sourcing environmental information on the collective dynamics of swarms
using the direct-switching model. An alternative to the direct-switching model is
the cross-inhibition model [18,22,23], which is inspired by the house-hunting pro-
cess in honeybees [26]. The cross-inhibition model has comparable simplicity to
direct-switching, and theory predicts a higher resilience to the presence of noise.
Unlike what happens with the direct-switching model, when a robot using the
cross-inhibition model receives a contrasting opinion from one of its neighbours,
it gets uncommitted and remains without an opinion—i.e. it becomes undecided.
Using robot swarm simulations, we estimate to what extent the decision-making
algorithm based on the cross-inhibition model is resilient to increasing noise
and show that the time spent by the robots in the uncommitted state is funda-
mental to the ability of being resilient to noise induced from the self-sourcing
information.

The outline of the rest of the paper is as follows. Section 2 defines the best-
of-n problem, the collective decision-making algorithms, and the mechanism to
self-source information from the environment. In Sect. 3, we describe the experi-
mental setup and explain the parameters that have been analysed in this study.
In Sect. 4, we present the results, and finally, in Sect. 5, we conclude and discuss
possible directions in which this work could be extended.

2 The Models

We consider the n = 2 instance of the best-of-n decision problem, in which the
swarm has to converge to the best between two options, A or B. Each option
has a quality, qA and qB , and the parameter q = qA/qB represents the ratio
between the two qualities. Without loss of generality, in our study, we assume
that qA ≥ qB . Each robot is committed to an option, which corresponds to
the robot’s opinion, or uncommitted, that is, without an opinion. The robot
behaviour is based on the same finite state machine of [35] characterised by two
continuously alternating states: exploration and dissemination shown in Fig. 1A.
In the exploration state, the robots assess the quality qi of their current opinion
by sampling the environment (with i = {A,B}). The amount of time a robot stays
in exploration is drawn randomly from an exponential distribution with a rate
equal to λ−1. In the dissemination state, the robots disseminate their opinion i
locally to their neighbours. The amount of time a robot spends disseminating
its opinion is drawn from an exponential distribution with a rate qi g, which

212 R. Zakir et al.

is directly proportional to the option’s quality qi and is scaled by the average
duration of dissemination g. The parameter g is set based on the requirements
of the considered scenario. By scaling the time spent in the dissemination state
proportionally to the quality of the options assessed in the exploration state,
the probability of receiving messages from peers committed to the best opinion
increases because they disseminate for a longer time. As a result, it will be more
likely to observe neighbours that are in favour of the best option than observing
neighbours that are supporting the lower quality option. The dissemination state
is followed by either a polling state or a self-sourcing state (see Fig. 1A). The
decision to go to either states is random, based on the noise probability η. With
probability η, the robot self-sources a new opinion from the environment, and
with probability (1 − η) polls other robots’ information. In the self-sourcing
state, the robot replaces its opinion with the option (i.e. the colour) found in
its current location of the environment. Including the self-sourcing mechanism
allows the robots to periodically monitor the environment and reconsider the
best option with new environmental evidence. On the other hand, the polling
state involves collecting the opinions of the neighbours, choosing one at random
and then applying an opinion update mechanism—either direct-switching or
cross-inhibition. In this study, to simplify the behaviour for minimalistic robots
and minimise memory use, the robots in the polling state only consider the first
message they receive from their neighbours. Finally, after either using social
information or self-sourcing environmental information, a robot returns to the
exploration state to continue the cycle.

Direct-Switching. When it uses direct-switching as its opinion update model,
the robot reads the message of one randomly chosen neighbour (which is dis-
seminating within its communication range) and adopts that neighbour’s opinion
regardless of whether it is the same or different from the robot’s own opinion.
This mechanism allows accurate consensus formation among neighbours [35].
However, it can also result in unstable group dynamics due to the formation of
echo chambers among robots with the same opinion that can prevent consensus
formation in the swarm [28].

Cross-Inhibition. According to the cross-inhibition model, the robot can either
be committed to an option or uncommitted. During polling, when a committed
robot reads a (randomly chosen) message from a robot committed to a different
option (e.g. a robot committed to A reads a message from a robot committed to
B), it gets inhibited and becomes uncommitted. When an uncommitted robot
receives any opinion (A or B) from one of its neighbours, it gets recruited to the
received option.

3 Experimental Setup

To analyse the models introduced in Sect. 2, we implement the collective decision-
making behaviour on a swarm of N = 100 simulated robots. For this analysis,

Robot Swarms Break Decision Deadlocks Through Cross-Inhibition 213

Fig. 1. (A) The finite state machine (FSM) describing the robots’ behaviour, based on
the FSM of [35] and extended to include the possibility of self-sourcing information.
The rectangles represent the four FSM’s states and the arrows represent the transi-
tions among them. (B) Snapshot of an experiment showing 50 simulated Kilobots in
the ARGoS Kilogrid arena comprising yellow and blue tiles. (C–D) Robot’s opinion
update model of direct-switching and cross-inhibition, respectively. The robot updates
its opinion based on either social information (solid lines) or self-sourced environmen-
tal information (dashed lines). In direct-switching (C), the robot that gets recruited
changes its commitment immediately. In cross-inhibition (D), when a committed robot
receives a message from a robot committed to a different option, it resets its commit-
ment (it gets inhibited). (Color figure online)

we use Kilobots [24]—small-sized and low-cost robots that communicate using
infrared (IR) transceivers with other robots in a range of 10 cm, move at a
speed of 1 cm/s and have a control loop of approximately 32 ms. We simulate
the robot swarm in ARGoS, a state-of-the-art swarm robotics simulator [19,20].
To provide robots with a virtual environment from which they can self-source
information, we simulate the Kilogrid [1,32]. The Kilogrid is an electronic table
sized [1 × 2] m2, composed of 800 cells that interact with the Kilobots through
IR and that can be easily simulated in ARGoS [2]. With the exception of the

214 R. Zakir et al.

Kilogrid cells at the borders (depicted in white in Fig. 1B), all the cells are set
to send constantly IR messages signalling their ID and their colour, either the
yellow colour associated with option A or the blue colour associated with option
B. The proportion of cells allocated to emit messages for each option can be
symmetric (50% for A and 50% for B) or asymmetric. In cases of asymmetric
environment, as a convention, we keep option A with higher quality, i.e. there
are more Kilogrid cells signalling option A than cells signalling option B.

The Kilobots use the IR messages from the Kilogrid’s cell beneath it both
in the self-sourcing state to collect new information from the environment, and
during exploration to estimate their opinion’s quality (i.e. the proportion of cells
of a given colour). As Kilobots are not equipped with any proximity sensors,
the Kilogrid cells also send a ‘wall flag’ to signal proximity to a wall (the flag
is a binary value that can be either high/low) that the Kilobots use to avoid
collisions. The white cells at the borders and the non-white cells adjacent to the
white cells send a high wall flag, while all the other internal cells send a low
flag. Without such wall flags to detect proximity to the walls, a large number of
Kilobots would remain clustered on the arena walls.

3.1 Robot Behaviour

The robots start from a uniformly random position in the environment and with a
random initial opinion; we initialise half of the swarm committed to option A and
the other half to option B. To explore different portions of the environment and
exchange messages with different robots, the Kilobots always perform a random
walk in the environment, alternating between a rotation phase of approximately 5
s (in a randomly chosen direction—clockwise or counterclockwise) and a straight
motion phase of approximately 10 s. The random walk allows the robots to
encounter different robots in their neighbourhood during the dissemination phase
and allows more accurate estimation of the option qualities from the Kilogrid
during the exploration phase.

A robot that receives a high wall flag from the Kilogrid executes—regardless
of its state—a simple obstacle avoidance routine. The robot starts a random rota-
tion phase of approximately 4 s followed by a straight motion phase of approx-
imately 7 s. If the wall flag is detected again, the obstacle avoidance routine is
reinitialised till the robot receives a low flag.

All robots start the experiment in an exploration state. During the explo-
ration, a robot committed to i reads the Kilogrid messages to keep the count Ti

of the number of cells it encountered (it uses the cell’s ID to count each cell only
once) and the count Ci of how many of the visited cells have the same colour as
its own opinion i. At the end of the exploration cycle, the robot estimates the
quality qi = min(1, 2Ci/Ti), hence 0 ≤ qi ≤ 1. When Ci/Ti ≥ 0.5, the quality
is set to its maximum qi = 1 as the goal is to select the predominant colour,
and because the robot has found more than half of the readings have colour i,
it assigns to i the maximum quality. For Ci/Ti < 0.5, the quality scales linearly
in [0, 1].The values Ti and Ci correspond to the counts of one exploration cycle
only and are reset before entering the dissemination state.

Robot Swarms Break Decision Deadlocks Through Cross-Inhibition 215

Based on qi, the robot computes the dissemination time using an exponential
distribution with λ−1

d = qi gc where gc = 1300 is the average number of control
cycles in dissemination when qi = 1, which corresponds to λ−1

d of about 40 s.
In case the robot is uncommitted, the parameter λ−1

d is set to 0.5 gu; using the
default value for gu = 400, the uncommitted robot spends an average of approx-
imately 6 s in the dissemination state. At the end of the dissemination, the robot
decides with probability η whether to perform either an individual environmen-
tal observation (enter the self-sourcing state) or a social interaction (enter the
polling state). Once the environmental observation or the polling are terminated,
the robot computes the exploration time and enters the exploration state again.
A committed robot computes the exploration time using λe = 0.0003, result-
ing in an average exploration time of approximately 100 s. Instead an uncom-
mitted robot uses the same rate used to compute the dissemination time, i.e.
λ−1
e = λ−1

d = 0.5 gu, with gu = 400. The total duration of each simulation run
is 110 min.

4 Experiments and Results

We run simulations to test the effect of different values of the noise probability
η = 0 (no noise), η = 0.01 (low), η = 0.05 (medium) and η = 0.25 (high),
on both opinion update models for different quality ratios q. In the first set of
experiments, we test direct-switching and cross-inhibition models in a symmetric
environment (50% of the Kilogrid cells signal option A and 50% option B), i.e.
q = qA/qB = 1. The second set of experiments includes the direct-switching and
cross-inhibition model in asymmetric environments with three values of quality
ratio q: 1.08 (Kilogrid cells: 52%A, 48%B), 1.22 (Kilogrid cells: 55%A, 45%B),
and 1.5 (Kilogrid cells: 60%A, 40%B). For each condition, we run 50 simulations
that we use to generate the histograms of Fig. 2. The histograms show how
frequently the swarm distributes between robots supporting option A and B in
the last 1 000 timesteps (approximately 30 s) of a run. For each timestep, we
subtract the proportion of robots supporting option B from the proportion of
robots supporting option A, i.e. (number robots for A - number robots for B)/N ,
and report the results as histograms in Fig. 2.

Figure 2 shows that when the environment is symmetric (q = 1), both models
are able to break the symmetry in the absence of noise (η = 0). However, the
performance of direct-switching deteriorates as soon as noise is introduced (η ≥
0.01), and the swarm cannot reach any agreement but remains in a state of
decision deadlock. Direct-switching with noise η > 0 can only reach convergence
to a stable majority towards the best option for a high quality ratio (q = 1.22 for
low noise and q = 1.5 for medium noise); in all other conditions the swarm using
direct-switching remains in an undecided state. Instead, the cross-inhibition is
consistently able to break the symmetry for both low and medium levels of noise
(η ≤ 0.05) for any tested value of q. With higher levels of noise, both models fail
to break the symmetry, even when the quality ratio increases. In summary, cross-
inhibition is always better than direct-switching to break decision deadlocks and
make consensus decisions, except for cases in which noise is very high.

216 R. Zakir et al.

Fig. 2. Histograms for cross-inhibition and direct-switching models when N = 100,
gc = 1300 and gu = 400 (statistics over 50 runs) showing the effect of increasing
the probability of self-sourcing environmental information (η) and the quality ratio
(q = qA/qB) on the collective decision-making process. The histograms are computed
as the difference between the proportion of robots supporting A and B for each of the
last 1 000 timesteps of every run ((A-B)/N on the x-axis).

To further analyse the mechanism through which the cross-inhibition model is
resilient to decision deadlocks, we test the influence of the amount of time a robot
spends in the uncommitted state and its ability to break the symmetry. To do so,
we vary the average duration of dissemination and exploration of uncommitted
agents by varying the parameter gu from 0 to 2 000 (corresponding to an average
temporal duration from 0 s to approximately 62 s). When gu = 0, the voting
mechanism becomes equivalent to direct-switching. Increasing gu corresponds to
increasing the time the robot spends in an uncommitted state, as gu determines
the average dissemination and exploration time of uncommitted robots. The
change in dynamics with noise η = 0.05 and q = 1 is shown in Fig. 3A. When
gu = 0, the result obtained corresponds to dynamics similar to those observed
in direct-switching with η = 0.05 in a symmetric environment (Fig. 2, q = 1
and η = 0.05); the swarm remains in a decision deadlock. As gu increases, the
bistability becomes more prominent, as observed in η = 0.05 in the symmetric

Robot Swarms Break Decision Deadlocks Through Cross-Inhibition 217

Fig. 3. (A) 2D-histogram for increasing gu for η = 0.05 and q = 1 showcasing the
shift from indecision to symmetry-breaking. (B) 2D-histogram for η = 0 and q = 1.22
showcasing the switch from consensus on the best option when gu = 0 to bistability
as gu increases. The plots show how the distribution of robots supporting A and B
(y-axis) change as gu (x-axis) increases. We consider the last 1 000 timesteps (e.g. 6 s)
of each of the 50 runs per gu and subtract the proportion of robots supporting option
B from the proportion of supporters for A (i.e. (number robots for A - number robots
for B)/N) to plot the 2D-histograms.

environment (Fig. 2). The results of Fig. 3A show that the amount of time spent
in an uncommitted state is the key to converging on a large majority for one of
the two equivalent options.

The cross-inhibition model has dynamics that are much more stable than
direct-switching [26]; therefore, the swarm reaches and maintains an agreement
for either option. However, the high stability of the cross-inhibition model can
also occasionally lock the system in a consensus for the inferior option (with
lower quality), which may have been reached due to initial random fluctuations.
Figure 2 shows that the system is in a bistability state (i.e. selection of both
options is possible) when the options have similar qualities (q ≤ 1.08 in the
presence of noise) and is instead able to reliably select the superior alternative
for larger quality differences. Differently, the direct-switching model, when it is
able to break the symmetry, always selects the option with the highest quality.
Interestingly, for q = 1.22, cross-inhibition’s bistability exists for η = 0 and van-
ishes for higher levels of noise, η = 0.01 and η = 0.05. In this case, occasionally
self-sourcing information helps in correcting initial mistakes.

To understand the accuracy of the two opinion update models in selecting the
best option in the presence of similar quality options, we vary the time gu when
q = 1.22 and η = 0 (Fig. 3B). For gu = 0, the swarm breaks the symmetry in
favour of the option of highest quality (A) as the model is equivalent to direct-
switching. When gu increases, the system gradually moves towards a state of
bistability. As observed in Fig. 2 (q = 1.22 and η = 0), cross-inhibition can
occasionally select the inferior option due to its highly stable dynamics that lock
the system into consensus for either option when qualities are similar. Figure 3B

218 R. Zakir et al.

shows that bistability becomes more and more pronounced as the time spent in
the uncommitted state increases, or, in other words, the probability of selecting
the inferior option increases with increasing gu. As noted earlier, the selection
of the inferior option becomes less probable when the cross-inhibition model is
subject to moderate levels of noise (compare Fig. 2 η = 0 and η = 0.01, for
q = 1.22) as it increases the exploratory behaviour of the robots and enables
their ability to correct their collective decision.

Therefore, our results show a trade-off between the ability to make consen-
sus decisions in the presence of noise (when the robots spend long times in the
uncommitted state) and the ability to avoid inaccurate decisions (for short times
in the uncommitted state). In scenarios where choosing the option with the high-
est quality is an utmost requirement and noise is a factor not applicable, direct-
switching is a better choice for collective decision-making. However, random fluc-
tuations can be inevitable in systems operating in the real world, and we have
shown how they can dramatically hamper the performance of direct-switching.
Therefore, our study highlights the importance of using cross-inhibition to make
collective decisions in realistic application scenarios.

5 Discussion and Conclusions

In this study, we investigated two prominent collective decision-making algo-
rithms for the best-of-n problem in the presence of both social interactions
and environmental information. The results of our simulations show that robot
swarms running algorithms based on the direct-switching model fail to reach
a consensus on the best option when robots use both social information and
self-sourced information acquired through individual exploration of the environ-
ment. Self-sourcing information from the environment can also be modelled as
noise, which is very likely to be present in most real-world scenarios, for example
in the form of asocial robots or sensor failures [11]. Therefore, even if direct-
switching has the desirable property of being very simple, to deploy systems in
the real world the robot algorithms must be resilient to noise. We show that
the cross-inhibition model serves as an ideal alternative to direct-switching. By
letting robots inhibit each other and become uncommitted for some time, the
cross-inhibition model enables stability and symmetry-breaking dynamics that
prevent decision deadlocks. This work is limited to simulation; we plan as future
work to conduct mathematical analyses based on ODEs and chemical reaction
network models in order to understand better the role of the time spent in the
uncommitted state for obtaining high stability and breaking symmetry. We also
plan to validate our results through real-robot experiments on the real Kilogrid.
Moreover, most of the collective decision-making research in swarm robotics is
concentrated on binary best-of-n problems, with only a few studies exploring
n > 2 [4,13,25,30]. Therefore, as future work, we also aim to expand our analy-
ses and experiments to n > 2 scenarios and investigate if the robustness of the
cross-inhibition model extends to non-binary environments, as theory predicts
[22].

Robot Swarms Break Decision Deadlocks Through Cross-Inhibition 219

Acknowledgements. The authors thank Till Aust and Jonas Kuckling for the tech-
nical support on simulating the Kilogrid and running simulations on the HPC. This
work was supported by Service Public de Wallonie Recherche under grant n◦ 2010235 -
ARIAC by DigitalWallonia4.AI. M. Dorigo and A. Reina acknowledge support from the
Belgian F.R.S.-FNRS, of which they are Research Director and Chargé de Recherches,
respectively.

References

1. Antoun, A., Valentini, G., Hocquard, E., Wiandt, B., Trianni, V., Dorigo, M.:
Kilogrid: a modular virtualization environment for the Kilobot robot. In: 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 3809–3814 (2016). https://doi.org/10.1109/IROS.2016.7759560

2. Aust, T., Talamali, M., Dorigo, M., Hamann, H., Reina, A.: The hidden benefits
of limited communication and slow sensing in collective monitoring of dynamic
environments. In: Dorigo, M., et al. (eds.) Swarm Intelligence (ANTS 2022). LNCS,
vol. 13491. Springer, Cham (2022)

3. Ballerini, M., et al.: Empirical investigation of starling flocks: a benchmark study
in collective animal behaviour. Anim. Behav. 76(1), 201–215 (2008). https://doi.
org/10.1016/j.anbehav.2008.02.004

4. Bartashevich, P., Mostaghim, S.: Multi-featured collective perception with evidence
theory: tackling spatial correlations. Swarm Intell. 15, 83–110 (2021). https://doi.
org/10.1007/s11721-021-00192-8

5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

6. Bose, T., Reina, A., Marshall, J.A.R.: Collective decision-making. Curr. Opin.
Behav. Sci. 6, 30–34 (2017). https://doi.org/10.1016/j.cobeha.2017.03.004

7. Campo, A., Nouyan, S., Birattari, M., Groß, R., Dorigo, M.: Negotiation of goal
direction for cooperative transport. In: Dorigo, M., Gambardella, L.M., Birattari,
M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp.
191–202. Springer, Heidelberg (2006). https://doi.org/10.1007/11839088 17

8. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

9. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-
organized flocking with a mobile robot swarm: a novel motion control method.
Adapt. Behav. 20(6), 460–477 (2012). https://doi.org/10.1177/1059712312462248

10. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.: Self-organized shortcuts in
the argentine ant. Naturwissenschaften 76, 579 (1989). https://doi.org/10.1007/
BF00462870

11. Khalil, N., Miguel, M.S., Toral, R.: Zealots in the mean-field noisy voter model.
Phys. Rev. E 97(1), 012310 (2018). https://doi.org/10.1103/physreve.97.012310

12. Khaluf, Y., Pinciroli, C., Valentini, G., Hamann, H.: The impact of agent density
on scalability in collective systems: noise-induced versus majority-based bistability.
Swarm Intell. 11(2), 155–179 (2017). https://doi.org/10.1007/s11721-017-0137-6

13. Lee, C., Lawry, J., Winfield, A.F.T.: Negative updating applied to the best-of-n
problem with noisy qualities. Swarm Intell. (2), 111–143 (2021). https://doi.org/
10.1007/s11721-021-00188-4

14. Mobilia, M., Petersen, A., Redner, S.: On the role of zealotry in the voter model. J.
Stat. Mech. Theory Exp. 2007(08), P08029 (2007). https://doi.org/10.1088/1742-
5468/2007/08/p08029

https://doi.org/10.1109/IROS.2016.7759560
https://doi.org/10.1016/j.anbehav.2008.02.004
https://doi.org/10.1016/j.anbehav.2008.02.004
https://doi.org/10.1007/s11721-021-00192-8
https://doi.org/10.1007/s11721-021-00192-8
https://doi.org/10.1016/j.cobeha.2017.03.004
https://doi.org/10.1007/11839088_17
https://doi.org/10.1177/1059712312462248
https://doi.org/10.1007/BF00462870
https://doi.org/10.1007/BF00462870
https://doi.org/10.1103/physreve.97.012310
https://doi.org/10.1007/s11721-017-0137-6
https://doi.org/10.1007/s11721-021-00188-4
https://doi.org/10.1007/s11721-021-00188-4
https://doi.org/10.1088/1742-5468/2007/08/p08029
https://doi.org/10.1088/1742-5468/2007/08/p08029

220 R. Zakir et al.

15. Mobilia, M.: Does a single zealot affect an infinite group of voters? Phys. Rev.
Lett. 91(2), 028701 (2003). https://doi.org/10.1103/physrevlett.91.028701

16. Mobilia, M.: Nonlinear q-voter model with inflexible zealots. Phys. Rev. E 92(1),
012803 (2015). https://doi.org/10.1103/physreve.92.012803

17. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm: self-
organized strategies to find your way home. Swarm Intell. 2(1), 1–23 (2008).
https://doi.org/10.1007/s11721-007-0009-6

18. Pais, D., Hogan, P.M., Schlegel, T., Franks, N.R., Leonard, N.E., Marshall, J.A.R.:
A mechanism for value-sensitive decision-making. PLoS ONE 8(9), 1–9 (2013).
https://doi.org/10.1371/journal.pone.0073216

19. Pinciroli, C., Talamali, M.S., Reina, A., Marshall, J.A.R., Trianni, V.: Simulat-
ing Kilobots within ARGoS: models and experimental validation. In: Dorigo, M.,
Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS
2018. LNCS, vol. 11172, pp. 176–187. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7 14

20. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for
multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/
s11721-012-0072-5

21. Rausch, I., Reina, A., Simoens, P., Khaluf, Y.: Coherent collective behaviour emerg-
ing from decentralised balancing of social feedback and noise. Swarm Intell. (2),
321–345 (2019). https://doi.org/10.1007/s11721-019-00173-y

22. Reina, A., Marshall, J.A.R., Trianni, V., Bose, T.: Model of the best-of-N nest-site
selection process in honeybees. Phys. Rev. E 95(5), 052411 (2017). https://doi.
org/10.1103/PhysRevE.95.052411

23. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design
pattern for decentralised decision making. PLoS ONE 10(10), e0140950 (2015).
https://doi.org/10.1371/journal.pone.0140950

24. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: A low cost scalable robot system
for collective behaviors. In: 2012 IEEE International Conference on Robotics and
Automation. IEEE Press, Piscataway (2012). https://doi.org/10.1109/ICRA.2012.
6224638

25. Scheidler, A., Brutschy, A., Ferrante, E., Dorigo, M.: The k-unanimity rule for
self-organized decision making in swarms of robots. IEEE Trans. Cybern. 46, 1175
(2016). https://doi.org/10.1109/TCYB.2015.2429118

26. Seeley, T.D., Visscher, P.K., Schlegel, T., Hogan, P.M., Franks, N.R., Marshall,
J.A.R.: Stop signals provide cross inhibition in collective decision-making by honey-
bee swarms. Science 335(6064), 108–111 (2012). https://doi.org/10.1126/science.
1210361

27. Sion, A., Reina, A., Birattari, M., Tuci, E.: Controlling robot swarm aggregation
through a minority of informed robots. In: Dorigo, M., et al. (eds.) Swarm Intel-
ligence (ANTS 2022). LNCS, vol. 13491. Springer, Cham (2022). https://doi.org/
10.48550/arXiv.2205.03192

28. Starnini, M., Frasca, M., Baronchelli, A.: Emergence of metapopulations and
echo chambers in mobile agents. Sci. Rep. 6, 1–8 (2016). https://doi.org/10.1038/
srep31834

29. Talamali, M.S., Bose, T., Haire, M., Xu, X., Marshall, J.A.R., Reina, A.: Sophis-
ticated collective foraging with minimalist agents: a swarm robotics test. Swarm
Intell. 14(1), 25–56 (2019). https://doi.org/10.1007/s11721-019-00176-9

30. Talamali, M.S., Saha, A., Marshall, J.A.R., Reina, A.: When less is more: robot
swarms adapt better to changes with constrained communication. Sci. Robot.
6(56), eabf1416 (2021). https://doi.org/10.1126/scirobotics.abf1416

https://doi.org/10.1103/physrevlett.91.028701
https://doi.org/10.1103/physreve.92.012803
https://doi.org/10.1007/s11721-007-0009-6
https://doi.org/10.1371/journal.pone.0073216
https://doi.org/10.1007/978-3-030-00533-7_14
https://doi.org/10.1007/978-3-030-00533-7_14
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-019-00173-y
https://doi.org/10.1103/PhysRevE.95.052411
https://doi.org/10.1103/PhysRevE.95.052411
https://doi.org/10.1371/journal.pone.0140950
https://doi.org/10.1109/ICRA.2012.6224638
https://doi.org/10.1109/ICRA.2012.6224638
https://doi.org/10.1109/TCYB.2015.2429118
https://doi.org/10.1126/science.1210361
https://doi.org/10.1126/science.1210361
https://doi.org/10.48550/arXiv.2205.03192
https://doi.org/10.48550/arXiv.2205.03192
https://doi.org/10.1038/srep31834
https://doi.org/10.1038/srep31834
https://doi.org/10.1007/s11721-019-00176-9
https://doi.org/10.1126/scirobotics.abf1416

Robot Swarms Break Decision Deadlocks Through Cross-Inhibition 221

31. Tsimring, L.S.: Noise in biology. Reports on progress in physics. Phys. Soc. 77(2),
026601 (2014). https://doi.org/10.1088/0034-4885/77/2/026601

32. Valentini, G., et al.: Kilogrid: a novel experimental environment for the kilobot
robot. Swarm Intell. 12(3), 245–266 (2018)

33. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of
environmental features in a robot swarm. In: Dorigo, M., et al. (eds.) ANTS 2016.
LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-44427-7 6

34. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms:
Formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017).
https://doi.org/10.3389/frobt.2017.00009

35. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making:
the weighted voter model. In: Proceedings of the 13th International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2014, pp. 45–52. IFAA-
MAS, Richland (2014)

36. Wahby, M., Petzold, J., Eschke, C., Schmickl, T., Hamann, H.: Collective change
detection: adaptivity to dynamic swarm densities and light conditions in robot
swarms. In: Artificial Life Conference Proceedings, pp. 642–649. MIT Press, Cam-
bridge (2019). https://doi.org/10.1162/isal 00233

https://doi.org/10.1088/0034-4885/77/2/026601
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.3389/frobt.2017.00009
https://doi.org/10.1162/isal_00233

Self-organized Chain Formation
of Nano-Drones in an Open Space

Agata Barcís1(B) , Micha�l Barcís1 , Enrico Natalizio1,2 ,
and Eliseo Ferrante1,3

1 Technology Innovation Institute, Autonomous Robotics Research Center,
Abu Dhabi, United Arab Emirates

{agata.barcis,michal.barcis,enrico.natalizio,eliseo.ferrante}@tii.ae
2 Université de Lorraine, CNRS, Loria, Villers-lès-Nancy, France

3 Vrije Universiteit Amsterdam, Amsterdam, Noord-Holland, The Netherlands

Abstract. We propose a method for the chain formation of multiple
agents in an open space. Chaining can be considered as a building block
for several application scenarios, including exploration, maintaining con-
nectivity, or path formation. The proposed method was designed for
a very sensing and computationally constrained robot platform, more
specifically for nano-drones as they offer advantages in applications in
tight spaces or in the proximity of people. To enable portability to a
real platform, the method relies on a range and bearing sensing model
with a limited field of view that is susceptible to occlusions, which was
implemented both in simulation as well as on the real robot through a
camera coupled with LEDs. We analyze the method in the simulation-
based study. We show that the method works even in presence of noise in
sensing and actuation, which rather than being harmful to the chaining
performance has a positive effect. We analyze the performance in terms
of quality of final chain formation, and speed of convergence, and how
these two are affected by increasing swarm size. Finally, we present its
practical feasibility in a robotic proof-of-concept featuring nano-drones.

1 Introduction

The problem of chain formation is widely studied in swarm robotics, and fos-
ters many practical application scenarios. In fact, it enables path formation
in which the agents act as landmarks for other agents in foraging [14,18] or
task sequencing [6]. Chaining was also applied to navigation [5] and exploration
of tunnel-like environments (e.g., caves) with the requirement to keep connec-
tivity [8,10]. Despite the advancements in the development of both chaining
methods and robot capabilities, most state-of-the-art solutions are designed for
ground robots, and there are still no reliable solutions available for drones.

In this work, we focus on chaining methods that would be suitable for nano-
drones. The main motivation for this choice is the capability of nano-drones to
explore tight spaces, e.g., underground tunnels, ventilation ducts, or pipes. Addi-
tionally, thanks to their low cost, they facilitate the development and deployment
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 222–233, 2022.
https://doi.org/10.1007/978-3-031-20176-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_18&domain=pdf
http://orcid.org/0000-0003-1444-6719
http://orcid.org/0000-0001-6776-2913
http://orcid.org/0000-0001-8553-5722
http://orcid.org/0000-0002-2213-8356
https://doi.org/10.1007/978-3-031-20176-9_18

Self-organized Chain Formation of Nano-Drones in an Open Space 223

of large groups of robots. Finally, they are safer than standard-size drones and
can work even in proximity of people, for example, in warehouse inventory or
factory surveillance, without disturbing their normal operations.

However, these advantages of nano-drones come at the price of numerous
limitations and challenges. The noise in sensing and actuation, present in any
robotic or especially drone system, might be increased due to the minimization of
sensors. In general, nano-drones used for swarm robotics have much more limited
sensing abilities compared to the ground counter-part, and standard swarm mod-
els developed for ground robots are not directly portable to nano-drones [2,3].
The small payload that the nano-drones can carry leads to two consequences: (i)
the size of the battery carried by the drone is highly limited and so is its flight
time, and (ii) the choice of sensors is quite narrow compared to the possibilities of
larger platforms. In particular, equipping a nano-drone with an omni-directional
sensor (for neighbor sensing) as the one normally considered in ground robots
is very difficult. Most of the state-of-the-art approaches to chaining are infeasi-
ble for nano-drones because they have too complex sensing demands, e.g., they
require omni-directional sensing [5,6,12–14], global positioning [17], they take
too much time to converge [18], or rely on the assumption that the actuation
noise is negligible [7].

In this paper, we present a method for open-space chaining that allows for-
mation of the chain that does not require global positioning and that works even
with limited sensing field of view (Sect. 2). We focus on realistic sensing condi-
tions, so the method is robust against sensing and actuating noise. Additionally,
the sensor used in this work is susceptible to occlusions that are often neglected
by other swarming algorithms [16].

To analyze the proposed method we perform simulation-based experiments
(Sect. 3). We study the convergence time of the proposed method, the quality of
the chaining obtained, under the effect of different swarm sizes and of realistic
sensing and actuation noise. Finally, we present the practical feasibility of chain-
ing in a robotic proof of concept with nano-drones, in which sensing is done fully
on-board (Sect. 4).

2 Method

The system consists of N agents. The position of agent i is denoted as xi and its
orientation, i.e. yaw angle, is θi. We denote the displacement vector from agent i
to j as xi,j = xj −xi and distance between them as ‖xi,j‖. Agent i is controlled
by setting its velocity (vi) and yaw rate (θ̇i) in its own reference frame.

All of the agents are equipped with a field-of-view (FOV) sensor. We assume
such a sensor is able to measure the range (r) and bearing (φ) to all agents in
front of it, within limited viewing angle and range. In practice, such a sensor
could be realized in multiple ways: using a camera, radar, LiDAR, sonar, etc.
Many of these technologies are susceptible to occlusions: if multiple objects share
exactly the same bearing, but are at different distances, they will be perceived as
a single object. Our real-life realization of the FOV sensor is based on a camera

224 A. Barcís et al.

(see Sect. 4.1 for details). It perceives multiple occluded objects as being closer
than the closest of these objects. Our simulated setup models this behavior.

Note that the agents do not have access to the global positions of their peers
or themselves. Therefore, whenever we mention the positions of other agents
while calculating the update of agent i, we mean the relative positions with
respect to the reference frame of agent i. Such positions are calculated based on
the output of the FOV sensor xj =

[
cos φj · rj , sin φj · rj

]
.

The chain is parameterized with a desired distance d0 that specifies the dis-
tance the agents should keep from their neighbors. The agents are deployed
sequentially—as soon as agent i is positioned in the chain, agent i + 1 takes off.
Sequential deployment is implemented manually in this paper, by having the cur-
rent agent notifying the simulator or the operator when it has completed joining
the chain. This assumption can be relaxed in future work by either implement-
ing a self-organized communication scheme that monitors the status of chain
formation, or by removing the sequential deployment assumption altogether.

We distinguish two agents with special roles:

– One agent is used to emulate the target t. Its only task is to hover in the
same spot throughout the whole chain forming process. It can be considered
external to the swarm.

– Another special agent is the seed s. It follows a different logic than all the
other agents. Its goal is to find the target and keep a constant distance to it
(1), at the same time keeping it in the middle of its field of view (2):

vs = Px

(
xt − xt,s

‖xt,s‖ · d0

)
, (1)

θ̇s = Pθφt, (2)

where Px and Pθ are the proportional controller settings for position and yaw,
respectively. Since the agents have no sensor allowing them to distinguish the
target, the seed agent assumes that the target is the closest agent out of the
detected ones. This has no implications in the early phase of chain formation
(when the seed is the deployed robot and only the target is hovering in the
environment), while later in an experiment it can happen that the seed will
seldom mistake another agent as the target.

In practical scenarios, the target agent could be replaced by some point of
interest that the seed agent is able to detect (provided the target identification
modules, out of scope for this paper, are implemented); or it could be used as
a leader initiating the construction of a chain in a specific location determined
by another criteria. The rest of agents are homogeneous and are guided by the
procedure consisting of four main steps that are followed sequentially. The dia-
gram explaining the behavior with possible transitions is depicted in Fig. 1. All
controls described in the method are in the agent’s relative frame, e.g., when the
agent moves left, we mean that it moves to its left.

Self-organized Chain Formation of Nano-Drones in an Open Space 225

Fig. 1. Possible state transitions in the chaining algorithm.

Fig. 2. An example of the chaining procedure. Black circles represent the part of the
chain that is already formed. Dashed lines visualize the field of view of an agent, without
showing the range limit. Blue circle represents an example of starting position of an
agent in a given step and the red circle is the final position. In subfigures b) and c) an
intermediate step is drawn with a purple color. (Color figure online)

Exploration (EXPLORE). At the beginning, just after being deployed, the
agent i needs to find the chain. We assume, the chain is found if the agent detects
at least two other agents in its field of view. In principle, any exploration strategy
could be used for this step [11]. For the sake of simplicity, we assume the range of
the FOV sensor is big enough to always detect a part of the chain from the place
of the take-off, which is achieved by allowing the take off only within a specific
area that has the target at its center. A possible take-off position and moment
when the chain is detected are depicted in Fig. 2a as 1 and 2, respectively.

In the EXPLORE state, the agent just rotates around its center with yaw
rate θ̇i = 0.2 rad/s. When the agent detects another agent j in its field of view, it
tries to keep it in the middle of its field of view, setting its yaw rate to θ̇i = Pθ ·φj .
Additionally, the agent moves left to go around the detected agent. It sets its
velocity to vi = [0,−0.2] m/s. If the detected agent is closer than dc, the agent
additionally moves back, so its velocity is vi = [−0.1,−0.2] m/s. When the agent
detects at least two agents in its field of view, it switches to the next step.

The agent can switch to the EXPLORE state from any of the other states
if the required number of neighbors is not visible, and switches back to the
state it comes from once enough neighbors are perceived. Effectively, this is
used as a recovery strategy: The agent explores until it can see enough agents
and continues with the execution of the previous state (transitions marked with
dotted lines in Fig. 1).

226 A. Barcís et al.

Look for the End of the Chain (LOOK for END). We assume that agent
k is the rightmost one in the FOV, and agent j is the second from the right in
the FOV. The following equations describe movement of agent i:

vi = Pxμβ [min(rj , rk) − dc, yk] (3)

θ̇i = Pθψβ · arctan
(

yj,k

xj,k
− π

2

)
, (4)

where yk is a y coordinate of xk and xj,k and yj,k are, respectively, x and y coordi-
nates of xj,k in the relative frame of reference, and β is the angle between agents
i, j, k. The coefficients μβ = max(0.2, |sin(β)|) and ψβ = max(0.1, |sin(β)|) are
used to slow down the movement and rotation, respectively, if the agents i, j
and k are close to being aligned.

Intuitively, the movement of the agent in this step can be split into three
parts: it rotates to be perpendicular to the chain (4); it moves in the x direction
to keep the constant distance dc from the chain (3); and in the y direction to
be directly in front of the agent k, so to reach its y coordinate (3). There is one
corner case that we consider separately: if the agents j and k are almost aligned
(difference of their bearings is smaller than 0.1 and hence it is likely there are
occlusions), agent i moves with a constant speed to the left.

The distance dc is chosen based on the FOV sensor viewing angle in such
a way that the agent can see at least 3 agents that are in the chain (assuming
they keep the desired distance d0 from each other) with some safety margin for
noise and disturbances caused by occlusions. The agent is moving to be directly
in front of the rightmost visible agent (e.g., agent 2 in Fig. 2b). When there are
no more agents on the right, it switches to the next step to join the chain. This
final position is marked as 3 in Fig. 2b and the spot for the next agent in the
chain is marked with a red cross.

Join the Chain (JOIN). To join the chain, the agent i is choosing the first
two agents starting from the right of the FOV (the LOOK FOR END state
guarantees that these are two agents at the end of the chain). We call these
agents j and k, with k being the rightmost one (last in the chain). The agent
rotates towards the point S in the middle between agents j and k

S =
xj + xk

2
, (5)

θ̇i = PθφS . (6)

It calculates its desired position (marked with red cross in Fig. 2c) at the end of
the chain:

xd = xk + d0
xj,k

‖xj,k‖ (7)

and moves to the right with vi = Px [0.25 ‖xd‖ , 0.5 ‖xd‖]. The movement in the
x direction allows the agent to correct the distance from the chain on the way.
The rotation combined with the motion result in the movement on an arc that

Self-organized Chain Formation of Nano-Drones in an Open Space 227

brings the agent i to the position aligned with agents j and k. In this state, we
say i is aligned with agents j and k if:

– bearing to j and k is equal when occlusions are not taken into account,
– the agents occlude each other and only one agent is detected.

Once the two closest agents are aligned, the agent is already considered to be a
part of the chain and needs to remain in it, the procedure for this is described
in the next step.

Keep the Chain (KEEP). When all the visible agents are aligned, the agent
keeps the desired distance d0 with the closest neighbor (see Fig. 2d). The behavior
is the same as the one of seed (see equations (1) and (2)). However, if there are
some disturbances (caused by noise or new agents trying to join the chain) and
the agent detects some unaligned agents it switches to the next step.

Correct the Chain (CORRECT). Let us assume that agents j and k are the
closest neighbors (the agents connected with black lines with agent 1 in Fig. 2e).
The agent rotates towards the middle between two closest agents:

θ̇i = Pθ · φj + φk

2
. (8)

At the same time, it moves towards the corrected position in a straight line:

vi = Pxxd, (9)

where xd is defined as in Eq. (7). Once all the visible agents are aligned again,
the agent switches back to the previous step (KEEP), this situation corresponds
to the position marked with 2 in Fig. 2e.

3 Simulation Results

For the simulation study we use a custom kinematic-based simulator imple-
mented in Python, designed to bridge the simulation to reality gap. In fact,
exactly the same logic, programmed in Python, is executed both in simulation
and during robotic experiments. In our simulations, agents take off at random
positions drawn uniformly from a deployment area 10 m × 10 m. The target agent
is placed exactly in the middle of the deployment area. To avoid disturbing the
chain in the early stage of forming, a square 2 m × 2 m in the middle of the arena
is excluded. If an initial position is chosen in this part of the area, the initial
position is redrawn. Each agent is equipped in a FOV sensor with a viewing
angle 90◦ and range 6 m. Such configuration of the sensor is motivated by our
hardware setup. Furthermore, we assume the agents are not detected by the FOV
sensor before takeoff. For each experiment we use five different configurations:

228 A. Barcís et al.

Idealized configuration is without any noise and with a sensor without occlu-
sions that can “see through” the agents. It measures exact range and bearing
to all the agents in range.

Occlusions configuration has no noise, but occlusions are taken into account.
Sensing noise adds sensing noise to the Occlusions configuration. The noise

has two components: range noise ηr ∼ N(0, 0.1) and bearing noise ηφ ∼
N(0, 0.05), which are added to the FOV sensor measurements.

Actuating noise adds actuating noise to the Occlusions configuration. Actu-
ating noise is added to the agent’s velocity ηv ∼ [

N(0, 0.05), N(0, 0.05)
]

and
its yaw rate ηθ̇ ∼ N(0, 0.1).

Both noises adds sensing and actuating noise to the occlusions configuration.

3.1 Quality of the Chain Formation—Collinearity of Agents

We say that the chain formation is perfect if, at the end of an experiment, the
agents are placed on a straight line. To measure how successful the agents are
in forming the chain, we use the following order parameter.

For each triple of agents (including the ones that are still on the ground) we
calculate the collinearity parameter.

Ci,j,k =
π − max(αi,j,k, αk,i,j , αj,k,i)

π
, (10)

where αi,j,k is the angle between the agents, assuming that j is the vertex of the
angle. It is calculated as:

αi,j,k = arccos
xj,i · xj,k

‖xj,i‖ ‖xj,k‖ . (11)

In the case when the agents are collinear, one of these angles is equal to π.
Therefore, choosing the maximum of these angles allows us to determine how
far are the agents from creating a straight line.

The collinearity of all the agents can be calculated as:

C =
1

(
N
3

)
∑

(i,j,k)∈C ({1,...,N})
Ci,j,k, (12)

where C ({1, . . . , N}) is the set of all 3-combinations of agents.
In this experiment, we demonstrate how the metric C converges when the

agents are creating the chain. We execute 50 runs for each configuration. The
number of agents is constant and N = 10. The results are presented in Fig. 3.
The line marks the median of the metric C for each simulation step from all 50
runs, whereas the colored area shows the range between first and third quartiles.

In all of the configurations the convergence curve of C has a similar shape
and reaches a stable low value. This means that the agents manage to form the
chain in a repeatable way. What is worth noting is that only in the setup with
the idealized FOV sensor without occlusions the metric converges to 0, in the
other plots it converges to a slightly greater value (around 0.03). The reason for
that is that with occlusions the agents are not able to distinguish between an
exactly straight and a slightly bent chain.

Self-organized Chain Formation of Nano-Drones in an Open Space 229

Fig. 3. The plot depicting convergence of order parameter C for five different experi-
ment setups.

3.2 Convergence Time

In this experiment, we measured the time it takes for all the agents to detect they
are in a chain (they are either in a KEEP or CORRECT state), and we use this
also as a criteria to terminate the experiment. To avoid deadlocks, we assume
that the maximum duration of an experiment is 2000 · N simulation steps, after
this time the experiment is stopped. By combining these two stopping criteria,
we can easily distinguish the cases in which the chain converged to a low value
of collinearity from the cases in which this did not happen (the experiment was
stopped after 2000 · N , which corresponds to the dashed line in Fig. 4).

The experiment is run for different number of agents from N = 10 to N =
100, with the increment of 10 agents. For each number of agents we execute 25
runs for each of the five configurations of sensing capabilities and noise.

Figure 4 presents the results obtained in the course of the experiments. Each
color represents a different configuration. The semi-transparent bars display the
first and third quartile, with a median marked with a line. The line bars mark
maximum and minimum or upper and lower fence. Additional points, not covered
by the bars, indicate the outliers.

The worst performance is achieved in the setup without noise. With the sen-
sor without occlusions, above 70 agents the chain is never achieved. Additional
analysis of the failed runs of simulations showed that the agents fail to form a
chain if one of them takes off between the agents that are already in the chain
or very close to them. In this case, the agents try to keep the chain also with
the new joiner, which results in the part of the chain following the agent that

230 A. Barcís et al.

Fig. 4. The plot depicting the relationship between the convergence time and number
of agents for five different experiment setups.

tries to join the chain. In such scenarios, the occlusions have a stabilizing effect:
when the agent goes out of the line, the chain seems to be closer and the agents
tend to stay with the chain rather than chase the new agent.

The setup with occlusions and no noise performs a bit better but, still, it is
not perfect and in some runs the agents do not achieve the chain in the given
time. The lack of convergence in this case is caused by deadlocks. A deadlock
occurs when an agent takes off almost aligned with the chain. Depending on the
direction it starts movement, the occlusions cause the other subset of agents to
seem closer, which in turn causes the agent to move in the opposite direction.
This procedure is continued until the end of the given simulation time.

Despite these shortcomings, in the setup with any kind of noise the agents
almost always achieve chain, with only a few outliers. When the sensing and actu-
ating noises are combined, the chain converges always and in the most efficient
way. These results confirm that our solution can work in the realistic conditions
and demonstrates its potential to be applied on nano-drones.

4 Proof of Concept

To show the practical applicability of the proposed method and that the simu-
lated scenarios are realistic, we implemented a proof of concept on robots. We
realized it using Crazyflie drones, a palm-sized, open-source flying robots.

To realize the proposed method in practice, we require a hardware implemen-
tation of the FOV sensor. We developed this sensor using a connected-component
labeling algorithm implemented on AI-deck. AI-deck is an extension-board for
Crazyflies that adds to it a HIMAX camera, GAP8 processor, and a WiFi mod-
ule. For this work, we used the camera to capture pictures and the GAP8 pro-
cessor to analyze them and estimate the range and bearing to all other agents
in range. Then, this information is communicated to the main Crazyflie micro-
controller as a sensor data. This sensor data is used in the control algorithm to
coordinate the drone.

Self-organized Chain Formation of Nano-Drones in an Open Space 231

To facilitate the development and testing, the sensor data is communicated
from the Crazyflie via radio to a laptop computer, where the control algorithm
is running and sending the movement commands back to the Crazyflie. Such
setup adds considerable latency to the control process, but allows for easier
development. Furthermore, it shows the robustness of the proposed method.
Even though we use a laptop computer, the logic is using only the information
that would have been available on the drone. This, together with the fact that
the method is not computationally intensive, allows to implement the whole
solution fully on-board.

4.1 Camera-Based FOV Sensor

We develop a custom-made range and bearing sensor based on camera and LEDs.
The drones are flying in the darkness with a 1W LED attached at the bottom
to provide light for the optical flow sensor. The automatic exposure and gain
(AEG) feature of the camera is turned off and the exposure and gain is tuned
manually to achieve reproducible results for a fixed lighting conditions. In such
setup, the only bright objects in a camera picture captured by a drone are the
other drones.

To obtain range and bearing measurements to all visible drones from a camera
picture, we use the following algorithm:

1. thresholding by discarding all pixels below a hand-tuned threshold,
2. expand the non-discarded areas by 4 pixels in all directions,
3. identify different drones by finding and labeling connected image compo-

nents [15] using union-find data structure [4],
4. compute the centers and sizes of the connected components.

After that, we use the resulting centers of connected components to approx-
imate the bearing φ to the other drone and the width of the component to
approximate the distance d with the following equations:

di =
1
wi

k, (13)

φi =
xi − 1

2W

W
A, (14)

where wi is the width of the i-th component and xi is the center of this compo-
nent in the horizontal direction. In our setup, k = 15 is a manually-tuned scaling
factor dependent on the lighting conditions, W = 255 is the width of the camera
image, and A = 90◦ is the horizontal angle of view of the camera.

232 A. Barcís et al.

Fig. 5. (left) A photo of robots during an experiment. Three robots already formed a
chain and the fourth one is joining it. (right) Convergence of the order parameter for
a robotic experiment.

4.2 Results

We conducted experiments with four drones using the described setup and con-
firmed similar behavior as the one observed in the simulation. The main chal-
lenges were related to the fact that the FOV sensor requires that the only sources
of light seen by the drones are the other agents. Additional sources of light and
reflections from shiny surfaces negatively influence the sensor’s measurements
and might lead to a failed attempt. However, with some care to minimize these
effects, we were able to successfully present the proof of concept.

We recorded the trajectories of robots using Qualisys motion capture system.
Figure 5 shows the value of the order parameter C calculated based on the cap-
tured trajectories. It shows that the drones are able to construct and maintain
the chain. The FOV sensor is able to provide around 1 measurement per second.
The results show that even with such a low update rate the chaining algorithm
performs well. We have published a video [1] presenting the proof of concept.

5 Conclusions and Outlook

We presented a method capable of building a chain of agents in an open space.
It has a minimal sensing requirements with a limited field of view range and
bearing sensor. The main advantage is its robustness against noise that enables
real-life applications in robotic systems.

The future work on this topic will include exploration of the environment to
connect target to a base, and the removal of the incremental deployment assump-
tion. The real-life applications will benefit from improving the FOV sensor, it
may include utilizing artificial intelligence methods [9].

References

1. Barcís, A., Barcís, M., Natalizio, E., Ferrante, E.: Video: Self-Organized Chain For-
mation of Nano-Drones in an Open Space (2022). https://youtu.be/Fqp-9Et3lmw

https://youtu.be/Fqp-9Et3lmw

Self-organized Chain Formation of Nano-Drones in an Open Space 233

2. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://
doi.org/10.1007/s11721-012-0075-2

3. Coppola, M., McGuire, K.N., De Wagter, C., de Croon, G.C.H.E.: A survey on
swarming with micro air vehicles: fundamental challenges and constraints. Front.
Robot. AI 7, 18 (2020). https://doi.org/10.3389/frobt.2020.00018

4. Cormen, T.H.: Data structures for disjoint sets. In: Introduction to Algorithms,
3rd edn, pp. 561–568. MIT Press, Cambridge (2009)

5. Ducatelle, F., Di Caro, G.A., Pinciroli, C., Mondada, F., Gambardella, L.: Commu-
nication assisted navigation in robotic swarms: self-organization and cooperation.
In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 4981–4988 (2011). https://doi.org/10.1109/IROS.2011.6094454

6. Garattoni, L., Birattari, M.: Autonomous task sequencing in a robot swarm. Sci.
Robot. 3(20), eaat0430 (2018). https://doi.org/10.1126/scirobotics.aat0430

7. Jiang, Z., Wang, X., Yang, J.: Distributed line formation control in swarm robots.
In: 2018 IEEE International Conference on Information and Automation (ICIA),
pp. 636–641 (2018). https://doi.org/10.1109/ICInfA.2018.8812317

8. Laclau, P., Tempez, V., Ruffier, F., Natalizio, E., Mouret, J.B.: Signal-based self-
organization of a chain of UAVs for subterranean exploration. Front. Robot. AI 8,
614206 (2021)

9. Li, S., De Wagter, C., de Croon, G.C.H.E.: Self-supervised Monocular Multi-
robot Relative Localization with Efficient Deep Neural Networks. arXiv:2105.12797
(2021)

10. Maxim, P.M., Spears, W.M., Spears, D.F.: Robotic chain formations. IFAC Proc.
Vol. 42(22), 19–24 (2009). https://doi.org/10.3182/20091006-3-US-4006.00004

11. Méndez, V., Campos, D., Bartumeus, F.: Random search strategies. In: Méndez, V.,
Campos, D., Bartumeus, F. (eds.) Stochastic Foundations in Movement Ecology.
SSS, pp. 177–205. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
39010-4 6

12. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm. Swarm
Intell. 2(1), 1–23 (2008). https://doi.org/10.1007/s11721-007-0009-6

13. Nouyan, S., Dorigo, M.: Chain based path formation in swarms of robots. In:
Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T.
(eds.) ANTS 2006. LNCS, vol. 4150, pp. 120–131. Springer, Heidelberg (2006).
https://doi.org/10.1007/11839088 11

14. Nouyan, S., Gross, R., Bonani, M., Mondada, F., Dorigo, M.: Teamwork in self-
organized robot colonies. IEEE Trans. Evol. Comput. 13(4), 695–711 (2009).
https://doi.org/10.1109/TEVC.2008.2011746

15. Samet, H., Tamminen, M.: Efficient component labeling of images of arbitrary
dimension represented by linear bintrees. IEEE Trans. Pattern Anal. Mach. Intell.
10(4), 579–586 (1988). https://doi.org/10.1109/34.3918

16. Schilling, F., Soria, E., Floreano, D.: On the scalability of vision-based drone
swarms in the presence of occlusions. IEEE Access 10, 28133–28146 (2022).
https://doi.org/10.1109/ACCESS.2022.3158758

17. Sousselier, T., Dreo, J., Sevaux, M.: Line formation algorithm in a swarm of reactive
robots constrained by underwater environment. Expert Syst. Appl. 42(12), 5117–
5127 (2015). https://doi.org/10.1016/j.eswa.2015.02.040

18. Sperati, V., Trianni, V., Nolfi, S.: Self-organised path formation in a swarm of
robots. Swarm Intell. 5(2), 97–119 (2011). https://doi.org/10.1007/s11721-011-
0055-y

https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.3389/frobt.2020.00018
https://doi.org/10.1109/IROS.2011.6094454
https://doi.org/10.1126/scirobotics.aat0430
https://doi.org/10.1109/ICInfA.2018.8812317
http://arxiv.org/abs/2105.12797
https://doi.org/10.3182/20091006-3-US-4006.00004
https://doi.org/10.1007/978-3-642-39010-4_6
https://doi.org/10.1007/978-3-642-39010-4_6
https://doi.org/10.1007/s11721-007-0009-6
https://doi.org/10.1007/11839088_11
https://doi.org/10.1109/TEVC.2008.2011746
https://doi.org/10.1109/34.3918
https://doi.org/10.1109/ACCESS.2022.3158758
https://doi.org/10.1016/j.eswa.2015.02.040
https://doi.org/10.1007/s11721-011-0055-y
https://doi.org/10.1007/s11721-011-0055-y

The Hidden Benefits of Limited
Communication and Slow Sensing

in Collective Monitoring of Dynamic
Environments

Till Aust1,2(B) , Mohamed S. Talamali3 , Marco Dorigo1 ,
Heiko Hamann2 , and Andreagiovanni Reina1(B)

1 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
mdorigo@ulb.ac.be, andreagiovanni.reina@ulb.be

2 Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
till.aust@student.uni-luebeck.de, hamann@iti.uni-luebeck.de

3 Sheffield Hallam University, Sheffield, UK
s.talamali@shu.ac.uk

Abstract. Most of our experiences, as well as our intuition, are usu-
ally built on a linear understanding of systems and processes. Complex
systems in general, and more specifically swarm robotics in this context,
leverage non-linear effects to self-organize and to ensure that ‘more is dif-
ferent’. In previous work, the non-linear and therefore counter-intuitive
effect of ‘less is more’ was shown for a site-selection swarm scenario.
Although it seems intuitive that being able to communicate over longer
distances should be beneficial, swarms were found to sometimes profit
from communication limitations. Here, we build on this work and show
the same effect for the collective perception scenario in a dynamic envi-
ronment. We also find an additional effect that we call ‘slower is faster’: in
certain situations, swarms benefit from sampling their environment less
frequently. Our findings are supported by an intensive empirical app-
roach and a mean-field model. All our experimental work is based on
simulations using the ARGoS simulator extended with a simulator of
the smart environment for the Kilobot robot called Kilogrid.

1 Introduction

In our recent research about information spreading in groups of individuals [30],
we discovered a counter-intuitive mechanism by which reducing interactions
between the individuals makes the group more capable to adopt new better
opinions. This effect, that we call less is more, manifests when groups need to
make consensus decisions and individuals follow a relatively simple voting behav-
ior. Such conditions can be particularly relevant for the design of algorithms for
swarms of minimalistic robots that make best-of-n decisions [30]. Such algo-
rithms are based on opinion dynamics models, in which every robot has an
opinion about the option it currently considers the best (among n alternatives)
and sends messages to neighboring robots to recruit them on that option [34].
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 234–247, 2022.
https://doi.org/10.1007/978-3-031-20176-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_19&domain=pdf
http://orcid.org/0000-0003-2863-1341
http://orcid.org/0000-0002-2071-4030
http://orcid.org/0000-0002-3971-0507
http://orcid.org/0000-0002-2458-8289
http://orcid.org/0000-0003-4745-992X
https://doi.org/10.1007/978-3-031-20176-9_19

The Hidden Benefits of Limited Communication and Slow Sensing 235

In this study, we confirm the generality of our previous finding [30] by repro-
ducing the less is more effect (LIME) in a different scenario: collective perception
of an environmental feature, the so-called environmental element, in a dynamic
environment. By studying this new scenario, we can control the speed of robot
recruitment, that is the key parameter to trigger the LIME. Controlling this
parameter was not possible in the previous study of Talamali et al. [30] as the
recruitment speed was constrained by robot travel times to specific locations.
These times also had high variance and depended, for example, on traffic con-
gestion and robot density. The new scenario allows for a simplified analysis.
Our results confirm and clarify the mechanisms. More importantly, we found
a new surprising effect that was not reported earlier in this type of systems:
the slower is faster effect [9,18,25–27] (SIFE). To adapt faster, recruited robots
must be slower in disseminating their opinions and recruiting other robots. This
is a second surprising and counter-intuitive mechanism of this simple voting sys-
tem. The SIFE occurs when individuals are sparsely connected and make noisy
estimates—two conditions commonly found in swarm robotics [10].

With this paper, we also release open-source code [2] supporting realistic
simulations of the Kilogrid platform [1] (technology for Kilobots [21] to operate
in smart environments) in ARGoS [15]. This simulation code, combined with
the ARGoS Kilobot plugin [14], allows the use of identical code in simulation
and reality (both for Kilobots and Kilogrid). Despite the limited adoption of the
Kilogrid in other research labs than IRIDIA (ULB), we believe that supporting
realistic physics-based simulations can help spreading the technology and encour-
age collaborations between laboratories with and without such equipment.

2 Collective Perception in a Dynamic Environment

In this paper, the task of the robot swarm is to make a consensus decision in
favor of the predominant element of the environment [33]. We assume that the
robots can individually estimate each element concentration (i.e., an element’s
relative frequency in the environment) to form their opinion which they share
with each other. While individual estimates are noisy, the swarm collectively
filters noise and converges to an accurate collective decision [33]. Individual esti-
mation errors can be caused, for example, by simple error-prone sensing devices
(readings distant from the ground truth, e.g., [11,13]), spatial correlations (clus-
tered information in localised areas rather than uniformly in the environment,
e.g., [3,4,29]), and limited sensing range. Our simulations allow us to control
sources and levels of sampling errors as well as to disentangle the impact of
sampling errors from other system dynamics of interest (e.g., recruitment time).

We conveniently model the collective perception problem in a similar way as
done previously [33]. The to-be-estimated environmental element is the predomi-
nant color of the ground which is comprised of squared tiles (5 cm2). We consider
tiles with n = 2 colors: blue and yellow (see Fig. 1a)1. The difficulty of the

1 The current geopolitical situation motivated our choice of tile color .

236 T. Aust et al.

Fig. 1. (a) Collective perception scenario for the simulated Kilogrid in ARGoS (simula-
tion code, see [2]), swarm of N = 50 Kilobots (small black circles); (b) robots controlled
by a finite state machine with n+1 states (here n = 2); transitions: self-sourced (dashed
arrows) or social (solid arrows) evidence; uncommitted→commit through (A) discov-
ery or (B) recruitment; committed robots update their state by: (C) cross-inhibition,
(D) direct switching, or (E) stay; (c) once recruited, robots gradually increase commu-
nication probability w for sampling time τs = s δs, s samples every δs seconds; (d) focal
Kilogrid module receives Kilobot message and sends to all cells within communication
range (proportional to parameter c; communication range rc, c = {2, 3, 4, 5}); (e) robot-
to-robot communication is virtualised using Kilogrid. (Color figure online)

perception problem κ ∈ [0, 1] is determined by the ratio between the concentra-
tion of tiles in the two colors: κ = qb/qy where qb and qy are the concentrations
of blue and yellow tiles, respectively. Without loss of generality we assume that
yellow is the predominant color in all our experiments, qy > qb. The con-
centration of blue/yellow tiles corresponds to the number of blue/yellow tiles
divided by the total number of tiles in the environment. The tiles are uniformly
randomly distributed, hence reducing spatial correlations. However, spatial cor-
relations exist within the area of a single tile. Indeed, taking several samples
from the same tile results in biased measurements (see Sect. 5.2).

We consider a virtual dynamic scenario. In all our experiments, the most
frequent color is yellow . However, the robot swarm is initialized to a state of full
(100%) commitment in favor of blue with every robot holding an estimate qb =
0.8. This increases the task difficulty and can be considered a sudden change of
colors from blue to yellow (→) that happens right at the moment when we
start our simulations. In the next section, we describe how robots reassess the
environment’s state and reconsider their opinion.

3 A Minimalist Behavior for a Rich Collective Response

The robots have minimal requirements in terms of memory, computation, sens-
ing, and communication capabilities. Compared with previous work that inves-
tigated decentralized consensus decision making in the collective perception sce-

The Hidden Benefits of Limited Communication and Slow Sensing 237

nario, our algorithm has the fewest requirements, in line with our quest for
minimalism. Different from previous work that required the storage of all avail-
able alternatives and all received messages [4,23,24], here the robots only store
the information about a single opinion (i.e., the color considered predominant
and its estimated concentration), the last received message from a neighbor, and
a temporary variable to estimate possible environmental changes. Different from
previous work requiring more advanced computation based on Bayesian infer-
ence [7,8,23,24] or fusion operators from epistemic logic [4], our robot behavior is
defined by a small finite state machine with reactive transitions. Different from
previous work that required sensors capable of measuring a numerical value
of the predominant element, such as an option quality, at every measurement
step [7,23,24], here the robot can only sense the presence () or absence (not

) of an element at a time. Different from previous work requiring maintenance
of shared collective knowledge through rich inter-robot communication [28,29],
here the robots send simple messages with a few bits of information, only indi-
cating their preferred element (i.e., their chosen color, for n = 2 that is one bit of
information). Other works in collective perception that are comparable to ours
in their simplicity of individual robot requirements are Valentini et al. [33] and
Zakir et al. [35]. We extend previous analyzes by considering a dynamic environ-
ment which has only been considered in a few consensus decision making studies
for the site selection scenario [6,16,17,30], while here we consider the collective
perception scenario.

Despite the minimalist robot control algorithm and the robots’ noisy mea-
surements, the swarm is able to collectively gather and process the data to make
accurate consensus decisions (picking the dominant color). The robot’s control
algorithm is based on simple reactive rules, relies on limited memory, and can be
described as four routines that are executed in parallel: motion, opinion update,
sampling, and broadcasting.

The motion routine is independent of the other parts of the robot’s behav-
ior. The robot’s motion is neither influenced by its opinion nor by social or
environmental inputs. The motion routine is a random walk implemented as
a random waypoint mobility model [5,30]. However, it could be substituted by
any other algorithm implementing random diffusion. Using the random waypoint
model, robots select random positions as their destinations. Once the destina-
tion is reached, robots select the next random destination. Robots avoid collisions
with surrounding walls by selecting random destinations that are at least three
robot-body lengths (approximately 10 cm) away from walls. As robot’s motion
is subject to noise, the robot can still approach walls. Once it gets at a distance
smaller than three robot-body lengths from any wall, the robot starts a wall
avoidance manoeuvre by rotating away from the wall and moving straight. The
robots have no proximity sensing, therefore they do not implement any obsta-
cle avoidance to prevent collisions with each other. To avoid robots remaining
stuck in traffic jams caused by groups of robots moving in opposite directions
(or robots not moving due to malfunctioning motors), robots select new random
destinations if the previous destination was not reached within two minutes.

238 T. Aust et al.

The opinion update routine is essential to solve the collective perception
task because it determines how robots change their opinions and, hence, defines
the collective behavior. Robots change their opinion so that a large majority of
the swarm reaches an agreement on the predominant color. While we present
this routine for n = 2 colors, it does not require any changes to scale to num-
bers n > 2. Robots update their states every τu = 2 s following the cross-
inhibition update shown in Fig. 1b. Robots can be in n + 1 possible opinion
states; in the investigated case of n = 2 colors they can be committed to blue,
committed to yellow, or uncommitted. Transitions between states are triggered
by new self-sourced or social evidence. Self-sourced evidence (dashed arrows in
Fig. 1b) is available when, after a period of length τu, the robot completed sam-
pling a color that is both different from and better than its current opinion
(in case of uncommitted robots, any concentration estimate is considered as
better). Hence, self-sourced evidence corresponds to discovering in the last τu
a color that seems more frequent than the color of its current opinion. Social
evidence (solid arrows in Fig. 1b) is available when after a period of length τu
the robot received a message from a neighbor committed to a different color
(if multiple messages have been received, only the most recent stays in mem-
ory). If both self-sourced and social evidence are available, the robot randomly
selects one of the two, discarding the other. The new evidence triggers a state
change: (a) committed robots with new social evidence become uncommitted—a
cross-inhibition transition; (b) any robot with new self-sourced evidence becomes
committed to the color corresponding to the new evidence—a discovery transi-
tion; (c) uncommitted robots with new social evidence, become committed as
per the new evidence—a recruitment transition.

The sampling routine controls how information about the concentration of
one element is collected from the environment. The robot continuously repeats
sampling in cycles of collecting s samples. Each sample is a binary value indicat-
ing presence (1) or absence (0) of the environmental element of interest. Here,
robots sample whether the color at their position is of a given color. The concen-
tration estimate q̂i is the proportion between the number of samples s+i in which
the element was present and the total number of samples s: q̂i = s+i /s. A new
sampling cycle starts when the previous cycle has collected s samples, or when
the robot changes opinion through social evidence. When the robot completes a
sampling cycle or becomes uncommitted, it determines the new to-be-sampled
color randomly. Here, the robot selects the color of the ground beneath itself.
The random selection of the color to sample allows the robot either to update
the color concentration estimate when it samples its commitment color, or to
gather potential self-sourced evidence when it samples a different color. Instead,
when a robot is recruited and commits to a new opinion i, it immediately starts
to sample i to obtain the information needed to regulate its messaging frequency
(weighted voting, as described in the broadcasting routine). This means that once
a robot is recruited to i, it cannot instantaneously recruit other robots to i but
a minimum amount of time is required to gather information about i first. The
mathematical analysis of [30] showed that having this temporal delay between

The Hidden Benefits of Limited Communication and Slow Sensing 239

change of opinion through recruitment and recruitment of other robots—the
sampling time τs—is the key mechanism that leads to the LIME. Therefore, the
sampling time τs is the control parameter of this study and it corresponds to
τs = s δs, where δs is the time between two samples. As analyzed in Sect. 5.2,
the sampling parameters s and δs are also linked to the estimation noise and
have a determining impact on the collective dynamics.

The broadcasting routine implements a continuous ‘narrowcast’ of recruit-
ment messages, that is, a broadcast to all robots within communication range rc
(i.e., neighbors). The robot scales its frequency of communication proportion-
ally to the estimated concentration of the environmental element. The higher
the estimated concentration of i is, the more recruitment messages for color i
the robot sends. The robot sends a message with a frequency of w/τm Hz
where 1/τm = 2Hz is the maximum communication frequency of our robots
and w = min(2q̂i, 1) is the concentration weight for color i. We multiply by
two (2q̂i) because we need to find the predominant element and any concentra-
tion >50% represents the absolute majority. For lower concentrations, w scales
linearly between 0 and 1. While in case of n = 2 a concentration <50% indicates
predominance of the other color, this does not generalize to n > 2 and therefore
we do not consider this deductive mechanism. A newly recruited robot does not
have a concentration estimate yet. It gradually increments its communication
frequency as it collects samples (see Fig. 1c). It computes w = min(2q̂i, 1) using
q̂i = s+i /s even if the collected samples are less than s. This mechanism helps
avoiding situations of vocal minorities, that is, the situations in which a large pro-
portion of the population changes their commitment and only a small proportion
of robots communicates while the majority remain silent. In our implementation,
just-recruited robots are not silent, yet less vocal. Uncommitted robots do not
communicate until they get recruited or make a discovery transition.

4 Simulated Kilobots and Kilogrid

For our experiments, we use Kilobots which are cheap, simple, and small robots
widely employed in swarm robotics [20–22,31]. By regulating the frequency of
two vibration motors, the Kilobots move on a flat surface at speeds of about 1 cm/s
in roughly straight motion and rotate at the spot at about 45 ◦/s. The Kilobot has
a diameter of 3.3 cm, can display its internal state through a colored-LED, and
can communicate with other robots and other devices through an infrared (IR)
transceiver. The range of communication varies depending on lighting conditions
and ground material [12]; in ideal conditions rc ≈ 10 cm. The Kilobot’s control
loop is executed at approximately 32Hz.

Given these limited robot capabilities, researchers working with Kilobots
have developed systems of augmented reality to allow Kilobots to interact with
virtual environments [1,19,32]. We employ the Kilogrid system [32], which is
a lattice of square electronic modules covered with a transparent glass. The
Kilobots can move on the Kilogrid’s glass surface while communicating with
static modules beneath which are equipped with the same IR transceivers as the

240 T. Aust et al.

Kilobots. Each 10× 10 cm2 module is composed of four smaller 5× 5 cm2 square
cells. In our setup, we use a 1 × 2m2 rectangular Kilogrid composed of 10 × 20
modules for a total of 800 cells.

The collective perception scenario is implemented by assigning a color to
each internal Kilogrid cell. In our environment there are 684 colored internal
tiles and 116 non-colored tiles at the boundaries. Cells adjacent to walls are
colorless because robots do wall avoidance when under two tiles away from any
wall and should rarely visit these areas. All cells continuously signal their color
to human observers using colored-LED and to the Kilobots via IR messages. The
Kilogrid provides more information to the Kilobots to improve their movement
which is subject to noise and unreliable [14]. The cell’s IR messages contain the
color, the cell’s coordinates (x, y in the 20× 40 Kilogrid’s plane) and a wall flag.
The coordinates are used to implement the above mentioned random waypoint
mobility model [5,30] to let robots effectively diffuse in space. The 0/1 wall flag
indicates a wall at distance <10 cm and triggers wall avoidance.

The Kilogrid also allows extending the robot-to-robot communication range
which is otherwise physically limited to rc ≈ 10 cm. Our robots communicate
with each other via the Kilogrid. They send their IR messages to the cell beneath
them. The cell sends the message to all the cells at an Euclidean distance < c
resulting in an effective range of rc ≈ 2.5 + 5(c − 1) cm (see Figs. 1d, e). Hence,
we can test communication ranges beyond the Kilobot’s limitations.

In this paper, we run experiments in simulation using an available ARGoS
plugin that allows to run accurate simulations with the Kilobots [14], and a
second ARGoS plugin for the simulation of the Kilogrid that we specifically
developed for this study (open-source code available at [2]). The Kilogrid is
programmed via code executed on each module. To simulate the Kilogrid, we
developed an ARGoS loop function that runs the control cycle of all Kilogrid
modules in each simulation step. Module-to-module communication is done by
CAN bus, module-to-robot through IR messages, and modules can send data
to the PC control station (e.g., log files). Following the ARGoS paradigm of
using identical code for simulations and real-world experiments, we developed
a simulated module interface that provides all functions available on the real
Kilogrid module controller. The code for simulated and real modules has only
minimal differences (documented in the code repository) that have been included
to optimise simulation speed.

5 Results: Less is More and Slower is Faster

We test the ability of the robot swarm to adapt to sudden environmental changes.
All robots start committed to blue (predominant color before the change) with
a high estimate qb = 0.8, and hence w = 1. We assume the change → happens
right at the beginning of our experiment, which is initialized with an environment
with more yellow than blue tiles. The swarm is expected to perceive the change,
reconsider its previous decision, and converge to a large majority (consensus
decision) in favor of yellow. We consider the swarm capable to adapt to the

The Hidden Benefits of Limited Communication and Slow Sensing 241

change when over a 5 min interval the mean of the number of robots committed
to yellow is greater than 70% of the swarm size. In this way, we avoid to count
short-lived random fluctuations as successful adaptations. Instead we want the
swarm to reach a stable majority. The adaptation time is measured as the time it
takes for at least 70% of the robots in the swarm to become committed to yellow
at the beginning of the 5 min interval. We define “adaptation probability” as the
proportion of simulation runs in which the swarm has successfully adapted. We
run 30 simulations per condition.

5.1 When Recruitment is Slow do not be too Social, Less is More

We fix sample number s = 15 and time between two samples δs = 4 s,
and test different communication ranges 2.5 cm ≤ rc ≤ 225 cm for problem
difficulties κ ∈ {0.7, 0.8, 0.9}. Hence, once recruited, robots broadcast with
low probability the new color until they complete the sampling cycle which
lasts τs = s δs = 60 s (see broadcast frequency diagram in Fig. 1c). Because the
positive feedback (i.e., recruited robots recruit other robots) is slow, we expect
to observe similar dynamics as reported in [30]. Figure 2a shows that also here we
have the LIME, where more social interactions (large rc) diminish the swarm’s
ability to adapt. Therefore, we confirm the predictions of [30] and show this is a
general effect that can take place in scenarios different from collective site selec-
tion, where it was first observed. This counter-intuitive effect can be explained
via the social impact of committed subpopulations of unbalanced sizes. A large
majority is able to repeatedly mute minorities that make temporary discoveries
of alternative options. The minority’s opinion is slow to gain traction in the pop-
ulation as new recruits are slow in becoming vocal and are quickly reverted to
the majority’s opinion. When the communication range is large, or equivalently
when the robot density is high, any minority is in contact with the large majority
at all time. Instead, sparse connectivity, due to a small communication range or
a low robot density, reduces the importance of subpopulation sizes. Interactions
are sporadic (often limited to pairs) and the collective dynamics are governed
by opinion quality (encoded via messaging frequency).

Unlike the site selection scenario [30], where the positive feedback delay was
hard to manipulate, here the delay consists in the sampling time τs = s δs and
can easily be studied. We investigate how the collective performance varies for
different sampling times and for different levels of robot connectivity. We study
sampling time by varying values s as well as δs, and robot connectivity by vary-
ing both communication range and robot density (proportional to swarm size as
environment size is constant). Figs. 2b–d show that the LIME on robot connec-
tivity is present in parameter regions of slow recruitment (top part of the plots)
and gradually vanishes when recruitment is quick. This result is in agreement
with theory, as quick recruitment enables positive feedback cascades and allows
well connected swarms to react fast to environmental changes. While Figs. 2b–
d only show results for problem difficulty κ = 0.9, we observed qualitatively
equivalent dynamics for any κ tested.

242 T. Aust et al.

We model the collective adaptation dynamics using a mean-field model built
as a system of ODEs that describes the proportion of robots in each opinion
state [30]. Let xi be the proportion of robots committed to the environmental
element i and let xu be the proportion of uncommitted robots, with xu+

∑
i xi =

1. The opinion dynamics model reads as

ẋi =
qi
τs

xu

︸ ︷︷ ︸
A

+
1
τs

k r2c N xu

1 + k r2c N xu
qi xi

︸ ︷︷ ︸
B

− k r2c N xi

1 + k r2c N xi

∑

j �=i

qj xj

︸ ︷︷ ︸
C

+
qi
τs

∑

j �=i

[xj H(q̂i − q̂j)] − xi

τs

∑

j �=i

[qj H(q̂j − q̂i)]

︸ ︷︷ ︸
D

,

(1)

where H is the unit step function, and k is a proportionality factor to fit the ODE
system to the observed dynamics of the simulated swarm robotics system (e.g.,
speed of robots, communication frequency, robots’ opinion update time). The
four terms on the rhs of Eq. (1) model discovery, recruitment, cross-inhibition,
and direct switching transitions (capital letters below each term correspond to
the transitions depicted in Fig. 1b, for more details see [30]).

The model of Eq. (1), as previously published [30], describes ‘slow’ (i.e., not
instantaneous) recruitment through the Holling function type 2. As the sam-
pling time τs is decreased, the recruitment becomes quicker and the effect of
the Holling function reduces. As a result the recruitment rate becomes approxi-
mately linear on neighborhood size. Through bifurcation analysis in the case of
n = 2, we identify two states of the system as a function of the communication
range (in Fig. 2e), or equivalently of the swarm density (not shown). Prior to the
subcritical bifurcation (low rc or N), the system has a single stable equilibrium
that represents a consensus decision for the color with the highest concentration,
therefore, in this parameter range adaptation is guaranteed. After the bifurca-
tion (high rc or N), a second stable equilibrium appears representing a con-
sensus decision for the inferior alternative. In this parameter range, the swarm
when initialized at equilibrium for the inferior color can only switch between
the coexisting attractors through high random fluctuations and the swarm may
take longer to adapt. The bifurcation analysis of Fig. 2e shows results that are
qualitatively equivalent to the dynamics observed in simulations (see Fig. 2g).

5.2 With Noisy Estimates and Few Neighbors, Slower is Faster

The results of Figs. 2b–d also show new interesting dynamics that were not found
in the previous study [30]. When robot connectivity is low (i.e., sporadic social
interactions) the swarm is only able to adapt when the sampling time is high
(either the number of samples s or the time between readings δs are large). This
mechanism corresponds to the SIFE [9,18,25–27] by which the swarm is able
to adapt at a quicker speed (i.e., within 40 min) when the robots perform their
task of estimating the environmental element concentration at a slower pace.

The Hidden Benefits of Limited Communication and Slow Sensing 243

Fig. 2. (a, b, c) Smaller communication ranges lead to higher adaptation probability.
This effect happens only when recruitment is slow, i.e., in the top part of panels (b,
c), for high sampling times τs = s δs, which can be caused by (b) large times between
samples δs (with fixed s = 15) or (c) high numbers of samples s (with fixed δs = 1).
(b–c) When communication is limited, slower sampling time leads to higher probability
of adapting. (d) The same two effects can be observed for fixed communication range
(rc ≈ 12.5 cm for c = 3) and increasing robot density, which we control by modifying the
swarm size N in an environment with a fixed size; (e) the ODE model (Eq. (1)) predicts
results qualitatively similar to simulations without noise (g) (N = 50, κ = 0.9, k =
4 × 10−6); (f) sampling times τs influence the noise, because accuracy increases when
robots collect more samples s; (g) when estimation noise is independent of sampling and
low (σ = 0) the SIFE disappears; (h) when estimation noise is independent of sampling
and high (σ = 0.1) both effects are present; if not specified, swarm size N = 50,
difficulty κ = 0.9, 30 simulations each; color-maps show probability to adapt.

To study this phenomenon, we ran additional simulations. Slowing down the
sampling process has the double effect of slowing down the recruitment and of
reducing errors on the color concentration. Increasing either the sample number s
or the time between samples δs reduces the estimation noise because the robot
respectively collects more samples (see Fig. 2f) or reduces sample correlation.
Therefore, we investigate whether adaptation of sparse swarms is limited by
high noise or quick recruitment.

244 T. Aust et al.

In additional simulations, robots estimate color concentration (q̂b or q̂y) using
a normal distribution rather than observing tile colors. The mean of the normal
distribution is the correct concentration of the color in the environment and
we test various standard deviations σ which represent the sampling noise. By
disentangling noise from sampling time, we can study their impact separately.
Without noise (σ = 0), swarms with low communication range are able to adapt
to changes, hence sampling time has no impact on the collective ability to adapt
(see Fig. 2g). Interestingly, when noise is high (σ ∈ {0.1, 0.2}, Fig. 2h), swarms
are only able to adapt when robots take a long time to make their estimate (i.e.,
recruited robots are slow in becoming recruiters themselves). The slower a robot
starts disseminating its opinion, the faster its opinion spreads throughout the
swarm. A supposed optimal sampling time (sampling rate) might also depend
on environmental features (e.g., tile sizes).

Unfortunately, we cannot provide an explanation of this effect by theoretical
analysis as done for the LIME. The mean-field model of Eq. (1) describes a
noiseless system and cannot model the SIFE that is driven by noise. In future
work we intend to study this phenomenon using stochastic models.

6 Conclusions

We have shown that our previous results [30] generalize to a different scenario:
collective perception of dynamic environmental features. This scenario allows for
a more in-depth analysis not possible in the previous scenario. We have clarified
the relationship between recruitment speed and ability to collectively adapt to
environmental changes. The collective task that we study here is equivalent to
enabling the swarm to revise an incorrect collective decision that led the swarm
to reach a consensus for the inferior alternative and avoids lock-in states.

Our results explain the importance of considering the interplay between sam-
pling time and the communication range when designing the robot behavior as it
can have a paramount effect on the collective dynamics. Through rigorous math-
ematical and computational analysis, we explain the mechanisms that cause the
LIME, which is triggered by slow recruitment. During our investigations, we
also stumbled upon a new effect: slower individual dissemination enables faster
global agreement. We are unable, for the moment, to explain mathematically the
SIFE. However, our computational analysis confirms that the results on speed
are not confounded with estimation noise. Our future research will investigate
the mechanisms causing such unexpected dynamics which are highly relevant for
swarm robotics studies as they manifest when swarm connectivity is sparse and
robots follow a simple behavior subject to high levels of noise.

Acknowledgements. The authors thank Anthony Antoun, Marco Trabattoni, and
Jonas Kuckling for technical support concerning Kilogrid and simulations on HPC.
MD and AR acknowledge support from the Belgian F.R.S.-FNRS, of which they are
Research Director and Chargé de Recherches, respectively.

The Hidden Benefits of Limited Communication and Slow Sensing 245

References

1. Antoun, A., Valentini, G., Hocquard, E., Wiandt, B., Trianni, V., Dorigo, M.:
Kilogrid: a modular virtualization environment for the Kilobot robot. In: 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
vol. 1, pp. 3809–3814. IEEE (2016). https://doi.org/10.1109/IROS.2016.7759560

2. Aust, T., Reina, A.: Open-source code for simulating the Kilogrid in ARGoS.
https://github.com/tilly111/adaptive symmetry breaking

3. Bartashevich, P., Mostaghim, S.: Benchmarking collective perception: new task
difficulty metrics for collective decision-making. In: Moura Oliveira, P., Novais, P.,
Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 699–711. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30241-2 58

4. Bartashevich, P., Mostaghim, S.: Multi-featured collective perception with evidence
theory: tackling spatial correlations. Swarm Intell. 15(1), 83–110 (2021). https://
doi.org/10.1007/s11721-021-00192-8

5. Bettstetter, C., Hartenstein, H., Pérez-Costa, X.: Stochastic properties of the ran-
dom waypoint mobility model. Wirel. Netw. 10(5), 555–567 (2004). https://doi.
org/10.1023/B:WINE.0000036458.88990.e5

6. Soorati, M.D., Krome, M., Mora-Mendoza, M., Ghofrani, J., Hamann, H.: Plastic-
ity in collective decision-making for robots: creating global reference frames, detect-
ing dynamic environments, and preventing lock-ins. In: 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 4100–4105.
IEEE (2019). https://doi.org/10.1109/IROS40897.2019.8967777

7. Ebert, J.T., Gauci, M., Mallmann-Trenn, F., Nagpal, R.: Bayes bots: collective
Bayesian decision-making in decentralized robot swarms. In: 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 7186–7192. IEEE
(2020). https://doi.org/10.1109/ICRA40945.2020.9196584

8. Ebert, J.T., Gauci, M., Nagpal, R.: Multi-feature collective decision making in
robot swarms. In: Proceedings of the 17th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), Richland, SC, vol. 3, pp. 1711–1719
(2018)

9. Gershenson, C., Helbing, D.: When slower is faster. Complexity 21(2), 9–15 (2015).
https://doi.org/10.1002/cplx.21736

10. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-74528-2

11. Lee, C., Lawry, J., Winfield, A.F.: Negative updating applied to the best-of-n
problem with noisy qualities. Swarm Intell. 15(1), 111–143 (2021). https://doi.
org/10.1007/s11721-021-00188-4

12. Nikolaidis, E., Sabo, C., Marshal, J.A.R., Reina, A.: Characterisation and upgrade
of the communication between overhead controllers and Kilobots. Technical report,
White Rose Research Online (2017)

13. Parker, C.A.C., Zhang, H.: Biologically inspired decision making for collective
robotic systems. In: 2004 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (IEEE Cat. No. 04CH37566), vol. 1, pp. 375–380. IEEE
(2004). https://doi.org/10.1109/IROS.2004.1389381

14. Pinciroli, C., Talamali, M.S., Reina, A., Marshall, J.A.R., Trianni, V.: Simulat-
ing Kilobots within ARGoS: models and experimental validation. In: Dorigo, M.,
Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS
2018. LNCS, vol. 11172, pp. 176–187. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7 14

https://doi.org/10.1109/IROS.2016.7759560
https://github.com/tilly111/adaptive_symmetry_breaking
https://doi.org/10.1007/978-3-030-30241-2_58
https://doi.org/10.1007/s11721-021-00192-8
https://doi.org/10.1007/s11721-021-00192-8
https://doi.org/10.1023/B:WINE.0000036458.88990.e5
https://doi.org/10.1023/B:WINE.0000036458.88990.e5
https://doi.org/10.1109/IROS40897.2019.8967777
https://doi.org/10.1109/ICRA40945.2020.9196584
https://doi.org/10.1002/cplx.21736
https://doi.org/10.1007/978-3-319-74528-2
https://doi.org/10.1007/s11721-021-00188-4
https://doi.org/10.1007/s11721-021-00188-4
https://doi.org/10.1109/IROS.2004.1389381
https://doi.org/10.1007/978-3-030-00533-7_14
https://doi.org/10.1007/978-3-030-00533-7_14

246 T. Aust et al.

15. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for
multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/
s11721-012-0072-5

16. Prasetyo, J., De Masi, G., Ferrante, E.: Collective decision making in dynamic envi-
ronments. Swarm Intell. 13(3), 217–243 (2019). https://doi.org/10.1007/s11721-
019-00169-8

17. Prasetyo, J., De Masi, G., Ranjan, P., Ferrante, E.: The best-of-n problem
with dynamic site qualities: achieving adaptability with stubborn individuals. In:
Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.)
ANTS 2018. LNCS, vol. 11172, pp. 239–251. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00533-7 19

18. Rahmani, P., Peruani, F., Romanczuk, P.: Flocking in complex environments-
attention trade-offs in collective information processing. PLoS Comput. Biol. 16(4),
1–18 (2020). https://doi.org/10.1371/journal.pcbi.1007697

19. Reina, A., Cope, A.J., Nikolaidis, E., Marshall, J.A.R., Sabo, C.: ARK: augmented
reality for Kilobots. IEEE Robot. Autom. Lett. 2(3), 1755–1761 (2017). https://
doi.org/10.1109/LRA.2017.2700059

20. Reina, A., Ioannou, V., Chen, J., Lu, L., Kent, C., Marshall, J.A.: Robots as actors
in a film: no war, a robot story. arXiv preprint arXiv:1910.12294 (2019)

21. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost
robot with scalable operations designed for collective behaviors. Robot. Auton.
Syst. 62(7), 966–975 (2014). https://doi.org/10.1016/j.robot.2013.08.006

22. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014). https://doi.org/10.
1126/science.1254295

23. Shan, Q., Mostaghim, S.: Collective decision making in swarm robotics with dis-
tributed Bayesian hypothesis testing. In: Dorigo, M., et al. (eds.) ANTS 2020.
LNCS, vol. 12421, pp. 55–67. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-60376-2 5

24. Shan, Q., Mostaghim, S.: Discrete collective estimation in swarm robotics with
distributed Bayesian belief sharing. Swarm Intell. 15(4), 377–402 (2021). https://
doi.org/10.1007/s11721-021-00201-w

25. Slobodkin, L.B.: Growth and Regulation of Animal Populations. Holt, Rinehart
and Winston, New York (1961)

26. Stark, H.U., Tessone, C.J., Schweitzer, F.: Decelerating microdynamics can accel-
erate macrodynamics in the voter model. Phys. Rev. Lett. 101(1), 018701 (2008).
https://doi.org/10.1103/PhysRevLett.101.018701

27. Stark, H.U., Tessone, C.J., Schweitzer, F.: Slower is faster: fostering consensus
formation by heterogeneous inertia. Adv. Complex Syst. 11(4), 551–563 (2008).
https://doi.org/10.1142/S0219525908001805

28. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing byzantine robots via
blockchain technology in a swarm robotics collective decision making scenario.
In: Proceedings of the 17th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), Richland, SC, vol. 3, pp. 541–549 (2018)

29. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Blockchain technology secures robot
swarms: a comparison of consensus protocols and their resilience to Byzantine
robots. Front. Robot. AI 7, 54 (2020). https://doi.org/10.3389/frobt.2020.00054

30. Talamali, M.S., Saha, A., Marshall, J.A.R., Reina, A.: When less is more: robot
swarms adapt better to changes with constrained communication. Sci. Robot.
5(56), eabf1416 (2021). https://doi.org/10.1126/scirobotics.abf1416

https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-019-00169-8
https://doi.org/10.1007/s11721-019-00169-8
https://doi.org/10.1007/978-3-030-00533-7_19
https://doi.org/10.1007/978-3-030-00533-7_19
https://doi.org/10.1371/journal.pcbi.1007697
https://doi.org/10.1109/LRA.2017.2700059
https://doi.org/10.1109/LRA.2017.2700059
http://arxiv.org/abs/1910.12294
https://doi.org/10.1016/j.robot.2013.08.006
https://doi.org/10.1126/science.1254295
https://doi.org/10.1126/science.1254295
https://doi.org/10.1007/978-3-030-60376-2_5
https://doi.org/10.1007/978-3-030-60376-2_5
https://doi.org/10.1007/s11721-021-00201-w
https://doi.org/10.1007/s11721-021-00201-w
https://doi.org/10.1103/PhysRevLett.101.018701
https://doi.org/10.1142/S0219525908001805
https://doi.org/10.3389/frobt.2020.00054
https://doi.org/10.1126/scirobotics.abf1416

The Hidden Benefits of Limited Communication and Slow Sensing 247

31. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision-making
in a 100-robot swarm. In: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence (AAAI 2015), pp. 4216–4217. AAAI Press (2015)

32. Valentini, G., et al.: Kilogrid: a novel experimental environment for the Kilobot
robot. Swarm Intell. 12(3), 245–266 (2018). https://doi.org/10.1007/s11721-018-
0155-z

33. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of
environmental features in a robot swarm. In: ANTS 2016. LNCS, vol. 9882, pp.
65–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7 6

34. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms:
formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017).
https://doi.org/10.3389/frobt.2017.00009

35. Zakir, R., Dorigo, M., Reina, A.: Robot swarms break decision deadlocks in collec-
tive perception through cross-inhibition. In: Dorigo, M., et al. (eds.) ANTS 2022.
LNCS, vol. 13491, pp. 209–221. Springer, Cham (2022)

https://doi.org/10.1007/s11721-018-0155-z
https://doi.org/10.1007/s11721-018-0155-z
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.3389/frobt.2017.00009

A Novel Time-of-Flight Range
and Bearing Sensor System for Micro Air

Vehicle Swarms

Cem Bilaloğlu1,4(B), Mehmet Şahin1,4, Farshad Arvin2, Erol Şahin3,
and Ali Emre Turgut1,4

1 Department of Mechanical Engineering, Middle East Technical University,
Ankara, Turkey

{cembi,aturgut,mesahin}@metu.edu.tr
2 Department of Computer Science, Durham University, Durham, UK

farshad.arvin@durham.ac.uk
3 Department of Computer Engineering, Middle East Technical University,

Ankara, Turkey
erol@metu.edu.tr

4 Center for Robotics and Artificial Intelligence (ROMER), Middle East Technical
University, Ankara, Turkey

Abstract. In this paper, we propose a novel range and bearing sensing
(RnB) system for micro-air vehicle (MAV) swarms. The RnB system uses
12 infrared (IR) time-of-flight (ToF) sensors and measures the range and
bearing of obstacles and other MAVs. The system incorporated hardware
and software filtering to remove ambient noise and interference between
different sensors to distinguish between obstacles and kin MAVs. The
overall system is 50 mm wide and weighs 12.5 gram. We have installed the
system on 5 indoor quadrotors and demonstrated the performance of the
RnB system using flocking behavior. To the best of our knowledge, our
system is the first IR ToF sensor-based RnB system designed specifically
for swarms that enabled the first decentralized flocking on indoor MAVs
using only on-board resources.

1 Introduction

MAVs are small flying robots that create minimal aerodynamic effects [15] and
enable indoor swarm operation mostly in the form of agile quadrotors [7]. These
robot collectives are suitable for robotic missions that leverage scalability, rang-
ing from bio-inspired flocking behavior [22] to high-level mapping [1], surveil-
lance [20] and search [16] tasks. However, the advantages of MAVs introduce
many challenges in terms of payload and on-board resources. Accordingly, in
most real-robot scenarios, external motion capture systems (Vicon [8], Opti-
track [13], Loco Position [2], Lighthouse [6]) provide robot positions to coordinate
swarms. External sensing limits MAVs to structured environments and static
obstacles far simpler than realistic scenarios. Thus, it is essential to develop on-
board relative positioning sensors for decentralized swarm scenarios and existing
efforts mainly concentrate on ranging-based ultra-wideband (UWB), vision, and
IR RnB systems.
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 248–256, 2022.
https://doi.org/10.1007/978-3-031-20176-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_20&domain=pdf
https://doi.org/10.1007/978-3-031-20176-9_20

Time-of-Flight Range and Bearing Sensor for MAV Swarms 249

UWB, a short-range communication technology frequently used for global
positioning with anchors in the environment [2], was recently adapted to omni-
directional relative positioning [2,4,9,17,24]. Although these systems can sense
the relative position of robots with respect to each other, they cannot sense the
position of the obstacles in the environment.

Vision-based methods using camera and image processing in contrast, is
practical for sensing obstacles [11,25] but challenging for relative positioning of
MAVs [14,19]. Such methods are computationally expensive and without mark-
ers on MAVs [21] the processing requirements are very high.

Multiple classical IR receiver-emitter pairs which measure range using the
intensity of the reflected light, provide a simple solution for ground swarm robots
[5,10,23]. These planar systems are called “range and bearing” (RnB) sensors
which measure the relative position vector of an object where the range is the
magnitude and bearing is the angle of the vector relative to the robot’s heading.
The only extension of IR RnB to a flying swarm is the Eye-bot [18], using tens
of receivers for spatial coverage and weighing hundreds of grams.

A modern and lightweight version of IR pairs uses time of flight (ToF) to
estimate range by measuring the travel time of reflected IR light from an object.
These sensors are robust against object reflectivity and ambient light compared
to classical IR pairs. Although there have been studies to use these sensors on
MAVs [3,12] to sense the obstacles, there are no studies to sense other robots.

In this paper, we propose a novel RnB system for MAV-swarms using ToF
sensors (see Fig. 1). We exploit these sensors to distinguish robots from obsta-
cles and measure relative position in a challenging environment of a swarm with
excessive interference. The result is a stand-alone on-board system with a decen-
tralized and scalable robot detection strategy that does not require additional
sensing or communication. We present our open-source1 hardware and software,
and we demonstrate the performance of the system in an actual swarm behavior2
with 5 Tello quadrotors (Ryze Technology, Shenzhen, CN).

Fig. 1. a) RnB system with IR ToF sensors on a Tello quadrotor b) Ranging measure-
ments from robots and obstacles and distinguishing robots from obstacles c) RnB in
decentralized swarm scenarios, defining distinct robot-robot and robot-obstacle inter-
actions such as self-organized flocking

1 Link to open source hardware/software repository.
2 Link to experiment videos with 5 MAVs.

https://github.com/cemoke/kobotRangeNBearing
https://youtube.com/playlist?list=PLy8zhtuO5fMGT3AY3TMbV0O8Lw5esu6J_

250 C. Bilaloğlu et al.

2 Range and Bearing System

The RnB system consists of a mainboard with a dedicated controller (STM32F1)
and 12 IR ToF sensors (VL53L1) equally spaced on the circumference. The
system can work with any host capable of I2C communication and supplying a
current of 170 mA at 3.3V (Fig. 2).

Fig. 2. Flow diagram of the RnB system and connections with a host robot

2.1 Ranging Sequence of Time of Flight Sensor

A single ranging sequence of the ToF sensor is composed of three phases as
shown in Fig. 3b. During the ambient phase, the receiver senses IR light with an
inactive emitter. In the signal phase, the emitter sends a pulse, and the receiver
senses again IR light. These two phases are followed by a random delay phase
during which the ToF sensor neither emits nor collects any signal. After each
ranging sequence, ToF sensors report an ambient indicating the background
noise, a signal corresponding to the intensity of the reflected light from the
object, and a range which is the estimated distance between the sensor and the
target object. Notably, these phases are always consecutive and immutable.

Fig. 3. Ranging sequences of RnB systems on robot1 and robot2 where blue arrows
denote the robot detection. Symbol ∅ denotes a false negative robot detection and ri,j
denotes that roboti detected robotj (Color figure online)

Time-of-Flight Range and Bearing Sensor for MAV Swarms 251

2.2 Robot Detection and Ranging in a Swarm

The RnB system distinguishes kin robots using the same system from passive
obstacles, which we refer to as ‘robot detection’. To perform robot detection, we
assume that there are no external emitters other than the RnB system of the
robots in the environment. Accordingly, if a sensor collects a non-zero ambient
reading, then there should be at least one nearby robot in the FoV of the sensor.

An interference scenario in the ranging of two RnB systems occurs when they
have a synchronous operation, as seen in the first ranging sequence of robot1 and
robot2 in Fig. 3a. Consequently, both systems’ ambient and signal phases fully
overlap, and neither detects the other, resulting in ‘false negative’ robot detec-
tion. During the signal phase, RnB systems emit pulses simultaneously, and in
addition to reflections, they collect the pulses emitted by the other RnB systems.
We refer to this event as ‘signal collision’ that affects the ranging measurement
adversely. Notably, we want to avoid this ‘in-sync interference’ (ambient-ambient
and signal-signal) and seek ‘out-of-sync interference’ (ambient-signal) both for
robot detection and for ranging.

2.3 Random Delay and Filtering

We minimize false-negative robot detection and signal collision with: (i) adding
a random delay block of fixed duration with a probability of 0.5 to the ranging
sequence of the sensors, (ii) filtering the data collected in circular buffers to
eliminate noisy readings. The random delay phase shifts any two sensors out-
of-sync and ensures that the ambient measurement of one sensor coincides with
the signal measurement of the other sensor (see Fig. 3a).

The range, ambient and isRobot readings are stored in circular buffers for
filtering. The median and interquartile range (IQR) of these buffers are used to
estimate range and isRobot information as outlined in Algorithm 1.

Algorithm 1: Robot detection, random delay and filtering (see footnote
1)

range=maxRange; // Initially no object detected
isRobot=false; // Initially no robot detected
if iqrAmbient > ambientThresh then

circularBuffIsRobot.update(true);// Update with robot detection

else
circularBuffIsRobot.update(false);// Update with no robot detection

if circularBuffIsRobot.any() then
isRobot = true; // At least one robot detection in buffer

if (iqrRange < rangeThresh) and (signal > signalThresh) then
range = medianRange; // Valid object range

if randomBool() and !isWait then
isWait = true; // Will delay in next cycle

252 C. Bilaloğlu et al.

2.4 Design

The RnB system have 12 sensors separated by β = 30◦ (see Fig. 4) and it cal-
culates the bearing of an object seen by the ith sensor as i · β. The FoV of
the sensor φ = 27◦, is smaller than the offset between the sensors β, thus the
width of the blind zones w increases with inter-robot distance d by the relation
w = 2d [tan (β/2) − tan (φ/2)] + 11.2 mm. At d = 0 the width of the blind zone
is equal to the gap between two sensors 11.2mm and at dmax = 1300mm the
width of the blind zones becomes ≈90 mm. We regarded this value acceptable
for the target robot Tello with 195mm horizontal span.

Fig. 4. Two RnB systems with the planar relative pose variables {d, θ}, the cone angle
φ determining the FoV of the sensor and the angle between sensors β

The FoV of the sensor also sets the allowable altitude deviation between
MAVs. This deviation increases with inter-robot distance according to the rela-
tion Δh = ±d · tan (φ/2) which corresponds to Δh < ±174 mm at d = 650 mm
and Δh < ±348 mm at dmax = 1300 mm. We considered these values accept-
able for target quadrotor Tello, capable of controlling its altitude in the interval
Δh < ±50 mm with its on-board sensor.

We should also note that without any modification, the ranging performance
of ToF sensors is not adequate for indoor quadrotors with tiny cross-sections.
We overcame that problem by increasing the reflectance of the robots with retro-
reflective folio coating, as shown in Fig. 1a. A similar approach can be used to
detect smaller quadrotors such as Crazyflie (Bitcraze AB, Malmö, SE).

3 Results and Discussion

In all the experiments, we set the length of the circular buffers to 5 and set
the duration of the random delay to td = 5 ms with measurement duration
tm = 20 ms (see Fig. 3b).

Time-of-Flight Range and Bearing Sensor for MAV Swarms 253

3.1 Controlled Experiments

In order to characterize the performance, we controlled the relative pose (d, θ)
of two MAVs with the RnB system, and we measured their actual values using
a Vicon motion capture system (Vicon Motion Systems Limited, Oxford, UK).
We synchronized the ground truth information from Vicon with the readings
collected from both of the RnB systems.

In the first experiment, we measured the ranging and robot detection per-
formance of the RnB with and without introducing the random delay phase and
plotted ambient range and isRobot values in Fig. 5. As depicted in the plots, our
method eliminated periodic ranging errors and false negatives in robot detection.

Fig. 5. Line plots showing ambient reading range error and robot detection perfor-
mance a) without random delay phase b) with random delay phase

For the second experiment, we set θ to angles in the interval [0, β/2] and
we changed d continuously up to dmax. The collected data spans the whole
operational range of the RnB system because the sensors are axis-symmetric
and consecutive sensors are separated by β. We plot the results for d and θ on
a polar plot with over 17000 data points in Fig. 6. The sensor measured up to
its maximum range dmax = 1300 mm and half FoV angle φ/2 = 13.5◦. On the
blind zones, from φ/2 = 13.5◦ to β/2 = 15◦ maximum distance that the sensor
can measure decreased, and the ranging error increased.

3.2 Self-organized Flocking with Micro Air Vehicles

In order to verify the RnB system in a swarm setting, we implemented a flocking
method [23] without any modifications apart from an additional closed-loop

254 C. Bilaloğlu et al.

Fig. 6. Color-mapped polar plot representing range error of RnB with respect to chang-
ing inter robot distance d and angle θ

altitude controller for the MAVs. The method requires robots to perform range
and bearing measurements from their surroundings and to distinguish robots
from obstacles. In this proof of concept experiment (See Footnote 2), we used 5
MAVs equipped with RnB systems, and snapshots from the behavior are given
in Fig. 7.

Fig. 7. The flocking behavior is controlled by the desired heading a calculated by
weighted sum a = h + βp. h is the resultant direction of neighbors and used for
aligning robots. p is the resultant proximal control vector computed using virtual forces
fi, minimizing |range− σdes| for each RnB sensor. The desired equilibrium point σdes

is set for both cohesion and collision avoidance

4 Conclusion

This paper introduces a novel RnB system for MAVs, using IR ToF sensors. We
proposed a method based on random delay and filtering to have a fully scalable
and decentralized robot detection and ranging. Then, we verified our method
and measured the effect of relative pose on sensing performance with a set of
controlled experiments. Lastly, we demonstrated the RnB system in a flocking
scenario with 5 MAVs using only on-board resources.

Acknowledgements. This work was partially supported by the EU H2020-FET
RoboRoyale (964492).

Time-of-Flight Range and Bearing Sensor for MAV Swarms 255

References

1. Achtelik, M., et al.: SFly: swarm of micro flying robots. In: 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 2649–2650, October
2012

2. Cai, X., Ye, L., Zhang, Q.: Ensemble learning particle swarm optimization for real-
time UWB indoor localization. EURASIP J. Wirel. Commun. Netw. 2018(1), 125
(2018)

3. Duisterhof, B.P., et al.: Tiny robot learning (tinyRL) for source seeking on a nano
quadcopter. In: 2021 IEEE International Conference on Robotics and Automation
(ICRA), pp. 7242–7248, May 2021

4. Guo, K., Qiu, Z., Meng, W., Xie, L., Teo, R.: Ultra-wideband based cooperative rel-
ative localization algorithm and experiments for multiple unmanned aerial vehicles
in GPS denied environments. Int. J. Micro Air Veh. 9(3), 169–186 (2017)

5. Gutierrez, A., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Mag-
dalena, L.: Open E-puck range bearing miniaturized board for local communica-
tion in swarm robotics. In: 2009 IEEE International Conference on Robotics and
Automation, pp. 3111–3116, May 2009

6. Kilberg, B.G., Campos, F.M.R., Schindler, C.B., Pister, K.S.J.: Quadrotor-based
lighthouse localization with time-synchronized wireless sensor nodes and bearing-
only measurements. Sensors 20(14), 3888 (2020)

7. Kumar, V., Michael, N.: Opportunities and challenges with autonomous micro
aerial vehicles. Int. J. Robot. Res. 31(11), 1279–1291 (2012)

8. Kushleyev, A., Mellinger, D., Powers, C., Kumar, V.: Towards a swarm of agile
micro quadrotors. Auton. Robot. 35(4), 287–300 (2013). https://doi.org/10.1007/
s10514-013-9349-9

9. Li, J., Bi, Y., Li, K., Wang, K., Lin, F., Chen, B.M.: Accurate 3D localization
for MAV swarms by UWB and IMU fusion. In: 2018 IEEE 14th International
Conference on Control and Automation (ICCA), pp. 100–105, June 2018

10. Liu, Z., West, C., Lennox, B., Arvin, F.: Local bearing estimation for a swarm of
low-cost miniature robots. Sensors 20(11), 3308 (2020)

11. McGuire, K., de Croon, G., De Wagter, C., Tuyls, K., Kappen, H.: Efficient opti-
cal flow and stereo vision for velocity estimation and obstacle avoidance on an
autonomous pocket drone. IEEE Robot. Autom. Lett. 2(2), 1070–1076 (2017)

12. Mcguire, K., De Wagter, C., Tuyls, K., Kappen, H., Croon, G.: Minimal navigation
solution for a swarm of tiny flying robots to explore an unknown environment. Sci.
Robot. 4, eaaw9710 (2019)

13. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The GRASP multiple micro-
UAV testbed. IEEE Robot. Autom. Mag. 17(3), 56–65 (2010)

14. Nägeli, T., Conte, C., Domahidi, A., Morari, M., Hilliges, O.: Environment-
independent formation flight for micro aerial vehicles. In: 2014 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 1141–1146, September
2014

15. Powers, C., Mellinger, D., Kushleyev, A., Kothmann, B., Kumar, V.: Influence of
aerodynamics and proximity effects in quadrotor flight. In: Desai, J., Dudek, G.,
Khatib, O., Kumar, V. (eds.) Experimental Robotics. STAR, vol. 88, pp. 209–302.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-319-00065-7_21

16. Pugh, J., Martinoli, A.: Inspiring and modeling multi-robot search with particle
swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 332–339,
April 2007

https://doi.org/10.1007/s10514-013-9349-9
https://doi.org/10.1007/s10514-013-9349-9
https://doi.org/10.1007/978-3-319-00065-7_21

256 C. Bilaloğlu et al.

17. Queralta, J.P., Almansa, C.M., Schiano, F., Floreano, D., Westerlund, T.: UWB-
based system for UAV localization in GNSS-denied environments: characterization
and dataset. In: 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4521–4528, October 2020

18. Roberts, J.F., Stirling, T., Zufferey, J.C., Floreano, D.: 3-D relative positioning
sensor for indoor flying robots. Auton. Robot. 33(1), 5–20 (2012). https://doi.
org/10.1007/s10514-012-9277-0

19. Roelofsen, S., Gillet, D., Martinoli, A.: Reciprocal collision avoidance for quadro-
tors using on-board visual detection. In: 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 4810–4817, September 2015

20. Saska, M., Vonásek, V., Chudoba, J., Thomas, J., Loianno, G., Kumar, V.: Swarm
distribution and deployment for cooperative surveillance by micro-aerial vehicles.
J. Intell. Robot. Syst. 84(1), 469–492 (2016). https://doi.org/10.1007/s10846-016-
0338-z

21. Schilling, F., Schiano, F., Floreano, D.: Vision-based drone flocking in outdoor
environments. IEEE Robot. Autom. Lett. 6(2), 2954–2961 (2021)

22. Soria, E., Schiano, F., Floreano, D.: Predictive control of aerial swarms in cluttered
environments. Nat. Mach. Intell. 3(6), 545–554 (2021)

23. Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile
robot swarms. Swarm Intell. 2(2), 97–120 (2008). https://doi.org/10.1007/s11721-
008-0016-2

24. van der Helm, S., Coppola, M., McGuire, K.N., de Croon, G.C.H.E.: On-board
range-based relative localization for micro air vehicles in indoor leader–follower
flight. Auton. Robot. 44(3), 415–441 (2019). https://doi.org/10.1007/s10514-019-
09843-6

25. Xiao, F., Zheng, P., di Tria, J., Kocer, B.B., Kovac, M.: Optic flow-based reactive
collision prevention for MAVs using the fictitious obstacle hypothesis. IEEE Robot.
Autom. Lett. 6(2), 3144–3151 (2021)

https://doi.org/10.1007/s10514-012-9277-0
https://doi.org/10.1007/s10514-012-9277-0
https://doi.org/10.1007/s10846-016-0338-z
https://doi.org/10.1007/s10846-016-0338-z
https://doi.org/10.1007/s11721-008-0016-2
https://doi.org/10.1007/s11721-008-0016-2
https://doi.org/10.1007/s10514-019-09843-6
https://doi.org/10.1007/s10514-019-09843-6

An Adaptive Metric Model for Collective
Motion Structures in Dynamic

Environments

Stef Van Havermaet1(B) , Pieter Simoens1 , and Yara Khaluf2

1 Department of Information Technology–IDLab, Faculty of Engineering
and Architecture, Ghent University–imec, Ghent, Belgium

{stef.vanhavermaet,pieter.simoens}@ugent.be
2 Department of Social Sciences – INF, Applied Information Science,
Wageningen University and Research, Wageningen, The Netherlands

yara.khaluf@wur.nl

Abstract. Robot swarms often use collective motion. Most models gen-
erate collective motion using the repulsion zone, alignment zone, and
attraction zone. Despite being widely used, these models have a limited
capacity for generating group structures in response to environmental
stimuli. Enabling robot swarms to display proper spatial structures is
crucial for several swarm robotics tasks. In this paper, we focus on three
spatial structures that allow the swarm to adapt its aggregation (cov-
erage) and alignment (order) in response to environmental changes. We
show that the metric and long-range models are unable to generate every
structure. We propose an extension to the metric model that allows the
swarm to display the three structures, which is demonstrated in a simu-
lated dynamic environment where different stimuli appear over time.

1 Introduction

Collective motion is nature’s most fundamental demonstration of coordinated
activity, performed by bird flocks, fish shoals, and human crowds [25]. Emergent
behavior results from individuals’ interactions to perform tasks like foraging or
migrating. Collective motion is important in artificial systems like robot swarms,
which simulate social animal behavior. Individual robots have basic abilities, but
when they work together in groups, they can perform more complex behaviors
like foraging [7,16,17,19], exploration [10,20], and collective perception [12,23].

Many activities in robot swarms need collective motion. Navigation from a
source to a destination, forming topologies, tracking targets, and moving objects
are among the examples. Depending on the particular task, specific structures
need to be displayed in the swarm. For example, the swarm needs to aggre-
gate while navigating through narrow paths, and to expand while exploring new
environments. A large number of theoretical [4,6] and empirical [3,11] studies
have proposed models to generate collective motion. Most of these models con-
sider short-range repulsion and long-range attraction among the individuals, in
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 257–265, 2022.
https://doi.org/10.1007/978-3-031-20176-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_21&domain=pdf
http://orcid.org/0000-0002-5060-6807
http://orcid.org/0000-0002-9569-9373
http://orcid.org/0000-0002-5590-9321
https://doi.org/10.1007/978-3-031-20176-9_21

258 S. Van Havermaet et al.

addition to the alignment of velocities along with the their (nearest) neighbors
[25]. These models show high efficiency in generating aligned motion based on
simple individual rules. However, there is little to no evidence on whether such
models can modify spatial features of the group (e.g., structure) as a response
to environmental stimuli.

In this study, we use two system measures to define our target structures:
swarm order (an expression of alignment degree) and swarm relative coverage (an
expression of compactness). The swarm displays three target structures based on
environmental stimuli: (a) high coverage, low order (HCLO), (ii) high coverage,
high order (HCHO), and (iii) low coverage, high order (LCHO). Individuals have
different orientations in HCLO to maximize coverage (low order). This structure
is desired for exploration tasks, where robots must observe the environment in
all directions and maximize inter-individual distance. HCHO is a high-order,
high-coverage swarm. This structure navigates tasks while maximizing coverage
(e.g., navigation with exploration). In LCHO, the swarm aggregates, maintaining
a high order and high density. This structure can transport items or navigate
narrow spaces. All three structures require swarm connectivity (i.e., remain in
a single cluster). The aforementioned tasks can also be combined (e.g. search
and rescue), which requires the swarm to adapt its structure based on observed
stimuli in the dynamic environment.

We consider two models of collective motion: the metric model, where each
individual interacts within a defined radius, and the long-range model, where
short-interactions occur topologically and long-range interactions randomly. Our
results highlight the metric model and long-range model’s limitations to gen-
erate the above-mentioned structures. We propose an extension to the metric
model that allows the swarm to switch between the three structures. We test
our extended metric model (EMM) in a simulated dynamic environment, where
different stimuli appear over time and are perceived by few individuals.

We show how HCLO, HCHO, and LCHO emerged and how EMM scales
with system size. This paper continues as follows. In Sect. 2, we review collective
motion models. In Sect. 3, we describe the other models we use. In Sect. 4, we
discuss the key results. Section 5 concludes this paper.

2 Related Work

To generate collective motion and group cohesion, many models have been pro-
posed. Models from biology and physics [8,9,13,21,24] suggest simple rules of
interaction among individuals can induce collective motion. Such rules capture
attraction, repulsion, and alignment [21]. Most of these models use metric dis-
tance. These models assume individuals align and attract each other, and that
interaction declines with distance. Vicsek model [25] uses neighbor’s velocity
to exploit individuals’ alignment. The Couzin model [5] is used in theoretical
biology and group robotics. This paper uses the Couzin model.

Special cases of the metric model were suggested and became widely used,
such as the topological model [1,2], in which each individual interacts with a

An Adaptive Metric Model for Collective Motion Structures 259

fixed number of neighbors. The topological model was suggested based on exper-
imental findings of birds flocking [1]. The model proposed in [18] accounts for
sensory-imposed interaction limitations, and is a special-case of the metric model.
Individuals only interact with visually observable neighbors. In [26], the authors
show how long-range models, which introduce long-range alignment interactions
between individuals, prevents group dispersion in open spaces.

Several studies have examined spatial structures in natural organisms. [14]
studied Zebrafish shoals and schools. This work investigated model parameters
other than group density that may impact these two structures. Both [5,22]
studied how individual heterogeneity affects spatial position in the group, leading
to specific structures. In [15], the authors highlight the importance of system size
and the number of influential neighbors on the emergence of different structures.
Despite interesting results, the work doesn’t explain how the model can generate
spatial structures. The obtained structures were dispersed rather than clustered.

3 Model

3.1 Metric and Long-Range Model

Each individual i updates its direction of motion based on the neighbors’ poses
in the three non-overlapping behavioral zones around i. Each behavioral zone
corresponds to a distinct interaction; (i) repulsion from others inside the circular
zone with radius ZoR, (ii) alignment of orientation with others inside the zone
with width ZoO, and (iii) attraction to others inside the zone with width ZoA.

The metric and long-range models differ from each other by neighbor selec-
tion. For the metric model, the neighbors Ni of individual i consists of all indi-
viduals within the interaction-radius RoI = ZoR + ZoO + ZoA [5]. For the
long-range model, the neighbor set Ni is the union of the set of m nearest neigh-
bors Mi and κi randomly selected neighbors of Ni\Mi [26], where κi is sampled
from a Poisson distribution with average κ.

Let N r
i , N o

i , and N a
i denote the distinct subsets of neighbors by separating

Ni based on the repulsion, orientation, and attraction zones respectively. Let us
define rij as the relative position of individual j from i, and qi as the direction
vector. The new direction computed with weights αr ≥ 0, αo ≥ 0 and αa ≥ 0 as:

q̂i(t) = −αr

∑

j∈N r
i

rij(t)
‖rij(t)‖ + αo

∑

j∈No
i

qj(t)
‖qj(t)‖ + αa

∑

j∈Na
i

rij(t)
‖rij(t)‖ (1)

3.2 System Measures

To quantify whether all individuals move in approximately the same direction, we
measure the amount of order Ψ defined as Ψ(t) = 1

N ‖∑N
i=1 qi(t)‖. Furthermore,

we define the relative coverage as Ω(t) = A(t)
A(t0)

, with A as the area of the convex
hull of the set of robots and t0 as the starting time step. Finally, the number
of clusters is measured where individuals i and j are part of the same cluster if
their relative distance is lower than the interaction-radius RoI.

260 S. Van Havermaet et al.

3.3 Extended Metric Model (EMM)

Our proposed model, the extended metric model (EMM), relies on adapting
the impact of the behavioral orientation zone while following the same neighbor
selection approach as the metric model. In order to obtain a relative coverage
Ω > 1 with low order Ψ ≈ 0, we maintain the width of the orientation zone ZoO,
but set αo = 0 in Eq. (1)—i.e., deactivating the orientation zone. Consequently,
individuals are able to spread out until attraction interactions ensure that they
remain cohesive. Transitioning to high relative coverage Ω > 1 and high order
Ψ ≈ 1 is then accomplished by resetting αo > 0 (i.e., activating the orientation
zone). To obtain a low relative coverage Ω < 1 with high order Ψ ≈ 1, the width
ZoO is decreased while keeping the zone activated (αo > 0).

4 Results and Discussion

We simulate a robot swarm of size N in 2D open space environment. At the
beginning of a simulation, robots are placed within a confined box of the size
(N

ρ)
1
2 with initial density ρ = 0.01. Within this box, both the robots’ positions

and moving directions are initially uniformly distributed. All simulations are
run with w = π

2 , v = 2, σ = 0.05, αr = 100, αo = 50, and αa = 1 based on
preliminary simulations to obtain a system of a single cluster. Unless varied, the
system size is N = 100.

We start with the metric model, looking at the swarm order Ψ , group relative
coverage Ω, and the number of clusters (NoC). The emergence of the target
structures (i.e., HCLO, HCHO, and LCHO) is investigated using a combination
of these system measures. We enable the width of the orientation zone (ZoO)
and the attraction zone (ZoA) to vary over the range of [0–100] in Figs. 1A, B,
C, while keeping the width of the repulsion zone constant (ZoR = 1). Structures
that arise while the swarm is preserved in a single connected cluster (light-
gray color in Fig. 1), have a low relative coverage and a high group order, which
corresponds to the target structure (LCHO). We note that the swarm splitting in
numerous clusters fits with the structure of high coverage and low order (HCLO)
(left-bottom corner). Finally, the high-coverage, high-order (HCHO) structure is
completely absent. The width of the repulsion zone (ZoR) and the orientation
zone (ZoO) are then varied throughout a range of [5–30] and [0–200], respectively,
while the width of the attraction zone remains constant (ZoA = 50). The LCHO
structure is formed when high order corresponds with low relative coverage, as
seen in Figs. 1D, E, F. However, given a medium level of order with a possibility
of more than one cluster, the right-bottom corner shows a likelihood of a high
coverage, low order (HCLO) to emerge. Finally, the high-coverage, high-order
(HCHO) structure is again absent.

Next, we perform an analysis of the long-range model. The results are shown
in Fig. 2 for κ = 0.05 and κ = 0.9. Our results for κ = 0.05, in Figs. 2A, B,
C, show that the swarm can move in a single cluster, while maintaining a low
relative coverage, and a high swarm order. This aligns with the structure of low
coverage, high order (LCHO). The other two structures of HCLO and HCHO are

An Adaptive Metric Model for Collective Motion Structures 261

0 25 50 75 100
ZoO

0

25

50

75

100

Zo
A

A: Order (Ψ)

0 25 50 75 100
ZoO

B: Relative Coverage (Ω)

0 25 50 75 100
ZoO

C: Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

5

1

2

3

4

5

6

7

5 10 15 20 25 30
ZoR

0

50

100

150

200

Zo
O

D: Order (Ψ)

5 10 15 20 25 30
ZoR

E: Relative Coverage (Ω)

5 10 15 20 25 30
ZoR

F: Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0

2

4

6

8

10

1

2

3

4

5

6

7

Fig. 1. System measures of the metric model.

fully absent. In Figs. 2D, E, F, we can notice an evidence of high relative cover-
age with high order in the right-bottom corner (while maintaining a single clus-
ter). This corresponds to the structure of HCHO. The long-range model shows
similarly to the metric model the ability to generate low coverage, high order
structures (LCHO). The structure of high coverage, low order (HCLO) is miss-
ing. As the average long-range connectivity κ increases, the long-range model’s
ability to create a high coverage, high order (HCHO) decreases, as demonstrated
in Fig. 2G–L. The low coverage, high order (LCHO) structure becomes the only
one that the long-range model can generate. Hence, the emergence of the high
coverage, high order (HCHO) is κ-dependent for the long-range model. So far, we
have demonstrated that while, both, the metric and the long-range models are
suitable to generate the low coverage, high order (LCHO) structures, they are
not suitable for generating the other two structures (i.e., HCHO, HCLO). In the
following we show the system measures resulting from applying the extended
metric model (EMM). Figure 3 demonstrates how the EMM can display the
three target structures, while maintaining the group moving in a single cluster
for all structures (Fig. 3 right column). Figures 3A, B show the system measures
when deactivating the orientation zone. Hence the values at the y-axis define
the distance at which the attraction zone starts. These two figures show the
possibility to generate the HCLO structure through expanding the swarm cov-
erage while pushing the attraction zone away by increasing the width of the
deactivated orientation zone. Figures 3D, E are obtained after activating the ori-
entation zone. They show the ability of the EMM model to display, both, the
HCHO and the LCHO structures. The HCHO (LCHO) structure is achieved by
increasing (decreasing) the width of the activated orientation zone. Both results

262 S. Van Havermaet et al.

0 25 50 75 100
ZoO

Zo
A

(∞
)

A: Ψ

0 25 50 75 100
ZoO

B: Ω

0 25 50 75 100
ZoO

C: NoC

0.0

0.5

1.0

0

2

4

1

7

0 25 50 75 100
ZoO

Zo
A

G: Ψ

0 25 50 75 100
ZoO

H: Ω

0 25 50 75 100
ZoO

I: NoC

0.0

0.5

1.0

0

2

4

1

7

5 1015202530
ZoR

0
50

100
150
200

Zo
O

D: Ψ

5 1015202530
ZoR

E: Ω

5 1015202530
ZoR

F: NoC

0.0

0.5

1.0

0

5

10

1

7

5 10 15 20 25 30
ZoR

0
50

100
150
200

J: Ψ

5 10 15 20 25 30
ZoR

K: Ω

5 10 15 20 25 30
ZoR

L: NoC

0.0

0.5

1.0

0

5

10

1

7

Fig. 2. System measures of the long-range model with κ = 0.05 (first three columns)
and κ = 0.9 (last three columns).

5 10 15 20 25 30
ZoR

0

50

100

150

200

Zo
O

A: Order (Ψ)

5 10 15 20 25 30
ZoR

B: Relative Coverage (Ω)

5 10 15 20 25 30
ZoR

C: Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

5

1

2

3

4

5

6

7

5 10 15 20 25 30
ZoR

0

50

100

150

200

Zo
O

D: Order (Ψ)

5 10 15 20 25 30
ZoR

E: Relative Coverage (Ω)

5 10 15 20 25 30
ZoR

F: Number of Clusters

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

5

1

2

3

4

5

6

7

Fig. 3. System measures of the proposed model (EMM).

in Figs. 3A, B and in Figs. 3D, E show that the emerging structure is independent
of the width of the repulsion zone (ZoR).

Next, we simulate a swarm of robots using the EMM model to perform the
following sequential set of tasks: (i) explore the environment looking for a par-
ticular stimulus (stimulus A) that define the direction they need to move into.
(ii) Navigate in the direction of stimulus A until a stimulus B appears. (iii) As a
response to stimulus B (e.g., a narrow path) the swarm needs to shrink in cover-
age while still navigating to its target. Figure 4(left) shows the system measures
recorded over 7 × 103 simulated time steps. The swarm order Ψ starts low as
the robots are initialized with random directions. Following the EMM model,
every robot deactivates its orientation zone, whose width is set to 200, aiming
for the HCLO structure. In a few time steps, the relative coverage increases to

An Adaptive Metric Model for Collective Motion Structures 263

0 2 × 103 4 × 103 6 × 103

time (t)

0.0

0.5

1.0
O

rd
er

(Ψ
)

st
im

u
lu
s
A

st
im

u
lu
s
B

HCLO HCHO LCHO

0

1

2

3

R
el

at
iv

e
C

ov
er

ag
e

(Ω
)

100 400 700 1000
system size N

200

400

600

800

m
in

Zo
O

w
h
er
e

Ω
≥

3

Fig. 4. Further analysis of the proposed model (EMM)

Ω = 3, while the system maintains a low order. At time step 3 × 103, stimu-
lus A (which triggers the swarm to navigate into one direction) is introduced and
perceived by a single robot, who spreads the message to its neighbors. As the
message spreads, robots start activating their orientation zone (see Fig. 3D, E).
This enables the swarm to converge to the HCHO structure after introducing
stimulus A, as shown in Fig. 4(left). Thanks to activating the orientation zone,
fluctuations in both system measures disappear. Finally, at time step 4.5 × 103

stimulus B is introduced and perceived by a single robot, who spread it further.
The system converges to the LCHO structure when informed robots reduce the
width of their orientation zone. (In this paper, we reduce ZoO to 50 based on
findings where we varied ZoO in [5–200]). Finally, Fig. 4(right) shows that the
minimum width of the orientation zone, that is needed to create the HCLO and
the HCHO structures, scales linearly with the system size.

5 Conclusions

We studied in this paper the emergence of three target structures based on the
swarm order and relative coverage; HCLO, HCHO, and LCHO. These structures
are fundamental for a large set of robot tasks such as exploration, navigation,
and moving through narrow paths. First, we demonstrated that even across a
wide range of parameter values, the widely-used metric model and the recently
proposed long-range model are unable to generate all three structures. We pro-
posed an extension of the metric model (EMM) that adapts the activation state
and width of the orientation zone to dynamically generate the three target struc-
tures. We showed that EMM displays each of the three structures in different
parameter ranges, and is capable of producing the required structure based on
different stimuli introduced in a dynamic environment scenario. We finally show
how our model parameter scales linearly with the system size.

264 S. Van Havermaet et al.

References

1. Ballerini, M., et al.: Interaction ruling animal collective behavior depends on topo-
logical rather than metric distance: evidence from a field study. Proc. Natl. Acad.
Sci. 105(4), 1232–1237 (2008)

2. Camperi, M., Cavagna, A., Giardina, I., Parisi, G., Silvestri, E.: Spatially balanced
topological interaction grants optimal cohesion in flocking models. Interface Focus
2(6), 715–725 (2012)

3. Cavagna, A., et al.: Short-range interactions versus long-range correlations in bird
flocks. Phys. Rev. E 92(1), 012705 (2015)

4. Cavanga, A., et al.: Flocking and turning: a new model for self-organized collective
motion. J. Stat. Phys. 158(3), 601–627 (2014). https://doi.org/10.1007/s10955-
014-1119-3

5. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory
and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11 (2002)

6. Dossetti, V., Sevilla, F.J.: Emergence of collective motion in a model of interacting
brownian particles. Phys. Rev. Lett. 115(5), 058301 (2015)

7. Font Llenas, A., Talamali, M.S., Xu, X., Marshall, J.A.R., Reina, A.: Quality-
sensitive foraging by a robot swarm through virtual pheromone trails. In: Dorigo,
M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS
2018. LNCS, vol. 11172, pp. 135–149. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7_11

8. Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett.
92(2), 025702 (2004)

9. Huth, A., Wissel, C.: The simulation of the movement of fish schools. J. Theor.
Biol. 156(3), 365–385 (1992)

10. Kegeleirs, M., Garzón Ramos, D., Birattari, M.: Random walk exploration for
swarm mapping. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds.) TAROS
2019. LNCS (LNAI), vol. 11650, pp. 211–222. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-25332-5_19

11. Kelley, D.H., Ouellette, N.T.: Emergent dynamics of laboratory insect swarms. Sci.
Rep. 3(1), 1–7 (2013)

12. Khaluf, Y., Allwright, M., Rausch, I., Simoens, P., Dorigo, M.: Construction task
allocation through the collective perception of a dynamic environment. In: Dorigo,
M., et al. (eds.) ANTS 2020. LNCS, vol. 12421, pp. 82–95. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60376-2_7

13. Kunz, H., Hemelrijk, C.K.: Artificial fish schools: collective effects of school size,
body size, and body form. Artif. Life 9(3), 237–253 (2003)

14. Miller, N., Gerlai, R.: From schooling to shoaling: patterns of collective motion in
zebrafish (Danio rerio). PLoS One 7(11), e48865 (2012)

15. Mirabet, V., Auger, P., Lett, C.: Spatial structures in simulations of animal group-
ing. Ecol. Model. 201(3–4), 468–476 (2007)

16. Nauta, J., Simoens, P., Khaluf, Y.: Group size and resource fractality drive multi-
modal search strategies: a quantitative analysis on group foraging. Phys. A Stat.
Mech. Appl. 590, 126702 (2022)

17. Nauta, J., Van Havermaet, S., Simoens, P., Khaluf, Y.: Enhanced foraging in robot
swarms using collective lévy walks. In: 24th European Conference on Artificial
Intelligence (ECAI), vol. 325, pp. 171–178. IOS (2020)

18. Poel, W., Winklmayr, C., Romanczuk, P.: Spatial structure and information trans-
fer in visual networks. Front. Phys. 9, 623 (2021)

https://doi.org/10.1007/s10955-014-1119-3
https://doi.org/10.1007/s10955-014-1119-3
https://doi.org/10.1007/978-3-030-00533-7_11
https://doi.org/10.1007/978-3-030-00533-7_11
https://doi.org/10.1007/978-3-030-25332-5_19
https://doi.org/10.1007/978-3-030-25332-5_19
https://doi.org/10.1007/978-3-030-60376-2_7

An Adaptive Metric Model for Collective Motion Structures 265

19. Rausch, I., Khaluf, Y., Simoens, P.: Scale-free features in collective robot foraging.
Appl. Sci. 9(13), 2667 (2019)

20. Rausch, I., Simoens, P., Khaluf, Y.: Adaptive foraging in dynamic environments
using scale-free interaction networks. Front. Robot. AI 7, 86 (2020)

21. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In:
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 25–34 (1987)

22. Romey, W.L.: Individual differences make a difference in the trajectories of simu-
lated schools of fish. Ecol. Model. 92(1), 65–77 (1996)

23. Valentini, Gabriele, Brambilla, Davide, Hamann, Heiko, Dorigo, Marco: Collective
perception of environmental features in a robot swarm. In: Dorigo, M., et al. (eds.)
ANTS 2016. LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-44427-7_6

24. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase
transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)

25. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)
26. Zumaya, M., Larralde, H., Aldana, M.: Delay in the dispersal of flocks moving in

unbounded space using long-range interactions. Sci. Rep. 8(1), 1–9 (2018)

https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.1007/978-3-319-44427-7_6

An Extension of the iMOACOR

Algorithm Based on Layer-Set Selection

Ashraf M. Abdelbar1(B) , Thomas Humphries2 ,
Jesús Guillermo Falcón-Cardona3 , and Carlos A. Coello Coello4

1 Department of Mathematics and Computer Science, Brandon University,
Brandon, MB, Canada

abdelbara@brandonu.ca
2 David R. Cheriton School of Computer Science, University of Waterloo,

Waterloo, ON, Canada
thomas.humphries@uwaterloo.ca

3 Tecnologico de Monterrey, School of Engineering and Sciences,
Ave. Eugenio Garza Sada 2501, 64849 Monterrey, NL, Mexico

jfalcon@tec.mx
4 Computer Science Department, CINVESTAV-IPN, Mexico City, Mexico

ccoello@cs.cinvestav.mx

Abstract. iMOACOR is an ant colony optimization algorithm designed
to tackle multi-objective optimization problems in continuous search
spaces. It is built on top of ACOR and uses the R2 indicator (to improve
its performance on high-dimensional objective function spaces) to rank
the pheromone archive of the best previously-explored solutions. Due
to the utilization of an R2-based selection mechanism, there are typi-
cally a large number of tied-ranks in iMOACOR’s pheromone archive.
It is worth noting that the solutions of a specific layer share the same
importance based on the R2 indicator. A critical issue due to the large
number of tied-ranks is a reduction of the algorithm’s exploitation abil-
ity. In consequence, in this paper, we propose replacing iMOACOR’s
probabilistic solution selection mechanism with a mechanism tailored to
these layer-sets. Our proposed layer-set selection uses rank-proportionate
(roulette wheel) selection to select a layer, with all the solutions in the
layer sharing equally in the layer’s probability. Our experimental eval-
uation indicates that our proposal, which we call iMOACO′

R, performs
better than iMOACOR to a statistically significant extent on a large
number of benchmark problems having from 3 to 10 objective functions.

1 Overview

Multi-objective optimization problems (MOP) [3,16] are a class of problems
that require the simultaneous optimization of multiple objective functions which
are mutually conflicting. Due to this conflict, the solution of a MOP is com-
posed of a set of solutions that represent the best possible trade-offs among the
objective functions. The bio-inspired metaheuristics are promising techniques to

c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 266–274, 2022.
https://doi.org/10.1007/978-3-031-20176-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_22&domain=pdf
http://orcid.org/0000-0002-7921-1892
http://orcid.org/0000-0003-0844-6771
http://orcid.org/0000-0003-1131-098X
http://orcid.org/0000-0002-8435-680X
https://doi.org/10.1007/978-3-031-20176-9_22

An Extension of the iMOACOR Algorithm Based on Layer-Set Selection 267

solve MOPs. Among these techniques, those based on the behavior of colonies of
ants have recently attracted the attention of the community to solve continuous
MOPs. iMOACOR [7] is an ant colony algorithm [6] for multi-objective optimiza-
tion in continuous spaces, and is designed specifically for problems with four or
more objective functions. iMOACOR uses the R2 indicator [2] to rank solutions,
and is built on top of ACOR [13], a well-established ant colony algorithm for
continuous-domain optimization.

As a consequence of using an R2-based selection mechanism, there are typ-
ically a large number of tied-ranks in iMOACOR’s archived population. A tie
would require the fitness function values for two archived solution to be exactly
the same, which is unlikely to happen very often in a typical real optimization
problem with a real-valued objective function. For this reason, the handling of
tied ranks is not a very important issue for most single-objective optimization
applications of ACOR, and does not seem to have received much attention in the
literature. However, in iMOACOR, the archive is typically made up of a number
of layers, with the set of solutions at each layer having the same R2 indicator
value. The number of distinct layers can be much smaller than the population
size. For example, we have found that in a population of 220 solutions, it is
not uncommon for the number of layer-sets (distinct ranks) to be no more than
50 for most of the computation. The problem is that tied ranks smooth out
the probability distribution used for selection. This results in an algorithm with
lower exploitation than the same algorithm with a uniquely ranked population.

In this paper, we propose replacing iMOACOR’s probabilistic solution selec-
tion mechanism with a mechanism tailored to layer-sets. Our proposed layer-set
selection mechanism uses roulette wheel selection to select a layer, with all the
solutions in the layer sharing equally in the layer’s probability. We evaluate our
proposal with respect to standard iMOACOR using the same suite of problems
and experimental settings adopted in [7]. Our results indicate that our proposal,
which we call iMOACO′

R
, performs better than standard iMOACOR to a sta-

tistically significant extent in several state-of-the-art benchmark problems, with
the number of objective functions varying from 3 to 10.

2 Background

The unconstrained multi-objective optimization problem is mathematically
defined as follows: minx∈Ω f(x) := [f1(x), f2(x), . . . , fm(x)]T , where x ∈ Ω is
an n-dimensional vector of decision variables and Ω ⊆ R

n is the decision space.
fi : Ω → R, i = 1, . . . , m are the objective functions. When solving a MOP, the
aim is to find in Ω a subset of solutions x∗ that yield the optimum values for all
the objective functions (i.e., the particular set that represents the best possible
trade-offs among the objective functions). In furtherance of determining which
solutions are optimal, the most common binary order relation used in multi-
objective optimization is the Pareto dominance relation. Given two vectors of
decision variables x, y ∈ Ω, we say that x dominates y (denoted by x ≺ y) if
fi(x) ≤ fi(y) for i = 1, . . . ,m and there exists at least an index j ∈ {1, . . . , m}

268 A. M. Abdelbar et al.

such that fj(x) < fj(y). Based on the Pareto dominance relation, we say that
a vector of decision variables x∗ ∈ Ω is Pareto optimal if there does not exist
another x ∈ Ω such that x ≺ x∗. The set that contains all the Pareto optimal
solutions is known as the Pareto Optimal Set and its image in the objective
functions space is known as the Pareto Front.

In order to assess the performance of MOEAs, a wide variety of quality indi-
cators (QIs) have been proposed in the specialized literature [17]. Among the
plethora of available QIs, the most relevant are those that assess the convergence
of a Pareto front approximation to the true Pareto front PF∗. One of these QIs
is the discrete unary R2 indicator [2] that assesses the convergence of an approxi-
mation set A (containing a finite set of objective vectors that approximate PF∗),
using scalarizing functions. The discrete unary R2 indicator is defined as follows:

R2(A,W) = − 1
|W |

∑

w∈W

max
a∈A

{uw(a)}, (1)

where W is a set of m-dimensional convex weight vectors and uw : Rm → R is a
scalarizing function, parameterized by w ∈ W , that assigns a real value to each
objective vector in A.

3 The iMOACOR Algorithm

In 2017, Falcón-Cardona and Coello Coello proposed the indicator-based many-
objective ant colony optimizer for continuous search spaces (iMOACOR) [7]
which is based on the ACOR [13–15] search engine. The most important ele-
ment of every ACO-based algorithm is the design of the pheromone matrix since
it stores knowledge throughout the search process to solve the optimization prob-
lem [6]. The pheromone matrix of ACOR is an archive that stores the best N
solutions found so far and it sorts them according to the quality of the objective
function. However, this scheme cannot be directly implemented in iMOACOR

since the Pareto dominance relation does not establish a total order. Hence,
Falcón-Cardona and Coello Coello proposed to use the R2 indicator [2] to trans-
form the multi-objective problem into a single-objective one and, thus, imposing
a total order. For this purpose, the R2-ranking algorithm [10] was employed to
rank the population in a similar fashion to the nondominated sorting algorithm
[5] and, then, the best N solutions are stored according to the rank assigned. For
each solution xj , j = 1, . . . , N , the auxiliary fields store its vector of objective
values, the rank assigned and a weight value ωj .

For each solution xj in the archive, let rj denote the rank of xj . At each
iteration, the weights ωj , j = 1, . . . , N are computed using the following formula:

ωj = γ(rj − 1; 0, qN) (2)

where q > 0 is a parameter that controls the diversification process of the search,
rj denotes the rank of archived solution xj where a rank of 1 denotes the best

solution, and γ(a; b, c) = 1
c
√
2π

e− (a−b)2

2c2 denotes the Gaussian function.

An Extension of the iMOACOR Algorithm Based on Layer-Set Selection 269

To create new solutions, all kth components of the N solutions are
employed to define a Gaussian-kernel probability density function Gk(y) =∑N

j=1 ωjg
k
j (y) =

∑N
j=1 ωjγ(y;μj

k, σj
k), where k = 1, . . . , n, and Gk(y) depends on

three parameter vectors: ω is the vector of weights associated with the individual
Gaussian functions, μk is the vector of means, and σk is the vector of standard
deviations. μk = {μ1

k, μ2
k . . . , μN

k } = {x1
k, x2

k, . . . , xN
k }, and each σj

k ∈ σk is com-

puted as follows: σj
k = ξ

∑N
l=1

|xl
k−xj

k|
N−1 , where ξ > 0 is a parameter that controls

the convergence rate, simulating the evaporation of pheromones.
After computing the weights, each of the M ants performs n construction

steps to create a new solution xnew, where each component xnew
k is drawn by

sampling the bth Gaussian function that is part of Gk. The index b ∈ {1, . . . , N}
is selected with probability Pr(select b) = ωb∑N

l=1 ωl
. Finally, the M newly created

solutions compete with the ones in the pheromone matrix to be part of the
pheromone matrix in the next iteration.

4 Our Proposed Approach

In typical continuous-domain single-objective optimization applications of
ACOR, tied ranks in the archive are usually quite rare. For this reason, the
handling of tied ranks is not a very important issue for most single-objective
optimization applications of ACOR, and does not seem to have received much
attention in the literature. But, in iMOACOR, there will typically be many tied
ranks since any set of solutions with the same R2 value will have the same
rank. The solution archive can be thought of as being made up of a number of
layers, where each layer consists of a set of solutions that are tied for the same
rank—and thus, have the same value of ωr and the same probability of selection.

We recorded the number of distinct ranks in the population at each iteration
for a single run of iMOACOR on the DTLZ5 problem instance with 10 objectives,
using the experimental settings described in Sect. 5, and used this data to con-
struct the plot shown in Fig. 1. In this figure, the x-axis represents the iteration
number and the y-axis represents the number of distinct ranks in the population
for that iteration. The figure indicates that for most of the computation, the

 0

 50

 100

 150

 0 50 100 150 200

#d
is

tin
ct

 r
an

ks

iteration

Fig. 1. Plot of the number of distinct ranks (y-axis) versus iteration number (x-axis),
in a single run of iMOACOR on the DTLZ5 problem instance with (10 objectives).

270 A. M. Abdelbar et al.

number of distinct ranks is around 50 (in a population of size 220). Hence, this
is a clear drawback of iMOACOR that results in a decrease of its exploitation
ability.

We propose iMOACO′
R
, a variation in which the ACOR’s rank-proportionate

selection mechanism is applied at the level of the layers rather than at the
level of individual solutions, with all the solutions in a given layer sharing the
probability of selection of their layer. Specifically, we propose replacing Eq. (2)
with the following:

ωj =
γ(rj − 1, 0, cqR)

Nrj

(3)

where R is the number of distinct ranks in the population, Nr is the number
of solutions tied for rank r, and c is an additional parameter that is needed
to compensate for the fact that a value of q that is appropriate for standard
iMOACOR may not be the most appropriate for the modified iMOACO′

R
. (We

use a value of c = 2).
Equation (3) computes the weight ωj of a solution of rank b (i.e., rj = b). Let

us assume that there is a set of solutions of size Nb tied for rank b. All solutions
in that set will have equal weight. That weight is determined first by calculating
the weight of selection of the set (which is the numerator of the formula in
Eq. (3)), then dividing that weight by the size of the set (the denominator Nb).

Consider the following numerical example. Suppose we have a population of
30 solutions, consisting of: 6 solutions tied for rank 1, 4 tied for rank 2, 7 for
rank 3, 6 for rank 4, and 7 for rank 5. Table 1 compares selection probabilities
under iMOACOR and iMOACO′

R
for this population. Each row corresponds

to a rank layer-set. The first two columns show the rank and the number of
solutions in that rank-set. The next two columns show the individual probability
of selection of each of the solutions at that rank. The last two columns show the
overall probability that one of the solutions in that layer-set will be selected. The
table indicates that the probability of selection of layer 1 is much higher under
iMOACO′

R
, the probability of selection of layer 2 is similar, and the probability

of subsequent layers is much smaller under iMOACO′
R

and drops rapidly as k
increases.

Table 1. Numerical example showing a population of 30 solutions.

Layer #sols Prob. of sol. Prob. of layer

iMOACOR iMOACO′
R iMOACOR iMOACO′

R

1 6 0.055 0.134 0.327 0.805

2 4 0.046 0.044 0.185 0.180

3 7 0.034 0.002 0.245 0.015

4 6 0.024 7.4E−05 0.142 4.5E−04

5 7 0.014 7.1E−07 0.101 4.9E−06

An Extension of the iMOACOR Algorithm Based on Layer-Set Selection 271

The rapid decline, under iMOACO′
R
, of the probability of selection of a layer

k, as k increases, is not specific to the given numerical example. In general, if we
define zk as the ratio of the probability of selection of layer k to the probability
of selection of layer 1, then it is possible to obtain

zk =
γ(k − 1, 0, cqR)

γ(0, 0, cqR)
= e− k−1

cqR (4)

indicating that zk decays exponentially with k. This is consistent with the spirit
of ACOR. If we assume that ties in a typical single-objective application of
ACOR are negligibly rare, and define zk for ACOR as the ratio of the probability
of selection of the kth best solution in the archive to the probability of selection
of the best solution in the archive, then it is possible to obtain zk = e− k−1

qN

indicating that zk also decays exponentially with k in ACOR.
In terms of Holland’s classical exploitation-exploration trade-off [11],

iMOACO′
R

is more exploitative (in the same spirit as ACOR) than iMOACOR.

5 Experimental Methodology and Discussion of Results

Our experimental methodology is based on that of Falcón-Cardona and Coello
Coello [7]. We used the test suites Deb-Thiele-Laumanns-Zitzler (DTLZ) [4]
and Walking-Fish-Group (WFG) [12]. For each problem, we set the number of
objective functions (m) to 3, 5, 7, and 10. With m = 3, we set the population
size N to 120, the maximum number of generations Gmax to 416, and h to 14;
with m = 5, we set: N = 126, Gmax = 396, and h = 5; with m = 7: we set
N = 85, Gmax = 595, and h = 7; with 10 objectives, we set: N = 220, Gmax =
227, and h = 19. Moreover, we set q = 0.1, ξ = α = 0.5, and ε = 0.5. For
each instance, we performed 30 independent runs of each of iMOACOR and
iMOACO′

R
.

In our comparison, performance is assessed with the hypervolume (HV)
indicator [1]. We used the HV implementation of [8], available in [9]. Com-
puting the HV requires that a reference vector be supplied by the user. This
was set to (1, 1, . . .) for DTLZ1, (2, 2, . . .) for DTLZ2 and DTLZ4, (7, 7, . . .) for
DTLZ3, (4, 4, . . .) for DTLZ5, (11, 11, . . .) for DTLZ6, (1, 1, . . . , 21) for DTLZ7, and
(3, 5, 7, . . . , 2m + 1) for all WFG problems. Occasionally, particularly for DTLZ1
and DTLZ3, the reference vector dominates all the solutions returned by the
algorithm under evaluation; in such cases, HV is taken as zero.

We ran iMOACOR and iMOACO′
R

for 30 independent trials on each of the 64
problem instances in our test suite, and computed the value of the hypervolume
(HV) indicator in each case. Table 2 reports the mean and standard deviation of
HV for each algorithm for each problem instance. In each row, the better mean
HV value is underlined.

The table indicates that iMOACO′
R

had better performance on 36 instances,
and worse on 20 instances, with 8 ties. Considering the 28 DTLZ instances
alone: iMOACO′

R
had 13 wins, 7 losses, and 8 ties; for the 36 WFG instances:

iMOACO′
R

had 23 wins, 13 losses, and 0 ties. For the 3-objective instances alone:

272 A. M. Abdelbar et al.

Table 2. The mean and standard deviation of HV for the original iMOACOR and our
proposed modified iMOACO′

R.

Prob. m Mean Std. dev. Prob. m Mean Std. dev.

Mod. Orig. Mod. Orig. Mod. Orig. Mod. Orig.

DTLZ1 3 0 0 0 0 WFG2 3 9.786e1 9.744e1 7.9e−1 5.5e−1

5 0 0 0 0 5 9.947e3 9.707e3 1.0e2 9.1e1

7 0 0 0 0 7 1.742e6 1.694e6 3.3e4 2.8e4

10 0 0 0 0 10 9.882e9 9.467e9 2.3e8 1.3e8

DTLZ2 3 7.420 7.420 2.5e−4 3.1e−4 WFG3 3 7.256e1 7.245e1 2.6e−1 2.5e−1

5 3.165e1 3.165e1 2.6e−3 2.0e−3 5 5.202e3 5.391e3 2.8e2 2.5e2

7 1.277e2 1.272e2 9.8e−3 1.4 7 7.793e5 7.839e5 2.8e4 2.0e4

10 1.023e3 1.014e3 4.7e−1 3.0e1 10 4.688e9 4.800e9 1.1e8 2.4e8

DTLZ3 3 0 0 0 0 WFG4 3 7.060e1 7.067e1 3.5e−1 3.5e−1

5 0 0 0 0 5 7.611e3 7.615e3 1.7e2 1.6e2

7 0 0 0 0 7 1.271e6 1.242e6 4.6e4 5.1e4

10 0 0 0 0 10 7.437e9 7.219e9 3.2e8 3.1e8

DTLZ4 3 7.419 7.419 1.1e−3 9.2e−4 WFG5 3 6.847e1 6.831e1 7.0e−1 7.1e−1

5 3.164e1 3.163e1 4.4e−3 5.2e−3 5 4.838e3 4.786e3 2.0e2 1.7e2

7 1.277e2 1.265e2 7.1e−3 4.2 7 6.784e5 6.938e5 3.6e4 3.4e4

10 1.024e3 1.003e3 4.0e−3 4.2e1 10 4.271e9 4.326e9 1.9e8 2.1e8

DTLZ5 3 5.984e1 5.984e1 1.0e−2 7.9e−3 WFG6 3 7.425e1 7.414e1 4.7e−1 3.6e−1

5 9.379e2 9.374e2 1.5 9.1e−1 5 7.201e3 6.674e3 5.9e2 3.4e2

7 1.434e4 1.438e4 9.3e1 1.1e2 7 8.779e5 8.466e5 7.3e4 7.4e4

10 9.291e5 9.362e5 4.7e3 6.3e3 10 4.847e9 4.796e9 3.4e8 2.4e8

DTLZ6 3 1.318e3 1.316e3 3.8e−1 1.3 WFG7 3 7.545e1 7.522e1 2.6e−1 2.6e−1

5 1.562e5 1.568e5 1.6e3 1.0e3 5 7.419e3 7.214e3 2.4e2 2.7e2

7 1.783e7 1.734e7 3.2e5 1.9e6 7 1.074e6 1.086e6 6.3e4 6.0e4

10 2.425e10 2.386e10 3.7e8 1.4e9 10 6.903e9 6.961e9 3.4e8 2.7e8

DTLZ7 3 1.624e1 1.625e1 1.0e−1 6.0e−2 WFG8 3 6.547e1 6.541e1 5.1e−1 3.0e−1

5 1.259e1 1.256e1 1.2e−1 1.1e−1 5 5.272e3 5.158e3 3.2e2 2.7e2

7 8.278 8.239 1.5e−1 1.9e−1 7 7.571e5 7.797e5 8.2e4 6.8e4

10 2.414 1.464 1.8e−1 7.5e−1 10 5.037e9 5.181e9 5.7e8 4.1e8

WFG1 3 4.420e1 4.417e1 8.8e−1 7.0e−1 WFG9 3 6.594e1 6.594e1 2.5e−1 1.8e−1

5 3.973e3 3.923e3 1.3e2 9.2e1 5 5.828e3 5.851e3 4.4e2 4.0e2

7 6.776e5 6.693e5 4.0e4 3.3e4 7 7.405e5 7.114e5 1.3e5 1.0e5

10 3.992e9 3.969e9 3.8e7 2.1e7 10 4.400e9 4.162e9 5.0e8 3.5e8

iMOACO′
R

had 8 wins, 6 losses, and 2 ties; for the 5-objective instances: 10 wins,
4 losses, and 2 ties; for the 7-objective instances: 9 wins, 5 losses, and 2 ties; for
the 10-objective: 9 wins, 5 losses, and 2 ties. Thus, iMOACO′

R
performs better

on each of these subgroups of the test suite.
A one-tailed Wilcoxon signed-rank test applied to the results of Table 2 pro-

duced a p-value of 0.031, indicating a statistically significant difference.

An Extension of the iMOACOR Algorithm Based on Layer-Set Selection 273

Finally, we note that our proposed layer-set selection mechanism can gener-
ally be applied to other situations where ACOR is used in an application with a
non-negligible frequency of tied-ranks.

Acknowledgements. The last author acknowledges support from CONACyT project
no. 1920.

References

1. Brockhoff, D., Friedrich, T., Neumann, F.: Analyzing hypervolume indicator based
algorithms. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.)
PPSN 2008. LNCS, vol. 5199, pp. 651–660. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-87700-4 65

2. Brockhoff, D., Wagner, T., Trautmann, H.: On the properties of the R2 indi-
cator. In: Proceedings 2012 Genetic and Evolutionary Computation Conference
(GECCO-2012), Philadelphia, PA, USA, pp. 465–472. ACM Press, July 2012

3. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems. Springer, New York (2007). https://doi.org/
10.1007/978-1-4757-5184-0

4. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Proceedings 2002 IEEE Congress on Evolutionary Compu-
tation (CEC 2002), Piscataway, NJ, USA, vol. 1, pp. 825–830. IEEE Press (2002)

5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

6. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
7. Falcón-Cardona, J.G., Coello Coello, C.A.: A new indicator-based many-objective

ant colony optimizer for continuous search spaces. Swarm Intell. 11(1), 71–100
(2017). https://doi.org/10.1007/s11721-017-0133-x

8. Foncesca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep
algorithm for the hypervolume indicator. In: Proceedings 2006 IEEE Congress
on Evolutionary Computation (CEC-2006), Piscataway, NJ, USA, pp. 1157–1163.
IEEE Press (2016)

9. Fonsesca, C.M., López-Ibáñez, M., Paquete, L., Guerreiro, A.P.: Computation of
the hypervolume indicator. http://iridia.ulb.ac.be/manuel/hypervolume. Accessed
May 2017

10. Hernández Gómez, R., Coello Coello, C.A.: Improved metaheuristic based on the
R2 indicator for many-objective optimization. In: Proceedings 2015 Genetic and
Evolutionary Computation Conference (GECCO-2015), Madrid, Spain, pp. 679–
686. ACM Press, July 2015

11. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. Uni-
versity of Michigan Press, Ann Arbor (1975)

12. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10,
477–506 (2006)

13. Liao, T., Socha, K., de Oca, M.M., Stützle, T., Dorigo, M.: Ant colony optimization
for mixed-variable optimization problems. IEEE Trans. Evol. Comput. 18, 503–518
(2014)

https://doi.org/10.1007/978-3-540-87700-4_65
https://doi.org/10.1007/978-3-540-87700-4_65
https://doi.org/10.1007/978-1-4757-5184-0
https://doi.org/10.1007/978-1-4757-5184-0
https://doi.org/10.1007/s11721-017-0133-x
http://iridia.ulb.ac.be/manuel/hypervolume

274 A. M. Abdelbar et al.

14. Socha, K., Blum, C.: An ant colony optimization algorithm for continuous opti-
mization: application to feed-forward neural network training. Neural Comput.
Appl. 16, 235–247 (2007). https://doi.org/10.1007/s00521-007-0084-z

15. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J.
Oper. Res. 185, 1155–1173 (2008)

16. Tian, Y., et al.: Evolutionary large-scale multi-objective optimization: a survey.
ACM Comput. Surv. 54(8), 1–34 (2021)

17. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

https://doi.org/10.1007/s00521-007-0084-z

Binary Particle Swarm Optimization
for Selective Cell Switch-Off
in Ultra-Dense 5G Networks

Juan Jesús Espinosa-Martínez1, Jesús Galeano-Brajones1(B) ,
Javier Carmona-Murillo1 , and Francisco Luna2

1 Department of Computing and Telematics System Engineering, Centro
Universitario de Mérida, Universidad de Extremadura, Mérida, Spain
jespinosv@alumnos.unex.es, {jgaleanobra,jcarmur}@unex.es

2 School of Computer Science and Engineering, Universidad de Málaga,
Málaga, Spain
flv@lcc.uma.es

Abstract. The massive deployment of small base stations is one of the
main pillars for the new generations of mobile networks to meet the
expected growing in data traffic demands. This densification entails high
energy consumption that needs to be minimized to ensure system sus-
tainability in a context of reduced environmental impact. To address
this issue, optimization algorithms that will rely on metaheuristics can
be used due to the complexity and the large instance size of the problem.
Therefore, it is a multi-objective optimization problem in which not only
the energy efficiency criteria is taken into account, but also the service
provided to the users in terms of capacity is considered. In this context,
the aim of this work is to evaluate the performance of Binary Particle
Swarm Optimization (BPSO) in solving this multi-objective problem,
using a V-shaped function to deal with binary codification. The perfor-
mance of our proposed solution is compared with the results obtained
by MOCell and NSGA-II in our previous works. In addition, the per-
formance of the hybridization with specific operators proposed in one of
our previous works is tested. The research showed that the hybridization
brought very significant benefits to the algorithm’s searches.

1 Introduction

The deployment of the fifth generation (5G) of cellular networks is expected
to address the increasing demand for services with strict requirements for low
latency and high reliability (e.g., autonomous driving), high bandwidth (e.g.,
Virtual Reality/Augmented Reality) and resilience to support scenarios with
an extremely high density of devices connected. In this scenario, the massive

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-20176-9_23.

c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 275–283, 2022.
https://doi.org/10.1007/978-3-031-20176-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_23&domain=pdf
http://orcid.org/0000-0001-8691-8944
http://orcid.org/0000-0002-3910-876X
http://orcid.org/0000-0002-0455-7223
https://doi.org/10.1007/978-3-031-20176-9_23
https://doi.org/10.1007/978-3-031-20176-9_23

276 J. J. Espinosa-Martínez et al.

deployment of many Small Base Stations (SBSs) per km2, known as Ultra Dense
Networks (UDNs) [4], is becoming one of the mainstays of 5G networks due to the
reuse of the electromagnetic spectrum and the increase in the network capacity
that it provides. However, this densification implies a rise in the network power
consumption, which is accentuated in periods of low demand in which some SBSs
are switched on without serving any user.

Thus, in order to address this issue, the standardized strategy known as Cell
Switch-Off (CSO) was proposed [1]. This strategy consists of selective switching
off/on of SBSs to minimize the energy consumption of the network, but simulta-
neously trying to maximize the Quality of Service for the existing demand. This
is a multi-objective combinatorial optimization problem that has been demon-
strated as NP-complete [5] and whose resolution has been proposed in the liter-
ature with the use of multi-objective metaheuristics [7,14]. Moreover, the UDNs
are heterogeneous because they contain SBSs with different transmission power,
cell size and working frequency due to different radio technologies.

In our previous work [8], we have proposed the hybridization of two well-
known multi-objective metaheuristics, MOCell [11] and NSGA-II [3], with two
specific operators that aim to improve the performance of these algorithms in the
CSO problem. The research showed that the hybridization brought very signifi-
cant benefits to the algorithm’s search. The work presented in this paper builds
on our previous work by evaluating the performance of Binary Particle Swarm
Optimization (BPSO), using a V-shaped function to deal with binary codifica-
tion. Furthermore, this work compares the BPSO performance with MOCell and
NSGA-II, and hybridizes it with both of the proposed specific operators. The
results show that BPSO intensifies the search in the objective of minimizing con-
sumption better than the rest of the metaheuristics, and that the hybridization
improves the BPSO search, but not significantly. In the literature, we can find
proposals where PSO is used to optimize the CSO problem [2,12,13], but none
of them compare its performance with other metaheuristics or hybridize it with
specific operators.

The remainder of the paper is structured as follows. In Sect. 2, the opti-
mization problem addressed has been formulated. The mechanism to adapt the
PSO algorithm to the binary codification is described in Sect. 3. Section 4 details
the experimental methodology and the detailed analysis of the results obtained.
Finally, the last section includes the main conclusions reached, as well as the
lines of future work that remain open.

2 The CSO Problem

Due to the limited length of this document, the modelling of the UDNs is avail-
able as supplementary material. For this reason, references to equations in this
section refer to that material1.

1 https://doi.org/10.6084/m9.figshare.19682955.v2

https://doi.org/10.6084/m9.figshare.19682955.v2

Binary PSO for Selective Cell Switch-Off in Ultra-Dense 5G Networks 277

Let B be the set of the SBSs randomly deployed. A solution to the CSO
problem is a binary string s ∈ {0, 1}|B|, where si indicates whether SBS i is
activated or not. The first objective to be minimized is therefore computed as:

min fPower(s) =
|B|∑

i=1

si · Pi (1)

where Pi is the power consumption of SBS i (Eq. sup. 7). Note that Pi includes
both the transmission power on every cell contained in i and the maintenance
power of the SBS.

Let U be the set of the UEs also deployed as described in the supplementary
material and U the whole set of Cells contained in B. Subsequently, in order to
compute total capacity of the system, UEs are first assigned to the active Cell
that provides it with the highest SINR. Let A(s) ∈ {0, 1}|U|×|C| be the matrix
where aij = 1 if sj = 1 and the Cell j serves UE i with the highest SINR, and
aij = 0 otherwise. Then, the second objective to be maximized, which is the
total capacity provided to all the UEs, is calculated as:

max fCap(s) =
|U|∑

i=1

|C|∑

j=1

sj · aij · BW j
i (2)

where BW j
i is the shared bandwidth of Cell j provided to UE i (Eq. sup. 6). We

would like to remark that these two problem objectives are clearly conflicting
one each other, since switching off base stations leads to a reduction of the power
consumption of the network, but it also damages the capacity received by the
user, as the UE-Cell distance increases (rising the propagation losses) at the
same time as the available bandwidth to serve users is reduced.

3 Binary PSO

3.1 BPSO Modelling

The swarm consist of n particles, each one defined by a d-dimensional vector
that represents all the SBSs present in the scenario, some being active and the
rest switched off. Therefore, each position in the particle’s position vector, xk

id,
represents one single SBS, that can be turned on (1) or turned off (0). Thus,
for each particle i in a specific iteration k, the position vector is defined as
Xk

i = (xk
i1, x

k
i2, ..., x

k
id), and the velocity vector is V k

i = (vk
i1, v

k
i2, ..., v

k
id), where

i ∈ [1, 2, ..., n], d ∈ [1, 2, ..., L], being L the number of SBSs, xij ∈ {0, 1} and
Vmin ≤ vk

ij ≤ Vmax. The fitness value of each particle is Fi and the algorithm
stores the best value for each particle, known as local best (Pbest), and the best
value of the whole swarm, known as global best (Gbest).

278 J. J. Espinosa-Martínez et al.

3.2 Initialization and Update

The first step is to set up the parameters of the BPSO. This must be done care-
fully since these parameters will heavily influence the behaviour of BPSO. For
this project, the parameters were selected according to the literature recommen-
dations [9]: the swarm size is 100 particles; the inertia weighs are ωmax = 0.9
and ωmin = 0.4; the acceleration coefficients are c1 = c2 = 2.0; and the velocity
thresholds are Vmin = 0.0 and Vmax = 4.0. Regarding the updating process, the
velocity update is defined as follows:

vk+1
id = ωk · vk

id + c1 · rand1(P k
best,id − xk

id) + c2 · rand2(Gbest − xk
id) (3)

where c1 and c2 are acceleration coefficients, rand1 and rand2 are two random
numbers in [0, 1] and ω is the inertia weight which is updated with the following
equation:

ωk = ωmax − k ·
(

ωmax − ωmin

kmax

)
(4)

where ωmax and ωmax the inertia weighs, k is the current iteration and kmax is
the maximum number of iterations. The velocity threshold control is applied as
follows:

vk
id =

⎧
⎪⎨

⎪⎩

Vmax, if vk
id > Vmax

Vmin, if vk
id < Vmin

vk
id, otherwise

(5)

Nevertheless, the velocity defined in Eq. 3 as a continuous value can not
be directly applied to update the discrete space that represents the particle’s
position. Therefore, a V-shaped function [10] is used to re-define velocity in
terms of probability, and it is defined as

f(vk
id) = |tanh(vk

id)|. (6)

Finally, the position update is defined as follows:

xk
id =

{
0, if f(vk

id) < rand

1, if f(vk
id) ≥ rand

(7)

where rand is a random number in [0, 1]. Here, this work differs from the use
that [10] gives to the V-shaped function so that the probability output from
f(vk

id) is directly associated with the xk
id value (the higher the probability, the

higher the chance of xk
id to be 1). Thus, the velocity is also directly associated

with the value of xk
id.

Binary PSO for Selective Cell Switch-Off in Ultra-Dense 5G Networks 279

4 Experimentation

4.1 Methodology

Based on the nine scenarios described in Sect. 2 and the stochastic nature of the
metaheuristics, 50 seeds for each type of scenario have been addressed in the
experimentation2. This ensures that all algorithms face the same set of prob-
lem instances. In order to obtain fair comparative results between algorithms,
these use the same population/swarm size of 100 solutions and the same genetic
operators: binary tournament selection, two points crossover with crossover rate
of 0.9, and bit flip mutation with a mutation rate of 1/L, being L the num-
ber of cells in the scenario. The BPSO is the exception, as it does not use a
crossover operator. Regarding the specific operators [8], we use the application
rates 0.1 and 0.01 to be consistent with previous work. The stopping condition
is defined by the number of evaluations of the objective function but, in order
to ensure that the algorithms reach convergence, this limit is linked to the den-
sity of the instances. Since the size of the search space lies in the density of
BSs, the following stopping conditions have been defined: for L{X} (being X
the three values for the UEs densities), 100000 evaluations; for M{X}, 150000
evaluations; and for H{X}, 250000 evaluations. These numbers are the result of
a preliminary analysis of the convergence of the algorithms. The quality of the
Pareto front approximations has been measured with the Hypervolume [15] and
the attainment surfaces [6]. Since the Hypervolume value is highly dependent on
the arbitrary scaling of the objectives, a normalization process with respect to
a reference front composed by all the non-dominated solutions found by all the
algorithms for the same scenario has been carried out before calculating it.

4.2 Results

4.3 PSO Performance

In this new work, we start from a slightly different network modelling. Previously,
we worked with omnidirectional SBSs, i.e., antennas radiating in all directions.
Now, we use antennas that can generate very narrow beams, allowing them to
be grouped into matrixes or arrays. This allows us to have much more precise
control because these beams consume much less power. Due to this change, the
density of SBSs has increased by three times, thus generating a larger search
space. For this reason, the results of MOCell and NSGA-II are different.

Table 2 in the supplementary material shows the HV performance for the
nine scenarios and the three algorithms, where the cells with a grey background
indicate the best result for each scenario. According to HV, the algorithm that
best approximates the fronts is BPSO, followed by NSGA-II in seven scenarios,
and MOCell in the remaining two. The reason for this result can be better
understood by looking at the Fig. 1. BPSO explores much more the solutions
with lower power consumption, and the rest of the algorithms achieve a more
2 The source code is available at https://github.com/galeanobra/CSO_BPSO.git

https://github.com/galeanobra/CSO_BPSO.git

280 J. J. Espinosa-Martínez et al.

0 1 2 3
0

2

4

6

C
ap
ac
ity

(G
bp

s)
×103 LL

BPSO
MOCell
NSGA-II

0 1 2
0.0

2.5

5.0

7.5

×103 LM

BPSO
MOCell
NSGA-II

0 1 2 3
0.00

0.25

0.50

0.75

1.00
×104 LH

BPSO
MOCell
NSGA-II

0 1 2 3
0.00

0.25

0.50

0.75

1.00

C
ap
ac
ity

(G
bp

s)

×104 ML

BPSO
MOCell
NSGA-II

0 1 2 3
0.0

0.5

1.0

×104 MM

BPSO
MOCell
NSGA-II

0 1 2 3
0.0

0.5

1.0

×104 MH

BPSO
MOCell
NSGA-II

0 2
Power consumption (kW)

0.0

0.5

1.0

C
ap
ac
ity

(G
bp

s)

×104 HL

BPSO
MOCell
NSGA-II

0 2 4
Power consumption (kW)

0.0

0.5

1.0

1.5
×104 HM

BPSO
MOCell
NSGA-II

0 2 4
Power consumption (kW)

0.0

0.5

1.0

1.5

×104 HH

BPSO
MOCell
NSGA-II

Fig. 1. Attainment surfaces of the three algorithms for each scenario.

equal compromise between both objectives. The reason for the difference in HV
is due to the fact that the generated RPF is very vertical, i.e., it covers very
little of the consumption objective, so BPSO is always covered by the RPF and
the other two algorithms only partially. This can be seen in the MOCell result
from the MH scenario.

4.4 Specific Operators in PSO

As discussed above, in [8] we present the hybridization of MOCell and NSGA-II
with two specific operators that seek to bring expert knowledge of the problem
to the search of the algorithms. We compare the performance of the operators
directly with the algorithms without hybridization, using the same indicators
as in this work. In the conference paper, we showed that the application of the
operators contributed to the search by obtaining better solutions in both objec-
tives. The HV results for each of the above-mentioned algorithms are shown
in the Tables 3, 4 and 5 of the supplementary material. As we demonstrated
in the previous work, MOCell and NSGA-II obtain a very significant improve-
ment in HV when hybridized with both specific operators. In the case of BPSO,

Binary PSO for Selective Cell Switch-Off in Ultra-Dense 5G Networks 281

hybridization with these operators generates a less significant improvement. Of
the nine density combinations with which we have experimented, in six, BPSO
improves due to hybridization. Even so, the improvement obtained is slight and
not very significant.

Finally, Fig. 2 shows the attainment surfaces for scenario HH. The results
are similar for the nine scenarios, but for space reasons we only show the most
relevant one. Thanks to this indicator, we can observe the results of HV directly
extrapolated to fronts. Thus, it can be observed that the performance of MOCell
and NSGA-II with hybridization is significantly better, while the improvement in
BPSO is not significant. After analysing the solutions, we can conclude that the
BPSO performance is caused because it reaches sparse solutions, i.e., solutions
containing too few active SBSs. This makes it difficult for specific operators
to switch off more cells, and therefore does not improve the performance of
the algorithm. Regarding the statistical significance tests, we found that for
BPSO there are no significant differences between the application or not of the
hybridization. In contrast, both MOCell and NSGA-II obtain significantly better
performance when hybridization is applied. For more information, please see the
supplementary material3.

0 2 4
Power consumption (kW)

0.0

0.5

1.0

1.5

C
ap
ac
ity

(G
bp

s)

×104

0 2 4
Power consumption (kW)

0 2 4
Power consumption (kW)

No operators
No Users Op - 0.1

No Users Op - 0.01
Prioritize Femto Op - 0.1

Prioritize Femto Op - 0.01

BPSO MOCell NSGA-II

Fig. 2. Attainment surfaces of the three algorithms for scenario HH.

5 Conclusions

The Ultra-Dense Networks are a key building block for 5G and Beyond 5G
networks, but they also have a power consumption problem that needs to be
addressed. This problem has been formulated in the literature as a multi-
objective optimization problem that selectively switches off a subset of Small
Base Stations in these networks, aiming to reduce the power consumption while
maximizing the QoS of the demands. This work continues a previous one,
analysing the performance of the Binary PSO in this multi-objective problem,

3 https://doi.org/10.6084/m9.figshare.19682955.v2

https://doi.org/10.6084/m9.figshare.19682955.v2

282 J. J. Espinosa-Martínez et al.

as well as the hybridization with the previously proposed operators. The results
show that this algorithm obtains solutions with larger energy savings, although
worse QoS, and the hybridization with these specific operators improves the
search, but not significantly. As future work, it is proposed to study different
mechanisms for PSO to deal with binary codification, as well as its hybridiza-
tion with new specific operators that would improve the algorithm search.

Acknowledgements. This research was funded in part by the Spanish Ministry of
Science and Innovation, grant number PID2020-112545RB-C54, and the Regional Gov-
ernment of Extremadura, Spain, grant numbers IB18003 and GR21097.

References

1. 3GPP: small cell enhancements for E-UTRA and E-UTRAN-physical layer aspects.
Technical report, 3rd Generation Partnership Project (3GPP) (2014)

2. Alsharif, M.H., Kelechi, A.H., Kim, J., Kim, J.H.: Energy efficiency and coverage
trade-off in 5G for eco-friendly and sustainable cellular networks. Symmetry 11(3),
408 (2019)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

4. Ge, X., Tu, S., Mao, G., Wang, C.X., Han, T.: 5G ultra-dense cellular networks.
IEEE Wirel. Commun. 23(1), 72–79 (2016)

5. González, D.G., Hämäläinen, J., Yanikomeroglu, H., García-Lozano, M., Senarath,
G.: A novel multiobjective cell switch-off framework for cellular networks. IEEE
Access 4, 7883–7898 (2016)

6. Knowles, J.: A summary-attainment-surface plotting method for visualizing the
performance of stochastic multiobjective optimizers. In: 5th ISDA, pp. 552–557.
IEEE (2005)

7. Luna, F., Luque-Baena, R., Martínez, J., Valenzuela-Valdés, J., Padilla, P.:
Addressing the 5G cell switch-off problem with a multi-objective cellular genetic
algorithm. In: IEEE 5G World Forum, 5GWF 2018 - Conference Proceedings, pp.
422–426 (2018)

8. Luna, F., Zapata-Cano, P.H., Palomares-Caballero, Á., Valenzuela-Valdés, J.F.: A
capacity-enhanced local search for the 5G cell switch-off problem. In: Dorronsoro,
B., Ruiz, P., de la Torre, J.C., Urda, D., Talbi, E.-G. (eds.) OLA 2020. CCIS,
vol. 1173, pp. 165–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
41913-4_14

9. Mejia, V.D.L.: A modified binary particle swarm optimization algorithm to solve
the thermal unit commitment problem. Master’s thesis (2018)

10. Mirjalili, S., Lewis, A.: S-shaped versus V-shaped transfer functions for binary
particle swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013)

11. Nebro, A.J., Durillo, J.J., Luna, F., Dorronsoro, B., Alba, E.: MOCell: a cellular
genetic algorithm for multiobjective optimization. Int. J. Intell. Syst. 24(7), 726–
746 (2009)

12. Venkateswararao, K., Swain, P.: Binary-PSO-based energy-efficient small cell
deployment in 5G ultra-dense network. J. Supercomput. 78(1), 1071–1092 (2021).
https://doi.org/10.1007/s11227-021-03910-5

https://doi.org/10.1007/978-3-030-41913-4_14
https://doi.org/10.1007/978-3-030-41913-4_14
https://doi.org/10.1007/s11227-021-03910-5

Binary PSO for Selective Cell Switch-Off in Ultra-Dense 5G Networks 283

13. Kang, M.W., Chung, Y.W.: An efficient energy saving scheme for base stations in
5G networks with separated data and control planes using particle swarm opti-
mization. Energies 10(9), 1417 (2017)

14. Zapata-Cano, P., Luna, F., Valenzuela-Valdés, J., Mora, A.M., Padilla, P.: Meta-
heurísticas híbridas para el problema del apagado de celdas en redes 5G. In: XIII
MAEB, pp. 665–670 (2018) (in Spanish)

15. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

Choeur Synthétique: An Art Installation
Based on Swarm Robotics

Muhanad Alkilabi1,2 , Arnaud Eeckhout3, Mauro Vitturini3, Marie
du Chastel4, Marine Warzée4, Jean-Yves Rousseaux4, Antoine Hubermont1,

Timoteo Carletti1 , and Elio Tuci1(B)

1 Faculty of Computer Science, University of Namur, Namur, Belgium
muhanad.hayder@uokerbala.edu.iq,

{antoine.hubermont,timoteo.carletti,elio.tuci}@unamur.be
2 Faculty of Computer Science and Information Technology,

Department of Computer Science, University of Kerbala, Karbala, Iraq
3 The Collective VOID, Brussels, Belgium

collectivevoid@hotmail.com
4 TRAKK, Namur, Belgium

{marie,marine,jean-yves}@kikk.be

Abstract. A robot swarm is a self-organising system in which a global
cooperative response emerges from the local interactions between the
robots and their social and physical environment. This paper describes an
art-science collaboration project called “Choeur Synthétique”, a swarm
robotics based artwork in which acoustic patters emerge from the
behaviour of mobile robots that form random aggregates within a close
arena. The contribution of this paper is in describing the motivations of
this artistic work and in the illustration of its artistic elements and of
the technical specifications.

1 Introduction

The aim of this paper is to illustrate the “Choeur Synthétique” (Synthetic Choir),
that is an art-science collaboration project based on a particular type of multi-
robot system generally referred to as swarm robotics system [5], which is char-
acterised by the fact that each robot autonomously produces its actions with an
on-board control structure that reads the activity of the sensors mounted on the
robot’s body and sets the state of the robot actuators.

The swarm robotics technology has been recently used by the artist Sofian
Audry to build an installation called “Vessels” [2]. This installation is made of
a swarm of small robot vessels, located in a water tank, that generate their
movements and their individual behaviour based on data they collect related
to the quality of their environment (e.g., quality of the water/air). Each robot
behaves as a single entity, but each action from one robot causes a reaction that
influences the entire group and contributes to the emergence of the group move-
ment. Another example comes from “Lasermice” by the artist So Kanno [7]. The
artist puts together 60 robots and made their communication method (infrared)
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 284–291, 2022.
https://doi.org/10.1007/978-3-031-20176-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_24&domain=pdf
http://orcid.org/0000-0002-6921-4993
http://orcid.org/0000-0003-2596-4503
http://orcid.org/0000-0001-7345-671X
https://doi.org/10.1007/978-3-031-20176-9_24

Choeur Synthétique 285

Fig. 1. (a) Image of the robot with the base holding the sensors and the anthropomor-
phic bust. The silicon skin and the decoration of the inner part of the bust cavity are
missing. (b) Drawing of the an anthropomorphic bust with the silicon realistic skin,
and the inner cavity coated with gold.

visible by adding a visible laser, thus creating continuous laser-line drawings in
the space, all enhanced by a solenoid who makes a noise every time a robot sees
another and changes direction. Another art installation based on swarm robotics
technology is “Empathy Swarms” from the artist duo Hochschuh and Donovan
who built and programmed a swarm of small hexagonal vehicles that operates
in a place shared with people. The objective of this installation is to create an
emotional experience in the observes through the perception of the spatial and
visual patters made by the robots [6]. The collective WERC created “PIXI” an
installation of digital organisms called pixi, built to operate in a natural envi-
ronment. Each Pixi can emit a pulsating light. The global visual pattern created
by the observation of multiple Pixi generates the impression of a coherent flock
of elements, a phenomena that is greater than the sum of its constitutive parts.

A special mention must be done for an artist that is certainly an inspiration:
Céleste Boursier-Mougenot. Even though he did not use robot technology, he
managed somehow to generate an emergent phenomenon that could have been
made in a much more complex way by using robots. The works “Liquide Liquide”
and “From Here to Ear” are two beautiful examples of how to create random
acoustic events using nature [3,4]. In “Liquide liquide”, the water current of a
warm pool moves and let collide porcelain bowls. The sound generated by the
collisions reverberates in the space creating a very hypnotic atmosphere; in “From
Hear to Ear” instead, guitars and cymbals are played randomly by birds who
have their nest and food all around the exhibition space, thus creating a musical
aleatory improvisation together with the birds’ tweets.

Choeur Synthétique is part of a research on voice and language that the
artists of the Collective VOID has been doing since few years. Each of the 15
mobile robots of the Choeur Synthétique can move independently and avoid
collisions using ultrasound sensors, and they can communicate using infrared
signals (see Fig. 1a, and Sect. 2 and 3 for the robot’s technical specifications). As
soon as two or more robots get closer than a certain distance to each another
they can stop moving and start emitting sound. The response of a robot upon

286 M. Alkilabi et al.

the perception of a swarm mate is a stochastic response that can happen with
a certain probability. The group formation process is an emergent phenomenon
generated by random encounters between the robots during their erratic navi-
gation within a close arena. The continuous random interactions between the 15
robots generates a self-organised audio and visual experience that resembles to
an ever-aleatory voice composition.

Each robot carries a file with a voice singing a single note or a single noise.
The notes are the voices of the Namur choir. Each note and each voice is different.
The installation puts together the typical characteristics of the swarm robotics
approach like autonomy of movement, stochastic dimension of the movement,
casual encounters, the always changing dynamics of the swarm to create an ever
changing combination of sounds based on voices recorded by professional singers.
Each robot carries an anthropomorphic bust, a mix between a human head, made
out of silicon realistic skin, with a cavity resembling a gramophone, coated with
gold (see Fig. 1b). The notes resonate through busts as they meet, create clusters
and harmonising or “cacophonising” the space. These visually disturbing objects
move around in a mechanical yet humanised way, chasing pavements, looking for
meaning, while keeping a sort of authoritarian look. The sound they generate can
be filling, can be pleasant or can be disturbing. But hearing a voice singing can
release endorphins in our brains. Hearing voices coming together and forming
chords, can have the same effect on us than singing in groups, that is the release
of serotonin and oxytocin. That is why we can find ourselves attracted and
enchanted sometimes by hearing the sound of one or more voices singing. One
of art concerns is to stimulate, is to create accidents, to lay and display things
in order to trigger something in the onlooker. VOID believes that good art is
about that, and rather than sending a precise message it contains a whole lot
of messages, a whole lot of thoughts, non-thought, emotions, irrationality, ideas,
suggestions, visions, and it puts it out there. It is to each one of us to make
good use of it. At the time of writing this paper, few elements of the artistic
part have to be completed. In particular, some of the anthropomorphic busts
have not being decorated yet, and the registration of the notes by the Namur’s
Choir is not completed yet. However, the reader can access a first and partial
demonstration of this art installation at https://youtu.be/k-rUGShq-Hs.

2 The Robots’ Hardware

This section describes the hardware configuration of the robots used for to create
the art installation Choeur Synthétique. Figure 2a shows a simplified diagram of
the main robot’s hardware components which are the following:

Mechanics. The robot’s structure is made of two parts (see Fig. 2b):
– A laser cut circular wooden base (diameter of 300mm) made of Medium-

Density Fiberboard (MDF) material. The robot base is the core of the
mechanical structure that holds the battery, the DC motors, all other
electronic circuits and a 3D printed ring. The two DC motors are fixed

https://youtu.be/k-rUGShq-Hs

Choeur Synthétique 287

Fig. 2. (a) Diagram of the robots’ hardware components. (b) The mechanical structure
of the robot in an exploded view.

into the robot’s base using a 3D printed motor attach made of two pieces
(see Fig. 2b). The wheels are attached to the DC motors’ shafts.

– A 3D printed ring, divided in two parts (i.e., the front and the back
crown), that holds the IR-LEDs, IR-sensors, ultrasonic sensors, charging
port and a USB port (see Fig. 2b). The USB is the main user interface
to program the robot. The material of the ring is Polylactic Acid (PLA).
The two parts of the rings are fixed to the base. The height of the ring
is 50mm height.

The materials of the base and of the ring have been chosen to reduce the man-
ufacturing costs while maintain the mechanical specifications of the design
objectives.

Microcontroller. The main microcontroller of the robot is an Arduino Mega
2560 Rev3 based on ATmega2560. It has 8 kB SRAM and 256 kB flash mem-
ory. The CPU is 16 bits processor runs at 16MHz speed (for more details
see [1]). The microcontroller is supported by the open-source Arduino Soft-
ware (IDE) which facilitates the development of the firmware and the upload-
ing of the software into the robot.

Sensors. Each robot is equipped with two types of sensor:
– Eight HC-SR04 ultrasonic distance measuring sensors connected directly

to the main microcontroller. The ultrasonic sensors can detect an obstacle
up to a distance of 1 m. The position of these sensors on the robots’ ring
is indicated in Fig. 3a. The sensors are placed close to the robot base in
order to detect short obstacles (10mm height from the ground) that are
used to delimit the perimeter of the robots’ arena.

– Six TSOP1838 InfraRed (IR) sensors that receive a frequency modulated
IR signal at 38KHz transmitted by neighbouring robots. These sensors
are connected directly to the communication board (see Fig. 2a) and are
positioned at the top of the front-facing ultrasonic sensors. The position
of these sensors on the robot base is shown in Fig. 3a.

Actuator. Each robot is equipped with the following actuators:

288 M. Alkilabi et al.

Fig. 3. (a) Image showing the positions, on the robots’ ring, of the ultrasonic sensors
Ui with i ∈ [0, 7] and of the IR transmitter IRti with i ∈ [0, 12] and of the receivers
IRri with i ∈ [0, 5]. (b) Image of the robot base with the ring holding the sensors.

– Two Greartisan DC 12V high torque DC motors that provide the robot
with differential drive kinematics. The motor maximum speed is 100
RPM and the maximum torque is 2.2 Kg.cm. The gear reduction ratio is
1:22.

– 13 InfraRed LEDs emitting IR signals at 880 nm wavelength. The IR-
LEDs are positioned on the robot base as shown in the Fig. 3b. The
range of IR-LEDs transmition cover the front half circle of the robot at
50 cm distance. The transmition is directly control by the communication
board.

– A speaker with 8Ω and 5W connected to the Mini MP3 DFPlayer audio
module via digital audio amplifier providing high quality sound. The
audio module offers the capability to manage audio tracks (i.e., play,
stop, pause, etc.) from the software. The main microcontroller controls
the audio module through software serial communication (see Fig. 2a).

Communication board. This is an important hardware component which has
been developed to offer a simple method for communication with the neigh-
bouring robots using IR signals. The board uses Arduino Pro Mini micro-
controller as the main processing unit. A full software communication proto-
col is implemented for this hardware module. The communication protocol
encodes the data to be transmitted (i.e., the robot’s id, the robot’s state, and
its intention to sing) with a frequency modulated IR signal and broadcasts
it (via IR-LEDs) to any neighbouring robots located at less than 50 cm dis-
tance from the emitter. This board also decodes the received messages (via
IR-receivers) from other robots and sends it to the main microcontroller via
serial communication (see Fig. 2a). This simple method of communication is
designed to be more reliable and more economic from an energy perspective
than alternative methods (e.g., a communication system based on vision and
colour LEDs). Since the art installation is supposed to be shown in multiple
exhibition spaces under different lighting conditions, the robustness to vary-
ing lighting conditions is particularly important as well as the level of energy
consumption given that robots are required to operate for 6 to 8 h a day.

Choeur Synthétique 289

Battery. Each robot is equipped with 7800 mAh, 7.4V Lithium Ion battery
made of six cells. The battery offers 10 h of full operation.

3 The Robot Firmware

Choeur Synthétique refers to a group of autonomous mobile robots that navigate
a close environment and interact with each others. As soon as two or more robots
get closer to each other, they stop and exchange IR signals which communicate
the robots’ intention to form an aggregate and to sing together. Those robots
that agree to sing together start emitting their own sound. The combination
of sounds emitted by the potentially many robots’ aggregates that emerge in a
self-organised way generates the Choeur Synthétique.

Each robot is controlled by a Finite State Machine made of the following five
states:

Random walk. All robots start their life in this state. When in this state,
a robot moves according to an isotropic random walk, with a fixed step
length (4 s, at 20 cm/s), and turning angles chosen from a wrapped Cauchy
probability distribution characterised by the following PDF [8]:

fω(θ, μ, ρ) =
1
2π

1 − ρ2

1 + ρ2 − 2ρ cos(θ − μ)
; (1)

where μ = 0 is the average value of the distribution, and ρ ∈ [0, 1] determines
the distribution skewness. For ρ = 0 the distribution becomes uniform and
provides no correlation between consecutive movements, while for ρ = 1 a
Dirac distribution is obtained, corresponding to straight-line motion. While
in this state, a robot broadcasts through its infrared emitters signals commu-
nicating its intention to form an aggregate and to sing together with other
robots. Note that the infrared signals can only be perceived when robots are
sufficiently closer to detect each other through their ultrasounds as potential
obstacles.

Refrain. A robot transitions into this state from state Play after having sung as
a member of an aggregate. A robot in this state behaves as if it was in state
Random walk but without emitting infrared signal. Thus, the robot moves
but is not available to form aggregate. Any time it gets closer to another
robot, it treats it as an obstacle to be avoided. This states facilitates the
spatial distribution of the robots within the arena. A robot remains in this
state for 30 s. When this interval expires, the robot transitions to the state
Random Walk.

Obstacle avoidance. A robot transition to this state, if while in Random Walk
or Refrain, it detects an obstacle (i.e., another robot or the arena walls) closer
than certain distance using its ultrasonic sensors. If the robot previously
was in state Refrain or the obstacle is an arena wall or another robot that
does not signal with its infrared the intention to aggregate, then an obstacle
avoidance manoeuvre is activated. This manoeuvre takes the robot away

290 M. Alkilabi et al.

from the obstacle. If the robot previously was in state Random walk and the
obstacle is another robot that signals with the infrared its intention to form
an aggregation, then the robot transitions to state Stop.

Stop. A robot transition into this state when it receives infrared signals from one
or more group mates communicating their intention to form an aggregate.
Note that, infrared signals are perceived only when robots are closer than
50 cm. The robot stays still while in this state without emitting any sound.
A robot can remain in this state for a maximum of 3 s. During this time,
the robot keeps on exchanging messages with the neighbouring robot/s to
verify their intentions to sing. If after 3 s no agreement is found, the robot
moves back to the state Random walk. If instead agreement is found, the
robot moves to state Play.

Play. While in this state, the robot emits sound while staying still. It remains in
this state until the play timeout expires. At this point the robot transitions
to state Refrain.

4 Conclusions

We have illustrated the Choeur Synthétique, an art-science collaboration project
based on the use of the swarm robotics technology. We have shown that the pos-
sibility to work with self-organising robot-based systems in which the global
response emerges from the local interactions of relatively simple units is par-
ticularly appealing to artists. This is because the contribution of the artist in
determining what is perceived by an observer of the artist’s work is subordinate
to the actions of the laws of nature that ultimately determine the unpredictable
and ever-changing global organisation of the swarm robotics based art installa-
tion. We have briefly reviewed those art-science projects that have exploited the
swarm robotics technology to generate self-organising visual and/or acoustic pat-
ters. We have discussed the motivations of the collective VOID in contributing
to this art installation in which the self-organisation of the swarm robotics sys-
tem concerns the acoustic patters generated by singing robots that form random
aggregates within a close arena. We have illustrated the artistic contributions
and the technical specifications of the robots’ hardware and firmware.

Acknowledgements. Dr Alkilabi thanks the Research Institute naXys, University of
Namur (BE), and the Iraqi MOHER for the financial support. TRAKK, the Research
Institute naXys and the Faculty of Computer Science from the University of Namur
(BE) have managed the fundraising and has coordinated the collaborative activities
between the scientists and the artists.

References

1. arduino.cc: Arduino mega specs (2021). https://store.arduino.cc/products/arduino-
mega-2560-rev3

2. Audry, S.: Vessels (2010). https://sofianaudry.com/fr/works/vessels

https://store.arduino.cc/products/arduino-mega-2560-rev3
https://store.arduino.cc/products/arduino-mega-2560-rev3
https://sofianaudry.com/fr/works/vessels

Choeur Synthétique 291

3. Boursier-Mougeno, C.: From here to ear (2016). https://www.e-flux.com/
announcements/72780/cleste-boursier-mougenotfrom-here-to-ear/

4. Boursier-Mougeno, C.: Liquide Liquide (2019). https://www.
fondationfrancoisschneider.org/en/celeste-boursier-mougenot-liquid/

5. Dorigo, M., Şahin, E.: Guest editorial. special issue: swarm robotics. Auton. Robots
17(2–3), 111–113 (2004)

6. Hochschuh, K., Donovan, A.: Empathy swarm (2021). https://hochschuh-donovan.
com/portfolio/empathy-swarm/

7. Kanno, S.: Lasermice (2018). https://www.kanno.so/project/lasermice
8. Kato, S., Jones, M.: An extended family of circular distributions related to wrapped

Cauchy distributions via Brownian motion. Bernoulli 19(1), 154–171 (2013)

https://www.e-flux.com/announcements/72780/cleste-boursier-mougenotfrom-here-to-ear/
https://www.e-flux.com/announcements/72780/cleste-boursier-mougenotfrom-here-to-ear/
https://www.fondationfrancoisschneider.org/en/celeste-boursier-mougenot-liquid/
https://www.fondationfrancoisschneider.org/en/celeste-boursier-mougenot-liquid/
https://hochschuh-donovan.com/portfolio/empathy-swarm/
https://hochschuh-donovan.com/portfolio/empathy-swarm/
https://www.kanno.so/project/lasermice

Component Swarm Optimization Using
Virtual Forces for Solving Layout

Problems

Juliette Gamot1,2(B), Romain Wuilbercq1, Mathieu Balesdent1,
Arnault Tremolet1, Nouredine Melab2, and El-ghazali Talbi2

1 ONERA, Université Paris-Saclay, Palaiseau, France
2 INRIA, Université de Lille, Villeneuve-d’Ascq, France

juliette.gamot@onera.fr

Abstract. The optimal layout of a system involves placing a given num-
ber of components in a container in order to optimize one or several
objectives while respecting some geometrical and functional constraints.
This paper proposes a new method to solve the problem of optimal layout
of a satellite module that relies on a virtual-forces system. The proposed
method is compared to a genetic algorithm illustrating its performance.

1 Introduction

The layout design of a system consists in placing a number of components within
a container as a means to optimize one or several objectives while respecting
some functional and geometrical constraints [3,9,17]. In the present work, the
layout optimization of a simplified satellite module is used as an illustrative
example of an optimal layout problem [9]. This problem consists in finding the
layout of N components (which can usually be cylinders or cuboids) on bearing
plates that minimizes the inertia of the whole module. A number of geometri-
cal constraints must be enforced such as no overlapping between components,
no overlapping between the components and the container, and the center of
gravity must be accurately located at the geometrical centroid of the container
[9,14]. Several improvements are introduced in terms of modeling of the optimal
layout problem to enhance the representativity of the problem with respect to
classical satellite layout optimal problem [9]. The problem which is considered
in this paper is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize Itot(x)
where: x ∈ R

Ndesign

subject to :
hcontainer(x) = 0
hoverlap(x) = 0
gCG(x) ≤ 0
gfunctional(x) ≤ 0

where Itot is the global inertia corresponding to
the objective function. It takes as arguments the
continuous positions of the centers of inertia p
and orientations α of the components, x = (p, α)
(the cardinal of the design variables vector x
is written Ndesign). Four constraints are consid-
ered:

c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 292–299, 2022.
https://doi.org/10.1007/978-3-031-20176-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_25&domain=pdf
https://doi.org/10.1007/978-3-031-20176-9_25

CSO-VF Algorithm for Solving Layout Problems 293

– Three geometrical constraints: hcontainer which correspond to no overlap
between the components and the container and exclusion zones, hoverlap which
corresponds to no overlap between the components, gCG which translates the
fact that the center of mass of the module must be in a tolerance zone centered
on the geometrical center of the container.

– One functional constraint: gfunctional which ensures a certain distance
between some components for functional reasons.

Most of the methods employed to solve this problem are meta-heuristics [14]
and can lead to difficulties to satisfy the constraints according to the problem
definition. In this paper, a component swarm optimization algorithm using vir-
tual forces (CSO-VF) is proposed in order to solve the constraints easily. To the
best of our knowledge, this kind of methods has never been explored for solving
optimal layout problems. The rest of the paper is organized as follows: Sect. 2
reviews the main methods employed in the literature. In Sect. 3, the proposed
algorithm is described. The proposed method is applied to the satellite module
and the experimental results are reported and discussed in Sect. 4.

2 State of the Art

Because the optimal layout problem belongs to the NP-hard class of problems, it
is not solvable by exact methods [17]. Consequently, various approximate meth-
ods have been developed in order to solve layout optimization problems first
defined by Cagan et al. [2].

Mostly, metaheuristic methods have been explored [14]. For example,
Jacquenot used a genetic algorithm (GA) enhanced by a separation algorithm to
facilitate the resolution of overlapping constraints [6]. Meller et al. used a simu-
lated annealing algorithm to solve facility layout problems [10]. Particle Swarm
Optimization (PSO) has also been investigated. Mohammed et al. proposed a
study about PSO methods in order to solve facility layout problems [11].

With the increase in the number of constraints, design variables or the num-
ber of objectives, other methods have been introduced to improve the compu-
tational performance of metaheuristic techniques. Among them, Potter and De
Jong [12] introduced cooperative co-evolutionary algorithms based on the divide
and conquer paradigm along with the biological model of co-evolution of coop-
erating species [3,15]. Metaheuristic methods have also been often hybridized
between themselves. In [8], a GA is hybridized with differential evolution, arti-
ficial bee colony and PSO. In [7], evolutionary algorithms are hybridized with
heuristic rules and applied to the layout optimization of a satellite module. Other
methods than metaheuristics have been applied to layout optimization problems
even if they are less investigated [1,16].

Finally, Rashedy et al. introduced a gravitational search algorithm based to
evolve a swarm of masses providing better results than former heuristic algo-
rithms [13]. Guo et al. proposed methods based on a virtual-forces system in
order to solve architectural layout problems [5]. Dirafzoon et al. proposed a

294 J. Gamot et al.

virtual force-based individual particle optimization for coverage in wireless sen-
sor networks [4]. The proposed methodology which will be detailed in the next
section is in line with those last techniques as it has not been explored for optimal
layout problems.

3 The CSO-VF Algorithm

In the CSO-VF algorithm, each component corresponds to a particle and dif-
ferent forces and operators are applied to each of them in order to evolve the
swarm. This model is used in order to make it easier to deal with the constraints.
One can note that this kind of algorithm is different from PSO, indeed in PSO
each particle corresponds to an entire solution of the problem to be evolved.
Moreover, this swarm intelligence algorithm is deterministic.

3.1 The Particle

At each step of the resolution a particle i is described by its translation accel-
eration ai, its rotational acceleration Li, its translation speed vi and its rota-
tional speed ωi, the position of its center of inertia pi and its orientation (for
cuboid components) αi. Attractive and repulsive forces of resultant Fi as well
as a torque Ti are applied to each particle in order to update those previous
parameters knowing that the velocity, the rotational speed, the angle as well
as the forces and torques are bounded by their respective global maximum val-
ues vmax, ωmax, αmax, fmax, tmax. Figure 1 illustrates a particle. The pink zone
represents a forbidden zone.

Fig. 1. Particle Fig. 2. Attractive and repul-
sive forces

Fig. 3. Gradient-based for-
ces

CSO-VF Algorithm for Solving Layout Problems 295

3.2 Virtual Forces System

The forces applied to each particle at each step aims at optimizing the objectives
and satisfying the constraints defined in the introduction. They are split into 3
categories and will be detailed in the case of the optimal layout problem of the
satellite module, without loss of generality.

Attractive Forces. If a particle i does not belong entirely to the container
then an attractive force directed towards the geometric center of the module pc

is applied. It corresponds to the constraints hcontainer and is defined as follows:

Fcontainer,i(pi) =
pc − pi

|pc − pi| + ε
vmax − vi (1)

where ε ensures numerical stability. This force is illustrated on Fig. 2 with the
3rd particle. Red zones represent the violation of the constraints.

Repulsive Forces. If a particle i overlaps another one j then a repulsive force
is applied and corresponds to the constraint hoverlap. The point of application of
this force is initially the barycenter of the overlap polygon of the two particles. A
change of point of this torsor is carried out in order to transfer the forces to the
centers of inertia of both particles. Consequently, a moment appears on each of
the particles noted Coverlap,i. The expression of the force related to the overlap
between two particles i and j is as follows:

Foverlap,i,j(pi,pj) = − pj − pi

|pj − pi| + ε
vmax − vi (2)

If N i
overlap particles overlap the ith particle then the total overlap force applied

to this particle is calculated as Foverlap,i =
∑Ni

overlap

j=1 Foverlap,i,j.
This force is illustrated on Fig. 2 with particles 4 and 5. If an energy compo-

nent is too close to a fuel component then a repulsive force directed along the
line formed by the center of inertia of both components involved is applied with
an expression similar to Foverlap,i. This force is intended to satisfy the constraint
gfunctional. This force is illustrated on Fig. 2 with particles 1 and 2.

Gradient-based Forces. In order to take into account the objective function
minimization into CSO-VF, a force along the opposite of the gradient of the
inertia according to the position of the center of inertia of each component and
a torque proportional to the gradient of the inertia according to the orientation
of each component are applied:

Finertia,i(pi) = −β1∇Itot(pi) (3) Minertia,i(αi) = −β2∇Itot(αi) (4)

In the same way, a force along the opposite of the gradient of the position
of the global center of mass according to the position of the center of inertia of
each component is applied in case the global center of mass is located outside of
the tolerance zone, and expressed as:

FCG,i(pi) = −β3∇gCG(pi) (5)

296 J. Gamot et al.

βi (i ∈ {1, 2, 3}) are hyperparameters of the algorithm. The gradient-based
forces are illustrated on Fig. 3. The dotted line corresponds to the functional
zone of influence of a component.

Between the steps s and s + 1, the Fundamental Principle of Dynamics is
applied in order to update the parameters of each particle i (with a mass mi

and geometric inertia Ii) between two steps (separated by Δt) according to the
following equations:

ai,s+1 =
Fi

mi
(6)

vi,s+1 = vi,s + ai,s+1Δt (7)

pi,s+1 = pi,s + vi,s+1Δt (8)

Li,s+1 =
Ci

Ii
(9)

ωi,s+1 = ωi,s + Li,s+1Δt (10)

αi,s+1 = αi,s + ωi,s+1Δt (11)

The Swap Operator: Every Nswap steps, the swap operator allows two com-
ponents to exchange their positions in pairs if it enables an improvement of the
objective function while not deteriorating the resolution of the constraints.

The Stagnation Rule: If the position of one or more particles does not evolve
during a certain amount of steps, the forces linked to the geometrical constraints
of overlapping as well as the functional constraint are set to 0. Only the gradient-
based forces (center of mass and inertia) are responsible of the swarm evolution.
It allows the swarm to escape from zones where the forces may be antagonistic
and promote exploration and diversity.

4 Implementation and Results

The proposed method is applied to the satellite layout model adapted from
[3,9,17]. Table 1 sums up the geometrical configurations of the problems to solve.
Two occupation rates of the container are studied: 30% and 50%. The occupation
rate is defined as the area of the components over the area available in the
container. Table 2 sums up the configuration of the hyper-parameters of the
algorithm.

Configuration 1: Occupation Rate of the Plate = 30%: CSO-VF is run
on 10 random initializations. Figure 4 shows the converging curves of the the
best feasible layout. All the runs manage to find a feasible solution. In order
to evaluate the proposed method, a comparison with a GA is conducted. To
do so, the CSO-VF algorithm is ran over 500 layout initialized independently.
The same geometric configuration is implemented in a GA. Moreover, the GA is
initialized with the same 500 individuals generated by the swarm initialization.
The convergence curves obtained by both CSO-VF and the GA for the same
configuration are shown on Fig. 5. For the CSO-VF algorithm the convergence
curve corresponds to the mean of the convergence curves over the 500 runs.
The best run is also shown. For the GA, the convergence curve corresponds to

CSO-VF Algorithm for Solving Layout Problems 297

the best feasible individual at each generation. Figure 6 shows the best layout
obtained amongst the 500 runs and this occupation rate. Green, yellow and blue
components correspond respectively to fuel, energy and other components. The
dotted lines represent the zone of influence of some components useful for the
functional constraint.

Fig. 4. Convergence curves for 10 ran-
dom initializations.

Fig. 5. Proposed method + GA

Table 1. Geometrical configuration of the module.

Container One one-sided bearing plate

Exclusion zones One central bus and one rectangular electronic bus
Components 12 (30% compactness) or 24 (50% compactness)

Table 2. Hyperparameters of the algorithm

Parameters Symbol 30% 50%

Maximum force fmax 400 254
Maximum speed vmax 11 10
Maximum angle αmax 1 6.5
Maximum rotational speed ωmax 54 63
Maximum tork Tmax 55 30
Gradient-based forces parameters β1, β2, β3 693, 0.16, 97 554.5, 0.24, 99
Swap operator’s call frequency Nswap 60 60

Table 3. Results for both occupation rates and both methodologies.

Configuration/Method 30 50
CSO-VF GA CSO-VF GA

Mean fitness 1.57e7 1.54e7 2.43e7 2.7e7
Standard deviation 7.59e5 1.4e4 7.05e5 2.95e5
Best individual 1.4e7 1.53e7 2.29e7 2.51e7

298 J. Gamot et al.

Configuration 2: Occupation Rate of the Plate = 50%: In this case,
the constraints are more difficult to satisfy. The same experiments as for the
30% occupation rate are conducted. Again, the runs manage to find a feasible
solution. In the same way, the GA is used to solve the 50% occupation rate
problem with an initial population of 500 individuals to be compared with CSO-
VF over the same 500 initializations. The method exposed in this paper enables
to solve the constraints easily compared to the GA: feasible solutions appear
earlier than for GA (the first feasible solution appears almost at the 3000th
generation). Moreover the best layout proposed by GA has a higher inertia than
the one found by CSO-VF. Table 3 sums up the results obtained for the four
methods and two occupation rates. Figure 6 shows the best layout.

Fig. 6. Best layouts, at left: compactness
of 30%, at right:compactness of 50%

Fig. 7. Sensitivity analysis

In order to analyze the sensitivity of the different tuning parameters on the
algorithm efficiency, a global sensitivity analysis has been carried out. The Sobol’
indices have been computed as a by-product of a chaos polynomial surrogate
model built from a Design of Experiments of 1000 i.i.d. random samples on the
tuning parameters. As it can be seen on Fig. 7, the total Sobol’ indices for the
different parameters are quite equal, that traduce the fact that the parameters
have the same overall effect on the algorithm performance. Furthermore, the
first order Sobol indices are close to zero, that traduces the fact that the tuning
parameters have strong interaction.

5 Conclusion

In this paper, a swarm intelligence algorithm based on a virtual-forces system
named CSO-VF is proposed in order to solve optimal layout problems and to
contribute to make it easier to satisfy the many constraints involved in the prob-
lem definition. It has been successfully applied to the optimal layout problem of a
satellite module. To assess the efficiency of the method a comparison with a GA
was conducted. The increase in the occupation rate of the container proves that
the more the constraints are difficult to solve, the better the CSO-VF algorithm
manages to find feasible solutions and converges compared to the GA. Com-
parisons with other methods reviewed are currently being conducted as well as
additional experiments on higher occupation rates.

CSO-VF Algorithm for Solving Layout Problems 299

References

1. Burggräf, P., Wagner, J., Heinbach, B.: Bibliometric study on the use of machine
learning as resolution technique for facility layout problems. IEEE Access 9, 22569–
22586 (2021)

2. Cagan., J., Szykman, S.: Constrained three-dimensional component layout using
simulated annealing. ASME. J. Mech. Des. 119(1), 28–35 (1997)

3. Cui, F.Z., Zhong, C.Q., et al., X.K.W.: A collaborative design method for satellite
module component assignment and layout optimization. Proc. Inst. Mech. Eng.
Part G: J. Aerosp. Eng. 233(15), 5471–5491 (2019)

4. Dirafzoon, A., Salehizadeh, S., Emrani, S., Menhaj, M.: Virtual force based indi-
vidual particle optimization for coverage in wireless sensor networks. In: 23rd
Canadian Conference on Electrical and Computer Engineering (CCECE) Calgary,
Canada, pp.1–4 (2010)

5. Guo, Z., Li, B.: Evolutionary approach for spatial architecture layout design
enhanced by an agent-based topology finding system. Front. Architectural Res.
6, 53–62 (2016)

6. Jacquenot, T.G.: Méthode générique pour l’optimisation d’agencement
géométrique et fonctionnel. PhD thesis (in French), Ecole Centrale de Nantes
(ECN) (2010)

7. Li, Z., Zeng, Y., Wang, Y., Wang, L., Song, B.: A hybrid multi-mechanism opti-
mization approach for the payload packing design of a satellite module. Appl. Soft
Comput. 45, 11–26 (2016)

8. Lim, Z.Y., Ponnambalam, S.: et Kazuhiro Izui: multi-objective hybrid algorithms
for layout optimization in multi-robot cellular manufacturing systems. Know.-
Based Syst. 120, 87–98 (2017)

9. Liu, J.F., Hao, L., Li, G., Xue, Y., Liu, Z.X., Huang, J.: Multi-objective layout
optimization of a satellite module using the Wang-landau sampling method with
local search. Front. Inf. Technol. Electron. Eng. 17(6), 527–542 (2016)

10. Meller, R.D., Bozer, Y.A.: A new simulated annealing algorithm for the facility
layout problem. Int. J. Prod. Res. 34(6), 1675–1692 (1996)

11. Mohammed, M.A., Hasan, R.A.: Particle swarm optimization for facility layout
problems FLP - a comprehensive study. In 2017 13th IEEE International Confer-
ence on Intelligent Computer Communication and Processing (ICCP) Cluj-Napoca,
Romania, pp. 93–99 (2017)

12. Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to func-
tion optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994.
LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58484-6_269

13. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Gsa: a gravitational search algo-
rithm. Inf. Sci. 179(13), 2232–2248 (2009)

14. Singh, S.P., Sharma, R.R.K.: A review of different approaches to the facility layout
problems. Int. J. Adv. Manuf. Technol. 30(5), 425–433 (2006)

15. Teng, H.F., Chen, Y., et al., W.Z.: A dual-system variable-grain cooperative coevo-
lutionary algorithm: satellite-module layout design. IEEE Trans. Evol. Comput.
14(3), 438–455 (2009)

16. Vashisht, D., et al.: Placement inintegrated circuits using cyclic reinforcement
learning and simulated annealing. arXiv preprintarXiv:2011.07577 (2020)

17. Wang, Y.S., Teng, H.F., Shi, Y.J.: Cooperative co-evolutionary scatter search for
satellite module layout design. Eng. Comput. 26(7), 761–785 (2009)

https://doi.org/10.1007/3-540-58484-6_269
https://doi.org/10.1007/3-540-58484-6_269

Constant Bearing Flocking

Cristino de Souza Junior1(B) , Tiziano Manoni1,2, and Eliseo Ferrante1,2

1 Technology Innovation Institute, Abu Dhabi, UAE
{cristino.dsouza,tiziano.manoni,eliseo.ferrante}@tii.ae
2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

{t.manoni,e.ferrante}@vu.nl

Abstract. In this paper, we present “bearing-and-range-only” approach
for a self-organized flocking, which allows the flocking alignment without
the assumption of measuring agent’s velocity or orientation. This last
assumption challenges the implementation with real robot, since com-
mon off-the-shelf sensors do not provide such information unless inter-
agent communication is used. To overcome the above issue, we propose
a flocking behavior based on the “constant bearing rule”, which is known
geometrical concept commonly used for missile guidance. The proposed
behavior is described by a steering law and a velocity law. In the first one,
the agent tries to keep constant bearing towards the target (if informed),
or towards the center of mass of the perceived neighbors (if not informed).
The second law allows the agent to regulate its linear velocity to keep
a minimal safety distance towards the closest agent. Together, the two
laws combined realize alignment. We perform simulation experiments to
evaluate the new method and we compare the results with a “range-and-
bearing” state of the art method.

1 Introduction

Flocking can be defined as the cohesive and aligned motion of a group of individ-
uals in a common direction, achieved only through local interactions and possibly
also local communication. This rich collective behavior has been subject of inter-
est in many disciplines in the last few decades. These efforts have also lead to
real robot implementations even on unmanned aerial vehicles (UAVs), such as
the work in [1,8,9,11], where several dozen quadcopters were able to display
amazing formations in an open sky.

Nevertheless, the above implementations rely on communication between
neighbors, sharing position or velocities in the inertial frame. In contrast, biolog-
ical examples shows flocking being achieved even in very simplistic living organ-
ism [10], and where very few interaction is needed, such as described in [12].
Similar conversely, natural swarms seem to use many vision-based perception to
implement the interactions required for flocking, such as pointed in [2,7].

However, the limitation of the current approaches, for a communication-less
flocking, is the requirement of the alignment (or friction) term, which is, either
too heavy too process if relying on vision, or requires more information than
what a common RaB sensor can offer.
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 300–307, 2022.
https://doi.org/10.1007/978-3-031-20176-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_26&domain=pdf
http://orcid.org/0000-0002-0611-9606
http://orcid.org/0000-0002-2213-8356
https://doi.org/10.1007/978-3-031-20176-9_26

Constant Bearing Flocking 301

It is therefore challenging to design a self-organized flocking motion without
heading alignment and without the necessity to have all agents informed about
the desired target direction. In the literature, so far we find only one method
able to achieve this objective: the active elastic model proposed in [4]. In this
method, agents implement simple virtual potential functions to achieve a cohe-
sive formation. Assuming a non-holonomic differential-drive kinematic model of
motion, they then convert the virtual forces into forward and angular veloc-
ity in a way to achieve spontaneous alignment in a random direction (when no
informed agents are present) or in the desired target direction (with small pro-
portions of informed agents). This model assumes omni-directional sensing with
limited sensing range and is designed for a achieving cohesive formation, there-
fore alignment is an emergent phenomenon for which it is hard to control the
convergence speed and also the final motion speed of the swarm.

In this paper, we propose a flocking algorithm where, similar to the active
elastic model, neighbors’ velocity or orientation do not require to be measured.
Therefore, the method relies only on range and bearing information of the neigh-
bors that are inside the limited field-of-view (FoV). Differently from most of the
literature, in our approach the range and bearing information is not used only
to achieve cohesion, but also to achieve alignment. The proposed method, which
we call constant bearing (CB) flocking, is composed by two feedback laws. The
first one is inspired by methodologies utilized for missiles navigation [5] and is
also observed in real-life animals [3]: the agent tries to keep a constant bearing
with respect to either the target (if it is informed about it) or to the estimated
centroid of the perceived neighbors. The second law regulates the velocity of the
agent in order to keep a minimal safety distance towards the closest agent. The
application of these laws leads to the alignment of the agents’ headings. Finally,
differently from our previous work [6], which also uses guidance-laws for mod-
eling the multi-agent behavior, this new approach considers limited neighbors’
perception and does not require global knowledge of the target’s.

The new algorithm has been extensively tested in a simulated environment.
Specifically, we study the effect of the swarm size, of the proportion of informed
robots, and of two different kinds of FoVs: omnidirectional versus constrained
to 180◦ pointing towards the direction of motion (e.g. akin to a front-facing
fish-eye camera). In all the experiments, we compare the new constant bearing
method against the active elastic model. The remaining of the paper is organized
as follows. In Sect. 2, the flocking problem is formulated and the investigated
methodologies are presented. First the Constant Bearing (CB), the novelty of
this paper; and second, the Active Elastic, the baseline for the further analysis.
Following, the experimental setup and the used metrics are described in Sect. 3.
Finally, the results are discussed in Sect. 4, and the final remarks are summarized
in Sect. 5.

302 C. de Souza Junior et al.

2 Constant Bearing (CB) Flocking

The proposed behavioral approach is composed of a steering law (ω) and a
velocity regulation law (v), which are the inputs for the focal agent. The general
form of the algorithm is given below:

ω = σa (fλ) + σb (fβ) (1a)

v = σc (fvi
) (1b)

The steering law (ω) is composed by two terms: the constant bearing term (fλ)
and the field-of-view restriction term (fβ). Since both terms are unbounded
functions, they are saturated in a and b, respectively, by the saturation function
σε(.). This is basically to avoid unfeasible outputs and to assure the predomi-
nance of second term over the first one. Additionally, the velocity term (1b) is
also bounded in c by the saturation function described bellow:

σε(x) =

{
x, if |x| ≤ ε

sgn(x), if |x| > ε
(2)

where, the ε stands for the saturation boundary.

2.1 Constant Bearing Term (fλ)

It is responsible for keeping constant the bearing angle (λiO) towards the object
of interest. This term, which is the core of the algorithm, is the equivalent of
the known guidance law Proportional Navigation (ProNav), which is commonly
used in guided missiles. More details about the ProNav can be obtained in [5].
The simplest version of this guidance can be stated as below:

fλ = η ∗ λ̇iO, (3a)

λiO =

{
λiT , if agent informed.
λiC , if agent NOT informed.

(3b)

where, λiT is the bearing angle between pursuer and target, and λiC denotes the
bearing angle towards the centroid of the perceived agents. Also, η is a constant
and positive gain, commonly called navigation gain in the guidance literature.

Assuming that the distances (rij) and the bearing angle towards the neigh-
bors (λij) are known, we easily can obtain the λiC :

λiC = arctan
(∑

i∈FoV rij sinλij∑
i∈FoV rij cosλij

)
. (4)

Constant Bearing Flocking 303

2.2 Velocity Regulation (v):

The goal of this term is to keep a minimal safety distance towards the closest
interacting agent. Therefore, a possible implementation for this law can be seem
bellow:

fvi
= γ ∗ Θ (rmin) , (5)

where γ is the positive gain, and rmin is the distance to the closest perceived
agent. Also, Θ(.) is a saturated linear function, which regulates velocity. It is
defined as:

Θ(x) =

⎧⎪⎨
⎪⎩
0, if x ≤ Rsaf

y(x), if Rsaf < x < Rint

1, if x ≥ Rint

(6a)

y(x) =
x

Rint − Rsaf
+

Rsaf

Rint − Rsaf
(6b)

where, Rsaf denotes the closest safety distance between two agents, and Rint is
the radius of interaction. This function makes the pursuer start to brake from
Rint linearly until it achieves Rsaf .

2.3 Alignment Emergence:

As stated in the introduction, the combination of the laws (3)-a and (5), is
responsible for the emergence of the behaviors of aggregation and alignment:

– Aggregation, occurs when the bearing angle is constant (λ̇iO = 0) and the
range to object of interest is decreasing (ṙiO < 0).

– Alignment, occurs when the bearing angle is constant (λ̇iO = 0) and the
range to object of interest is constant (ṙiO = 0).

Fig. 1. Illustration of the “constant bearing” rule being applied for the two distinct
behavior: aggregation and alignment. The figure describe the spatial displacement of
two agents, a “leader” and a “follower” over six sequential timestamps (K). The follower
is described by the blue triangle, and the target by the red triangle. (Color figure online)

304 C. de Souza Junior et al.

An illustration of the above statement can be seen in Fig. 1, where the focal
agent i is following another agent j, which for this specific example is doing the
role of “leader”.

Finally, the Heading restriction term, (fβ), is an additional term to the
law (3), which is responsible for keeping the object of interest, i.e., target or
centroid of the flocking, inside the FoV. This term is need to compensate (3)-a,
where abrupt changes in λiO may lead to angular rate output that takes the
object of interest out of the FOV. Therefore, the chosen function for this term
implementation is:

fβ = μ ∗ tan
(

αiO

β ∗ π−1

)
, (7a)

αiO = ψi − λiO, (7b)

where the lead angle (αiO) is composed by the subtraction of the heading angle
(ψi) and the bearing (λiO). Besides, μ represents a constant positive gain, and
β is the opening angle of the FOV.

3 Experimental Setup

We study the proposed method in a multi-agent simulator that has been devel-
oped internally. The agent is modelled as a differentially-driven two-wheels robot,
with both omnidirectional sensing, with a FoV of 360◦, and a restricted FoV of
180 (like a frontal camera). This sensor measures the range and bearing of the
robot detected, without any information related to the identity. Besides, we then
add a Gaussian noise to the distance equals to N (0, 0.01) and Gaussian noise
equals to N (0, 0.02) for the bearing.

To provide a comparison with previous works, we select as a baseline is the
minimalistic version studied in Ferrante et al. [4], which is based on potential-
field forces. Furthermore, to evaluate the performance of our algorithm, we use
the same metrics used in [4]: order, accuracy, and travelled distance. We also
measure the number of groups at the end of the experiment to detect whether
the swarm has split. Furthermore, in order to perform a fair comparison between
the two considered algorithms, we have performed a grid search in the parameter
space to put each method in its best conditions.

4 Results

Effects of the Swarm Size: In the Fig. 2, we selected two swarm sizes, N = 20
and N = 100, to compare the performance of CB with the baseline method AE.
In the first plot, for 20 agents, we see no statistical difference on the accuracy for
both the methods. However, for 100 agents, CB outperforms clearly the baseline
algorithm. The under-performance of AE is mainly explained by its initially
design for a omnidirectional sensor (FoV = 360). In the baseline, the alignment
is achieved as by-product of the aggregation and interactions; consecutively, it

Constant Bearing Flocking 305

Fig. 2. ACCURACY for 20 and a 100 agents with % 40 % informed with FoV of 180◦C
and different swarm sizes

Fig. 3. Effects of the informed rate for 200 swarm sizes.

suffers much more with the reduction on the field-of-view, where less information
are available for the interaction.

Effects of the Informed Rate: In Fig. 3, we have the comparison of CB with
the baseline algorithm for two informed rate (ρ = 0.1 and ρ = 0.2). From both
plots, we can confirm the direct relation between informed rate and accuracy;
and also we observe the same tendency happening for the baseline algorithm.
Besides, we can also remark CB’s high dependency on the initial condition of the
experiment, which is evidenced for lower rate of informed, where there is large
variability between runs.

Traveled Distance and Clusters: In Fig. 4, we can see the comparison of the
travelling distance for both approaches. We can see that, although CB outper-
forms AE in average values for all cases, it has again a much higher variability
between runs. It reinforces once more the dependency of algorithm in the initial
conditions (position and orientation) of the agents. It is highly evidenced in for
the case of 20% of informed (ρ = 0.2) in both plots, where while the upper-
bound evidenced the existence ofruns with high performance travelled distance,
the lower-bound indicate runs where all the agents kept essentially stuck along
the whole experiment.

306 C. de Souza Junior et al.

Fig. 4. Distance travel

However, it is important to highlight the responsiveness of our proposed algo-
rithm, where given the proper initial conditions it outperform significantly the
baseline. Furthermore, considering real-time implementation, the assumption of
having well determined initial conditions does not seem a precarious assumption.

5 Conclusions

In this paper we proposed an alternative approach for modelling self-organized
agents relying only range-and-bearing measurement. We showed that our method
allow the flock to achieve aligned motion without requiring on neighbors’ velocity
or orientation measurement, which is a common assumption in most of the state-
of-the-art algorithms. This released assumption can ease the implementation
with real-time robots, since this information can be obtained by off-the-shelf
sensors. Furthermore, our approach is consider limited fiel-of-view, which is also
a common feature in most robotic platforms.

We evaluated numerically our method under variable swarm-size, proportion
of informed agents, and type of field-of-view. Besides, we also provided quantita-
tive comparison with a state-of-art approach. As result, our new method tends
to outperform the baseline under limited field-of-view configuration; which is
even more evidenced for higher swarm-size and proportion of informed. Besides,
our approach significantly outperforms the baseline regarding the total distance
travelled. Nevertheless, our approach tends to be very sensitive to the initial con-
ditions, which causes a high variation between runs. This short-come, together
with the real-time implementation, are the main improvements envisaged for
future works.

Constant Bearing Flocking 307

References

1. Balázs, B., Vásárhelyi, G., Vicsek, T.: Adaptive leadership overcomes persistence-
responsivity trade-off in flocking. J. R. Soc. Interface 17(167), 20190853 (2020)

2. Bastien, R., Romanczuk, P.: A model of collective behavior based purely on vision.
Sci. Adv. 6(6), eaay0792 (2020)

3. Brighton, C.H., Thomas, A.L., Taylor, G.K.: Terminal attack trajectories of pere-
grine falcons are described by the proportional navigation guidance law of missiles.
Proc. Natl. Acad. Sci. 114(51), 1–6 (2017)

4. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-
organized flocking with a mobile robot swarm: a novel motion control method.
Adapt. Behav. 20(6), 460–477 (2012)

5. Shneydor, N.A.: Missile Guidance and Pursuit: Kinematics. Dynamics and Control.
Horwood Publishing, Chichester (1998)

6. de Souza, C., Castillo, P., Vidolov, B.: Local interaction and navigation guidance
for hunters drones: a chase behavior approach with real-time tests. Robotica 40,
1–19 (2022)

7. Strandburg-Peshkin, A.: Visual sensory networks and effective information transfer
in animal groups. Curr. Biol. 23(17), R709–R711 (2013)

8. Vásárhelyi, G., et al.: Outdoor flocking and formation flight with autonomous
aerial robots. In: 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 3866–3873. IEEE, Chicago, Illinois (2014)

9. Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A.E., Vicsek, T.:
Optimized flocking of autonomous drones in confined environments. Sci. Robot.
3(20), eaat3536 (2018)

10. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)
11. Virágh, C., et al.: Flocking algorithm for autonomous flying robots. Bioinspiration

Biomimetics 9(2), 1–15 (2014)
12. Wang, W., Escobedo, R., Sanchez, S., Sire, C., Han, Z., Theraulaz, G.: The impact

of individual perceptual and cognitive factors on collective states in a data-driven
fish school model. PLoS Comput. Biol. 18(3), e1009437 (2022)

Distributed Sorting in Complex Environments

Mohammed Abdullhak1 and Andrew Vardy2(B)

1 Department of Computer Science, Memorial University of Newfoundland,
St. John’s, Canada
mabdullhak@mun.ca

2 Department of Computer Science, Department of Electrical and Computer
Engineering, Memorial University of Newfoundland, St. John’s, Canada

av@mun.ca

Abstract. We introduce an algorithm allowing a robot swarm to sort
objects in complex environments. In this task, objects of different types
are scattered around the environment and there is a specific goal area
for each object type. The robots orbit the environment looking for
objects and gather each class of objects into their designated area by
physically pushing them around obstacles and towards their goals. The
robots utilize a distributed collision avoidance algorithm for avoiding
collisions with obstacles and among themselves based on the concept of
buffered Voronoi cells. The robots decide which objects to target based
on buffered Voronoi cell occupancy, thus preventing contention between
robots. Global planning to determine the direction to move an object
towards its goal along the shortest path is performed using goal maps
generated from the distance transforms of these goal areas. The proposed
algorithm is fully distributed and requires no central control or commu-
nication between robots. We evaluate the performance of our algorithm
using an open-source web-based simulator and validate the real-world
performance of the proposed algorithm in live experiments.

1 Introduction

Our focus is on object sorting as a distributed task, where a swarm of sim-
ple robots incrementally push objects towards their goals, even within complex
environments where the straight-line path from object to goal is occluded. This
task is solved while avoiding collisions between robots and handling contention
over objects. We propose a distributed sorting algorithm with no communica-
tion requirements. The robots are assumed to have plans of their environments,
including the desired location for each class of objects. We also assume the
robots can localize and determine the relative positions of nearby robots and
objects. This assumption could be met via an external localization system [7]
or by self-localization by reference to sensor cues [10]. We make use of our pre-
viously developed local planning and collision avoidance algorithm [1] based on
the concept of buffered Voronoi cells proposed by Zhou et al. [17]. This algorithm
guides robots to arbitrary goal positions in a collision-free manner.

Object sorting has been studied by many researchers, starting with the sem-
inal work of Deneubourg et al. who proposed a distributed sorting algorithm
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 308–315, 2022.
https://doi.org/10.1007/978-3-031-20176-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_27&domain=pdf
http://orcid.org/0000-0003-4946-2794
http://orcid.org/0000-0001-7278-5378
https://doi.org/10.1007/978-3-031-20176-9_27

Distributed Sorting in Complex Environments 309

inspired by how ant colonies sort their brood [2]. Sorting objects of multiple
classes has been studied by many researchers [4,5,11,13,14] but always in sim-
ple obstacle-free environments and under the condition that like objects should
be gathered together into homogeneous clusters whose locations emerge from
the system’s dynamics. However, real-world applications may require user con-
trol over the process. For example, in recycling the user will want to specify the
goal location for each material. When these goal locations are specified, the task
becomes synonymous with foraging with multiple collection points [3,15,16].

2 Collision Avoidance with Buffered Voronoi Cells

For a set of n disk-shaped robot with a radius of R, the Voronoi diagram parti-
tions the environment into a set of non-overlapping regions. The region for each
robot consists of all the points in the environment closer to it than any other
robot [8]. Each region is called a Voronoi cell [6]. Assuming the robots are in a
collision-free configuration (the distance between any two robots is larger than
2R), the buffered Voronoi cell (BVC) as proposed by Zhou et al. [17] of a robot
is its Voronoi cell retracted by its radius R, so that if the center of the robot
is within its BVC, the entirety of its body lies within its Voronoi cell. If each
robot’s incremental movements are restricted to lie within its own BVC, then the
possibility of collision is excluded [17]. Our algorithm utilizes the local planning
algorithm we previously proposed [1] which operates as follows: at each time
step t, each robot calculates its BVC, then it selects a waypoint within its BVC
which is chosen to avoid deadlock configurations.

3 Sorting Algorithm

In this section we will discuss the sorting algorithm whose purpose is to target
objects (pucks) and push them towards their goals. We first discuss the orbiting
behavior which guides a robot in the absence of viable targets. Then we consider
how to select pucks and the strategy for pushing them towards their goals.
Finally, we consider obstacles lying in between the pucks and their goals.

We are assuming that the robots have a map of the environment, and know
the desired final position for each class of targets. We also assume that the robots
can localize themselves within their environment and can sense the position of
nearby robots, targets, and static obstacles. The algorithm is fully distributed;
each robot works independently without any need for communication.

3.1 Orbiting Behavior

The default behavior for robots with no suitable targets is to follow the periphery
of the environment looking for new targets—we refer to this behavior as orbiting
as it was inspired by our previously proposed orbital construction algorithm [12].
The purpose of orbiting is to traverse the environment looking for opportunities
where the robot is well-positioned to push a puck towards its goal.

310 M. Abdullhak and A. Vardy

We generate a policy that maps between robot position and orbit direction.
We define the orbit border as the set of points which are at least R distance
away from the border of the environment and any static obstacle. See Fig. 1(a)
for an example. We then compute the distance from all points to the orbit border
using the fast marching method [9]. We define the orbit direction vector

−→
dr for

each position as the negative of the gradient. To establish clockwise orbiting we
further define

−→
b for each vector by rotating

−→
dr by 90◦ for all points within the

orbit border and by −90◦ for all points outside of the orbit border. By adding
the two vectors

−→
dr and

−→
b for all points in the environment and smoothing the

resulting array using a Gaussian filter we reach a smooth orbiting behavior. An
example of the vector field corresponding to this policy is shown in Fig. 1(d).

Fig. 1. Computing the orbit policy from the orbit border.

3.2 Target Selection

Let Qt be the set of all nearby targets detected at time t. In order to avoid
target conflicts, where multiple robots compete to push the same target, only
targets located within the robot’s current Voronoi cell Vt are considered. We
define Tt as the set of detected targets that lie within the current Voronoi cell,

Distributed Sorting in Complex Environments 311

Tt = {ni | ni ∈ Qt , pi ∈ Vt}, where pi is the position of target ni. If no
targets lie within the current Voronoi cell Vt, the robot falls back to orbiting the
environment as described in Sect. 3.1.

For each target ni in Tt, the robot retrieves
−→
di , the direction towards which

the target should be pushed and calculates the goal position for this target
gi = pi +

−→
di . We then calculate two metrics. First, the distance di between

the robot’s current position P and the target’s current position pi. Second, the
angle ai which is calculated from the angle ∠Ppigi between the robot’s current
position P , the target’s current position pi, and the target’s goal gi. The angle
ai for each target is then converted to the [0◦, 180◦] range: ai = |∠Ppigi − 180|.
The target with the smallest angle ai is then selected as the best target Wt with
the distance used to resolve ties. See Fig. 2(a) for an illustrative example.

Fig. 2. Examples of target selection (a) and computing the goal for a target (b).

3.3 Target Pushing Strategy

After the robot selects its target, it chooses one of two goal positions based on
the angle ai of the target. If the angle ai is smaller than a specific threshold
c1 (c1 = 15◦ in our experiments), then the robot is already well positioned to
directly push the target towards it goal. Thus, the robot moves directly towards
the target by setting the target’s current position pi as its goal. If the angle ai
is larger than c1 but is still smaller than another threshold c2 (c2 = 75◦ in our
experiments), then the robot needs to perform a maneuver to better position
itself. In this case, the chosen goal position is the point g′

i that is closest to the
robot’s current position P from the line connecting the target’s current position
and the target’s current local goal pigi. Figure 2(b) shows both of these scenarios.

312 M. Abdullhak and A. Vardy

Fig. 3. left: Distance to goal array. right: Direction to goal vectors.

If the angle ai is larger than c2 then the current target is not well positioned to
be moved at this time and the robot falls back to orbiting the environment.

3.4 Global Planning

In simple environments where no obstacles exist between the pucks and their
goals, the behavior described so far will suffice. However, in more complex envi-
ronments the pucks cannot just be pushed blindly towards their goals. We will
address this by generating global goal maps for each target group. These maps
specify the directions towards which a target located should move to get closer
to its goal. To generate these goal maps we use the goal position as the source for
the fast marching method. To account for the presence of obstacles we define a
speed function with empty cells given a speed of 1 while occupied cells a speed of
0. The fast marching method is then applied to generate a distance function. The
negative gradient of the distance function corresponds to the direction that a
puck at this position should be moved to reach its goal while avoiding obstacles.
Figure 3 provides an example.

4 Results

4.1 Simulation

The simulations were performed using an open source web-based simulation
platform1. We simulate a set of disk-shaped robots with static obstacles and
multiple groups of pucks. Each group has a unique goal area. We performed two
sets of experiments; for each one, the proposed algorithm is compared against a
baseline algorithm where a core feature of the proposed algorithm is disabled.
Two metrics are tracked: the total distance between all pucks and their goal areas,
and the number of pucks outside of their goal areas at each time step. First, we
measure the impact of the proposed target conflict avoidance mechanism. We
disable this feature in the baseline algorithm by allowing any pucks within the

1 https://github.com/m-abdulhak/SwarmJS.

https://github.com/m-abdulhak/SwarmJS

Distributed Sorting in Complex Environments 313

Fig. 4. Simulation results for case 1 (a) and case 2 (b).

sensing distance to be valid targets for a robot, instead of only the ones within
the BVC of the robot. We repeated each experiment 100 times in a 800 × 500
cm empty environment with a set of 25 robots having a radius of 8 cm, and two
groups of pucks each having 20 pucks with a radius of 10 cm. Figure 4(a) shows
the results of this experiment (case 1). In the second experiment, we assess the
impact of the orbiting behavior. We compare the full proposed algorithm against
a baseline algorithm where the robots pursue random points in the environment
when no suitable targets are found. The results are shown in Fig. 4(b), clearly
demonstrating the advantage of orbiting in complex environments.

4.2 Real-World Validation

Our experimental platform is a set of Pololu 3pi robots fitted with Raspberry
Pi 3A+ single-board computers. A unique AprilTag [7] is fitted to each robot to
identify it by an overhead tracking system that provides localization and sensing
to the robots. The robots are autonomous, but have no on-board localization or
sensing capability. They connect to a central server remotely over WiFi to contin-
uously request location and sensing data. The server continuously processes the
images received from the attached overhead camera, an Intel Real-sense D435.
The server detects the positions and orientations of the robots and the positions
of the pucks. It uses this data to simulate the values detected by each robot’s vir-

314 M. Abdullhak and A. Vardy

tual sensors by passing each robot a message containing its current position and
orientation, the positions of nearby robots, and the positions of nearby pucks.

Fig. 5. Four real-world validation trials shown, each consisting of an overhead image of
the initial environment state, the final environment state, and time elapsed in minutes.

Initial experiments conducted with these robots resulted in reasonable sorting
performance but with pucks often left near the boundary of the environment.
In our simulation experiments the pucks were slightly larger than our robots
allowing the robots to extract the pucks from the boundaries. However, in our
physical setup the robots were slightly larger than the pucks making them very
difficult to extract. Rather than modifying the pucks’ size, we added ‘tails’ to
the robots and modified the algorithm to trigger an in-place turn whenever a
robot is sufficiently close to both the boundary and a puck. The tails are not
actuated and are composed of paper wrapped in tape, designed to flick pucks
while spinning but to bend out of the way of other robots.

The proposed algorithm was tested on a set of 5 robots, tasked with sorting 5
red and 5 green pucks into their respective goal areas. Figure 5 shows the initial
and final states of four trials, along with the execution time. The robots were
able to gather all pucks into their goal areas in all four trials.

5 Conclusions

This paper presented a distributed sorting algorithm for sorting objects into
specified goal areas. The simulations showed that the proposed algorithm works
reliably even in complex environments, and the physical experiment validated its
performance on real robots with simulated sensing. In the future, we are inter-
ested in testing this algorithm on robots using on-board sensing and localization.
This should be feasible since the locally relevant subset of the Voronoi diagram
can be generated using only the distances to nearby robots and obstacles.

Distributed Sorting in Complex Environments 315

References

1. Abdullhak, M., Vardy, A.: Deadlock prediction and recovery for distributed colli-
sion avoidance with buffered voronoi cells. In: 2021 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 429–436 (2021). https://
doi.org/10.1109/IROS51168.2021.9636609

2. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chré-
tien, L.: The dynamics of collective sorting robot-like ants and ant-like robots. In:
From Animals to Animats: Proceedings of the First International Conference on
Simulation of Adaptive Behavior, pp. 356–365 (1991)

3. Lu, Q., Fricke, G.M., Ericksen, J.C., Moses, M.E.: Swarm foraging review: clos-
ing the gap between proof and practice. Current Robot. Rep. 1(4), 1–11 (2020).
https://doi.org/10.1007/s43154-020-00018-1

4. Melhuish, C., Holland, O., Hoddell, S.: Collective sorting and segregation in robots
with minimal sensing. In: Proceedings of 5th International Conference on Simula-
tion of Adaptive Behaviour, pp. 465–470 (1998)

5. Melhuish, C., Sendova-Franks, A.B., Scholes, S., Horsfield, I., Welsby, F.: Ant-
inspired sorting by robots: the importance of initial clustering. J. Roy. Soc. Inter-
face 3(7), 235–242 (2006)

6. Okabe, A., Boots, B., Sugihara, K., Chiu, S.: Spatial Tessellations: concepts and
applications of Voronoi diagrams. Wiley Series in Probability and Statistics, Wiley
(2009). https://books.google.ca/books?id=dT7YH3mjeeIC

7. Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: 2011 IEEE
International Conference on Robotics and Automation, pp. 3400–3407 (2011).
https://doi.org/10.1109/ICRA.2011.5979561

8. Sack, J.R., Urrutia, J.: Handbook of Computational Geometry. Elsevier, Amster-
dam (1999)

9. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts.
Proc. National Acad. Sci. 93(4), 1591–1595 (1996)

10. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge,
MA (2005)

11. Vardy, A.: Accelerated patch sorting by a robotic swarm. In: 2012 Ninth Conference
on Computer and Robot Vision, pp. 314–321. IEEE (2012)

12. Vardy, A.: Orbital construction: swarms of simple robots building enclosures. In:
2018 IEEE 3rd International Workshops on Foundations and Applications of Self*
Systems (FAS* W), pp. 147–153. IEEE (2018)

13. Vardy, A., Vorobyev, G., Banzhaf, W.: Cache consensus: rapid object sorting by a
robotic swarm. Swarm Intell. 8(1), 61–87 (2014). https://doi.org/10.1007/s11721-
014-0091-5

14. Wang, T., Zhang, H.: Multi-robot collective sorting with local sensing. In: IEEE
Intelligent Automation Conference (IAC). Citeseer (2003)

15. Winfield, A.F.: Foraging Robots, pp. 3682–3700. Springer, New York, New York,
NY (2009). https://doi.org/10.1007/978-0-387-30440-3_217

16. Zedadra, O., Jouandeau, N., Seridi, H., Fortino, G.: Multi-agent foraging: state-of-
the-art and research challenges. Complex Adapt. Syst. Model. 5(1), 1–24 (2017)

17. Zhou, D., Wang, Z., Bandyopadhyay, S., Schwager, M.: Fast, on-line collision avoid-
ance for dynamic vehicles using buffered voronoi cells. IEEE Robot. Autom. Lett.
2(2), 1047–1054 (2017). https://doi.org/10.1109/LRA.2017.2656241

https://doi.org/10.1109/IROS51168.2021.9636609
https://doi.org/10.1109/IROS51168.2021.9636609
https://doi.org/10.1007/s43154-020-00018-1
https://books.google.ca/books?id=dT7YH3mjeeIC
https://doi.org/10.1109/ICRA.2011.5979561
https://doi.org/10.1007/s11721-014-0091-5
https://doi.org/10.1007/s11721-014-0091-5
https://doi.org/10.1007/978-0-387-30440-3_217
https://doi.org/10.1109/LRA.2017.2656241

Effect of Different Communication
Affordances on the Emergence

of Collaboration Strategies in an Online
Multiplayer Game

Hala Khodr(B), Nicolas Wagner, Barbara Bruno, Aditi Kothiyal,
and Pierre Dillenbourg

School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de
Lausanne, Écublens, Switzerland

hala.khodr@epfl.ch

Abstract. In a group, the collective dynamics is governed by the inter-
actions between individuals, which can manifest differently depending
on the available means of communication. In this paper, we compare
3 conditions of communication affordances (global chat, local chat and
no chat) in an online multiplayer game and investigate their effect on
team performance. An experiment involving a total of 108 participants
(grouped in teams of 6 players) revealed that while the three conditions
allow for the emergence of different communication systems, they yield
no significant difference on the time taken to complete the task.

1 Introduction

Collective behaviours are ubiquitous in nature, ranging from animal swarms to
human crowds. In such systems, multiple agents have to coordinate and collabo-
rate in a flexible and robust manner to achieve a shared goal. The communication
between the agents is an essential factor affecting the interaction between them
and therefore influencing the collective performance of the group. As a conse-
quence, communication and its role in collective behaviours have been studied
in many different domains and under a variety of perspectives.

A first lens for analysis focuses on the medium of communication, with verbal
[14] and haptic [6] mediums being among the most commonly considered. In a
collaborative virtual 2D pointing task between 2 dyads, Jinling et al. compared
verbal, haptic, and a combination of both modalities. Their outcomes indicate
that participants using verbal only and haptic+verbal communication performed
equally well while participants using haptic only communication took more time
and had longer path lengths [14]. Conversely, and quite interestingly, in a study
on decision taking, haptically coupled dyads were found to solve a perceptual
discrimination task more accurately than their best individual members and five
times faster than dyads using verbal communication [10].

A second perspective is the analysis of the emergence of communication sys-
tems in collaborative tasks. An example of this phenomenon is the emergence of
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 316–323, 2022.
https://doi.org/10.1007/978-3-031-20176-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_28&domain=pdf
https://doi.org/10.1007/978-3-031-20176-9_28

Effect of Communication Affordances on Collaboration Strategies 317

simple language (common code) when participants are involved in a coordina-
tion game with no common language made available in the beginning [12]. Such
a behaviour requires humans to know that communicative behaviour is indeed
communicative in nature. [11] investigates this assumption through an ad-hoc
designed experimental game. The authors found that the emergence of a commu-
nication system usually involves a bootstrapping process, and that this process
has an impact on the final form of the communication system. Moreover, a suffi-
cient common ground is observed to be a necessity for the recognition of signal-
hood, and the emergence of dialogue is seen as the key step in the development
of a system that can be employed to attain shared goals. In [8], through a maze
game task, the authors present how particular environmental affordances (such
as the structure of the mazes) drive the emergence of different communicative
conventions in otherwise identical tasks, suggesting that linguistic adaptations
are highly sensitive to factors of the shared task environment.

A third key aspect is the analysis of the effects of communication on team
performance, in organizational contexts. A meta-analysis reveals that communi-
cation quality has a significantly stronger relationship with team performance
than communication frequency [7]. Although communication can be positively
correlated with team performance, the advantages of communication are depen-
dent on the task characteristics as well as the type of communication used [9].

Finally, the scope of communication is a crucial topic in all domains involv-
ing swarms of artificial agents, such as swarm robotics, where the locality of
interactions and communication has a beneficial effect on the scalability and
robustness of the system, and is thus generally preferred over the use of global
communication and sensing [4]. Local communication is then further divided in
1) direct robot-to-robot communication, either using explicit messages or implic-
itly detecting the existence and relative location of other robots in the immedi-
ate vicinity, and 2) stigmergic communication relying on the modification of the
environment (e.g. pheromones) [13].

While, as the review above highlights, each of the key aspects concerning com-
munication in collective behaviours has been extensively studied, less is known
about their interplay. In an effort towards bridging this gap and further expand-
ing our understanding of the role of communication, in this paper, we consider
the above four perspectives together, specifically investigating the effect of differ-
ent communication affordances (different mediums and scope) on the emergence
of collaboration strategies and team performance in an online multiplayer game.

2 Methodology

For our study, we designed an online collaborative game where human partic-
ipants interact via a robot avatar in a controlled experimental setup. Similar
to HuGoS [5], our online environment can capture all the interaction details
among participants throughout the game. Three versions of the game, respec-
tively allowing no verbal communication, local verbal (chat-based) communi-
cation and global verbal (chat-based) communication among participants were
designed, to allow for investigating the effects of communication medium and
scope on the emerging communication system and team performance.

318 H. Khodr et al.

2.1 Game Design

Game Mechanics. Our online multiplayer game is based on the Unity game
engine and the Photon Unity Networking [2] package for multiplayer games. The
game involves 6 players, each represented by an avatar which is chosen to be a
virtual robot [15] of a unique colour and a limited field of view set to 5% of the
total map size. The game’s goal is to move boxes to goal positions indicated by
red dots as fast as possible. There are a total of 12 boxes in the environment
whose positions are not all visible to all players, with some that a player can
move alone and others that require the joint action of 3 (medium boxes) or even
6 players. Players can control their avatars via the arrow keyboard keys. A player
can move a box by: 1) Pushing the box : the player’s avatar applies a repulsion
force on the box when it is inside the halo surrounding the box or by 2) Pulling
the box : the player’s avatar applies an attraction force on the box when it is
inside the halo surrounding the box and the SHIFT key is pressed. The game is
organized in three stages. In the first stage, each player is in a room alone and
must move a small box to its goal position to unlock a door and access the second
stage. In the second stage, three players are in the same part of the environment,
and they must move together two medium boxes, while the three others have the
same task in another part of the environment. In the third stage, all six players
are in the same space and must move two large boxes to their goals.

Game Deployment. The game is deployed on WebGL and accessible at
https://ants-cellulo-game.web.app. The advantage of using WebGL is that all
files are hosted on the website, thus allowing players to play the game via their
browsers, with no local download or installation needed. The game data we log
include: the positions and the ping of all movable objects in the game, the chat
messages, the timer. The data is logged every tenth of a second and uploaded
to a Firebase storage [1] every 1min. The game is standalone, self-explanatory
and can be played without the intervention of an experimenter.

Communications Affordances. We implement three versions of the game,
exclusively differing from one another in terms of the communication affordances
provided to the players:

1. Global Chat: In this condition, a chat is included in the game. All players can
communicate with everyone else by typing and receiving messages.

2. Local Chat: In this condition, only the players who are in the neighbourhood
of the sending player can receive the message. On the top of the chat box,
each player can see with whom they can communicate. The communication
range is set to be 20% of the dimension of field of view.

3. No Chat: In this condition, players cannot communicate through chat.

2.2 Experiment Design

We designed the study as a between-groups experiment, with the communication
affordance as manipulated variable (thus yielding the three conditions described

https://ants-cellulo-game.web.app

Effect of Communication Affordances on Collaboration Strategies 319

in Sect. 2.1) and team performance (here intended as the time taken to com-
plete the task) as main outcome variable. The study1 involved 108 participants
recruited via Prolific2 [3], an online recruitment platform. They self-organized
in teams of 6 as described in Sect. 2.1 and the teams were split equally and
randomly across the three conditions, thus yielding 6 teams per condition. We
collected age, gender, major and degrees as background info of the participants.
The mean age of all participants was 24.8 years old (SD = 5.9) with 39 females,
67 males and 2 others. The participants included 44 who finished high school,
33 with a Bachelor degree, 26 with Masters, 4 with PhD and 1 other.

3 Results

We compare quantitatively the teams’ performance in the three conditions in
terms of their time of completion. To complement the statistical analyses corre-
lating chat data with team performance, we implemented a replay tool allowing
us to perform qualitative observation of players’ behaviour during the game.

3.1 Effects of Communication Affordances on Team Performance

The mean time to complete the task, across all conditions, was 17.2 (±4.5) min.
The fastest team took 9.6min and the slowest one 25.5min. Although the Local
condition has the lowest average time among the three conditions, a Kruskal
Wallis3 test shows no significant difference in performance among the three con-
ditions (df = 2, H = 3.94, p = .14). This result is interesting as it contradicts the
common-sense hypothesis that having a (global) communication would lead to
better performance. While representing more than 100 participants, this analy-
sis (which is done at team level), actually only accounts for 6 data points per
condition: collecting more data in future studies will thus be crucial to either
confirm this result (i.e., the lack of an effect of the communication affordance on
performance) or reveal significant differences (e.g., between the local condition
and the others).

3.2 Emerging Communication System Analysis - Global Condition

Although no direct correlation was found between communication affordance and
team performance, a deeper analysis on the communication type which emerged
in each condition provides useful insights on the possible causes of that result.

First of all, in the Global condition, a significant positive correlation (Spear-
man’s ρ = .94, p = .005, power = .9) is found between the total number of
messages sent during the game and the time taken to complete the task. In
1 This study was approved by our institutions Human Research Ethics Committee

with reference number No 022-2021.
2 The average reward was set to 6 £/hr. A bonus incentive was given to groups who

finish the fastest.
3 Chosen since the normality assumption of the data is not satisfied.

320 H. Khodr et al.

Fig. 1. Global condition Fig. 2. Local condition

other words, better performing teams (low time) send less messages over chat.
At the same time, no significant correlation is found between the chatting fre-
quency (i.e. number of messages sent per minute, on average) and the time taken
to complete the task. These results suggest that (1) chatting more doesn’t seem
to help complete the task faster and rather (2) teams seem to chat “while” play-
ing, rather than “to” play, thus sending more messages when they take longer
to finish the game. In synthesis, global communication doesn’t seem to have an
impact on the teams’ ability to coordinate actions and perform the task better.

To complement the above analysis on the volume of the messages, we also
analyzed their content. Figure 1 shows the word cloud of all chats in the Global
condition. The two most recurrent words are “need” and “push”. The next recur-
rent words are “one”, “left”, and “pull”. This shows that the players mainly use
the chat to ask for help (“need”, “one”), or give orders for the actions to be done
related to the game (“push”,“pull”) and agree on directions (“left”).

3.3 Emerging Communication System Analysis - Local Condition

The total number of messages shared by teams in the Local condition is sig-
nificantly lower compared to the Global condition (ttest: t[10] = −2.3, p =.04,
Cohen-d = 1.33), thus suggesting that this communication modality, by design,
induces a smaller volume of messages to be shared.

Contrary to the Global condition, no significant correlation is found here
between the total number of messages sent during the game and the time taken to
complete the task. At the same time, no significant correlation is found between
chatting frequency and completion time either. Quite interestingly, however, a
median split reveals that the 3 top performing teams are also the ones with the
smallest overall number of messages sent as well as the lowest chatting frequency.

These results, somewhat hinting at the importance of sharing “the right infor-
mation at the right time” motivate us to look into the timing of the messages.
By comparing the game events with the chat messages, we notice two trends
concerning when a chat is initiated: 1) Prior to acting, e.g. before moving a box
or going on search for the goal position/missing players. 2) In response to cer-
tain events, e.g. to help a player or solve a conflict. Some examples are shown is

Effect of Communication Affordances on Collaboration Strategies 321

Table 1. Examples of chats initiated in response to an event/conflict

Sender Message Receiver(s)

Example 1 Green its stuck Red
Red pull with shift Green
Green oh ..

Example 2 Yellow from the top Orange, purple
Purple can’t fit Yellow, orange
Yellow and then left to right Orange, purple
Purple isn’t it better to push to left from the right Yellow, orange

Fig. 3. Emergent behaviours in the non-chat condition

Table 1. On average, teams had 2.3 chats per game initiated prior to acting and
2.8 initiated in response to an event/conflict, with the difference between the
two not being significant. Concerning the content of the messages, Fig. 2 shows
the word cloud of all chats in the Local condition.

3.4 Emerging Communication System Analysis - No Chat
Condition

In this condition, communication is only possible implicitly, via the movement of
the players’ avatars. The qualitative inspection of the games’ replays allowed us
to identify a number of emerging behaviours and communication mechanisms.

1. “Oscillating behaviour”: A player moves their avatar back and forth, in a way
which we hypothesize to be an indication of the direction in which they want
to go (Fig. 3a).

322 H. Khodr et al.

2. Once together, players stay and navigate together (Fig. 3b).
3. “Calling behaviour”: A player moves close to another player, stops, then

moves, to signal to the other player to follow them (Fig. 3c).
4. “Local voting system”: this behaviour is particularly noticeable when the 6

players need to decide which of the two large boxes to move first. If divided
between the two boxes, players in the minority group tend to go and join the
majority around the other box (Fig. 3d). This behaviour also appears when
choosing in which direction to move the box. Each player chooses one side of
the box and they eventually all converge to a same side.

4 Conclusion and Future Work

In this paper we study the effect of different communication affordances on
a collaborative task to better understand the role played by communication
medium and scope on multi-agent coordination and, concretely, the emergence
of communication systems and team performance. The task was developed as
an online multiplayer game where each player controls an avatar and the goal is
to move boxes to target positions. Some of the boxes require the joint action of
multiple players to be moved, thus requiring players’ coordination. We allow for
three types of communication within the game: a global chat among all players,
a local chat among players within a certain distance from each other and no
chat. In all conditions, no external communication among players is allowed.
The results of our experiment, involving 6 teams in each condition for a total
of 108 participants, show that there was no significant difference between the
three conditions in team performance (i.e., the time taken to complete the task).
Going deeper in each condition, we show few observed emergent behaviours and
implicit communication patterns done by the movement of the player when no
chat was allowed. In the global condition, a significant positive correlation is
found between the total number of messages and the time taken to complete the
task, suggesting that chatting is not necessarily helpful towards coordination.
Following a similar trend, the 3 best performing teams in the Local condition
were also the ones with the lowest number of exchanged messages, and the
lowest chatting frequency. Further observation of the game replays showed the
emergence of two distinct triggers for initiating communication: either to agree
on an action before taking it, or in response to a conflict/difficulty. A similar
qualitative analysis of the players’ behaviour in the No-Chat condition revealed
the emergence of signalling and coordination mechanisms, based on the avatars’
movements and for agreeing on an action.

Acknowledgements. This work was supported as a part of NCCR Robotics, a
National Centre of Competence in Research, funded by the Swiss National Science
Foundation (grant number 51NF40_185543). I thank my brothers, colleagues and
friends who participated in playing and testing the game.

Effect of Communication Affordances on Collaboration Strategies 323

References

1. Get started with cloud storage on web | firebase documentation. https://firebase.
google.com/docs/storage/web/start

2. Photon unity 3D networking framework SDKs and game backend | photon engine.
https://www.photonengine.com/pun

3. Prolific. quickly find research participants you can trust. https://www.prolific.co/
4. Bayindir, L., Şahin, E.: A review of studies in swarm robotics. Turk. J. Electr.

Eng. Comput. Sci. 15(2), 115–147 (2007)
5. Coucke, N., Heinrich, M.K., Cleeremans, A., Dorigo, M.: HuGoS: a virtual environ-

ment for studying collective human behavior from a swarm intelligence perspective.
Swarm Intell. 15(4), 339–376 (2021)

6. Khodr, H., Kianzad, S., Johal, W., Kothiyal, A., Bruno, B., Dillenbourg, P.: Allo-
Haptic: robot-mediated haptic collaboration for learning linear functions. In: 2020
29th IEEE International Conference on Robot and Human Interactive Communi-
cation (RO-MAN), pp. 27–34. IEEE (2020)

7. Marlow, S.L., Lacerenza, C.N., Paoletti, J., Burke, C.S., Salas, E.: Does team com-
munication represent a one-size-fits-all approach?: a meta-analysis of team com-
munication and performance. Organ. Behav. Hum. Decis. Process. 144, 145–170
(2018). https://doi.org/10.1016/j.obhdp.2017.08.001

8. Nölle, J., Fusaroli, R., Mills, G.J., Tylén, K.: Language as shaped by the environ-
ment: linguistic construal in a collaborative spatial task. Palgrave Commun. 6(1),
1–10 (2020)

9. O’Bryan, L., Beier, M., Salas, E.: How approaches to animal swarm intelligence
can improve the study of collective intelligence in human teams. J. Intell. 8(1), 9
(2020). https://doi.org/10.3390/jintelligence8010009

10. Pezzulo, G., Roche, L., Saint-Bauzel, L.: Haptic communication optimises joint
decisions and affords implicit confidence sharing. Sci. Rep. 11(1), 1–9 (2021)

11. Scott-Phillips, T.C., Kirby, S., Ritchie, G.R.S.: Signalling signalhood and the emer-
gence of communication. Cognition 113(2), 226–233 (2009). https://doi.org/10.
1016/j.cognition.2009.08.009

12. Selten, R., Warglien, M.: The emergence of simple languages in an experimental
coordination game. Proc. Nat. Acad. Sci. 104(18), 7361–7366 (2007). https://doi.
org/10.1073/pnas.0702077104

13. Svennebring, J., Koenig, S.: Building terrain-covering ant robots: a feasibility study.
Auton. Robot. 16(3), 313–332 (2004)

14. Wang, J., Chellali, A., Cao, C.G.: A study of communication modalities in a virtual
collaborative task. In: 2013 IEEE International Conference on Systems, Man, and
Cybernetics, pp. 542–546 (2013). https://doi.org/10.1109/SMC.2013.98

15. Özgür, A., et al.: Cellulo: versatile handheld robots for education. In: 2017 12th
ACM/IEEE International Conference on Human-Robot Interaction HRI, pp. 119–
127 (2017)

https://firebase.google.com/docs/storage/web/start
https://firebase.google.com/docs/storage/web/start
https://www.photonengine.com/pun
https://www.prolific.co/
https://doi.org/10.1016/j.obhdp.2017.08.001
https://doi.org/10.3390/jintelligence8010009
https://doi.org/10.1016/j.cognition.2009.08.009
https://doi.org/10.1016/j.cognition.2009.08.009
https://doi.org/10.1073/pnas.0702077104
https://doi.org/10.1073/pnas.0702077104
https://doi.org/10.1109/SMC.2013.98

Generating and Analyzing Collective
Step-Climbing Behavior in a Multi-legged

Robotic Swarm

Daichi Morimoto1(B), Motoaki Hiraga1, Kazuhiro Ohkura1,
and Masaharu Munetomo2

1 Graduate School of Advanced Science and Engineering, Hiroshima University,
Hiroshima, Japan

{morimoto,hiraga}@ohk.hiroshima-u.ac.jp, kohkura@hiroshima-u.ac.jp
2 Information Initiative Center, Hokkaido University, Hokkaido, Japan

Abstract. This paper focuses on generating and analyzing collective
step-climbing behavior in a multi-legged robotic swarm. The multi-legged
robotic swarm is expected to climb obstacles that are hard for a single
robot by using other robots as stepping stones. However, designing a
robot controller for a multi-legged robotic swarm becomes a challeng-
ing problem because it designs not only a gait for the basic movement
of robots but also the behavior of robots to exhibit collective behavior.
This paper employs the evolutionary robotics (ER) approach for design-
ing a robot controller that consists of a recurrent neural network. The
controllers are evaluated in the collective step-climbing task conducted
by computer simulations. The results show that the ER approach suc-
cessfully designed the robot gait to achieve the task. Additionally, the
results of the analysis confirm that the robot obtained the actions to
support other robots along with climbing other robots.

1 Introduction

Swarm robotics (SR) [2] is the study of how to design collective behaviors with
a large number of autonomous robots. The basic collective behaviors such as
aggregation [4,7], path formation [16], collective transport [8], and collective
decision-making [15,17] are discussed in SR. Many studies in SR are conducted
with flat fields, using mobile robots driven by wheels. In these studies, designers
can focus on designing collective behavior by reducing efforts on designing the
basic movement of the robot. However, the field where the robots can operate is
limited to relatively flat terrain. Therefore, the collective behavior is also limited
to the two-dimensional space.

This paper focuses on designing a three-dimensional collective behavior of
a multi-legged robotic swarm. The multi-legged robot is expected to operate in
rough terrain fields [13]. Additionally, the multi-legged robotic swarm is expected
to climb obstacles that are hard for a single robot by using other robots as step-
ping stones. The robot system for climbing other robots is discussed in modular
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 324–331, 2022.
https://doi.org/10.1007/978-3-031-20176-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_29&domain=pdf
https://doi.org/10.1007/978-3-031-20176-9_29

Generating and Analyzing Collective Step-Climbing Behavior 325

Fig. 1. The experimental environment. In this paper, the evolution process starts from
the situation where the robots can walk along the x-axis and form a line. The prelimi-
nary evolution for obtaining walking and forming a line is conducted like [11].

robots or cellular robotics [6,10,14]. Compared with related fields, the multi-
legged robotic swarm is expected to operate in a wide range of task scenarios by
improving the mobility of a unit robot.

On the other hand, designing a controller of a multi-legged robotic swarm
becomes a challenging problem because it requires not only a basic gait but
also the behavior of robots to exhibit collective behavior. This paper focuses on
the evolutionary robotics(ER) approach [12]. The ER approach is utilized for
designing a gait of a multi-legged robot [9,18]. The ER approach is also used
for designing collective behavior of a robotic swarm [4,16]. This paper is the
hybridization between designing a gait of a multi-legged robot and designing a
collective behavior of a robotic swarm using the ER approach. In this paper, the
recurrent neural network is utilized as the robot controller. The robot controller
is evaluated in a simple step-climbing task similar to [11]. The result shows
that the ER approach succeeded to generate a collective step-climbing behavior.
Additionally, not only the action of climbing objects but also the actions seem to
be useful for achieving the task(e.g., positioning next to other robots for making
the wide stepping stone, keeping a posture, and so on)are obtained. This paper
introduces measurement factors for the position and the orientation of robots and
analyzes the obtained behavior. The result shows that, in addition to climbing
objects, the actions to support other robots for achieving the task are obtained.

The rest of this paper is organized as follows. Section 2 describes the settings
of experiments, and Sect. 3 describes measurement factors. Section 4 shows the
results of the experiments. Finally, Sect. 5 concludes this paper.

2 Settings of the Experiment

This experiment aims to generate collective step-climbing behavior of a multi-
legged robotic swarm by using the evolutionary robotics approach. The exper-
iment also focuses on analyzing the obtained behavior. The experiments are
carried out in computer simulations with Bullet 3D physics engine [3].

326 D. Morimoto et al.

Fig. 2. Settings of the robot. Cyan dotted lines indicate the movable range of the joint.
The gray circular sector shows the visible range of the camera. (Color figure online)

Fig. 3. Structure of the robot controller.

2.1 Task Settings

Figure 1 shows the environmental settings of the experiment. In this paper, the
evolution process starts from the situation where the controller can make robots
walk and form a line. The target step is higher than a single robot. Therefore,
robots have to utilize other robots as stepping-stones for achieving the task.
The target step has an acute angle on the surface. The robots should keep their
posture for becoming a stepping stone. If the robot climbs the step, it will be
replaced at 5 m in front of the step and join the task again.

2.2 Robot Settings

The robot configuration is illustrated in Fig. 2. Each leg has two joints, and
therefore the robot has a total of twelve joints. The movable ranges of each
joint are shown by cyan dotted lines. The robots have a shell and a tail part
to support other robots climbing themselves. The robot is also equipped with
LEDs, a camera, infrared (IR) sensors, touch sensors, and an electric compass.
The camera has a visible range divided into six regions. Each region detects
the colored LEDs on the front and back of the robot independently; in total,
twelve binary signals are obtained. The value from the IR sensor is normalized
into [0,1]. IR sensors can distinguish between robots and other objects. Touch
sensors are equipped at the end of each leg. Each touch sensor returns 1 when it
detects collisions with other objects and 0 otherwise. The electric compass shows
sine and cosine values of the direction the robot is facing.

Generating and Analyzing Collective Step-Climbing Behavior 327

Fig. 4. Illustrations about the measurement factors. Left : The cuboid space specified
by Σ. Right : The robot’s situations corresponding to measurement factors.

2.3 Controller

The robot controller is illustrated in Fig. 3. The controller is the recurrent neural
network that contains direct connections from the input layer to the output layer.
In the output layer, twelve neurons decide the target angular velocity of joints,
and the remaining two decide the activation of LEDs. A total of 9360 synaptic
weights are optimized by a (μ, λ)-evolution strategy(ES) [1,5]. The numbers of
parents(μ) and offspring(λ) are 64 and 192, respectively. The fitness function
consists of three parts; fitness1 for walking, fitness2 for following the other
robots, and fitness3 for climbing the step. These settings are designed based on
[11]. This experiment mainly uses fitness3 for evolving step-climbing behavior.

3 Measurement Factors

This paper also focuses on analyzing obtained behavior of robots. The action
of robots in front of the step is important to understand the physical interac-
tions between robots. Therefore, Σ is introduced to describe the position and
orientation of robots in front of the step, which is defined as follows:

Σ =

⎧
⎨

⎩

1 if xΣ < x and z < zΣ and
|θroll| < θr Σ and |θpitch| < θp Σ and |θyaw| < θy Σ

0 otherwise
(1)

where x and z are the coordinate values of the robot. The θroll, θpitch, and θyaw
are the orientation angles of the robot. The xΣ, zΣ, θr Σ, θp Σ, and θy Σ are
threshold values. The Σ judges whether or not the robot is standing in front of
the step and facing toward the step. Figure 3 shows the cuboid space specified by
Σ. The thresholds are set as follows; xΣ = 15.2 [m], zΣ = 0.19 [m], θr Σ = 40[deg],
θp Σ = 30[deg], θy Σ = 60[deg].

Four measurement factors are introduced for detecting the situations of
robots. Figure 3 illustrated the robot’s situations corresponding to measurement
factors. These situations are determined by the observation of robots in prelim-
inary experiments. The Mkp is the measurement of keeping the posture of the
robot, which is calculated by the following equations:

Mkp =
1

Nr

T∑

t

Nr∑

i

fkp,t,i (2)

328 D. Morimoto et al.

fkp,t,i =

{
θpitch,i if the robot i satisfies Σ = 1 at the timestep t

0 otherwise

where θpitch,i is the pitch angle of the ith robot. Mkp is the average pitch angle
among robots that satisfy Σ = 1. If the robots keep their posture, Mkp will
become negative or close to zero based on the pitch angle defined in Fig. 2.

The Mpn2 and Mpn3 are measurements for the spatial arrangement of robots
in front of the step. Mpn2 is calculated by the following equations:

Mpn2 =
T∑

t

fpn2,t (3)

fpn2,t =

⎧
⎪⎪⎨

⎪⎪⎩

1 if robot i, j(i �= j) satisfy Σ = 1 and
θpitch,i, θpitch,j ∈ (θp pn, θp pn) and
||xi − xj ||2 < rpn2

0 otherwise

where θp pn and θp pn are thresholds about the pitch angle. The rpn2 is the
threshold for the distance between robot i and j. The absolute values of θp pn

and θp pn are set to smaller values than the θp Σ. Therefore, Mpn2 sets a more
narrow range about the pitch angle than Σ. The Mpn2 detects the situation where
two robots are positioned next to each other, as illustrated at Mpn2 of Fig. 3.
The Mpn2 is calculated when just two robots satisfy Σ = 1. Each thresholds are
set as follows; θp pn = −45[deg], θp pn = 15[deg], rpn2 = 0.8 [m].

The Mpn3 detects the situation where three robots are positioned next to each
other, as illustrated in Fig. 3. Mpn3 is calculated by the following equations:

Mpn3 =
T∑

t

fpn3,t (4)

fpn3,t =

⎧
⎪⎨

⎪⎩

1 if robot i, j, k(i �= j �= k) satisfy Σ = 1 and
θpitch,i, θpitch,j , θpitch,k ∈ (θp pn, θp pn)

0 otherwise.

The values of θp pn and θp pn are the same as Mpn2. The Mpn3 is calculated when
just three robots satisfy Σ = 1. The Mpn2 and Mpn3 show the total timesteps
that robots are placed like Mpn2 and Mpn3 in Fig. 3.

The Mto detects the turnovered robots, which is calculated by the following:

Mto =
1

Nr

T∑

t

Nr∑

i

fto,t,i (5)

fto,t,i =

{
1 if θr to < |θroll,i|
0 otherwise

where θroll,i is the roll angle of the ith robot. The θr to is the threshold of the
turnover. θr to is set to 135[deg]. The Mto is calculated regardless of the Σ.

Generating and Analyzing Collective Step-Climbing Behavior 329

Fig. 5. The number of robots that have climbed the step. The dashed lines are mean
values over ten evolution trials. The solid lines show the best run.

Fig. 6. The transitions of measurement factors. All measurement factors are calculated
as the mean value of the population. Dashed lines are the results of each trial. The
black solid line is the mean value over ten evolutionary trials.

4 Results and Discussion

In this paper, a total of ten evolutionary processes are conducted. Figure 5 shows
the number of robots that have climbed the step in each generation. Figure 5
shows the evolutionary robotics approach succeeded to evolved a robot con-
troller for achieving the task. Fig. 6 shows the transitions of measurement fac-
tors. Figure 4 shows the mean value of Mkp decreased. This means the robots
stopped tilting forward at the front of the step and kept their posture flat or
behaved like a slope. This behavior seems to be better for achieving the task
because the robot tilting forward becomes an additional obstacle. The values of
Mpn2 and Mpn3 are shown in Fig. 4 and Fig. 4. The value of Mpn3 becomes higher
than Mpn2. This shows that the situation of Mpn3 occurred more frequently in
evolutionary processes. Figure 4 shows that Mto increased steeply in the initial
generations and slightly decreased after around 500 generations. In the initial
generation, the robots cannot climb the step. Therefore, robots do not turn over
frequently. Through the evolution process, robots tried to climb other robots or
the step, and the risk of turnover also has increased. Subsequently, the turnovers
are decreased by the selection pressure. The result of measurement factors shows
that the robot obtained behavior to support other robots along with behavior
to climb objects.

330 D. Morimoto et al.

Fig. 7. The box plot of the correlation coefficients. Each box consists of 100 correlation
coefficients. Each coefficient is calculated by 100 scores of each controller.

For further understanding of the behavior, evolved controllers are re-
evaluated. The controllers with the best 10 fitnesses in each evolutionary process
are selected. A total of 100 controllers are tested for 100 trials. The correlation
coefficients between measurement factors and the performance of the task are
summarized in Fig. 7. The result shows that the correlation between Mpn2 and
the performance is relatively weaker than other measurement factors. Figure 6
shows that the situation of Mpn3 occurs more frequently than Mpn2. Therefore,
Mpn2 seems to have little effect on the performance. The remaining factors(Mkp,
Mpn3, and Mto) indicate a correlation coefficient of approximately 0.4 with a pos-
itive or negative sign. Figure 7 shows that the robot behaviors corresponding to
Mkp, Mpn3, and Mto contribute to achieving the task. However, correlations are
not so strong.

5 Conclusions

This paper focuses on generating and analyzing a collective step-climbing behav-
ior in a multi-legged robotic swarm. The evolutionary robotics approach is
applied to designing a robot controller. The results show that the (μ, λ)-ES
successfully evolved the robot controller. In addition, measurement factors are
introduced to analyze the robot’s behavior. The results show that the actions to
support other robots for achieving the task are obtained. The results also show
that the measurement factors are correlated to the achievement of the task.

This paper only focused on limited situations for supporting other robots.
The next question is how many kinds of behavior are switched during the task,
and what is the trigger for switching them. Additionally, contributions from the
embodiment of robots will be discussed in future work.

Acknowledgments. This work was partially supported by the Hokkaido University
Information Initiative Center and by JSPS KAKENHI Grant Number JP21J23095.

Generating and Analyzing Collective Step-Climbing Behavior 331

References

1. Beyer, H.G., Schwefel, H.P.: Evolution strategies-a comprehensive introduction.
Nat. Comput. 1(1), 3–52 (2002)

2. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

3. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games,
robotics and machine learning. (2016–2021). https://pybullet.org

4. Dorigo, M., et al.: Evolving self-organizing behaviors for a swarm-bot. Autono.
Rob. 17(2–3), 223–245 (2004)

5. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer,
Cham (2003)

6. Fukuda, T., Kawauchi, Y.: Cellular robotic system (CEBOT) as one of the real-
ization of self-organizing intelligent universal manipulator. In: Proceedings., IEEE
International Conference on Robotics and Automation, pp. 662–667. IEEE (1990)

7. Gauci, M., Chen, J., Dodd, T.J., Groß, R.: Evolving aggregation behaviors in
multi-robot systems with binary sensors. In: Ani Hsieh, M., Chirikjian, G. (eds.)
Distributed Autonomous Robotic Systems. STAR, vol. 104, pp. 355–367. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55146-8 25

8. Groß, R., Dorigo, M.: Towards group transport by swarms of robots. Int. J. Bio-
Inspired Comput. 1(1–2), 1–13 (2009)

9. Hornby, G.S., Takamura, S., Yamamoto, T., Fujita, M.: Autonomous evolution of
dynamic gaits with two quadruped robots. IEEE Trans. Robot. 21(3), 402–410
(2005)

10. Malley, M., Haghighat, B., Houe, L., Nagpal, R.: Eciton robotica: Design and
algorithms for an adaptive self-assembling soft robot collective. In: 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp. 4565–4571.
IEEE (2020)

11. Morimoto, D., Hiraga, M., Shiozaki, N., Ohkura, K., Munetomo, M.: Evolving
collective step-climbing behavior in multi-legged robotic swarm. Artif. Life Robot.
27, 1–8 (2022). https://doi.org/10.1007/s10015-021-00725-8

12. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-organizing Machines. MIT press, Cambridge (2000)

13. Ozkan-Aydin, Y., Goldman, D.I.: Self-reconfigurable multilegged robot swarms
collectively accomplish challenging terradynamic tasks. Sci. Rob. 6(56), eabf1628
(2021)

14. Romanishin, J.W., Gilpin, K., Rus, D.: M-blocks: momentum-driven, magnetic
modular robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 4288–4295. IEEE (2013)

15. Scheidler, A., Brutschy, A., Ferrante, E., Dorigo, M.: The k-unanimity rule for
self-organized decision-making in swarms of robots. IEEE Trans. Cybern. 46(5),
1175–1188 (2015)

16. Sperati, V., Trianni, V., Nolfi, S.: Self-organised path formation in a swarm of
robots. Swarm Intell. 5(2), 97–119 (2011)

17. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100
Kilobots: speed versus accuracy in binary discrimination problems. Auton. Agents
Multi-Agent Syst. 30(3), 553–580 (2016)

18. Valsalam, V.K., Hiller, J., MacCurdy, R., Lipson, H., Miikkulainen, R.: Construct-
ing controllers for physical multilegged robots using the ENSO neuroevolution
approach. Evol. Intell. 5(1), 45–56 (2012)

https://pybullet.org
https://doi.org/10.1007/978-3-642-55146-8_25
https://doi.org/10.1007/s10015-021-00725-8

Modeling Immune Search Through
the Lymphatic Network

Jannatul Ferdous1(B), G. Matthew Fricke1,2, and Melanie E. Moses1,3,4

1 Department of Computer Science, University of New Mexico, Albuquerque, USA
jannat@unm.edu

2 Center for Advanced Research Computing, University of New Mexico,
Albuquerque, USA

3 Biology Department, University of New Mexico, Albuquerque, USA
4 Santa Fe Institute, Santa Fe, USA

Abstract. The lymphatic system is a networked structure used by bil-
lions of immune cells, including T cells and Dendritic cells, to locate and
identify invading pathogens. Dendritic cells carry pieces of pathogens to
the nearest lymph node, and T cells travel through the lymphatic vessels
and search within lymph nodes to find them. Here we investigate how
the topology of the lymphatic network affects the time for this search
to be completed. Building on prior work that maps out the human lym-
phatic network, we develop and extend a method to infer the lymphatic
network topology of mice. We compare search times for the modeled
and observed topologies and show that they are similar to each other
and consistent with observed immune response times. This is relevant
for translating immune response times in mice, where most experimen-
tal work occurs, into expected immune response times in humans. Our
analysis predicts that for large systemic infections, the topology of the
lymphatic network allows immune response times to remain fast even as
animal mass increases by orders of magnitude. This work advances our
understanding of how the structure of the lymphatic network supports
the swarm intelligence of the immune system. It also elucidates general
principles relating swarm size and organization to search speed.

1 Introduction

Adaptive immunity evolved in vertebrates to recognize and remember novel
pathogens, enabling a faster response time to subsequent infections. In contrast
to most biological rates, which are systematically slower in larger animals (scal-
ing as M1/4, where M is body mass [2,11,26]), the adaptive immune response
time is relatively invariant across several orders of magnitude of mammalian
body mass [4,6]. Immune response is a swarm intelligence problem with billions
of interacting agents searching for pathogens without central control, and it is a
model for scale-invariant search in swarms.

T cells are adaptive immune cells that can recognize novel pathogens in
lymph nodes, and then replicate and disperse into tissues to find and kill cells
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 332–340, 2022.
https://doi.org/10.1007/978-3-031-20176-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_30&domain=pdf
https://doi.org/10.1007/978-3-031-20176-9_30

Modeling Immune Search Through the Lymphatic Network 333

infected by those pathogens. The movement of T cells through the lymphatic
system increases contact with antigens and amplifies the immune response [23].
Similar to eusocial insects, information transmission in this liquid brain [21] is
mediated through direct agent contact and chemical signals among agents that
navigate complex and varied environments [16].

Each T cell can bind to a particular subset of cognate antigens. Dendritic
cells (DCs) gather antigen from tissues, travel to and enter nearby lymph nodes
(LNs) through the lymphatic network, and display the antigen on their surfaces.
T cells search LNs for DCs displaying cognate antigen, and if a match is made,
the T cells activate, proliferate, and circulate to the site of infection where they
kill infected cells. The time it takes to initiate an adaptive immune response
depends on two factors: 1) the speed with which T cells travel through the
lymphatic system to LNs containing DCs displaying antigen, and 2) how quickly
T cells find those DCs once inside the LN.

In this work, we analyze T cell travel time through the lymphatic network to
find DC’s in mice and humans by extending the algorithm of Savinkov et al. [20],
that models only the human lymphatic networks. While most lab studies that
show how the immune system works are conducted on mice, most of the literature
on modeling the lymphatic network is based on humans. The lack of data makes
it challenging to build a general model of lymphatic networks for mice and
other mammals.The model parameters are updated based on best-fit values by
comparing empirically observed anatomical data with the graph resulting from
the algorithm. We expand the network metrics used by the algorithm to better fit
the model to empirical data. Using the inferred network model we compute the
expected time for T cells to find LNs containing DCs presenting cognate antigen.
We run a random walk search on the simulated and observed lymphatic networks
to find the average time T cells need to reach the LNs containing cognate DCs.
We find that the generated and actual anatomical graphs have similar statistics.
The resulting search time over the network is similar in mice and humans for
systematic or mass-dependent infections, but it is longer in humans than in mice
for small infections that only reach a single LN.

2 Related Work

Several studies have modeled the human lymphatic system [19,20,24]. In [24],
the authors use computational geometry to build graph models of the human
lymphatic network in order to explain the general features underlying the 3D
structural organization of the lymphatic system. The model is based on available
anatomical data (from the PlasticBoy project [1]), which estimates the lymphatic
system’s structure and analyzes the topological properties of the resulting mod-
els. In [20], the authors developed and implemented a computational algorithm
to generate the algorithm-based random graph of the human lymphatic system.
Some fundamental characteristics of the observed data-based graph [24] and the
algorithm-based graph of human lymphatic system graph models are analyzed.

In [27] Wiegel and Perelson hypothesize that LN number and size evolved to
minimize two competing goals: the time to transport antigen from an infected

334 J. Ferdous et al.

(a) (b)

Fig. 1. Comparison of simulated and observed lympahtic networks. (a) Mouse lym-
phatic network graph based on anatomical data with 36 nodes and 49 edges. edges.
(b) Example simulated graph of the mouse lymphatic system. Algorithm parameters:
Nv = 36, Ninp = 13, Nl = 5, Pe = 0.851, Po = 0.66.

area to the nearest LN and the time for immune cells to find the antigen inside
the LN. Banerjee and Moses [3] use an ODE model to estimate that, empirically,
immune response times are independent of host body size.

3 Methods

3.1 Lymphatic Network Simulation Algorithm

Savinkov et al. [20] developed an algorithm that generates a random directed
human lymphatic network graph with no cycle from a reference human graph.
We extend their work by adding another step to the algorithm to simulate T
cells traveling through the circulatory system to enter LNs. The steps are given
in Algorithm 1. We used data from [9] to create a reference graph of mice to
compare with the simulated graph. Out of 5 input parameters in the algorithm,
three parameters, number of nodes Nv, number of input nodes Ninp, and number
of layers Nl are explicitly set to match the anatomy-based graph’s properties.
Based on the comparison metrics characterizing the topology of an anatomy-
based graph (described in Sect. 3.2), the value of the other two parameters,
probability of new edge creation Pe at each step and probability that the created
edge connects nodes from different layers Po, are set to produce graphs with
similar topological structures.

3.2 Comparing Simulated Graphs to Observation

We have used the following topological properties defined in [20] to compare the
observed graph with the current state of the simulated graph for humans and
mice: The number of input nodes Ninp, Maximum degree of graph ΔG, Girth
of the graph, g, The diameter of the graph, D, Radius of the graph, r, Average
path length, IG, The energy of the graph, En, The spectral radius of the graph,
ρ, Edge density of the graph, ρd, The clustering coefficient, C (transitivity). We
also introduced the following graph properties to the list: Number of separators,
nsep: is the number of nodes removal of which disconnects the graph ndegi

: is
the number of nodes with degree i. Gl: is the average degree of of nodes in each
layer l and, nl: is the number of nodes in each layer l.

Modeling Immune Search Through the Lymphatic Network 335

Since number of node connections and layers are larger in larger animals,
ndegi

and nl are also larger. Thus, the objective function has more parameters
in larger animals. To produce a similar graph that matches these topological
properties, we tune the parameters Pe and Po. We collect these parameter values
for the minimum value of the objective function, ω. For a number of properties,
the objective function is defined as:

ω =
a∑

i=1

(
si(G) − si(G∗)

si(G∗)
)2 (1)

where s(G) = (n,m, ninp,ΔG, g,D, r, IG, En, ρ, ρd, C, nsep, ndeg1 , .., ndegmax
, G1,

.., Gl, n1, .., nl)T

This objective function penalizes the topological discrepancies of graph G
from the target graph G∗ and weighs them with (si(G∗))−2 to bring discrepancies
of different components of vector s to a single scale.

3.3 Search Algorithm

To run the search algorithm, we randomly choose a source node ns from which
the T cell initiate a random walk through the graph. We consider that the
LNs that contain matching DC, designated V ′ ∈ V , are distributed within the
lymphatic network in three ways for different kinds of infections.

– Random Systemic: Systemic infections can spread to multiple lymph nodes
throughout the body, i.e., in HIV. For this case, we assume that the V ′ are
distributed randomly over the lymphatic network.

– Clustered: A cluster of LN can contain antigen if an animal gets a vaccine
injection with inoculation dose adjusted to size, or if an animal breathes in
a respiratory virus where the amount of inhaled virus is proportional to lung
size. For such cases, we distribute the V ′ nodes in clusters. We randomly
pick one node and run Breadth-First Search (BFS) to make the clusters. We
exclude the circulation node 0 from being in the cluster.

– Single: If an animal steps on a thorn and gets a local infection of a fixed size,
or a mosquito bite transmits an illness into the blood, then the same small
amount of infection is injected into the animal regardless of its size. For both
of these cases, we randomly pick one node |V ′| = 1 that contain cognate DC.

We compute the time it takes for each T cell using a random walk to reach
the first LNs that contains DCs holding cognate antigen. We follow Perelson and
Weigel’s prediction that the number of LNs in mammals scale with ∝ M

1
2 [18],

for the random systemic and clustered scenarios, |V ′| ∝ M
1
2 . For the uniform

random and clustered V ′, we assume the number of LNs that are bearing the cog-
nate antigen-bearing DCs (|V ′| are 5 and 275 in mice and humans, respectively
representing 7% and 3.6% of LN.

336 J. Ferdous et al.

Table 1. Summary statistics for observed and simulated graphs of mice and humans
characterizing their topological properties. For the predicted graphs, we present the
statistics obtained over 10,000 graphs for human and 500 for mice.

Parameter Mice observed

graph

Mice simulated

graph

Human observed

graph

Human simulated

graph

G(n, m) (36, 53) (36, 49) (996, 1117) (996, 1029)

Ninp 13 13 357 357

Maximum degree, ΔG 24 26 8 16

Girth, g 3 3 3 4

Diameter, D 4 4 40 39.96

Radius, r 3 3 30 28

Average path length, lG 1.34 1.42 12.79 15.3

Energy, En 37.17 36.40 1224.5 1190

Spectral radius, ρ 5.81 5.91 3.51 4.18

Edge density, ρd 0.04 0.04 0.001127 0.001038

Clustering coefficient, C 0.12 0.11 0.027 0.0004

Number of separators, nsep 5 9 401 496

4 Results

4.1 Modeled Lymphatic Network

We run the extended algorithm to generate lymphatic networks for humans and
mice. Figure 1a, and Fig. 1b show the resulting observed and simulated graphs
for mice. The first three parameters of the algorithm for mice are collected
from [9]. For P0 and Pe, we take their values that give the objective function’s
minimum value in Eq. (1). They are compared numerically in Table 1 based on
the topological properties, described in Sect. 3.2.

From Table 1 we can see that the properties are very similar for observed
and simulated graphs for mice and humans. Some properties vary slightly, but
the statistic from the objective function gives the overall best match of the
simulated graph to the observed graph. We collect the time data the DC takes
in humans and mice respectively to reach the LN containing cognate T cell from
the infected area after running the random walk, shown in Fig. 2. The time for
T cells to encounter a target LN is shorter in humans than in mice for random
and clustered target LNs. That is because there are more target LN in humans,
and we consider only the time to find the first target LN. The search to find
a single V ′, takes much longer in humans because there are many more LN in
humans (996) compared to mice (36).

4.2 Predicted Time

We compare the search time of a single T cell to find a target LN to actual
immune response times to determine if our model predictions are reasonable.
We calculate times from hop counts and estimates of the time between hops,

Modeling Immune Search Through the Lymphatic Network 337

Fig. 2. Average Number of Hops to Find a LN with Cognate Antigen after
running the random walk on 500 observed and algorithm-based graph of mice and
human. The random bars represent that |V ′| are randomly distributed over the
graphs. There are 275 LNs containing the cognate T cell out of 996 LNs in human
and 5 LNs out of 36 LNs in mice. The cluster bars represent |V ′| are distributed in
clusters over the graphs. There are 275 LNs containing the cognate T cell out of 996
LNs in human and 5 LNs out of 36 LNs in mice. The single bars represent that there
is only one LN (|V ′| = 1) chosen at random carrying the cognate T cell out of 996 LNs
in human and 36 LNs in mice.

shown in Table 2. Since we only model a portion of the overall adaptive immune
response, that is, the time taken for a single T cell to conduct a random walk
through the lymphatic network to find an infection, we cannot predict the speed
of the overall immune response. For mice LN mean residence time in LN per
hop is approximately 13 h [23], and for sheep 19 h [14]. Since sheep and humans
masses are similar (40 kg–160 kg for sheep [5] and 43 kg–140 kg for humans) [25],
we approximate residence times in humans with those of sheep. Multiplying these
residence times by the hop counts from Fig. 2 results in Table 2. We find that
the predicted time for a single T cell to find a LN with cognate antigen is on the
same order as observed immune response times for systemic infections in mice
and humans. According to [7,10,15,17,22] the mean adaptive immune response
time in mice for influenza and LCMV infection is 5.3 days and in humans for
SARS-CoV2 its 5.1 days [8,12,13]. This means that for systemic or whole-organ
infections (where the number of LN increases with body mass), typical T cells
can find the a LN with antigen during the time available to proliferate and
amplify the growing immune response. In contrast, the time to find a single LN
with antigen is orders of magnitude longer. This suggests that not many T cells
would reach the single LN during the time of adaptive immune amplification.
However, in small infections, a global response is likely not to be needed. We
expect the T cells that reside in the local LN to be sufficient to respond to small
local infection [3]. The actual timing depends on many factors, including the
fraction of LN containing target DCs, V ′ and the number of cognate T cells
searching for those DCs. We do not consider lymph vessel or blood residency
times in these estimates, because those times are small relative to the time
within LN [23].

338 J. Ferdous et al.

Table 2. Predicted times for T cell to enter LN containing cognate DC based on hop
count. H. sapiens and M. musculus LN residence times are taken to be 19 h. Time
given in days (d).

M. musculus H. sapiens

Observed Simulated Observed Simulated

Random Clustered Random Clustered Random Clustered Random Clustered

Hops 11 15 9.3 13 3.8 4.1 3.9 3.4

Time 5.9 d 8.3 d 5 d 7 d 3 d 3.3 d 3 d 2.7 d

5 Discussion

We simulated the lymphatic network for mice, ran a random walk process on the
resulting graph, and predicted the time for a typical T cell, searching that graph
for a LN with cognate antigen. We examined three scenarios corresponding to
different infection patterns: random systemic infection, clustered infection, and
infection in a single LN. Our results show that the time for each T cell to search
for clustered and randomly distributed systemic infections in lymph nodes are on
the same order as observed immune response times to systemic infections such
as influenza and COVID-19 in humans and mice. In contrast, the time for a T
cell to find a single LN is far longer, requiring thousands of network hops that
would take years of search time in humans or a month in a mouse. However,
we suggest that such long search times for small localized infections may be
adaptive. For systemic infections that require a large response, T cells quickly
discover LN with DCs presenting antigen, but T cells are not recruited to small
local infections when they are not needed – local infections are responded to
only by the small number of T cells that already reside in the lymph node where
the infection is presented on DC.

This analysis shows that the physical structure of the lymphatic network
facilitates scale invariant immune response. For large and systemic infections
that require a large and fast response, T cells navigate the lymphatic network
to find infected LN equally fast in large and small animals. In one sense, the
adaptive immune system exemplifies the kind of decentralized control typical in
swarm intelligence: immune response is fast and adaptable based on the inde-
pendent action of billions of immune cells that communicate locally and navigate
complex tissue environments. However, the decentralized search is constrained
by the network structure of the lymphatic system that provides a form of global
guidance in physical space. That structure contributes to the extraordinary scal-
ability of response.

Acknowledgements. We thank the UNM Center for Advanced Research Computing,
supported in part by the NSF, for high performance computing resources, and NSF
awards 2030037 & 2020247 for funding.

Modeling Immune Search Through the Lymphatic Network 339

References

1. Human lymphatic system 3D model. https://www.plasticboy.co.uk/store/Human
Lymphatic System no textures.html. Accessed 30 Apr 2022

2. Banavar, J.R., et al.: A general basis for quarter-power scaling in animals. Proc.
Natl. Acad. Sci. 107(36), 15816–15820 (2010)

3. Banerjee, S., Moses, M.: Scale invariance of immune system response rates and
times: perspectives on immune system architecture and implications for artifi-
cial immune systems. Swarm Intell. 4(4), 301–318 (2010). https://doi.org/10.1007/
s11721-010-0048-2

4. Banerjee, S., Perelson, A.S., Moses, M.: Modelling the effects of phylogeny and
body size on within-host pathogen replication and immune response. J. R. Soc.
Interface 14(136), 20170479 (2017)

5. Burrill, M.J.: Sheep. In: World Book. World Book Inc (2004)
6. Cable, J.M., Enquist, B.J., Moses, M.E.: The allometry of host-pathogen interac-

tions. PLoS ONE 2(11), e1130 (2007)
7. De Boer, R.J., Homann, D., Perelson, A.S.: Different dynamics of cd4+ and cd8+ t

cell responses during and after acute lymphocytic choriomeningitis virus infection.
J. Immunol. 171(8), 3928–3935 (2003)

8. Iyer, A.S., et al.: Dynamics and significance of the antibody response to sars-cov-2
infection. MedRxiv (2020)

9. Kawashima, Y., Sugimura, M., Hwang, Y.C., Kudo, N.: The lymph system in mice.
Jpn. J. Vet. Res. 12(4), 69–78 (1964)

10. Keating, R.: Potential killers exposed: tracking endogenous influenza-specific cd8+
t cells. Immunol. Cell Biol. 96(10), 1104–1119 (2018)

11. Kleiber, M.: Body size and metabolic rate. Physiol. Rev. 27(4), 511–541 (1947)
12. Koblischke, M., et al.: Dynamics of cd4 t cell and antibody responses in covid-19

patients with different disease severity. Front. Med. 7 (2020)
13. Lei, Q., et al.: Antibody dynamics to SARS-COV-2 in asymptomatic COVID-19

infections. Allergy 76(2), 551–561 (2020)
14. McDaniel, M.M., Ganusov, V.V.: Estimating residence times of lymphocytes in

ovine lymph nodes. Front. Immunol. 10, 1492 (2019)
15. Miao, H.: Quantifying the early immune response and adaptive immune response

kinetics in mice infected with influenza a virus. J. Virol. 84(13), 6687–6698 (2010)
16. Moses, M.E., Cannon, J.L., Gordon, D.M., Forrest, S.: Distributed adaptive search

in t cells: lessons from ants. Front. Immunol. 10, 1357 (2019)
17. Owens, S.L., Osebold, J., Zee, Y.: Dynamics of b-lymphocytes in the lungs of mice

exposed to aerosolized influenza virus. Infect. Immun. 33(1), 231–238 (1981)
18. Perelson, A.S., Wiegel, F.W.: Scaling aspects of lymphocyte trafficking. J. Theor.

Biol. 257(1), 9–16 (2009)
19. Reddy, N.P., Krouskop, T.A., Newell, P.H., Jr.: A computer model of the lymphatic

system. Comput. Biol. Med. 7(3), 181–197 (1977)
20. Savinkov, R., Grebennikov, D., Puchkova, D., Chereshnev, V., Sazonov, I.,

Bocharov, G.: Graph theory for modeling and analysis of the human lymphatic
system. Mathematics 8(12), 2236 (2020)

21. Solé, R., Moses, M., Forrest, S.: Liquid brains, solid brains (2019)
22. Tamura, S.i., Kurata, T.: Defense mechanisms against influenza virus infection in

the respiratory tract mucosa. Jpn. J. Infect. Dis. 57(6), 236–47 (2004)
23. Textor, J., et al.: Random migration and signal integration promote rapid and

robust t cell recruitment. PLoS Comput. Biol. 10(8), e1003752 (2014)

https://www.plasticboy.co.uk/store/Human_Lymphatic_System_no_textures.html
https://www.plasticboy.co.uk/store/Human_Lymphatic_System_no_textures.html
https://doi.org/10.1007/s11721-010-0048-2
https://doi.org/10.1007/s11721-010-0048-2

340 J. Ferdous et al.

24. Tretyakova, R., Savinkov, R., Lobov, G., Bocharov, G.: Developing computational
geometry and network graph models of human lymphatic system. Computation
6(1), 1 (2017)

25. Walpole, S.C., Prieto-Merino, D., Edwards, P., Cleland, J., Stevens, G., Roberts,
I.: The weight of nations: an estimation of adult human biomass. BMC Pub. Health
12(1), 1–6 (2012)

26. West, G.B., Brown, J.H., Enquist, B.J.: A general model for the origin of allometric
scaling laws in biology. Science 276(5309), 122–126 (1997)

27. Wiegel, F.W., Perelson, A.S.: Some scaling principles for the immune system.
Immunol. Cell Biol. 82(2), 127–131 (2004)

Optimization of a Self-organized
Collective Motion in a Robotic Swarm

Mazen Bahaidarah1,2(B), Fatemeh Rekabi Bana3, Ali Emre Turgut4,
Ognjen Marjanovic1, and Farshad Arvin3

1 Department of Electrical and Electronic Engineering,
The University of Manchester, Manchester, UK
mazen.bahaidarah@manchester.ac.uk

2 Department of Electrical and Electronics Engineering, King Abdulaziz University,
Jeddah, Saudi Arabia

3 Department of Computer Science, Durham University, Durham, UK
4 Center for Robotics and AI (ROMER), Middle East Technical University,

Ankara, Turkey

Abstract. A novel collective organization method is proposed in this
paper to improve the performance of the former Active Elastic Sheet
(AES) algorithm by applying the Particle Swarm Optimization tech-
nique. Replacing the manual parameters tuning of the AES model with an
evolutionary-based method leads the swarm to remain stable meanwhile
the agents make a perfect alignment exploiting less energy. The proposed
algorithm utilizes a hybrid cost function including the alignment error,
interaction force, and time to consider all the important criteria for perfect
swarm behavior. The Monte-Carlo simulation evaluated the algorithm’s
performance to establish its effectiveness in different situations.

1 Introduction

Flocking is a prevalent collective behavior that can be observed in many phe-
nomena [4]. The main idea is a group of organisms moving together cohesively
to form a particular shape using local interactions. Reynolds [18] has precisely
described the three key factors to attain the flocking mechanism, which are:
alignment, separation, and cohesion.

Vicsek model [19], presented in 1995, developed based on the self-propelled
particles approach to use orientations for velocity alignment and steering the
agents towards their neighbours’ headings. Several collective motion mod-
els [5,6,11] have considered the Vicsek model and mostly depend on sharing
orientations between the robots. Other studies, in contrast, did not rely on
exchanging robots’ orientation explicitly. For example in [15], collective motion
is attained due to pairwise repulsive forces and implicitly leads to the velocity-
alignment rule. In [10], isotropic agents interact using the inelastic collision
method without sharing orientation among agents. Although the approach is
applicable for simple systems, many practical challenges, such as energy con-
sumption, communication issues, and obstacle avoidance capability, persuade
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 341–349, 2022.
https://doi.org/10.1007/978-3-031-20176-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_31&domain=pdf
https://doi.org/10.1007/978-3-031-20176-9_31

342 M. Bahaidarah et al.

researchers to develop more sophisticated methods to improve collective behav-
ior in a realistic environment.

Ferrante et al. [8,9] introduced the Active Elastic Sheet (AES) flocking model
developed based on an elasticity approach. This approach is a position-based
model. Exchanging the relative positions solely between the neighbours is ben-
eficial in practical scenarios. Therefore, several studies have investigated the
feasibility of the AES method in swarm robotic systems. In [20], the AES model
is applied using a swarm of seven e-pucks robots to achieve self-organized col-
lective motion in a real-world scenario. This paper presents remarkable results
in the presence of measurement noise. However, it does not consider a specific
level of accuracy or energy consumption, and the suggested algorithm is not
capable of avoiding the obstacles merely. Accordingly, other studies endeavour
to add the obstacle avoidance feature utilising external forces related to the dis-
tance between the robots and obstacles [2,14]. Furthermore, in [17], two external
forces are added to the AES model to overcome the same problem. Although
these studies demonstrated substantial improvements regarding the original algo-
rithm, they did not investigate the effect of critical parameters on precision and
required power for long-term applications. In contrast, in [3], the AES model was
applied to a group of e-pucks using Webots simulator [16] to study the effect of
other factors, such as time and population size and investigated the scalability
of this approach. Nevertheless, this study did not consider energy consumption
a constraining factor for long-term scenarios.

Evolutionary techniques could play a significant role in optimizing the swarm
behavior by selecting the best value of the controller parameters to reduce the
robots’ energy consumption. The Particle Swarm Optimization (PSO) algo-
rithm [12] is widely used because of its simplicity, rapid convergence rate, and
the low computational burden. Several researchers have utilised PSO to tune
the flocking controllers’ parameters and optimize the swarm’s self-organization
behavior [13]. In [1], PSO is used in the multi-agent system to nominate an agent
in a cluster as the best solution to facilitate obtaining the system’s leader after-
wards to achieve collective motion. These results imply the PSO’s capability for
optimization purposes considered in this paper.

Accordingly, this paper attempts to establish the collective performance
improvement utilising PSO on the original AES model [8] and the optimized
version using Tabu Continuous Ant Colony System (TCACS) [17]. The sug-
gested approach generates a tuning strategy for specific parameters affecting the
energy consumption and accuracy level by applying the PSO. As a result, the
main contributions of this paper are summarised as follows: i) State and solve a
hybrid optimization problem to minimize the required power and maximize pre-
cision using the PSO, ii) Establish the effectiveness of the suggested optimization
method with the Monte-Carlo simulation approach.

2 Collective Motion

This section presents the theoretical background utilised to develop the opti-
mized AES model for collective control of a swarm system.

Optimization of a Self-organized Collective Motion in a Robotic Swarm 343

2.1 Active Elastic Sheet

This paper considers a swarm system of N robots that move in a two-dimensional
arena, where the motion of ith robot is determined by attraction-repulsion forces
originated from its closest neighbours. The robots’ positions �xi and orientations
θi can be calculated mathematically [8,9]. The robots are deployed in a perfect
environment and accordingly the noise level is negligible regarding to original
signals. Therefore, it is possible to eliminate the disturbance terms and make a
modified model as presented in Eq. (1) as follows:

�̇xi = (v0 + α �Fi.n̂i)n̂i , θ̇i = β �Fi.n̂
⊥
i , n̂i =

[
cos(θi) sin(θi)

]T
, (1)

According to Eq. (1), α and β are inverse transitional and rotational parame-
ters, and v0 is a biasing speed. n̂i is a unit vector pointing parallel to the heading
direction of the robot i, and n̂⊥

i is a unit vector pointing perpendicular to it. The
interactions between robot i and its neighbours si will generate a linear force
�Fi to maintain the distance among the swarm. This force can be obtained using
Eq. (2):

�Fi =
∑

j∈Si

− k

lij
(|�rij | − lij)

�rij
|�rij | , ψ =

1
N

∥
∥
∥
∥
∥

N∑

i=1

n̂i

∥
∥
∥
∥
∥

, (2)

where, k
lij

is the spring constant, and lij is the natural length that connects
robots i and j. The distance between ith and jth robots is represented as �rij =
�xj − �xi. The ith robot is connected with its neighbouring robots Si initially,
through virtual springs by predetermining the formation of the robots at t = 0 s.
Therefore, this spring connection will remain constant, regardless of the change
in distance between robots during the experiments.

The alignment of the entire group determines the collective flock’s perfor-
mance. The degree of alignment ψ is the metric used to show the alignment
status of the robots. The minimum value, (ψ = 0), indicates the robots are
non-aligned, and the maximum, (ψ = 1), means they are aligned perfectly.

According to [17], two main objectives should to be applied to maintain the
stability of the collective motion. Minimising the total force of each robot that
leads, and maximising the degree of alignment of the entire swarm. The PSO
algorithm is applied to tune the decision parameters α and β of the AES model
and achieve these two objectives.

2.2 Parameters Optimization

This section expresses the optimization procedure based on PSO approach and
the mechanism of the objective function.

344 M. Bahaidarah et al.

Fig. 1. The flowchart of PSO algorithm used in this study.

Particle Swarm Optimization (PSO). Each particle in a swarm is placed at
a random location in a search space to seek the optimal solution. The positions
and velocities of the particles will be updated to obtain better objective function
values. Therefore, the position x and the velocity v of each particle can be
calculated as follows:

vi
k+1 = w vi

k + c1 r1 (Pbest − xi
k) + c2 r2 (Gbest − xi

k) , (3)

The new particle position is calculated as (xi
k+1 = xi

k + vi
k+1) for i =

{1, 2, 3, . . . , N} where N is the swarm size, and k = {1, 2, 3, . . . , T} where T
is the number of iterations. r1 and r2 are random parameters between 0 and 1 to
make the PSO algorithm acts naturally. Pbest is best local position of a particle
i, and Gbest is the best global position of the entire swarm. The most significant
control parameters are: i) the inertia weight w, ii) acceleration constant c1 that
is related to the local best, and iii) acceleration constant c2 that is related to the
global best. The three control parameters have remarkable influence to the PSO
algorithm performance therefore, adjusting the proper values of the parameters
is crucial. Clerc and Kennedy [7] have introduced a mathematical model to cal-
culate the appropriate values of w, c1 and c2 by defining new parameters called
Constriction Coefficients as presented in Eq. (4):

χ =
2 k

|2 − φ −
√

φ2 − 4 φ| , (4)

where k value is any value from 0 to 1, and φ = φ1+φ2 in which (φ > 4). So, the
controller parameters will be obtained according to Eq. (4) as follows: the inertia
weight w = χ, first acceleration constant c1 = χ φ1, and the second acceleration
constant c2 = χ φ2. The flowchart of PSO mechanism is shown in Fig. 1.

Objective Function. Designing an objective function to optimize a particular
system is the key factor that influence the improvement of the system perfor-
mance. In this paper, three objectives are considered to enhance the AES flocking
behavior: i) Minimising the attractive/repulsive forces of each robot, ii) Maximis-
ing the degree of alignment, and iii) minimising the alignment time. As a result,

Optimization of a Self-organized Collective Motion in a Robotic Swarm 345

the mathematical expression of the uniform minimisation objective function is
as follows:

J =
Tmax∑

t=0

[

w1

N∑

i=1

Fi + w2 ψerror + w3 t2

]

(5)

As depicted in Eq. (5), Tmax is the simulation time in seconds and N is the
swarm size. Fi is calculated using Eq. (2), and ψerror = (1−ψ)2 is the difference
between the degree of alignment at time t that is calculated in Eq. (2) and 1
which represents the maximum value of alignment. w1, w2, and w3 are weighting
parameters of the objective function.

2.3 Experimental Setup

The “Mobile Robotics Simulation Toolbox” was used in Matlab to investigate
the performance of the collective motion. The robots locations are initialised with
random orientations to form a rectangular shape in an L×L arena. Accordingly,
robot’s status in the arena is represented as [x, y, θ]T . The essential parameters
have been initialised, such as the swarm size N = {60, 100}, arena length L =
70 m, the number of steps Tmax = 300 s, sensing radius R = 7.1 m.

Some assumptions are considered in this work: i) the simulations are con-
ducted without taking into account the effect of noises, ii) lij is set as the initial
distance between robot i and robot j. In this paper, a swarm of N = {60, 100}
robots are located in a square arena L × L in a random orientations and pre-
defined positions to form a rectangle shape. The experiments are conducted for
50 simulations, where each simulation runs from t = 0 to Tmax. In addition, the
configuration of PSO parameters is set to tune the decision parameters of the
AES model α and β. The maximum iteration number to explore in the search
space is 100, and the particle size is 200. For each point in the search space,
the objective function takes the force Fi and degree of alignment ψ as inputs,
and the cost values are output. Then, the PSO algorithm evaluates these values
to obtain the optimal solution. Three weighting parameters are defined in the
objective function w1, w2, and w3.

To verify the development of the AES method after applying the PSO algo-
rithm, we compare the performance of the original configuration of AES [8] and
the optimized version of AES using TCACS [17].

3 Results and Discussion

This study aims to reduce the required power consumption by maximising the
degree of alignment and minimising the force between the robots. Applying
the PSO algorithm resulted in the values for parameters as: α = 0.18082 and
β = 0.81649. In the experiments, the robots mainly deployed within a rectangle
shape for N = {60, 100} robots.

346 M. Bahaidarah et al.

This configuration gives a noticeable optimized outcomes compared to the
results obtained from the previous methods presented in [8,17]. The values of
w1, w2, and w3 are set according to the variation bound and the importance of
the corresponding criteria in the objective function.

Fig. 2. The collective motion of 60 robots for three different AES configurations: (a)
Original parameters, (b) TCACS parameters, and (c) PSO parameters.

Figure 2 demonstrates three different simulations to compare the configura-
tions mentioned previously. In Fig. 2(a), AES model runs using α = 0.01 and
β = 0.12 as suggested in [8]. It can be seen that the flock struggle to move cohe-
sively. In Fig. 2(b), AES model runs using α = 0.066 and β = 0.97 as suggested
in [17]. It shows remarkable improvement in comparison to Fig. 2(a), where shape
of the swarm stays steady, but at t = 300 s, the robots are not fully aligned. In
Fig. 2(c), it shows significant enhancement by using the optimized parameters,
α = 0.18082 and β = 0.81649. It is clear that the swarm alignment reaches the

Optimization of a Self-organized Collective Motion in a Robotic Swarm 347

best point in t = 300 s. The optimized AES model outperforms the other two
simulations, where the collective motion is fulfilled accurately.

Fig. 3. The results of 50 simulations of F and ψ for original AES (green), optimized
AES with TCACS (blue), and optimized AES with PSO (red) for N = 100 robots.
(Color figure online)

In Fig. 3, the green line represents the original AES model configurations,
the blue line depicts the AES model optimized by TCACS, and the red line
demonstrates the AES model using PSO for N = 100. The results of all imple-
mentations that are conducted in this study will be available in GitHub1. The
experiment is conducted for 50 simulations, each of which runs for t = 300 s.
Hence, in these shaded plots, the middle line is the mean value, the upper and
lower bounds introduce the third quartile and the first quartile respectively.
Figure 3, shows that the results of optimized parameters by PSO outperforms
the other two configurations, where the minimum value of the force is F = 2.51
and the maximum value of alignment is ψ = 0.95. The presented results also
suggest exceptional robustness against the variation in environmental conditions
causes different initial alignments for the robots. According to the results, it is
evident that applying the optimized decision parameters, reduced the required
power for the AES model to manipulate the swarm collective behaviour as pre-
cise as possible. Furthermore, reducing the internal energy level causes a much
smoother dynamic response and prevents the system from unnecessary transient
oscillations and makes the system work more coherently.

4 Conclusion

This paper addressed the development of the AES model that achieves the collec-
tive motion using an optimized elasticity approach for a swarm robotic system.
This study aims to utilize the PSO algorithm to optimize the value of AES
1 https://github.com/mbahaidarah/AES PSO.

https://github.com/mbahaidarah/AES_PSO

348 M. Bahaidarah et al.

decision parameters α and β, which will improve the robots’ motion, alignment,
and power consumption. Reducing the interaction forces between the robots
decreases the required energy and increases the swarm stability. The numerical
simulation results demonstrate that the collective motion is remarkably improved
for different swarm sizes compared to two other AES model configurations. In
the future, external forces will be added to control the movements and orienta-
tions of the swarm. In addition, real-robot implementation will be considered to
validate the proposed design for practical applications.

Acknowledgements. This work was partially supported by the EU H2020-FET
RoboRoyale (964492).

References

1. Ali, Z.A., Han, Z., Masood, R.J.: Collective motion and self-organization of a swarm
of UAVs: a cluster-based architecture. Sensors 21(11), 3820 (2021)

2. Ban, Z., Hu, J., Lennox, B., Arvin, F.: Self-organised collision-free flocking mech-
anism in heterogeneous robot swarms. Mob. Netw. Appl. 26, 1–11 (2021)

3. Ban, Z., West, C., Lennox, B., Arvin, F.: Self-organised flocking with simulated
homogeneous robotic swarm. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J.,
Gu, N. (eds.) CollaborateCom 2020. LNICST, vol. 350, pp. 3–17. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-67540-0 1

4. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraula, G., Bonabeau,
E.: Self-organization in biological systems. In: Self-organization in Biological Sys-
tems. Princeton University Press (2020)

5. Cavagna, A., et al.: Flocking and turning: a new model for self-organized collective
motion. J. Stat. Phys. 158(3), 601–627 (2015)

6. Chaté, H., Ginelli, F., Grégoire, G., Raynaud, F.: Collective motion of self-propelled
particles interacting without cohesion. Phys. Rev. E 77(4), 046113 (2008)

7. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in
a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

8. Ferrante, E., Turgut, A.E., Dorigo, M., Huepe, C.: Collective motion dynamics of
active solids and active crystals. New J. Phys. 15(9), 095011 (2013)

9. Ferrante, E., Turgut, A.E., Dorigo, M., Huepe, C.: Elasticity-based mechanism
for the collective motion of self-propelled particles with springlike interactions: a
model system for natural and artificial swarms. Phys. Rev. Lett. 111(26), 268302
(2013)

10. Grossman, D., Aranson, I., Jacob, E.B.: Emergence of agent swarm migration and
vortex formation through inelastic collisions. New J. Phys. 10(2), 023036 (2008)

11. Ihle, T.: Chapman–Enskog expansion for the Vicsek model of self-propelled parti-
cles. J. Stat. Mech: Theory Exp. 2016(8), 083205 (2016)

12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE
(1995)

13. Lim, S., Song, Y., Choi, J., Myung, H., Lim, H., Oh, H.: Decentralized hybrid
flocking guidance for a swarm of small UAVs. In: 2019 Workshop on Research,
Education and Development of Unmanned Aerial Systems (RED UAS), pp. 287–
296. IEEE (2019)

https://doi.org/10.1007/978-3-030-67540-0_1

Optimization of a Self-organized Collective Motion in a Robotic Swarm 349

14. Liu, Z., Turgut, A.E., Lennox, B., Arvin, F.: Self-organised flocking of robotic
swarm in cluttered environments. In: Fox, C., Gao, J., Ghalamzan Esfahani, A.,
Saaj, M., Hanheide, M., Parsons, S. (eds.) TAROS 2021. LNCS (LNAI), vol.
13054, pp. 126–135. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
89177-0 13

15. Menzel, A.M., Ohta, T.: Soft deformable self-propelled particles. EPL (Europhys.
Lett.) 99(5), 58001 (2012)

16. Michel, O.: Cyberbotics Ltd. WebotsTM: professional mobile robot simulation. Int.
J. Adv. Robot. Syst. 1(1), 5 (2004)

17. Raoufi, M., Turgut, A.E., Arvin, F.: Self-organized collective motion with a sim-
ulated real robot swarm. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds.)
TAROS 2019. LNCS (LNAI), vol. 11649, pp. 263–274. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-23807-0 22

18. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In:
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 25–34 (1987)

19. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase
transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)

20. Zheng, Y., Huepe, C., Han, Z.: Experimental capabilities and limitations of a
position-based control algorithm for swarm robotics. Adapt. Behav. 30, 19–35
(2020)

https://doi.org/10.1007/978-3-030-89177-0_13
https://doi.org/10.1007/978-3-030-89177-0_13
https://doi.org/10.1007/978-3-030-23807-0_22

Response Threshold Distributions to
Improve Best-of-N Decisions in
Minimalistic Robot Swarms

Swadhin Agrawal1(B) , Sujit P. Baliyarasimhuni1 ,
and Andreagiovanni Reina2

1 MOON Lab, IISER Bhopal, Bhopal, India
{swadhin20,sujit}@iiserb.ac.in

2 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
andreagiovanni.reina@ulb.be

Abstract. We aim to design algorithms that allow robot swarms to
solve the best-of-n problem using as little resources as possible. Our
minimalistic approach aims to create solutions suitable for simple robots
with fewer memory and computational requirements than the state of
the art algorithms require. While the long term goal is to implement
decentralised algorithms for best-of-n decision making based on hetero-
geneous response thresholds, here we focus on what threshold distribu-
tion allows the swarm to best distinguish between options’ qualities, in
order to select the option with the highest quality. Each robot estimates
the quality of a random option and gives a binary response—accept or
reject—depending on the quality being above or below its threshold. This
study investigates the normal distribution of thresholds that maximises
the probability that the majority of the swarm favours the best alterna-
tive. We conduct our analysis for various types of environments, by con-
sidering different options’ quality distributions and number of options.
Our results form the basis to develop future decentralised algorithms for
swarms of reactive binary robots able to make best-of-n decisions.

1 Introduction

The design of systems composed of minimalistic units can be advantageous to
operate in application scenarios where there are limitations on energy and equip-
ment [11,14,36]. For example, future nanorobots that operate in blood vessels
must follow behaviours based on minimalistic computation due to limitation
on their hardware. Similarly, environmental monitoring through biodegradable
robots with limited operational time-span benefits from minimalistic design for
affordable large-scale production. We aim to design minimalistic solutions for a
basic form of coordination in robot swarms, i.e. best-of-n decision making, where
the swarm must reach a consensus on the best option among n alternatives.

c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 350–359, 2022.
https://doi.org/10.1007/978-3-031-20176-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_32&domain=pdf
http://orcid.org/0000-0002-0245-0967
http://orcid.org/0000-0002-7297-1493
http://orcid.org/0000-0003-4745-992X
https://doi.org/10.1007/978-3-031-20176-9_32

Response Thresholds in Collective Decision Making 351

Several works investigated swarm robotics solutions for best-of-n prob-
lems [22,30]. Existing solutions that we believe have the fewest requirements on
the individual robots, in terms of communication, computation, and memory,
are based on simple voting algorithms combined with quality-based frequency
of communication [3,19,29,31,32,37]. Through these methods, robots search for
available options, and once they find one, they make an individual estimate of
the option’s quality and use this quality to regulate their communication fre-
quency. Robots keep memory of a single option (and its quality), and broadcast
to nearby robots the chosen option only (without quality). Robots update their
opinion based on other robots’ messages, and reach an agreement in favour of
the best option by sending messages with frequency proportional to the self-
estimated option’s quality. Despite the robots’ estimate are subject to measure-
ment errors, this strategy allows the swarm to filter out noise and achieve high
accuracy levels [20,28].

Our hypothesis is that methods based on heterogeneous response thresholds
can suffice to solve best-of-n problems and remove the need to modulate com-
munication based on quality, hence, removing the need to process and memorise
quality measurements. Behaviours based on response thresholds have a reactive
binary (yes/no) response determined by the stimulus intensity (or option qual-
ity) being above or below a threshold, and can be observed in several eusocial
insect species [8,18,24,25,27,34]. Despite individuals’ simplicity, systems com-
posed of response threshold units can display accurate and rational collective
behaviour [9,17,24,35], which is enabled by a crucial element of such systems,
the heterogeneity of their individuals, each having a different threshold [8,18].

The division of labour in ants, regulated by heterogeneous response thresh-
olds, has inspired the design of several multirobot systems to tackle task alloca-
tion problems [1,4,6,12,13,15,16,26]. However, despite its potential, only limited
attention has been devoted to apply response thresholds to the design of consen-
sus decision making systems [9,23]. While the long term objective is the deploy-
ment of minimalistic binary robots for best-of-n decisions, this paper only focuses
on the relationship between threshold distribution and environmental stimuli in
order to improve the collective ability to distinguish between options and select
the best. Understanding this relationship is the basis of future research aimed to
develop decentralised algorithms for autonomous binary robots that adapt their
thresholds to what is best for the given decision conditions.

2 Characterisation of the Problem

Robots operate in a world with n options, each characterised by its quality
{q1, q2, . . . , qn}. The qualities are random variables with probability distribution
function Dq; i.e. we assume that in a given environment the n options’ qualities
are randomly distributed according to Dq. We assume that the swarm is com-
posed of S = n × m robots that operate in a symmetric environment, hence,
during the exploration of the environment, the robots are equally likely to dis-
cover any of the n options and distribute in n subgroups of similar size ≈ m,

352 S. Agrawal et al.

with each subgroup estimating the quality of one option. To reduce variability
among experiments, we fix the size of all robot subgroups to exactly m. Robots
are characterised by a response threshold h which is a stochastic variable with
Gaussian probability distribution Dh = N (μh, σh). Each robot either accepts or
rejects the option that it has estimated by comparing the estimated quality q̃i
with its response threshold (accepts if q̃i ≥ h, otherwise, rejects the option). For
simplicity, but without loss of generality, we do not assume estimation errors
(q̃i = qi). Our vision is that robots which accepted an option will engage in
voting in support of that option, while robots which rejected the option will not
vote. Previous studies showed that simple local voting mechanisms (e.g. the voter
model [5,10]) can consistently lead to a consensus in favour of the option that is
voted by the initial relative majority [21]. While this study does not include the
voting phase, we aim to obtain a proportion of acceptance across the n available
options that will allow the voting process to select the best option. In this study,
a process is considered successful if the most accepted option (i.e. the largest
number of robots accepted it) matches the highest quality option. Whenever
more than one option has the maximum number of accepting robots, one of the
options in the tie is chosen at random. When no robots accept any option—
i.e. all robots have their threshold above the estimated quality—the process is
considered unsuccessful as no robot will be able to vote for any options.

Our goal is to identify what values of μh and σh (i.e. which response threshold
distribution Dh) maximise the probability of success given a known number of
options n and distribution of options’ quality Dq. Past experiments only consid-
ered Gaussian distributions of the options’ qualities [9,24,35], however, environ-
ments with other distributions may exist. In our analysis, we consider three types
of quality distributions Dq ∈ {U , N , K}: the uniform distribution U(μq, σq), the
Gaussian distribution N (μq, σq), and the bimodal distribution K(μ′

q, μ
′′
q , σ′

q, σ
′′
q).

The bimodal distribution K(μ′
q, μ

′′
q , σ′

q, σ
′′
q) models environments with subgroups

of good or bad options, that we implement as the sum of two Gaussians with
equal standard deviation σq = σ′

q = σ′′
q and mean μ′

q = μq + δ and μ′′
q = μq − δ

for a fixed δ = 2.5. Therefore, hereafter we indicate K(μq, σq) in terms μq and σq

only. It is out of the scope of this study to implement the voting algorithm or let
the robots autonomously set their thresholds; here we only focus on understand-
ing which threshold distribution improves the ability to distinguish options.

Highest Average Rate of Success (HARS). In order to study the relationship
between the probability distribution functions (PDFs) of the options’ qualities
Dq and of the robots’ thresholds Dh, we run simulations for a large set of com-
binations of the two PDFs (i.e. by varying their mean {μq, μh} and standard
deviation {σq, σh}) and computing the average rate of success (i.e. the propor-
tion of successful runs) for each combination. All our simulation code is available
at [2]. The average rate of success is displayed as colourmaps in Fig. 1. To iden-
tify which value of μh (or σh) maximises the average rate of success for a given
μq (or σq), we compute the highest average rate of success (HARS), which is the
simplest curve (in all considered cases, a straight line) that traverses the region
with the highest success rate. We computed the HARS line using a standard

Response Thresholds in Collective Decision Making 353

Fig. 1. We test all combinations of the mean options’ quality μq ∈ [0, 15] and the mean
response threshold μh ∈ [0, 15], and we report the average rate of success (500 runs
per combination) as a colourmap, for Dh = N (μh, σh) and Dq = N (μq, σq). We fix
swarm size to S = 100n and standard deviations to equal values σh = σq = 1. We
test (a) n = 2 options and (b) n = 40 options. The diagonal light band represents
the region of high success. The black dotted line indicates the highest average rate of
success (HARS line, see Sect. 2), and the red dashed line is the predicted best mean
μ∗
h, computed with Eq. (1). The two lines show a linear relationship between μq and

μh with slope ≈ 1. The dark area in the bottom right of each plot indicates an average
success rate of ≈ 1/n, because approximately all robots accept any of the n options,
which are therefore indistinguishable and the expected outcome of the voting phase is
random. Instead, the dark area in the top left of each plot indicates an average success
rate of zero because all n options are rejected by all robots and no decision is made.
(Color figure online)

Fig. 2. Increasing the number of samples n drawn from a PDF increases the expected
value of q′ (the sample with the highest value) [7]. The bottom half of each panel shows
a Gaussian distribution N (μ = 10, σ = 1) sliced in n slices with equal area in terms of
CDF. Each panel’s top half shows, through a histogram, the proportion of times (out of
103 runs) q′ lays in each of the n bottom slices. We also include the Gumbel distribution
(solid line on top halves) parameterised following generalised extreme value distribution
(GEVD) theory [7]. Our reasoning, which led to Eq. (1) (red dashed line), is in good
agreement with results from simulations and GEVD theory. (Color figure online)

differential evolution method (from the SciPy library [33]) that ranks each line
with the sum of success rate in all points crossed by the line (normalised by the
line length) and returns the highest score line (black dotted lines in Fig. 1).

354 S. Agrawal et al.

(a) (b) (c)

Fig. 3. (a) y-intercept and (b) slope of HARS lines for μ∗
h computed as a function of

μq, for varying n (on x-axis) and S (markers), for σh = σq = 1. (c) y-intercept for
varying std. dev. σq (on x-axis) for n = 5, σh = 1. In (a), the dashed lines show the
average for all S and in all plots, the solid lines show the predicted μ∗

h with Eq. (1). The
inset of (a) shows the absolute difference between predicted and fitted HARS lines.

3 Finding the Best Mean Response Threshold μ∗
h

We investigate how μ∗
h—the best mean of the probability distribution of the

robots’ response thresholds Dh = N (μh, σh)—varies for different options’ qual-
ities distributions Dq ∈ {U(μq, σq),N (μq, σq),K(μq, σq)} and different number
of options n. While our first intuition suggested that the best results would be
obtained when the thresholds’ mean is equal to the qualities’ mean, i.e. μ∗

h = μq,
we find that this is true for binary (n = 2) decision problems (e.g. see Fig. 1a) but
it is not the case when the number of options increases, n > 2, e.g. see Fig. 1b.
Therefore, we find that the number of options is a highly relevant parameter in
setting the best mean μ∗

h of the response threshold distribution.
This result, that at first can look counter-intuitive, can be explained with

a reasoning based on probability theory and statistics. When drawing a large
number of quality values n from the distribution Dq, we can expect that each
of these values, on average, will be distributed according to the PDF of Dq.
Therefore, if we slice Dq into n sections of equal area 1

n in terms of cumulative
distribution function (CDF), on average, we expect that each of the n drawn
values lies in a distinct slice. Following this reasoning, we expect that, on average,
the maximum quality value (among the n qualities) lies in the last slice and
that the second-to-best value lies in the second-to-last slice. Figure 2 shows this
mechanism numerically for the representative example of a Gaussian Dq, however
the same mechanism also holds for other PDFs, in agreement with results from
the generalised extreme value distribution theory [7]. Most times the highest
value among n random draws falls in the slice with the highest value range. As
we are interested in distinguishing the best option from the others, ideally a large
proportion of thresholds should lay between the highest quality value, which we
identify with the letter q′, and the second highest quality value, which we identify
with q′′. Therefore, the best mean μ∗

h of Dh lays between the expected value of
q′ and q′′, which we can compute through the inverse of the CDF of Dq, as the
μ∗
h that satisfies the following equation:

Response Thresholds in Collective Decision Making 355

∫ µ∗
h

−∞
Dq(x|μq, σq)dx = 1 − 1

n
, (1)

where Dq(x|μq, σq) is the PDF of Dq at x given μq and σq. Equation (1) is depen-
dent on the number of options n. As n increases, the area of the slices decreases
and, in turn, both the expected highest value E(q′) and the best threshold
mean μ∗

h increase. This result gets more accurate as the number of options gets
larger [7].

Accuracy of Our Prediction of μ∗
h. Through simulations, we show that the pre-

diction of Eq. (1) matches the highest average rate of success (HARS lines in
Fig. 1 and Fig. S4 in [2]). Figure 3 shows that the obtained results generalise to
a large set of conditions, for different PDFs and for different swarm sizes. The
intercept of the HARS lines (Fig. 3a) quickly increases for low n, and it then
asymptotically saturates to a constant value for large n.

Figure 3b shows that the slope of the HARS lines remains constant to ≈1
for all tested types of quality PDFs and values of n and S. Thus, we can con-
sider the predicted and fitted lines parallel to each other, and use the distance
between them (inset of Fig. 3a) as the measure for accuracy of Eq. (1), showing
low absolute difference and good accuracy in all tested combinations. Equa-
tion (1) generalises to systems with different variability of the quality values, σq,
as shown in Fig. 3c for n = 5, where the mean μ∗

h increases with σq as predicted
by theory.

4 Finding the Best StdDev. σ∗
h for Response Thresholds

A method to determine the optimal standard deviation of the response threshold
distribution is as important as determining its mean, because the right amount of
variability can optimise the number of robots required to deal with the stochas-
tic nature of the best-of-n decision making process. When the thresholds’ mean
is far from optimal (e.g. μh = μq for n � 2), σh can play an important role in
discerning between high quality options. When σh is much smaller than σq, the
probability that robots will have their response thresholds between q′ and q′′

is almost null, and all high quality options will be indistinguishable during the
voting phase (Fig. S5 in [2]). Having σh > σq can reduce this problem because
the thresholds are more spread, however is also a waste of resources, as sev-
eral thresholds are set to values much lower than necessary and only a small
percentage of robots have a determining role in the collective decision making.
Differently, when μh is set to close to the optimal value μ∗

h, the influence of σh is
much reduced. Some variability among response thresholds is always necessary,
however the standard deviation can have relatively low values (σh < σq), and
still cover the relevant quality range, as confirmed by the fitted HARS lines of
Fig. S6a which always have a slope smaller than 1, for μh = μ∗

h.
While for μ∗

h we derived Eq. (1) from first principles, we did not succeed for
σ∗
h. Differently, we numerically fitted curves on simulation results and we report

356 S. Agrawal et al.

(a) (b)

Fig. 4. Accuracy for μq = 5 and σq = 2, averaged (a) over different S = mn with
m ∈ {10, 50, 100, 200, 500}, and (b) over different n ∈ {2, 5, 8, 10, 15, 20, 30, 40, 80, 100},
when the parameters are optimally tuned using our equations (solid lines) compared
with the case when the distributions are set equal to each other (dashed lines). The
two insets show the benefits of employing μ∗

h and σ∗
h as (a) the number of options n

increases and (b) the swarm size S decreases.

results in Figs. S6-c and mathematical equations in Eq. S(1) in the supplementary
material [2]. Differently from μ∗

h, where the slope was approximately constant
and intercept largely varied (see Fig. S2), for σh vs σq the intercept has negligible
values close to zero (except for small n ≤ 3), while the slope varies and is
sufficient to determine the relationship between σh and σq as a function of n
(see Figs. S6b–c). Similar to the analysis of μh vs μq, the HARS lines of σh vs σq

do not show noteworthy changes with varying number of robots in both cases of
μh = μq and μh = μ∗

h in σh vs σq, also when σh = σq in μh vs μq (see respectively
Fig. S3 and Fig. S1 in [2]).

5 Discussion and Conclusion

Minimalistic robots, e.g. organic nanorobots with basic functionalities, have the
potential to disrupt several fields such as medicine, agriculture, and environ-
mental preservation [11,14,36]. However, designing solutions for robotic sys-
tems limited in memory, communication, and computation is challenging. In
our research, we explore the possibility of using heterogeneous response thresh-
olds to make best-of-n decisions. We envision the possibility of simplifying the
existing algorithms used in collective decision making in the context of best-of-n
[3,19,23,28,29,31,32,37], by removing the (currently necessary) robots’ abil-
ity of (i) scaling the estimated option’s quality in a normalised quality range,
and (ii) memorise the option’s quality in order to modulate the communication
frequency (i.e. weighted voting). Our vision consists in building binary reactive
robots that engage in a unweighted voting without keeping track of options’ qual-
ities [5,10]. Each robot uses a simple binary response threshold to accept/reject
the sensed option [9,24], and only accepting robots begin the voting process. In
order to allow the swarm to converge towards the best of the n alternatives, the
(unweighted) voting must begin from a state of relative majority in favour of the
best option [21]. This paper investigates which response threshold distribution
to choose to increase the probability of having such a condition.

Response Thresholds in Collective Decision Making 357

We investigated the relationship between Dh (PDF) and various types of
environments, characterised by different Dq (PDF) and the number of options.
The collective accuracy improved almost by 20% for all the tested PDFs when
we tuned the Dh to the optimal value predicted by our theory, compared against
the naive setting of Dh = Dq, especially for large number of options (Fig. 4a),
and small swarm sizes (Fig. 4b). The relative improvement reduces with increas-
ing swarm size because in very large systems, accuracy approximates 100% for
both optimal and suboptimal response threshold distributions. Nevertheless, we
do not rule out the possibility that the result of reduced benefits for larger
swarms may change once we will include, as planned future work, the subse-
quent voting phase. These results will be the starting point for future research
aimed to design decentralised algorithms that allows robots to autonomously
vary their thresholds using simple reactive rules and collectively approximate
the values derived in our study. We believe that this study is a necessary pre-
liminary step towards the development of minimalistic robot swarms based on
adaptive response thresholds, capable of solving the best-of-n decision problem.

Acknowledgements. S.A. acknowledges full support from IISER Bhopal. A. R.
acknowledges support from F.R.S.-FNRS, of which he is a Chargé de Recherches.

References

1. Agassounon, W., Martinoli, A.: Efficiency and robustness of threshold-based dis-
tributed allocation algorithms in multi-agent systems. In: Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2002), pp. 1090–1097. ACM Press, New York, USA (2002). https://doi.
org/10.1145/545056.545077

2. Agrawal, S., Baliyarasimhuni, S.P., Reina, A.: Supplementary materials of the arti-
cle “Response threshold distributions to improve best-of-n decisions in minimalistic
robot swarms”. https://github.com/zorawar12/yesnounits.git

3. Aust, T., Talamali, M.S., Dorigo, M., Hamann, H., Reina, A.: The hidden benefits
of limited communication and slow sensing in collective monitoring of dynamic
environments. In: Sasireka, B. (ed.) Swarm Intelligence (ANTS 2022). LNCS, vol.
13491, pp. 234–247. Springer, Cham (2022)

4. Castello, E., et al.: Adaptive foraging for simulated and real robotic swarms: the
dynamical response threshold approach. Swarm Intell. 10(1), 1–31 (2016). https://
doi.org/10.1007/s11721-015-0117-7

5. Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60, 581–588
(1973). https://doi.org/10.1093/biomet/60.3.581

6. Ferreira, P.R., Boffo, F.S., Bazzan, A.L.C.: Using Swarm-GAP for distributed task
allocation in complex scenarios. In: Jamali, N., Scerri, P., Sugawara, T. (eds.)
AAMAS 2007. LNCS (LNAI), vol. 5043, pp. 107–121. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85449-4 8

7. Hansen, A.: The three extreme value distributions: an introductory review. Front.
Phys. 8, 604053 (2020). https://doi.org/10.3389/fphy.2020.604053

8. Hasegawa, E., Ishii, Y., Tada, K., Kobayashi, K., Yoshimura, J.: Lazy workers
are necessary for long-term sustainability in insect societies. Sci. Rep. 6(1), 20846
(2016). https://doi.org/10.1038/srep20846

https://doi.org/10.1145/545056.545077
https://doi.org/10.1145/545056.545077
https://github.com/zorawar12/yesnounits.git
https://doi.org/10.1007/s11721-015-0117-7
https://doi.org/10.1007/s11721-015-0117-7
https://doi.org/10.1093/biomet/60.3.581
https://doi.org/10.1007/978-3-540-85449-4_8
https://doi.org/10.3389/fphy.2020.604053
https://doi.org/10.1038/srep20846

358 S. Agrawal et al.

9. Hasegawa, E., et al.: Nature of collective decision-making by simple yes/no decision
units. Sci. Rep. 7, 14436 (2017). https://doi.org/10.1038/s41598-017-14626-z

10. Holley, R.A., Liggett, T.M.: Ergodic theorems for weakly interacting infinite sys-
tems and the voter model. Ann. Probab. 3, 643–663 (1975). https://doi.org/10.
1214/aop/1176996306

11. Jafferis, N.T., Helbling, E.F., Karpelson, M., Wood, R.J.: Untethered flight of an
insect-sized flapping-wing microscale aerial vehicle. Nature 570(7762), 491–495
(2019). https://doi.org/10.1038/s41586-019-1322-0

12. Kanakia, A., Klingner, J., Correll, N.: A response threshold sigmoid function
model for swarm robot collaboration. In: Chong, N.-Y., Cho, Y.-J. (eds.) Dis-
tributed Autonomous Robotic Systems. STAR, vol. 112, pp. 193–206. Springer,
Tokyo (2016). https://doi.org/10.1007/978-4-431-55879-8 14

13. Krieger, M.J., Billeter, J.B.: The call of duty: self-organised task allocation in a
population of up to twelve mobile robots. Robot. Auton. Syst. 30(1–2), 65–84
(2000). https://doi.org/10.1016/S0921-8890(99)00065-2

14. Kriegman, S., Blackiston, D., Levin, M., Bongard, J.: Kinematic self-replication
in reconfigurable organisms. Proc. Natl. Acad. Sci. 118(49), e2112672118 (2021).
https://doi.org/10.1073/pnas.2112672118

15. Labella, T.H., Dorigo, M., Deneubourg, J.L.: Division of labor in a group of robots
inspired by ants’ foraging behavior. ACM Trans. Auton. Adapt. Syst. 1(1), 4–25
(2006). https://doi.org/10.1145/1152934.1152936

16. Liu, W., Winfield, A.F.T., Sa, J., Chen, J., Dou, L.: Towards energy optimization:
emergent task allocation in a swarm of foraging robots. Adapt. Behav. 15(3), 289–
305 (2007). https://doi.org/10.1177/1059712307082088

17. Marshall, J.A.R., Brown, G., Radford, A.N.: Individual confidence-weighting and
group decision-making. Trends Ecol. Evol. 32(9), 636–645 (2017). https://doi.org/
10.1016/j.tree.2017.06.004

18. Masuda, N., O’Shea-Wheller, T.A., Doran, C., Franks, N.R.: Computational model
of collective nest selection by ants with heterogeneous acceptance thresholds. R.
Soc. Open Sci. 2(6), 140533 (2015). https://doi.org/10.1098/rsos.140533

19. Parker, C.A.C., Zhang, H.: Cooperative decision-making in decentralized multiple-
robot systems: the best-of-n problem. IEEE/ASME Trans. Mechatron. 14(2), 240–
251 (2009). https://doi.org/10.1109/TMECH.2009.2014370

20. Parker, C.A.C., Zhang, H.: Biologically inspired collective comparisons by robotic
swarms. Int. J. Robot. Res. 30(5), 524–535 (2011). https://doi.org/10.1177/
0278364910397621

21. Redner, S.: Reality-inspired voter models: a mini-review. Comptes Rendus Phys.
20(4), 275–292 (2019). https://doi.org/10.1016/j.crhy.2019.05.004

22. Reina, A., Ferrante, E., Valentini, G.: Collective decision-making in living and
artificial systems: editorial. Swarm Intell. 15(1), 1–6 (2021). https://doi.org/10.
1007/s11721-021-00195-5

23. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design
pattern for decentralised decision making. PLoS ONE 10(10), e0140950 (2015).
https://doi.org/10.1371/journal.pone.0140950

24. Robinson, E.J.H., Franks, N.R., Ellis, S., Okuda, S., Marshall, J.A.R.: A simple
threshold rule is sufficient to explain sophisticated collective decision-making. PLoS
ONE 6(5), e19981 (2011). https://doi.org/10.1371/journal.pone.0019981

25. Sasaki, T., Pratt, S.C.: Emergence of group rationality from irrational individuals.
Behav. Ecol. 22(2), 276–281 (2011). https://doi.org/10.1093/beheco/arq198

https://doi.org/10.1038/s41598-017-14626-z
https://doi.org/10.1214/aop/1176996306
https://doi.org/10.1214/aop/1176996306
https://doi.org/10.1038/s41586-019-1322-0
https://doi.org/10.1007/978-4-431-55879-8_14
https://doi.org/10.1016/S0921-8890(99)00065-2
https://doi.org/10.1073/pnas.2112672118
https://doi.org/10.1145/1152934.1152936
https://doi.org/10.1177/1059712307082088
https://doi.org/10.1016/j.tree.2017.06.004
https://doi.org/10.1016/j.tree.2017.06.004
https://doi.org/10.1098/rsos.140533
https://doi.org/10.1109/TMECH.2009.2014370
https://doi.org/10.1177/0278364910397621
https://doi.org/10.1177/0278364910397621
https://doi.org/10.1016/j.crhy.2019.05.004
https://doi.org/10.1007/s11721-021-00195-5
https://doi.org/10.1007/s11721-021-00195-5
https://doi.org/10.1371/journal.pone.0140950
https://doi.org/10.1371/journal.pone.0019981
https://doi.org/10.1093/beheco/arq198

Response Thresholds in Collective Decision Making 359

26. Scheidler, A., Merkle, D., Middendorf, M.: Stability and performance of ant
queue inspired task partitioning methods. Theory Biosci. 127(2), 149–161 (2008).
https://doi.org/10.1007/s12064-008-0033-0

27. Seeley, T.D.: Social foraging in honey bees: how nectar foragers assess their colony’s
nutritional status. Behav. Ecol. Sociobiol. 24(3), 181–199 (1989). https://doi.org/
10.1007/BF00292101

28. Talamali, M.S., Marshall, J.A.R., Bose, T., Reina, A.: Improving collective decision
accuracy via time-varying cross-inhibition. In: 2019 International Conference on
Robotics and Automation (ICRA), pp. 9652–9659 (2019). https://doi.org/10.1109/
ICRA.2019.8794284

29. Talamali, M.S., Saha, A., Marshall, J.A.R., Reina, A.: When less is more: robot
swarms adapt better to changes with constrained communication. Sci. Robot.
6(56), eabf1416 (2021). https://doi.org/10.1126/scirobotics.abf1416

30. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms:
formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017).
https://doi.org/10.3389/frobt.2017.00009

31. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with
100 Kilobots: speed versus accuracy in binary discrimination problems. Auton.
Agent. Multi-Agent Syst. 30(3), 553–580 (2016). https://doi.org/10.1007/s10458-
015-9323-3

32. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making:
the weighted voter model. In: Proceedings of the 2014 International Conference on
Autonomous Agents and Multi-Agent Systems, AAMAS 2014, pp. 45–52. Inter-
national Foundation for Autonomous Agents and Multiagent Systems, Richland
(2014)

33. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nat. Methods 17, 261–272 (2020). https://doi.org/10.1038/s41592-019-
0686-2

34. Weidenmüller, A.: The control of nest climate in bumblebee (Bombus terrestris)
colonies: interindividual variability and self reinforcement in fanning response.
Behav. Ecol. 15(1), 120–128 (2004). https://doi.org/10.1093/beheco/arg101

35. Yamamoto, T., Hasegawa, E.: Response threshold variance as a basis of collective
rationality. R. Soc. Open Sci. 4(4), 170097 (2017). https://doi.org/10.1098/rsos.
170097

36. Yasa, I.C., Ceylan, H., Bozuyuk, U., Wild, A.M., Sitti, M.: Elucidating the interac-
tion dynamics between microswimmer body and immune system for medical micro-
robots. Sci. Robot. 5(43), eaaz3867 (2020). https://doi.org/10.1126/scirobotics.
aaz3867

37. Zakir, R., Dorigo, M., Reina, A.: Robot swarms break decision deadlocks in collec-
tive perception through cross-inhibition. In: Sasireka, B. (ed.) Swarm Intelligence
(ANTS 2022). LNCS, vol. 13491, pp. 209–221. Springer, Cham (2022)

https://doi.org/10.1007/s12064-008-0033-0
https://doi.org/10.1007/BF00292101
https://doi.org/10.1007/BF00292101
https://doi.org/10.1109/ICRA.2019.8794284
https://doi.org/10.1109/ICRA.2019.8794284
https://doi.org/10.1126/scirobotics.abf1416
https://doi.org/10.3389/frobt.2017.00009
https://doi.org/10.1007/s10458-015-9323-3
https://doi.org/10.1007/s10458-015-9323-3
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1093/beheco/arg101
https://doi.org/10.1098/rsos.170097
https://doi.org/10.1098/rsos.170097
https://doi.org/10.1126/scirobotics.aaz3867
https://doi.org/10.1126/scirobotics.aaz3867

Stability-Guided Particle Swarm
Optimization

Andries Engelbrecht(B)

Department of Industrial Engineering, and Computer Science Division,
Stellenbosch University, Stellenbosch, South Africa

engel@sun.ac.za

Abstract. Particle swarm optimization (PSO) performance has been
shown to be sensitive to control parameter values. To obtain best possible
results, control parameter tuning or self-adaptive PSO implementations
are necessary. Theoretical stability analyses have produced stability con-
ditions on the PSO control parameters to guarantee that an equilibrium
state is reached. Should control parameter values be chosen to satisfy a
stability condition, divergent and cyclic search behaviour is prevented,
and particles are guaranteed to stop moving. This paper proposes that
control parameter values be randomly sampled to satisfy a given stabil-
ity condition, removing the need for control parameter tuning. Empirical
results show that the resulting stability-guided PSO performs competi-
tively to a PSO with tuned control parameter values.

1 Introduction

The performance of particle swarm optimization (PSO) [28] algorithms is sen-
sitive to control parameter values [4,6,7,38]. Literature has suggested various
control parameter configurations that result in good PSO performance [32]. How-
ever, for best performance, the PSO control parameters require tuning for each
problem [27,38]. Various tuning approaches are available [3–5,13,29,37]. These
approaches can be computationally expensive. Tuning of PSO control parameters
prior to solving an optimization problem has recently been shown to not necessar-
ily result in best performance due to the time-dependence of control parameter
optimality [20]. An alternative to control parameter tuning is to deterministi-
cally adjust or self-adapted control parameter values during the search process.
Though, recent studies have shown these dynamic and self-adaptive approaches
are mostly inefficient [16,19,21].

Theoretical analyses of PSO algorithms provided a good understanding of
PSO behavior [6,8,11,33,34,38], specifically the impact of control parameters
[10,20,22–25]. These theoretical studies provided stability conditions derived
on the values of the PSO control parameters, giving guarantees under which
conditions particle swarms will reach an equilibrium state. An important out-
come of these stability conditions is formal guidance on the setting of PSO
control parameter values. This paper proposes that control parameter values be
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 360–369, 2022.
https://doi.org/10.1007/978-3-031-20176-9_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20176-9_33&domain=pdf
http://orcid.org/0000-0002-0242-3539
https://doi.org/10.1007/978-3-031-20176-9_33

Stability-Guided Particle Swarm Optimization 361

randomly selected to satisfy a provided stability condition. The resulting PSO
algorithms are referred to in this paper as stability-guided PSO algorithms.
Results show that these algorithms are very competitive to that of a PSO algo-
rithm with tuned control parameters.

Section 2 discusses the PSO algorithm on which this work is based. Stability
conditions are reviewed in Sect. 3. The stability-guided PSO algorithms are sum-
marized in Sect. 4. The empirical process is provided in Sect. 5, and the results
are presented and discussed in Sect. 6.

2 Particle Swarm Optimization

The first PSO algorithm was proposed by Kennedy and Eberhart [28]. While
various variations of the PSO algorithm have been developed, the focus of this
paper is on the inertia weight PSO developed by Shi and Eberhart [36]. For the
inertia weight PSO, particle positions are updated using

xi(t + 1) = xi(t) + vi(t + 1) (1)

The velocity is calculated using

vi(t + 1) = wvi(t) + c1r1,i(t) � (yi(t) − xi(t)) + c2r2,i(t) � (ŷi(t) − xi(t)) (2)

where � is the Hadamard product, w ∈ [0, 1] is the inertia weight, c1 and c2 are
acceleration coefficients, r1,i(t) and r2,i(t) are vectors of random values sampled
from an nx-dimensional uniform distribution over [0, 1], nx is the number of
decision variables, yi(t) and ŷi(t) are the personal and global best positions.

3 Stability Conditions

This paper focuses only on the following two stability conditions: Referred to as
SC1, Van den Bergh and Engelbrecht [38] derived under both the deterministic
and stagnation assumption [8,9] that

c1 + c2 < 2(1 + w), c1 > 0, c2 > 0, 0 < w < 1 (3)

The same stability condition was derived by Cleghorn and Engelbrecht [8] under
the deterministic and weak chaotic assumption [8,9]. Referred to as SC2, Poli
and Broomhead [33,34] derived under the stagnation assumption that

c1 + c2 =
24(1 − w2)

7 − 5w
, −1 < w < 1 (4)

4 Stability-Guided Particle Swarm Optimization

The stability-guided PSO algorithms presented in this paper are not the first
approaches towards random selection of control parameters to satisfy stability

362 A. Engelbrecht

conditions. Erwin and Engelbrecht [17] presented a similar approach for a multi-
objective PSO algorithm, i.e. the multi-guide PSO (MGPSO) [35]. It was shown
that the stability-guided MGPSO performed on par with a tuned MGPSO.

The stability-guided PSO algorithms are variations of the global best iner-
tia weight PSO algorithm, with control parameter values randomly sampled to
satisfy a given stability condition. The first variation samples the control param-
eters to satisfy the stability condition of Eq. (3). The second variation samples
the control parameter values to satisfy the stability condition of Eq. (4). Note
that though the stability condition by Poli and Broomhead allows for w ∈ [−1, 1],
the sampling algorithm considers only values of w ∈ [0, 1].

The control parameter sampling is done before the particle velocity update.
Each particle samples its own values for the control parameters.

5 Empirical Process

This section outlines the empirical process. Section 5.1 summarizes the benchmark
functions used, Sect. 5.2 lists the algorithms used and discusses the tuning process,
and Sect. 5.3 provides the performance measures and the statistical tests used.

Table 1. List of benchmark functions (* indicates that the function was generalized
for nx ≥ 1)

Function Domain Reference Function Domain Reference

Ackley 1 [−32, 32] [26] Paviani [2.001, 9.999] [26]

Alpine 1 [−10, 10] [26] Penalty 1 [−50, 50] [18]

Bohachevsky 1* [−15, 15] [26] Penalty 2 [−50, 50] [18]

BMF [−5, 5] Pinter 2 [−10, 10] [26]

Brown [−1, 4] [26] Price 2* [−10, 10] [26]

CosineMixture [−1, 1] [26] Qings [−500, 500] [26]

CrossInTray [−10, 10] [26] Quadric [−100, 100] [15]

Discus [−100, 100] [30] Rana [−500, 500] [26]

DropWave* [−5.12, 5.12] [2] Rastrigin [−5.12, 5.12] [1]

Easom* [−100, 100] [26] Riple 25* [0, 1] [26]

Elliptic [−100, 100] [15] Rosenbrock [−30, 30] [26]

EggCrate* [−5, 5] [26] Salomon [−100, 100] [26]

EggHolder [−512, 512] [26] Schwefel 1 [−100, 100] [26]

Exponential [−1, 1] [26] Schwefel 2.26 [−500, 500] [26]

Giunta* [−1, 1] [26] Shubert 4 [−10, 10] [26]

Levy 3 [−10, 10] [1] Step 3 [−100, 100] [26]

LevyMontalvo [−5, 5] [18] Trigonometric [−10, 10] [26]

Mishra 1 [0, 1] [26] Vincent [0.25, 10] [15]

Mishra 4 [−10, 10] [26] Weierstrass [−0.5, 0.5] [26]

Mishra 7 [−10, 10] [26] XinSheYang 1 [−5, 5] [26]

NeedleEye [−10, 10] [2] XinSheYang 3 [−20, 20] [26]

Norwegian [−5, 5] [15] XinSheYang 4 [−10, 10] [26]

Stability-Guided Particle Swarm Optimization 363

5.1 Benchmark Functions

Each of the algorithms have been evaluated on 30-dimensional instances of the 44
benchmark functions listed in Table 1. Note that the LevyMontalvo function is
a generalization of the Levy 13 function [18]. The BonyadiMichalewicz function

(BMF) is defined as f(x) =
∏nx

j=1(xj+1)
∏nx

j=1((xj+1)2+1)
.

5.2 Algorithms

The stability-guided PSO algorithms are compared with two versions of the
standard inertia weight PSO algorithm: (1) PSOs, where the control parameters
are static and set to w = 0.7, c1 = 1.4 and c2 = 1.4 [12,14]; (2) PSOt, with
tuned control parameters using the grid search process outlined in Algorithm1.1.
The found best control parameter configurations are listed in Table 2. These
values serve as additional confirmation of the strong dependence of the control
parameter values on achieving best results.

Algorithm 1.1. Control Parameter Tuning Process
1: for w = 0 to w = 1 in increments of 0.05 do
2: for c1 = 0 to c1 = 2 ∗ w − 2 in increments of 0.2 do
3: for c2 = 2 − c1 to c2 = 2 ∗ w − 2 − c1 in increments of 0.2 do
4: Execute PSO(w, c1, c2) for 10 independent runs
5: end for
6: end for
7: end for
8: return Control parameter configuration that resulted in best average solution

The two stability-guided PSO algorithms are respectively referred to as
PSOsc1 and PSOsc2.

The swarm size for each algorithm was set to 30 particles, and each algorithm
was executed on each problem for 1000 iterations.

In order to show proof of concept, it is sufficient to compare the stability-
guided PSO algorithms with a tuned PSO. It should be noted that recent anal-
yses of dynamic and self-adaptive approaches to PSO control parameter setting
have shown that existing approaches do not perform well [19,21]. An approach
to random sampling of the inertia weight was shown to provide the best per-
formance, though not statistically significantly better than the PSOs approach
[19]. All other approaches were shown not to perform significantly better than
statically assigned control parameter values as for PSOs.

5.3 Performance Measure and Statistical Tests

The quality of the global best position after 1000 iterations, averaged over 30
independent runs, was used to rank the algorithms per benchmark problem based

364 A. Engelbrecht

Table 2. Tuned control parameter values

Function w, c1, c2 Function w, c1, c2 Function w, c1, c2

Ackley 1 0.6, 2.0, 1.8 Levy 3 0.8, 1.8, 1.0 Rastrigin 0.85, 1.4, 0.4

Alpine 1 0.65, 1.6, 1.8 LevyMontalvo 0.8, 2.0, 0.8 Ripple 25 0.8, 0.8, 1.8

Bohachevsky 1 0.75, 1.2, 2.0 Mishra 1 0.75, 2.0, 1.0 Rosenbrock 0.85, 1.2, 1.0

BMF 0.55, 1.8, 1.8 Mishra 4 0.85, 1.2, 0.8 Salomon 0.75, 1.6, 1.4

Brown 0.6, 1.8, 1.6 Mishra 7 0.8, 0.2, 1.6 Schwefel 1 0.5, 2.0, 1.8

CosineMixture 0.8, 0.2, 1.8 NeedleEye 1.0, 0.2, 0.2 Schwefel 2.26 0.8, 0.2, 2.0

CrossInTray 0.75, 2.0, 0.4 Norwegian 0.65, 0.6, 2.0 Shubert 4 0.8, 0.2, 2.0

Discus 0.75, 2.0, 1.0 Paviani 0.6, 1.4, 1.8 Step 3 0.15, 2.0, 2.0

DropWave 0.8, 2.0, 0.6 Penalty 1 0.4, 2.0, 2.0 Trigonometric 0.8, 1.8, 0.6

Easom 0.8, 1.0, 0.4 Penalty 2 0.7, 1.8, 1.5 Vincent 0.55, 1.8, 1.8

Elliptic 0.5, 1.6, 2.0 Pinter 2 0.8, 2.0, 0.8 Weierstrass 0.9, 2.0, 1.0

EggCrate 0.85, 1.8, 0.2 Price 2 0.65, 1.2, 1.8 XinSheYang 1 0.85, 1.6, 0.6

EggHolder 0.8, 0.2, 2.0 Qings 0.5, 1.6, 2.0 XinSheYang 3 0.75, 0.2, 2.0

Exponential 0.45, 1.8, 2.0 Quadric 0.6, 1.4, 1.8 XinSheYang 4 0.6, 1.0, 2.0

Giunta 0.8, 2.0, 0.8 Rana 0.8, 0.2, 2.0

on a wins-losses approach. For each pair of algorithms, a Mann-Whitney U test
(at confidence level of 0.05) was applied to determine if there is a statistical
significant difference in performance. If so, the winning algorithm is scored a
win and the loosing algorithm a loss. The ranking is done on the differences
between the wins and losses, with a lower rank indicating better performance.
To determine the extend to which one algorithm is better than another, the
ratio A1/A2 is reported for each function, where A1 and A2 refer to two different
algorithms. A ratio close to one indicates similar performance. A ratio greater
than one indicates the extend to which algorithm A1 is worse than algorithm
A2. A ratio less than one indicates the extent to which algorithm A1 is better
than algorithm A2.

6 Results

Table 3 summarizes the ranks per function as well as the average rank over
all of the functions. The first observation from Table 3 is that the static app-
roach, PSOs, ranked the worst, with only one function for which it ranked best
(i.e. NeedleEye), though together with the other algorithms. PSOt ranked on
average the best over all of the problems. The ranks for PSOsc1 and PSOsc2

are very close, and close to that of the tuned PSOt. For nine of the problems
(i.e. BonyadiMichalewicz, Exponential, NeedleEye, Price 2, Qings, Rosenbrock,
Salomon, Step 3, and Vincent) there is no significant difference between the
stability-guided PSOs and the tuned PSO. For the rest of the problems, both
stability-guided PSOs ranked best for two problems (i.e. CosineMixture and Xin-
SheYang 4); PSOt and PSOsc1 ranked both best for one problem (i.e. Mishra
7); PSOt and PSOsc2 ranked both the best for one problem (i.e. Schwefel 2.26).

Stability-Guided Particle Swarm Optimization 365

Table 3. Ranks based on solution quality and performance ratios

Function PSOs PSOt PSOsc1 PSOsc2
PSOsc1
PSOt

PSOsc2
PSOt

PSOsc2
PSOsc1

Ackley 1 3 1 2 2 4.87E+00 4.78E+00 9.80E−01

Alpine 1 4 1 2 3 5.98E−01 4.89E+01 8.18E+01

Bohachevsky 1 3 1 2 2 2.32E+00 2.59E+00 1.12E+00

BonyadiMichalewicz 2 1 1 1 1.00E+00 1.00E+00 1.00E+00

Brown 4 3 2 1 1.10E−48 3.83E−48 3.47E+00

CosineMixture 3 2 1 1 1.04E+00 1.04E+00 1.00E+00

CrossInTray 4 1 3 2 7.60E−01 8.81E−01 1.16E+00

Discus 4 1 3 2 9.27E−48 7.41E−49 8.00E−02

DropWave 4 1 3 2 6.71E−01 7.61E−01 1.13E+00

Easom 3 1 3 2 1.02E+00 1.01E+00 9.97E−01

Elliptic 4 1 3 2 3.97E−27 1.02E−23 2.57E+03

EggCrate 4 1 3 2 4.97E+00 4.11E+00 8.26E−01

EggHolder 3 1 2 2 9.05E−01 9.51E−01 1.05E+00

Exponential 2 1 1 1 1.00E+00 1.00E+00 1.00E+00

Giunta 3 1 2 2 9.88E−01 9.92E−01 1.00E+00

Levy 3 3 1 2 2 1.50E+00 2.50E+00 1.67E+00

LevyMontalvo 3 1 2 2 1.29E+00 8.23E−01 6.36E−01

Mishra 1 4 3 1 2 9.80E−01 9.80E−01 1.00E+00

Mishra 4 3 1 2 2 9.18E−01 8.97E−01 9.77E−01

Mishra 7 3 1 1 2 1.00E+00 1.00E+00 1.00E+00

NeedleEye 1 1 1 1 1.00E+00 1.00E+00 1.00E+00

Norwegian 2 3 1 4 1.04E+00 8.56E−01 8.22E−01

Paviani 4 3 1 2 1.22E+00 1.22E+00 1.00E+00

Penalty 1 4 1 3 2 1.08E+00 1.35E+00 1.25E+00

Penalty 2 3 1 2 2 4.06E+00 7.67E+01 1.89E+01

Pinter 2 3 1 2 2 2.03E+00 1.97E+00 9.68E−01

Price 2 1 1 1 1 1.00E+00 1.00E+00 1.00E+00

Qings 2 1 1 1 2.02E−01 1.04E+03 5.11E+03

Quadric 2 1 3 4 7.36E+05 9.37E+06 1.27E+01

Rana 4 1 3 2 9.04E−01 9.48E−01 1.05E+00

Rastrigin 4 1 3 2 1.54E+00 1.15E+00 7.46E−01

Ripple 25 4 2 3 1 9.82E−01 1.00E+00 1.02E+00

Rosenbrock 2 1 1 1 9.16E−01 6.40E−01 6.99E−01

Salomon 2 1 1 1 1.08E+00 1.05E+00 9.66E−01

Schwefel 1 4 1 3 2 3.03E+54 1.42E+59 4.68E+04

Schwefel 2.26 3 1 2 1 1.20E+00 1.09E+00 9.11E−01

Shubert 4 4 2 3 1 1.05E+00 1.00E+00 9.58E−01

Step 3 2 1 1 1 2.53E+00 1.88E+00 7.45E−01

Trigonometric 4 1 3 2 1.00E+00 1.00E+00 1.00E+00

Vincent 2 1 1 1 1.00E+00 1.00E+00 1.00E+00

Weierstrass 3 4 1 2 7.21E−01 7.31E−01 1.01E+00

XinSheYang 1 3 1 2 2 8.19E+00 6.38E+00 7.78E−01

XinSheYang 3 3 2 1 2 4.16E−16 7.94E+22 1.91E+38

XinSheYang 4 3 2 1 1 2.65E−14 1.55E−13 5.87E+00

Average 3.02 1.37 1.96 1.83

Deviation 0.91 0.74 0.84 0.77

366 A. Engelbrecht

For the 22 problems where the tuned PSO ranked better than the stability-
guided PSO algorithms, the question is whether the stability-guided PSO algo-
rithms showed totally unacceptable performance or not. To answer this question,
refer to the performance ratios provided in Table 3. It is only for two problems
(i.e. Quadric and Schwefel 1) that the performance of the stability-guided PSO
algorithms were order of magnitude worse than that of the tuned PSO. For the
rest of these problems, the performance of the algorithms are in the same order
of magnitude.

Where PSOsc1 is better than PSOt, it is to a great extend for five prob-
lems (i.e. Brown, Discus, Elliptic, XinSheYang 3, and XinSheYang 4). The same
applies for PSOsc2, except for XinSheYang 3 for which PSOsc2 performed signif-
icantly worse than PSOt. Where PSOsc2 is worse than PSOsc1, it is notably so
for seven problems (i.e. Alpine 1, Elliptic, Penalty 2, Qings, Quadric, Schwefel
1, and XinSheYang 3). PSOsc1 is significantly worse than PSOsc2 for only one
problem (i.e. Discus).

7 Conclusions

This paper proposed that values for the three particle swarm optimization (PSO)
control parameters be sampled randomly such that a given theoretically derived
stability condition is satisfied. Because the stability conditions guarantee that
an equilibrium state will be reached, such random sampling is then also ensures
that an equilibrium state will be reached. The resulting stability-guide PSO algo-
rithms are then offered as alternatives to having to tune control parameters prior
to application of the PSO, and to currently available inefficient self-adaptive PSO
algorithms. The empirical analysis of the performance of the stability-guided
PSO algorithms has shown that these algorithms perform very competitively in
comparison to a well-tuned PSO algorithm. It is only for two problems out of
the studied 44 problems that the tuned PSO outperformed the stability-guided
PSO algorithms with orders of magnitude.

This paper analyzed the performance of the stability-guided PSO algorithms
only on 30-dimensional instances of the benchmark problems. Future studies
will evaluate performance on larger-scale problems. Recent research has shown a
preference for control parameter values that facilitate exploitative search behav-
ior when PSO is applied to solve large-scale optimization problems [31]. Future
work will determine the regions of the stability region that facilitates exploitative
behavior, and will develop stability-guide PSO algorithms that bias sampling of
control parameter values towards values that facilitate exploitation. The cur-
rent approaches sample control parameter values per particle. Future work will
explore the potential benefit of sampling control parameter values per dimension.
Lastly, for the Poli and Broomhead stability conditions, values for the inertia
weight were restricted to be in [0, 1], despite the condition allowing values in
[−1, 1]. Future work will evaluate the impact if random sampling allows negative
inertia weight values.

Stability-Guided Particle Swarm Optimization 367

References

1. Adorio, E.: MVF – Multivariate Test Functions Library in C for Unconstrained
Global Optimization. Technical report. University of the Philippines Diliman
(2005)

2. Al-Roomi, A.: Unconstrained Single-Objective Benchmark Functions Repository
(2015). https://www.al-roomi.org/benchmarks/unconstrained

3. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-
Race algorithm: sampling design and iterative refinement. In: Bartz-Beielstein, T.,
et al. (eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-75514-2 9

4. Beielstein, T., Parsopoulos, K.E., Vrahatis, M.N.: Tuning PSO parameters through
sensitivity analysis. Universitätsbibliothek Dortmund (2002)

5. Birattari, M., Stëtzle, T., Paquete, L., Varrentrapp, K.: Racing algorithm for con-
figuring metaheuristics. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pp. 11–18 (2002)

6. Bonyadi, M.R., Michalewicz, Z.: Impacts of coefficients on movement patterns in
the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 21(3),
378–390 (2016)

7. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In:
2007 IEEE Swarm Intelligence Symposium, pp. 120–127. IEEE (2007)

8. Cleghorn, C., Engelbrecht, A.: A generalized theoretical deterministic particle
swarm model. Swarm Intell. 8(1), 35–59 (2014)

9. Cleghorn, C., Engelbrecht, A.: Particle swarm convergence: an empirical investiga-
tion. In: Proceedings of the IEEE Congress on Evolutionary Computation (2014)

10. Cleghorn, C., Engelbrecht, A.: Particle swarm optimizer: the impact of unstable
particles on performance. In: Proceedings of the IEEE Swarm Intelligence Sympo-
sium (2016)

11. Cleghorn, C., Engelbrecht, A.: Particle swarm stability a theoretical extension
using the non-stagnate distribution assumption. Swarm Intell. 12(1), 1–22 (2018)

12. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in
a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

13. Dobslaw, F.: A parameter tuning framework for metaheuristics based on design of
experiments and artificial neural networks. Int. J. Aerosp. Mech. Eng. 64, 213–216
(2010)

14. Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in par-
ticle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary
Computation (2000)

15. Engelbrecht, A.: Particle swarm optimization with crossover: a review and empir-
ical analysis. Artif. Intell. Rev. 45(2), 131–165 (2016)

16. Engelbrecht, A.: Inertia weight control strategies: particle roaming behavior. In:
International Conference on Soft Computing and Machine Intelligence (2017)

17. Erwin, K., Engelbrecht, A.: A tuning free approach to multi-guide particle swarm
optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium (2021)

18. Gavana, A.: Global Optimisation Benchmarks. http://infinity77.net/global
optimization/index.html. Accessed 31 Mar 2022

https://www.al-roomi.org/benchmarks/unconstrained
https://doi.org/10.1007/978-3-540-75514-2_9
http://infinity77.net/global_optimization/index.html
http://infinity77.net/global_optimization/index.html

368 A. Engelbrecht

19. Harrison, K., Engelbrecht, A., Ombuki-Berman, B.: Inertia control strategies for
particle swarm optimization: too much momentum, not enough analysis. Swarm
Intell. 10(4), 267–305 (2016)

20. Harrison, K., Engelbrecht, A., Ombuki-Berman, B.: Optimal parameter regions
and the time-dependence of control parameter values for the particle swarm opti-
mization algorithm. Swarm Evol. Comput. 41, 20–35 (2018)

21. Harrison, K., Engelbrecht, A., Ombuki-Berman, B.: Self-adaptive particle swarm
optimization: a review and analysis of convergence. Swarm Intell. 12, 187–226
(2018)

22. Harrison, K., Ombuki-Berman, B., Engelbrecht, A.: Optimal parameter regions for
particle swarm optimization algorithms. In: Proceedings of the IEEE Congress on
Evolutionary Computation (2017)

23. Harrison, K.R., Ombuki-Berman, B.M., Engelbrecht, A.P.: An analysis of control
parameter importance in the particle swarm optimization algorithm. In: Tan, Y.,
Shi, Y., Niu, B. (eds.) ICSI 2019. LNCS, vol. 11655, pp. 93–105. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26369-0 9

24. Harrison, K., Ombuki-Berman, B., Engelbrecht, A.: The parameter configuration
landscape: a case study on particle swarm optimization. In: Proceedings of the
IEEE Congress on Evolutionary Computation (2019)

25. Jain, N., Nangia, U., Jain, J.: Impact of particle swarm optimization parameters
on its convergence. In: Proceedings of the 2nd IEEE International Conference on
Power Electronics, Intelligent Control and Energy Systems, pp. 921–926 (2018)

26. Jamil, M., Yang, X.S.: A literature survey of benchmark functions for global opti-
mization problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)

27. Jiang, M., Luo, Y., Yang, S.: Stochastic convergence analysis and parameter selec-
tion of the standard particle swarm optimization algorithm. Inf. Process. Lett.
102(1), 8–16 (2007)

28. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE
(1995)

29. Klazar, R., Engelbrecht, A.: Parameter optimization by means of statistical quality
guides in F-Race. In: Proceedings of the IEEE Congress on Evolutionary Compu-
tation (2014)

30. Liang, J., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for
the CEC 2014 special session and competition on single objective real-parameter
numerical optimization. Technical report. Tech. Rep. 201311. Zhengzhou Univer-
sity and Nanyang Technological University (2013)

31. Oldewage, E., Engelbrecht, A., Cleghorn, C.: Movement patterns of a particle
swarm in high dimensions. Inf. Sci. 512, 1043–1062 (2020)

32. Pedersen, M.: Good parameters for particle swarm optimization. Technical report.
HL1001. Hvass Laboratories (2010)

33. Poli, R.: Mean and variance of the sampling distribution of particle swarm opti-
mizers during stagnation. IEEE Trans. Evol. Comput. 14(4), 712–721 (2009)

34. Poli, R., Broomhead, D.: Exact analysis of the sampling distribution for the canoni-
cal particle swarm optimiser and its convergence during stagnation. In: Proceedings
of the Genetic and Evolutionary Computation Conference, pp. 134–141 (2007)

35. Scheepers, C., Engelbrecht, A.P., Cleghorn, C.W.: Multi-guide particle swarm opti-
mization for multi-objective optimization: empirical and stability analysis. Swarm
Intell. 13(3–4), 245–276 (2019)

https://doi.org/10.1007/978-3-030-26369-0_9

Stability-Guided Particle Swarm Optimization 369

36. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
IEEE International Conference on Evolutionary Computation Proceedings, pp.
69–73 (1998)

37. Smith, S., Eiben, A.: Comparing parameter tuning methods for evolutionary algo-
rithms. In: Proceedings of the IEEE Congress on Evolutionary Computation (2009)

38. Van den Bergh, F., Engelbrecht, A.: A study of particle swarm optimization particle
trajectories. Inf. Sci. 176(8), 937–971 (2006)

Animals Are Not Particles: Towards a Second
Generation of ‘Hetero-Swarm’ Robotics

Marina Papadopoulou(B) , Ines Fürtbauer , and Andrew J. King

Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, UK
{marina.papadopoulou,i.fuertbauer,a.j.king}@swansea.ac.uk

Swarm robotic systems tend to be decentralized, distributed, and homogeneous,
inspired by mathematical and computational models of animal collective behav-
ior [4]. These models usually comprise coordinated groups of simple, autonomous
agents that are identical in their underlying rules of motion and interaction. With
recent advances in laboratory and field observation techniques, however, behav-
ioral scientists are identifying individual heterogeneity in almost every collective
behavior system they study [3, 6]. Theoretical models of collective behavior are
therefore being revised, altering our view of how animal collectives form and
function. In a new project, we will explore if and how swarm robotic systems
can be improved by considering this individual heterogeneity.

First, using high-resolution data describing the movement of individuals
within groups (collected through video tracking and GPS collars) we will quan-
tify the role of heterogeneity on group organization (Fig. 1A) during collective
motion. We will focus on fish shoals [2], goat herds [8] and baboon troops [1]
which are expected to represent animal systems that range from low to high
heterogeneity, respectively (Fig. 1A). An example of our ongoing analysis of the
underlying interaction rules of baboons (based on pairwise interactions) is given
in Fig. 1B and C.

Second, to gain the theoretical understanding of how the identified hetero-
geneity influences the collective properties of a group, we will use the empirical
data to develop a new computational (agent-based) model for each of our study
species. Such species-specific approach, previously used to model bird flocks [5],
allows for individual variation in model parameters (e.g. [7]) or in the rules that
control each agent’s motion.

Third, we will use the new agent-based models in existing swarm robotics
set-ups [4]. For example, e-puck2 robots with omni-direction camera extension
can be programmed according to traditional homogeneous models, or our new
“hetero-swarm” models. This approach will allow us to measure simple aspects of
performance related to control (e.g. leader-follower, heading consensus), or flexi-
bility (e.g. collision avoidance) for swarms following fish- or baboon-like models,
compared to traditional swarm robot models. In this way, we aim to create a
repository of “second-generation” bio-inspired swarm behaviors for the commu-
nity to test and use.

c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 371–372, 2022.
https://doi.org/10.1007/978-3-031-20176-9

http://orcid.org/0000-0002-6478-8365
http://orcid.org/0000-0003-1404-6280
http://orcid.org/0000-0002-6870-9767
https://doi.org/10.1007/978-3-031-20176-9

372 M. Papadopoulou et al.

Fig. 1. A. Expected level of heterogeneity and organisation in each of our three study
systems: shoals of three-spined sticklebacks (Gasterosteus aculeatus, a highly gregari-
ous fish with differentiated leader-follower dynamics), flocks of sheep (Ovis aries, that
have preferential associations during flocking), and troops of chacma baboons (Papio
ursinus, that form complex social groups with relationships that affect their collec-
tive decision-making processes). B. Distribution of the relative position of a neighbor
(angle between an individual’s heading and its neighbor’s position) for a pair of female
baboons over 12 h. Angles close to 0◦ indicate that the neighbor is in front. C. Inter-
action plot for the pair of baboons: turning angle in relation to their relative position
(m). A focal individual (triangle heading up) turns more when its neighbor is on its
side.

Acknowledgements. This work is supported by an Office of Naval Research (ONR)
Global Grant (2G-SWARM project) awarded to A.J.K.

References

1. Bracken, A.M., Christensen, C., O’Riain, M.J., Fürtbauer, I., King, A.J.: Flexible
group cohesion and coordination, but robust leader-follower roles, in a wild social
primate using urban space. Proc. R. Soc. B Biol. Sci. 289(1967), 20212141 (2022)

2. Georgopoulou, D.G., King, A.J., Brown, R.M., Fürtbauer, I.: Emergence and
repeatability of leadership and coordinated motion in fish shoals. Behav. Ecol. 33(1),
47–54 (2022)

3. Jolles, J.W., King, A.J., Killen, S.S.: The role of individual heterogeneity in collec-
tive animal behaviour. Trends Ecol. Evol. 35(3), 278–291 (2020)

4. Oh, H., Ramezan Shirazi, A., Sun, C., Jin, Y.: Bio-inspired self-organising multi-
robot pattern formation: a review. Robot. Auton. Syst. 91, 83–100 (2017)

5. Papadopoulou, M., Hildenbrandt, H., Sankey, D.W.E., Portugal, S.J., Hemelrijk,
C.K.: Self-organization of collective escape in pigeon flocks. PLoS Comput. Biol.
18(1), e1009772 (2022)

6. Quque, M., et al.: Hierarchical networks of food exchange in the black garden ant
Lasius Niger. Insect Sci. 28(3), 825–838 (2021)

7. Saffre, F., Hildmann, H., Deneubourg, J.L.: Can individual heterogeneity influence
self-organised patterns in the termite nest construction model? Swarm Intell. 12(2),
101–110 (2018). https://doi.org/10.1007/s11721-017-0143-8

8. Sankey, D.W.E., et al.: Consensus of travel direction is achieved by simple copying,
not voting, in free-ranging goats. R. Soc. Open Sci. 8(2), 201128 (2021)

https://doi.org/10.1007/s11721-017-0143-8

Applying PSO to Find Optimal Strategy for 3D
Chip Layout Design

Katarzyna Grzesiak-Kopeć and Maciej Ogorza�lek(B)

Institute of Applied Computers Science, Jagiellonian University, Kraków, Poland
{katarzyna.grzesiak-kopec,maciej.ogorzalek}@uj.edu.pl

One of the most challenging engineering design tasks is a chip layout design.
It involves enormous number of components and their interconnections. It also
carries with it a very large number of frequently conflicting requirements and
design goals. In this paper we propose a computational intelligent method to
automatically find and tune a universal designer strategy for a 3D chip lay-
out design problem. We use the concept of playing a 3D layout design game
as introduced in [1]. We proposed to animate the physical chip modules and
made them autonomous agents that navigate around their world using steering
behaviours to find a globally near-optimal solution. The constraints and goals
given by the designer were mapped to adequate flock behaviors, namely separa-
tion, cohesion and alignment. The proposed layout optimization game approach
has been implemented in Godot and illustrated by the application to the MCNC
benchmark circuits. The main difficulty was indicating the right blending fac-
tors for all possible movements for each agent. In this paper a particle swarm
optimization (PSO) algorithm is proposed to solve this problem.

The goal is to minimize the chip volume and the total wire-length. Each
agent entering the game scene has to find its preferable position. Three param-
eters were adopted to constitute the heuristic evaluation function: (1) layout
bounding box, (2) layout proportion and (3) neighborhood range. The effective-
ness of the proposed approach has been verified independently of the game world.
The prototype software was implemented in Python with a use of JupyterLab
and the PySwarms research toolkit for the particle swarm optimization. The
main question was whether there is such a blending of these three factors that
its minimization: (1) will actually minimize the total wire-length in the chip, (2)
may be applied to different chip examples with satisfactory performance. PSO
is used to fine-tune blending weights for the proposed three heuristic functions.
Each particle in the swarm represents a candidate solution to the optimization
problem and the swarm navigate in a three dimensional parameters space. Like
in other games, it is highly probable that there is no single winning strategy, but
we are interested in any of them. Then, the final solution is rated according to its
total wire-length. For a wire-length calculation the basic half-perimeter model
(HPWL) was applied, where the wire-length of a net is a half of the perimeter
of the bounding rectangle that encloses all the pins of the net. Without loss of
generality, the pins positions were estimated by the centers of their modules.
The approach is one of the most widely used approximation schemes. The most
common set of benchmark circuits for floor-planning and placement problems,

c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 373–374, 2022.
https://doi.org/10.1007/978-3-031-20176-9

http://orcid.org/0000-0001-5736-7661
http://orcid.org/0000-0003-3314-269X
https://doi.org/10.1007/978-3-031-20176-9

374 K. Grzesiak-Kopeć and M. Ogorza�lek

namely the MCNC benchmark circuits, was selected. Since three of the exam-
ples out of five are more or less of the same size, the number of modules for
a chip to design was set to 10. Because a single chip layout design is compu-
tationally expensive, the increasing of the number of iterations was selected at
the expense of the flock size. The swarm was set to 5 particles and the number
of epochs for the gbest PSO was set to 100. The experiment was repeated with
different cognitive component and social component contributions. The chip def-
inition (modules sizes and connections) was randomized for every single design.
Because all numerical values were drawn from a given range (which holds true
in a real-life problems), the algorithm always converged to some point of stag-
nation. The higher contribution of the social component to the particle velocity
the faster convergence behavior of the swarm. On average, moving from 2D to
semi-3D (using chip layers) can improve the total wire-length by 28% to 51%
and we confirmed this premise in [2]. But moving from 2D to really 3D chip
design gives more spectacular results. In our research, the resulting blending
vector from each experiment (different results have been obtained with different
experiments) was afterwards applied to apte, xerox and hp instances from the
MCNC benchmark. The final chip solution for different optimized blending vec-
tors was the same. And the estimated total wire-length in the case of apte fell
from optimal result in 2D which is 513, 061µm down to 10, 202µm, for xerox fell
from 370, 993µm to 77, 346.5µm and in the case of hp fell from 153, 328µm to
32, 872µm. That means that the proposed method succeeded in constructing a
general winning strategy for the 3D chip layout design task with given heuristic
evaluation functions.

The paper presents an original design paradigm to engineering design prob-
lem. Depicted by the simplified 3D chip layout design example it offers an inno-
vative method to tackle various space arrangement tasks. Instead of optimizing
particular design parameters, it proposes to redefine a design process itself with
a use of the particle swarm optimization. The process is a game played by a
designer who defines the game entities that constitute the final design compo-
nents. These entities are autonomous agents that navigate the game world in
order to meet design requirements. Its actions are the resultant of the design
goals and constraints and the current state of the game environment. The out-
come of the experiments confirms, that given the domain expert knowledge in a
form of heuristic functions, it is possible to find a design strategy that will not
only shorten the computations but improve the final design quality.

References

1. Grzesiak-Kopeć, K., Nowak, L., Ogorza�lek, M.: 3D integrated circuits layout opti-
mization game. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R.,
Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 444–
453. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8 40

2. Grzesiak-Kopeć, K., Ogorza�lek, M.: 3D IC optimal layout design. A parallel and
distributed topological approach (2019). arXiv:1911.11768

https://doi.org/10.1007/978-3-319-59060-8_40
http://arxiv.org/abs/1911.11768

Particle Swarm Optimization Applied
to the Direct Aperture Optimization Problem

on Radiotherapy

Gonzalo Tello-Valenzuela1 , Mauricio Moyano1(B) , Keiny Meza-Vasquez2 ,
and Guillermo Cabrera-Guerrero1

1 Gcuela de Ingenieŕıa Informática, Facultad de Ingenieŕıa, Pontificia Universidad
Católica de Valparáıso, Valparáıso, Chile

gonzalo.tello.v@mail.pucv.cl, mauricio.moyano@pucv.cl
2 Departamento de Ciencias Biomédicas e Imágenes, Facultad de Ciencias Médicas,

Universidad Nacional Autonoma de Honduras, Tegucigalpa, Honduras

The direct aperture optimization (DAO) problem is a Mixed-Integer optimiza-
tion problem used in the Intensity-modulated radiotherapy (IMRT) to generate
treatment plans. The aim of DAO is to determine a set of aperture shapes with
corresponding intensities that consider the physical restrictions of the delivery
machine. In this work, We propose combining the Particle Swarm Optimisation
algorithm (PSO) with mathematical programming to solve the DAO. We com-
pare the treatment plans obtained by our algorithm with those obtained with the
traditional sequential approach used in IMRT. Results show that our algorithm
is quite competitive w.r.t. state of the art for DAO.

In DAO, the generation of a treatment plan is composed of a set of apertures
and their corresponding intensities. The shape of each aperture was encoded
as a 0/1 two-dimensional matrix. The process of adjusting this matrix is called
aperture shape optimization. Then, when the shapes are modified, it is neces-
sary to adjust the associated intensities. This process is called aperture weight
optimisation [4]. To solve this, we use a PSO algorithm [3] to solve the aperture
shape optimization. In each iteration of PSO, we optimize the intensities of each
particle using a mathematical programming model. This interaction is shown in
Fig. 1. This process is repeated until PSO does not obtain any improvement.

PSO
Algorithm

Optimize aperture shape

Mathematical
programming

Optimize weight shape

x x

Fig. 1. Interaction between PSO algorithm and mathematical programming model.

The performed experiments over the test instance set to evaluate the algo-
rithm’s overall performance on prostate case instance CERR package [2]. Table
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 375–377, 2022.
https://doi.org/10.1007/978-3-031-20176-9

http://orcid.org/0000-0001-6952-4935
http://orcid.org/0000-0003-0342-8267
http://orcid.org/0000-0002-5053-5375
http://orcid.org/0000-0002-8238-7426
https://doi.org/10.1007/978-3-031-20176-9

376 G. Tello-Valenzuela et al.

1 and 2 report the results obtained by the traditional approach used in IMRT,
and the PSO approaches when applied over the CERR. The traditional app-
roach obtains a fluence map optimizing solving the Fluence map optimization
problem. Then, the sequencing problem is solved for the resulting fluence maps
using a well-known efficient algorithm [1].

Table 1. Average results reported by the traditional two-step approach for CERR.

Instances z(x*) z(r(x*)) # ap z(r2(x*)) #ap z(r4(x*)) # ap

CERR 43.32 44.70 144.57 49.30 89.42 66.79 50.14

In the Table 1, z(x∗) corresponds to the cost of the optimal fluence map
using. We report the mean value over the 14 beam angle configuration instances
of CERR where columns z(r(x∗)), z(r2(x∗)) and z(r4(x∗)) correspond to the
cost of the fluence maps with intensities rounded to the nearest integer, the
nearest multiple of 2, and the nearest multiple of 4, respectively. Also, we report
the number of apertures generated by the MLC sequencing algorithm (#ap).

Table 2. Results reported using the PSO algorithm for CERR.

Instances z(x*) # ap

CERR 56.34 12.48

Table 2 reports the results obtained by our PSO algorithm. Due to its stochas-
tic nature, the strategy was run 30 times on each instance. We report the mean
value over the 14 instances of CERR and the number of apertures generated.

When comparing our algorithm with the traditional approach to the problem,
the results show that the proposed algorithm can obtain competitive results in
relation to the values of the objective function when the fluence map is rounded
to a multiple of 4. However, the difference with the optimal solution generated by
the traditional approach is still significant. Further, even though our algorithm
is not better than the z(r2(x∗)) treatment plan (w.r.t. the objective function
value), the number of aperture shapes needed by our solutions is always smaller
than the apertures needed by the solutions obtained by the traditional sequential
approach. This needs to be in consideration because the number of apertures
impacts the delivery time, and large delivery time leads to inaccuracies in the
delivery of treatment plans due to patient movements and reduces the number
of patients that can be treated per day.

References

1. Baatar, D., Hamacher, H., Ehrgott, M., Woeginger, G.: Decomposition of inte-
ger matrices and multileaf collimator sequencing. Discrete Appl. Math. 152, 6–34
(2005). https://doi.org/10.1016/j.dam.2005.04.008

https://doi.org/10.1016/j.dam.2005.04.008

Stability-Guided Particle Swarm Optimization 377

2. Deasy, J.O., Blanco, A.I., Clark, V.H.: CERR: a computational environment for
radiotherapy research. Med. Phys. 30(5), 979–985 (2003). https://doi.org/10.1118/
1.1568978, https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.1568978

3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE
(1995)

4. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A.: A column generation app-
roach to radiation therapy treatment planning using aperture modulation 15(3),
838–862 (2005)

https://doi.org/10.1118/1.1568978
https://doi.org/10.1118/1.1568978
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.1568978

Search Space Illumination of Robot Swarm
Parameters for Trustworthiness

James Wilson1,2(B) and Sabine Hauert1,2

1 Bristol Robotics Laboratory, Bristol, UK
2 Department of Engineering Mathematics, University of Bristol, Bristol, UK

{j.wilson,sabine.hauert}@bristol.ac.uk

Human control presents an interesting challenge in swarm robotics. Swarms can
benefit from the additional context provided by human input [3]. However, the
volumes of agents within a swarm can present difficulty; with more agents acting
within a system, the more complex manually controlling the entire swarm will
be, potentially surpassing the cognitive limit of the operator [4].

When producing an effective swarm system, the level of control an oper-
ator has over a swarm is a key consideration [1]. Too much human influence
(e.g. excessive/ineffective override of collective swarm behaviors) can negatively
impact swarm performance. This is referred to as ‘neglect benevolence’ [6]. An
effect in which swarms can be observed to operate more effectively with less
interference from a human operator. Even so, there is a demand for human
supervision of robot swarms [2]. In addition to providing swarms with context,
operators play an important role in reassuring the public that the system is run
with human oversight. Operators can make ethical considerations in scenarios
that current levels of autonomy cannot adequately resolve.

In many cases the trustworthiness of a system is subjective, depending on
the opinion of the users and the scenario it is being used for. Therefore, to create
a system deemed trustworthy, user input is needed to navigate the space of pos-
sible swarm controllers and tension trade-offs. In this paper, we hope to add an
element of trustworthiness to swarm systems by providing characteristic metrics
in simple terms which have been measured and tested based on sets of generated,
low level, swarm parameters. When it comes to deployment, this means that an
operator can simply express their use-case’s characteristic priorities, and select
a set of parameters for their swarm which represent an intuitive set of trade-offs.
An illustration of our target interface can be seen in Fig. 1.

We produced such a system by creating a multi-dimensional array of swarm
characteristics which represent high performing sets of swarm parameters. This
array provides users with the ability to explore specific combinations of trust-
worthiness characteristics (energy consumption, robot safety and robustness),
with any given cell in the array providing the user with a tested swarm behavior
known to achieve good results for the specified characteristic requirements.

We produce the multidimensional array of characteristics using the search
space illumination algorithm ‘Map-Elites’ [5]. This algorithm mutates the param-
eters of our swarm simulation (max speed, avoidance distance, maximum time
spent holding a box, and number of swarm agents), runs an experimental trail
(a simulated box collection task) in which performance and characteristics are
c© Springer Nature Switzerland AG 2022
M. Dorigo et al. (Eds.): ANTS 2022, LNCS 13491, pp. 378–379, 2022.
https://doi.org/10.1007/978-3-031-20176-9

http://orcid.org/0000-0002-0758-6732
http://orcid.org/0000-0003-0341-7306
https://doi.org/10.1007/978-3-031-20176-9

Search Space Illumination of Robot 379

Fig. 1. Illustration of target interface displaying the behavior of the swarm and dis-
playing available characteristic sets to the user based on their preference selection.

measured, and then records parameter sets that outperform prior characteris-
tic sets or identify new characteristic combination niches. The algorithm then
iterates, expanding and improving upon available characteristic combinations.

Through the deployment of Map-Elites we were able to find a wide set of
characteristics that provided a spectrum of performances, showing a clear trade-
off between safety, robustness and energy efficiency. These characteristic com-
binations will undergo future testing to ensure they transfer to high fidelity
simulations and hardware. We also plan to conduct a user study to identify the
benefits this system may provide.

References

1. Ashcraft, C.C., Goodrich, M.A., Crandall, J.W.: Moderating operator influence in
human-swarm systems. In: 2019 IEEE International Conference on Systems, Man
and Cybernetics (SMC), pp. 4275–4282. IEEE (2019)

2. Carrillo-Zapata, D., et al.: Mutual shaping in swarm robotics: user studies in fire and
rescue, storage organization, and bridge inspection. Front. Robot. AI 7, 53 (2020)

3. Kapellmann-Zafra, G., Salomons, N., Kolling, A., Groß, R.: Human-robot swarm
interaction with limited situational awareness. In: Dorigo, M., et al. (eds.) ANTS
2016. LNCS, vol. 9882, pp. 125–136. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-44427-7 11

4. Lewis, M.: Human interaction with multiple remote robots. Rev. Hum. Fact. Ergon.
9(1), 131–174 (2013)

5. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909 (2015)

6. Walker, P., Nunnally, S., Lewis, M., Kolling, A., Chakraborty, N., Sycara, K.:
Neglect benevolence in human control of swarms in the presence of latency. In:
2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp.
3009–3014. IEEE (2012)

https://doi.org/10.1007/978-3-319-44427-7_11
https://doi.org/10.1007/978-3-319-44427-7_11
http://arxiv.org/abs/1504.04909

Author Index

Abdallah, Zahraa S. 41
Abdelbar, Ashraf M. 266
Abdullhak, Mohammed 308
Agrawal, Swadhin 350
Alharthi, Khulud 41
Alkilabi, Muhanad 284
Arvin, Farshad 248, 341
Aust, Till 234

Bahaidarah, Mazen 341
Balesdent, Mathieu 292
Baliyarasimhuni, Sujit P. 350
Bana, Fatemeh Rekabi 341
Barciś, Agata 222
Barciś, Michał 222
Bilaloğlu, Cem 248
Birattari, Mauro 91
Boghaert, Johannes 14
Bruno, Barbara 316

Cabrera-Guerrero, Guillermo 375
Cai, Grace 1
Carletti, Timoteo 284
Carmona-Murillo, Javier 275
Christensen, Anders Lyhne 104
Coello Coello, Carlos A. 28, 266
Cristofaro, Andrea 66

de Souza Junior, Cristino 300
Dillenbourg, Pierre 316
Doblas, Daniel 28
Dorigo, Marco 196, 209, 234
Dosieah, Gopesh Yadav 183
du Chastel, Marie 284

Ebert, Julia 14
Eeckhout, Arnaud 284
Ekblaw, Ariel 14
Engelbrecht, Andries 117, 130, 360
Espinosa-Martínez, Juan Jesús 275

Falcón-Cardona, Jesús Guillermo 266
Ferdous, Jannatul 332

Ferrante, Eliseo 222, 300
Fricke, G. Matthew 332
Fürtbauer, Ines 371

Galeano-Brajones, Jesús 275
Gamot, Juliette 292
García-Nieto, José 28
Gauci, Melvin 183
Goodrich, Michael A. 155
Groß, Roderich 183
Grzesiak-Kopeć, Katarzyna 373

Haghighat, Bahar 14
Hamann, Heiko 234
Hauert, Sabine 41, 378
Hiraga, Motoaki 324
Hubermont, Antoine 284
Humphries, Thomas 266

Khaluf, Yara 257
Khodr, Hala 316
King, Andrew J. 371
Kothiyal, Aditi 316

Liu, Fanghzheng 14
López-Ibáñez, Manuel 28
Luna, Francisco 275
Lynch, Nancy 1

Mai, Sebastian 79
Manoni, Tiziano 300
Maoudj, Abderraouf 104
Marjanovic, Ognjen 341
McNulty, Alanna 117
Melab, Nouredine 292
Meza-Vasquez, Keiny 375
Minsky-Primus, Zev 14
Morimoto, Daichi 324
Moses, Melanie E. 332
Mostaghim, Sanaz 54, 79
Moyano, Mauricio 375
Munetomo, Masaharu 324

Nagpal, Radhika 14
Natalizio, Enrico 222
Nebro, Antonio J. 28
Neupane, Aadesh 155
Nisser, Martin 14

Oddi, Fabio 66
Ogorzałek, Maciej 373
Ohkura, Kazuhiro 324
Ombuki-Berman, Beatrice 117
Önür, Giray 171
Özdemir, Anıl 183

Pacheco, Alexandre 196
Papadopoulou, Marina 371
Pinciroli, Carlo 142
Powers, Stephen 142

Reina, Andreagiovanni 91, 196, 209, 234,
350

Rousseaux, Jean-Yves 284

Şahin, Erol 171, 248
Şahin, Mehmet 248
Shan, Qihao 54

Simoens, Pieter 257
Sion, Antoine 91
Smith, Joshua 142
Steyn, Weka 130
Strobel, Volker 196

Talamali, Mohamed S. 234
Talbi, El-ghazali 292
Tello-Valenzuela, Gonzalo 375
Tremolet, Arnault 292
Trianni, Vito 66
Tuci, Elio 91, 284
Turgut, Ali Emre 171, 248, 341

Van Havermaet, Stef 257
Vardy, Andrew 308
Vitturini, Mauro 284

Wagner, Nicolas 316
Warzée, Marine 284
Wilson, James 378
Wuilbercq, Romain 292

Zakir, Raina 209

382 Author Index

	Preface
	Organization
	Contents
	A Geometry-Sensitive Quorum Sensing Algorithm for the Best-of-N Site Selection Problem
	1 Introduction
	2 Background
	2.1 Ant House Hunting
	2.2 House Hunting and Site Selection Models

	3 Model
	3.1 General Model
	3.2 House Hunting Environment Model
	3.3 Agent States and Transition Function

	4 Results
	4.1 Further Nest of Higher Quality
	4.2 Effects of Lower Quality Nest Being in the Way
	4.3 Effects of Magnitude of Difference in Site Quality

	5 Discussion
	6 Future Work
	References

	An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots
	1 Introduction
	2 Problem Statement
	3 Simulation Framework
	4 Proposed Algorithm
	5 Simulation Experiments
	5.1 Experimental Objectives
	5.2 Experimental Scenarios

	6 Results
	7 Conclusion
	References

	Automatic Design of Multi-objective Particle Swarm Optimizers
	1 Introduction
	2 Software Tools
	3 Approach for Developing an Auto-configurable MOPSO
	4 Experimentation
	4.1 Analysis of the AMOPSO Configurations Found
	4.2 Comparative Analysis of the MOPSO Variants

	5 Conclusions and Future Work
	References

	Automatic Extraction of Understandable Controllers from Video Observations of Swarm Behaviors
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Behavior Tree Controller
	3.2 Controller Execution
	3.3 Swarm Metrics
	3.4 Fitness Function
	3.5 Evolutionary Algorithm

	4 Results
	4.1 Evaluation of Swarm Metrics
	4.2 Performance of the Controller Extraction Method
	4.3 Qualitative Behavioral Analysis

	5 Conclusion
	References

	Benchmarking Performances of Collective Decision-Making Strategies with Respect to Communication Bandwidths in Discrete Collective Estimation
	1 Introduction and Related Works
	2 Problem Statement
	3 Methodology
	3.1 Control Mechanisms for Environmental Exploration
	3.2 Opinion-Based Strategies: DC and DMVD
	3.3 Ranked Voting-Based Strategy
	3.4 Belief Fusion-Based Strategy: DBBS

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Discussion
	6 Conclusion
	References

	Best-of-N Collective Decisions on a Hierarchy
	1 Introduction
	2 Experimental Setup
	2.1 Problem Description
	2.2 Collective Decision Process

	3 Results
	4 Conclusions
	References

	Collective Decision-Making for Conflict Resolution in Multi-Agent Pathfinding
	1 Introduction
	2 State of the Art
	3 Collective Conflict Resolution
	3.1 Plan Paths Coherent with Gp
	3.2 Modify Gp Through Collective Decision-Making
	3.3 Limitations

	4 Experiments
	5 Conclusion
	References

	Controlling Robot Swarm Aggregation Through a Minority of Informed Robots
	1 Introduction
	2 Materials and Methods
	3 Results
	4 Conclusions
	References

	Decentralized Multi-Agent Path Finding in Warehouse Environments for Fleets of Mobile Robots with Limited Communication Range
	1 Introduction
	2 Environment Model and Assumptions
	3 Proposed Approach
	3.1 Cooperative Conflict Resolution Strategy

	4 Experimental Results and Performances Analysis
	4.1 Benchmarks and Setup
	4.2 Results

	5 Conclusions
	References

	Decomposition and Merging Co-operative Particle Swarm Optimization with Random Grouping
	1 Introduction
	2 Background
	2.1 Particle Swarm Optimization
	2.2 Co-operative Particle Swarm Optimization
	2.3 Random Grouping
	2.4 Decomposition and Merging Co-operative Particle Swarm Optimization

	3 Proposed Variants
	4 Experimental Setup
	4.1 Control Parameters
	4.2 Statistical Methods
	4.3 Benchmark Functions
	4.4 The Random Grouping Condition of DCPSO and MCPSO

	5 Compared Decomposition-Based Approaches
	6 Experimental Results
	7 Conclusion
	References

	Dynamic Spatial Guided Multi-Guide Particle Swarm Optimization Algorithm for Many-Objective Optimization
	1 Introduction
	2 Background
	2.1 Multi-Objective Optimization
	2.2 Many-Objective Optimization
	2.3 Particle Swarm Optimization
	2.4 Multi-Guide Particle Swarm Optimization

	3 Proposed Dynamic Spatial Archive Guide
	4 Experimental Procedure
	5 Empirical Analysis
	5.1 HV Results
	5.2 IGD Results

	6 Conclusions
	References

	Extracting Symbolic Models of Collective Behaviors with Graph Neural Networks and Macro-Micro Evolution
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 System Overview
	3.2 Input: Data and Priors
	3.3 Phase 1: Graph Neural Networks
	3.4 Phase 2: Symbolic Modeling with Macro-Micro Evolution

	4 Experimental Evaluation
	4.1 Accuracy of GNN Models
	4.2 Symbolic Models

	5 Conclusion
	References

	Learning Resilient Swarm Behaviors via Ongoing Evolution
	1 Introduction
	2 Related Work
	3 BeTr-GEESE Overview
	4 Resilience Experiments
	4.1 Experiment Design
	4.2 Results
	4.3 Discussion

	5 What Enables Resilience?
	5.1 Modularity
	5.2 Locality

	6 Conclusion
	A PPA Grammar
	References

	Mind the Gap! Predictive Flocking of Aerial Robot Swarm in Cluttered Environments
	1 Introduction
	2 Methodology
	2.1 Standard Flocking Model (SFM)
	2.2 Predictive Flocking Model (PFM)

	3 Experimental Setup
	4 Results and Discussion
	5 Conclusion
	References

	Moving Mixtures of Active and Passive Elements with Robots that Do Not Compute
	1 Introduction
	2 Methods
	2.1 Problem Formulation
	2.2 Setup for Computational Experiments
	2.3 Control Strategies of the Shepherd Agents
	2.4 Optimization Process

	3 Results
	3.1 Generalization and Scalability Analysis
	3.2 Varying Ratio Analysis
	3.3 Varying Speed Analysis
	3.4 Noise Analysis

	4 Conclusions
	References

	Real-Time Coordination of a Foraging Robot Swarm Using Blockchain Smart Contracts
	1 Introduction
	2 Related Work
	3 Methods
	4 Results and Discussion
	4.1 Scalability
	4.2 Performance in Different Distributions

	5 Conclusions
	References

	Robot Swarms Break Decision Deadlocks in Collective Perception Through Cross-Inhibition
	1 Introduction
	2 The Models
	3 Experimental Setup
	3.1 Robot Behaviour

	4 Experiments and Results
	5 Discussion and Conclusions
	References

	Self-organized Chain Formation of Nano-Drones in an Open Space
	1 Introduction
	2 Method
	3 Simulation Results
	3.1 Quality of the Chain Formation—Collinearity of Agents
	3.2 Convergence Time

	4 Proof of Concept
	4.1 Camera-Based FOV Sensor
	4.2 Results

	5 Conclusions and Outlook
	References

	The Hidden Benefits of Limited Communication and Slow Sensing in Collective Monitoring of Dynamic Environments
	1 Introduction
	2 Collective Perception in a Dynamic Environment
	3 A Minimalist Behavior for a Rich Collective Response
	4 Simulated Kilobots and Kilogrid
	5 Results: Less is More and Slower is Faster
	5.1 When Recruitment is Slow do not be too Social, Less is More
	5.2 With Noisy Estimates and Few Neighbors, Slower is Faster

	6 Conclusions
	References

	A Novel Time-of-Flight Range and Bearing Sensor System for Micro Air Vehicle Swarms
	1 Introduction
	2 Range and Bearing System
	2.1 Ranging Sequence of Time of Flight Sensor
	2.2 Robot Detection and Ranging in a Swarm
	2.3 Random Delay and Filtering
	2.4 Design

	3 Results and Discussion
	3.1 Controlled Experiments
	3.2 Self-organized Flocking with Micro Air Vehicles

	4 Conclusion
	References

	An Adaptive Metric Model for Collective Motion Structures in Dynamic Environments
	1 Introduction
	2 Related Work
	3 Model
	3.1 Metric and Long-Range Model
	3.2 System Measures
	3.3 Extended Metric Model (EMM)

	4 Results and Discussion
	5 Conclusions
	References

	An Extension of the iMOACOR Algorithm Based on Layer-Set Selection
	1 Overview
	2 Background
	3 The iMOACOR Algorithm
	4 Our Proposed Approach
	5 Experimental Methodology and Discussion of Results
	References

	Binary Particle Swarm Optimization for Selective Cell Switch-Off in Ultra-Dense 5G Networks
	1 Introduction
	2 The CSO Problem
	3 Binary PSO
	3.1 BPSO Modelling
	3.2 Initialization and Update

	4 Experimentation
	4.1 Methodology
	4.2 Results
	4.3 PSO Performance
	4.4 Specific Operators in PSO

	5 Conclusions
	References

	Choeur Synthétique: An Art Installation Based on Swarm Robotics
	1 Introduction
	2 The Robots' Hardware
	3 The Robot Firmware
	4 Conclusions
	References

	Component Swarm Optimization Using Virtual Forces for Solving Layout Problems
	1 Introduction
	2 State of the Art
	3 The CSO-VF Algorithm
	3.1 The Particle
	3.2 Virtual Forces System

	4 Implementation and Results
	5 Conclusion
	References

	Constant Bearing Flocking
	1 Introduction
	2 Constant Bearing (CB) Flocking
	2.1 Constant Bearing Term (f)
	2.2 Velocity Regulation (v):
	2.3 Alignment Emergence:

	3 Experimental Setup
	4 Results
	5 Conclusions
	References

	.26em plus .1em minus .1emDistributed Sorting in Complex Environments*-4pt
	1 Introduction
	2 Collision Avoidance with Buffered Voronoi Cells
	3 Sorting Algorithm
	3.1 Orbiting Behavior
	3.2 Target Selection
	3.3 Target Pushing Strategy
	3.4 Global Planning

	4 Results
	4.1 Simulation
	4.2 Real-World Validation

	5 Conclusions
	References

	Effect of Different Communication Affordances on the Emergence of Collaboration Strategies in an Online Multiplayer Game
	1 Introduction
	2 Methodology
	2.1 Game Design
	2.2 Experiment Design

	3 Results
	3.1 Effects of Communication Affordances on Team Performance
	3.2 Emerging Communication System Analysis - Global Condition
	3.3 Emerging Communication System Analysis - Local Condition
	3.4 Emerging Communication System Analysis - No Chat Condition

	4 Conclusion and Future Work
	References

	Generating and Analyzing Collective Step-Climbing Behavior in a Multi-legged Robotic Swarm
	1 Introduction
	2 Settings of the Experiment
	2.1 Task Settings
	2.2 Robot Settings
	2.3 Controller

	3 Measurement Factors
	4 Results and Discussion
	5 Conclusions
	References

	Modeling Immune Search Through the Lymphatic Network
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Lymphatic Network Simulation Algorithm
	3.2 Comparing Simulated Graphs to Observation
	3.3 Search Algorithm

	4 Results
	4.1 Modeled Lymphatic Network
	4.2 Predicted Time

	5 Discussion
	References

	Optimization of a Self-organized Collective Motion in a Robotic Swarm
	1 Introduction
	2 Collective Motion
	2.1 Active Elastic Sheet
	2.2 Parameters Optimization
	2.3 Experimental Setup

	3 Results and Discussion
	4 Conclusion
	References

	Response Threshold Distributions to Improve Best-of-N Decisions in Minimalistic Robot Swarms
	1 Introduction
	2 Characterisation of the Problem
	3 Finding the Best Mean Response Threshold *h
	4 Finding the Best StdDev. *h for Response Thresholds
	5 Discussion and Conclusion
	References

	Stability-Guided Particle Swarm Optimization
	1 Introduction
	2 Particle Swarm Optimization
	3 Stability Conditions
	4 Stability-Guided Particle Swarm Optimization
	5 Empirical Process
	5.1 Benchmark Functions
	5.2 Algorithms
	5.3 Performance Measure and Statistical Tests

	6 Results
	7 Conclusions
	References

	Animals Are Not Particles: Towards a Second Generation of `Hetero-Swarm' Robotics
	References

	Applying PSO to Find Optimal Strategy for 3D Chip Layout Design
	References

	Particle Swarm Optimization Applied to the Direct Aperture Optimization Problem on Radiotherapy
	References

	Search Space Illumination of Robot Swarm Parameters for Trustworthiness
	References

	Author Index

