17 research outputs found

    Embedding finite lattices into finite biatomic lattices

    Get PDF
    For a class C of finite lattices, the question arises whether any lattice in C can be embedded into some atomistic, biatomic lattice in C. We provide answers to the question above for C being, respectively, — The class of all finite lattices; — The class of all finite lower bounded lattices (solved by the first author’s earlier work). — The class of all finite join-semidistributive lattices (this problem was, until now, open). We solve the latter problem by finding a quasi-identity valid in all finite, atomistic, biatomic, join-semidistributive lattices but not in all finite join-semidistributive lattice

    Join-semidistributive lattices of relatively convex sets

    Get PDF
    We give two sufficient conditions for the lattice Co(R^n,X) of relatively convex sets of n-dimensional real space R^n to be join-semidistributive, where X is a finite union of segments. We also prove that every finite lower bounded lattice can be embedded into Co(R^n,X), for a suitable finite subset X of R^n.Comment: 11 pages, first presented on AAA-65 in Potsdam, March 200

    Join-semidistributive lattices of relatively convex sets

    Get PDF
    We give two sufficient conditions for the lattice Co(Rn,X) of rel- atively convex sets of Rn to be join-semidistributive, where X is a finite union of segments. We also prove that every finite lower bounded lattice can be embedded into Co(Rn,X), for a suitable finite subset X of R

    Sublattices of lattices of convex subsets of vector spaces

    Full text link
    For a left vector space V over a totally ordered division ring F, let Co(V) denote the lattice of convex subsets of V. We prove that every lattice L can be embedded into Co(V) for some left F-vector space V. Furthermore, if L is finite lower bounded, then V can be taken finite-dimensional, and L embeds into a finite lower bounded lattice of the form Co(V,Z)={XZXCo(V)}Co(V,Z)=\{X\cap Z | X\in Co(V)\}, for some finite subset ZZ of VV. In particular, we obtain a new universal class for finite lower bounded lattices

    Lattices of quasi-equational theories as congruence lattices of semilattices with operators, Part I

    Get PDF
    We show that for every quasivariety K of structures (where both functions and relations are allowed) there is a semilattice S with operators such that the lattice of quasi-equational theories of K (the dual of the lattice of sub-quasivarieties of K) is isomorphic to Con(S,+,0,F). As a consequence, new restrictions on the natural quasi-interior operator on lattices of quasi-equational theories are found.Comment: Presented on International conference "Order, Algebra and Logics", Vanderbilt University, 12-16 June, 2007 25 pages, 2 figure

    \u3cem\u3en\u3c/em\u3e-Distributivity, Dimension and Carathéodory\u27s Theorem

    Get PDF
    A. Huhn proved that the dimension of Euclidean spaces can be characterized through algebraic properties of the lattices of convex sets. In fact, the lattice of convex sets of IEn is n+1-distributive but not n-distributive. In this paper his result is generalized for a class of algebraic lattices generated by their completely join-irreducible elements. The lattice theoretic form of Carathédory\u27s theorem characterizes n-distributivity in such lattices. Several consequences of this result are studies. First, it is shown how infinite n-distributivity and Carathédory\u27s theorem are related. Then the main result is applied to prove that for a large class of lattices being n-distributive means being in a variety generated by the finite n-distributive lattices. Finally, n-distributivity is studied for various classes of lattices, with particular attention being paid to convexity lattices of Birkhoff and Bennett for which a Helly type result is also proved

    Lattices of quasi-equational theories as congruence lattices of semilattices with operators, part I

    Get PDF
    We show that for every quasivariety K of structures (where both functions and relations are allowed) there is a semilattice S with operators such that the lattice of quasi-equational theories of K (the dual of the lattice of sub-quasivarieties of K) is isomorphic to Con(S;+; 0; F). As a consequence, new restrictions on the natural quasi-interior operator on lattices of quasi-equational theories are found

    Sublattices of lattices of order-convex sets, I. The main representation theorem

    Get PDF
    For a partially ordered set P, we denote by Co(P) the lattice of order-convex subsets of P. We find three new lattice identities, (S), (U), and (B), such that the following result holds. Theorem. Let L be a lattice. Then L embeds into some lattice of the form Co(P) iff L satisfies (S), (U), and (B). Furthermore, if L has an embedding into some Co(P), then it has such an embedding that preserves the existing bounds. If L is finite, then one can take P finite, of cardinality at most 2n25n+42n^2-5n+4, where n is the number of join-irreducible elements of L. On the other hand, the partially ordered set P can be chosen in such a way that there are no infinite bounded chains in P and the undirected graph of the predecessor relation of P is a tree

    On lattices of convex sets in R^n

    Full text link
    Properties of several sorts of lattices of convex subsets of R^n are examined. The lattice of convex sets containing the origin turns out, for n>1, to satisfy a set of identities strictly between those of the lattice of all convex subsets of R^n and the lattice of all convex subsets of R^{n-1}. The lattices of arbitrary, of open bounded, and of compact convex sets in R^n all satisfy the same identities, but the last of these is join-semidistributive, while for n>1 the first two are not. The lattice of relatively convex subsets of a fixed set S \subseteq R^n satisfies some, but in general not all of the identities of the lattice of ``genuine'' convex subsets of R^n.Comment: 35 pages, to appear in Algebra Universalis, Ivan Rival memorial issue. See also http://math.berkeley.edu/~gbergman/paper
    corecore