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Abstract

For a partially ordered sef, we denote byCo(P) the lattice of order-convex subsets Bf We
find three new lattice identities, (S), (U), and (B), such that the following result holds.

Theorem. Let L be a lattice. Ther. embeds into some lattice of the fo@w(P) iff L satisfieqS),
(U), and(B).

Furthermore, ifL has an embedding into son@o(P), then it has such an embedding that
preserves the existing boundsZlfis finite, then one can take finite, with

1P| < 2Jd(L)|? = 5]U(L)| +4,

where JL) denotes the set of all join-irreducible elementd.of

On the other hand, the partially ordered Batan be chosen in such a way that there are no infinite
bounded chains i®® and the undirected graph of the predecessor relatighisfa tree.
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1. Introduction

For a partially ordered set (from now pose} (P, <), a subsek of P is order-convex
if x <z<yand{x,y} < X implies thatz € X, for all x,y,z € P. The setCo(P) of
all order-convex subsets @ forms a lattice under inclusion. This lattice is algebraic,
atomistic, and join-semidistributive (see Section 2 for the definitions), thus it is a special
example of a&onvex geometygee P.H. Edelman [5], P.H. Edelman and R. Jamison [6], or
K.V. Adaricheva, V.A. Gorbunov, and V.I. Tumanov [2]. Furthermore, it is ‘biatomic’ and
satisfies the nonexistence of so-called ‘zigzags’ of odd length on its atoms. Is is proved in
G. Birkhoff and M.K. Bennett [3] that these conditiocizaracterizehe lattices of the form
Co(P).

One of the open problems of [2] is the characterization ofalfilatticesof the lattices
of the formCo(P).

Problem 3 (of [2] for Co(P)). Describe the subclass of those lattices that are embeddable
into finite lattices of the fornCo(P).

In the present paper, we solve completely this problem, not only in the finite case but
also for arbitrary lattices. Our main result (Theorem 6.7) is that a latticen be embedded
into some lattice of the forr@o(P) iff L satisfies three completely new identities, that we
denote by (S), (U), and (B). Furthermoi can be taken either finite in cages finite, or
tree-like(see Theorem 7.7).

This result is quite surprising, as it yields the unexpected consequence (see Corol-
lary 6.9) that the class of all lattices that can be embedded into &ntR) is avariety,
thus it is closed under homomaorphic images. However, while it is fairly easy (though not
completely trivial) to verify directly that the class is closed under reduced products and
substructures (thus it isguasivariety, we do not know any direct proof that it is closed
under homomorphic images.

One of the difficulties of the present work is to guess, for a gizenvhich posetP
will solve the embedding problem fat (i.e., L embeds intaCo(P)). The first natural
guess, that consists of using férthe set of all join-irreducible elements &f, fails, as
illustrated by the two examples of Section 8. We shall consthugta sequencesf join-
irreducible elements of.. In fact, we are able to embdd into Co(P) for two different
sorts of poset?:

(1) P isfinite in casel is finite; this is the construction of Section 6.
(2) P istree-like (as defined in Section 2); this is the construction of Section 7.

The two requirements (1) and (2) above can be simultaneously satisfied i ¢ese
no D-cycle see Theorem 7.7(iii). However, the finite latti¢geof Example 8.2 can be
embedded into some finit@o(Q), but into noCo(R), whereR is a finite tree-like poset,
see Corollary 10.6. It is used to produce, in Section 10, a quasi-identity that holds in all
Co(R), whereRr is finite and tree-like (or even what veall ‘crown-free’), but not in all
finite Co(P).

We conclude the paper by a list of open problems.
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2. Basic concepts
A lattice L is join-semidistributiveif it satisfies the axiom
xVy=xVz = xVy=xV(yAgzg), foralx,y,zelL. (SDy)

We denote by @) the set of join-irreducible elements bf We say that. is finitely spatial
(respectively,spatial) if every element ofL is a join of join-irreducible (respectively,
completely join-irreducible) elements af

We say that_ is lower continuousif the equality

av/\X:/\(aVX)

holds, for alla € L and all downward directedk € L such that/\ X exists (where

av X ={avVvx|xeX}). Itis well known that every dually algebraic lattice is lower

continuous—see Lemma 2.3 in P. Crawley and R.P. Dilworth [4], and spatial (thus finitely

spatial)—see Theorem 1.4.22 in G. Gierz et al. [9] or Lemma 1.3.2 in V.A. Gorbunov [10].
For every element in a latticeL, we put

x={yel|y<x}, tx={yelL|y=>x}.

If a, b, c € L suchthat: < bV ¢, we say thatthe (formal) inequality< b Vv c is anontrivial
join-cover if a £ b, c. We say that it isninimal inb, if a £ x v ¢, forall x < b, and we say
that it is aminimal nontrivial join-coverif it is a nontrivial join-cover and it is minimal in
bothb andc.

Thejoin-dependencyelation D = Dy (see R. Freese, J. JeZek, and J.B. Nation [7]) is
defined on the join-irreducible elementsioby putting

pDq, if p#q and3x such thatp < ¢ v x holds and is minimal irg.

It is important to observe thatDq implies thatp £ ¢, for all p, g € J(L).

For a posetP endowed with a partial orderingd, we shall denote by the
corresponding strict ordering. The set of all order-convex subsef® fafrms a lattice
under inclusion, that we shall denote Bp(P). The meet inCo(P) is the intersection,
while the join is given by

XvY=XUyU| J{zeP|3(x.y) e (X x ¥)U (¥ x X) suchthatr <z <1 y},

for all X,Y € Co(P). Let us denote by the predecessor relation &f. We say that a
pathof P is a finite sequence = (xg, ..., x,—1) of distinctelements ofP such that either
Xi < Xj+1 Orxj+1 < x;, foralli with 0<i <n —2;if n > 0, we say thatl is a path from
xo to x,—1. We say that the patthis oriented if x; < x; 11, foralli with0<i <n—2.We
say thatP is tree-like if the following properties hold:
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(i) forall a <bin P, there arer < w andxg, ..., x, € P suchthat =xp < x1 < --- <
X, =b;
(i) forall a,b € P, there exists at most one path franto .

3. Dually 2-distributive lattices

For a positive integet, the identity ofn-distributivity is introduced in A.P. Huhn [12].
In this paper we shall only need the dual of 2-distributivity, which is the following identity:

a/\(xVsz):(a/\(xVy))v(a/\(sz))V(a/\(sz)).

We omit the easy proof of the following lemma, that expresses how dual 2-distributivity
can be read on the join-irreducible elements.

Lemma 3.1. Let L be a dually2-distributive lattice. For allp € J(L) and alla, b, c € L, if
p<avbvec,theneithepp <avborp<Lavcorp<bve.

We observe that for finitely spatidl, the converse of Lemma 3.1 holds.
The following lemma will be used repeatedly throughout the paper.

Lemma 3.2. Let L be a dually2-distributive, canplete, lower continuous lattice. Let
p €J(L) andleta,b € L such thatp <a Vv b andp £ a, b. Then the following assertions
hold:

(i) There are minimak <a andy < b suchthatp <x v y.
(i) Any minimalr < a andy < b such thatp < x Vv y are join-irreducible.

Proof. (i) Let X C Ja andY C |b be chains suchthat <x v y, forall (x,y)e X x Y.
It follows from the lower continuity ofZ. thatp < (A X) v (/\ Y). The conclusion of (i)
follows from a simple application of Zorn’s Lemma.

(ii) From p £ a, b it follows that bothx andy are nonzero. Suppose that xq Vv x1
for somexg, x1 < x. It follows from the minimality assumption anthat p £ xo v y and
p £ x1V y, whence, by Lemma 3.Jp < xo V x1, thusp < x < a, a contradiction. Hence
x is join-irreducible. O

For p,a,b € J(L), we say thata, b) is aconjugate paiwith respect top, if p £ a, b
anda andb are minimal such thap < a v b; we say then thak is aconjugateof a with
respect top. Observe that the latter relation is symmetricimndb, and that it implies
that pDa and p Db.

Notation 3.3. For a latticeL andp € J(L), we put

[p)P = {x € L) | pDx}.
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Corollary 3.4. Let L be a dually2-distributive, canplete, lower continuous lattice, and let
p €J(L). Then every: € [p]? has a conjugate with respect jo

Proof. By the definition of join-dependency, there exists L such thatp <a Vv ¢ and
p & x Ve, forall x <a. By Lemma 3.2, there ar€ < a andb < ¢ minimal such that

p <a’' v b, and botha’ andb are join-irreducible. It follows that’ = a, whenceb is a
conjugate of: with respecttgp. O

4, Stirlitz, Udav, and Bond
4.1. The Stirlitz identityS) and the axiom(S)

Let (S) be the following identity:

a/\(b/VC)z(a/\b’)v\/(a/\(biVC)/\((b//\(avb,-))Vc)),

i<2
where we pub’ =b A (bo V b1).
Lemma 4.1. The Stirlitz identitS) holds inCo(P), for any poset P, ).
Proof. Let A, B, Bg, B1,C € Co(P) anda € AN (B’ v C), where we putB’ = BN
(Bo v B1). Denote byD the right-hand side of the Stirlitz identity calculated with these
parameters. Ifi e B thenae ANB'C D.IfaeCthenae ANC C D.

Suppose thatt ¢ B’ U C. There existb € B’ andc¢ € C such that, sayb < a < c.
Sinceb € By Vv Bi, there are@ < 2 andb’ € B; such that’ < b, hencea € AN (B; v C).
Furthermoreb e B N(AV B;),thusae (BPN(AV B;)))vC,soaecD. O
Lemma 4.2. The Stirlitz identity(S) implies dual2-distributivity.

Proof. Takebg=x,b1=y,b=xVvy,andc=z. O
Let (SD?) be the following identity:
xVAD)=xV(yA(xV(zAxVYy)))). (SD?)

Itis well known that(SD%) implies join-semidistributivity (that is, the axio(sD. )), see,
for example, P. Jipsen and H. Rose [13, p. 81].

Lemma 4.3. The Stirlitz identity(S) implies(SD?).
Proof. Let L be a lattice satisfying (S), let, y,z € L. Sety, =y A (x V (z A (x V y))). Set

a=bi=y,b=z,c=byg=x,andb’ =b A (bg Vv b1) =z A (x Vv y). Then the following
inequalities hold:
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yzzy/\(xv(z/\(xVy)))za/\((b/\(bovbl))Vc)

< (a/\b’)v\/(a/\(b,- Vo) A((' A av b)) Vi)

i<2
=OADVOADY(A(GADVI)=0AD V(YA (XV(YAD))

=yA(xV(AD)<xV(yAD).

This implies thatc v y2 < x V (y A ). Since the converse inequality holds in any lattice,
the conclusion follows. O

We now introduce a lattice-theoretical axiom, jbm-irreducible interpretation of(S),
that we will denote byS):

For alla, b, bo, b1, c € IL), th_e inequalitiest < b Vv ¢, b < bg V b1, anda # b imply
that eithera < b v ¢ forsomeb <b orb <a Vv b; anda < b; v ¢ for somei < 2.

Throughout the paper we shall make repeated use of the item (i) of the following
statement. Item (ii) provides a convenient algorithm for verifying whether a finite lattice
satisfies (S).

Proposition 4.4. Let L be a lattice. Then the following assertions hold

(i) If L satisfieqS), thenL satisfiegS)).
(i) If L is complete, lower continuous, finitely spatial, duddistributive, and satisfies
(§), thenL satisfieqS).

Proof. (i) Leta < bV, b<bgV by, anda # b for somea, b, bg, b1, c € J(L). Then the
element®’ of the Stirlitz identity ish’ = b A (bg Vv b1) = b; observe also thatA (b V ¢) = a.
Therefore, applying (S) yields

a:a/\(b/\/c)z(a/\b/)\/\/(a/\(b,-\/C)/\((b//\(a\/b,'))\/c))

i<2

=@nbyv\/(an®iveyn((balavb)ve)).
i<2

Sincea is join-irreducible, eithee: < b ora < (b; vV ¢) A ((b A (a Vv b;)) Vv ¢) for some
i <2.1f a<bthena <aVc witha <b (becauser # b). Suppose that £ b. Then
a<bive)A(bA(aVvb))Vve)<b;vcforsomei < 2. |fb§(a\/b,',thena<l_7VC
forb=bnA(avh;)<b.

(i) Put &’ = b A (bo Vv b1), and letd denote the right-hand side of the identity (S).
Sinced < a A (b’ V ¢), we must prove the converse inequality only. kete J(L) with
ar<an® vce).Thenar<aandar <b've. lfay <b', thenai<aanb <d.lfa1<c,
thenai <a Anc <d.
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Suppose now thaty £ b, c. Then, by using Lemma 3.2, we obtain that there are
minimal b < b" andc < ¢ such that the following inequality holds,

a1 < b/l V1 (4.2)

and bothb] andc; are join-irreducible. Fronay £ b’ it follows thatay £ b]. If b} < b;
for somei < 2, then the inequalitied] < b" A b; <b' A (a Vv b;) anday < bj V1 <
(b’ A (a Vv b)) Vv c hold; but in this case, we also have< a A (b; V ¢), whencen; <d.
Suppose thal; & bo, b1. Then, by Lemma 3.2, there are join-irreducible elements b;,
i < 2, such that the following inequality

by <dov di (4.2)

holds. It follows from (4.1), (4.2)31 & b7, the minimality ofb] in (4.1), and§) that there
existsi < 2 such thab] < a1 v d; anday < d; Vv c1. Then the following inequalities hold:

ar<an(dVve)Abivel) <an®ive)n (' Aavb))ve)<d.
In every casegi < d. SinceL is finitely spatial, it follows that: A (b’ V) <d. O
4.2. The Bond identit{B) and the axion(B;)

Let (B) be the following identity:

xA(agVay) A (bgV by) = \/((x Aai A (boV b)) V (x Abi A(aoV ar)))

i<2

v \/(x A (ao v a1) A (boV b1) A (ao Vv bi) A (a1 V b))

i<2
Lemma 4.5. The Bond identityB) holds inCo(P), for any poset P, ).

Proof. Let X, Ag, A1, Bo, B1 be elements o€o(P). Denote byC the right-hand side
of the Bond identity formed from these elements. ket X N (Ag Vv A1) N (Bo V B1),
we prove thatc € C. The conclusion is obvious if € Ag U A1 U Bg U B1, SO suppose
thatx ¢ Ag U A1 U Bg U B;. Sincex € (Ag Vv A1) \ (AgU A1), there areug € Ag and
a1 € A1 such that, sayo < x < a1. Sincex € (Bo Vv B1) \ (Bo U B1), there arehg € Bg
and b1 € By such that eithebg <t x <1 b1 Or by < x < bg. In the first casex belongs
to XN (AgV A1) N (Bg Vv B1) N (Ag VvV B1) N (A1 Vv Bp), thus toC. In the second
case,x belongs toX N (Ag v A1) N (Bo VvV B1) N (Ao V Bg) N (A1 Vv Bi), thus again
toC. O

We now introduce a lattice-theoretical axiom, jbim-irreducible interpretation of(B),
that we will denote byB;):
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For all x, ao, a1, bo, b1 € J(L), the inequalities < ag V a1, bg Vv b1 imply that either
x<a;orx <b;forsomei <2orx<agVbg,arVvbiorx<agVbi, arV bg.

Throughout the paper we shall make repeated use of the item (i) of the following
statement. Item (ii) provides a convenient algorithm for verifying whether a finite lattice
satisfies (B).

Proposition 4.6. Let L be a lattice. Then the following assertions hold

(i) If L satisfiegB), thenL satisfiesBj).
(ii)y If L is complete, lower continuous, finitely spatial, dudidistributive, and satisfies
(Bj), thenL satisfieqB).

Proof. Item (i) is easy to prove by using the (B) identity and the join-irreducibility of

(i) Let u (respectively,v) denote the left- (respectively, right-) hand side of the
identity (B). It is obvious that < u. SinceL is finitely spatial, in order to prove that
u < v it is sufficient to prove that for alp € J(L) such thatp < u, the inequalityp < v
holds. This is obvious if eithep < a; or p < b; for somei < 2, so suppose that £ a;, b;,
forall i < 2. Then, by Lemma 3.2, there exisi, x1, yo, y1 € J(L) such thaty; < a; and
yi < b;, foralli <2, while p < xoVx1, yoV y1. By assumption, we obtain that one of the
following assertions holds:

p<(xoVyo) A(x1V iyl ag Vv bo) A (arV b1),

(
(

NN

)
p < (xoV y1) A (x1V yo) < (ao Vv b1) A (arV bo).
In any casep < v, which completes the proof.0
4.3. The Udav identitfU) and the axiom(U;)

Let (U) be the following identity:

xA(xoVx1) A1V x2) A (xoVx2)

= (x A X0 A (x1Vx2)) \% (x AX1LA (xOsz)) \Y, (x A X2 A (xonl)).
Lemma 4.7. The Udav identitfU) holds inCo(P), for any poset P, <).

Proof. Let X, Xo, X1, X2 be elements ofCo(P). Denote byU (respectively,V) the
left-hand side (respectively, right-hand side) of the Udav identity formed from these
elements. It is clear thdll containsV. Conversely, letc € U, we prove thate belongs

to V. This is clear ifx € Xo U X1 U X2, SO suppose that ¢ Xo U X; U X». Since

x € (XoVvX1)\(XoUX1),there areg € Xg andx1 € X1 such that, sayo < x <1 x1. Since

x € (X1V X2)\ (X1U X2), there arex; € X3 andx, € X, such that eithex; <x < x2 or

x2 < x < x7. But sincex < x1 € X1 andx ¢ X3, the first possibility is ruled out, whence

x2 <1 x < x3. Sincex € (Xo Vv X2) \ (Xo U X»), there arexj € Xo andx) € X2 such that
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eitherxy < x <1 x5 orx5 < x < x;. The first possibility is ruled out by, <t x andx ¢ X2,
while the second possibility is ruled out by <1 x andx ¢ Xo. In any case, we obtain a
contradiction. O

As we already did for (S) and (B), we nowtinduce a lattice-thaetical axiom, the
join-irreducible interpretation of(U), that we will denote byU;):

For all x, xg, x1, x2 € J(L), the inequalitiest < xg Vv x1, xo V x2, x1 V x2 imply that
eitherx < xporx < xporx < xo.

Throughout the paper we shall make repeated use of the item (i) of the following
statement. Item (ii) provides a convenient algorithm for verifying whether a finite lattice
satisfies (U).

Proposition 4.8. Let L be a lattice. Then the following assertions hold

(i) If L satisfieqU), thenL satisfies(U;).
(iiy If L is complete, lower continuous, finitely spatial, dudidistributive, and satisfies
both (Bj) and (Uj), thenL satisfies botiB) and (U).

Proof. Item (i) is easy to prove by using the (U) identity and the join-irreducibility of

(i) We have already seen in Proposition 4.6 thaatisfies (B).

Let u (respectively,v) be the left-hand side (respectively, right-hand side) of the
identity (U). It is clear that < u. Let p € J(L) such thatp < u, we prove thatp < v.
This is obvious ifp < x; for somei < 3, so suppose that £ x;, for all i < 3. Then, by
using Lemma 3.2, we obtain that there are join-irreducible elemgnis < x; (i < 3) of
L such that the following inequalities hold:

p<poV p1.pyV p2.poV Pa. (4.3)

Sincep £ x1 and L satisfies(B)), it follows from the first two inequalities of (4.3) that
p < poV py, p1V p2. Similarly, from p £ x2, the last two inequalities of (4.3), an8;),
we obtain the inequalities

p<PpyV po, poV p2,

and from the first and the last inequality of (4.3), together witf xg and(B;), we obtain
the inequalities

P<poV pa poV Pl
In particular, we have obtained the inequalities
p<poV p1.pLV Pa. poV P,

whence, by the assumptigb;), p < x; for somei < 3, a contradiction. O
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5. First stepstogether of theidentities(S), (U), and (B)
5.1. Udav—-Bond partitions

The goal of this subsection is to prove the following partition result of the{ péts(see
Notation 3.3).

Proposition 5.1. Let L be a complete, lower continuous, duabydistributive lattice that
satisfies(U) and (B). Then for everyp € J(L), there are subsetd and B of [p]? that
satisfy the following properties

(i) [p)P=AUBandANB=40.
(i) Forall x,ye[pl?, p<xVvyiff (x,y)e (A x B)U (B x A).

Moreover, the sefA, B} is uniquely determined by these properties.

The set{A, B} will be called theUdav—Bond partitior(of [ p]?) associated witkp. We
observe that every conjugate with respegt tof an element ofA (respectivelyB) belongs
to B (respectivelyA).

Proof. If [p]P = @ the result is obvious, so suppose that? # ¢. By Lemma 3.2, there
area, b € [p]? minimal such thap < a v b. We defineA andB by the formulas

A={xelpl’Ip<xvb),  B={yelpl’Ip<avy}.

Let x € [p]P. By Corollary 3.4,x has a conjugate with respect o denote it byy. By
Lemma 3.2(ii),y is join-irreducible, thusy € [p]P. By applying(Bj) to the inequalities
p<aVvb,xVy,we obtain that eithep <avx,bvyorp<avy,bVx,thus either
p <aVxorp<bvVx. If both inequalities hold simultaneously, then, since a v b
and by(Uj), we obtain thap lies below either or b or x, a contradiction. Hence we have
established (i).

Let x,y e [p]”, we shall establish in which case the inequality< x v y holds.
Suppose first that € A andy € B. By applying(B;) to the inequalitiep < b v x,a Vv y,
we obtain that eithep < x v y or p < b V y. In the second case, € B, buty € A,

a contradiction by item (i); hence < x Vv y.

Now suppose that,y € A. If p < x Vv y, then, by applyingU)) to the inequalities
p<xVybvVvxbVvy,we obtain thatp lies below eitherx or y or b, a contradiction.
Hencep £ x v y. The conclusion is the same for, y) € B x B. This concludes the proof
of item (ii).

Finally, the uniqueness ¢fA, B} follows easily from items (i) and (ii). O

5.2. Choosing orientation with Stirlitz

In this subsection we shall investigate further the configuration on wiggtis based.
The following lemma suggests an ‘orientation’ of the join-irreducible elements in such
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a configuration. More specifically, we are trying to embed the given latticeGot@),
for some posetP, ). Attempting to defineP as JL), this would suggest to order the
elements:, b, bg, andby by ¢ <a <1 b andby_; < b < b;. Although the elements a? will

be definedsia finite sequencesf elements of @), rather than just elements ofL)), this
idea will be crucial in the construction of Section 7.

Lemma 5.2. Let L be a lattice satisfyingS) and (Uj). Leta, b, bo, b1, c € J(L) such that
a # b and satisfying the inequalities< b v ¢ with b minimal such, an@ < bg Vv b1 with
b £ b, b1. Then the following assertions hold

(i) The inequalitiesh < a v b; and a < b; Vv ¢ together are equivalent to the single
inequalityb < b; v ¢, forall i < 2.
(i) There is exactly one< 2 such thatb < b; Vv c.

Proof. We first observe tha £ ¢ (otherwisea < ¢). If b < a Vv b; anda < b; Vv ¢, then
obviouslyb < b; v c. Suppose, conversely, thatl bg Vv e. If b < b1V ¢, then, by observing
that b < bo v b1 and applying(Uj), we obtain that eitheb < bg or b < by or b < c,

a contradiction. Henck £ b1 Vv ¢, the uniqueness statement of (i) follows. Furthermore,
by (S), there exists < 2 such that < a Vv b; anda < b; Vv ¢, whenceb < b; V ¢, thus

i =0.Thereforeb <avbganda <bgVvce. O

Next, for a conjugate paifp, b’) of elements of @) with respect to some elememt
of J(L), we define

C[b.b'|={xe€dL) | bDx andb < b’ v x}. (5.1)

Notation 5.3. Let SUB denote the class of all lattices that satisfy the identities (S), (U),
and (B).

HenceSUB is a variety of lattices. It idinitely basedthat is, it is defined by finitely
many equations.

Lemma 5.4. Let L be a complete, lower continuous, finitely spatial latticeSldB. Let
a, b € J(L) such thata Db. Then the equalitf’[b, bg] = C[b, b1] holds, for all conjugates
bo andb; of b with respect taz.

Proof. We prove, for example, that[b, bo] is contained inC[b, b1]. Let x € C[b, bo]
(sob < bo Vv x), and suppose that¢ C[b, b1] (s0b £ by Vv x). By Corollary 3.4,x has
a conjugate, sayy, with respect tob. Since both relationa < b Vv b1 andb < x Vv y
are minimal nontrivial join-covers, it follows from Lemma 5.2 that eitleg b1 v x or
b < b1V y, butthe first possibility does not hold. Hence the following inequalities hold:

b<bpVx,b1Vy,xVy. (5.2)
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Furthermore, by the uniqueness statement of Lemmab5&2ho v y. Thus, by(B;j) and
the first two inequalities in (5.2) (observe tiief bo, b1, x, y), we obtain thab < bo Vv b1.
Hencen < bVvbo < boVv b1, whencer < bvbg, bVvbi, boV by, acontradiction byUj). O

For all a, b € J(L) such thata Db, there exists, by Corollary 3.4, a conjugéateof b
with respect taz. By Lemma 5.4, for fixed:, the value ofC[b; '] does not depend d@f.
This entitles us talefine

C(a,b)=C[b,b'], forany conjugaté’ of b with respect tar. (5.3)

Lemma 5.5. Leta, b € J(L) such thata Db. Then the setC(a, b), [b]P \ C(a, b)} is the
Udav—Bond partition ofb]? associated wittb.

Proof. It suffices to prove that the assertions (i) and (ii) of Proposition 5.1 are satisfied by
the set{C(a, b), [b]P \ C(a, b)}. We first observe the following immediate consequence of
Lemma5.2.

Claim. For anyx € [b]? and any conjugate’ of x, x ¢ C(a, b) iff x’ € C(a, b).

From now on we fix a conjugate’ of b with respect toa. Let x, y € [b]°, let x’
(respectivelyy’) be a conjugate of (respectivelyy) with respect td.

Suppose first that € C(a, b) andy ¢ C(a, b), we prove thab < x Vv y. It follows from
Claim above that’ € C(a, b), whence the inequalities < 5’ v x, b’ v y’ hold, hence,
by (U, b£xVvy.Buthb<xvx',yvy,thus, since £ x,x’,y,y and by(B)), the
inequalityb < x v y holds.

Suppose next that, y € C(a, b). Sinceb < b’ v x, b’ v y, the inequalityb < x v y
would yield, by(U;), a contradiction; whence £ x v y.

Suppose, finally, that, y ¢ C(a, b). Thus, by Claim,y’ € C(a, b), whence, by the
abovep <x vy, y vy, whence byUj),bxVvy. O

5.3. Stirlitz tracks

Throughout this subsecth, we shall fix a latticel satisfying the identities (S), (U),
and (B). By Lemma 4.2L is dually 2-distributive as well. Furthermore, it follows from
Propositions 4.4, 4.6, and 4.8 thasatisfiegS), (Uj), and(B).

Definition 5.6. For a natural number, a Stirlitz track of lengthr is a pairoc = ({a; | 0 <
i <n),(a; | 1<i<n)), where the elements; for 0<i <n anda; for 1 <i <n are
join-irreducible and the following conditions are satisfied:

(i) the inequalitya; < aj+1 Vv a{+1 holds, for alli € {0,...,n — 1}, and it is a minimal
nontrivial join-cover;
(ii) the inequalitya; < a; Vv a;41 holds, foralli e {1,...,n —1}.

We shall callag thebaseof o. Observe that; Da; 1, foralli € {O,...,n — 1}.
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Observe that ifo is a Stirlitz track as above, then, by Lemma 5.2, the following
inequalities also hold:

aiv1<a; Va2, (5.4)

ai <aly1 Va2, (5.5)

foralli €{0,...,n—2}.
The main property that we will need about Stirlitz tracks is the following:

Lemma 5.7. For a positive integem, leto = ((¢; |0<i <n),{(a; |1<i <n)) bea
Stirlitz track of lengthz. Then the inequalities; < ao v a, anda; < a; Vv a, hold, for all

i €{0,...,n}. Furthermore0 < k <[ < n implies thatax £ a;; in particular, the elements
a;, for 0 <i < n, are distinct.

Proof. We argue by induction on. The result is trivial forn = 1, and it follows from
(5.4) and (5.5) fom = 2. Suppose that the result holds foe= 2, and leto = ({(a; | 0 <
i<n+1),(a|1<i<n+1) be a Stirlitz track of lengtl + 1. We observe that
ox = ((a; |0<i <n),(a] | 1<i<n))is a Stirlitz track of lengthn, whence, by the
induction hypothesis, the following inequalities hold:

ap—1<aopV ap, (5.6)

an—1<ayVay. (5.7)

We first prove thatz,—1 < agp V a,+1. Indeed, suppose that this does not hold. Hence,
a fortiori a,—1 £ ao, an+1. Hence, by applyingB;j) to (5.5) (fori =n — 1) and (5.6)
and observing that,—1 £ an, a,, we obtain that,—1 < a, V a,+1. Thereforea,_1 <
an NV ant1,an V ay, a, V ay4+1, @ contradiction byU;). Hence, indeeds,—1 < ag V an+1.
Consequently, by (5.4%, < a,—1Van+1 <aoVay+1. Hence, fon € {0, ..., n}, it follows
from the induction hypothesis (applieddg) thata; < aopV a, <ag V ap+1.

The proof of the inequalities; < a] V a,41, for i € {0,...,n}, is similar, with ag
replaced by:; and (5.6) replaced by (5.7).

Finally, let 0< k <1 < n, and suppose that, < ;. By applying the previous result
to the Stirlitz track ({(ax+: |0 <i <1 —k),(a,; | 1 <i <[ —k)), we obtain that
aj—1 < ax vV a; = a;, a contradiction. Hence, £ a;, in particularax #a;. O

Lemma 5.8. For positive integers:, n > 0, let
o=((a0<i<m),(af|1<i<m)),  ©=((bj|0<j<n),(p;|1<j<n))

be Stirlitz tracks with the same bage=ag=bgandp < a1 Vv b1. Thena;, b; < an V by,
foralli €{0,...,m}andj €{0,...,n}.
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Proof. Suppose first that the inequaliy < a1 v b} holds. Thenp < a1 v b3,b] V by,
b1 Vv a1, a contradiction by(U;). Hence p £ a1 Vv b}, thus, by applying(B;) to the
inequalitiesp < a1 v a3, b1 Vv b}, we obtain thap < aj v b].

Furthermore, from Lemma 5.7 it follows that < p v a,, for all i € {0, ..., m}, and
b; < pVby forall je{0,...,n}, thus it suffices to prove that < a, Vv b,. Again,
from Lemma 5.7 it follows thap < a} V an, b} v b,. Suppose thap £ a,, v b,. Then
p & aj, am, by, by, thus, by(By), p < a} v b,. Furthermore, we have seen the& b v b,
andp < aj v bj. Hence, by(Uj), p lies below either] or b} or b,, a contradiction. O

6. Thesmall poset associated with alatticein SUB

Everywhere in this section before Theorem 6.7, we shall fix a complete, lower
continuous, finitely spatial lattic& in SUB. For every elemenp € J(L), we denote by
{A,, By} the Udav—Bond partition ofp]? associated withp (see Section 5.1). We let
and— be distinct symbols, and we pRt= RoU R_ U R, whereRg, R_, andR are the
sets defined as follows:

Ro={(p) | p D)},
Ri={(a,b.+)|a,be L), aDb},
R_={(a,b,—)|a,be L), aDb}.

We define amap: R — J(L) by puttinge({p)) = p, forall p € (L), whilee({a, b, +)) =
e({a,b,—))=>b,foralla,b e JL) with aDb.
Let < be the binary relation oR that consists of the following pairs:

(p,a,—) <(p)<(p,b,+) wheneveu c A, andb € B, (6.1)

(b,c,=)<{a,b,+)<(b,d,+), and (6.2)

(b,d,—) < {a,b,—) < (b,c,+), whenever e [b]”\ C(a,b)andd € C(a, b).
(6.3)

Lemma 6.1. Lete € {+, -}, letn < w, and letao, ..., an, bo, ..., b, € J(L) such that
a;Db;, for all i € {0,...,n} and (ag, bo, €) < -+ < {ay, by, ). Then exactly one of the
following cases occurs

(i) e =+ and, puttinga,+1 = b,, the equalitya; 1 = b; holds, for alli € {0, ..., n},
while there are join-irreducible elements, ... ., “fz+1 of L such that({(a; |0 <i <
n+1),(a; | 1<i <n+1))is a Stirlitz track.

(i) e = — and, puttinga_1 = bo, the equalitya;_1 = b; holds, for alli € {0, ..., n},
while there are join-irreducible elemenis ;, ..., a,_, of L such that({a,—; | 0 <
i<n+1),(a,_; 11<i<n+1))is a Stirlitz track.
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Proof. Suppose that = + (the proof fore = — is similar). We argue by induction on

If n =0, then, from the assumption thasDbg and by using Corollary 3.4, we obtain a

conjugatez; of bo with respect taz, and((ao, a1), (a7)) is obviously a Stirlitz track.
Suppose that > 0. From the assumption thét, 1, b,—1, +) < (an, by, +) and the

definition of <, we obtain thau, = b,_1. Furthermore, from the induction hypothesis it

follows that there exists a Stirlitz track of the form

(i 10<i <n).(a] 11<i <n)).

Puta,i1 = by, and leta,  , be a conjugate of,+1 with respect taz,. Using again the
assumption thafa,_1, b,—1, +) < (an. bs, +), we obtain the inequality, < a), V an41.

Therefore((a; |0<i <n+1),(a; | 1<i <n+1))isaStirlitz track. O
Let < denote the reflexive and transitive closure<of

Lemma 6.2. The relationd is a partial ordering onR, and < is the predecessor relation
of <.

Proof. We need to prove that for any> 0, if ro < --- < r, in R, thenrg # r,. We have
three cases to consider.

Case l.rg € Ry. Inthis caser; = (a;, bi,+) € Ry, foralli € {1,...,n}. By Lemma6.1,
if we puta,+1 = b,, thena; 11 =b;, forall i € {0, ..., n}, and there are join-irreducible
elementsi;, ...,a;Hl of L such that

(@i 10<i<n+1).{af | 1<i <n+1))
is a Stirlitz track. In particular, by Lemma 5.4 # a,,, whencerg # ry,.
Case2.rg € Rp. Thenr; € Ry, foralli € {1, ..., n}, thusrg #ry,.

Case3.rpe R_. If r, ¢ R_, thenrg # r,. Suppose that, € R_. Thenr; = (a;, b;, —)
belongs tor_, foralli € {0, ...,n}. By Lemma 6.1, if we puti_1 = bo, thena;_1 = b;,
for all i € {0,...,n}, and there are join-irreducible elements,, ..., a, , of L such
that ((a,—; |0<i <n+1),(a,_; | 1<i<n+1))is a Stirlitz track. In particular, by
Lemma5.7ag # a,, whencerg#r,. O

Definition 6.3.

(i) Two finite sequencess= (ro, ..., r,—1) ands= (so, ..., s,—1) of same length oR are
isotype if eithere(r;) = e(s;), foralli € {0, ...,n — 1}, ore(r;) = e(s,—1-;), for all
ie{0,....n—1}.

(i) An oriented path (see Section R} (ro, ..., r,—1) of elements ofR is
e positive(respectivelynegative, if there are elements, b; (for 0 < i <n) of J(L)

such thav; = (a;, b;, +) (respectivelyr; = (a;, b;, —)), foralli € {0, ..., n — 1},
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e reducedif either it is positive or is has the form
(uo, ce Uk—1,(P), V0, - -, vl_1>,
wherep € J(L), (uo, ..., ux—1) is negative, andvy, . .., v;—1) IS positive.
Lemma 6.4. Every oriented path oR is isotype to a reduced oriented path.
Proof. Letr be an oriented path at, we prove that is isotype to a reduced oriented path.
If r is either positive or reduced there is nothing to do. Suppose tisaneither positive
nor reduced. Thenhas the form
((ar—1. ak, =), ..., {ao. a1, =), (bo. b1, +). ..., (bi—1. b1, +))
for some integerg > 0 and! > 0. If / = 0, thenr is isotype to the positive path
((ao0, a1, +), ..., (a1, ak, +)).

Suppose now thdt> 0. Since{ag, a1, —) < {bog, b1, +), two cases can occur.
Case 1. ag = by anday ¢ C(bo, b1) (see (6.2)). Observe thélg, a1, —) < (ao) if a1 € Agg
while {(ao) < (ao, a1, +) if a1 € By, (see (6.1)). In the first case, it follows from Lemma 5.5
(applied toC (ao, a1)) that the sequence

((ak-1,ax, =), ..., (@0, a1, =), (ao), (b1, b2, +), ..., (bi-1, by, +))
is an oriented path, isotype to Similarly, in the second case, the oriented path

((b1—1. b1, =), ..., (b1. b2, =), (a0). (@0, a1. +). ..., (ax—1. ar. +))

is isotype tor.

Case 2. a; = bg andby ¢ C(ag, a1) (see (6.3)). Observe th#ig) < (bo, b1, +) if b1 € By,
while (bo, b1, —) < (bo) if b1 € Ap, (see (6.1)). In the first case, the oriented path

((ar—1. ar. =), ..., (a1, az, =), (bo). (bo, b1, +). . ... (bi-1. b1, +))
is isotype tor. Similarly, in the second case, the oriented path
((br—1. b1, =), ... (bo. b1, =), (bo). (a1, az. +), ..., (ax—1, ar. +))
is isotype tor. This concludes the proof.O
We define a map from L into the powerset oR as follows:

¢(x)={r€R|e(r)<x}, forallx e L. (6.4)
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Lemma 6.5. The setp(x) belongs taCo(R, <), forall x € L.

Proof. It is sufficient to prove that ifg < --- < r, in R such thate(rg), e(r,;,) < x, the
relatione(r;) < x holds whenever & k < n. By Lemma 6.4, it is sufficient to consider
the case where the oriented path= (rg, ..., r,) is reduced. If it is positive, then, by
Lemma 6.1, there exists a Stirlitz track of the form

(@i 10<i <n+1),{a] 11<i <n+1))

for join-irreducible elements;, alf of L with r; = (a;, a;j4+1, +), foralli € {0, ..., n}. But
then, by Lemma 5.7 applied to the Stirlitz track

((ai+110<i <n),{aj 41 1<i <n)),

e(ry) = ap+1 < a1 Vv ap4+1 < x. Suppose from now on thatis not positive. Then three
cases can occur.

Case 1. r = {{ag), {ao, a1, +), ..., {an—1, an, +)) for someag,...,a, € J(L). It follows
from Lemma 6.1 that there exists a Stirlitz track of the form

((ai 10<i <n), (a1 1<i <n)),
hence, by Lemma5.2(r;) =ay <agp V a, < x.

Case 2. r = ({ap—-1, an, —), ..., {ao, a1, —), {ag)) for someay, ...,a, € JL). The argu-
ment is similar to the one for Case 1.

Case 3. r = {{ay_1,ay,—), ..., {ao0, a1, =), {ao), (bo, b1, +), ..., {(byr_1, by, +)) for
some positive integers’ andr” and join-irreducibleag = bg, a1, ..., ay, b1, ..., b,.
From(ag, a1, —) < (ag) < {bo, b1, +) it follows thatag = bg < a1 Vv b1. From Lemma 6.1
it follows that there are Stirlitz tracks of the form

o ((a,' |O§i§n/>,(af|1<i<n/>>,

((bj10<j<n”) (b} 11<j <n")),

T

with the same bas&) = bg < a1 Vv b1. Sincee(ry) has either the form;, where 0<i </,
or bj, where 0< j < n”, it follows from Lemma 5.8 thae(rx) < a, Vv b,» < x. This
concludes the proof. O

Lemma 6.6. The mapy is a (0, 1)-lattice embedding fronk into Co(R).

Proof. It is obvious thatp is a (A, 0, 1)-homomorphism. Lek, y € L such thatx £ y.
Since L is finitely spatial, there existp € J(L) such thatp < x and p £ y. Hence,
(p) €p(x) \ (y), s0p(x) £ ¢(y). Thereforeyp is a(A, 0, 1)-embedding.

Now letx, y € L and letr € ¢(x v y), we prove that € ¢(x) Vv ¢(y). The conclusion is
trivial if r € p(x) U ¢(y), SO suppose that¢ ¢(x) U ¢(y). We need to consider two cases:
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Case 1. r = (p), for somep € J(L). Sop < x v y while p £ x, y. By Lemma 3.2, there
are minimalz < x andv < y such thatp < u Vv v, hencex andv are join-irreducible and
they do not belong to the same side of the Udav—Bond partitigp 8t associated wittp
(see Proposition 5.1). Hen, by the definition ok, either(p, u, —) < (p) < (p, v, +) or
(p,v,—) <{(p) < {(p,u,+).Since(p,u, &) € p(x) and{p, v, ) € p(y),forall e € {+, —},
it follows from this that(p) € ¢(x) V ¢ ().

Case2.r = (a, b, +) for somea, b € J(L) such thatzDb. Sob < x v y while b £ x, y.

By Lemma 3.2, there are minimal< x andv < y such thatb < u« v v, hencex andv

are join-irreducible and they do not belong to the same side of the Udav—Bond partition of
[b]P associated witlh (see Proposition 5.1). Hence, iflfmvs from Lemma 5.5 that either

u¢ C(a,b)andv € C(a,b) oru € C(a,b) andv ¢ C(a, b). In the first case,

(b, u, _> < (a, bv +> < <bv v, +>7
while in the second case,
(b,v,=) < {a,b,+) < (b,u,+).

Since (b, u,¢) € p(x) and (b, v, &) € p(y), for all ¢ € {+, —}, it follows from this that
r€(x) Ve(y).

Case3.r = {a, b, —) forsomeua, b € J(L) such that: Db. The proofis similar to the proof
of Case 2. O

We can now formulate the main theorem of this paper.
Theorem 6.7. Let L be a lattice. Then the following are equivalent

(i) L embeds into a lattice of the for@o(P), for some posep;
(i) L satisfies the identitigeS), (U), and(B) (i.e., it belongs to the clasSUB);
(i) L has a lattice embedding into a lattice of the foa(R), for some poser, that
preserves the existing bounds. Furthermoré, i§ finite, thenr is finite, with

IR <2|XL)|* = 5|dL)| + 4.

Proof. (i) = (ii) follows immediately from Lemmas 4.1, 4.5, and 4.7.

(i) = (iii). Denote by FilL the lattice of alldual ideals(= filters) of L, ordered by
reverse inclusion; if. has no unit element, then we allow the empty set i Fdtherwise
we require filters to be nonempty. This way, Fiis complete and the canonical lattice
embeddinge — 1x from L into Fil L preserves the existing bounds. It is well known that
Fil L is a dually algebraic lattice that extenfisand that satisfies the same identitied.as
(see, for example, G. Gratzer [11]), in particular, it belongSttB. Furthermore, FiL
is dually algebraic, thus lower continuous and spatial, thusatfisrtiori finitely spatial.
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We consider the poséR, <) constructed above from Hil. By Lemmas 6.5 and 6.6, the
canonical map defines &0, 1)-embedding from FiL into Co(R).

(iii) = (i) is trivial.

In caseL is finite, putn = |J(L)|, we verify that|R| < 2n2 — 5n + 4 for the poset
(R, Q) constructed above, in the case where 2 (for n < 1 then one can take faP a
singleton). Indeed, it follows from the join-semidistributivity bf(that itself follows from
Lemma 4.3) thaL has at least tw®-maximal & join-prime) elements, hence the number
of pairs(a, b) of elements of @) such that Db is at most(n — 1)(n — 2), whence

IRI<2m—1D(n—2)+n=20°—-5n+4. O

Remark 6.8. The upper bound|d(L)|?> — 5|J(L)| + 4 of Theorem 6.7(iii), obtained for the
particular poseR constructed above, is reached fordefined as the lattice of all order-
convex subsets of a finite chain.

Corallary 6.9. The class of all lattices that can be embedded into sGwE”) coincides
with SUB; it is a finitely based variety. In particular, it is closed under homomorphic
images.

Of course, we proved more, for example, the class of all lattices that can be embedded
into somefinite Co(P) forms apseudovarietysee [10]), thus it is closed under homomor-
phic images.

7. Thetreelike poset associated with alatticein SUB

Everywhere in this section before Theorem 7.7, we shall fix a complete, lower
continuous, finitely spatial latticé in SUB. The goal of the present section is to define a
tree-like posetl” and a lattice embedding froth into Co(I") that preserves the existing
bounds, see Theorem 7.7.

The idea to us®-increasing finite sequences of join-irreducible elements is introduced
in K.V. Adaricheva [1], where it is ppved that every finite lattice withou?-cycle can be
embedded into the lattice of subsemilattices of some finite meet-semilattice; see also [2].

We denote byrI" the set of all finite, nonempty sequences= (x(0), ..., a(n)) of
elements of L) such thatx(i) Da(i 4+ 1), for all i < n. We put|e| = n (thelengthof «),
and we extend this definition by putting| = —1. We further putt = («¢(0), ..., a(n — 1))

(the truncationof «) ande(x) = a(n) (the extremityof «). If o = 8, we say thafs is a
one-step extensiasf «. Furthermore, for alk > 0, we put

i={eerl|la|<n} and E,=T,\I,-1 forn>0.

Fora € I' \ I'p, we say that a@onjugateof « is an elemenp of I" such thaix = 8 and
e(a) ande(B) are conjugate with respect éda). It follows from Corollary 3.4 thaevery
element of” \ I'p has a conjugateFurthermore, for, g € I", we writea ~ B, if either
a=porB=a.
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For alln > 0, we define inductively a binary relatiog, on I, together with subsets
Aq andB, of [e(a)]P fora € I,_1.
The induction hypothesis to be satisfied consists of the following two assertions:

(S1) <, is acyclic.
(S2) Foralle, B € I, a ~ B iff eithera <, B or B <, .

Forn =0, let<, be empty.

The case: = 1 is the only place where we have some freedom in the choieg, ofVe
suppose that we have already used this freedom for the construction of thg posét
of Section 6, that is, for each € J(L), let A, B, such that{A,, B,} is the Udav—Bond
partition of[ p]? associated witlp (see Section 5.1), and we |Btbe the poset associated
with this choice that we constructed in Section 6. Then weqQquf = A, and By, = B,
and we define

<1={{(p.a@). (P)) I peIL), acAp}U{((p). (p.b)) | peIL). be By}

It is obvious that<; satisfies both (S1) and (S2).
Now suppose having defined,, for n > 1, that satisfies both (S1) and (S2). For all
« € E,, we define subsets, andB, of [¢(x)]? as follows:

Casel. @ <, a. Then we putd, = [e(a)]? \ C(e(@), e(er)) and By = C(e(@), e(@)).
Case2.a <, &. Thenwe putd, = C(e(@), e(x)) and B, = [e(a)]P \ C(e(@), e(@)).

Then we define<, 1 as

<p+1==<p U {(a“(x),a) | € E, andx € Aa}

U{{e,a™(y)) |« € E, andy € By}, (7.1)
where(a, 8) — o B denotesoncatenatiorf finite sequences.
Lemma 7.1. The relation<, 1 satisfies bottS1)and (S2)

Proof. Itis obvious that<,, ;1 satisfies (S2). Now let us prove (S1), and supposethat
has a cycle, sayo <,+1 @1 <u+1 * - - <n+1 @ = g, Wherek > 2. We pickk minimalwith
this property. AsA, N B, = @, for all «, we cannot havé = 2 as well, sok > 3.

By the induction hypothesis, one of the elements of the cycle belongstg, without
loss of generality we may assume that it is the casedoHence, by (7.1)xy1 = @g belongs
to I,. Let!l be the smallest element ¢f, ..., kK — 1} such thaty; 1 ¢ I, (it exists since
ar = oo & I,). Suppose thdt< k—1. By (S2) for<,11, o+2 = &1 = o, @ contradiction
by the minimality ofk. Hence = k — 1, which means thaiy, ...,ax—1 € I',. Hence, since
k—1>2,we obtain thatv; <, - -- <, ax—1 = a1 IS a<,-cycle, a contradiction. O
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Lemma 7.1 completes the definitionef;, for alln > 0. We define< as the union over
all n < w of <,,. Hence< is an acyclic binary relation oi" such thatx ~ g iff either
a=<porp=<a,foralla, B erl.Since< is acyclic, the reflexive and transitive closude
of < is a partial ordering or”, for which < is exactly thepredecessorelation. For the
sake of clarity, we rewrite below the inductive definition-ofand the sets\, and B,, for
ael.

(a) For|e| =0, A, andB,, are chosen such thét,,, B,} is the Udav—Bond partition of
[e(w)]P associated witla(c).
(b) Suppose thdtx| > 1. Then we definel, and B, by

(Ay. By) = { ([e(@)]P \ Cle(@), e(@)), Cle(@), e(@))) if @ <a,
o (Cle(@), e(@), [e(@]P\ Cle@), e(@) ifa<a.

(c) @ < g implies thate ~ 8.
(d) o™ (x) <« iff x € Ay anda <« (x) iff x € By, foralla € I" and allx € [e(a)]P.

By Lemma 5.5, the setA,, B,} is the Udav—Bond partition ofe(x)]” associated
with «, for all @ € I". Therefore, by Proposition 5.1 and the definition-af we obtain
immediately the following consequence.

Corollary 7.2. Forall « € I" and all x, y € [e(a)]?, e(a) < x V y iff eithera™ (x) < o <
a{(y)ora—(y) <a <o {(x).

For a, B € I', we denote by x 8 the largest common initial segment efand .
Observe thatr x 8 belongs tol" U {#} and thate * 8 = 8 x a. Putm = || — | * 8]
andn = |B] — |« * B]. We let P(«, B) be the finite sequenc@no, y1, .- ., Ym+n), Where
the y;, for 0<i < m + n, are defined by = «, yi+1 =¥, foralli <m, yu+n = B,
and Ym4n—j—1 = ¥Ymtn—,, for all j < n. Hence they;-s first decrease fromyg = o to
ym = a * B by successive truncations, then they increase again #{pto y,,., = 8 by
successive one-step extensions.

Fora, B € I', we observe that a path (see Section 2) foro 8 is a finite sequence
c=(y0, ¥1, - - - » Yk Of distinct elements of” such thatyy = «, yx = 8, andy; ~ y;+1, for
alli <k.

Proposition 7.3. For all «, 8 € I, there exists at most one path framo 8, and then this
path is P(«, B). Furthermore, such a path exists if0) = B(0).

Hence, by using the terminology of Section 2: the pd$ek) is tree-like.
Proof. Put againn = |a| — |a * B8] andn = || — |a * B|, and P(a, B) = (Y0, - . - » Yim-tn)-
Letd = (8o, ...,8) (for k < w) be a path fromx to 8. We begin with the following

essential observation.

Claim. The pathd consists of a sequence of trunaats followed by a sequence of one-step
extensions.
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Proof of Claim. Suppose that there exists an index{1, ..., kK — 1} such that; extends
boths;_; ands; 1. Thens;_1 = §; = 8; 11, which contradicts théact that all entries ofl
are distinct.

Hence, eithed consists of a sequence of truncations, or there exists a least index
1 €{0,...,k — 1} such that§;;1 is an extension o8;. If §;1 is not an extension of;
for somei € {/, ...,k — 1}, then, taking the least sudgh we obtain thaB; extends both
8;—1 ands; 1, a contradiction by the first paragraph of the present proof. H&ngeis a
one-step extension éf, foralli e {/,...,k—1}. O

Let! denote the least element{dF, ..., k} such thaf < k implies thats; 1 extendss;.
In particular,§; is a common initial segment of bothandg, thus of«a * 8. Furthermore,

la| =1 =180l =1 =8| <l * Bl = |a| —m,
thus! > m. Similarly,

1Bl — (k=D =& <|axp|=I[B]—n,

thusk — [ > n. In addition, bothx % 8 ands,, are initial segments af of the same length
la| — m, thusa x B = §,,. Similarly, botha * 8 andé;_, are initial segments gf of the
same lengthg| — n, whencex x 8 = &x—,,. Thereforeg,, = 6x—,, whence, since all entries
of d are distinctyn = k — n, SOk = m + n, whencd = m sincem <[ < k — n. It follows
then from the claim thad = P («, B).

Furthermore, fronae ~ 8 it follows thata (0) = B(0), thus the same conclusion follows
from the assumption that there exists a path feoto 8. Conversely, ifx(0) = 8(0), then
a * 8 is nonempty, thus so are all entries Bfw, 8). Hence P(«, 8) is a path froma
toB. O

Now we define a map : I" — R by the following rule:

o if || =0,
(o) =1 (e(@), e(a), +) fa<a, foralla e I'.
(e(@),e(a),—) fa=<a,

Lemma7.4.« < Bin I implies thatr (&) < w(8) in R, for all &, 8 € I'. In particular,
is order-preserving.

Proof. We argue by induction on the least integesuch thate, 8 € I,. We need to
consider first the case whepea, b € J(L),a € Ap, b € B, (so that(p,a) < (p) < (p, b)
in I'), and prove that ({p, a)) < 7 ({p)) < 7 ({p, b)) in R. But by the definition ofr, the
following equalities hold,

77((1775”):(17751:_): 77((17)):<p>s and ﬂ((va>):(vas+>a
while, by the definition of< on R,

<psa7_> < (p) < (p7bs +>a
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which solves the case whete= 1.
The remaining case to consider is where(x) <a <o~ (y) in I', for |a| > 0. Thus
x € Ay andy € B,, whence

(e (x)) = (e@), x, ),
7 (o™ (y)) = e(@), y, +)-
Suppose first that < «. Then
Ag = [e(a)]D \ C(e(@), e(@)) while By =C(e(@), e(w)).
Furthermorer (@) = (e(@), e(a), +), while, by the definition o on R,
{e(@), x, =) < (e@), e(@), +) < {e(@), y, +),
in other words,
7™ (x)) < (@) <7 (a™(y)).
Suppose now that < &. Then
A = C(e@), e(@)) while By =[e(@)]”\ C(e(@), e(@)).
Furthermorern () = (e(@), e(a), —), while, by the definition of< on R,
(e(@),x, =) < (e@), e(@), =) < (e(@), y, +).
in other words,
(@™ (x)) < 7w(@) <7 (2™ (y)),
which completes the proof.O
We observe the following immediate consequence of Lemma 7.4.

Corollary 7.5. One can define a zero-preserving complete meet homomorpfiisBo(R)
— Co(I') by the rule

7*(X)=n"1[X], forall X e Co(R).
We puty = 7* o ¢, Wheregp: L < Co(R) is the canonical map defined in Section 6.
Hencey is a zero-preserving meet homomorphism frbrimto Co(I"). For anyx € L, the

valuey (x) is calculated by the same rule @ér), see (6.4):

Y(x)= {a el |e(w) éx}.
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Lemma 7.6. The mapy is a lattice embedding frorh into Co(I"). Moreover, preserves
the existing bounds.

Proof. The statement about preservation of bounds is obvious. We have already seen
(and it is obvious) thaty is a meet homomorphism. Let, y € L such thatx £ y.
Since L is finitely spatial, there existp € J(L) such thatp < x and p £ y; whence
(p) € ¥(x) \ ¥(y). Hencey is a meet embedding from into Co(I").
Letx,ye L, leta € ¥(x Vv y), we prove thatx € y(x) v ¥ (y). This is obvious if
o € Y(x)Uy(y), sosuppose that¢ v (x) Uy (y). Hencee(a) < x vy whilee(a) £ x, y,
thus, by Lemma 3.2, there are minimaK x andv < y such that(«x) < u Vv v, and both
u andv belong to[e(x)]”. Therefore, by Corollary 7.2, either™ (1) < o < o™ (v) or
a”(v) < a <o (u). In both cases, since™ (u) € ¥(x) anda™(v) € ¥(y), we obtain
thata € ¥ (x) v ¥ (y). Thereforey is a join homomorphism. O

Now we can state the main embedding theorem of the present section.
Theorem 7.7. Let L be a lattice. Then the following assertions are equivalent

(i) there exists a poset such thatL embeds int@o(P);
(i) L satisfies the identitiegss), (U), and(B) (i.e., it belongs to the clasSUB);
(iii) there exists a tree-likésee Sectior?) posetl” such thatL has an embedding into
Co(I') that preserves the existing bounds. Furthermorg,ig finite withoutD-cycle,
thenrI is finite.

Proof. (i) = (ii) has already been established, see Theorem 6.7.

(ii) = (iii). As in the proof of Theorem 6.7, we denote by Eithe lattice of all filters
of L, ordered by reverse inclusion; if has no unit element, then we allow the empty set
in Fil L, otherwise we require filters to be nonempty. We consider the gosenstructed
from Fil L as in Section 7. By Lemma 7.6,embeds intaCo(I"). The finiteness statement
of (iii) is obvious.

(i) = () istrivial. O

Even in casd. = Co(P), for a finite totally ordered seP, the posetl” constructed in
Theorem 7.7 is not isomorphic t® as a rule. As it is constructed from finite sequences of
elements ofP, it does not lend itself to easy graphic representation. However, many of its
properties can be seen on the simpler posptesented on Fig. 5, which is tree-like.

As we shall see in Sections 9 and 10, the assumption in Theorem 7.7(iii]. that
without D-cycle cannot be removed.

8. Non-preservation of atoms
The poset® andI” that we constructed in Sections 6 and 7 are defin@dequences of

join-irreducible elements df. This is to be put in contrast with the main result of O. Frink
[8] (see also [11]), that embeds any compéerted modular lattice into a geometric lattice:
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/

Py Py P A
Py = {po, o} Qo = {0},
9 oN @ P ={p.p1}, Qi ={n}, @ @
Py = {p2, 13}, Q2 = {a2}-
P P
Y41 P2 Po Qo

Fig. 1. The poseP and the geometry oK.

namely, this construction preserves atoms. Hence the question of the necessity of the
complication of the present paper, that isingssequences of join-irreducible elements
rather than just join-irreducible elements, is natural. In the present section we study two
examples that show that this coligation is, indeed, necessary.

Example 8.1. A finite, atomistic lattice irBUB without D-cycle that cannot be embedded
atom-preservingly into an€o(T).

Proof. Let P be the nine-element poset representethe left-hand side of Fig. 1, together
with order-convex subset®, P1, P2, Qo, 01, Q>.

We let K be the set of all element® of Co(P) such thatp; € X < p; € X, for all
i < 3. Itis obvious thatK is a meet-subsemilattice @fo(P) which containgd, P} U 2,
where$2 = {Pg, P1, P2, Qo, Q1, Q2}. We prove thak is a join-subsemilattice a€o(P).
Indeed, for ali < 3, bothp; and p; are either maximal or minimal i#, hence, for allX,
Y eCo(P), pi e X VY iff p; e XUY, and, similarly,p; € X v Y iff p; e X UY. Hence
X,Y e K impliesthatX vY e K.

Therefore K is a sublattice oCo(P). It follows immediately that the atoms & are
the elements of2, that K is atomistic, and the atoms & satisfy the following relations
(see the right half of Fig. 1):

Qo< P1V Py, Q1< PoV P, Q2< PoV P,
PogPlva, P1§(P0vP2, sz(PoVPl.

Hence, the sequend® P1 P> PoP1 is a zigzag of length 5 (in the sense of [3]). It follows
from this and the easy direction of the main theorem of [3] tiatannot be embedded
atom-preservingly into an€o(T). O

By contrast, our second example is subdirectly irreducible, but iDhragcles. We shall
see in a subsequent paper [15] that the latter condition is unavoidable, that is, any finite,
subdirectly irreducible atomistic lattice witholit-cycle that can be embedded into some
Co(P) can be embedded atom-preservingly into some fidaéP) without D-cycle.

Example 8.2. A finite, atomistic, subdirectly irreducible lattice BUB that cannot be
embedded int€o(T), for any posef’, in an atom-preserving way.
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’
a;, bg, ch A
A= {CL[).(Ll}
A = {ah,d})
B:{b[).bl}
B’ = {bg, b}
C={co.cn} B c
C'={ch &4}
ey b, B c’

A
ap bo co

1 by ay

Fig. 2. The poseQ and the geometry of.

Proof. Let Q be the 12-element poset represented on the left hand side of Fig. 2, together
with order-convex subset$, B, C, A’, B', C'.

We let o be the anti-automorphism of defined byo (a;) = a1-;, o(a)) = ay_;,
o(b)) =b1 i, o(b)) =by_;, 0(c;) =c1, 0(c})) =cj_;, foralli <2, and we letL be
the set of all elementX of Co(Q) such thato X = X. It is obvious thatL is a meet-
subsemilattice o€o(Q) which containg®, Q}U 2, where2 ={A, B,C,A’, B’,C'}. We
prove thatl is a join-subsemilattice d@o(Q). Let X, Y € L, we provethaiX vY € L.

Since bothay and @] are either maximal or minimal iQ, the equivalence:; e
X VY &aleXUY holds, for alli < 2, whencerge X VY < aj € X v Y. Similarly,
bpeXVvY&bieXVvYandcgeX VY &cjeX VY.

Suppose now thaip € X v Y, we prove thati; € X VY. If ag € X UY this is obvious,
so suppose thap ¢ X UY. Without loss of generality, there ates X andy € Y such that
x <ap < y,whencex € {b], b1, ¢}, c1} andy = ap. FromY e L it follows thata} € Y, thus
A’ C Y. Similarly, fromX € L it follows that eitherB C X orC C X orB’ C X orC’ C X.
If B C X, thenbg € X, thus, sincer; <tay <1 bp anday € Y, we obtain thatiy € X v Y. If
B’ C X, thenbg € X, thus, since; <l a1 < by anda) € Y, we obtain again that; € X VY.
Similar results hold for eithe€ € X or C’ € X. Therefore,ap € X v Y implies that
a1 € X v Y. By symmetry, we obtain the converse. Similatlyce X VY b1 XVY
andcpe X VY < c1 € X VY. ThereforeX v Y belongs taL, which completes the proof
that L is a sublattice o€Co(Q).

It follows immediately that the atoms df are the elements @, that L is atomistic,
and the atoms ol satisfy the following relations:

A, B<A' VEH, A< A VB, B<AVPEH,
B,C<B' v(C, B<B VvC, C<BvC(C,
A, C<A v, A< A VC, C<AvVC.

Hence,L is subdirectly irreducible, with monolitfi.e., smallest nonzero congruence) the
smallest congruena@ (@, A) identifying® and A, also equal t@® (4, B) and to® (4, C).
Furthermore, the sequene€B’'C’A’B’ is a zigzag of length 5 (in the sense of [3]). It
follows from this and the easy direction of the main theorem of [3] thatannot be
embedded atom-preservingly into a@g(7). O
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9. Crownsin posets
We first recall the following classical definition.

Definition 9.1. For an integen > 2, we denote by./nZ the set of integers module.
Then-crown C,, is the poset with underlying s€f./nZ) x {0, 1} and ordering defined by
#,0,(0+1,0 <(@,1),foralli € Z/nZ.

The crownC, is illustrated on Fig. 3.
We shall mostly deal with sub-crowns of posets.

Definition 9.2. For n > 2 and a pose(7, <), a n-crown of T is a finite sequence
{{a;, b;) | i € Z/nZ) of elements off x T such that there exists an order-embedding
f:Cp— T with f(i,0)=q; andf(i,1) =b;, foralli € Z/nZ.

We shall sometimes identify an integer modulowith its unique representative in
{0,1,...,n—1} and an-crown {{a;, b;) | i € Z/nZ) with the finite sequence

(ao. bo), (@1, b1), ..., (an—1, bu-1))-
The following lemma makes it possible to identify crowns within posets.

Lemma 9.3. Let (T, Q) be a poset, let > 3, and leta;, b; (i € Z/nZ) be elements df .
Then the following are equivalent

() ({ai,b;)|i € Z/nZ) is an-crown.
(i) a; <b;iffie(j, j+1),foralli,jeZ/nZ.

Proof. (i) = (ii) is trivial. Conversely, suppose (ii) satisfied, we prove thfatC, — T
defined by f(i,0) = a; and f(i,1) = b;, for all i € Z/nZ, is an order-embedding. We
need to prove the following assertions:

(i) a; <a; impliesthati = j, forall i, j € Z/nZ. Indeed, ifa; < aj, thena; <bj,bj_1
(becauser; < b;, bj_1), thus, by assumptior,e {j, j + 1} N {j, j — 1} = {j} (we
use here the inequality> 3), that is,i = j.
(i) b; <bjimplies thati = j, forall i, j € Z/nZ. The proof is similar to the one of (i).
(i) b; <a; occurs for na, j € Z/nZ. Indeed, suppose thaf < a;. Thenb; <b;, b1
(because; < b;, b;—1), thus, by (ii),j =i =i — 1, a contradiction.

0,1) (L1) (21) (—-21)(n—11)

0,0) (1,0) (2.0)  (n—2,0)(n —1,0)

Fig. 3. The crowrC,,.
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This concludes the proof.O
Definition 9.4. A posetT is crown-freg if it has nor-crown for anyn > 3.

Strictly speaking, the 2-crowf’z is crown-free since we are requiring> 3 in the
definition above. The motivation why we are putting this slight restriction das in the
following observation. First, the poset of Fig. 4(i) is tree-like, but it contains the 2-crown
represented on Fig. 4(ii); observe also thatiberown, for anyn > 2, is never tree-like.

On the other hand, we shall now prove the following result.

Proposition 9.5. Every tree-like poset is crown-free.
As witnessed by the squa®8, the converse of Propiti®on 9.5 does not hold.

Proof. Let (7, <) be a tree-like poset. Fat, y € T, we denote by/(x, y) the length of the
unique path fronx to y if there is such a pathyo otherwise. Observe that< y implies
thatd(x, y) < oo (but the converse does not hold as a rule), and then the unique path from
x to y is oriented (see Section 2).

For an-crowny = ({a;, b;) | i € Z/nZ) in T, we put

)= Y daib).

i€Z/nZ

Suppose thaf has az-crown, for some integer > 3. We pick such a crowp = ({(a;, b;) |
i € Z/nZ) with £(y) minimum For alli € Z/nZ, we let

ai = Xj,0 < Xj1 < <Xjp =bj,
Ai+1 = Yi0 < Vil <+ < Vig; = bi

be the paths from; (respectivelyg; ;1) to b;, where< denotes the predecessor relation
of T.

Claml {x;, |0<p<pi}N{yiq10<qg <q;}=0,foralli e Z/nZ.

Proof of Claim. Suppose, to the contrary, that, = y; , for somep € {0, ..., p; — 1}
andg €{0,...,q; — 1}. We putb;. =bj, forall j #i in Z/nZ, while b, = x; ,. Since

() (if)

Fig. 4. A tree-like poset which contains the cro@g.
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a;,ai+1 < b}, the conditionk € {I,] + 1} implies thata; < b;, for all k,1 € Z/nZ.
Conversely, lek, I € Z/nZ such thaty < b;. Fromb; < b, it follows thata, < b;, whence
k € {l,1+1}. By Lemma 9.3, the family’ = ((ax, b)) | k € Z/nZ) is an-crown. However,

ey') <L) — (pi — p) <€),
which contradicts the minimality of(y). O
The proof of the following claim is symmetric.
Clam2. {yi410<qg <qi}N{xit1, |0< p< pis1} =0, foralli e Z/nZ.

We define avalk of T to be a finite sequenee= (co, c1, ..., ¢,y) Of elements of” such
that eitherc; < c¢;4+1 Orciy1 < ¢, for all i < m, we say then that is a walk fromcg to ¢, .
Hence, a nonempty path @fis a walk with all distinct entries.

Now we letd be the finite sequence defined by

d=(x0k |10<k< po) (yo,q0-1 1 0< I <g0) (x14 |0<k < p1)

- (xn—l,k |0<k < Pn—1).

It is obvious thad is a walk fromxo o = ao t0 x,,—1, 5, _, = by—1. We shall now prove that
d is a path.
Suppose, indeed, thdtis not a path. Then one of the following cases occurs:

Case 1. There are distinct, j € Z/nZ, together withk € {0, ..., p;} andl € {0, ..., p;},
such thaty; x = x;j;. Thena; Qx;r = x;; < bj, thusi € {j, j + 1}, whilea; < xj; =
xix < bi, thusj € {i,i + 1}. Sincen > 3, we obtain that = j, a contradiction.

Case 2. There are distinct, j € (Z/nZ)\{n — 1}, together withk € {1,...,¢; — 1}
and/ € {1,...,q; — 1}, such thaty;x = y;;. Thena;y1 < yix = y;1 < bj, thusi e
{j,j—1}, whilea;11 <yj1 =ik <bi, thusj e {i,i — 1}, whence, since > 3,i = j,
a contradiction.

Case 3. There ar@ € Z/nZ and j € (Z/nZ)\{n — 1}, together withk € {0, ..., p;} and
le{l,...,9; — 1}, such thaty; x = y;;. Then from Claim 1 it follows that # j, while
from Claim 2 it follows thati # j 4+ 1. On the other handy; < x;x = y;; < bj, thus
i €{j,j-+ 1}, acontradiction.

Therefore, we have proved théfs, indeed, a path frommg to b,,—1. However, the finite
sequence

d = (Yn—1.1 | 0<I<qn-1)
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is a path fromy,_1,0 = a, = ag (the indices are module) to y,—1,4, , = bu—1, thus, by
the uniqueness of the path fraw to b,,_1, d = d’. Thus every entry of d satisfies that
x < by_1, in particularbg = xq,p, < b,—1, a contradiction since # 1. O

10. A quasi-identity for Co(T), for finiteand crown-free T

Let (0) be the following lattice-theoretical quasi-identity:

(@'ve)y&b<(b'va)A(b've)& e<(dva)r (VD)

A
V(B'AB) V(I Ae)V@aAb)Vanc)V (bAc)<a Ab AC]
/

[a < (a/\/b)
& (a' na)

= a<a

It is inspired by Example 8.2 (see Corollary 10.6). The main result of Section 10 is the
following.

Theorem 10.1. Let (7, <) be a finite crown-free poset. Th@o(T') satisfieg0).

Let us begin with an arbitrary (not neceshafinite, not necessarily crown-free) poset
(T, <) and convex subsets, B, C, A’, B’, C’ of T that satisfy the premise @), that is,
AC A’V B, AcCA v,
BCB VA, BC B vC,
CCC VA, CcC'vB,
ANnA'CcB' nC, BNB cA'nC/, cNnC'cA'nPB,
ANBCA' NP, BNCcB NC, ANCCA'NnC.
We shall putA = A\ A’, B= B\ B/, andC = C \ C’. Observe that
AN(BUC)=BN(AUC)=CN(AUB) =4,
ANB=ANC=BnC=4¢.

We shall later perform a construction whose key argument is provided by the following
lemma.

Lemma10.2. Leta € A and leta’ € A’ witha < a’. Then there existéh, b') € B x B’ such
thatdy’ <b <a.

Proof. Observe firstthat € A € A’ v B. Sincea ¢ A’ U B, there existga’,b) € A’ x B
such that eithe&’ <a <b or b <<a < a’. In the first cased’ <t a < a/, thus, by the
convexity ofA’, a € A’, a contradiction; whende<i a. If b € B’,thenb € BNB’ C A’, but
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b<a<d,thusa € A’, a contradiction; whenck € B. If there existsc € A with x < b
then, sincé <1 a, we obtainthab € ANB C A’, a contradiction again. Béte B C AV B’
andb ¢ B’, thus there exists8' € B’ such that’ <b. O

In particular, we observe the following corollary.

Corollary 10.3. The setsd, B, andC are either simultaneously empty or simultaneously
nonempty.

Proof. If A is nonempty, we picki € A. Soa € A’ v B while a ¢ A’ U B, thus there

is (a’,b) € A’ x B such that eitheb <a <ta’ ora’ < a <b. In the first case, we apply
Lemma 10.2 to deduce that+ #. In the second case, we apply the dual of Lemma 10.2
to reach the same conclusiont

Now we suppose thafl is nonempty, and we picko € A. As in the proof of
Corollary 10.3, there existg; € A’ such that eithetg <1 aj or a < ao; by replacingg
with its dual if needed, we may assume without loss of generalitydhata,.

By Lemma 10.2, there arého, by) € B x B’ and (c1,¢}) € C x €’ such thatby <
bo < ap and ¢} < c1 < aop. By applying the dual of Lemma 10.2 1§ < c1, we obtaln
(b1,b7) € B x B’ such that <1 by <1 b}. By applying Lemma 10.2 té; < b}, we obtain
(az,ay) € A x A’ such thata;, < az < bl By applymg in the same fash|on Lemma 10.2
and its dual, we obtaikcz, c)) € C x C, (b3, b3) € B x B/, and(as, ag) € A x A’ such
thatas < c2 < c5, b5 <1 b3 < c2, andbz < ag < aj.

Now we observe thaby < bo <1 ao < ap and by <1 b3 <1 a3z < ag, that is, we can
start the process again. Arguing by induction, we obtain elem@nts’) < A x A’ for
i #1(mod 3, elementsp;, b;) € B x B' fori # 2 (mod 3, and elementé;, ¢;) € CxC
for i # 0 (mod 3 such that the following relations hold, for dlk w:

by <A bz < azi < ag, (10.1)
341 < €3i41 < b3ip1 b g, (10.2)
aél-Jrz <lagi+2 <1 c3i+2 < C‘/3i+2' (10.3)

This can be illustrated by Fig. 5.
Now we define subsets a@f as follows:

ap b b oay Y, o

apQ  01Q C2Q “W3QQ V41Q 00O ===-=--
boY ¢y ay bsY Y asy TTT7C

/ N / o
bo” 7 ay” bgY cy” ap

Fig. 5. A pattern inT".
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2t ={azg |i <w}U{bzit1]i <w}U{czit2]i <o}
Q27 ={azgiy2|i <o}U{bz |i <w}U{czi+1]i <w};
R=2tun".

SinceA, B, andC are mutually disjoint and their union contaif®s we can define a map
X : 82 — 3 by therule

0 (xed),
xx)=11 (xeB), forallxes.
2 (xe0),

Lemma 10.4. For all (x,y) € 2~ x 27, x(x) = x(y) implies thatx ¢ y. In particular,
R NRT=0.

Proof. We need to prove that for all natural numbeérand j, the following inequalities
hold:

e azi2 9 az;. Otherwise, by (10.1) and (10.3)3,, , <1 agi+2 < aéj, thusagi12 € A’,
a contradiction.

o b3 & b3j_!_1._ Otherwise, by (10.1) and (10.2)g; <1 b3 < b/3j+1, thus bs; € B,
a contradiction.

e c3i+1 f c3j+2. Otherwise, by (10.2) and (10.3); ., < c3i41 < c’3j+2, thuscs;41 €
C’, a contradiction.

This concludes the proof.O

For an integern > 2, we define an-pre-crownto be a finite sequencgx;, y;) | i €
7./mZ) of elements of2 ~ x 21 such that the following conditions hold, for ale Z/mZ:

(C1) xi, xiy1 < yi;
(C2) x(xi) # x(xi+1) andyx (y;) # x (yiv1) if i #m — 1.

If m =2, then, by (C1),xo, x1 < yo, y1. Furthermore, by (C2)x (x0) # x(x1),
thus it follows fromxg, x1 <0 yo and Lemma 10.4 thag (yo) is the unigque element of
3\ {x(x0), x(x1)}. The same holds foy (y1), whenceyx (yo) = x (y1), which contradicts
(C2). Therefore, if there existsma-pre-crown, them > 3.

We can now prove the main lemma of this section.

Lemma 10.5. Suppose thal is crown-free. Then there are no pre-crownd/in

Proof. Otherwise, lein be the least positive integer such that there existspre-crown,
and letc = ((x;, y;) | i € Z/mZ) be such a pre-crown. As observed before> 3. By
assumption ofT", in order to get a contradiction, it suffices to prove th&t a crown ofT'.
By (C1) and Lemma 9.3, it suffices to prove that foriall € Z/mZ such that ¢ {j, j +1},
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Yi Yi+1 Yy Yj Yj+1 Yj+2 Yi—1
- - - -
-
T Tit1 Tit2 Zj Tjt1 Tjy2 T

(i) (i)

Fig. 6. Shorter pre-crowns.

the inequalityx; < y; does not hold. Suppose otherwise; by Lemma 16.4) y;. Two
cases can occur.

Casel.i < j. Then the finite sequence

(Geiy yi)s (it Yig1)s o0 (X7, 95))
isa(j —i+ 1)-pre-crown (see Fig. 6(i)), with X j —i < m — 1. By the minimality

assumption om, this cannot happen unless-0 andj =m — 1, inwhich casé = j + 1
(modulom as usual), a contradiction.

Case 2. j < i. Then the finite sequence

((xiy yic1), oo ou (a2, yjga)s (Xj41, v)))

is a(i — j)-pre-crown (see Fig. 6(ii)), with Z i — j < m, which contradicts again the
minimality of m.

Hencec is am-crown of T, a contradiction. O
Now we have all the necessary tools to conclude the proof of Theorem 10.1.

Proof of Theorem 10.1. Suppose thaf is finite and crown-free. There afe< j such
thatbs; = b3;. Then the finite sequence

(b3, azi), (caiv1. baiy1). ..., (azj—1.c3j-1))

is a(3j — 3i)-pre-crowninT" (see Fig. 7), a contradiction.
Hence we have proved that= @, thatis,A C A’. ThereforeCo(T) satisfies9). O

az; b3ir1 C3i42 C35-1

bs; = b3;  C3i+1 A3it2 agj—1

Fig. 7. A pre-crown inT.
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Corollary 10.6. Let Q be the finite poset andl the finite lattice of Exampl8.2 Then,
althoughL embeds intdCo(Q), there is no finite, tree-like pos& such thatL. embeds
into Co(R).

Proof. It follows from Proposition 9.5 thaR is crown-free, thus, by Theorem 10g(R)
satisfieg#). On the other hand, the lattide of Example 8.2 does not satisfg) (consider
the atoms4, B, C, A, B’, C’ of L), therefore it cannot be embedded i@io(R). O

On the other hand, it follows from Theorem 7.7(iii) that if a finite lattiEewithout
D-cycle embeds into somEo(P), then it embeds int&€o(R) for some finite, tree-like
posetR. In the presence ab-cycles anything can happen, for example, take Co(4),
the lattice of all order-convex subsets of a four-element chain; it embed8aith) for the
finite, tree-like posed, however it had-cycles.

11. Finite generation and word problem in SUB

For a lattice ternms(x1, ..., x,), a posetP, and convex subsets, ..., X,, of P, we
denote bys” (X1, ..., X,,) the evaluation of the terms(xy, ..., x,) at (X1, ..., X,,) in the
lattice Co(P).

The present section rests on the following lemma. Its proof is an easy induction
argument on the length &f that we leave to the reader.

Lemma 11.1. Let n be a positive integer, les(xs, ..., x,) be a lattice term, and let
X1,..., X, be convex subsets of a poget Thens? (X1, ..., X,,) is the directed union
of all subsets of the forsP (X1 N Q, ..., X, N Q), for Q C P finite.

As immediate corollaries, we get the following:

Corollary 11.2. Let P be a poset. Any lattice-theoretical identity valid in &b(Q), for
Q afinite subset oP, is also valid inCo(P).

Coroallary 11.3. A lattice-theoretical identity is valid iSUB iff it holds in Co(P) for every
finite posetP.

Consequently, the varie§UB is generated by its finite members. By using the results
of J.C.C. McKinsey [14], we obtain the following consequence.

Corollary 11.4. The word problem in the varietUB is decidable.

This means that it is decidable whether a given lattice idersiiy, ..., x,) =
t(x1,..., %) holds in all lattices of the fornCo(P). A closer look at the proof of
Lemma 11.1 shows that it is sufficient to verify whether the given identity holds in all
Co(P) for | P| < n, wheren is the supremum of the lengths of the tersrandt.
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12. Open problems

We know that the clasSUB is generated, as a variety, by its finite members (see
Corollary 11.3). We also know that any finite lattice3tUB can be embedded into some
finite Co(P) (see Theorem 6.7). Nevertheless we do not know whether the latter generate
the wholequasvariety.

Problem 1. Is the classSUB generated, as a quasivariety, by its finite members?

Equivalently, does there exist a lattice quasi-identity that holds in all fite?)-s but
not in all Co(P)-s?

Problem 2. Is the universal theory of all lattices of the fo@o(P) decidable?
A positive answer to Problem 1 would yield a positive answer to Problem 2.

Problem 3. Is the clas<C of all lattices that can be embedded into a product of the form
[lie; Co(Ci), where theC; arechains a variety?

Problem 3 is solved by the authors in [16].

Problem 4. Can the embedding problem of a latticeSWB into someCo(P) be solved
by afunctor (that, say, sends arfyto someCo(P))? Can such a functor be idempotent?

Our next problem has a more computational nature.

Problem 5. For each positive integer, denote by (n) the least positive integer such that
every finite latticeL in SUB with #n join-irreducible elements embeds into so@e(P),
where|P| < £(n). Compute (n), for all n > 0. Doest (n) = O (n) asn goes to infinity?

For a sublatticek of a finite lattice L, the inequality|J(K)| < |J(L)| holds, see
[1, Lemma 2]. In particular, if a finite lattice embeds intdCo( P) for some finite poseP,
then |J(L)| < |P|. By combining this with the result of Theorem 6.7, we obtain the
inequalities

n <&m) <2n®—5n+4.
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