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Abstract

For a partially ordered setP , we denote byCo(P ) the lattice of order-convex subsets ofP . We
find three new lattice identities, (S), (U), and (B), such that the following result holds.

Theorem. Let L be a lattice. ThenL embeds into some lattice of the formCo(P ) iff L satisfies(S),
(U), and(B).

Furthermore, ifL has an embedding into someCo(P ), then it has such an embedding th
preserves the existing bounds. IfL is finite, then one can takeP finite, with

|P | � 2
∣∣J(L)

∣∣2 − 5
∣∣J(L)

∣∣ + 4,

where J(L) denotes the set of all join-irreducible elements ofL.
On the other hand, the partially ordered setP can be chosen in such a way that there are no infi

bounded chains inP and the undirected graph of the predecessor relation ofP is a tree.
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1. Introduction

For a partially ordered set (from now onposet) 〈P,�〉, a subsetX of P is order-convex,
if x � z � y and {x, y} ⊆ X implies thatz ∈ X, for all x, y, z ∈ P . The setCo(P ) of
all order-convex subsets ofP forms a lattice under inclusion. This lattice is algebra
atomistic, and join-semidistributive (see Section 2 for the definitions), thus it is a sp
example of aconvex geometry, see P.H. Edelman [5], P.H. Edelman and R. Jamison [6
K.V. Adaricheva, V.A. Gorbunov, and V.I. Tumanov [2]. Furthermore, it is ‘biatomic’ a
satisfies the nonexistence of so-called ‘zigzags’ of odd length on its atoms. Is is pro
G. Birkhoff and M.K. Bennett [3] that these conditionscharacterizethe lattices of the form
Co(P ).

One of the open problems of [2] is the characterization of allsublatticesof the lattices
of the formCo(P ).

Problem 3 (of [2] for Co(P )). Describe the subclass of those lattices that are embed
into finite lattices of the formCo(P ).

In the present paper, we solve completely this problem, not only in the finite cas
also for arbitrary lattices. Our main result (Theorem 6.7) is that a latticeL can be embedde
into some lattice of the formCo(P ) iff L satisfies three completely new identities, that
denote by (S), (U), and (B). Furthermore,P can be taken either finite in caseL is finite, or
tree-like(see Theorem 7.7).

This result is quite surprising, as it yields the unexpected consequence (see
lary 6.9) that the class of all lattices that can be embedded into someCo(P ) is avariety,
thus it is closed under homomorphic images. However, while it is fairly easy (thoug
completely trivial) to verify directly that the class is closed under reduced product
substructures (thus it is aquasivariety), we do not know any direct proof that it is clos
under homomorphic images.

One of the difficulties of the present work is to guess, for a givenL, which posetP
will solve the embedding problem forL (i.e., L embeds intoCo(P )). The first natura
guess, that consists of using forP the set of all join-irreducible elements ofL, fails, as
illustrated by the two examples of Section 8. We shall constructP via sequencesof join-
irreducible elements ofL. In fact, we are able to embedL into Co(P ) for two different
sorts of posetsP :

(1) P is finite in caseL is finite; this is the construction of Section 6.
(2) P is tree-like (as defined in Section 2); this is the construction of Section 7.

The two requirements (1) and (2) above can be simultaneously satisfied in caseL has
no D-cycle, see Theorem 7.7(iii). However, the finite latticeL of Example 8.2 can b
embedded into some finiteCo(Q), but into noCo(R), whereR is a finite tree-like poset
see Corollary 10.6. It is used to produce, in Section 10, a quasi-identity that holds
Co(R), whereR is finite and tree-like (or even what wecall ‘crown-free’), but not in all
finite Co(P ).

We conclude the paper by a list of open problems.
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2. Basic concepts

A lattice L is join-semidistributive, if it satisfies the axiom

x ∨ y = x ∨ z ⇒ x ∨ y = x ∨ (y ∧ z), for all x, y, z ∈ L. (SD∨)

We denote by J(L) the set of join-irreducible elements ofL. We say thatL is finitely spatial
(respectively,spatial) if every element ofL is a join of join-irreducible (respectively
completely join-irreducible) elements ofL.

We say thatL is lower continuous, if the equality

a ∨
∧

X =
∧

(a ∨ X)

holds, for all a ∈ L and all downward directedX ⊆ L such that
∧

X exists (where
a ∨ X = {a ∨ x | x ∈ X}). It is well known that every dually algebraic lattice is low
continuous—see Lemma 2.3 in P. Crawley and R.P. Dilworth [4], and spatial (thus fi
spatial)—see Theorem I.4.22 in G. Gierz et al. [9] or Lemma 1.3.2 in V.A. Gorbunov

For every elementx in a latticeL, we put

↓x = {y ∈ L | y � x}, ↑x = {y ∈ L | y � x}.

If a, b, c ∈ L such thata � b∨c, we say that the (formal) inequalitya � b∨c is anontrivial
join-cover, if a � b, c. We say that it isminimal inb, if a � x ∨ c, for all x < b, and we say
that it is aminimal nontrivial join-cover, if it is a nontrivial join-cover and it is minimal in
bothb andc.

The join-dependencyrelationD = DL (see R. Freese, J. Ježek, and J.B. Nation [7
defined on the join-irreducible elements ofL by putting

pDq, if p �= q and∃x such thatp � q ∨ x holds and is minimal inq.

It is important to observe thatpDq implies thatp � q , for all p,q ∈ J(L).
For a posetP endowed with a partial ordering�, we shall denote by� the

corresponding strict ordering. The set of all order-convex subsets ofP forms a lattice
under inclusion, that we shall denote byCo(P ). The meet inCo(P ) is the intersection
while the join is given by

X ∨ Y = X ∪ Y ∪
⋃{

z ∈ P | ∃〈x, y〉 ∈ (X × Y ) ∪ (Y × X) such thatx � z � y
}
,

for all X,Y ∈ Co(P ). Let us denote by≺ the predecessor relation ofP . We say that a
pathof P is a finite sequenced = 〈x0, . . . , xn−1〉 of distinctelements ofP such that eithe
xi ≺ xi+1 or xi+1 ≺ xi , for all i with 0 � i � n − 2; if n > 0, we say thatd is a path from
x0 to xn−1. We say that the pathd is oriented, if xi ≺ xi+1, for all i with 0 � i � n− 2. We
say thatP is tree-like, if the following properties hold:
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(i) for all a � b in P , there aren < ω andx0, . . . , xn ∈ P such thata = x0 ≺ x1 ≺ · · · ≺
xn = b;

(ii) for all a, b ∈ P , there exists at most one path froma to b.

3. Dually 2-distributive lattices

For a positive integern, the identity ofn-distributivity is introduced in A.P. Huhn [12]
In this paper we shall only need the dual of 2-distributivity, which is the following iden

a ∧ (x ∨ y ∨ z) = (
a ∧ (x ∨ y)

) ∨ (
a ∧ (x ∨ z)

) ∨ (
a ∧ (y ∨ z)

)
.

We omit the easy proof of the following lemma, that expresses how dual 2-distribu
can be read on the join-irreducible elements.

Lemma 3.1. LetL be a dually2-distributive lattice. For allp ∈ J(L) and alla, b, c ∈ L, if
p � a ∨ b ∨ c, then eitherp � a ∨ b or p � a ∨ c or p � b ∨ c.

We observe that for finitely spatialL, the converse of Lemma 3.1 holds.
The following lemma will be used repeatedly throughout the paper.

Lemma 3.2. Let L be a dually2-distributive, complete, lower continuous lattice. L
p ∈ J(L) and leta, b ∈ L such thatp � a ∨ b andp � a, b. Then the following assertion
hold:

(i) There are minimalx � a andy � b such thatp � x ∨ y.
(ii) Any minimalx � a andy � b such thatp � x ∨ y are join-irreducible.

Proof. (i) Let X ⊆ ↓a andY ⊆ ↓b be chains such thatp � x ∨ y, for all 〈x, y〉 ∈ X × Y .
It follows from the lower continuity ofL thatp � (

∧
X) ∨ (

∧
Y ). The conclusion of (i)

follows from a simple application of Zorn’s Lemma.
(ii) From p � a, b it follows that bothx andy are nonzero. Suppose thatx = x0 ∨ x1

for somex0, x1 < x. It follows from the minimality assumption onx thatp � x0 ∨ y and
p � x1 ∨ y, whence, by Lemma 3.1,p � x0 ∨ x1, thusp � x � a, a contradiction. Henc
x is join-irreducible. �

For p,a, b ∈ J(L), we say that〈a, b〉 is aconjugate pairwith respect top, if p � a, b

anda andb are minimal such thatp � a ∨ b; we say then thatb is aconjugateof a with
respect top. Observe that the latter relation is symmetric ina andb, and that it implies
thatpDa andpDb.

Notation 3.3. For a latticeL andp ∈ J(L), we put

[p]D = {
x ∈ J(L) | pDx

}
.
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Corollary 3.4. LetL be a dually2-distributive, complete, lower continuous lattice, and l
p ∈ J(L). Then everya ∈ [p]D has a conjugate with respect top.

Proof. By the definition of join-dependency, there existsc ∈ L such thatp � a ∨ c and
p � x ∨ c, for all x < a. By Lemma 3.2, there area′ � a andb � c minimal such that
p � a′ ∨ b, and botha′ andb are join-irreducible. It follows thata′ = a, whenceb is a
conjugate ofa with respect top. �

4. Stirlitz, Udav, and Bond

4.1. The Stirlitz identity(S) and the axiom(Sj)

Let (S) be the following identity:

a ∧ (
b′ ∨ c

) = (
a ∧ b′) ∨

∨
i<2

(
a ∧ (bi ∨ c) ∧ ((

b′ ∧ (a ∨ bi)
) ∨ c

))
,

where we putb′ = b ∧ (b0 ∨ b1).

Lemma 4.1. The Stirlitz identity(S) holds inCo(P ), for any poset〈P,�〉.

Proof. Let A,B,B0,B1,C ∈ Co(P ) and a ∈ A ∩ (B ′ ∨ C), where we putB ′ = B ∩
(B0 ∨ B1). Denote byD the right-hand side of the Stirlitz identity calculated with the
parameters. Ifa ∈ B ′ thena ∈ A ∩ B ′ ⊆ D. If a ∈ C thena ∈ A ∩ C ⊆ D.

Suppose thata /∈ B ′ ∪ C. There existb ∈ B ′ and c ∈ C such that, say,b � a � c.
Sinceb ∈ B0 ∨ B1, there arei < 2 andb′ ∈ Bi such thatb′ � b, hencea ∈ A ∩ (Bi ∨ C).
Furthermore,b ∈ B ′ ∩ (A ∨ Bi), thusa ∈ (B ′ ∩ (A ∨ Bi)) ∨ C, soa ∈ D. �
Lemma 4.2. The Stirlitz identity(S) implies dual2-distributivity.

Proof. Takeb0 = x, b1 = y, b = x ∨ y, andc = z. �
Let (SD2∨) be the following identity:

x ∨ (y ∧ z) = x ∨ (
y ∧ (

x ∨ (
z ∧ (x ∨ y)

)))
. (SD2∨)

It is well known that(SD2∨) implies join-semidistributivity (that is, the axiom(SD∨)), see,
for example, P. Jipsen and H. Rose [13, p. 81].

Lemma 4.3. The Stirlitz identity(S) implies(SD2∨).

Proof. Let L be a lattice satisfying (S), letx, y, z ∈ L. Sety2 = y ∧ (x ∨ (z∧ (x ∨y))). Set
a = b1 = y, b = z, c = b0 = x, andb′ = b ∧ (b0 ∨ b1) = z ∧ (x ∨ y). Then the following
inequalities hold:
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y2 = y ∧ (
x ∨ (

z ∧ (x ∨ y)
)) = a ∧ ((

b ∧ (b0 ∨ b1)
) ∨ c

)
�

(
a ∧ b′) ∨

∨
i<2

(
a ∧ (bi ∨ c) ∧ ((

b′ ∧ (a ∨ bi)
) ∨ c

))
= (y ∧ z) ∨ (y ∧ x) ∨ (

y ∧ (
(z ∧ y) ∨ x

)) = (y ∧ z) ∨ (
y ∧ (

x ∨ (y ∧ z)
))

= y ∧ (
x ∨ (y ∧ z)

)
� x ∨ (y ∧ z).

This implies thatx ∨ y2 � x ∨ (y ∧ z). Since the converse inequality holds in any latti
the conclusion follows. �

We now introduce a lattice-theoretical axiom, thejoin-irreducible interpretation of(S),
that we will denote by(Sj):

For all a, b, b0, b1, c ∈ J(L), the inequalitiesa � b ∨ c, b � b0 ∨ b1, anda �= b imply
that eithera � b̄ ∨ c for someb̄ < b or b � a ∨ bi anda � bi ∨ c for somei < 2.

Throughout the paper we shall make repeated use of the item (i) of the follo
statement. Item (ii) provides a convenient algorithm for verifying whether a finite la
satisfies (S).

Proposition 4.4. LetL be a lattice. Then the following assertions hold:

(i) If L satisfies(S), thenL satisfies(Sj).
(ii) If L is complete, lower continuous, finitely spatial, dually2-distributive, and satisfie

(Sj), thenL satisfies(S).

Proof. (i) Let a � b ∨ c, b � b0 ∨ b1, anda �= b for somea, b, b0, b1, c ∈ J(L). Then the
elementb′ of the Stirlitz identity isb′ = b∧(b0∨b1) = b; observe also thata∧(b∨c) = a.
Therefore, applying (S) yields

a = a ∧ (
b′ ∨ c

) = (
a ∧ b′) ∨

∨
i<2

(
a ∧ (bi ∨ c) ∧ ((

b′ ∧ (a ∨ bi)
) ∨ c

))
= (a ∧ b) ∨

∨
i<2

(
a ∧ (bi ∨ c) ∧ ((

b ∧ (a ∨ bi)
) ∨ c

))
.

Sincea is join-irreducible, eithera � b or a � (bi ∨ c) ∧ ((b ∧ (a ∨ bi)) ∨ c) for some
i < 2. If a � b thena � a ∨ c with a < b (becausea �= b). Suppose thata � b. Then
a � (bi ∨ c) ∧ ((b ∧ (a ∨ bi)) ∨ c) � bi ∨ c for somei < 2. If b � a ∨ bi , thena � b̄ ∨ c

for b̄ = b ∧ (a ∨ bi) < b.
(ii) Put b′ = b ∧ (b0 ∨ b1), and letd denote the right-hand side of the identity (S

Sinced � a ∧ (b′ ∨ c), we must prove the converse inequality only. Leta1 ∈ J(L) with
a1 � a ∧ (b′ ∨ c). Thena1 � a anda1 � b′ ∨ c. If a1 � b′, thena1 � a ∧ b′ � d . If a1 � c,
thena1 � a ∧ c � d .
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Suppose now thata1 � b′, c. Then, by using Lemma 3.2, we obtain that there
minimalb′

1 � b′ andc1 � c such that the following inequality holds,

a1 � b′
1 ∨ c1 (4.1)

and bothb′
1 andc1 are join-irreducible. Froma1 � b′ it follows that a1 � b′

1. If b′
1 � bi

for somei < 2, then the inequalitiesb′
1 � b′ ∧ bi � b′ ∧ (a ∨ bi) and a1 � b′

1 ∨ c1 �
(b′ ∧ (a ∨ bi)) ∨ c hold; but in this case, we also havea1 � a ∧ (bi ∨ c), whencea1 � d .
Suppose thatb′

1 � b0, b1. Then, by Lemma 3.2, there are join-irreducible elementsdi � bi ,
i < 2, such that the following inequality

b′
1 � d0 ∨ d1 (4.2)

holds. It follows from (4.1), (4.2),a1 � b′
1, the minimality ofb′

1 in (4.1), and(Sj) that there
existsi < 2 such thatb′

1 � a1 ∨ di anda1 � di ∨ c1. Then the following inequalities hold

a1 � a ∧ (di ∨ c1) ∧ (
b′

1 ∨ c1
)
� a ∧ (bi ∨ c) ∧ ((

b′ ∧ (a ∨ bi)
) ∨ c

)
� d.

In every case,a1 � d . SinceL is finitely spatial, it follows thata ∧ (b′ ∨ c) � d . �
4.2. The Bond identity(B) and the axiom(Bj)

Let (B) be the following identity:

x ∧ (a0 ∨ a1) ∧ (b0 ∨ b1) =
∨
i<2

((
x ∧ ai ∧ (b0 ∨ b1)

) ∨ (
x ∧ bi ∧ (a0 ∨ a1)

))
∨

∨
i<2

(
x ∧ (a0 ∨ a1) ∧ (b0 ∨ b1) ∧ (a0 ∨ bi) ∧ (a1 ∨ b1−i )

)
.

Lemma 4.5. The Bond identity(B) holds inCo(P ), for any poset〈P,�〉.

Proof. Let X, A0, A1, B0, B1 be elements ofCo(P ). Denote byC the right-hand side
of the Bond identity formed from these elements. Letx ∈ X ∩ (A0 ∨ A1) ∩ (B0 ∨ B1),
we prove thatx ∈ C. The conclusion is obvious ifx ∈ A0 ∪ A1 ∪ B0 ∪ B1, so suppose
that x /∈ A0 ∪ A1 ∪ B0 ∪ B1. Sincex ∈ (A0 ∨ A1) \ (A0 ∪ A1), there area0 ∈ A0 and
a1 ∈ A1 such that, say,a0 � x � a1. Sincex ∈ (B0 ∨ B1) \ (B0 ∪ B1), there areb0 ∈ B0
and b1 ∈ B1 such that eitherb0 � x � b1 or b1 � x � b0. In the first case,x belongs
to X ∩ (A0 ∨ A1) ∩ (B0 ∨ B1) ∩ (A0 ∨ B1) ∩ (A1 ∨ B0), thus to C. In the second
case,x belongs toX ∩ (A0 ∨ A1) ∩ (B0 ∨ B1) ∩ (A0 ∨ B0) ∩ (A1 ∨ B1), thus again
to C. �

We now introduce a lattice-theoretical axiom, thejoin-irreducible interpretation of(B),
that we will denote by(Bj):
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For all x, a0, a1, b0, b1 ∈ J(L), the inequalitiesx � a0 ∨ a1, b0 ∨ b1 imply that either
x � ai or x � bi for somei < 2 orx � a0 ∨ b0, a1 ∨ b1 or x � a0 ∨ b1, a1 ∨ b0.

Throughout the paper we shall make repeated use of the item (i) of the follo
statement. Item (ii) provides a convenient algorithm for verifying whether a finite la
satisfies (B).

Proposition 4.6. LetL be a lattice. Then the following assertions hold:

(i) If L satisfies(B), thenL satisfies(Bj).
(ii) If L is complete, lower continuous, finitely spatial, dually2-distributive, and satisfie

(Bj), thenL satisfies(B).

Proof. Item (i) is easy to prove by using the (B) identity and the join-irreducibility ofx.
(ii) Let u (respectively,v) denote the left- (respectively, right-) hand side of

identity (B). It is obvious thatv � u. SinceL is finitely spatial, in order to prove tha
u � v it is sufficient to prove that for allp ∈ J(L) such thatp � u, the inequalityp � v

holds. This is obvious if eitherp � ai or p � bi for somei < 2, so suppose thatp � ai, bi ,
for all i < 2. Then, by Lemma 3.2, there existx0, x1, y0, y1 ∈ J(L) such thatxi � ai and
yi � bi , for all i < 2, whilep � x0 ∨ x1, y0 ∨ y1. By assumption, we obtain that one of t
following assertions holds:

p � (x0 ∨ y0) ∧ (x1 ∨ y1) � (a0 ∨ b0) ∧ (a1 ∨ b1),

p � (x0 ∨ y1) ∧ (x1 ∨ y0) � (a0 ∨ b1) ∧ (a1 ∨ b0).

In any case,p � v, which completes the proof.�
4.3. The Udav identity(U) and the axiom(Uj)

Let (U) be the following identity:

x ∧ (x0 ∨ x1) ∧ (x1 ∨ x2) ∧ (x0 ∨ x2)

= (
x ∧ x0 ∧ (x1 ∨ x2)

) ∨ (
x ∧ x1 ∧ (x0 ∨ x2)

) ∨ (
x ∧ x2 ∧ (x0 ∨ x1)

)
.

Lemma 4.7. The Udav identity(U) holds inCo(P ), for any poset〈P,�〉.

Proof. Let X, X0, X1, X2 be elements ofCo(P ). Denote byU (respectively,V ) the
left-hand side (respectively, right-hand side) of the Udav identity formed from t
elements. It is clear thatU containsV . Conversely, letx ∈ U , we prove thatx belongs
to V . This is clear if x ∈ X0 ∪ X1 ∪ X2, so suppose thatx /∈ X0 ∪ X1 ∪ X2. Since
x ∈ (X0∨X1)\(X0∪X1), there arex0 ∈ X0 andx1 ∈ X1 such that, say,x0 � x � x1. Since
x ∈ (X1 ∨ X2) \ (X1 ∪ X2), there arex ′

1 ∈ X1 andx2 ∈ X2 such that eitherx ′
1 � x � x2 or

x2 � x � x ′
1. But sincex � x1 ∈ X1 andx /∈ X1, the first possibility is ruled out, whenc

x2 � x � x ′ . Sincex ∈ (X0 ∨ X2) \ (X0 ∪ X2), there arex ′ ∈ X0 andx ′ ∈ X2 such that
1 0 2
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eitherx ′
0 � x � x ′

2 or x ′
2 � x � x ′

0. The first possibility is ruled out byx2 � x andx /∈ X2,
while the second possibility is ruled out byx0 � x andx /∈ X0. In any case, we obtain
contradiction. �

As we already did for (S) and (B), we now introduce a lattice-theoretical axiom, the
join-irreducible interpretation of(U), that we will denote by(Uj):

For all x, x0, x1, x2 ∈ J(L), the inequalitiesx � x0 ∨ x1, x0 ∨ x2, x1 ∨ x2 imply that
eitherx � x0 or x � x1 or x � x2.

Throughout the paper we shall make repeated use of the item (i) of the follo
statement. Item (ii) provides a convenient algorithm for verifying whether a finite la
satisfies (U).

Proposition 4.8. LetL be a lattice. Then the following assertions hold:

(i) If L satisfies(U), thenL satisfies(Uj).
(ii) If L is complete, lower continuous, finitely spatial, dually2-distributive, and satisfie

both(Bj) and(Uj), thenL satisfies both(B) and(U).

Proof. Item (i) is easy to prove by using the (U) identity and the join-irreducibility ofx.
(ii) We have already seen in Proposition 4.6 thatL satisfies (B).
Let u (respectively,v) be the left-hand side (respectively, right-hand side) of

identity (U). It is clear thatv � u. Let p ∈ J(L) such thatp � u, we prove thatp � v.
This is obvious ifp � xi for somei < 3, so suppose thatp � xi , for all i < 3. Then, by
using Lemma 3.2, we obtain that there are join-irreducible elementspi,p

′
i � xi (i < 3) of

L such that the following inequalities hold:

p � p0 ∨ p1,p
′
1 ∨ p2,p

′
0 ∨ p′

2. (4.3)

Sincep � x1 andL satisfies(Bj), it follows from the first two inequalities of (4.3) tha
p � p0 ∨ p′

1,p1 ∨ p2. Similarly, fromp � x2, the last two inequalities of (4.3), and(Bj),
we obtain the inequalities

p � p′
1 ∨ p′

2,p
′
0 ∨ p2,

and from the first and the last inequality of (4.3), together withp � x0 and(Bj), we obtain
the inequalities

p � p0 ∨ p′
2,p

′
0 ∨ p1.

In particular, we have obtained the inequalities

p � p0 ∨ p′
1,p

′
1 ∨ p′

2,p0 ∨ p′
2,

whence, by the assumption(Uj), p � xi for somei < 3, a contradiction. �
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5. First steps together of the identities (S), (U), and (B)

5.1. Udav–Bond partitions

The goal of this subsection is to prove the following partition result of the sets[p]D (see
Notation 3.3).

Proposition 5.1. Let L be a complete, lower continuous, dually2-distributive lattice that
satisfies(U) and (B). Then for everyp ∈ J(L), there are subsetsA and B of [p]D that
satisfy the following properties:

(i) [p]D = A ∪ B andA ∩ B = ∅.
(ii) For all x, y ∈ [p]D, p � x ∨ y iff 〈x, y〉 ∈ (A × B) ∪ (B × A).

Moreover, the set{A,B} is uniquely determined by these properties.

The set{A,B} will be called theUdav–Bond partition(of [p]D) associated withp. We
observe that every conjugate with respect top of an element ofA (respectively,B) belongs
to B (respectively,A).

Proof. If [p]D = ∅ the result is obvious, so suppose that[p]D �= ∅. By Lemma 3.2, there
area, b ∈ [p]D minimal such thatp � a ∨ b. We defineA andB by the formulas

A = {
x ∈ [p]D | p � x ∨ b

}
, B = {

y ∈ [p]D | p � a ∨ y
}
.

Let x ∈ [p]D . By Corollary 3.4,x has a conjugate with respect top, denote it byy. By
Lemma 3.2(ii),y is join-irreducible, thusy ∈ [p]D . By applying(Bj) to the inequalities
p � a ∨ b, x ∨ y, we obtain that eitherp � a ∨ x, b ∨ y or p � a ∨ y, b ∨ x, thus either
p � a ∨ x or p � b ∨ x. If both inequalities hold simultaneously, then, sincep � a ∨ b

and by(Uj), we obtain thatp lies below eithera or b or x, a contradiction. Hence we hav
established (i).

Let x, y ∈ [p]D , we shall establish in which case the inequalityp � x ∨ y holds.
Suppose first thatx ∈ A andy ∈ B. By applying(Bj) to the inequalitiesp � b ∨ x, a ∨ y,
we obtain that eitherp � x ∨ y or p � b ∨ y. In the second case,y ∈ B, but y ∈ A,
a contradiction by item (i); hencep � x ∨ y.

Now suppose thatx, y ∈ A. If p � x ∨ y, then, by applying(Uj) to the inequalities
p � x ∨ y, b ∨ x, b ∨ y, we obtain thatp lies below eitherx or y or b, a contradiction
Hencep � x ∨ y. The conclusion is the same for〈x, y〉 ∈ B ×B. This concludes the proo
of item (ii).

Finally, the uniqueness of{A,B} follows easily from items (i) and (ii). �
5.2. Choosing orientation with Stirlitz

In this subsection we shall investigate further the configuration on which(Sj) is based.
The following lemma suggests an ‘orientation’ of the join-irreducible elements in
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a configuration. More specifically, we are trying to embed the given lattice intoCo(P ),
for some poset〈P,�〉. Attempting to defineP as J(L), this would suggest to order th
elementsa, b, b0, andb1 by c � a � b andb1−i � b � bi . Although the elements ofP will
be definedvia finite sequencesof elements of J(L), rather than just elements of J(L), this
idea will be crucial in the construction of Section 7.

Lemma 5.2. LetL be a lattice satisfying(Sj) and(Uj). Leta, b, b0, b1, c ∈ J(L) such that
a �= b and satisfying the inequalitiesa � b ∨ c with b minimal such, andb � b0 ∨ b1 with
b � b0, b1. Then the following assertions hold:

(i) The inequalitiesb � a ∨ bi and a � bi ∨ c together are equivalent to the sing
inequalityb � bi ∨ c, for all i < 2.

(ii) There is exactly onei < 2 such thatb � bi ∨ c.

Proof. We first observe thatb � c (otherwisea � c). If b � a ∨ bi anda � bi ∨ c, then
obviouslyb � bi ∨c. Suppose, conversely, thatb � b0∨c. If b � b1∨c, then, by observing
that b � b0 ∨ b1 and applying(Uj), we obtain that eitherb � b0 or b � b1 or b � c,
a contradiction. Henceb � b1 ∨ c, the uniqueness statement of (ii) follows. Furthermo
by (Sj), there existsi < 2 such thatb � a ∨ bi anda � bi ∨ c, whenceb � bi ∨ c, thus
i = 0. Therefore,b � a ∨ b0 anda � b0 ∨ c. �

Next, for a conjugate pair〈b, b′〉 of elements of J(L) with respect to some elementa

of J(L), we define

C
[
b, b′] = {

x ∈ J(L) | bDx andb � b′ ∨ x
}
. (5.1)

Notation 5.3. Let SUB denote the class of all lattices that satisfy the identities (S),
and (B).

HenceSUB is a variety of lattices. It isfinitely based, that is, it is defined by finitely
many equations.

Lemma 5.4. Let L be a complete, lower continuous, finitely spatial lattice inSUB. Let
a, b ∈ J(L) such thataDb. Then the equalityC[b, b0] = C[b, b1] holds, for all conjugates
b0 andb1 of b with respect toa.

Proof. We prove, for example, thatC[b, b0] is contained inC[b, b1]. Let x ∈ C[b, b0]
(so b � b0 ∨ x), and suppose thatx /∈ C[b, b1] (so b � b1 ∨ x). By Corollary 3.4,x has
a conjugate, say,y, with respect tob. Since both relationsa � b ∨ b1 and b � x ∨ y

are minimal nontrivial join-covers, it follows from Lemma 5.2 that eitherb � b1 ∨ x or
b � b1 ∨ y, but the first possibility does not hold. Hence the following inequalities hol

b � b0 ∨ x, b1 ∨ y, x ∨ y. (5.2)
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Furthermore, by the uniqueness statement of Lemma 5.2,b � b0 ∨ y. Thus, by(Bj) and
the first two inequalities in (5.2) (observe thatb � b0, b1, x, y), we obtain thatb � b0 ∨ b1.
Hencea � b∨b0 � b0∨b1, whencea � b∨b0, b∨b1, b0∨b1, a contradiction by(Uj). �

For all a, b ∈ J(L) such thataDb, there exists, by Corollary 3.4, a conjugateb′ of b

with respect toa. By Lemma 5.4, for fixeda, the value ofC[b;b′] does not depend ofb′.
This entitles us todefine

C(a, b) = C
[
b, b′], for any conjugateb′ of b with respect toa. (5.3)

Lemma 5.5. Let a, b ∈ J(L) such thataDb. Then the set{C(a, b), [b]D \ C(a, b)} is the
Udav–Bond partition of[b]D associated withb.

Proof. It suffices to prove that the assertions (i) and (ii) of Proposition 5.1 are satisfi
the set{C(a, b), [b]D \C(a, b)}. We first observe the following immediate consequenc
Lemma 5.2.

Claim. For anyx ∈ [b]D and any conjugatex ′ of x, x /∈ C(a, b) iff x ′ ∈ C(a, b).

From now on we fix a conjugateb′ of b with respect toa. Let x, y ∈ [b]D, let x ′
(respectively,y ′) be a conjugate ofx (respectively,y) with respect tob.

Suppose first thatx ∈ C(a, b) andy /∈ C(a, b), we prove thatb � x ∨ y. It follows from
Claim above thaty ′ ∈ C(a, b), whence the inequalitiesb � b′ ∨ x, b′ ∨ y ′ hold, hence,
by (Uj), b � x ∨ y ′. But b � x ∨ x ′, y ∨ y ′, thus, sinceb � x, x ′, y, y ′ and by(Bj), the
inequalityb � x ∨ y holds.

Suppose next thatx, y ∈ C(a, b). Sinceb � b′ ∨ x, b′ ∨ y, the inequalityb � x ∨ y

would yield, by(Uj), a contradiction; whenceb � x ∨ y.
Suppose, finally, thatx, y /∈ C(a, b). Thus, by Claim,y ′ ∈ C(a, b), whence, by the

above,b � x ∨ y ′, y ∨ y ′, whence, by(Uj), b � x ∨ y. �
5.3. Stirlitz tracks

Throughout this subsection, we shall fix a latticeL satisfying the identities (S), (U)
and (B). By Lemma 4.2,L is dually 2-distributive as well. Furthermore, it follows fro
Propositions 4.4, 4.6, and 4.8 thatL satisfies(Sj), (Uj), and(Bj).

Definition 5.6. For a natural numbern, aStirlitz trackof lengthn is a pairσ = 〈〈ai | 0 �
i � n〉, 〈a′

i | 1 � i � n〉〉, where the elementsai for 0 � i � n anda′
i for 1 � i � n are

join-irreducible and the following conditions are satisfied:

(i) the inequalityai � ai+1 ∨ a′
i+1 holds, for all i ∈ {0, . . . , n − 1}, and it is a minimal

nontrivial join-cover;
(ii) the inequalityai � a′

i ∨ ai+1 holds, for alli ∈ {1, . . . , n − 1}.

We shall calla0 thebaseof σ . Observe thataiDai+1, for all i ∈ {0, . . . , n − 1}.
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Observe that ifσ is a Stirlitz track as above, then, by Lemma 5.2, the follow
inequalities also hold:

ai+1 � ai ∨ ai+2, (5.4)

ai � a′
i+1 ∨ ai+2, (5.5)

for all i ∈ {0, . . . , n − 2}.
The main property that we will need about Stirlitz tracks is the following:

Lemma 5.7. For a positive integern, let σ = 〈〈ai | 0 � i � n〉, 〈a′
i | 1 � i � n〉〉 be a

Stirlitz track of lengthn. Then the inequalitiesai � a0 ∨ an andai � a′
1 ∨ an hold, for all

i ∈ {0, . . . , n}. Furthermore,0 � k < l � n implies thatak � al ; in particular, the element
ai , for 0� i � n, are distinct.

Proof. We argue by induction onn. The result is trivial forn = 1, and it follows from
(5.4) and (5.5) forn = 2. Suppose that the result holds forn � 2, and letσ = 〈〈ai | 0 �
i � n + 1〉, 〈a′

i | 1 � i � n + 1〉〉 be a Stirlitz track of lengthn + 1. We observe tha
σ∗ = 〈〈ai | 0 � i � n〉, 〈a′

i | 1 � i � n〉〉 is a Stirlitz track of lengthn, whence, by the
induction hypothesis, the following inequalities hold:

an−1 � a0 ∨ an, (5.6)

an−1 � a′
1 ∨ an. (5.7)

We first prove thatan−1 � a0 ∨ an+1. Indeed, suppose that this does not hold. Hen
a fortiori an−1 � a0, an+1. Hence, by applying(Bj) to (5.5) (for i = n − 1) and (5.6)
and observing thatan−1 � an, a

′
n, we obtain thatan−1 � an ∨ an+1. Therefore,an−1 �

an ∨ an+1, an ∨ a′
n, a

′
n ∨ an+1, a contradiction by(Uj). Hence, indeed,an−1 � a0 ∨ an+1.

Consequently, by (5.4),an � an−1 ∨an+1 � a0∨an+1. Hence, fori ∈ {0, . . . , n}, it follows
from the induction hypothesis (applied toσ∗) thatai � a0 ∨ an � a0 ∨ an+1.

The proof of the inequalitiesai � a′
1 ∨ an+1, for i ∈ {0, . . . , n}, is similar, with a0

replaced bya′
1 and (5.6) replaced by (5.7).

Finally, let 0� k < l � n, and suppose thatak � al . By applying the previous resu
to the Stirlitz track〈〈ak+i | 0 � i � l − k〉, 〈a′

k+i | 1 � i � l − k〉〉, we obtain that
al−1 � ak ∨ al = al , a contradiction. Henceak � al , in particular,ak �= al . �
Lemma 5.8. For positive integersm, n > 0, let

σ = 〈〈ai | 0 � i � m〉, 〈a′
i | 1 � i � m

〉〉
, τ = 〈〈bj | 0 � j � n〉, 〈b′

j | 1� j � n
〉〉

be Stirlitz tracks with the same basep = a0 = b0 andp � a1 ∨ b1. Thenai, bj � am ∨ bn,
for all i ∈ {0, . . . ,m} andj ∈ {0, . . . , n}.
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Proof. Suppose first that the inequalityp � a1 ∨ b′
1 holds. Thenp � a1 ∨ b′

1, b
′
1 ∨ b1,

b1 ∨ a1, a contradiction by(Uj). Hencep � a1 ∨ b′
1, thus, by applying(Bj) to the

inequalitiesp � a1 ∨ a′
1, b1 ∨ b′

1, we obtain thatp � a′
1 ∨ b′

1.
Furthermore, from Lemma 5.7 it follows thatai � p ∨ am, for all i ∈ {0, . . . ,m}, and

bj � p ∨ bn, for all j ∈ {0, . . . , n}, thus it suffices to prove thatp � am ∨ bn. Again,
from Lemma 5.7 it follows thatp � a′

1 ∨ am,b′
1 ∨ bn. Suppose thatp � am ∨ bn. Then

p � a′
1, am, b′

1, bn, thus, by(Bj), p � a′
1 ∨ bn. Furthermore, we have seen thatp � b′

1 ∨ bn

andp � a′
1 ∨ b′

1. Hence, by(Uj), p lies below eithera′
1 or b′

1 or bn, a contradiction. �

6. The small poset associated with a lattice in SUB

Everywhere in this section before Theorem 6.7, we shall fix a complete, l
continuous, finitely spatial latticeL in SUB. For every elementp ∈ J(L), we denote by
{Ap,Bp} the Udav–Bond partition of[p]D associated withp (see Section 5.1). We let+
and− be distinct symbols, and we putR = R0 ∪ R− ∪ R+, whereR0, R−, andR+ are the
sets defined as follows:

R0 = {〈p〉 | p ∈ J(L)
}
,

R+ = {〈a, b,+〉 | a, b ∈ J(L), aDb
}
,

R− = {〈a, b,−〉 | a, b ∈ J(L), aDb
}
.

We define a mape :R → J(L) by puttinge(〈p〉) = p, for all p ∈ J(L), while e(〈a, b,+〉) =
e(〈a, b,−〉) = b, for all a, b ∈ J(L) with aDb.

Let ≺ be the binary relation onR that consists of the following pairs:

〈p,a,−〉 ≺ 〈p〉 ≺ 〈p,b,+〉 whenevera ∈ Ap andb ∈ Bp, (6.1)

〈b, c,−〉 ≺ 〈a, b,+〉 ≺ 〈b, d,+〉, and (6.2)

〈b, d,−〉 ≺ 〈a, b,−〉 ≺ 〈b, c,+〉, wheneverc ∈ [b]D \ C(a, b) andd ∈ C(a, b).

(6.3)

Lemma 6.1. Let ε ∈ {+,−}, let n < ω, and leta0, . . . , an, b0, . . . , bn ∈ J(L) such that
aiDbi , for all i ∈ {0, . . . , n} and 〈a0, b0, ε〉 ≺ · · · ≺ 〈an, bn, ε〉. Then exactly one of th
following cases occurs:

(i) ε = + and, puttingan+1 = bn, the equalityai+1 = bi holds, for all i ∈ {0, . . . , n},
while there are join-irreducible elementsa′

1, . . . , a
′
n+1 of L such that〈〈ai | 0 � i �

n + 1〉, 〈a′
i | 1 � i � n + 1〉〉 is a Stirlitz track.

(ii) ε = − and, puttinga−1 = b0, the equalityai−1 = bi holds, for all i ∈ {0, . . . , n},
while there are join-irreducible elementsa′−1, . . . , a

′
n−1 of L such that〈〈an−i | 0 �

i � n + 1〉, 〈a′
n−i | 1 � i � n + 1〉〉 is a Stirlitz track.
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Proof. Suppose thatε = + (the proof forε = − is similar). We argue by induction onn.
If n = 0, then, from the assumption thata0Db0 and by using Corollary 3.4, we obtain
conjugatea′

1 of b0 with respect toa0, and〈〈a0, a1〉, 〈a′
1〉〉 is obviously a Stirlitz track.

Suppose thatn > 0. From the assumption that〈an−1, bn−1,+〉 ≺ 〈an, bn,+〉 and the
definition of≺, we obtain thatan = bn−1. Furthermore, from the induction hypothesis
follows that there exists a Stirlitz track of the form〈〈ai | 0 � i � n〉, 〈a′

i | 1 � i � n
〉〉
.

Put an+1 = bn, and leta′
n+1 be a conjugate ofan+1 with respect toan. Using again the

assumption that〈an−1, bn−1,+〉 ≺ 〈an, bn,+〉, we obtain the inequalityan � a′
n ∨ an+1.

Therefore,〈〈ai | 0� i � n + 1〉, 〈a′
i | 1 � i � n + 1〉〉 is a Stirlitz track. �

Let � denote the reflexive and transitive closure of≺.

Lemma 6.2. The relation� is a partial ordering onR, and≺ is the predecessor relatio
of �.

Proof. We need to prove that for anyn > 0, if r0 ≺ · · · ≺ rn in R, thenr0 �= rn. We have
three cases to consider.

Case 1. r0 ∈ R+. In this case,ri = 〈ai, bi,+〉 ∈ R+, for all i ∈ {1, . . . , n}. By Lemma 6.1,
if we put an+1 = bn, thenai+1 = bi , for all i ∈ {0, . . . , n}, and there are join-irreducibl
elementsa′

1, . . . , a
′
n+1 of L such that〈〈ai | 0 � i � n + 1〉, 〈a′

i | 1� i � n + 1
〉〉

is a Stirlitz track. In particular, by Lemma 5.7,a0 �= an, whencer0 �= rn.

Case 2. r0 ∈ R0. Thenri ∈ R+, for all i ∈ {1, . . . , n}, thusr0 �= rn.

Case 3. r0 ∈ R−. If rn /∈ R−, thenr0 �= rn. Suppose thatrn ∈ R−. Thenri = 〈ai, bi,−〉
belongs toR−, for all i ∈ {0, . . . , n}. By Lemma 6.1, if we puta−1 = b0, thenai−1 = bi ,
for all i ∈ {0, . . . , n}, and there are join-irreducible elementsa′−1, . . . , a

′
n−1 of L such

that 〈〈an−i | 0 � i � n + 1〉, 〈a′
n−i | 1 � i � n + 1〉〉 is a Stirlitz track. In particular, by

Lemma 5.7,a0 �= an, whencer0 �= rn. �
Definition 6.3.

(i) Two finite sequencesr = 〈r0, . . . , rn−1〉 ands = 〈s0, . . . , sn−1〉 of same length ofR are
isotype, if either e(ri) = e(si), for all i ∈ {0, . . . , n − 1}, or e(ri) = e(sn−1−i ), for all
i ∈ {0, . . . , n − 1}.

(ii) An oriented path (see Section 2)r = 〈r0, . . . , rn−1〉 of elements ofR is
• positive(respectively,negative), if there are elementsai , bi (for 0 � i < n) of J(L)

such thatri = 〈ai, bi,+〉 (respectively,ri = 〈ai, bi,−〉), for all i ∈ {0, . . . , n − 1},
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• reduced, if either it is positive or is has the form〈
u0, . . . , uk−1, 〈p〉, v0, . . . , vl−1

〉
,

wherep ∈ J(L), 〈u0, . . . , uk−1〉 is negative, and〈v0, . . . , vl−1〉 is positive.

Lemma 6.4. Every oriented path ofR is isotype to a reduced oriented path.

Proof. Let r be an oriented path ofR, we prove thatr is isotype to a reduced oriented pa
If r is either positive or reduced there is nothing to do. Suppose thatr is neither positive
nor reduced. Thenr has the form〈〈ak−1, ak,−〉, . . . , 〈a0, a1,−〉, 〈b0, b1,+〉, . . . , 〈bl−1, bl,+〉〉
for some integersk > 0 andl � 0. If l = 0, thenr is isotype to the positive path〈〈a0, a1,+〉, . . . , 〈ak−1, ak,+〉〉.
Suppose now thatl > 0. Since〈a0, a1,−〉 ≺ 〈b0, b1,+〉, two cases can occur.

Case 1. a0 = b1 anda1 /∈ C(b0, b1) (see (6.2)). Observe that〈a0, a1,−〉 ≺ 〈a0〉 if a1 ∈ Aa0

while 〈a0〉 ≺ 〈a0, a1,+〉 if a1 ∈ Ba0 (see (6.1)). In the first case, it follows from Lemma 5
(applied toC(a0, a1)) that the sequence〈〈ak−1, ak,−〉, . . . , 〈a0, a1,−〉, 〈a0〉, 〈b1, b2,+〉, . . . , 〈bl−1, bl,+〉〉
is an oriented path, isotype tor. Similarly, in the second case, the oriented path〈〈bl−1, bl,−〉, . . . , 〈b1, b2,−〉, 〈a0〉, 〈a0, a1,+〉, . . . , 〈ak−1, ak,+〉〉
is isotype tor.

Case 2. a1 = b0 andb1 /∈ C(a0, a1) (see (6.3)). Observe that〈b0〉 ≺ 〈b0, b1,+〉 if b1 ∈ Bb0

while 〈b0, b1,−〉 ≺ 〈b0〉 if b1 ∈ Ab0 (see (6.1)). In the first case, the oriented path〈〈ak−1, ak,−〉, . . . , 〈a1, a2,−〉, 〈b0〉, 〈b0, b1,+〉, . . . , 〈bl−1, bl,+〉〉
is isotype tor. Similarly, in the second case, the oriented path〈〈bl−1, bl,−〉, . . . , 〈b0, b1,−〉, 〈b0〉, 〈a1, a2,+〉, . . . , 〈ak−1, ak,+〉〉
is isotype tor. This concludes the proof.�

We define a mapϕ from L into the powerset ofR as follows:

ϕ(x) = {
r ∈ R | e(r) � x

}
, for all x ∈ L. (6.4)



M. Semenova, F. Wehrung / Journal of Algebra 277 (2004) 825–860 841

r
y

e

s:
Lemma 6.5. The setϕ(x) belongs toCo(R,�), for all x ∈ L.

Proof. It is sufficient to prove that ifr0 ≺ · · · ≺ rn in R such thate(r0), e(rn) � x, the
relatione(rk) � x holds whenever 0< k < n. By Lemma 6.4, it is sufficient to conside
the case where the oriented pathr = 〈r0, . . . , rn〉 is reduced. If it is positive, then, b
Lemma 6.1, there exists a Stirlitz track of the form〈〈ai | 0 � i � n + 1〉, 〈a′

i | 1� i � n + 1
〉〉

for join-irreducible elementsai , a′
i of L with ri = 〈ai, ai+1,+〉, for all i ∈ {0, . . . , n}. But

then, by Lemma 5.7 applied to the Stirlitz track〈〈ai+1 | 0� i � n〉, 〈a′
i+1 | 1� i � n

〉〉
,

e(rk) = ak+1 � a1 ∨ an+1 � x. Suppose from now on thatr is not positive. Then thre
cases can occur.

Case 1. r = 〈〈a0〉, 〈a0, a1,+〉, . . . , 〈an−1, an,+〉〉 for somea0, . . . , an ∈ J(L). It follows
from Lemma 6.1 that there exists a Stirlitz track of the form〈〈ai | 0� i � n〉, 〈a′

i | 1 � i � n
〉〉
,

hence, by Lemma 5.7,e(rk) = ak � a0 ∨ an � x.

Case 2. r = 〈〈an−1, an,−〉, . . . , 〈a0, a1,−〉, 〈a0〉〉 for somea0, . . . , an ∈ J(L). The argu-
ment is similar to the one for Case 1.

Case 3. r = 〈〈an′−1, an′ ,−〉, . . . , 〈a0, a1,−〉, 〈a0〉, 〈b0, b1,+〉, . . . , 〈bn′′−1, bn′′ ,+〉〉 for
some positive integersn′ and n′′ and join-irreduciblea0 = b0, a1, . . . , an′ , b1, . . . , bn′′ .
From〈a0, a1,−〉 ≺ 〈a0〉 ≺ 〈b0, b1,+〉 it follows thata0 = b0 � a1 ∨ b1. From Lemma 6.1
it follows that there are Stirlitz tracks of the form

σ = 〈〈
ai | 0� i � n′〉, 〈a′

i | 1 � i � n′〉〉,
τ = 〈〈

bj | 0 � j � n′′〉, 〈b′
j | 1 � j � n′′〉〉,

with the same basea0 = b0 � a1 ∨b1. Sincee(rk) has either the formai , where 0� i < n′,
or bj , where 0� j < n′′, it follows from Lemma 5.8 thate(rk) � an′ ∨ bn′′ � x. This
concludes the proof. �
Lemma 6.6. The mapϕ is a 〈0,1〉-lattice embedding fromL into Co(R).

Proof. It is obvious thatϕ is a 〈∧,0,1〉-homomorphism. Letx, y ∈ L such thatx � y.
Since L is finitely spatial, there existsp ∈ J(L) such thatp � x and p � y. Hence,
〈p〉 ∈ ϕ(x) \ ϕ(y), soϕ(x) � ϕ(y). Therefore,ϕ is a〈∧,0,1〉-embedding.

Now letx, y ∈ L and letr ∈ ϕ(x ∨ y), we prove thatr ∈ ϕ(x)∨ϕ(y). The conclusion is
trivial if r ∈ ϕ(x) ∪ ϕ(y), so suppose thatr /∈ ϕ(x) ∪ ϕ(y). We need to consider two case
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Case 1. r = 〈p〉, for somep ∈ J(L). Sop � x ∨ y while p � x, y. By Lemma 3.2, there
are minimalu � x andv � y such thatp � u ∨ v, henceu andv are join-irreducible and
they do not belong to the same side of the Udav–Bond partition of[p]D associated withp
(see Proposition 5.1). Hence, by the definition of≺, either〈p,u,−〉 ≺ 〈p〉 ≺ 〈p,v,+〉 or
〈p,v,−〉 ≺ 〈p〉 ≺ 〈p,u,+〉. Since〈p,u, ε〉 ∈ ϕ(x) and〈p,v, ε〉 ∈ ϕ(y), for all ε ∈ {+,−},
it follows from this that〈p〉 ∈ ϕ(x) ∨ ϕ(y).

Case 2. r = 〈a, b,+〉 for somea, b ∈ J(L) such thataDb. Sob � x ∨ y while b � x, y.
By Lemma 3.2, there are minimalu � x andv � y such thatb � u ∨ v, henceu andv

are join-irreducible and they do not belong to the same side of the Udav–Bond partit
[b]D associated withb (see Proposition 5.1). Hence, it follows from Lemma 5.5 that eithe
u /∈ C(a, b) andv ∈ C(a, b) or u ∈ C(a, b) andv /∈ C(a, b). In the first case,

〈b,u,−〉 ≺ 〈a, b,+〉 ≺ 〈b, v,+〉,

while in the second case,

〈b, v,−〉 ≺ 〈a, b,+〉 ≺ 〈b,u,+〉.

Since〈b,u, ε〉 ∈ ϕ(x) and 〈b, v, ε〉 ∈ ϕ(y), for all ε ∈ {+,−}, it follows from this that
r ∈ ϕ(x) ∨ ϕ(y).

Case 3. r = 〈a, b,−〉 for somea, b ∈ J(L) such thataDb. The proof is similar to the proo
of Case 2. �

We can now formulate the main theorem of this paper.

Theorem 6.7. LetL be a lattice. Then the following are equivalent:

(i) L embeds into a lattice of the formCo(P ), for some posetP ;
(ii) L satisfies the identities(S), (U), and(B) (i.e., it belongs to the classSUB);
(iii) L has a lattice embedding into a lattice of the formCo(R), for some posetR, that

preserves the existing bounds. Furthermore, ifL is finite, thenR is finite, with

|R| � 2
∣∣J(L)

∣∣2 − 5
∣∣J(L)

∣∣ + 4.

Proof. (i) ⇒ (ii) follows immediately from Lemmas 4.1, 4.5, and 4.7.
(ii) ⇒ (iii). Denote by FilL the lattice of alldual ideals(= filters) of L, ordered by

reverse inclusion; ifL has no unit element, then we allow the empty set in FilL, otherwise
we require filters to be nonempty. This way, FilL is complete and the canonical latti
embeddingx �→ ↑x from L into FilL preserves the existing bounds. It is well known t
Fil L is a dually algebraic lattice that extendsL and that satisfies the same identities aL

(see, for example, G. Grätzer [11]), in particular, it belongs toSUB. Furthermore, FilL
is dually algebraic, thus lower continuous and spatial, thus it isa fortiori finitely spatial.
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We consider the poset〈R,�〉 constructed above from FilL. By Lemmas 6.5 and 6.6, th
canonical mapϕ defines a〈0,1〉-embedding from FilL into Co(R).

(iii) ⇒ (i) is trivial.
In caseL is finite, putn = |J(L)|, we verify that|R| � 2n2 − 5n + 4 for the poset

〈R,�〉 constructed above, in the case wheren � 2 (for n � 1 then one can take forP a
singleton). Indeed, it follows from the join-semidistributivity ofL (that itself follows from
Lemma 4.3) thatL has at least twoD-maximal (= join-prime) elements, hence the numb
of pairs〈a, b〉 of elements of J(L) such thataDb is at most(n − 1)(n − 2), whence

|R| � 2(n − 1)(n − 2) + n = 2n2 − 5n + 4. �
Remark 6.8. The upper bound 2|J(L)|2 −5|J(L)|+4 of Theorem 6.7(iii), obtained for th
particular posetR constructed above, is reached forL defined as the lattice of all orde
convex subsets of a finite chain.

Corollary 6.9. The class of all lattices that can be embedded into someCo(P ) coincides
with SUB; it is a finitely based variety. In particular, it is closed under homomorp
images.

Of course, we proved more, for example, the class of all lattices that can be emb
into somefiniteCo(P ) forms apseudovariety(see [10]), thus it is closed under homom
phic images.

7. The tree-like poset associated with a lattice in SUB

Everywhere in this section before Theorem 7.7, we shall fix a complete, l
continuous, finitely spatial latticeL in SUB. The goal of the present section is to defin
tree-like posetΓ and a lattice embedding fromL into Co(Γ ) that preserves the existin
bounds, see Theorem 7.7.

The idea to useD-increasing finite sequences of join-irreducible elements is introd
in K.V. Adaricheva [1], where it is proved that every finite lattice withoutD-cycle can be
embedded into the lattice of subsemilattices of some finite meet-semilattice; see als

We denote byΓ the set of all finite, nonempty sequencesα = 〈α(0), . . . , α(n)〉 of
elements of J(L) such thatα(i)Dα(i + 1), for all i < n. We put|α| = n (the lengthof α),
and we extend this definition by putting|∅| = −1. We further put̄α = 〈α(0), . . . , α(n−1)〉
(the truncationof α) ande(α) = α(n) (the extremityof α). If α = β̄ , we say thatβ is a
one-step extensionof α. Furthermore, for alln � 0, we put

Γn = {
α ∈ Γ | |α| � n

}
and En = Γn \ Γn−1 for n > 0.

For α ∈ Γ \ Γ0, we say that aconjugateof α is an elementβ of Γ such thatᾱ = β̄ and
e(α) ande(β) are conjugate with respect toe(ᾱ). It follows from Corollary 3.4 thatevery
element ofΓ \ Γ0 has a conjugate. Furthermore, forα,β ∈ Γ , we writeα ∼ β , if either
α = β̄ or β = ᾱ.
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For all n > 0, we define inductively a binary relation≺n on Γn, together with subset
Aα andBα of [e(α)]D for α ∈ Γn−1.

The induction hypothesis to be satisfied consists of the following two assertions:

(S1) ≺n is acyclic.
(S2) For allα,β ∈ Γn, α ∼ β iff either α ≺n β or β ≺n α.

Forn = 0, let≺n be empty.
The casen = 1 is the only place where we have some freedom in the choice of≺n. We

suppose that we have already used this freedom for the construction of the poset〈R,�〉
of Section 6, that is, for eachp ∈ J(L), let Ap , Bp such that{Ap,Bp} is the Udav–Bond
partition of[p]D associated withp (see Section 5.1), and we letR be the poset associate
with this choice that we constructed in Section 6. Then we putA〈p〉 = Ap andB〈p〉 = Bp ,
and we define

≺1 = {〈〈p,a〉, 〈p〉〉 | p ∈ J(L), a ∈ A〈p〉
} ∪ {〈〈p〉, 〈p,b〉〉 | p ∈ J(L), b ∈ B〈p〉

}
.

It is obvious that≺1 satisfies both (S1) and (S2).
Now suppose having defined≺n, for n � 1, that satisfies both (S1) and (S2). For

α ∈ En, we define subsetsAα andBα of [e(α)]D as follows:

Case 1. ᾱ ≺n α. Then we putAα = [e(α)]D \ C(e(ᾱ), e(α)) andBα = C(e(ᾱ), e(α)).

Case 2. α ≺n ᾱ. Then we putAα = C(e(ᾱ), e(α)) andBα = [e(α)]D \ C(e(ᾱ), e(α)).

Then we define≺n+1 as

≺n+1 = ≺n ∪ {〈
α	〈x〉, α〉 | α ∈ En andx ∈ Aα

}
∪ {〈

α,α	〈y〉〉 | α ∈ En andy ∈ Bα

}
, (7.1)

where〈α,β〉 �→ α	β denotesconcatenationof finite sequences.

Lemma 7.1. The relation≺n+1 satisfies both(S1)and (S2).

Proof. It is obvious that≺n+1 satisfies (S2). Now let us prove (S1), and suppose that≺n+1
has a cycle, say,α0 ≺n+1 α1 ≺n+1 · · · ≺n+1 αk = α0, wherek � 2. We pickk minimalwith
this property. AsAα ∩ Bα = ∅, for all α, we cannot havek = 2 as well, sok � 3.

By the induction hypothesis, one of the elements of the cycle belongs toEn+1, without
loss of generality we may assume that it is the case forα0. Hence, by (7.1),α1 = α0 belongs
to Γn. Let l be the smallest element of{1, . . . , k − 1} such thatαl+1 /∈ Γn (it exists since
αk = α0 /∈ Γn). Suppose thatl < k−1. By (S2) for≺n+1, αl+2 = αl+1 = αl , a contradiction
by the minimality ofk. Hencel = k−1, which means thatα1, . . . ,αk−1 ∈ Γn. Hence, since
k − 1 � 2, we obtain thatα1 ≺n · · · ≺n αk−1 = α1 is a≺n-cycle, a contradiction. �
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Lemma 7.1 completes the definition of≺n, for all n > 0. We define≺ as the union ove
all n < ω of ≺n. Hence≺ is an acyclic binary relation onΓ such thatα ∼ β iff either
α ≺ β or β ≺ α, for all α,β ∈ Γ . Since≺ is acyclic, the reflexive and transitive closure�
of ≺ is a partial ordering onΓ , for which ≺ is exactly thepredecessorrelation. For the
sake of clarity, we rewrite below the inductive definition of≺ and the setsAα andBα for
α ∈ Γ .

(a) For|α| = 0, Aα andBα are chosen such that{Aα,Bα} is the Udav–Bond partition o
[e(α)]D associated withe(α).

(b) Suppose that|α| � 1. Then we defineAα andBα by

〈Aα,Bα〉 =
{

([e(α)]D \ C(e(ᾱ), e(α)),C(e(ᾱ), e(α))) if ᾱ ≺ α,

(C(e(ᾱ), e(α)), [e(α)]D \ C(e(ᾱ), e(α))) if α ≺ ᾱ.

(c) α ≺ β implies thatα ∼ β .
(d) α	〈x〉 ≺ α iff x ∈ Aα andα ≺ α	〈x〉 iff x ∈ Bα , for all α ∈ Γ and allx ∈ [e(α)]D.

By Lemma 5.5, the set{Aα,Bα} is the Udav–Bond partition of[e(α)]D associated
with α, for all α ∈ Γ . Therefore, by Proposition 5.1 and the definition of≺, we obtain
immediately the following consequence.

Corollary 7.2. For all α ∈ Γ and all x, y ∈ [e(α)]D, e(α) � x ∨ y iff eitherα	〈x〉 ≺ α ≺
α	〈y〉 or α	〈y〉 ≺ α ≺ α	〈x〉.

For α,β ∈ Γ , we denote byα ∗ β the largest common initial segment ofα and β .
Observe thatα ∗ β belongs toΓ ∪ {∅} and thatα ∗ β = β ∗ α. Put m = |α| − |α ∗ β|
andn = |β| − |α ∗ β|. We let P(α,β) be the finite sequence〈γ0, γ1, . . . , γm+n〉, where
the γi , for 0 � i � m + n, are defined byγ0 = α, γi+1 = γi , for all i < m, γm+n = β ,
and γm+n−j−1 = γm+n−j , for all j < n. Hence theγi -s first decrease fromγ0 = α to
γm = α ∗ β by successive truncations, then they increase again fromγm to γm+n = β by
successive one-step extensions.

For α,β ∈ Γ , we observe that a path (see Section 2) fromα to β is a finite sequenc
c = 〈γ0, γ1, . . . , γk〉 of distinct elements ofΓ such thatγ0 = α, γk = β , andγi ∼ γi+1, for
all i < k.

Proposition 7.3. For all α,β ∈ Γ , there exists at most one path fromα to β , and then this
path isP(α,β). Furthermore, such a path exists iffα(0) = β(0).

Hence, by using the terminology of Section 2: the poset〈Γ,�〉 is tree-like.

Proof. Put againm = |α| − |α ∗ β| andn = |β| − |α ∗ β|, andP(α,β) = 〈γ0, . . . , γm+n〉.
Let d = 〈δ0, . . . , δk〉 (for k < ω) be a path fromα to β . We begin with the following
essential observation.

Claim. The pathd consists of a sequence of truncations followed by a sequence of one-s
extensions.
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Proof of Claim. Suppose that there exists an indexi ∈ {1, . . . , k − 1} such thatδi extends
bothδi−1 andδi+1. Thenδi−1 = δi = δi+1, which contradicts thefact that all entries ofd
are distinct.

Hence, eitherd consists of a sequence of truncations, or there exists a least
l ∈ {0, . . . , k − 1} such thatδl+1 is an extension ofδl . If δi+1 is not an extension ofδi

for somei ∈ {l, . . . , k − 1}, then, taking the least suchi, we obtain thatδi extends both
δi−1 andδi+1, a contradiction by the first paragraph of the present proof. Henceδi+1 is a
one-step extension ofδi , for all i ∈ {l, . . . , k − 1}. �

Let l denote the least element of{0, . . . , k} such thatl < k implies thatδl+1 extendsδl .
In particular,δl is a common initial segment of bothα andβ , thus ofα ∗ β . Furthermore,

|α| − l = |δ0| − l = |δl | � |α ∗ β| = |α| − m,

thusl � m. Similarly,

|β| − (k − l) = |δl| � |α ∗ β| = |β| − n,

thusk − l � n. In addition, bothα ∗ β andδm are initial segments ofα of the same length
|α| − m, thusα ∗ β = δm. Similarly, bothα ∗ β andδk−n are initial segments ofβ of the
same length|β|−n, whenceα ∗β = δk−n. Therefore,δm = δk−n, whence, since all entrie
of d are distinct,m = k − n, sok = m + n, whencel = m sincem � l � k − n. It follows
then from the claim thatd = P(α,β).

Furthermore, fromα ∼ β it follows thatα(0) = β(0), thus the same conclusion follow
from the assumption that there exists a path fromα to β . Conversely, ifα(0) = β(0), then
α ∗ β is nonempty, thus so are all entries ofP(α,β). HenceP(α,β) is a path fromα

to β . �
Now we define a mapπ :Γ → R by the following rule:

π(α) =
{

α if |α| = 0,

〈e(ᾱ), e(α),+〉 if ᾱ ≺ α,

〈e(ᾱ), e(α),−〉 if α ≺ ᾱ,

for all α ∈ Γ.

Lemma 7.4. α ≺ β in Γ implies thatπ(α) ≺ π(β) in R, for all α,β ∈ Γ . In particular,π
is order-preserving.

Proof. We argue by induction on the least integern such thatα,β ∈ Γn. We need to
consider first the case wherep,a, b ∈ J(L), a ∈ Ap, b ∈ Bp (so that〈p,a〉 ≺ 〈p〉 ≺ 〈p,b〉
in Γ ), and prove thatπ(〈p,a〉) ≺ π(〈p〉) ≺ π(〈p,b〉) in R. But by the definition ofπ , the
following equalities hold,

π
(〈p,a〉) = 〈p,a,−〉, π

(〈p〉) = 〈p〉, and π
(〈p,b〉) = 〈p,b,+〉,

while, by the definition of≺ onR,

〈p,a,−〉 ≺ 〈p〉 ≺ 〈p,b,+〉,
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which solves the case wheren = 1.
The remaining case to consider is whereα	〈x〉 ≺ α ≺ α	〈y〉 in Γ , for |α| > 0. Thus

x ∈ Aα andy ∈ Bα , whence

π
(
α	〈x〉) = 〈

e(α), x,−〉
,

π
(
α	〈y〉) = 〈

e(α), y,+〉
.

Suppose first that̄α ≺ α. Then

Aα = [
e(α)

]D \ C
(
e(ᾱ), e(α)

)
while Bα = C

(
e(ᾱ), e(α)

)
.

Furthermore,π(α) = 〈e(ᾱ), e(α),+〉, while, by the definition of≺ onR,〈
e(α), x,−〉 ≺ 〈

e(ᾱ), e(α),+〉 ≺ 〈
e(α), y,+〉

,

in other words,

π
(
α	〈x〉) ≺ π(α) ≺ π

(
α	〈y〉).

Suppose now thatα ≺ ᾱ. Then

Aα = C
(
e(ᾱ), e(α)

)
while Bα = [

e(α)
]D \ C

(
e(ᾱ), e(α)

)
.

Furthermore,π(α) = 〈e(ᾱ), e(α),−〉, while, by the definition of≺ onR,〈
e(α), x,−〉 ≺ 〈

e(ᾱ), e(α),−〉 ≺ 〈
e(α), y,+〉

,

in other words,

π
(
α	〈x〉) ≺ π(α) ≺ π

(
α	〈y〉),

which completes the proof.�
We observe the following immediate consequence of Lemma 7.4.

Corollary 7.5. One can define a zero-preserving complete meet homomorphismπ∗ : Co(R)

→ Co(Γ ) by the rule

π∗(X) = π−1[X], for all X ∈ Co(R).

We putψ = π∗ ◦ ϕ, whereϕ :L ↪→ Co(R) is the canonical map defined in Section
Henceψ is a zero-preserving meet homomorphism fromL into Co(Γ ). For anyx ∈ L, the
valueψ(x) is calculated by the same rule asϕ(x), see (6.4):

ψ(x) = {
α ∈ Γ | e(α) � x

}
.



848 M. Semenova, F. Wehrung / Journal of Algebra 277 (2004) 825–860

y seen

o

set

nt

s of
of its

f
ink
e:
Lemma 7.6. The mapψ is a lattice embedding fromL into Co(Γ ). Moreover,ψ preserves
the existing bounds.

Proof. The statement about preservation of bounds is obvious. We have alread
(and it is obvious) thatψ is a meet homomorphism. Letx, y ∈ L such thatx � y.
SinceL is finitely spatial, there existsp ∈ J(L) such thatp � x and p � y; whence
〈p〉 ∈ ψ(x) \ ψ(y). Henceψ is a meet embedding fromL into Co(Γ ).

Let x, y ∈ L, let α ∈ ψ(x ∨ y), we prove thatα ∈ ψ(x) ∨ ψ(y). This is obvious if
α ∈ ψ(x)∪ψ(y), so suppose thatα /∈ ψ(x)∪ψ(y). Hencee(α) � x ∨y while e(α) � x, y,
thus, by Lemma 3.2, there are minimalu � x andv � y such thate(α) � u ∨ v, and both
u andv belong to[e(α)]D . Therefore, by Corollary 7.2, eitherα	〈u〉 ≺ α ≺ α	〈v〉 or
α	〈v〉 ≺ α ≺ α	〈u〉. In both cases, sinceα	〈u〉 ∈ ψ(x) andα	〈v〉 ∈ ψ(y), we obtain
thatα ∈ ψ(x) ∨ ψ(y). Therefore,ψ is a join homomorphism. �

Now we can state the main embedding theorem of the present section.

Theorem 7.7. LetL be a lattice. Then the following assertions are equivalent:

(i) there exists a posetP such thatL embeds intoCo(P );
(ii) L satisfies the identities(S), (U), and(B) (i.e., it belongs to the classSUB);
(iii) there exists a tree-like(see Section2) posetΓ such thatL has an embedding int

Co(Γ ) that preserves the existing bounds. Furthermore, ifL is finite withoutD-cycle,
thenΓ is finite.

Proof. (i) ⇒ (ii) has already been established, see Theorem 6.7.
(ii) ⇒ (iii). As in the proof of Theorem 6.7, we denote by FilL the lattice of all filters

of L, ordered by reverse inclusion; ifL has no unit element, then we allow the empty
in Fil L, otherwise we require filters to be nonempty. We consider the posetΓ constructed
from FilL as in Section 7. By Lemma 7.6,L embeds intoCo(Γ ). The finiteness stateme
of (iii) is obvious.

(iii) ⇒ (i) is trivial. �
Even in caseL = Co(P ), for a finite totally ordered setP , the posetΓ constructed in

Theorem 7.7 is not isomorphic toP as a rule. As it is constructed from finite sequence
elements ofP , it does not lend itself to easy graphic representation. However, many
properties can be seen on the simpler posetrepresented on Fig. 5, which is tree-like.

As we shall see in Sections 9 and 10, the assumption in Theorem 7.7(iii) thatL be
withoutD-cycle cannot be removed.

8. Non-preservation of atoms

The posetsR andΓ that we constructed in Sections 6 and 7 are definedvia sequences o
join-irreducible elements ofL. This is to be put in contrast with the main result of O. Fr
[8] (see also [11]), that embeds any complemented modular lattice into a geometric lattic
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Fig. 1. The posetP and the geometry ofK .

namely, this construction preserves atoms. Hence the question of the necessity
complication of the present paper, that is, using sequences of join-irreducible elemen
rather than just join-irreducible elements, is natural. In the present section we stud
examples that show that this complication is, indeed, necessary.

Example 8.1. A finite, atomistic lattice inSUB withoutD-cycle that cannot be embedd
atom-preservingly into anyCo(T ).

Proof. LetP be the nine-element poset represented on the left-hand side of Fig. 1, togeth
with order-convex subsetsP0, P1, P2, Q0, Q1, Q2.

We let K be the set of all elementsX of Co(P ) such thatpi ∈ X ⇔ p′
i ∈ X, for all

i < 3. It is obvious thatK is a meet-subsemilattice ofCo(P ) which contains{∅,P } ∪ Ω ,
whereΩ = {P0,P1,P2,Q0,Q1,Q2}. We prove thatK is a join-subsemilattice ofCo(P ).
Indeed, for alli < 3, bothpi andp′

i are either maximal or minimal inP , hence, for allX,
Y ∈ Co(P ), pi ∈ X ∨ Y iff pi ∈ X ∪ Y , and, similarly,p′

i ∈ X ∨ Y iff p′
i ∈ X ∪ Y . Hence

X,Y ∈ K implies thatX ∨ Y ∈ K .
Therefore,K is a sublattice ofCo(P ). It follows immediately that the atoms ofK are

the elements ofΩ , thatK is atomistic, and the atoms ofK satisfy the following relations
(see the right half of Fig. 1):

Q0 � P1 ∨ P2, Q1 � P0 ∨ P2, Q2 � P0 ∨ P1,

P0 � P1 ∨ P2, P1 � P0 ∨ P2, P2 � P0 ∨ P1.

Hence, the sequenceP0P1P2P0P1 is a zigzag of length 5 (in the sense of [3]). It follow
from this and the easy direction of the main theorem of [3] thatK cannot be embedde
atom-preservingly into anyCo(T ). �

By contrast, our second example is subdirectly irreducible, but it hasD-cycles. We shal
see in a subsequent paper [15] that the latter condition is unavoidable, that is, any
subdirectly irreducible atomistic lattice withoutD-cycle that can be embedded into so
Co(P ) can be embedded atom-preservingly into some finiteCo(P ) withoutD-cycle.

Example 8.2. A finite, atomistic, subdirectly irreducible lattice inSUB that cannot be
embedded intoCo(T ), for any posetT , in an atom-preserving way.
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Proof. Let Q be the 12-element poset represented on the left hand side of Fig. 2, to
with order-convex subsetsA, B, C, A′, B ′, C′.

We let σ be the anti-automorphism ofQ defined byσ(ai) = a1−i , σ(a′
i ) = a′

1−i ,
σ(bi) = b1−i , σ(b′

i ) = b′
1−i , σ(ci) = c1−i , σ(c′

i ) = c′
1−i , for all i < 2, and we letL be

the set of all elementsX of Co(Q) such thatσX = X. It is obvious thatL is a meet-
subsemilattice ofCo(Q) which contains{∅,Q}∪Ω , whereΩ = {A,B,C,A′,B ′,C′}. We
prove thatL is a join-subsemilattice ofCo(Q). Let X, Y ∈ L, we prove thatX ∨ Y ∈ L.

Since botha′
0 and a′

1 are either maximal or minimal inQ, the equivalencea′
i ∈

X ∨ Y ⇔ a′
i ∈ X ∪ Y holds, for alli < 2, whencea′

0 ∈ X ∨ Y ⇔ a′
1 ∈ X ∨ Y . Similarly,

b′
0 ∈ X ∨ Y ⇔ b′

1 ∈ X ∨ Y andc′
0 ∈ X ∨ Y ⇔ c′

1 ∈ X ∨ Y .
Suppose now thata0 ∈ X ∨ Y , we prove thata1 ∈ X ∨ Y . If a0 ∈ X ∪ Y this is obvious,

so suppose thata0 /∈ X ∪Y . Without loss of generality, there arex ∈ X andy ∈ Y such that
x � a0 � y, whencex ∈ {b′

1, b1, c
′
1, c1} andy = a′

0. FromY ∈ L it follows thata′
1 ∈ Y , thus

A′ ⊆ Y . Similarly, fromX ∈ L it follows that eitherB ⊆ X or C ⊆ X or B ′ ⊆ X or C′ ⊆ X.
If B ⊆ X, thenb0 ∈ X, thus, sincea′

1 � a1 � b0 anda′
1 ∈ Y , we obtain thata1 ∈ X ∨ Y . If

B ′ ⊆ X, thenb′
0 ∈ X, thus, sincea′

1 � a1 � b′
0 anda′

1 ∈ Y , we obtain again thata1 ∈ X∨Y .
Similar results hold for eitherC ⊆ X or C′ ⊆ X. Therefore,a0 ∈ X ∨ Y implies that
a1 ∈ X ∨ Y . By symmetry, we obtain the converse. Similarly,b0 ∈ X ∨ Y ⇔ b1 ∈ X ∨ Y

andc0 ∈ X ∨ Y ⇔ c1 ∈ X ∨ Y . Therefore,X ∨ Y belongs toL, which completes the proo
thatL is a sublattice ofCo(Q).

It follows immediately that the atoms ofL are the elements ofΩ , thatL is atomistic,
and the atoms ofL satisfy the following relations:

A,B � A′ ∨ B ′, A � A′ ∨ B, B � A ∨ B ′,
B,C � B ′ ∨ C′, B � B ′ ∨ C, C � B ∨ C′,
A,C � A′ ∨ C′, A � A′ ∨ C, C � A ∨ C′.

Hence,L is subdirectly irreducible, with monolith(i.e., smallest nonzero congruence)
smallest congruenceΘ(∅,A) identifying∅ andA, also equal toΘ(∅,B) and toΘ(∅,C).
Furthermore, the sequenceA′B ′C′A′B ′ is a zigzag of length 5 (in the sense of [3]).
follows from this and the easy direction of the main theorem of [3] thatL cannot be
embedded atom-preservingly into anyCo(T ). �
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9. Crowns in posets

We first recall the following classical definition.

Definition 9.1. For an integern � 2, we denote byZ/nZ the set of integers modulon.
Then-crownCn is the poset with underlying set(Z/nZ) × {0,1} and ordering defined b
(i,0), (i + 1,0) < (i,1), for all i ∈ Z/nZ.

The crownCn is illustrated on Fig. 3.
We shall mostly deal with sub-crowns of posets.

Definition 9.2. For n � 2 and a poset(T ,�), a n-crown of T is a finite sequenc
〈〈ai, bi〉 | i ∈ Z/nZ〉 of elements ofT × T such that there exists an order-embedd
f :Cn ↪→ T with f (i,0) = ai andf (i,1) = bi , for all i ∈ Z/nZ.

We shall sometimes identify an integer modulon with its unique representative i
{0,1, . . . , n − 1} and an-crown〈〈ai, bi〉 | i ∈ Z/nZ〉 with the finite sequence〈〈a0, b0〉, 〈a1, b1〉, . . . , 〈an−1, bn−1〉

〉
.

The following lemma makes it possible to identify crowns within posets.

Lemma 9.3. Let (T ,�) be a poset, letn � 3, and letai , bi (i ∈ Z/nZ) be elements ofT .
Then the following are equivalent:

(i) 〈〈ai, bi〉 | i ∈ Z/nZ〉 is an-crown.
(ii) ai � bj iff i ∈ {j, j + 1}, for all i, j ∈ Z/nZ.

Proof. (i) ⇒ (ii) is trivial. Conversely, suppose (ii) satisfied, we prove thatf :Cn ↪→ T

defined byf (i,0) = ai and f (i,1) = bi , for all i ∈ Z/nZ, is an order-embedding. W
need to prove the following assertions:

(i) ai � aj implies thati = j , for all i, j ∈ Z/nZ. Indeed, ifai � aj , thenai � bj , bj−1
(becauseaj � bj , bj−1), thus, by assumption,i ∈ {j, j + 1} ∩ {j, j − 1} = {j } (we
use here the inequalityn � 3), that is,i = j .

(ii) bi � bj implies thati = j , for all i, j ∈ Z/nZ. The proof is similar to the one of (i).
(iii) bj � ai occurs for noi, j ∈ Z/nZ. Indeed, suppose thatbj � ai . Thenbj � bi, bi−1

(becauseai � bi, bi−1), thus, by (ii),j = i = i − 1, a contradiction.

Fig. 3. The crownCn.
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Definition 9.4. A posetT is crown-free, if it has non-crown for anyn � 3.

Strictly speaking, the 2-crownC2 is crown-free since we are requiringn � 3 in the
definition above. The motivation why we are putting this slight restriction onn lies in the
following observation. First, the poset of Fig. 4(i) is tree-like, but it contains the 2-cr
represented on Fig. 4(ii); observe also that then-crown, for anyn � 2, is never tree-like.

On the other hand, we shall now prove the following result.

Proposition 9.5. Every tree-like poset is crown-free.

As witnessed by the square22, the converse of Proposition 9.5 does not hold.

Proof. Let (T ,�) be a tree-like poset. Forx, y ∈ T , we denote byd(x, y) the length of the
unique path fromx to y if there is such a path,∞ otherwise. Observe thatx � y implies
thatd(x, y) < ∞ (but the converse does not hold as a rule), and then the unique path
x to y is oriented (see Section 2).

For an-crownγ = 〈〈ai, bi〉 | i ∈ Z/nZ〉 in T , we put

�(γ ) =
∑

i∈Z/nZ

d(ai, bi).

Suppose thatT has an-crown, for some integern � 3. We pick such a crownγ = 〈〈ai, bi〉 |
i ∈ Z/nZ〉 with �(γ ) minimum. For all i ∈ Z/nZ, we let

ai = xi,0 ≺ xi,1 ≺ · · · ≺ xi,pi = bi,

ai+1 = yi,0 ≺ yi,1 ≺ · · · ≺ yi,qi = bi

be the paths fromai (respectively,ai+1) to bi , where≺ denotes the predecessor relat
of T .

Claim 1. {xi,p | 0 � p < pi} ∩ {yi,q | 0 � q < qi} = ∅, for all i ∈ Z/nZ.

Proof of Claim. Suppose, to the contrary, thatxi,p = yi,q for somep ∈ {0, . . . , pi − 1}
andq ∈ {0, . . . , qi − 1}. We putb′

j = bj , for all j �= i in Z/nZ, while b′
i = xi,p . Since

Fig. 4. A tree-like poset which contains the crownC2.
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ai, ai+1 � b′
i , the conditionk ∈ {l, l + 1} implies that ak � b′

l , for all k, l ∈ Z/nZ.
Conversely, letk, l ∈ Z/nZ such thatak � b′

l . Fromb′
l � bl it follows thatak � bl , whence

k ∈ {l, l +1}. By Lemma 9.3, the familyγ ′ = 〈〈ak, b
′
k〉 | k ∈ Z/nZ〉 is an-crown. However,

�
(
γ ′) � �(γ ) − (pi − p) < �(γ ),

which contradicts the minimality of�(γ ). �
The proof of the following claim is symmetric.

Claim 2. {yi,q | 0< q � qi} ∩ {xi+1,p | 0< p � pi+1} = ∅, for all i ∈ Z/nZ.

We define awalkof T to be a finite sequencec = 〈c0, c1, . . . , cm〉 of elements ofT such
that eitherci ≺ ci+1 or ci+1 ≺ ci , for all i < m, we say then thatc is a walk fromc0 to cm.
Hence, a nonempty path ofT is a walk with all distinct entries.

Now we letd be the finite sequence defined by

d = 〈x0,k | 0 � k � p0〉	〈y0,q0−l | 0 < l < q0〉	〈x1,k | 0 � k � p1〉
· · ·	 〈xn−1,k | 0 � k � pn−1〉.

It is obvious thatd is a walk fromx0,0 = a0 to xn−1,pn−1 = bn−1. We shall now prove tha
d is a path.

Suppose, indeed, thatd is not a path. Then one of the following cases occurs:

Case 1. There are distincti, j ∈ Z/nZ, together withk ∈ {0, . . . , pi} andl ∈ {0, . . . , pj },
such thatxi,k = xj,l . Thenai � xi,k = xj,l � bj , thus i ∈ {j, j + 1}, while aj � xj,l =
xi,k � bi , thusj ∈ {i, i + 1}. Sincen � 3, we obtain thati = j , a contradiction.

Case 2. There are distincti, j ∈ (Z/nZ)\{n − 1}, together withk ∈ {1, . . . , qi − 1}
and l ∈ {1, . . . , qj − 1}, such thatyi,k = yj,l . Then ai+1 � yi,k = yj,l � bj , thus i ∈
{j, j − 1}, while aj+1 � yj,l = yi,k � bi , thusj ∈ {i, i − 1}, whence, sincen � 3, i = j ,
a contradiction.

Case 3. There arei ∈ Z/nZ andj ∈ (Z/nZ)\{n − 1}, together withk ∈ {0, . . . , pi} and
l ∈ {1, . . . , qj − 1}, such thatxi,k = yj,l . Then from Claim 1 it follows thati �= j , while
from Claim 2 it follows thati �= j + 1. On the other hand,ai � xi,k = yj,l � bj , thus
i ∈ {j, j + 1}, a contradiction.

Therefore, we have proved thatd is, indeed, a path froma0 to bn−1. However, the finite
sequence

d′ = 〈yn−1,l | 0 � l � qn−1〉
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is a path fromyn−1,0 = an = a0 (the indices are modulon) to yn−1,qn−1 = bn−1, thus, by
the uniqueness of the path froma0 to bn−1, d = d′. Thus every entryx of d satisfies tha
x � bn−1, in particular,b0 = x0,p0 � bn−1, a contradiction sincen �= 1. �

10. A quasi-identity for Co(T ), for finite and crown-free T

Let (θ) be the following lattice-theoretical quasi-identity:[
a �

(
a′ ∨ b

) ∧ (
a′ ∨ c

)
& b �

(
b′ ∨ a

) ∧ (
b′ ∨ c

)
& c �

(
c′ ∨ a

) ∧ (
c′ ∨ b

)
&

(
a′ ∧ a

) ∨ (
b′ ∧ b

) ∨ (
c′ ∧ c

) ∨ (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c) � a′ ∧ b′ ∧ c′]
⇒ a � a′.

It is inspired by Example 8.2 (see Corollary 10.6). The main result of Section 10
following.

Theorem 10.1. Let (T ,�) be a finite crown-free poset. ThenCo(T ) satisfies(θ).

Let us begin with an arbitrary (not necessarily finite, not necessarily crown-free) pos
(T ,�) and convex subsetsA, B, C, A′, B ′, C′ of T that satisfy the premise of(θ), that is,

A ⊆ A′ ∨ B, A ⊆ A′ ∨ C,

B ⊆ B ′ ∨ A, B ⊆ B ′ ∨ C,

C ⊆ C′ ∨ A, C ⊆ C′ ∨ B,

A ∩ A′ ⊆ B ′ ∩ C′, B ∩ B ′ ⊆ A′ ∩ C′, C ∩ C′ ⊆ A′ ∩ B ′,

A ∩ B ⊆ A′ ∩ B ′, B ∩ C ⊆ B ′ ∩ C′, A ∩ C ⊆ A′ ∩ C′.

We shall putÂ = A \ A′, B̂ = B \ B ′, andĈ = C \ C′. Observe that

Â ∩ (B ∪ C) = B̂ ∩ (A ∪ C) = Ĉ ∩ (A ∪ B) = ∅,

Â ∩ B̂ = Â ∩ Ĉ = B̂ ∩ Ĉ = ∅.

We shall later perform a construction whose key argument is provided by the follo
lemma.

Lemma 10.2. Leta ∈ Â and leta′ ∈ A′ with a � a′. Then there exists〈b, b′〉 ∈ B̂ ×B ′ such
thatb′ � b � a.

Proof. Observe first thata ∈ A ⊆ A′ ∨ B. Sincea /∈ A′ ∪ B, there exists(ā′, b) ∈ A′ × B

such that either̄a′ � a � b or b � a � ā′. In the first case,̄a′ � a � a′, thus, by the
convexity ofA′, a ∈ A′, a contradiction; whenceb � a. If b ∈ B ′, thenb ∈ B ∩B ′ ⊆ A′, but
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b � a � a′, thusa ∈ A′, a contradiction; whenceb ∈ B̂. If there existsx ∈ A with x � b,
then, sinceb � a, we obtain thatb ∈ A∩B ⊆ A′, a contradiction again. Butb ∈ B ⊆ A∨B ′
andb /∈ B ′, thus there existsb′ ∈ B ′ such thatb′ � b. �

In particular, we observe the following corollary.

Corollary 10.3. The setŝA, B̂, andĈ are either simultaneously empty or simultaneou
nonempty.

Proof. If Â is nonempty, we picka ∈ Â. So a ∈ A′ ∨ B while a /∈ A′ ∪ B, thus there
is (a′, b) ∈ A′ × B such that eitherb � a � a′ or a′ � a � b. In the first case, we appl
Lemma 10.2 to deduce that̂B �= ∅. In the second case, we apply the dual of Lemma 1
to reach the same conclusion.�

Now we suppose that̂A is nonempty, and we picka0 ∈ Â. As in the proof of
Corollary 10.3, there existsa′

0 ∈ A′ such that eithera0 � a′
0 or a′

0 � a0; by replacing�
with its dual if needed, we may assume without loss of generality thata0 � a′

0.
By Lemma 10.2, there are〈b0, b

′
0〉 ∈ B̂ × B ′ and 〈c1, c

′
1〉 ∈ Ĉ × C′ such thatb′

0 �
b0 � a0 and c′

1 � c1 � a0. By applying the dual of Lemma 10.2 toc′
1 � c1, we obtain

〈b1, b
′
1〉 ∈ B̂ × B ′ such thatc1 � b1 � b′

1. By applying Lemma 10.2 tob1 � b′
1, we obtain

〈a2, a
′
2〉 ∈ Â × A′ such thata′

2 � a2 � b1. By applying in the same fashion Lemma 10
and its dual, we obtain〈c2, c

′
2〉 ∈ Ĉ × C′, 〈b3, b

′
3〉 ∈ B̂ × B ′, and〈a3, a

′
3〉 ∈ Â × A′ such

thata2 � c2 � c′
2, b′

3 � b3 � c2, andb3 � a3 � a′
3.

Now we observe thatb′
0 � b0 � a0 � a′

0 and b′
3 � b3 � a3 � a′

3, that is, we can
start the process again. Arguing by induction, we obtain elements〈ai, a

′
i〉 ∈ Â × A′ for

i �≡ 1 (mod 3), elements〈bi, b
′
i〉 ∈ B̂ ×B ′ for i �≡ 2 (mod 3), and elements〈ci , c

′
i〉 ∈ Ĉ ×C′

for i �≡ 0 (mod 3) such that the following relations hold, for alli < ω:

b′
3i � b3i � a3i � a′

3i , (10.1)

c′
3i+1 � c3i+1 � b3i+1 � b′

3i+1, (10.2)

a′
3i+2 � a3i+2 � c3i+2 � c′

3i+2. (10.3)

This can be illustrated by Fig. 5.
Now we define subsets ofT as follows:

Fig. 5. A pattern inT .
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Ω+ = {a3i | i < ω} ∪ {b3i+1 | i < ω} ∪ {c3i+2 | i < ω};
Ω− = {a3i+2 | i < ω} ∪ {b3i | i < ω} ∪ {c3i+1 | i < ω};
Ω = Ω+ ∪ Ω−.

SinceÂ, B̂, andĈ are mutually disjoint and their union containsΩ , we can define a ma
χ :Ω → 3 by the rule

χ(x) =
0 (x ∈ Â),

1 (x ∈ B̂),

2 (x ∈ Ĉ),

for all x ∈ Ω.

Lemma 10.4. For all 〈x, y〉 ∈ Ω− × Ω+, χ(x) = χ(y) implies thatx � y. In particular,
Ω− ∩ Ω+ = ∅.

Proof. We need to prove that for all natural numbersi andj , the following inequalities
hold:

• a3i+2 � a3j . Otherwise, by (10.1) and (10.3),a′
3i+2 � a3i+2 � a′

3j , thusa3i+2 ∈ A′,
a contradiction.

• b3i � b3j+1. Otherwise, by (10.1) and (10.2),b′
3i � b3i � b′

3j+1, thus b3i ∈ B ′,
a contradiction.

• c3i+1 � c3j+2. Otherwise, by (10.2) and (10.3),c′
3i+1 � c3i+1 � c′

3j+2, thusc3i+1 ∈
C′, a contradiction.

This concludes the proof.�
For an integerm � 2, we define am-pre-crownto be a finite sequence〈〈xi, yi〉 | i ∈

Z/mZ〉 of elements ofΩ−×Ω+ such that the following conditions hold, for alli ∈ Z/mZ:

(C1) xi, xi+1 � yi ;
(C2) χ(xi) �= χ(xi+1) andχ(yi) �= χ(yi+1) if i �= m − 1.

If m = 2, then, by (C1),x0, x1 � y0, y1. Furthermore, by (C2),χ(x0) �= χ(x1),
thus it follows fromx0, x1 � y0 and Lemma 10.4 thatχ(y0) is the unique element o
3 \ {χ(x0),χ(x1)}. The same holds forχ(y1), whenceχ(y0) = χ(y1), which contradicts
(C2). Therefore, if there exists am-pre-crown, thenm � 3.

We can now prove the main lemma of this section.

Lemma 10.5. Suppose thatT is crown-free. Then there are no pre-crowns inT .

Proof. Otherwise, letm be the least positive integer such that there exists am-pre-crown,
and letc = 〈〈xi, yi〉 | i ∈ Z/mZ〉 be such a pre-crown. As observed before,m � 3. By
assumption onT , in order to get a contradiction, it suffices to prove thatc is a crown ofT .
By (C1) and Lemma 9.3, it suffices to prove that for alli, j ∈ Z/mZ such thati /∈ {j, j +1},
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Fig. 6. Shorter pre-crowns.

the inequalityxi � yj does not hold. Suppose otherwise; by Lemma 10.4,xi � yj . Two
cases can occur.

Case 1. i < j . Then the finite sequence〈〈xi, yi〉, 〈xi+1, yi+1〉, . . . , 〈xj , yj 〉
〉

is a (j − i + 1)-pre-crown (see Fig. 6(i)), with 1� j − i � m − 1. By the minimality
assumption onm, this cannot happen unlessi = 0 andj = m − 1, in which casei = j + 1
(modulom as usual), a contradiction.

Case 2. j < i. Then the finite sequence〈〈xi, yi−1〉, . . . , 〈xj+2, yj+1〉, 〈xj+1, yj 〉
〉

is a (i − j)-pre-crown (see Fig. 6(ii)), with 2� i − j < m, which contradicts again th
minimality of m.

Hencec is am-crown ofT , a contradiction. �
Now we have all the necessary tools to conclude the proof of Theorem 10.1.

Proof of Theorem 10.1. Suppose thatT is finite and crown-free. There arei < j such
thatb3i = b3j . Then the finite sequence〈〈b3i , a3i〉, 〈c3i+1, b3i+1〉, . . . , 〈a3j−1, c3j−1〉

〉
is a(3j − 3i)-pre-crown inT (see Fig. 7), a contradiction.

Hence we have proved that̂A = ∅, that is,A ⊆ A′. Therefore,Co(T ) satisfies(θ). �

Fig. 7. A pre-crown inT .
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Corollary 10.6. Let Q be the finite poset andL the finite lattice of Example8.2. Then,
althoughL embeds intoCo(Q), there is no finite, tree-like posetR such thatL embeds
into Co(R).

Proof. It follows from Proposition 9.5 thatR is crown-free, thus, by Theorem 10.1,Co(R)

satisfies(θ). On the other hand, the latticeL of Example 8.2 does not satisfy(θ) (consider
the atomsA, B, C, A′, B ′, C′ of L), therefore it cannot be embedded intoCo(R). �

On the other hand, it follows from Theorem 7.7(iii) that if a finite latticeL without
D-cycle embeds into someCo(P ), then it embeds intoCo(R) for some finite, tree-like
posetR. In the presence ofD-cycles anything can happen, for example, takeL = Co(4),
the lattice of all order-convex subsets of a four-element chain; it embeds intoCo(4) for the
finite, tree-like poset4, however it hasD-cycles.

11. Finite generation and word problem in SUB

For a lattice terms(x1, . . . , xn), a posetP , and convex subsetsX1, . . . , Xn of P , we
denote bysP (X1, . . . ,Xn) the evaluation of the terms(x1, . . . , xn) at 〈X1, . . . ,Xn〉 in the
latticeCo(P ).

The present section rests on the following lemma. Its proof is an easy indu
argument on the length ofs, that we leave to the reader.

Lemma 11.1. Let n be a positive integer, lets(x1, . . . , xn) be a lattice term, and le
X1, . . . ,Xn be convex subsets of a posetP . ThensP (X1, . . . ,Xn) is the directed union
of all subsets of the formsQ(X1 ∩ Q, . . . ,Xn ∩ Q), for Q ⊆ P finite.

As immediate corollaries, we get the following:

Corollary 11.2. Let P be a poset. Any lattice-theoretical identity valid in allCo(Q), for
Q a finite subset ofP , is also valid inCo(P ).

Corollary 11.3. A lattice-theoretical identity is valid inSUB iff it holds inCo(P ) for every
finite posetP .

Consequently, the varietySUB is generated by its finite members. By using the res
of J.C.C. McKinsey [14], we obtain the following consequence.

Corollary 11.4. The word problem in the varietySUB is decidable.

This means that it is decidable whether a given lattice identitys(x1, . . . , xm) =
t(x1, . . . , xm) holds in all lattices of the formCo(P ). A closer look at the proof o
Lemma 11.1 shows that it is sufficient to verify whether the given identity holds i
Co(P ) for |P | � n, wheren is the supremum of the lengths of the termss andt.



M. Semenova, F. Wehrung / Journal of Algebra 277 (2004) 825–860 859

see
e

nerate

orm

?

at

the

tics of
nding

t and
s were
12. Open problems

We know that the classSUB is generated, as a variety, by its finite members (
Corollary 11.3). We also know that any finite lattice inSUB can be embedded into som
finite Co(P ) (see Theorem 6.7). Nevertheless we do not know whether the latter ge
the wholequasivariety.

Problem 1. Is the classSUB generated, as a quasivariety, by its finite members?

Equivalently, does there exist a lattice quasi-identity that holds in all finiteCo(P )-s but
not in all Co(P )-s?

Problem 2. Is the universal theory of all lattices of the formCo(P ) decidable?

A positive answer to Problem 1 would yield a positive answer to Problem 2.

Problem 3. Is the classC of all lattices that can be embedded into a product of the f∏
i∈I Co(Ci), where theCi arechains, a variety?

Problem 3 is solved by the authors in [16].

Problem 4. Can the embedding problem of a lattice inSUB into someCo(P ) be solved
by afunctor(that, say, sends anyL to someCo(P ))? Can such a functor be idempotent

Our next problem has a more computational nature.

Problem 5. For each positive integern, denote byξ(n) the least positive integer such th
every finite latticeL in SUB with n join-irreducible elements embeds into someCo(P ),
where|P | � ξ(n). Computeξ(n), for all n > 0. Doesξ(n) = O(n) asn goes to infinity?

For a sublatticeK of a finite latticeL, the inequality|J(K)| � |J(L)| holds, see
[1, Lemma 2]. In particular, if a finite latticeL embeds intoCo(P ) for some finite posetP ,
then |J(L)| � |P |. By combining this with the result of Theorem 6.7, we obtain
inequalities

n � ξ(n) � 2n2 − 5n + 4.
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