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Abstract 

A. Huhn proved that the dimension of Euclidean spaces can be characterized through al- 
gebraic properties of the lattices of convex sets. In fact, the lattice of convex sets of IEn is 
n + l-distributive but not n-distributive . In this paper his result is generalized for a class of alge- 
braic lattices generated by their completely join-irreducible elements. The lattice theoretic form of 
CarathCodory's theorem characterizes n-distributivity in such lattices. Several consequences of this 
result are studies. First, it is shown how infinite n-distributivity and CarathCodory's theorem are 
related. Then the main result is applied to prove that for a large class of lattices being n-distributive 
means being in a variety generated by the finite n-distributive lattices. Finally, n-distributivity is 
studied for various classes of lattices, with particular attention being paid to convexity lattices of 
Birkhoff and Bennett for which a Helly type result is also proved. 

1 Introduction 

I t  was discovered recently that  the dimension of Euclidean spaces (more generally, of vector spaces 
over ordered division rings) has a lattice theoretic characterization. There were two approaches t o  
the problem, both getting dimension as an algebraic property of lattices of convex sets. A. Hunh [ll] 
studied the lattice of convex sets of n-dimensional Euclidean space IEn. He observed that  dimension 
can be characterized via n-distributivity. A lattice L is called n-distributive [lo] if, for any x,  yo,. . . , yn, 
the following equation holds: 

Huhn proved that  the lattice of convex sets of En, denoted by C o ( E n ) ,  is n + l-distributive but is 
not n-distributive. The main tool t o  prove this result was Carathbodory's theorem saying that  in En, 
if a point is in the convex hull of m > n + 1 points, then i t  is in the convex hull of at most n + 1 
of those points [25]. Moreover, i t  was shown that the dual of C o ( E n )  is n + l-distributive but is not 
n-distributive. This fact was derived from Helly's theorem saying that  in IEn, a finite family of convex 
sets has a nonempty intersection whenever any n + 1 sets have a non-empty intersection [25]. 



In [4] Birkhoff and Bennett introduced convexity lattices which arise naturally when one studies a 
ternary relation of betweenness ,O, (xyz),O meaning y lies between x and z, and the lattice of convex 
sets with respect to  this relation. A set X is called convex if x , z  E X and (xyz)P imply y E X. 
Several restrictions reminiscent of Hilbert's connection and order axioms were imposed. The modular 
core of a convexity lattice was interpreted as the lattice of affine flats which was shown to be a 
geometric lattice under certain conditions. Its height (to be more precise, height minus one) was 
interpreted as the dimension. Of course, if /3 is the usual betweenness in En, such defined dimension 
of Co(IEn) is n. It was proved in [4] that lattice theoretic versions of theorems of Radon, Helly and 
Carathbodory determine the dimension. 

The two approaches are not unrelated at all. In fact, one can easily rewrite the proof of [ll] to 
show that if Carathbodory's theorem of dimension n holds in a convexity lattice (which means its 
dimension defined as the height of the modular core is n [4]) then this convexity lattice is indeed 
n + l-distributive but not n-distributive. However, being isomorphic to Co(lEn) or even being a con- 
vexity lattice is too much of an assumption to prove that Carathdodory's theorem and n-distributivity 
are related. Convexity lattices (of which Co(IEn) is an example) enjoy some nice algebraic properties. 
In particular, they are algebraic atomistic lattices. We will show that being algebraic and atomistic 
is enough to  prove the intimate connection between n-distributivity and the lattice-theoretic version 
of Carathbodory's theorem. In fact, even this is too strong: all that is needed is algebraicity and the 
assumption that every element of a lattice is the join of completely join-irreducible elements below it. 

n-distributivity can be viewed as a notion weaker than distributivity: D, implies D m  if n < m and 
D l  is the usual distributivity. It is well-known that algebraic distributive lattices satisfy the law of 
infinite join-distributivity: x h ViEl yi = ViE1(x A y;) [12]. Coniplete lattices satisfying this law are 
called frames. They may arise as lattices of open sets of topological spaces. It was shown in [13] that 
the ideal completion is left adjoint to the forgetful functor from the category of frames to the category 
of distributive lattices. Furthermore, a certain subcategory of the category frames which corresponds 
to  so-called coherent spaces turns out to be equivalent to the category of distributive lattices. We 
shall use the main characterization theorem to extend these results to n-distributivity. Every algebraic 
n-distributive lattice satisfies the infinite n-distributive law: 

It will be shown that the ideal completion is left adjoint to the forgetful functor from ID, to D, 
considered as categories. To find an analog of the second fact mentioned above, we consider convexities 
rather than topologies. There is a notion of an (abstract) convexity [28, 30, 81 and the abstract (or 
axiomatic) theory of convex spaces is well-developed. 111 this paper we define what it means for an 
abstract convexity to be n-dimensional. Having defined it, we show that n-dimensional convexities can 
be given the structure of a category which is equivalent to a certain full subcategory of the category 
of n + l-distributive lattices. 

So much for categories, let's turn to  varieties. Let A, be the variety of n-distributive lattices and A: 
the minimal variety that contains all finite n-distributive lattices, i.e. HSP(A, n 3 )  where 3 is the 
class of finite lattices. It was proved in [ll] that Co(IEn) is in A: and that M n A, = M n A: where 



M is the variety of modular lattices. In this paper we generalize these results in two ways using our 
main characterization of n-distributivity . First, any algebraic lattice in which every element is the 
join of completely join-irreducible elements is in A, iff it is in A:, hence the first result. Furthermore, 
if a variety V is such that any lattice L E V can be embedded into L' E V such that L' is algebraic, 
every element of L' is the join of completely join-irreducible elements and the embedding preserves 
identities, then V n A, = V n A:. Since M is such, we obtain the second result. 

Our characterization of n-distributivity via the Carathkodory condition can be applied to  obtain nice 
characterizations of n-distributivity in several classes of lattices. For example, in geometric lattices 
n-distributivity is related to  the sizes of circuits of underlying matroids. As a by-product of our study 
of n-distributivity in planar lattices we show that any lattice of the order-theoretic dimension n is 
n-distributive. 

Having forgotten about convexity lattices for a while, we return to them in the last section. It is 
shown that a convexity lattice of dimension n is what we call "an abstract convexity of dimension n7' 
which is defined in terms of n-distributivity when we establish the equivalence of categories. Then we 
use Helly's theorem for convexity lattices to show that their dimensions can be defined via the dual 
n-distributivity as well. 

In the rest of this section we give all necessary definition (of course, familiarity with the basic concepts 
of lattice theory is assumed. We follow the terminology of [12]). The rest of the paper is organized in 
five sections. In Section 2 we prove the main theorem stating that an algebraic lattice in which every 
element is the join of completely join-irreducible elements is n-distributive iff Caratht5odory's theorem 
of dimension n - 1 holds. Using this result, we prove a characterization theorem for the infinite 
n-distributivity and establish the equivalence of categories of what we call convexities of dimension 
n-  1 and certain n-distributive lattices. In Section 3 the results about varieties A, and A: are proved. 
In Section 4 we consider examples. Section 5 deals with convexity lattices. Concluding remarks are 
given in Section 6. 

Let L be a complete lattice. An element x of L is called completely join-irreducible if x = V X implies 
x E X. The set of all con~pletely join-irreducible elements is denoted by CJ(L).  A complete lattice L 
is called CJ-generatedif x = VCJ(x )  where CJ (x )  = (x]nCJ(L)  (they were called Vl-lattices in [27]). 
An element x is called complete prime if x 5 V X implies x 5 x' for some x' in X and n-complete 
prime if there are n elements 21,. . . , x, E X such that x 5 X I  V . . . x,. The set of n-complete primes 
is denoted by CP,(L). 

A complete lattice is called atomistic if every element in it is the join of atoms. Atomistic lattices 
are obviously CJ-generated. The lattice Co(lEn-I) is atomistic and Carathkodory's theorem has 
the following lattice theoretic formulation: Given atoms a,  bl, . . . , b, E Co(l~"- l  ) such that a 5 
bl V . . . V b, and m > n, there exist n indices i l , .  . . , in in (1,. . . , m} such that a 5 b;, V . . . b;,. We 
use n - l-dimesnional space here because the least k such that the lattice of convex sets becomes 
k-distributive is the dimension plus one. 

Motivated by this, we give the following definition. A CJ-generated lattice L is said to satisfy the 
Carathkodory condition of dimension n - 1, or (cc,) for short, if the following holds: 



If a,  bl, . . . , b ,  E CJ(L),  a 5 bl V . . . V b, and m > n, then there exist n indices i l , .  . . , i n  in 
{ I , .  . . , m} such that a 5 b;, v . . . V bin 

The Carathhodory rank of a lattice is the minimal n such that (cc,) holds. If no such n exists, the 
rank is oo. Similarly, the Huhn rank of a lattice is the minimal n such that the lattice is n-distributive. 
If no such n exists, the rank is oo. Both Carathhodory and Huhn ranks of CO(IE~-') are n. 

2 n-distributivity and the Carat hhodory condition 

In this section we prove our main result stating that for algebraic CJ-lattices the Carathkodory rank 
equals the Huhn rank. We also study infinite n-distributivity in such lattices and discover an equiva- 
lence between a subcategory of n + l-distributive lattices and the category of what we call convexities 
of dimension n. Finally, it is shown how n-distributivity and closure ranks [21] are related. 

Theorem 2.1 Given an algebraic CJ-generated lattice L, the following are equivalent: 
1) L is n-distributive; 
2) L is infinitely n-distributive; 
3) (cc,) holds in L; 
4) CJ(L) C CPn(L). 

Proof: The most important part of the proof is the equivalence 1) u 3). Any infinitely n-distributive 
lattice is always n-distributive (just take I that consists of n + 1 elements), so to  prove 1) u 2) it is 
enough to  show that an algebraic n-distributive lattice is infinitely n-distributive. Clearly, 4) implies 
3) and only 3) + 4) needs to  be shown to prove the remaining equivalence 3) u 4). 

1) + 3). Assume that L is n-distributive but (cc,) does not hold. That means, there exist a ,  bl, . . . , b, 
in CJ (L)  such that a 5 bl V . . . b, but a $ b;, V . . . V bin for every sequence of n indices i l ,  . . . , in  E 
(1,. .. ,m}. Then there exists a number p such that n 2 p < m and a $ b;, V . . . V bip for every 
sequence of p indices i l ,  . . . , ip E (1,. . . , m} and p is maximal such. That means, a 5 b;, V . . . V hip+, 
for some choice of p + 1 indices. Since n 2 p, L is p-distributive. Therefore, 

Since a is join-irreducible, a = a A VIZj b;, for some j, i.e. a 5 VIZj bi, which means a is under the join 
of p elements from {bl, . . . , b,}, a contradiction. This contradiction shows that (cc,) holds. 

3) + 1). Let L be an algebraic CJ-generated lattice satisfying (cc,). We must prove that L is 
n-distributive. The > inequality always holds for the left and right hand sides of D,. Since L 
is CJ-generated, it is therefore enough to  prove that for any a E CJ(L),  a 5 x A Vy=o yi implies 
a 5 Vy=o(x A Vj+; yj). Let Y = CJ(yo)  U . . . U CJ(yn) .  Then a I: V:=, y; = V Y. Since a is compact, 
there is a finite subset 120,. . . , zp} of Y such that a 5 zo V . . . V zp. If p 2 n, by (cc,) there exist n 



indices il, . . . , i n  such that a 5 zi, V . . . V zi, since a and all 2;'s are in CJ(L).  Therefore, we may 
assume without loss of generality that p < n. Then each zr is under some y;, and a is below the join 
of at  most n yj's. Hence, a 5 x A Vj+; yj for some i and we are done. 3) + 1) is proved. 

Every algebraic n-distributive lattice L is infinitely n-distributive. Again, the left hand side of ID, 
is always greater than the right hand side. To prove our claim we must show that any compact 
a < x A ViEI yi is also below 

V ( X A  V Y ~ )  
h'cI,lh'l=n j E K  

Since a is compact and a < ViEI yi, a 5 yil V . . . V yip for finitely many il ,  . . . , ip E I. If p 5 n, we are 
done. If p > n, then L is p-distributive and 

If p-  1 = n, we are done; if p -  1 > n, then L is p - 1-distributive and we can apply p-  1-distributivity 
to every disjunct of the right hand side thus reducing the size of the inner disjunctions by one. We 
repeat this procedure until the sizes become n. Therefore, 

This finishes the proof of infinite n-distributivity of L. 

3) + 4). Let (cc,) hold and a E CJ(L).  We must show that a E CP,(L), i.e. if a < V X ,  there 
exist 21,. . . ,x, in X such that a I X I  V . . . V 2%. Let X' = UZEX CJ(x).  Then a < VX'  = V X  and 
by compactness a < xi V . . . V xk where x i , .  . . , xh E X'. By (cc,) we can assume p < n. Since any 
element in X' is below an element in X, a is below a join of at most n elements of X ,  i.e. a E CP,(L). 
This finishes the proof of 3) + 4) and the theorem. 

Corollary 2.2 For any algebraic CJ-generated lattice, its CarathCodory and Huhn ranks coincide. 

Our next goal is to characterize infinite n-distributivity in CJ-generated lattices via the CarathQodory 
condition. 

Corollary 2.3 A CJ-generated lattice is infinitely n-distributive ijJ it is algebraic and (cc,) holds. 

Proof: If L is CJ-generated, algebraic and (cc,) holds, then L is infinitely n-distributiveby theorem 2.1. 
Conversely, let L be infinitely n-distributive CJ-generated lattice. It is enough to  show that L is 
algebraic. Then the result will follow from theorem 2.1. Let (L E CJ(L).  Prove that a is compact. 
Let a 5 V X .  Without loss of generality, X does not contain elements which are below a. Since L is 
infinitely n-distributive, 

a = a ~ V x  = V ( U A ~ X ~ )  
Xf CX,Vifl=n 



Since a is in C J ( L ) ,  there exists X j  X such that 1 Xf I= n and a = a A V X j ,  i.e. a 5 X j .  Thus, a 
is compact and L is algebraic. Corollary is proved. 

Corollary 2.3 shows that algebraicity can not be dropped if we want t o  prove that 2) and 3 )  of 
theorem 2.1 are equivalent. However, the question whether algebraicity is needed is justified is we are 
concerned with the equivalence of n-distributivity and (cc,). It was proved in [ll] that the lattice of 
closed convex sets of IEn is n + 1-distributive. The Carat h6odory condition of dimension n (i .e. (cc,+,)) 
is true in that lattice but algebraicity fails. Huhn's proof is very geometric and required a lot of 
calculations and it  is unclear to  which extent it can be generalized. But we can show that Huhn's 
result follows from theorem 2.1 and the following simple lemma: 

Lemma 2.4 Let L be an algebraic lattice and L' its sublattice containing all compact element. Then 
a lattice identity E holds in L i .  it holds in L'. 

Proof: Let E hold in L'. Then E holds when all its arguments are compact elements and therefore E 

holds in L according to  [2411. 

Observing that if L is CJ-generated then (cc,) is true in L if and only if i t  is true in L' and that 
algebraicity was not used to  prove 1 )  $ 3) of theorem 2.1, we obtain the following corollary from 
which the result of Huhn mentioned above follows immediately: 

Corollary 2.5 Let L be an algebraic CJ-generated lattice and L' its sublattice. If L' contains all 
compact elements, then it is n-distributive iff  (cc,) holds. 

In [23] Nation gives a characterization of n-distributivity which has the same flavor as theorem 2.1. 
It is shown that a variety V lies in A, if and only if for any L E V the following condition a, holds: 
if x E J ( L )  and x 5 VX, I X I <  oo, then x is below a join of a t  most n elements of X. Notice that 
it is not required that the elements of X be join-irreducible. He also observed that for finite lattices 
n-distributivity is equivalent to  a,. It is routine to  rework the proof to  show that the equivalence 
holds not only for finite lattices but also for lattices generated by their join-irreducible elements. a, 
can also be used to  characterize n-distributivity in arbitrary lattices as follows: 

Proposition 2.6 A lattice L is n-distributive iff the dual of the ideal completion of its dual, Idl(L*)*, 
satisfies a,. 

Proof: If L is n-distributive then so is IdE(L*)* and a, is verified as in the proof of theorem 2.1. 
Conversely, assume that Idl(L*)* = F ( L ) *  satisfies a, but L is not n-distributive. Then a = x A 

' I t  may be interesting to note that before I saw Palfy's paper (which is about modular subalgebra lattices), I suggested 
lemma 2.4 as an exercise for the chapter on Scott domains in Carl Gunter's book on programming semantics (The MIT 
Press, 1992). However, the proof that I had in mind was different from that in [24]. Suppose c holds in L'; then i t  holds 
in the ideal generated by L' since the latter is union of the ideal completions of principal ideals ( X I ,  x E L'. Therefore, 6 
holds in 2, the ideal generated by compact elements. The whole lat,t,ice L can be reconstructed as a lattice of ideals of 
Z which are closed under arbitrary joins and a standard argument shows that such completion preserves identities. 



Vy=o yi > Vr=o(x A Vtfi F) = b for some x, yo,. . . , y,. If f is a maximal filter satisfying [a)  f,  [b) & 
f ,  then f is meet-irreducible in F(L)  and join-irreducible in Idl(L*)*. The number of filters in the 
right hand side of f 2 [yo) A . . . A [y,) can not be reduced for otherwise we would have [b) f .  This 
demonstrates a failure of a, in Idl(L*)*. 

We will use D, and ID, to  denote the categories of n-distributive and infinitely n-distributive lattices. 
Infinite n-distributivity requires completeness as the infinite join operation is used in equation ID,. 
We define morphisms in ID, as lattice homomorphisms preserving infinite joins as well; the morphisms 
in D, are just lattice homomorphisms. It was already stated that any infinitely n-distributive lattice 
is n-distributive. 

Corollary 2.7 The ideal completion is left adjoint to the forgetful functor from ID, to D,. 

Proof: Given L E D,, its ideal completion is n-distributive (since the ideal completion preserves 
identities) and algebraic; hence it is infinitely n-distributive by theorem 2.1. Given a homomorphism 
f : L1 -t L2, we define Idl(f)  : Idl(L1) + Idl(L2) by making Idl(f)(Z) to  be the minimal ideal of 
L2 that contains f(Z). To show that the functor Id1 is left adjoint to  the forgetful functor, we have 
to  establish a 1-1 correspondence between the sets of morphisms between Idl(L) and L' in ID, and 
L and L' in D,. Given f : L -t L' in Dn ,  define g = $(f) by g(Z) = VzEZ f(x).  Conversely, given 
g : Idl(L) + L' in D,, define f = 4(g) by f (x) = g((x]). Clearly, f = $(g) is a homomorphism if g is 
a morphism in ID, and g = $(f) preserves arbitrary joins if f is a morphism in D,. To show that g 
is a meet-homomorphism, we must show g(Zl n Z2) = g(Zl) g(T2). Calculate the right hand side by 
applying the law of infinite n-distributivity twice: 

which shows g(Zl) A g(Z2) 5 g(Zl n 1,). The reverse inequality is obvious. This shows that g is a 
morphism. It is straightforward to  check that $I a,nd $I are mutually inverse and establish an adjunction. 

Given a CJ-generated lattice L, define CL : 2CJ(L)  4 2CJ(L)  by CL(Y) = C J(V Y). Clearly, CL is a 
closure operator and L is isomorphic to the lattice of its closed sets. A closure operator C on a set X 
is said to  be of rank n if C(Y) = Y whenever C(Y1)  C Y for any Y' Y such that ( Y ' ( 5  n [21]. 



Corollary 2.8 If L is an algebraic CJ-generated n-distributive lattice, then CL is of rank n. 

Proof: Let Y C CJ(L)  and CL(Y1) C Y for any n-element Y' Y. Let a E C(X).  Then a 5 V X  
and by compactness a 5 V X '  where X' c X is finite. Since L is n-distributive, (cc,) holds and X' 
can be chosen to  contain fewer than n elements. Then a E CL(X1) C_ X ,  i.e. C (X)  = X. 

Algebraic distributive lattices in which the dual infinite distributive law holds are generated by their 
complete prime elements [22]. This result can be generalized to  algebraic distributive lattices in which 
the dual of ID, holds. By the dual of ID, we mean 

Corollary 2.9 Any distributive algebraic lattice L satisfying ID: is generated by its completely join- 
irreducible n-complete primes, i.e. x = V(CJ(L) n CP,(L) n (XI) for every x € L. 

Proof: Let x E L and y = V(CJ(L) fl CPn(L) n (x]). Since the bottom element of L is in CJ(L)  n 
CP,(L) fl ( X I ,  y 5 x. If y = x, we are done. Assume y < x. Since L is algebraic, there is a compact 
element a j x such that a $ y. L - [a) is closed under least upper bounds of directed sets. Hence, 
every element in L - [a) is bounded above bv a maximal element not under a. Let z be a element in 
L - [a) which is above y. Define q as A(L - (z]). Since a $ z, q 5 a 5 x. Assume q 5 y. Then q 5 z, 
i.e. A(L - (z]) 5 z. By ID+,, 

For every n-element Z L - (z] we have z 5 z V A Z ;  if the inequality is strict, then z V A Z > a. 
Since z $ a ,  there exists an n element Z such that the inequality is not strict, i.e. z 2 A Z .  Let 
Z = {zl,. .. ,z,). By distributivity, z = z V (zl A . . . A z,) = (z V zl) A . . . A (z V z,). Since z is 
maximal, z V z; 2 a for all i and z > a ,  a contradiction. Therefore, q -$ z and q $ y. Let q 5 V X .  
Since q $ z, there exists x' E X which is not under z.  Then q = l\(L - (z]) 5 A(X - (z]) 5 x'. 
Hence q E CPl(L)  c CP,(L). If q = V X ,  then again V X  = q 5 x ' s  VX,i .e .  q = x'which proves 
q E CJ (L)  fl CP,(L) n ( X I ,  but q $ y, a contradiction. This contradiction finishes the proof. 

One may observe that in the proof, having assumed y 5 x we demonstrated an element of CPl(L)  n 
CJ(L)  which is below x but not below y. This is apparently more than one would need for the proof so 
one may wonder whether distributivity is too strong and a similar result can be proved under weaker 
assumptions. This question remains open. 

In the rest of the section we turn to the abstract theory of convexity. We augment the standard 
definition of a convexity by an additional clause saying that intersection of two polytopes is a polytope 
again (which is true of families of convex sets in vector spaces over order division rings) and then define 
n-dimensional abstract convexities via the Carathbodory condition. Such convexities form a category 
which is shown to  be equivalent t o  a full subcategory of Dntl .  



Definition Given a set X ,  a convexity on 3' is a family C of subsets of X (which are called convex) 
such that 

0, X E C (empty set and X are convex); 

C is closed under arbitrary intersections; 

The union of a directed family of sets of C is in C; 

{x) is in C for every x E X (every singleton is convex). 

This is the standard definition to which we add one more condition. Given Y X ,  its convex hull Hc 
is defined as the intersection of all Y' E C that conta,in Y. 

If Yl and Y2 are finite subsets of X,  then there exist a finite set Y such that Hc(Yl) n Hc(Y2) = 
Hc(Y) (intersection of two polytopes is a polytope a.ga.in). 

The usual convexity in IEn is the most famous example. For more examples see [28, 301 and Section 
5. 

We say that a convexity C has dimension n if it satisfies the Carathhodory condition of dimension n 
(which is actually (CC,+~)): If x E Hc(Y) where I Y I> n + 1,  then there is an n + 1-element subset Y' 
of Y such that x E Hc(Y1) and n is the minimal number with this property. 

The following belongs t o  folklore: 

Lemma 2.10 Given a convexity C, its convex sets form a lattice L(C) which is atomistic and algebraic. 
Moreover, compact elements of L(C) (which are joins of finitely many atoms) form a sublattice of L(C). 
L(C) is isomorphic to the lattice of closed sets of Hc, closures of finitely many atoms being compact 
elements. 

The class of all convexities can be given the structure of a category by defining morphisms as follows: 
Given two convexities (XI,  C1) and (X2 ,  C2), a morphism f : (XI, Cl) -+ (X2, C2) is a mapping that 
maps convex sets t o  convex sets, preserves arbitrary intersections and directed unions and maps 
polytopes to  polytopes. The category of convexities of dimension n is denoted by Conv,. 

Let AD,+1 be the full subcategory of Dn+l that consists of atomistic lattices in which every element 
is a finite join of atoms and neither of which satisfies D,. The following result is reminiscent of the 
equivalence of the categories of distributive lattices and coherent spaces and coherent maps [13]. 

Propos i t ion  2.11 The categories Conv, and ADntl are equivalent. 



Proof: Given a convexity (X,C) in Conv,, let @((X,C)) be the lattice K(C) of compact elements 
of L(C). Since L(C) is algebraic and atomistic and (CC),+~ holds, L(C) is n + 1-distributive by theo- 
rem 2.1. Ir'(C) is n + 1-distributive as a sublattice of L(C). It is in because its elements are 
finite joins of atoms of L(C). 

Given a lattice L in AD,+l, define a convexity (X,C) = Q(L) as follows. X is the set of atoms of L 
and Y X is convex if and only if any atom of L which is below V Y' is in Y whenever Y' is a finite 
subset of Y. 

Both @ and !4 can be easily defined for morphisms. Given f : (X1,C1) -+ (X2,C2), define g = @(f) : 
@((Xl,C1)) -+ cP((X2,C2)) in as follows. Let x E @((X1,C1)), i.e. x is a compact element 
of L(C). Then x is a join of atoms, say, x = a1 V  . . . V a,, where a l , .  . . , an  correspond to elements 
X I ,  . . . , x, E X I .  Let X; be f (XI) U . . . U f (x,). Then g(x) is the join of all atoms of @((X2, C2)) 
corresponding to  elements of Xi .  Conversely, given a morphism g : L1 + L2 in define 
f = !4(g) : Q(L1) + Q(L2) by f (Y)  = H Q ( L 2 ) ( U y E y  g({y)) where Y is a subset of the set of atoms of 
Q(L1). 

It is routine to verify that and are functors which establish an equivalence between the two 
categories. 

3 Varieties A, and A: 

In this section we use theorem 2.1 to prove a result which shows that alarge class of n-distributive lattices 
lies in the variety A: generated by the finite n-distributive lattices. In fact, all lattices for which the 
equivalence between n-distributivity a.nd the Carathbodory condition was proved in theorem 2.1 are 
such. Consequently, we show that two results of this kind proved in [ll] are easy corollaries of our 
theorem. 

Theorem 3.1 Let L be an n-distributive CJ-generated algebraic lattice. Then L is in A:. 

Proof: The proof is based on the idea of [Il l .  Let M be a finite subset of CJ(L).  Let LM be the set of 
all finite joins of elements of M (including the bottom element 0 of L). Then (LM, 5 )  is a finite lattice 
but not necessarily a sublattice of L. We denote the join and the meet operations of LM by vM and 

respectively. Clearly, x vM y = x V  y and V M' V hf" = V{x E M I 3m' E M', m" E M u  : x 5 
m', x 5 mu), V 0 being 0, for any MI7 A['' c M. Given x E L, define X M  as V{y I y 5 x, y E LM). 

Let t = t(xl, . .. , x,) be a term. By t M ( x y 7 . .  . , x r )  we mean the term that is obtained from t by 
substitution of x y  for x; and changing V to  vM and A to A ~ .  Let M be the family of all finite 
subsets of C J ( L ) .  Our goal is to prove 

M  M t(x1,. . .,x,) = V t (xl , . . . ,x?) 
MEM 



We prove (1) by induction on the number of operations in t .  If t is just a variable, x = V M E M  xM fol- 
lows from the fact that L is CJ-generated. Notice that xM 5 xMt if M M'; hence t M ( x y ,  . . . , sy) 5 
tMt(xy ' ,  . . . ,xF1) .  

Let t(xl, . . . , a,) = tl(xl, . . . , x,) v t l (xl , .  . . , x,). Then 

MEM 

The last equation follows from the induction hypothesis. 

Let t(xl ,  . . . , x,) = tl(xl, . . . , x,) A t l (z l , .  . . , x,). By induction hypothesis, 

Now we must show the equality 

M M  since the left hand side of (2) is VMEM t (x, , . . . , xf) .  First, the 5 inequality clearly holds. To 
prove the reverse inequality, let z be a completely join-irreducible element which is below the right 
hand side. By compactness, there are finitely many sets M1, . . . , MI, E M such that 

M M  Let M = M1 U .. .U Mk u { z )  E M.  hen t Y ( x y , .  . . , x F )  5 t, (x, ,. . . , x f ) ,  1 = 1,2. Therefore, 
z 5 t y ( x p , .  . . , x r )  for 1 = 1,2  and since z E M, 

which finishes the proof of (2). Thus, (1) is proved. 

Since L is n-distributive, (cc,) holds in L. Then, from the definition of LM it immediately follows 
that (cc,) holds in LM for any M E M. Since LM is finite, it is n-distributive by theorem 2.1. 

Now, let tl = t2 be an n-ary lattice equation that holds in all finite n-distributive lattices. Then 
tl = t2 holds in all lattices LM. Then, since t M ( x y ,  . . . , x:) E LM for any M E M and tl = t2 holds 



in all lattices LM, 

which proves that L E A:. 

From theorem 3.1 we immediately conclude 

Corollary 3.2 [Il l2 C o ( E n + ' )  E A:. 

Notice that only once in the proof of theorem 3.1 did we refer to  n-distributivity. It was needed to  
show that all lattices L M  are n-distributive which in turn was possible because the characterization 
of n-distributivity restricted to  finite lattices does not make use of the A operation. Therefore, theo- 
rem 3.1 admits the following generalization. Let P be a universally quantified first-order sentence in 
the language that contains 5 ,  V and a unary predicate J ( . ) .  We write L + P if P is true in L when 
5 ,  V and J have obvious interpretations. Let PC be obtained from P by replacing J ( - )  by C J ( - ) ,  the 
meaning of C J ( . )  being "completely join-irreducible". Now, assume that a variety V  can be described 
by the following condition: a variety V' lies in V  iff V' /= P and all finite models of P are in V. (It 
follows from [23, theorem 3.11 that A, is such; in fact, [23] has more examples). Given an algebraic 
CJ-generated lattice L which satisfies PC, all the lattices LM are models of P since P does not make 
use of the meet operation; therefore, they are in V.  Then it follows from the proof of theorem 3.1 
that L E Vfin = HSP(finite lattices of V ) .  If L E V  a,nd L Ifi PC, let M be a finite set of elements 
that witness the failure of PC. Then completely join-irreducible elements from M are join-irreducible 
in [MI ,  the sublattice generated by M ,  and [MI Ifi P, i.e. [MI !j! V ,  a contradiction. Thus, L PC. 
Slightly modifying the argument above, one can show that the equivalence of L + PC and L E V  
remains true if V  is given by L E V  e Id l fL*)*  'P. (It follows from proposition 2.6 that An is 
such). Combining this with lemma 2.4, we obtain 

Corollary 3.3 Let P be a universally quantified first-order sentence i n  the language that contains 
5 ,  V and J ( . )  but does not contain A. Let IP, be obtained from P by replacing J ( . )  by C J ( . ) .  Assume 
that a variety V  is described by either of the following conditions: V' V  ifS V' P and all finite 
models of P are in V ;  or V = {L I IdE(L) + P ) .  If L is a CJ-generated algebraic lattice and L' its 
sublattice containing all compact elements, then the following are equivalent: 
1) L' E v ;  
2) L ' E  Vf i ;  
3) L' + PC. 

'To prove this fact in [ll], Huhn used another idea which exploited the fact that the compact elements of Co(IEntl) 
form a sublattice. The proof given in this paper is more general. 



In the rest of the section we will prove two more results about A, aad 4;. 

Proposition 3.4 Let V  be a lattice variety with the following property: Every lattice L E V can be 
embedded into a CJ-generated algebraic lattice L' E V and L' can be chosen to satisfy all identities of 
L.  Then 

V n A , = v n ~ ;  

Proof: Clearly, V  fl A: C V  fl A,. Conversely, given L E V n A,, let L' be a CJ-generated lattice 
into which L can be embedded. Then L' E V  n A, and by theorem 3.1 L' E V fl A:. Then 
L E S(V n A:) c v n A:. 

From this proposition the result of [ll] stating that M f l  4, = M n 4; follows immediately since M 
satisfies the condition of proposition 3.4, see [9]. 

Corollary 3.5 Let L be an n-distributive lattice in which every element is a join of finitely many 
join-irreducible elements. Then L E 4;. In particular, 3.C n A, = 3.C n A: where 3 C  is the class 
of lattices of finite length. 

Proof: The ideal completion of L is algebraic and CJ-generated. It is n-distributive because the ideal 
completion preserves identities. Hence, it is in A: and L E 4; as a sublattice of its ideal completion. 

4 Examples 

In this section we use theorem 2.1 to study n-distributivity in several classes of lattices. The most 
convenient way to  characterize n-distributivity for a lattice L is to  calculate its Huhn rank, from now 
on denoted by Hn(L) .  Then L is n-distributive iff n 2 Hn(L). We consider the following classes of 
lattices: lattices of finite length, geometric lattices and partition lattices in particular, subsemilattice- 
lattices, planar lattices and convexity lattices of posets. Convexity lattices are studied separately in 
Section 5. 

4.1 Lattices of finite length 

If L is a lattice of finite length, it is vacuously CJ-generated a.nd algebraic. If ! ( L )  is its length, 
every element is a join of a t  most L(L) join-irreducible elements which means ( c c ~ ( ~ ) )  holds. From 
theorem 2.1 we conclude 

Proposition 4.1 If L is a lattice offinite length, Hn(L) 5 l ( L ) .  



For finite lattices the result is even more precise: 

Corollary 4.2 The Huhn rank of a finite lattice is at most the width of the poset of its join-irreducible 
elements. 

4.2 Geometric lattices 

Geometric lattices arise as lattices of flats of matroids [I]. There are several definitions of matroids 
via rank functions, closures with the exchange property, independent sets, bases and circuits. The 
definition via family of circuits is the most suitable for our study of n-distributivity. 

Definition [l] A matroid M is a pair ( S ,  %) where S  is a set and % is a family of subsets of S called 
circuits that satisfies the following conditions: 

0 $Z X and X is an antichain; 

If C # C' E 92 and p E C n C' then there exists D E 9 such that D ( C  U C') - { p ) ;  

There exists a number k such that I X / 5 b whenever C X for all C E 92. 

We will call a matroid simple if it does not have one- or two-element circuits. 

The following lemma combines several results from [I, chapter 61. 

Lemma 4.3 1) Given a matroid M = ( S ,  E), define an operation (.) as follows: 

P ~ z e j P € A  or 3 C € % : p € C c A ~ { p }  

Then (.) is a closure operation and the lattice of closed sets is a geometric (i.e. atomistic semimodular 
and of finite length) lattice whose atoms correspond to elements of S  if M is simple. 

2) Given a geometric lattice L with the set of atoms S ,  one can define the structure of a simple 
matroid M = ( S ,  92) such that the lattice of closed sets of this matroid is isomorphic to L. 

It follows from lemma 4.3 that we can consider geometric lattices as lattices of closed sets (sometimes 
called fiats) of simple matroids. Given a matroid M, let c ( M )  be the size of the maximal circuits of 
M. 

Theorem 4.4 Given a simple matroid M = ( S ,  %) and the lattice of its fiats L(M) ,  

Hn(L(M)) = c(M) - 1. 



Proof: If C is a circuit of a matroid and a E C, then C - {a) is so-called independent set [I]. Since 
sizes of independent sets are bounded above [I], so are the sizes of circuits, i.e. c = c(M) is finite. 
Since M is simple, atoms of L (M)  correspond to elements of S and we will always use the same letter 
for an element of S and the corresponding atom. Let a E S and A S ,  a # A. Let a < VA. Then 
a E and there exists C E 9? such that a E C A U {a). Applying the characterization of the closure 
operation from lemma 4.3 again we obtain a E C - {a). Since I C 15 c(M), I C - {a) 15 c(M) - 1 
which proves the CarathGodory condition with parameter c(M) - 1 for L(M). Since L(M)  is algebraic 
and CJ-generated (in fact, atomistic), by theorem 2.1 it is c (M)  - 1-distributive. 

Now assume that the Carathkodory condition with parameter c (M)  - 2 holds. Let C be a circuit 
that contains exactly c (M)  elements. From the definition of the closure operation it  follows that 
a < V(C - a )  for any a E C. By (ccCh2) we find an element b E C ,  b # a such that a < V(C - {a, b } ) ,  
that is, a E C - {a, 13). Then there exists a circuit C' such that a E C' C C - {b), i.e. C' C C which 
contradicts the definition of matroids (circuits must form an antichain). Therefore, L(M) does not 
obey (cc),-, which finishes the proof of Hn(L(M)) = c (M)  - 1. 

If matroids are defined in terms of the closure operation satisfying the exchange property, circuits arise 
as minimal dependent sets, a set A being independent if p E A - {p) for no p E A. Since a projective 
geometry can be viewed as a simple matroid underlying matroid induced by the linear closure in a 
vector space, matroid independence being linear independence, theorem 4.4 tells us that the Huhn 
rank of a projective geometry is its dimension plus one, cf.[ll]. 

As another application of theorem 4.4, we characterize n-distributivity in finite partition lattices. Let 
Part(n) be the lattice of partitions of an n-element set. 

Corollary 4.5 Hn(Part(n)) = n - 1. 

Proof: Part(n) is the lattice of flats of the polygon matroid of a complete graph with n vertices. 
Circuits of the polygon matroids are sets of edges which form circuits in the underlying graphs [I]. 
Therefore, the size of the maximal circuit of the polygon matroid of a complete graph with n vertices 
is n. Now Hn(Part(n)) = n - 1 follows from theorem 4.4. 

More generally, for any finite graph the Huhn rank of the lattice of closed sets of its polygon matroid 
is one less than the size of the maximal circuit. 

4.3 Lattices of subsemilattices 

Let (S, .) be a semilattice, i.e. an algebra with one commutative associative idempotent operation. We 
assume that the semilattices are join, that is, the ordering is given by letting x be under y if and only 
if x . y = y. The set of all subsemilattices of S forms a lattice under the inclusion ordering which we 
denote by Sub(S). It is an atomistic algebraic lattices, atoms being singletons. The meet and join 



operations are given by SI A S 2  = S1 n Sa, SI v S2 = S1 u S2 u {sl s 2  I s1 E S1,s2 E S2), see [19]. To 
distinguish the ordering of S and Sub(S), we will denote the former by C. The join operation of S is 
denoted by U. 

All nonempty subsets of an n-element set ordered by inclusion form a semilattice, the join operation 
being union. This semilattice is denoted by F(n) .  F(n)  is the free semilattice with n generators. 

Proposition 4.6 Given a semilattice S, the lattice of its subsemilattices Sub(S) is n-distributive iff 
S does not contain a subsemilattice isomorphic to F ( n  + 1). 

Proof: Suppose Sub(S) is not n-distributive. Since it is algebraic and atomistic, (cc,) does not hold. 
Then there exists k > n such that {a} 5 {al) V . . . V {ak) but for no i is {a} below VjZi{aj). Here a 
and a;'s are elements of S. In other words, a belongs to the subsemilattice generated by {al, .  . . , ak)  
but does not belong to  any subsemilattice generated by a proper subset of {al,. . . , ak). According to  
the definition of the join operation in Sub(S) this means that a = a1 U . . . U ak but a # U i E I  a; for 
any proper subset I of {I , .  . . , b}. Assume that for two different subsets 11, I2 of (1,. . . , k) it holds: 
UiErl a; = UiEI, a;. Without loss of generality, let i E Il - 12. Then a = a1 U . . . U ak = UjZi a j ,  a 
contradiction. Hence, the subsemilattice generated by a l ,  . . . , ak is isomorphic to  F(k)  and F (n  + 1) 
is a subsemilattice of S since it is a subsemilattice of F ( k ) .  Conversely, if S' is a subsemilattice of S 
isomorphic to  F ( n  + I) ,  let a l ,  . . . , a,+l be its atoms and a its top. Then {a) 5 {al) V . . . V {a,+l} 
but {a) $ Vjfi{aj) for any i. Hence, (cc,) does not hold and Sub(S) is not n-distributive. 

As the first corollary we obtain the result of [18] that Sub(S) is distributive if and only if S is a 
chain. Another corollary of proposition 4.6 deals with dimension. The n-dimensional Euclidean space 
can be considered as a semilattice with the ordering being componentwise. The join operation is 
max: (xl, . . . , x,) U (yl, . . . , y,) = (max{xl, yl), . . . , max{x,, y,)). Clearly, the semilattice (IEn, max) 
contains a subsemilattice isomorphic to F(n)  but no subsemilattice isomorphic t o  F (n  + 1). 

Corollary 4.7 Sub((IEn, max)) E A, - A,-l. 

Finding a characterization of n-distributivity in the lattices of sublattices for an arbitrary n remains 
open. For 2-distributivity see [6]. 

4.4 Planar lattices 

A finite lattice is called planar if its diagram can be drawn without self-intersections. Planarity is 
closely related to  the order theoretic concept of dimension. Given a poset (P, C), its dimension, 
dim((P, 5) )  is the least number of linear orders whose intersection is the ordering 5. Alternatively, 
dim((P, L)) is the minimal number of chains whose product contains (P, C) as a subposet, see [15]. A 
finite lattice is planar if and only if its dimension is 5 2 [14]. In this subsection we will show that all 
finite planar lattices are 2-distributive. In fa.ct, we will derive this as a consequence of a more general 
result. 



Propos i t ion  4.8 Let L be a finite lattice. Then Hn(L) 5 dim(L). 

Proof: Suppose that there exists a finite lattice L such that Hn(L) > dim(L) = n. Then L is not 
n-distributive and (cc,) does not hold. Then there exists a number k > n and k + 1 join-irreducible 
elements a ,  a l ,  . . . ,ak such that a 5 a1 V . . . V ak but a -$ Vjf; a j  for all i = I,. . . , k. Clearly, neither 
of ai's is the bottom element of L and ViEra; # VjEJaj whenever I and J are distinct subsets 
of (1, . . . , k} (cf. the proof of proposition 4.6). Consider the subposet of L formed by the bottom 
element and all joins ViEl a; where 0 # I C (1,. . . , k}. From the above observation it follows that 
this subposet if isomorphic t o  1 $ F(k), i.e. 2k, the lattice of subsets of a k-element set. This lattice 
is known to  have dimension k [15], hence dim(L) > k > n, a contradiction. This contradiction shows 
Hn(L) 5 dim(L). 

Corol lary 4.9 Any finite planar lattice is either distributive or 2-distributive. 

Planar lattices were characterized in [14] via a family of forbidden subposets. To characterize dis- 
tributive planar lattices one has to add N5 and AJ3 to  this family. The rest of planar lattices are 
2-distributive. 

We have shown above that the Hunh rank of a finite lattice does not exceed its width. Alternatively, 
this can be concluded from proposition 4.8 and the fact that the dimension of a poset does not exceed 
its width [15]. Proposition 4.8 also shows that the Huhn rank of a series-parallel lattice (i.e. a lattice 
which does not have a subposet whose diagram looks like the letter N)  is 1 or 2. 

4.5 Convexity lattices of posets 

Given a poset (P, E) ,  its subset is called convex if it includes, together with x C y, any element z 
such that x C z 5 y. The lattice of convex subsets of P is called its convexity lattice and denoted by 
Co(P),  see [5]. It was proved in [5] that Co(P) is atomistic, algebraic and its Carathbodory rank is 
at most 2. Therefore, Co(P) is either 1- or 2-distributive. To characterize its Huhn rank it is enough 
to  describe those posets P for which Co(P)  is distributive. Let P contain a nonsimple interval [x, y] 
and z E [x, y], z # x, y. Then { z )  C {x} U {y) in Co(P) which shows that (cc,) fails. Obviously, (eel) 
holds if all intervals are simple. Thus, we have 

Propos i t ion  4.10 Given a poset (P, II), its convexity lattice Co(P) is distributive or 2-distributive. 
I t  is distributive iff P is of length 0 or 1. 

5 Convexity lattices 

In this section we study n-distributivity and dual ie-distributivity in convexity lattices. We will show 
that the Huhn rank of a convexity lattice coincides with its ufine rank defined as the height of the 



lattice of "affine flats" (in fact, the height of the modular core). Under natural assumptions about 
the properties of the underlying betweenness relation convexity lattices of dimension n (equivalently, 
of affine rank n + 1) arise as lattices of convex sets of convexities of dimension n (see section 2 for 
the definition). Finally, we will relate the dual n-distributivity to  dimension in convexity lattices. We 
start with some terminology. 

Definition [3] An atomistic lattice is called biatomic if p 5 x V y where p is an atom and x, y are 
nonzero implies p 5 x' V y' where x' 5 x and y' 5 y are atoms. 

Given a lattice L, (al , .  . .,a,) denotes the sublattice of L generated by a l ,  . . . ,a, E L. 

Definition [4] A biatomic algebraic lattice L is called a convexity lattice if it satisfies the following 
properties CL1 and CL2: 

CL1 If p,q, r are distinct atoms, then (p, q, r )  is isomorphic to z3 or Co(3); 

CL2 If p, q, r, s are distinct atoms and both (p, q, r )  a.nd (q, r ,  s) are isomorphic t o  C O ( ~ ) ,  then (p, q, r, s) 
is isomorphic t o  Co(4). 

Co($ is the lattice of intervals of an n-element chain. The diagrams of Co(3) and Co(4) are shown 
below: 

The conditions CL1 and CL2 can be better understood if one thinks in terms of the betweenness 
relation p. If three points are non-collinear, i.e. they form a triangle, the lattices of convex sets of 
such a configuration is 23. If they are collinear, i.e. one of them is between the others, the lattice of 
convex sets is Co(3). The condition CL2 says that if two triples of points, (p,q,r)  and (q, r , s )  are 
collinear, then all four are collinear. 

Usually the definition of convexity lattices is augmented by properties reminiscent of Hilbert's order 
axioms for the betweenness3. To introduce them, some preliminary work needs to  be done. 

An element a of a lattice L is called modular if, for any x E L, c 5 a implies c V (x A a)  = (c V x) A a. 
The set of modular elements is denoted by M ( L ) .  The following results appeared in [4]: If L is the 

3Axiomatization of elementary geometry in terms of the betweenness relation was given by Tarski [29]. One can 
consult that  work or [4] for the motivation for the conditions to  be introduced. 



lattice Co(V) of convex sets in a vector space V over an order division ring, M(Co(V)) is the meet- 
subsemilattice of affine flats. If L is a convexity lattice, M(L) is closed under arbitrary meets and 
1 E M(L). Define 

XVY def I\(M(L) n [X v y)) 

Then (M(L),V, A)  is an algebraic atomistic lattices, its atoms being the atoms of L. If p, q are distinct 
atoms, pVq is called a line. A line given by p and q consists of all atoms r such that (p, q, r )  Z Co(3). 
In other words, pVq consists of all atoms r such that r 5 p V q or p < q V r or q < p V r .  

The Pasch axiom says that if a line intersects one side of a triangle internally, then it intersects 
another side. Formally, if p,q, r ,s , t  are distinct atoms and r -$ p V q, s 5 pVqVr, t 5 p V q, t  # p,q 
then (sVt) A ( p ~  r)  # 0 or (sVt) A (qV r )  # 0. A convexity lattice is said t o  be a Peano convexity lattice 
if for distinct atoms p, q, r, s, t such that s 5 pV q and t 5 qV r there exists an atom w 5 (s V r )  A ( p ~ t ) ,  
see the picture below. 

A convexity lattice is said to  have the divisibility property if for any two distinct atoms p and q there 
exists an atom r 5 p V q, r # p, q. It is called unbounded [17, 201 if for any p and q there exists an 
atom r such that p 5 r V q (this is reminiscent of Hilbert's axiom E a ) .  Equivalently, a convexity lattice 
is unbounded if 0 and 1 are the only codistributive elements [17, 201. 

A convexity lattice is Peano iff it satisfies the Pasch axiom. Any convexity lattice with the divisibility 
property is Peano. If L is a Peano convexity lattice, M ( L )  has the exchange property [4]. Hence, if it 
is of finite length, i t  is a geometric lattice and its length is denoted by aff(L) and is called the afine 
rank of L. If L is unbounded and aff(L) > 2, then L has the divisibility property [20]. 

Given a convexity lattice L with the set of atoms A,  define CL C 2 A  to  be the family of sets of atoms 
under elements of L, i.e. X E CL if and only if there exists z E L such that X is the set of atoms 
below x. Now we are ready to prove the first result of this section. 

Theorem 5.1 Let L be a convexity lattice of afine rank n satisfying the divisibility property and A 
the set of its atoms. Then (A,CL) is an n - 1-dimensional convexity. 

Proof: We need a few auxiliary definitions first. By A(z) we mean the set of atoms below x. If L is 
a convexity of finite affine rank n, a coatom of M ( L )  is called a hyperplane. Given a hyperplane h, 
define a relation Eh on A by pEhq p V q 5 h or (p V q) A h = 0. Then Eh is an equivalence relation 
having two or three equivalence classes, A(h)  being one of them [2, 201. We denote the equivalence 

d e f  d e f  classes different from A(h) by h+ and h-. h- may not exist. h+ = h V h f  and h- = h V h- are 



called the closed halfspaces [20]. A(h*) = A(h) U A(h*), where * E {+, -1. Given atoms pl,  . . . , pn, 
d = pl V . . . V p, is called a simplex [20] if plV. .  .Vpn = 1. Its ith side is di = Vj,ti pj. 

If x is an element of L, Vx is the minimal element of M(L)  above x, i.e. A(y E M(L) ( y 2 x). 

It is clear that the lattice of convex sets of (A,CL) is L. To prove that (A ,CL)  is n - l-dimensional, 
(cc,) must be shown to hold in L. But this follows from [4, theorem 191. Thus, it is enough to  show 
that the compact elements of L form a sublattice. We start with two claims. 

Claim 1: Let d be a simplex and h a hyperplane. Then d A h+ is compact. 
Proof of claim 1: If h- does not exist, d A hf = d which is a compact element. Assume that h- - 
exists. Let d = pl V . . . V p, where plV..  . Vp, = 1. If all pi's are under h-, 0 = d A h+ is a compact 
element. Now, let pl , .  . .,pk E A(h+) and pk+l,. . .,p, E A(h-). For any i 5 k and j > k define 
pij = (pi V pj)  A h. According to the definition of Eh, pij # 0. Moreover, i t  follows from the properties 
of the modular core elements that p;j is an atom, cf. [20]. Let 

d = pl V . . . V  pk V V pij. 
i<k,j>k 

We claim d' = d A h+. Clearly, d' < d A h+. To prove the reverse inequality, let v < d A h+,  v E A. 
Then, by biatomicity, there exist atoms q < pl V . . . V pk and r < pk+l V . . . V pn such that v < q V r. 
Since q < h+  and r < h-, w = (q V r )  A h is an atom and u < w V q. If w does not coincide with any 
of p;j's, consider the line wVp;j. By [4, theorem 101 there exists an index 1 and an atom s _< dl such 
that w 5 p;j V s. Since s < pijVw < h, this shows w 5 VyZl(di A h). Now, di A h = (h A (Vdi)) A di.  
If Vdi < h, then hVdi = di and (hVdi) A di 5 pl V . . . V pk. If h # Vdi, then h AVdi is a hyperplane in - 
vdi because M(L) is a geometric lattice and h A di = Vj(h A clij). Continuing this process, we finally 
obtain w < pl V . . . V pk V V(;,j)(h A (pi V pj)) where (i, j)'s range over a set of pairs of indices. Since 
h A (pi V pj) is either pi V p j  (and then i ,  j < k)  ot 0 or pij, this shows w < d' and v 5 d' as q _< d'. 
Hence, d' = d A h f .  Since d' is the join of finitely many atoms, it is compact. Claim 1 is proved. 

Using claim 1, we can prove the following 
Claim 2: If x is a compact element and h is a hyperplane, then x A h+ is compact. 
Proof of claim 2: Assume without loss of generality that Vx = 1 (if this is not the case, consider 
h' = h ~ ( V x ) .  Then, if x $ h, h' is a hyperplane in (Vx]). Since aff (L) = n, the Carathbodory condition 
(cc,) holds [4]. Therefore, there exist simplexes d l , .  . . ,d l  such that x = dl V . . . V dl and, moreover, 
A(x) = A(dl) U . . . U A(dl). Let xi = d; A h+. Then x A h+ = V i  xi which proves compactness of 
x A h+. 

Now, let x, y be two compact elements. Since x A y = (x A (Vx)) A (y A (Vx)), we may assume without 
loss of generality that Vx = 1. Again, A(x) = uf=, A(d;) and x = Vy=l d; where di7s are simplexes. 
According to  [20, theorem 151, for each simplex d; there exist n hyperplanes hij, j = 1, . . . , n such that 
d; = Aj  h;. Then, according to  claim 2, d; A y = y; is a compact element. We claim x A y = Vi y;. 
Clearly, y; 5 x A y. Conversely, given an atom p 5 x A y, there exists an index i such that p 5 d;. 
Hence, p < yi. Thus, x A y is compact, which finishes the proof of the theorem. 

Corollary 5.2 Given a convexity lattice L with the divisibility property, aff(L) = Hn(L). 



In the rest of the section we will show that the affine rank can be characterized via the dual n-distributivity 
as well. The key lemma establishes the relationship between the dual n-distributivity and the Helly 
condition of dimension n in a class of lattices that, as we shall show, includes many convexity lattices. 
The Helly condition of dimension n,  reminiscent of Helly's theorem, reads as follows: 

Let L be a lattice with 0 and XI , .  . . , xk E L, k > n + 1. Then r(fZ1 xi # 0 whenever A;";: xi, # 0 for 
any sequence il ,  . . . , in+l of indices. 

Lemma 5.3  Let L be a biatomic algebraic lattice satisfying the following property: If so, XI, yo, y1 are 
atoms and p is an atom below xi V yi for i = 0,1, then for any atom x 5 s o  V xl  there exists an atom 
y 5 yo V yl such that p 5 x V y. Then L is dually n-distributive if the Helly condition of dimension 
n - 1 holds. 

Proof: We first prove that the condition of lemma implies the following, more general property: If 
xo, . . . , xk, yo,. . . , yk are atoms and p is an atom below xi V y; for all i = 1,. . . , k, then for any atom 
x 5 xo V . . . V xk there exists an atom y 5 yo V . , . V yk such that p < x V y. The proof is by induction 
on k. For k = 1 this is the condition of lemmtr. For an arbitrary k, by biatomicity there exists an atom 
x' 5 X I  V . . . V xk such that x 5 xo V x'. By induction hypothesis, there exists an atom y' 5 yl V . . . V yk 
such that p 5 x' V y'. Then there exist an atom y 5 yo V y' 5 yo V . . . V yk such that p 5 x V y. 

Let the Helly condition of dimension n - 1 hold. To prove that L is dually n-distributive, it is enough 
to  show that for any atom p, 

n n 

p 5 ln\(x V ln\ yj) implies p 5 x V A yi 
;=O j#i i=O 

Let p be below the left hand side. If any AjZ; yj is 0, then p is  trivially under x. Assume yj + 0 for 
all i. Then for any i there exist atoms pi 5 x; and q; 5 yj such that p 5 p;Vq;. Define yi as Vjfi q;. 
Then qi E Ajfi yi. By the Helly condition, there exists an atom q 5 A:=o Y:. Then q 5 go V . . . V qn-l 
and there exists an atom T 5 po V . . . V pn-1 5 x such that p 5 T V q 5 x V A;=o y: 5 x V y;, 
proving dual n-distributivity. 

Theorem 5.4 Let L be an unbounded convexity lattice of c~fine rank n, n 2 3. Then L is dually 
n-distributive but not dually n - 1-distributive. 

Proof: Since aff(L) 2 3, L has the divisibility property [20]. Therefore, L satisfies the condition of 
lemma 5.3, see [20, lemma 11. According to  [4], the Helly condition of dimension n - 1 is true in L. 
Therefore, L is dually n-distributive by lemma 5.3. 

To show that L is not n - 1-distributive, notice that the Helly condition of dimension n - 2 does 
not hold [4]. Therefore, there exist yl, . . . , yn E L such that each Ajf; yj contains an atom q; but 

y; = 0. Some 9;'s may be the same. Let {ql,. . . , qk) be distinct elements of {ql, . . . , q,), k 5 n. 
Clearly, we can assume tha,t k > 1 for otherwise ql would be in yi. Using CL1 a,nd CL2, it is easy 



to  show that there exists q; which is not under the join of all qj's, j # i. Without loss of generality, let 
i = 1. Since L is unbounded, find an a.tom r; such that ql 5 r; V q;, i = 2,. . . , k. Let x = r2 V . . . V rk. 
If ql 5 x, then ql 5 r2 V r i  where r; is an atom under 7-3 V . . . V rk. By the property proved in 
lemma 5.3, there exists an atom q4 5 93 V . . . V qk such that q1 5 r i  V q;. Then from CL2 it follows 
that ql, 92, rz, qi, r i  lie on the same line and then it is easy to  show that ql 5 q 2  V qi 5 q~ V . . . V qk, a 
contradiction. Hence, ql $ x. 

Let y;' = VjZ;qj. Then qi E AjZi y;' and A; y: 5 A; y; = 0. We have: x V y{ = x 2 ql but 
ql < x V Ajfi yi for any i = 1,. .. , n ,  hence ql 5 Ay=l(x V Ajf i  y;). Therefore, L is not n - 1- 
distributive. 

The assumption aff(L) 2 3 was needed only in order to  prove that L has the divisibility property. 
Since the divisibility property is true in Co(lEn) for an arbitra.ry n, we obtain 

Corollary 5.5 [ll] The dual of Co(IEn) is in An+l - A,. 

6 Concluding remarks 

In this paper we have developed the idea of [ll] that dimension can be expressed as an algebraic 
property of lattices of convex sets. We have proved that in a large class of lattices (algebraic lattices 
in which every element is the join of completely join irreducible elements) the lattice theoretic form of 
Carathbodory's theorem is equivalent to n-distributivity . hIoreover, such lattices are n-distributive if 
and only if they are in the variety generated by the finite n-distributive lattices. These results were 
applied to  characterize n-distributivity in va.rious classes of lattices. For example, in a geometric 
lattice i t  is the size of the maximal circuit of the underlying matroid that determines the least n such 
that the lattice is n-distributive. In convexity lattices, which are a generalization of lattices of convex 
sets, the dual n-distributivity determines dimension as well. 

A few questions remain open. Two of them have been mentioned already. It seems that assuming 
distributivity in corollary 2.9 is too strong and a similar result can be proved under a weaker assump- 
tion. A concise characterization of n-distributivity of subsemilat.tice-lattices was given but it remains 
open whether a similar result can be proved for sublattice-lattices. 

The lattices of convex sets (and even convexity lattices with the divisibility property) are n-distributive 
iff they are dually n-distributive. Since Carath6odory's theorem is equivalent to  n-distributivity and 
Helly's theorem implies the dual n-distributivity, this suggests tha,t there may exist a lattice theoretic 
duality between Carath60dory7s and Helly's theorems. This is not a mere speculation. Indeed, take 
a convexity lattice L of affine rank n with the divisibility property. Then it is dually n-distributive 
which means its dual is n-distributive. The dual of any algebraic lattice is CJ-generated. Now, if we 
notice that algebraicity was not used to prove 1) + 3) of theorem 2.1, we conclude that (cc,) holds 
in the dual of L, i.e. Helly's theorem of dimension n implies the dual of Carathhodory's theorem of 
the same dimension. This kind of duality will be further investigated. 



n-distributivity was first introduced and studied for modular lattices. I t  was observed tha t  i t  allows 
us t o  characterize the  dimension of a projective geometry in t he  way similar t o  the  one exploited in  
this paper. Another sequence of dimension discriminating equations for projective geometries was 
given in [7]. In  is not clear, however, t o  what extent the  results of this paper can be  generalized if 
equations of [7] are  used. 

Finally, several algebraic models of convexity have been proposed recently, e.g. [8, 26, 28, 301. We 
believe tha t  investigation of the  relationship between CarathCodory's and  Helly's theorems and (dual) 
n-distributivity in  those models may lead t o  new intersting results. 
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