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JOIN-SEMIDISTRIBUTIVE LATTICES OF RELATIVELY

CONVEX SETS

K. V. ADARICHEVA

Abstract. We give two sufficient conditions for the lattice Co(Rn, X) of rel-
atively convex sets of R

n to be join-semidistributive, where X is a finite union

of segments. We also prove that every finite lower bounded lattice can be
embedded into Co(Rn, X), for a suitable finite subset X of R

n.

1. Introduction

A lattice L is join-semidistributive, if

x ∨ y = x ∨ z implies that x ∨ y = x ∨ (y ∧ z),

for all x, y, z ∈ L. Let X ⊆ R
n, and let Co(Rn, X) denote the lattice of convex

subsets of R
n relative to X , that is,

Co(Rn, X) = { Y ⊆ R
n | Y = Co(Y ) ∩X },

where Co(Y ) denotes the convex hull of Y , for any Y ⊆ R
n. For all X ⊆ R

n, the
closure operator φ : BX → BX, where φ(Y ) = Co(Y ) ∩X for all Y ⊆ R

n, satisfies
the so-called anti-exchange axiom that makes lattices of relatively convex sets just
another example of a convex geometry (see the extensive monograph [7], also [2]). It
is well known (cf. [2]) that a finite convex geometry is join-semidistributive, whence
the lattice Co(Rn, X) is join-semidistributive, for any finite X ⊆ R

n.
Problem 3 in [2] asks about a description of lattices embeddable into lattices of

the form Co(Rn, X) with finite X . Since any sublattice of a join-semidistributive
lattice is join-semidistributive itself, all those lattices must also be join-semidistrib-
utive. Although the current paper does not provide a solution of the problem, it
suggests some approaches to it. The main idea is to consider a more general setting
for the problem dropping the requirement for X to be finite.

For a lattice L with the least element 0L, let At(L) denote the set of atoms of
L, that is, At(L) = { x ∈ L | 0L ≺ x }. While finite convex geometries are always
join-semidistributive, a convex geometry L satisfies a weaker property:

x ∨ y = x ∨ z implies that x ∨ y = x ∨ (y ∧ z),

for all x ∈ L and all y, z ∈ At(L). In other words, if x ∨ y = x ∨ z, for some x ∈ L
and y, z ∈ At(L) the either y = z or y, z ≤ x. How weak this property is can be
seen from the following result established in [4]: every finite lattice can be embedded

into Co(Rn, X), for some n ∈ ω and X ⊆ R
n. Thus we would like to generalize
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2 K. V. ADARICHEVA

Problem 3 from [2], dropping the requirement for X to be finite but still assuming
Co(Rn, X) to be join-semidistributive:

Problem 1. Which finite lattices can be embedded into join-semidistributive lat-
tices of the form Co(Rn, X)?

It turns out that sets X for which the corresponding lattice Co(Rn, X) is join-
semidistributive are quite specific. The third section of the paper is mostly devoted
to the case when X is a finite union of segments, which seems to be a natural
generalization of finiteness of X . We provide two sufficient conditions for X to
ensure Co(Rn, X) to be join-semidistributive.

The last section is devoted to an important proper subclass of the class of join-
semidistributive lattices, the class of so-called lower bounded lattices. We prove that
every finite lower bounded lattice embeds into a finite lower bounded lattice of the
form Co(Rn, X). Another proof of this result can be found also in [10].

Here we use an essentially geometric idea, first constructing an embedding of
the lattice Sub∧Bn+1 of meet-subsemilattices of the Boolean lattice Bn+1 into the
lattice of bounded convex subsets of R

n, and then finding a finite set X which
provides an embedding into Co(Rn, X). We hope that this construction might give
some additional insight into the question whether every finite join-semidistributive
lattice embeds into a finite lattice Co(Rn, X).

2. Basic concepts

For any a, b ∈ R
n, let (a, b) denote the open segment and let [a, b] denote the

closed segment whose end points are a and b, that is,

(a, b) = { x ∈ R
n | x = λa+ (1 − λ)b for some λ ∈ (0, 1) },

[a, b] = { x ∈ R
n | x = λa+ (1 − λ)b for some λ ∈ [0, 1] }.

It is straightforward to verify that for any Y ⊆ R
n,

Co(Y ) =
⋃

i∈ω

Y (i),

where Y (0) = Y and Y (i+1) = { [a, b] | a, b ∈ Y (i) }, for all i ∈ ω.
A convex subset F ⊆ P of a convex potytope P is a face of P , if (a, b)∩ F 6= ∅

implies [a, b] ⊆ F , for all a, b ∈ P . An element x of a convex set X ⊆ R
n is an

extreme point of X if x /∈ Co(X\{ x }). Let Ex(X) denote the set of extreme points
of X , for any X ∈ Co(Rn).

For any Y ⊆ R
n, we denote by Y the closure of Y and by intn(Y ) the interior

of Y in the Euclidean topology of R
n.

Lemma 2.1. Let X ⊆ R
n be a finite union of segments. Then Co(X) = Co(X). In

particular, if x ∈ Ex(Co(X)) then x is an extreme point of a closure of a segment

from X.

Proof. The proof is straightforward. �

Lemma 2.2. Let P ⊆ R
n be a convex polytope and let F be a face of P . Then

Co(Y ) ∩ F = Co(Y ∩ F ), for any Y ⊆ P .

Proof. By induction on k, we prove that Y (k) ∩ F ⊆ (Y ∩ F )(k), for all k ∈ ω. For
k = 0, the conclusion is obvious. Let k > 0 and let x ∈ Y (k) ∩ F . Then there



JOIN-SEMIDISTRIBUTIVE LATTICES OF RELATIVELY CONVEX SETS 3

exist a, b ∈ Y (k−1) such that x ∈ [a, b]. If x = a or x = b, then x ∈ Y (k−1) ∩ F ⊆
(Y ∩F )(k−1) by the induction hypothesis. Otherwise, x ∈ (a, b)∩F , whence a, b ∈ F
since F is a face of P . Therefore, a, b ∈ Y (k−1) ∩F ⊆ (Y ∩F )(k−1) by the induction
hypothesis, whence x ∈ (Y ∩ F )(k). �

For any Y ⊆ R
n, let ψY : Co(Rn) → Co(Rn, Y ) be the map defined by ψY (X) =

X ∩ Y , for any X ∈ Co(Rn). Then ψY preserves meets, for any Y ⊆ R
n.

Lemma 2.3. Let P be a convex polytope and let X ⊆ P . Then the map ψF : Co(Rn, X) →
Co(Rn, X ∩ F ) defined by ψF (Y ) = Y ∩ F is a surjective lattice homomorphism,

for any face F of P .

Proof. The surjectivity of ψF follows from the fact that if A = Co(A) ∩ X ∩ F
then A = ψF (Co(A) ∩X). Let A,B ∈ Co(Rn, X). Evidently, ψF preserves meets.
Applying Lemma 2.2 we get

ψF (A ∨B) = Co(A ∪B) ∩X ∩ F = Co
(

(A ∩ F ) ∪ (B ∩ F )
)

∩X

=
(

Co(A ∩ F ) ∩X
)

∨
(

Co(B ∩ F ) ∩X
)

= ψF (A) ∨ ψF (B),

whence ψF preserves joins. �

3. Join-semidistributivity of Co(Rn, X)

If X ⊆ R
n is finite, then, as we mentioned above, the lattice Co(Rn, X) is a

finite convex geometry; in particular, it is join-semidistributive. However, we do
not know how far this fact can be extended.

Problem 2. Describe sets X ⊆ R
n such that the lattice Co(Rn, X) is join-semi-

distributive.

To remind that not every X suits, we recall an example given in [4].

Example 3.1. Let X contain the (2-dimensional) interior of some triangle TML.
Pick any point K inside that interior. Then the interior of each triangle TMK,
TLK, and MLK belongs to Co(Rn, X), and they form a modular sublattice iso-
morphic to M3. In particular, Co(Rn, X) is not join-semidistributive.

A subset X of R
n is sparse, if int2(X ∩ H) = ∅, for any 2-dimensional affine

subspace H of R
n. From Example 3.1, it follows that every set X satisfying the

requirement of Problem 2 has to be sparse.
Observe that if X is a line in R

n then Co(Rn, X) is isomorphic to Co(R), the
lattice of order convex subsets of R, and the latter is join-semidistributive (see
Theorem 14 in [5]).

Another extreme case is when X is the boundary of a ball; in this case, the
lattice Co(Rn, X) is Boolean (cf. an example of section 9 in [4]); in particular, it
is distributive. This gives two natural examples of sparse sets which qualify for
Problem 2. Unfortunately, being a sparse set is a necessary condition but not
sufficient.

Example 3.2. Let X be the union of three lines A, B, and C which are on the
same plane and have a common intersection. Then A ∨ B = A ∨ C = X but
A ∨ (B ∩ C) = A in Co(Rn, X).
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On the other hand, if we take segments instead of lines, then the corresponding
lattice turns out to be join-semidistributive. Thus the following question is rather
natural: if X is a finite union of segments, is the lattice Co(Rn, X) join-semidistrib-

utive? Unfortunately, even this simplest generalization of finiteness of X does not
ensure that Co(Rn, X) is join-semidistributive, as the example below demonstrates.

Example 3.3. Let T be a triangle in R
2 with the set of extreme points { a, b, c }

and let p,m ∈ int2T , p 6= m. Without loss of generality, we may assume that p, m,
and a are not collinear. We put X = [b, c]∪ [p, a]∪ [m, a] and A = [b, c], B = (p, a),
C = (m, a). Then A ∨ B = A ∨ C = X\{ a } 6= A ∨ (B ∧ C) = A in Co(R2, X).
Thus this lattice is not join-semidistributive.

We note that the failure of join-semidistributivity in the example above is due
to the fact that closed segments [p, a] and [m, a] have a common point. Also, it is
essential that (p, a) and (m, a) are subsetes of int2T . Were points p and m chosen,
say, on faces [a, b] and [a, c] of the triangle T , respectively, the lattice Co(Rn, X)
would be join-semidistributive.

For the rest of this section, we assume X to be a finite union of segments. The
following theorem provides two sufficient conditions for Co(Rn, X) to be join-sem-
idistributive. Each of them eliminates at least one condition that plays role in
Example 3.3.

Theorem 3.4. Let n, k ∈ ω and let X =
⋃

{ Ij | j < k }, where Ij ⊆ R
n is a

segment, for all j < k. Consider the following two conditions:

(i) Is ∩ It = ∅, for all s, t < k, s 6= t;
(ii) there exists a convex polytope P ⊆ R

n such that for any j < k, Ij is a

subset of a face of P .

If X satisfies either (i) or (ii) then the lattice Co(Rn, X) is join-semidistributive.

Proof. We agrue by induction on n. Let n = 1. For any X ⊆ R, the lattice
Co(R, X) is the lattice of order-convex subsets of X endowed with the standard
(linear) order, thus it is join-semidistributive (see [5, Theorem 14]).

Let n > 1. Suppose that X satisfies either (i) or (ii) and A ∨ B = A ∨ C >
A ∨ (B ∩ C), for some A,B,C ∈ Co(Rn, X). Let Y = Co(A ∨ (B ∩ C)). Then
B,C 6⊆ Y . We prove that there are a convex polytope Q and a face F of Q such
that B ∩ F 6⊆ Y and Y ⊆ Q.

Suppose first that X satisfies (i). By Lemma 2.1, we get

K = Co(A ∪B) = Co(A ∨B) = Co(A ∨ C) = Co(A ∪ C).

If K 6⊆ Y , then there exists an extreme point a ∈ Ex(K) such that a /∈ Y . Since
A ⊆ Y , by Lemma 2.1, a ∈ B ∩C contradicting (i). Thus, B ⊆ K ⊆ Y but B 6⊆ Y .
Therefore, there exists a face F of Y such that B ∩F 6⊆ Y . We take Q = Y in this
case.

Suppose that X satisfies (ii). Since B 6⊆ Y , there is a face F of P such that
B ∩ F 6⊆ Y . We take Q = P in this case.

By Lemma 2.3, the map ψF : Co(Rn, X ∩ Q) → Co(Rn, X ∩ Q ∩ F ) is a lat-
tice homomorphism. Thus, ψF (A) ∨ ψF (B) = ψF (A) ∨ ψF (C). Also, the lattice
Co(Rn, X ∩ F ) is isomorphic to the lattice Co(Rm, X ∩ F ), where m ∈ ω is the
dimension of an affine subspace of R

n containing F . Moreover, X ∩ F is a finite
union of segments. By the induction hypothesis, the lattice Co(Rm, X ∩ F ) is
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join-semidistributive, whence

B ∩ F =ψF (B) ⊆ ψF (A ∨B) =

ψF (A) ∨
(

(ψF (B) ∩ ψF (C))
)

=

ψF

(

A ∨ (B ∩ C)
)

= ψF (Y ) ⊆ Y,

a contradiction. �

4. Lower bounded lattices as sublattices of finite Co(Rn, X)

In this section, we consider sublattices of lattices of the form Co(Rn, X), where
X ⊆ R

n is finite. As was observed in [2], we do not know yet any special type
of finite convex geometries which admit any finite join-semidistributive lattice as
a sublattice. We have a partial confirmation that lattices of the form Co(Rn, X)
could be such a ”universal” class of convex geometries for the class of finite join-
semidistributive lattices.

The main result of this section shows that, at least, this class is universal for
the class of finite lower bounded lattices which is a proper subclass in the class
of finite join-semidistributive lattices. We recall that a (finite) lattice is lower

bounded, if it is an image of a finitely generated free lattice under a lower bounded

homomorphism, that is, the preimage of every element under this homomorphism
has a least element. We refer the reader to the comprehensive monograph on the
topic [6]. There exist at least two other particular classes of finite convex geometries
which admit every finite lower bounded lattice as a sublattice: suborder lattices of
finite partial orders [9] and subsemilattice lattices of finite semilattices [1, 8].

Unlike these known examples, lattices of relatively convex subsets are not nec-
essarily lower bounded. The simplest example is Co(R, X), where X consists of
four different points on the same line. The other common feature of many types of
convex geometries is that they are biatomic. Due to [5], a lattice L with the least
element 0L is biatomic if for any x ∈ At(L) and any y, z ∈ At(L), the inequality
x ≤ y ∨ z implies that there are y′, z′ ∈ At(L) such that y′ ≤ y, z′ ≤ z, and
x ≤ y′ ∨ z′.

A result from [3] shows that not every finite join-semidistributive lattice embeds
into a finite biatomic join-semidistributive lattice. The counter-example from [3]
is the lattice Co(R2, X), where X is a 5-element set of points on a plane. In
particular, this emphasizes that lattices of relatively convex subsets are essentially
non-biatomic, thus might serve as a “universal” class of convex geometries for the
class of finite join-semidistributive lattices.

Observe that an alternate approach which leads to the result that every finite
lower bounded lattice is a sublattice of some Co(Rn, X) with finite X is presented
in [10]. The authors of [10] find an embedding of every finite lower bounded lattice
into the lattice of convex polytopes of a finite-dimensional vector space, from where
the result easily follows.

Proposition 4.1. For every n < ω, the lattice Sub∧Bn+1 embeds into the lattice

of bounded convex sets of R
n.

Proof. Let Sn+1 denote a regular polytope in R
n with n+ 1 vertices. It is not that

important to have a regular polytope, but it is easier to deal with because of the
total symmetry of the argument. Thus, in R

2 it is an equilateral triangle, in R
3 it

is a regular tetrahedron, etc.
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Let Ex(Sn+1) = { pi | i 6 n + 1 }. We define the map ψ : Bn+1 → Co(Rn) by
the rule

ψ(t) =











∅, if t = n + 1,

{ pi }, if n + 1\t = { i },

int|A| Co
(

{ pi | i ∈ A = n + 1\t }
)

, if |t| < n.

(1)

Claim 1. For any a, b ∈ Bn+1, Co
(

ψ(a) ∪ ψ(b)
)

= ψ(a) ∪ ψ(b) ∪ ψ(a ∩ b).

Proof of Claim. Without loss of generality, we may assume that a and b are non-

comparable. By induction on i, we prove that
(

ψ(a)∪ψ(b)
)(i)

⊆ ψ(a)∪ψ(b)∪ψ(a∩b),
for all i ∈ ω. For i = 0, the conclusion is obvious. Suppose that i < ω and that z ∈
(

ψ(a)∪ψ(b)
)(i+1)

\
(

ψ(a)∪ψ(b)
)(i)

. Then there are λ ∈ (0, 1), x, y ∈
(

ψ(a)∪ψ(b)
)(i)

such that z = λx+(1−λ)y. By the induction hypothesis, x, y ∈ ψ(a)∪ψ(b)∪ψ(a∩b).
We consider several cases:

Case 1. x, y ∈ ψ(a) or x, y ∈ ψ(b). In this case, z ∈ ψ(a)∪ψ(b) since both ψ(a)
and ψ(b) are convex.

Case 2. x ∈ ψ(a) and y ∈ ψ(b). In this case, there are λk ∈ (0, 1), k ∈ n + 1\a,
and µl ∈ (0, 1), l ∈ n + 1\b, such that

∑

{λk | k ∈ n + 1\a } =
∑

{µl | l ∈ n + 1\b } = 1 and

x =
∑

{λkpk | k ∈ n + 1\a }, y =
∑

{µlpl | l ∈ n + 1\b }.

Then

z =
∑

{λλkpk | k ∈ n + 1\a } +
∑

{ (1 − λ)µlpl | l ∈ n + 1\b }.

Moreover, λλk, (1 − λ)µl ∈ (0, 1), for all k ∈ n + 1\a and all l ∈ n + 1\b, and
∑

{λλk | k ∈ n + 1\a } +
∑

{ (1 − λ)µl | l ∈ n + 1\b } = λ · 1 + (1 − λ) · 1 = 1.

Thus, z ∈ ψ(a ∩ b).
Case 3. x ∈ ψ(a), y ∈ ψ(a∩ b). In this case, there are λk ∈ (0, 1), k ∈ n + 1\a,

and µl ∈ (0, 1), l ∈ n + 1\(a ∩ b), such that
∑

{λk | k ∈ n + 1\a } =
∑

{µl | l ∈ n + 1\(a ∩ b) } = 1 and

x =
∑

{λkpk | k ∈ n + 1\a }, y =
∑

{µlpl | l ∈ n + 1\(a ∩ b) }.

Then

z =
∑

{
(

λλk + (1 − λ)µk

)

pk | k ∈ n + 1\a } +
∑

{ (1 − λ)µlpl | l ∈ a\b }.

Again, all the coefficients are from (0, 1), and
∑

{λλk + (1 − λ)µk | k ∈ n + 1\a } +
∑

{ (1 − λ)µl | l ∈ a\b } =

=λ
∑

{λk | k ∈ n + 1\a } + (1 − λ)
∑

{µl | l ∈ n + 1\(a ∩ b) } =

=λ · 1 + (1 − λ) · 1 = 1.

Thus, z ∈ ψ(a ∩ b). Therefore, we have proved that Co
(

ψ(a) ∪ ψ(b)
)

⊆ ψ(a) ∪
ψ(b) ∪ ψ(a ∩ b).
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We prove the inverse inclusion. It suffices to show that ψ(a∩b) ⊆ Co
(

ψ(a)∪ψ(b)
)

.
Let z ∈ ψ(a ∩ b). There are λk ∈ (0, 1), k ∈ n + 1\(a ∩ b) such that

∑

{λk | k ∈
n + 1\(a ∩ b) } = 1 and

z =
∑

{λkpk | k ∈ n + 1\(a ∩ b) }.

We put

λ =
(

∑

{λk | k ∈ b\a } +
1

2

∑

{λk | k ∈ n + 1\(a ∪ b) }
)−1

;

x =
∑

{
λk

λ
pk | k ∈ b\a } +

∑

{
λk

2λ
pk | k ∈ n + 1\(a ∪ b) };

y =
∑

{
λk

1 − λ
pk | k ∈ a\b } +

∑

{
λk

2(1 − λ)
pk | k ∈ n + 1\(a ∪ b) }.

We get

∑

{
λk

λ
| k ∈ b\a } +

∑

{
λk

2λ
| k ∈ n + 1\(a ∪ b) } =

=
1

λ

(

∑

{λk | k ∈ b\a } +
1

2

∑

{λk | k ∈ n + 1\(a ∪ b) }
)

=

=
1

λ
· λ = 1;

∑

{
λk

1 − λ
| k ∈ a\b } +

∑

{
λk

2(1 − λ)
| k ∈ n + 1\(a ∪ b) } =

=
1

1 − λ

(

∑

{λk | k ∈ a\b } +
1

2

∑

{λk | k ∈ n + 1\(a ∪ b) }
)

=

=
1

1 − λ
· (1 − λ) = 1.

Thus, x ∈ ψ(a) and y ∈ ψ(b). Moreover, z = λx+ (1 − λ)y, whence z ∈ Co
(

ψ(a) ∪

ψ(b)
)

. � Claim 1.

For any S ∈ Sub∧Bn+1, we put

ϕ(S) =
⋃

{ψ(t) | t ∈ S }. (2)

According to Claim 1, ϕ(S) ∈ Co(Rn), for any S ∈ Sub∧Bn+1. We verify that
ϕ is a lattice homomorphism from Sub∧Bn+1 to Co(Rn). It is straighforward that
ϕ is one-to-one. Moreover, ϕ preserves meets.

Let S0, S1 ∈ Sub∧Bn+1 and let S = S1∨S2. If t ∈ S\(S0∪S1), then t = t0∩t1, for
some ti ∈ Si, i < 2. Hence, by Claim 1, ψ(t) ⊆ Co

(

ψ(t0)∪ψ(t1)
)

⊆ ϕ(S0)∨ϕ(S1).
Thus ϕ(S0 ∨ S1) ⊆ ϕ(S0) ∨ ϕ(S1), whence ϕ preserves joins. �

For any k < ω, for any λ > 0 small enough, and for any convex polytope P ⊆ R
k,

let Pλ denote the (nonempty) convex polytope which is a subset of P , whose faces
are parallel to the corresponding faces of P , and ρ(Pλ, P ) = λ, where ρ(A,B)
denotes the distance between A and B defined by the standard Euclidean metric
ρ. For any x ∈ ExP , let xλ denote the corresponding extreme point of Pλ.

We fix n ∈ ω and consider the polytope Sn+1 defined in the proof of Proposi-
tion 4.1. Let λ > 0 be small enough.
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If A ⊆ n + 1 and |A| = k + 1, for some k < ω, then SA denotes the regular
polytope in R

k with the set of extreme points ExSA = { pi | i ∈ A }. For any
B ⊆ A, we put

HB = {
∑

i∈B

λip
λ
i | λi ∈ R for all i ∈ B }.

For any different i, j ∈ A, let p(i, A, j) be a unique point from the intersection
[pi, pj ] ∩HA\{ j }. We put

T (A, λ, j) = Co
(

{ pi, p(i, A, j) | i ∈ A, i 6= j }
)

.

For any j ∈ A, the convex polytope T (A, λ, j) has two parallel faces: one is the
face SA\{ j } of the polytope SA, the other is the face S′

A\{ j } = Co
(

{ p(i, A, j) | i ∈

A, i 6= j }
)

.

Lemma 4.2. For any j ∈ A, T (A, λ, j) ∩ Sλ
A ⊆ S′

A\{ j }.

Proof. The proof is straightforward. �

We also put U(A, λ, i) = Co
(

{ pi } ∪ { p(i, A, j) | j ∈ A, j 6= i }
)

.

Lemma 4.3. For any i ∈ A, U(A, λ, i) ⊆
⋂

{T (A, λ, j) | j ∈ A, j 6= i }.

Proof. For any j ∈ A, j 6= i, the polytope T (A, λ, j) contains the point pi and the
point p(i, A, j). Moreover, it contains the whole face SA\{ j } whence all the points
p(i, A, k), k 6= i, j. Therefore, U(A, λ, i) ⊆ T (A, λ, j), for all j ∈ A, j 6= i. �

Lemma 4.4. For any i, j ∈ A such that i 6= j, U(A, λ, i) ∩ S′
A\{ j } = { p(i, A, j) }.

Proof. p(i, A, j) ∈ U(A, λ, i) ∩ S′
A\{ j } by the definition of U(A, λ, i) and S′

A\{ j }.

To prove the reverse inclusion, we suppose that z ∈ U(A, λ, i)∩S′
A\{ j }. Then there

are µj ∈ [0, 1], j ∈ A, such that
∑

{µj | j ∈ A } = 1 and z = µipi +
∑

{µjp(i, A, j) |
j ∈ A, j 6= i }. Since S′

A\{ j } is a face and pi /∈ S′
A\{ j }, we have µi = 0 and

{ p(i, A, j) | j ∈ A, j 6= i, µj 6= 0 } ⊆ S′
A\{ j }.

Obviously, p(i, A, k) /∈ S′
A\{ j }, for all k 6= i, j. Thus, µk = 0, for all k 6= i, j,

whence µj = 1 and z = p(i, A, j). �

Lemma 4.5. If qi ∈ U(A, λ, i)\{ p(i, A, j) | j ∈ A, j 6= i }, for all i ∈ A, then

Sλ
A ⊆ int|A| Co

(

{ qi | i ∈ A }
)

.

Proof. For any i ∈ A, we put Bi = Co
(

{ qj | j ∈ A, j 6= i }
)

. Then Bi ⊆ T (A, λ, i),
for all i ∈ A, by Lemma 4.4. Moreover, if Bi ∩ S′

A\{ i } 6= ∅, then there extsts

j ∈ A\{ i } such that qj ∈ S′
A\{ i } ∩ U(A, λ, j) since S′

A\{ i } is a face of T (A, λ, i).

By Lemma 4.4, this implies that qj = p(j, A, i), a contradiction with the choice of
qj . Therefore, Bi ⊆ T (A, λ, i)\S′

A\{ i }.

By Lemma 4.2, we get Sλ
A ∩ Bi = ∅, for all i ∈ A. Thus, for any i ∈ A, Sλ

A is
a subset of the open half-space Xi defined by the hyperplane which contains Bi.
Hence, Sλ

A ⊆
⋂

{Xi | i ∈ A } = int|A| Co
(

{ qi | i ∈ A }
)

. �

Lemma 4.6. There is ε(λ) > 0 such that Sλ
A ⊆ int|A| Co

(

Sε
A\{ i } ∪ S

ε
A\{ j }

)

, for

any ε ∈ (0, ε(λ)] and any i, j ∈ A, i 6= j.
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Proof. We pick ε(λ) > 0 with respect to the property that the extreme point p
ε(λ)
k

of the polytope S
ε(λ)
A\{ i } (of the polytope S

ε(λ)
A\{ j }, respectively) belongs to U(A, λ, k),

for all k ∈ A\{ i } (for all k ∈ A\{ j }, respectively). The desired conclusion follows
then from Lemma 4.5. �

We construct the finite setX which provides an embedding of the lattice Sub∧Bn+1

into the lattice Co(Rn, X). Let v be the center of Sn+1. Let λ0 > 0 be small enough.
Suppose that k < n − 1 and we have already found λ0,. . . , λk > 0 such that
λj ∈ (0, ε(λj−1)], for all 0 < j 6 k. By Lemma 4.6, there exists λk+1 ∈ (0, ε(λk)]
such that, for any A ⊆ n + 1 with |A| = n + 1 − k > 2 and any i, j ∈ A, i 6= j,

we have Sλk

A ⊆ int|A| Co
(

S
λk+1

A\{ i } ∪ S
λk+1

A\{ j }

)

. We put λn = 0. For any nonempty

A ⊆ n + 1 and any i ∈ A, we also put

PA = Sλk

A , U(A, i) = U(A, λk, i), p(i, A) = pλk

i

where k < n+ 1 is such that |A| + k = n+ 1.

Lemma 4.7. For any A ⊆ B ⊆ n + 1 and any i ∈ A, we have U(A, i) ⊆ U(B, i).

Proof. We argue by induction on |B\A|. If |B\A| = 0 then U(B, i) = U(A, i), and
we are done. Let j ∈ B\A. By the induction hypothesis, U(A, i) ⊆ U(B\{ j }, i).
All the extreme points of the polytope U(B\{ j }, i) are in the interior of the face
of U(B, i) which is the convex hull of the set { pi } ∪ { p(i, B, k) | k ∈ B, k 6= i, j }.
Therefore, U(B\{ j }, i) ⊆ U(B, i). �

We define the desired set X by

X = { v } ∪
⋃

{ExPA | A ⊂ n + 1 }.

First we notice the important property of the lattice Co(Rn, X).
We remind that the join dependency relation D is defined for join irreducible

elements a, b of a lattice L, a D b, if a 6= b, and there is a p ∈ L with a ≤ b ∨ p and
a 6≤ c ∨ p for c < p. A D-sequence is a finite sequence a0, . . . , an−1 (n ≥ 2) of join
irreducible elements of L such that ai Dai+1 for all i < n, where the subscripts are
computed modulo n. It is well-known that a finite lattice L is lower bounded iff it
contains no D-cycles (see, for example, Corollary 2.39 in [6]).

Lemma 4.8. The finite lattice Co(Rn, X) is lower bounded.

Proof. If a, b ∈ X\{ v }, then there are A,B ⊆ n + 1 such that a ∈ ExPA and
b ∈ ExPB. In this case, { a }D { b } implies that |B| < |A|. Moreover, { v }D { a },
for any a ∈ X\{ v }, and { a }D{ v } holds for no a ∈ X . Thus, the lattice Co(Rn, X)
does not contain a D-cycle whence it is lower bounded. �

Secondly, we observe that the composition of ψX defined in section 2, and ϕ
given by (2) is a a desired mapping of lattices.

Proposition 4.9. The map ψXϕ : Sub∧Bn+1 → Co(Rn, X) is a lattice embedding.

Proof. Since both ψX and ϕ preserve meets, the composition ψXϕ also does.
If A ∈ B0\B1, for some B0, B1 ∈ Sub∧Bn+1, then x ∈ ψXϕ(B0)\ψXϕ(B1),

where x ∈ ExPn+1\A in the case A ⊂ n + 1 and x = v in the case A = n + 1.
Therefore, the map ψXϕ is one-to-one.
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To prove that ψXϕ preserves joins, it suffices to show that, for any noncompa-
rable sets A0, A1 ⊆ n + 1,

ψ(A0 ∩A1) ∩X ⊆ Co
(

ψ(A0) ∪ ψ(A1)
)

∩X,

where ψ is the map defined by (1). By the definition, we have

ψ(A0 ∩A1) ∩X = ExPA0∪A1
= { p(i, A0 ∪A1) | i ∈ A0 ∪A1 },

when A0 ∪A1 ⊂ n + 1, and

ψ(A0 ∩A1) ∩X = { v },

when A0 ∪ A1 = n + 1. By Lemma 4.7, for any ji ∈ Ai, i < 2, we have p(ji, Ai) ∈
U(Ai ∪ { j1−i }, ji) ⊆ U(A0 ∪A1, ji). Thus, by Lemma 4.5, we get

ψ(A0 ∩A1) ∩X ⊆ Co
(

{ p(i, A0) | i ∈ A0 } ∪ { p(i, A1) | i ∈ A1 }
)

∩X

= Co
(

ψ(A0) ∪ ψ(A1)
)

∩X.

Moreover, for any A0, A1 ⊆ n + 1 such that A0 ∪ A1 = n + 1, we have that v ∈
Co

(

ψ(A0) ∪ ψ(A1)
)

. The proof of the lemma is complete. �

Now we state the main result of this section.

Theorem 4.10. For any finite lower bounded lattice L, there is n ∈ ω and a finite

set X ⊆ R
n such that the lattice Co(Rn, X) is lower bounded and L embeds into

both Co(Rn) and Co(Rn, X).

Proof. According to [1, 8], for any finite lower bounded lattice L, there is n ∈ ω
such that L is isomorphic to a sublattice of Sub∧Bn+1. The desired conclusion
follows from Propositoins 4.1 and 4.9. �
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