7,640 research outputs found

    SaferCross: Enhancing Pedestrian Safety Using Embedded Sensors of Smartphone

    Get PDF
    The number of pedestrian accidents continues to keep climbing. Distraction from smartphone is one of the biggest causes for pedestrian fatalities. In this paper, we develop SaferCross, a mobile system based on the embedded sensors of smartphone to improve pedestrian safety by preventing distraction from smartphone. SaferCross adopts a holistic approach by identifying and developing essential system components that are missing in existing systems and integrating the system components into a "fully-functioning" mobile system for pedestrian safety. Specifically, we create algorithms for improving the accuracy and energy efficiency of pedestrian positioning, effectiveness of phone activity detection, and real-time risk assessment. We demonstrate that SaferCross, through systematic integration of the developed algorithms, performs situation awareness effectively and provides a timely warning to the pedestrian based on the information obtained from smartphone sensors and Direct Wi-Fi-based peer-to-peer communication with approaching cars. Extensive experiments are conducted in a department parking lot for both component-level and integrated testing. The results demonstrate that the energy efficiency and positioning accuracy of SaferCross are improved by 52% and 72% on average compared with existing solutions with missing support for positioning accuracy and energy efficiency, and the phone-viewing event detection accuracy is over 90%. The integrated test results show that SaferCross alerts the pedestrian timely with an average error of 1.6sec in comparison with the ground truth data, which can be easily compensated by configuring the system to fire an alert message a couple of seconds early.Comment: Published in IEEE Access, 202

    A finite element model capable of predicting resin pockets for arbitrary inclusions in composite laminates

    Get PDF
    This work presents the progress in the development of a finite element model capable of predicting resin pockets occurring in composite structures with embedded sensors. The F.E.- model is built using standard tools in ABAQUS software, avoiding the need of specialized coding. Both progresses in material characterization as well as finite element modeling are shown. The model will eventually be used to optimize the shape of an embedded optical fibre interrogator used within the FP7 ‘SmartFiber’ projec

    Embedded Sensors For The Monitoring Of Durability

    Get PDF
    Embedded Sensors For The Monitoring Of Durabilit

    Using embedded sensors for detecting network attacks

    Get PDF
    Embedded sensors for intrusion detection consist of code added to the operating system and the programs of the hosts where monitoring will take place. The sensors check for specific conditions that indicate an attack is taking place, or an intrusion has occurred. Embedded sensors have advantages over other data collection techniques (usually implemented as separate processes) in terms of reduced host impact, resistance to attack, efficiency and effectiveness of detection. We describe the use of embedded sensors in general, and their application to the detection of specific network-based attacks. The sensors were implemented in the OpenBSD operating system, and our tests show a 100 % success rate in the detection of the attacks for which sensors were instrumented. We discuss the sensors implemented and the results obtained, as well as current and future work in the area

    Embedded Sensors for Measuring Surface Regression

    Get PDF
    The development and evaluation of new hybrid and solid rocket motors requires accurate characterization of the propellant surface regression as a function of key operational parameters. These characteristics establish the propellant flow rate and are prime design drivers affecting the propulsion system geometry, size, and overall performance. There is a similar need for the development of advanced ablative materials, and the use of conventional ablatives exposed to new operational environments. The Miniature Surface Regression Sensor (MSRS) was developed to serve these applications. It is designed to be cast or embedded in the material of interest and regresses along with it. During this process, the resistance of the sensor is related to its instantaneous length, allowing the real-time thickness of the host material to be established. The time derivative of this data reveals the instantaneous surface regression rate. The MSRS could also be adapted to perform similar measurements for a variety of other host materials when it is desired to monitor thicknesses and/or regression rate for purposes of safety, operational control, or research. For example, the sensor could be used to monitor the thicknesses of brake linings or racecar tires and indicate when they need to be replaced. At the time of this reporting, over 200 of these sensors have been installed into a variety of host materials. An MSRS can be made in either of two configurations, denoted ladder and continuous (see Figure 1). A ladder MSRS includes two highly electrically conductive legs, across which narrow strips of electrically resistive material are placed at small increments of length. These strips resemble the rungs of a ladder and are electrically equivalent to many tiny resistors connected in parallel. A substrate material provides structural support for the legs and rungs. The instantaneous sensor resistance is read by an external signal conditioner via wires attached to the conductive legs on the non-eroding end of the sensor. The sensor signal can be transmitted from inside a high-pressure chamber to the ambient environment, using commercially available feedthrough connectors. Miniaturized internal recorders or wireless data transmission could also potentially be employed to eliminate the need for producing penetrations in the chamber case. The rungs are designed so that as each successive rung is eroded away, the resistance changes by an amount that yields a readily measurable signal larger than the background noise. (In addition, signal-conditioning techniques are used in processing the resistance readings to mitigate the effect of noise.) Hence, each discrete change of resistance serves to indicate the arrival of the regressing host material front at the known depth of the affected resistor rung. The average rate of regression between two adjacent resistors can be calculated simply as the distance between the resistors divided by the time interval between their resistance jumps. Advanced data reduction techniques have also been developed to establish the instantaneous surface position and regression rate when the regressing front is between rungs

    Smart objects as building blocks for the internet of things

    Get PDF
    The combination of the Internet and emerging technologies such as nearfield communications, real-time localization, and embedded sensors lets us transform everyday objects into smart objects that can understand and react to their environment. Such objects are building blocks for the Internet of Things and enable novel computing applications. As a step toward design and architectural principles for smart objects, the authors introduce a hierarchy of architectures with increasing levels of real-world awareness and interactivity. In particular, they describe activity-, policy-, and process-aware smart objects and demonstrate how the respective architectural abstractions support increasingly complex application

    Advanced microwave embedded sensors for infrastructure health monitoring

    Get PDF
    Microwave sensor systems have been widely investigated for many applications due to their ability to provide non-destructive, noncontact, one-sided and wireless testing. Among these applications infrastructure health monitoring of bridges, building, and dams using microwave sensors, which are mounted on or embedded in composite structures of infrastructure has been attracting an increasing interest. One of the current needs of infrastructure health monitoring includes the detection and monitoring of disbonding and gaps in concrete-based structures, which are also required for simultaneous characterization of concrete. A recently proposed microwave sensor technique exploiting a relatively simple waveguide sensor embedded in a concrete-metal structure such as a concrete-filled steel tube exhibited great potential. However, it suffers from a few drawbacks that need to be solved. This thesis aims to develop and investigate advanced microwave embedded sensors to solve main problems in the current microwave sensory technique including characterization of concrete in concrete-based structures at different stage of its life, size of the interface under inspection, detection and monitoring of a small gap between concrete and dielectric material surfaces and sensitivity to gaps. To achieve this aim the following five research contributions have been made: The first contribution is the methodology for the determination of the complex dielectric permittivity of concrete using both measurement data and simulation results at different stages (fresh, early-aged and dry) of its life. Firstly, it is developed and tested for a single flanged open-ended waveguide sensor with a hardened concrete specimen, and then the methodology is modified for the developed sensors embedded in concrete-based composite structures with fresh, early-age and dry concrete. Modern computational tool CST Microwave Studio and a performance network analyser are used for simulation and measurement, respectively, throughout this research work. The second contribution is a dual waveguide sensor, which is proposed, designed and applied for the detection and monitoring of a small gap in concrete-metal composite structures. It consists of two waveguide sections and a metal plate and uses the transmission of electromagnetic waves along gap when it occurs between the metal plate and concrete surfaces. It provides more measurement data than the single waveguide sensor for characterising concrete-metal structures such as transmission properties of guided waves along the gap and reflection properties of the metal–concrete interface at two different places at the same stage of concrete. As a result, the proposed sensor increases the size of the interface under inspection and sensitivity to the gap using the magnitude of reflection coefficient and magnitude of transmission coefficient together and/or independently. The third contribution is the design and application of a dual waveguide sensor with rectangular dielectric insertions that is proposed and tested for the characterisation of concrete–metal structures at different stages of the concrete life including its fresh stage. The dielectric insertions are designed and implanted in the waveguide sections in such a way that they create the resonant response of the sensor and prevent water and concrete entering the sections. The resonant properties of the sensor allow long-term monitoring of the concrete hydration, including the detection of the transition from fresh to hardened concrete on its first day. The proposed sensor along with the modified algorithm provides the determination of the complex dielectric permittivity of fresh concrete. The fourth contribution is a dual waveguide sensor with tapered dielectric insertions. Each tapered dielectric insertion is designed with a tapered part and rectangular part to reduce wave reflection from the insertions over an entire frequency band. The proposed sensor has improved performance at the resonant responses of a quarter-wavelength resonator formed by an open end at the tapered part and shorted end at the rectangular part of each insertion. The last contribution is the development of dual waveguide sensors with attached dielectric layer and their application for the detection and monitoring of gap between dielectric materials and concrete in metal-dielectric layer-concrete composites as well as the determination of complex dielectric permittivity of concrete at different stages of its life. One of the most attractive designs is the sensor with empty waveguide sections due to its simplicity and robustness, and capability of the layer for preventing penetration of the obstacles and water, and for optimization of the sensor. On the other hand, the sensors with dielectric insertions and the layer demonstrate a significantly higher magnitude of transmission coefficient. The proposed DWSs can be applied to characterise fresh concrete in a dielectric mould or on-line, and to investigate the shrinkage of different categories of concrete
    corecore