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Abstract 

Microwave sensor systems have been widely investigated for many applications 

due to their ability to provide non-destructive, noncontact, one-sided and wireless 

testing. Among these applications infrastructure health monitoring of bridges, 

building, and dams using microwave sensors, which are mounted on or embedded in 

composite structures of infrastructure has been attracting an increasing interest. One 

of the current needs of infrastructure health monitoring includes the detection and 

monitoring of disbonding and gaps in concrete-based structures, which are also 

required for simultaneous characterization of concrete. A recently proposed 

microwave sensor technique exploiting a relatively simple waveguide sensor 

embedded in a concrete-metal structure such as a concrete-filled steel tube exhibited 

great potential. However, it suffers from a few drawbacks that need to be solved. 

This thesis aims to develop and investigate advanced microwave embedded sensors 

to solve main problems in the current microwave sensory technique including 

characterization of concrete in concrete-based structures at different stage of its life, 

size of the interface under inspection, detection and monitoring of a small gap 

between concrete and dielectric material surfaces and sensitivity to gaps. To achieve 

this aim the following five research contributions have been made: 

The first contribution is the methodology for the determination of the complex 

dielectric permittivity of concrete using both measurement data and simulation 

results at different stages (fresh, early-aged and dry) of its life. Firstly, it is developed 

and tested for a single flanged open-ended waveguide sensor with a hardened 

concrete specimen, and then the methodology is modified for the developed sensors 

embedded in concrete-based composite structures with fresh, early-age and dry 

concrete. Modern computational tool CST Microwave Studio and a performance 

network analyser are used for simulation and measurement, respectively, throughout 

this research work.   

The second contribution is a dual waveguide sensor, which is proposed, 

designed and applied for the detection and monitoring of a small gap in concrete-

metal composite structures. It consists of two waveguide sections and a metal plate 
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and uses the transmission of electromagnetic waves along gap when it occurs 

between the metal plate and concrete surfaces. It provides more measurement data 

than the single waveguide sensor for characterising concrete-metal structures such as 

transmission properties of guided waves along the gap and reflection properties of 

the metal–concrete interface at two different places at the same stage of concrete. As 

a result, the proposed sensor increases the size of the interface under inspection and 

sensitivity to the gap using the magnitude of reflection coefficient and magnitude of 

transmission coefficient together and/or independently.  

The third contribution is the design and application of a dual waveguide sensor 

with rectangular dielectric insertions that is proposed and tested for the 

characterisation of concrete–metal structures at different stages of the concrete life 

including its fresh stage. The dielectric insertions are designed and implanted in the 

waveguide sections in such a way that they create the resonant response of the sensor 

and prevent water and concrete entering the sections. The resonant properties of the 

sensor allow long-term monitoring of the concrete hydration, including the detection 

of the transition from fresh to hardened concrete on its first day. The proposed sensor 

along with the modified algorithm provides the determination of the complex 

dielectric permittivity of fresh concrete. 

The fourth contribution is a dual waveguide sensor with tapered dielectric 

insertions. Each tapered dielectric insertion is designed with a tapered part and 

rectangular part to reduce wave reflection from the insertions over an entire 

frequency band. The proposed sensor has improved performance at the resonant 

responses of a quarter-wavelength resonator formed by an open end at the tapered 

part and shorted end at the rectangular part of each insertion.  

The last contribution is the development of dual waveguide sensors with 

attached dielectric layer and their application for the detection and monitoring of gap 

between dielectric materials and concrete in metal-dielectric layer-concrete 

composites as well as the determination of complex dielectric permittivity of 

concrete at different stages of its life.  One of the most attractive designs is the sensor 

with empty waveguide sections due to its simplicity and robustness, and capability of 
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the layer for preventing penetration of the obstacles and water, and for optimization 

of the sensor. On the other hand, the sensors with dielectric insertions and the layer 

demonstrate a significantly higher magnitude of transmission coefficient. The 

proposed DWSs can be applied to characterise fresh concrete in a dielectric mould or 

on-line, and to investigate the shrinkage of different categories of concrete. 



 

Chapter 1 

Introduction 

 

1.1 Introduction 

Civil structures are very common in every society around the globe regardless of 

culture, religion, geographical location and economic development. It is difficult to 

imagine a modern society without complex infrastructure such as buildings, roads, 

bridges, tunnels, dams and power plants. With increased demand, the number of 

complex and innovative structures is also increasing. However, damages and defects 

in these structures may cause serious consequences in terms of human life, economy, 

and environment. The process of providing accurate information concerning 

structural condition and performance of these civil engineering infrastructures, 

referred to as Infrastructure Health Monitoring (IHM), is very important for their 

reliable and safe operation. 

Composite structures including concrete-based structures have been widely used 

in infrastructure engineering applications such as high-rise buildings, bridges and 

offshore marine platforms. A concrete-filled steel tube (CFST) is an example of these 

structures as shown in Figure 1.1a. CFSTs are very attractive in infrastructure 

engineering due to their high strength, large stiffness and ductility, corrosion 

resistance, economy in construction and reduced local buckling provided by infill 

concrete [1] – [5]. However, since two types of materials are used to fabricate CFST 

members, it is expected that there may be imperfections originating from both the 

steel tube and its core concrete in CFST. It has been shown that steel imperfections 

and/or imperfections of concrete caused by not proper manufacturing process and/or 

its natural shrinkage may lead to gap between steel and concrete surfaces of CFST 

which reduces compressive and flexural behaviour of CFST members [3], [5], [6]. 

Figure 1.1b illustrates schematic of cross-sectional view of circular and rectangular 

CFSTs with a small gap between steel tube and concrete. The existence of gap 

should be detected and monitor at different stage of CFST life to avoid the failure of 

structures. In general, research study related to detection and monitoring small gap is 
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still required to fill gaps in our knowledge of concrete behaviour including its 

disbonding and shrinkage in concrete-based composite materials. 

Microwave sensors have great advantages and potential for material 

characterization and quality assessment of concrete-based materials, and monitoring 

critical parts of infrastructure [10]. However, there are no reliable microwave sensors 

for fresh and early-age concrete characterization as well as for the detection and 

monitoring of debonding gaps between concrete and other materials. 

 

Figure 1.1: (a) Photograph of a high-rise building constructed with CFSTs, and (b) 
schematic of cross-sectional view of (left) circular and (right) rectangular CFST 
showing a circumferential gap between steel tube and core concrete (not-to-scale). 

Motivated by this situation, it is desirable to develop advanced microwave 

sensors which can be used to overcome the drawbacks of existing sensors for IHM 

including microwave ones. In this thesis, advanced microwave sensors will be 

developed for the characterization of concrete and concrete-metal composites to 

detect and monitor debonding gaps between concrete and other materials. 

 

1.2 Research Background 

A few methods have been applied for detecting the gaps in concrete-based 

structures. They include conventional acoustic methods (sonic, ultrasonic and 

acoustic emission technique), guided wave techniques [7] and piezoelectric 

(b) 

(a) 

Concrete 

Gap Steel tube 

Concrete 

Steel tube Gap 
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technologies using wavelet packet analysis [8], [9]. However, these techniques 

demonstrated low sensitivity and faced challenges to be applicable especially for 

CFST, since the real debonding gap between concrete and metal are in the range 

from ~0 to 3 mm as reported in [6]. To overcome this limitation, the application of 

microwave sensor technique has been proposed for the first time in [10] which 

explores a microwave single open-ended waveguide sensor along with a 

reflectometer. Preliminary investigations into the feasibility of this technique for the 

detection and monitoring of gap between concrete and steel surfaces have revealed 

promising results [10]. However, for the application of this technique in practice, 

several issues should be resolved to use advantages of microwave sensory techniques 

properly. 

Microwave sensory techniques have been used for non-destructive testing and 

evaluation of concrete based materials for decades [11] – [24]. For example, a 

microwave reflectometry with an OEW sensor has been applied for the determination 

of electromagnetic properties of cement-based materials [12] – [15], for the detection 

and evaluation of disbonds between concrete and CFRP laminates [16], and cracks in 

concrete [17] – [19]. In addition, microwave sensing of displacement in the presence 

of reinforced concrete has been experimentally tested for structural health monitoring 

of concrete structures [20]. Besides, a dual open-ended coaxial sensor system has 

been studied to determine complex permittivity of liquid specimen from two 

magnitudes of reflection coefficient [21]. Furthermore, a dual waveguide probe was 

used for non-destructive characterization of a free-space-backed magnetic material 

[22]. 

 

1.3 Statement of Research Problem 

The investigation into the feasibility of measurement sensory approaches with 

microwave techniques for addressing practical challenges of IHM, includes 

experimental study and numerical investigation using computational tools such as 

CST Microwave Studio (CST) [25] which is a very powerful and useful tool for this 

purpose. However, knowledge of electromagnetic properties of concrete is required 

for effective and accurate modelling of sensors and the structure under investigation, 

and numerical study. Another problem related to the characterization of concrete and 
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its interfaces with other materials using a single waveguide sensor is that the area of 

interface under inspection, which is covered by one sensor arrangement, is small and 

part of this area is the interface between air or dielectric insert and concrete [10]. 

Therefore, there is a demand of advanced sensors for the detection and monitoring of 

small gaps in concrete-based composite structures, and for determining the 

electromagnetic properties of concrete at different stages of its life at the place of 

measurement. 

 

1.4 Research Objectives 
 

The main aim of this research is to design and develop advanced microwave 

sensors for the detection and monitoring of small gaps in concrete-based composites 

similar to those that are used in infrastructures such as concrete-filled steel tubes. To 

achieve the aim, these sensors should be embedded in the structure under test and 

designed in such a way that they can provide knowledge of electromagnetic 

properties of concrete in the place of detection and monitoring of disbonding gap at 

different stages of concrete life. Therefore, the objectives of this thesis are outlined 

as: 

 To propose and apply a methodology for the determination of complex 

dielectric permittivity of concrete using the measurement data and 

simulation results obtained with a single open-ended waveguide sensor. 

To verify this methodology, investigate the sensitivity of the reflection 

properties of concrete specimen to the changes in waveguide aperture–

specimen arrangement. 

 

 To design, develop and validate a microwave dual waveguide sensor for 

the detection and monitoring of a small gap between concrete and metal 

surfaces, and characterization of concrete. To use these data in a proper 

way, a modified algorithm for the determination of complex dielectric 

permittivity of concrete using the measurement data and simulation 

results should be developed, and sensitivity of the proposed dual 
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waveguide sensor to gap and variations in dielectric properties of 

concrete should be analysed. 

 
 To design, develop and apply microwave dual waveguide sensors for 

measuring disbonding gap in concrete-based composites at different 

stages of concrete life including fresh concrete. For this purpose, 

dielectric insertions implanted in the waveguide sections of the senor 

should be designed and optimized to prevent penetration of concrete 

obstacles in the sections, and to extend capability of the sensors using the 

resonant properties of the insertions. Matching between the insertions 

and empty parts of the waveguide section should be provided. The 

modified algorithm for determining the complex dielectric permittivity of 

concrete in concrete-metal composites at different stages of its life using 

the proposed sensors should be developed and the sensitivity of the 

proposed sensors to the variations of dielectric permittivity and geometry 

of the insertions should be analysed.  

 
 To propose, design and apply dual waveguide sensors with an attached 

dielectric layer for the detection and monitoring of gap between concrete 

and dielectric materials interfaces, and for the determination of dielectric 

properties of concrete in concrete-dielectric composites at different 

stages of its life. One of the most attractive designs is the sensor with 

empty waveguide sections due to their simplicity and robustness, and 

capability of the layer for preventing penetration of the obstacles and 

water, and for optimization of the sensor. However, the sensors with 

dielectric insertions and layer may have better performance and new 

applications. 

 

1.5 Research Methodology 
 

To fulfil the objectives of this study, the research will be conducted into two 

programs; namely, theoretical program and experimental program. Figure 1.2 shows 

parts of these programs and links between them.  
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Figure 1.2: Flow chart of research methodology. 
 

1.5.1 Theoretical Program 

The theoretical program of this research mainly consists of modelling, 

simulation and calculation-based post processing studies which include: 
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• Determination of dielectric permittivity 
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Modern electromagnetic computational software CST Microwave Studio module 

of  CST Studio Suite 2014 package has been extensively used in this research study 

to create models of proposed sensors along with concrete-metal specimens, and to 

simulate the electromagnetic performance of those sensors at different properties of 

concrete-metal composite structures. Time domain solver, adaptive mesh setting 

features and material library of CST Microwave Studio will be used in these studies 

to achieve desired design parameters. Furthermore, MATLAB software package has 

been used for post pressing and plotting the exported simulation results and 

measurement results from CST Microwave Studio environment and performance 

network analyser, respectively. 

 

1.5.2 Experimental Program 

The experimental program of this research study involves fabrication of the 

proposed sensors, measurement approaches including arrangement of setups and 

preparation of specimens, measurements, comparison with simulation results and 

optimization of sensors. Measurement of reflection and transmission coefficients of 

the sensors embedded in composite structures will be conducted to determine 

dielectric properties of materials and to determine gaps. All measurement related 

activities including measurement of sensor performance and measurement error 

analysis will be conducted using performance network analyser (PNA). Calibration 

kits, waveguide adapters, cables and associated tools are also used for preparing the 

experimental setup with the proposed sensors. 

The Agilent N5225A PNA shown in Figure 1.3 has been used as the main 

measurement instrument of this research study. It can generate 10 MHz to 50 GHz 

microwave signals having two ports with single source. This PNA as shown in has 

high output power (up to +13 dBm) and a wide power sweep range (up to 38 dB) 

with best dynamic accuracy of 0.1 dB compression with +12 dBm input power at the 

test port. In measurement with the proposed sensors, the PNA is used to measure 

magnitude or/and phase of reflection and transmission coefficients for different 

specimens. Measurement data are received and stored in PNA for further processing. 

This basic measurement procedure is followed throughout the research study. 
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Figure 1.3: Agilent N5225A performance network analyser (PNA). 

 

1.6 Research Contributions 

In this thesis, advanced microwave sensors have been developed and employed 

for infrastructure health monitoring applications. The major contributions of this 

thesis include: 

 A methodology are proposed and applied for the determination of the 

complex dielectric permittivity of concrete in concrete-based composite 

structures at different stages of its life using measurement data and 

simulation results. 

 

 Novel microwave dual waveguide sensor (DWS) with empty rectangular 

waveguide sections is proposed, designed and applied for the detection 

and monitoring of small gap in concrete-metal composite structures. 

This sensor provides more measurement data than the single waveguide 

sensor for characterisation of concrete-metal structures including 

transmission properties of wave propagated along the gap between the 

metal and concrete surfaces, reflection properties of the concrete-metal 

interface at two different places at the same stage of concrete, and data 

for a larger area of the interface under inspection. 

 
 Novel DWS with rectangular dielectric insertions is proposed for 

characterization of fresh concrete in concrete-metal composites 

including a long-term monitoring of the concrete hydration, the 
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determination of the complex dielectric permittivity of concrete, and for 

the detection and monitoring of disbonding gap. The resonant response 

of insertions in the proposed sensor increases the sensitivity of the 

sensor, in addition to capability of the insertions to prevent water and 

concrete entering the waveguides,  

 
 Novel DWS with tapered dielectric insertions is proposed for 

characterization of concrete at different stages of its life, i.e., from fresh 

to dry concrete, in concrete-metal composites. Compared to the DWS 

with rectangular dielectric insertions, a significant improvement of 

matching between an empty part and a dielectric-filled part is achieved 

in the proposed DWS with the tapered dielectric inserts. It results in 

increasing of dynamic range of measurement using the reflection 

coefficient. In addition, the increase of 1dB - 2 dB in the magnitude of 

transmission coefficient is also achieved. 

 
 Novel DWSs with attached dielectric layer are proposed for the 

detection and monitoring of gap between concrete and dielectric material 

surfaces, and for characterization of fresh concrete. The simple and 

robust sensor is the DWS with empty waveguide sections and dielectric 

layer. However, better performances are achieved in DWSs with 

dielectric insertions and layer. The DWS with tapered dielectric 

insertions and layer demonstrates the highest magnitude of transmission 

coefficient over an entire frequency band. The proposed DWSs can be 

applied to characterise fresh concrete in a mould with a plastic wall or 

on-line, and to investigate the shrinkage of different categories of 

concrete. 

 
 

1.7 Publications 

The following papers that are either published or submitted to peer-reviewed journals 

and conference proceedings are the outcome of this thesis: 
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1.8 Outline of the Thesis 

This thesis is organised in eight chapters including this Chapter 1 and is outlined 

as follows: 

Chapter 2 presents a comprehensive literature review on sensing techniques for 

infrastructure health monitoring including microwave sensors and their applications. 

Research studies on CFST with initial concrete imperfection and debonding are also 

reviewed. Furthermore, few methods of detecting gap between concrete and metal, 

and various microwave techniques for non-destructive testing and evaluation of 

concrete using the open-ended waveguide sensor are presented. Finally, summary of 

the findings from the literature and identification of the research gaps is presented. 

Chapter 3 presents the developed methodology for the determination of complex 

dielectric permittivity of concrete using measurement data and simulation results 

obtained with the single open-ended waveguide sensor. The sensitivity analyses of 

the reflection properties of the concrete-metal specimen to the changes in the 

waveguide aperture–specimen arrangement are also provided in this chapter.   

Chapter 4 describes the design and development of microwave dual waveguide 

sensor. Measurement and simulation results for the detection and monitoring of small 

gap between a concrete surface and the metal plate using the proposed DWS are 

presented here in details. The results of numerical investigations for the detection of 

cracks inside dry concrete specimen using the proposed DWS are also presented in 

this chapter. 

Chapter 5 presents microwave DWS with rectangular dielectric insertions which 

is proposed to determine the complex dielectric permittivity of fresh concrete in 

concrete-metal composites and to measure a small gap between concrete and metal 

plate. The sensitivity of the proposed sensor to the variations of dielectric 

permittivity and geometry of insertions are analysed.       

Chapter 6 presents the design and optimization of empty DWS with attached 

dielectric layer and dielectric-loaded DWS with attached dielectric layer. Simulation 

results and experimental verifications for measuring gap between concrete and 

dielectric layer using the optimized sensors are also presented in this chapter. 
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Chapter 7 describes the design, modification and results of parametric study of 

the proposed DWS with tapered dielectric insertions with and without attached 

dielectric layer. Measurement and simulation results for the detection and monitoring 

of gap between dry concrete specimens and metal plate are also presented. 

Furthermore, comparison between DWS with rectangular dielectric insertions and 

DWS with tapered dielectric insertions is discussed in this chapter. 

In chapter 8, the conclusions of this thesis are summarised and finally some 

recommendations for future research works are presented.  

 

 

 



 

Chapter 2 

Literature Review 

 

2.1 Introduction 
This chapter reviews publications related to infrastructure health monitoring, 

focusing on sensing techniques and their applications in concrete and concrete-based 

composite structures. Publications related to disbond or debonding gaps in a 

concrete-filled steel tube (CFST), and existing sensory techniques for detecting and 

monitoring such gaps are also reviewed. Finally, it presents a summary of research 

gaps in the monitoring of the infrastructure health of concrete–metal structures such as 

CFSTs. 

 

2.2 Infrastructure health monitoring 
Structural health monitoring (SHM) is the process of implementing damage 

identification strategies for aerospace, civil and mechanical engineering structures at 

every moment of their lifespan. This process involves the observation of the structure 

over time using periodical measurements, and the extraction of defect-sensitive 

features from such measurements, then through analysis, determining the current 

state of the system’s health [28]. For long-term SHM, the output of this process is the 

updated information regarding the ability of the structure to continue performing its 

intended function in light of ageing and accumulated damage resulting from the 

operational environment [29]. At the current stage of sensor, communication and 

signal-processing technologies, it is now possible to measure structural properties 

and behaviour to make appreciable assessments of defect levels and predict future 

courses of structural health [30] and enable the owners, builders, designers and users 

to make rational decisions about the safe functionality of structures. Various forms of 

SHM (visual inspection, tap tests) have been employed in different structural sectors 

for at least half a century [31]; however, SHM has evolved from manual checking to 

go far beyond data collection procedures and limited processing, to include smart 

sensors, local data storage and transmission systems, central data management 
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systems, local (embedded) or central data analysis, reporting and alerting, diagnosis 

with respect to structural knowledge, and prognosis of future performance [29], [32]. 

Civil engineering structures are generally the most expensive national 

investment and asset of any state [33]. In addition, civil engineering structures have a 

longer service life than other commercial products, and are costly to maintain and 

replace once they are built. Further, there are few prototypes in civil engineering, and 

each structure tends to be unique in terms of materials, design and construction [34]. 

The most important civil infrastructures include high-rise buildings, bridges, towers, 

tunnels, highways, dams, port facilities and nuclear power plants. Each of these 

structures deteriorates with time. The deterioration is mostly due to the ageing of 

constituent materials, continuous use, overloading, environmental exposure 

conditions, insufficient maintenance, and difficulties encountered in proper inspection 

methods. All of these factors contribute to material and structural degradation; 

internal and external damage may result in severe structural failure, causing significant 

safety and financial concerns. To prevent this circumstance, SHM has been 

developed [35] for civil engineering applications; it is referred to as infrastructure 

health monitoring (IHM) hereafter in this document. 

Ideally, health monitoring of civil infrastructure consists of determining, by 

measured parameters, the location and severity of damage in buildings or bridges as 

they happen [36]. However, current state-of-the-art methods of health monitoring do 

not provide sufficiently accurate information for determining the extent of the 

damage [33]. Currently, these methods can only determine whether or not damage is 

present in the entire structure. Such methods are referred to as ‘global health 

monitoring’ methods [28], [36]. They are important because often merely knowing 

that damage has occurred is enough to initiate further examination of the structure to 

find the exact location and severity of the damage. Non-destructive evaluation 

methods are used to find the damage [34], [36]. Methods such as ultrasonic guided 

waves [37] to measure the state of stress, or eddy current techniques [38] to locate 

corrosion and cracks can determine the exact location and extent of the damage; 

these are ‘local health monitoring’ methods. Therefore, both global and local health 

monitoring are necessary [36]. However, there is no single IHM method that 

addresses all requirements. 
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2.3 Sensors and Sensing Techniques in IHM 
Sensors are the first and most important component in any IHM system for civil 

engineering structures. They not only measure the physical quantities and produce 

certain information about the state of a structure, but also form a starting point from 

which to interact with other IHM components. Because of their dissimilar size, 

geometry, measurement parameters and technology, sensors used in IHM may be 

categorised in different ways. Figure 2.1 shows the general sensor categories. 

 

Figure 2.1: Sensor categories [32]. 

In terms of their technology, sensors are classified as electrical, optical, 

mechanical and so on, as they transduce physical phenomena into corresponding 

signals. Electrical sensors use electrical and/or electromechanical phenomena for 

transduction. Most electrical sensors ultimately rely on the measurement of current. 

The development of miniature high-impedance circuits has enabled the measurement 

of a variety of quantities: charge, capacitance, inductance, resistance or voltage, 

without regard to the details of the measurement circuit. Electrical resistance sensors, 

resistive strain gauges, resistive temperature gauges, capacitive sensors and 

piezoelectric sensors are all electrical-quantity-based sensors. The most commonly 

used mechanical sensors are accelerometers which measure acceleration relative to 
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an inertial reference frame; tilt meters, wire tension meters, stress meters and 

pressure gauges may be counted among the other commonly used mechanical 

transducers. Simplicity and reliability are common characteristics of mechanical 

sensors. Depending on measurement type, sensors are used to measure strain, stress, 

temperature, humidity, displacement, motion and so on. Generally, these are operated 

as point sensors; when connected in a network, they are referred to as distributed 

sensors. For example, a wireless sensor may be used to measure a physical 

phenomenon at a node; it is then a point sensor, but is regarded as a distributed 

sensor when connected in a network. Likewise, optical fibres are used as either point 

sensors or distributed sensors. 

The wide range of sensors developed for civil engineering applications all 

require access to, or contain, intelligent features to detect problems [39]. It is 

therefore important to be aware of the existence of the many varieties of sensor and 

associated technologies for IHM. The following subsections describe the general 

types of sensors predominantly used in health monitoring systems for civil 

engineering applications. 

Sensors for Displacement and Gap Detection 

One of the most common types of sensor used for monitoring bridges, dams and 

other large civil structures measures relative displacement. Because of the very large 

scale and geometry changes during the lifecycle of a civil engineering structure, this 

type of sensor has proved very useful in monitoring them [40]. Traditional 

displacement measurements typically use linear variable differential transformers 

(LVDT) or potentiometers connected at two locations on, or at the boundary of, the 

structure, and measure displacements in structures directly [41]. Figure 2.2 shows a 

typical LVDT unit and field application of an LVDT for displacement measurement. 

LVDTs give the position of the object they are mechanically attached to. This is 

converted into a DC voltage to be read by an appropriate device, and does not require 

physical connection to the extension in the same way as a potentiometer. The LVDT 

extension valve shaft (or control rod) moves between primary and secondary 

windings of a transformer, causing the inductance between the two windings to vary. 

This is reflected in the output voltage, which is proportional to the position of the 

valve extension. LVDT-based displacement sensors may be used to measure lateral 
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and axial deformation when studying the influence of the gap between the steel tube 

and concrete core of a CFST member on its compressive and flexural behaviour, as 

shown in Figure 2.3. LVDTs are attractive for measuring displacement for several 

reasons. They are reliable and robust [32] and are also sensitive to temperature 

effects [42]. However, the installation of contact-type displacement sensors such as 

LVDTs requires access to the structure in order to physically connect it to a 

stationary reference point, which is often difficult or even impossible [43]. 

Therefore, non-contact displacement sensors have been intensively studied and 

developed: for example, GPS, laser vibrometer and radar interferometry systems 

[43]–[50]. GPS sensors are easily installable but have limited measurement accuracy, 

usually producing errors of 5–10 mm [45], [46]. Non-contact laser vibrometers are 

generally accurate, but the small measurement range precludes their application for 

monitoring civil engineering structures, since longer-distance measurement requires 

a high-intensity laser beam that is dangerous to human health [47], [48]. 

Interferometric radar systems are capable of high-resolution remote measurement, 

but require a reflecting surface to be mounted on the structure [49], [50]. 

 
Figure 2.2: (a) Typical LVDT unit; (b) field application for measuring displacement 

[32]. 
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Figure 2.3: Displacement transducers for measuring (a) lateral and axial deformation 
for short column, and (b) in-plane displacements of a beam [5]. 

Strain Gauges  

Strain gauges are very widely used in civil engineering testing and research to 

measure structural behaviour under load. Figures 2.4 shows a schematic of a resistive 

or foil strain gauge and a typical application in measuring the axial and transverse 

strain for experimental investigation of the effects of debonding in circular CFSTs 

[6], [51]. These simple sensors are bonded to the structure of interest so that the 

deformation of the structure also causes the sensor to elongate or contract. 

Deformations less than approximately 2 per cent cause a change of resistance of the 

gauge [52], which is typically converted to an absolute voltage using a Wheatstone 

bridge circuit [53]. Resistive strain gauges are small and consequently have relatively 

negligible mass loading effects on the structure; therefore, their response is 

dominated by local effects such as stress concentrations. For large structures this 

means that strain gauge use should be restricted to monitor ‘hot spots’ where damage 

is expected to occur, or on critical components, because large areas require 

correspondingly large numbers of strain gauges for global monitoring [32], [53]. 

Resistive strain gauge measurements are also affected by changes in temperature 

[53], and they may not be suitable for long-term monitoring due to the effect of 

(a) (b) 
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electromagnetic interference (EMI) and other problems related to their endurance 

[54]. 

 
Figure 2.4: (a) Schematic of a foil strain gauge [32]. (b) Strain gauges applied for 
measuring axial and transverse strains in an axial load test [6]. 

Vibrating-wire strain gauges are commonly used to measure strains and 

deformation in large structures, applying the principle that the first mode of natural 

frequency of vibration, f, of a wire fixed at both ends and subjected to tension, is 

given by 

𝑓 = 1
2𝑙
�𝑇
𝑚

 , (2.1) 

where l is the length of the wire; T is the tension in the wire; and m is its mass per 

unit length. The fixed ends of the wire are attached at locations of interest on the 

structure, and the strain along the length of the wire is determined by monitoring 

changes in its natural frequency [53], [54]. 

Vibrating-wire strain gauges are generally much larger than resistive strain 

gauges, typically between 50 and 250 mm long. The gauges themselves may be 

welded directly to the structure of interest, or they may be embedded in concrete. 

Their relatively large size is advantageous in that it measures the strain over a 

(a) 

Substrate 

Solder tabs 
Wire leads 

Etched foil 
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sufficient distance to average out much of the local inhomogeneity inherent in 

concrete [53]. Figure 2.5 shows typical uses of vibrating-wire strain gauges: on a 

concrete slab surface, and in a slab prior to pouring concrete. 

 

Figure 2.5: Vibrating wire strain gauge: (a) surface mounted, and (b) in slab prior to 
concrete placement [32]. 

 

The development of a vibrating-wire strain gauge for measuring small strains in 

concrete beams [55] and in a system for monitoring the structural safety of mega-

trusses using wireless vibrating wire strain gauges [56] have also been also reported. 

Fibre Optic Sensors 

Fibre optic sensors use light both for transduction and for signal transmission. 

They act as transducers by modifying the intensity, fast frequency (wavelength), 

slow frequency (time-modulated intensity), polarisation, phase and the coherence of 

the optical signals [30], [57]. Compared to traditional mechanical and electrical 

sensors, fibre optic sensors have certain distinct advantages: their small size, light 

weight, immunity to EMI, immunity to corrosion, and embedding capability [57] – 

[59]; they are employed worldwide for monitoring civil engineering structures. Fibre 

Bragg grating (FBG)-based fibre optic sensors, intensity-based fibre optic sensors 

and interference-based fibre optic sensors are among the most commonly used [59]. 

Figure 2.6 shows the basic cross-section of a fibre optic cable which can be used as a 

fibre optic sensor. The light passes through a cladded glass or plastic fibre core, 

which is embedded in an environmentally protective cover.  

Clamps 
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Figure 2.6: Basic cross-section of fibre optic sensor [32]. 

In the past two decades, a considerable number of investigations have been 

conducted in reviewing the progress of research and development of fibre optic 

sensing technology and its applications for the monitoring of various kinds of 

engineering structures [60]–[64]. López-Higuera et al. [65] summarised the main 

types of fibre optic techniques suitable for structural monitoring and for various fibre 

optic sensor-based engineering scenarios. Strain monitoring of concrete structures 

using fibre optic sensors has been reported in [66], [67]. An FBG-based system with 

embedded displacement and strain transducers were developed for long-term 

monitoring of structural performance was applied to a concrete bridge [68]. Barbosa et 

al. [69] developed a novel weldable FBG sensing system for strain and temperature 

monitoring of steel bridges and for loading tests and health monitoring of a circular 

steel pedestrian bridge. 

 
Figure 2.7: (a) Fibre optic displacement sensor, and (b) long gauge sensor for 
embedment in concrete bridge decks [61]. 
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Bastianini et al. [70] utilised embedded fibre optic Brillouin sensors for strain 

monitoring and crack detection in a historical building. An investigation was carried 

out by Li et al. [71] on the feasibility of the FBG-based monitoring instrumentation 

in an 18-storey building during construction. The sensors were used to monitor the 

strain and temperature of the building at three stages of construction: before concrete 

pouring, during pouring and curing of concrete, and during the construction of 

subsequent upper storeys. A fibre optic sensory system has also been used for 

assessing the health of pipelines subjected to earthquake-induced ground movement 

[72], and for safety monitoring during railway tunnel construction [73]. 

 
Figure 2.8: (a) Two rebars in a first-storey horizontal beam bonded with FBG 
sensors; (b) the lower parts of two rebars in a vertical underground column bonded 
with FBG sensors [71]. 

Smart Aggregates: Multifunctional Sensors 

Recently developed smart aggregates are formed by embedding a waterproof 

piezoelectric patch with lead wires into a small concrete block. The proposed smart 

aggregates are multi-functional, performing three major tasks: early-age concrete 

strength monitoring, and impact detection for crack and structural health monitoring 

[74]. Piezoelectric transducers are very fragile and easily damaged by the vibrator 

during the pouring of concrete structures. To protect it, the piezoelectric patch is first 

coated with an insulating material to prevent water and moisture damage then 

embedded, as shown in Figure 2.9. The proposed smart aggregates can then be 

embedded at the desired locations in the larger concrete structure before pouring. The 

smart aggregate-based active sensing system shown in Figure 2.9b was developed for 
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monitoring the health of large-scale concrete structures [74]; the piezoelectric 

transducer in one smart aggregate is used as an actuator to send excitation signals. 

The piezoelectric transducers in the other smart aggregates act as sensors. The crack 

or damage inside the concrete structure acts as stress relief in the wave propagation 

path. The amplitude of the wave and the transmission energy decrease when a crack 

is present. The magnitude of the drop in transmission energy is then correlated with 

the extent of the internal damage. 

 

 

Figure 2.9: (a) Three fabricated smart aggregates, and (b) block diagram of a 
piezoelectric-based active sensing system [74]. 

An investigation of water-presence detection in a concrete crack using smart 

aggregates was conducted by Kong et al. [75]. The use of a piezoceramic-based 

smart aggregate was successfully applied to the health monitoring of concrete 

structures under both static loading [76], [77] and seismic excitation [78], [79]. In 

those studies, a number of smart aggregates were embedded in concrete structures 

whose health state was evaluated by monitoring the signals recorded by the smart 

aggregates. Combined smart aggregates and piezoceramic patches for health 

monitoring of concrete structures have been reported, in which the smart aggregate 

embedded in a concrete beam acted as actuator (or transmitter) and piezoceramic 

patches attached to the surface of the concrete beam acted as sensors [80].  

(a) 

(b) 
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MEMS sensors 

Micro-electromechanical system (MEMS) sensors are claimed as the smallest 

functional machines currently engineered by humans [81]. Development of micro 

machines began as early as the 1970s but, since 1995, there has been significant 

progress due to the variety of new materials and bulk micromachining processes, 

which has led to new MEMS applications [82]. A MEMS is a collection of 

microsensors and actuators which both sense their environment and have the ability 

to react to changes in that environment by the use of microcircuit control [83]. They 

include, in addition to the conventional microelectronics packaging, integrating 

antenna structures for command signals into micro-electromechanical structures for 

the sensing and actuating functions. MEMS combine the signal processing and 

computational capability of analogue and digital integrated circuits with a wide 

variety of non-electrical elements (e.g., pressure, temperature, chemical, stress/strain 

and acceleration). MEMS sensing technology brings three advantages to its 

applications to civil infrastructure: miniaturisation, multiple components and 

microelectronics [83]. A typical MEMS chip is shown in Figure 2.10a; Figure 2.10b 

shows a packaged MEMS sensor. 

MEMS have been developed for many areas, including in the medical and 

automotive industries [84]. Furthermore, a number of research projects have 

explored the application of MEMS technology to help enhance structural health 

monitoring practices in civil engineering (e.g., smart pebbles, a pavement strain-

monitoring system, a roadway ice-detection system, etc.) [85]. By incorporating 

MEMS sensor technology into highway infrastructure, there are potential benefits 

that include improved system reliability, improved longevity and enhanced system 

performance, improved safety against natural hazards, and lower lifetime costs in 

both operation and maintenance [86]. Temperature and moisture monitoring in 

concrete structures using embedded MEMS sensor have also been reported [83]. 
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Figure 2.10: (a) MEMS chip; (b) packaged MEMS sensor [83]. 

 
2.4 Microwave sensors and their applications 

Presently existing standard sensors used in civil infrastructure, such as strain 

gauges and displacement sensors, may not always be capable of sensing the 

behaviour of critical parts of the infrastructure. For instance, strain is one of the most 

important physical parameters that provide information about loading, boundary, 

fatigue and material conditions. Traditional strain gauges are reliable, practical and 

inexpensive; however, they require a wired physical connection and this is not 

suitable for structural health monitoring of large-scale civil infrastructure systems. 

Instead, microwave sensor technology may provide wireless strain sensor networks. 

Moreover, microwave sensors and techniques offer advantages such as non-contact, 

one-sided inspection capability and the ability to penetrate into dielectric materials and 

interact with their internal structure. In this section, some microwave sensors and the 

common applications of existing microwave sensors in civil engineering structures 

will be presented. 

2.4.1 Microwave Displacement and Strain Sensors 

A quarter-wavelength microwave resonator sensor has been proposed for 

displacement measurement [92]. The resonator consists of an empty rectangular 

(a) 

(b) 
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waveguide section, a metal plate and a dielectric slab inserted into the waveguide 

midway along its wall, as shown in Figure 2.11. The resonator is terminated by a 

movable metal plate with a displacement d (Figure 2.11b) and connected to a 

measurement device such as a reflectometer through a waveguide-coaxial line 

connector and an antenna (not shown here). The magnitude and phase of the 

reflection coefficient is measured and interpreted as the response of the sensor to 

wall displacement. The dielectric slab, which has specific dimensions and shapes for 

particular applications, tends to concentrate the electromagnetic fields in it, thereby 

improving the sensitivity of this approach. It has been shown that the resonant 

frequency of this type of resonator is some 10 times more sensitive to plate 

displacement than the resonant frequency of a conventional half-wavelength resonator 

[93]. For instance, Figure 2.12 shows the resonant response of the proposed and the 

half-wavelength resonator. 

 

Figure 2.11: Schematic cross-section of the dielectric-slab-loaded waveguide 
resonator with a movable metal plate: (a) top view; (b) side view (not to scale) [92]. 

 
 
Figure 2.12: Resonant frequency vs. plate displacement for (a) the proposed resonant 
sensor, and (b) a half-wavelength resonator [92]. 
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The resonant response behaviour of the resonator to wall displacement is 

different from that due to increasing the length of the half-wavelength resonator, 

which causes decreasing resonant frequency as shown in Figure 2.12a. In addition, 

the average sensitivity is estimated from Figure 2.12 to be about 27 GHz/mm for the 

proposed resonator and about 2.5 GHz/mm for the half-wavelength resonator. The 

simulated results of this investigation were verified by the measured results. The 

proposed resonator can be used to construct efficient sensors for non-destructive 

evaluation of metal surfaces and measurements of their displacements. The 

development of microwave displacement sensors for hydraulic devices has been also 

reported [94]. 

Microwave strain measurement sensors exploit the strain-dependent behaviour 

of the electromagnetic waves in the microwave components of the sensing 

mechanism. The basic concept is that when the microwave component (e.g., antenna 

and resonator) is subjected to strain or deformation, its resonant frequency changes 

accordingly. For example, a radio frequency cavity sensor using a 25.4 mm diameter 

copper tube 90 mm long with end plates as the strain or displacement sensing 

element [95] is shown in Figure 2.13a. A rectangular microwave patch antenna 

(Figure 2.13b) has been designed, fabricated and validated for strain measurement 

[96]. Furthermore, Daliri et al. [97] used a circular micro-strip patch antenna (Figure 

2.13c) for structural health monitoring.  

 

Figure 2.13: Microwave strain measurement sensors: (a) resonant cavity sensor [95]; 
(b) rectangular patch antenna sensor with width-direction elongation [96]; and (c) a 
circular micro-strip patch antenna sensor attached to carbon fibre composite material 
[97]. 
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2.4.2 Monitoring of Cure-State of Concrete 

Concrete is one of the most commonly used materials in the construction 

industry around the world. Being a heterogeneous mixture of cement, water, fine 

aggregate, coarse aggregate and air, the quality of cement concrete is highly 

dependent on its composition [98]–[100]. For example, the water/cement ratio (w/c) 

strongly influences the microstructure of the paste and hence its mechanical 

properties, including its compressive strength and durability [99]. Therefore, quick 

and efficient determination of the cure-state and water/cement ratio is an important 

issue. At present there is no reliable and accurate technique that can perform this task 

[101], although the piezoelectric-based transducer technique has been used to 

monitor very early-age concrete hydration [102] and to measure early-age 

compressive strength [103]. Recently, cure-state monitoring of concrete and mortar 

specimens using smart aggregates has also been proposed [104]. However, all such 

techniques require very careful embedding of the piezoelectric patches before 

casting, which is both difficult and time-consuming. 

On the other hand, the microwave near-field sensing technique has been shown 

to have great potential as a direct and non-invasive approach for concrete cure-state 

determination [105]–[108]. Open-ended rectangular waveguides have been used as 

the microwave sensor in conjunction with a performance network analyser (PNA) in 

monitoring early-age concrete samples. This near-field technique is mainly based on 

the microwave reflection and transmission properties of cement-based materials 

[109]. Microwave sensing is easy, quick and applicable for monitoring large-scale in-

situ concrete, and is useful for characterising the material composition of cement-

based materials [110]–[113] and hence for quality control of the concrete mixture in 

its early stages of curing. Evaluation of the compressive strength of cement-based 

materials has also been investigated [114]–[116] using this near-field sensing 

technique. The use of a microwave coaxial probe as sensor has also been reported for 

cement-based material characterisation and compressive strength evaluation [117]–

[119]. 

Another important advantage of using microwave techniques for monitoring the 

concrete cure-state, or for concrete quality assessment in the curing period, for 

characterising concrete and for compressive strength evaluation is that they are direct 
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and non-destructive [120]–[123]. For example, in standard methods of determining 

the strength of concrete, a concrete cylinder of the same material as the structure is 

loaded to failure in a testing machine. Such methods give only indirect information 

about the structure or specimen; they are also time-consuming and involve extra 

budgets. Sometimes several nondestructive methods are combined to ensure reliable 

results [124], [125]. A free-space, far-field microwave non-destructive technique for 

cement-based materials has also been reported [126]. 

2.4.3 Estimation of the Dielectric Permittivity of Concrete 

Precise permittivity determination of dielectric materials is a very important task 

for the ever-increasing numbers of microwave and millimetre-wave applications 

[127]. For example, knowledge of the dielectric properties of building materials such 

as concrete, mortar, brick wall, plywood or gypsum is essential for non-destructive 

investigations of materials and for structural assessment, and also in studies of radio 

signal propagation in both indoor and outdoor environments [128]. Several 

experimental methods have been used to measure the dielectric properties of a 

material: the parallel plate capacitor technique [129], the resonator technique [130], 

[131], the transmission line technique [11], [132]–[136] and the free-space technique 

[137]–[141]. 

In the parallel plate capacitor technique, the dielectric permittivity is measured 

using a perfect capacitor model, and is thus more applicable for a laboratory study 

than for in-situ material characterisation [129]. The resonator cavity technique 

employs closed- and open-cavity configurations in which resonant EM responses are 

measured from the material as a basis for determining the real and imaginary part of 

complex permittivity. This method provides more accurate results than the parallel 

plate capacitor method, but it obtains results for only one frequency at a time [130]. 

Although there are different approaches in transmission-line techniques, 

including a large coaxial closed cell for dielectric permittivity measurement of 

concrete specimens containing aggregates up to 30 mm [142], the open-ended 

coaxial probe [11], [136], [143] and/or a rectangular waveguide probe [144]–[151] is 

the simplest, most robust and most promising approach for dielectric characterisation 

of cement-based materials, especially in construction site conditions. The EM fields 
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at the end of the probe change depending on the interaction with the material being 

tested, and its dielectric permittivity is computed from the measured reflection 

coefficient. The numerical calculation of the reflection coefficient of a rectangular 

waveguide radiating into a dielectric half-space and determination of the dielectric 

constant of the half-space from its measured reflection coefficient have been 

investigated [147], [148]. This method is easy, quick and non-destructive, although 

inaccurate measurements may occur due to the presence of an air gap between the 

sensor and the specimen, and due to the size of the specimen [133]. The free-space 

technique usually uses a horn antenna and radar as the sensor; at higher frequencies, 

multiple reflections pose potential difficulties in estimating the dielectric permittivity 

[137]. 

The combined use of the open-ended rectangular waveguide technique and the 

embedded modulated scattering technique has been investigated for determining the 

dielectric properties of sand [149]–[151]. The measurements of the complex 

permittivity of mortar and materials such as wood and polyvinyl siloxane (PVS) 

rubber using a coplanar waveguide [152] and a complementary split ring resonator 

[153], respectively, have also been reported. In addition, the microwave 

characterisation of layered structures and dielectric sheets using waveguide 

measurements [154]–[157] and computationally intelligent sensor systems [158], 

respectively, have been investigated. It was found in the referenced articles that, of 

the reports on saturated cement-based materials, few used early-aged concrete [11], 

[100], [136], [142], and only one [11] used wet or fresh concrete. Therefore, there is 

a lack of available information on the dielectric properties of fresh and early-aged 

concrete, which is essential for non-destructive assessment of concrete-based 

structures. 

Table 2.1: Cement-based materials reported for determination of complex dielectric 
permittivity  

Materials Age conditions References 

Cement Early age [105] 

Cement Saturated or natural dry [118], [160] 

Concrete Wet/fresh  [11] 
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2.4.4 Detection of Cracks and Corrosion in Concrete 

Detection and characterisation of cracks in cement-based materials is an integral 

part of damage evaluation for health monitoring of civil structures. Novel coaxial 

cable sensors that feature high sensitivity and high spatial resolution have been 

developed for health monitoring of concrete structures using a time-domain 

reflectometry (TDR) [159]. The new sensor was designed based on the topology 

change of its outer conductor, which was fabricated as a tightly wrapped commercial 

tin-plated steel spiral covered with solder. The cracks that developed in concrete 

structures lead to out-of-contact local steel spirals. This topology change results in a 

large impedance discontinuity that can be measured by TDR. The utility of open-

ended rectangular waveguide probes for detecting surface-breaking cracks in cement-

based materials has also been reported [17]. The evaluation of reinforced-bar corrosion 

in concrete has been explored using microwave coaxial and waveguide transmission-

line methods [160]. The detection of rust [160] and corrosion precursor pitting [161] 

under paint, and shallow flaws in metal using a near-field open-ended waveguide has 

been reported [162]. A microwave tomographic imaging technique has been 

developed for the detection of damage inside concrete structures [164]. The formation 

of cracks in glass particles was monitored by the application of linearly polarised 

microwaves [165]. The assessment of the structural integrity of fibre-reinforced 

polymer-strengthened concrete structures has been experimentally investigated using 

a non-invasive microwave technique [166], [167]. Other non-destructive testing 

methods for crack assessment and damage detection in concrete structures have also 

been recorded [168], [169]. 

 

Concrete Early age  [14], [100] [136], [142] 

Concrete Saturated or natural dry 
[11], [18], [128], [129], [138], 

[140], [141], [160] 
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2.5 Detection and Monitoring of Debonding and Gaps in 
Concrete–Metal Structures  

Concrete–metal composite structures have been widely used in infrastructure 

engineering. Steel bar-reinforced concrete and concrete-filled steel tubes used in civil 

and marine structures are examples. It has been shown that imperfections in concrete 

from incorrect manufacturing process and/or natural shrinking of the concrete may 

lead to a debonding gap between the metal and concrete surfaces in CFSTs or in 

reinforced concrete, which reduces the compressive and flexural behaviour of 

structural members [170]–[171], [3]–[6]. Therefore, the presence of possible gaps or 

disbonding should be detected as early as possible to avoid premature failure of 

structures. 

2.5.1 Debonding and Gaps in Concrete–Metal Structures 

In CFST structures, two types of gaps have been reported [170], namely 

circumferential gap and spherical-cap gap, as shown in Figure 2.14. Circumferential 

gap caused by the concrete shrinkage in the radial direction usually appears in a 

vertical CFST member. The different expansion of the outer steel tube and the 

concrete due to temperature difference is another possible cause of circumferential 

gap formation. On the other hand, spherical-cap gaps are more likely to occur in a 

horizontal CFST member, as in CFST arch bridges and CFST truss structures. This 

type of gap mainly originates during the construction process [170], in which the 

hollow steel tubular arch or truss is usually erected and closed first, and then it is 

filled with concrete by means of pumping. In this case, the possible presence of 

residual air combined with the effect of concrete settlement, may lead to the 

spherical-cap gap existing at the top segment of concrete section, as shown in Figure 

2.14b. Figure 2.14c shows an example of an actual circumferential debonding gap in 

a circular CFST. 

Compared with the thickness of the debonding area shown in Figure 2.14a and b, 

it is obvious that the circumferential gap is small but uniform. It has been reported 

that a common value of debonding thickness is 0.5–3.0 mm [171]; if the debonding 

gap exceeds 3.0 mm, retrofitting work needs to be done. It is also pointed out that 

this kind of debonding is almost impossible to avoid. 
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Figure 2.14: Gaps in CFST: schematics of (a) circumferential gap; (b) spherical cap 
gap; and (c) photograph of a circumferential debonding gap [170], [171]. 
 
2.5.2 Sensory Technique for Detecting and Monitoring of Debonding and 

Gaps 

A few nondestructive techniques, including sonic, ultrasonic, acoustic emission 

and guided wave techniques have been used for inspecting distressed areas and inside 

voids in concrete-filled steel pipes [172]; however, most of these techniques require 

access to both ends of the steel pipe or tube, which is not practical for an installed 

CFST. Relatively new methods, such as piezoelectric techniques using wavelet 

packet analysis [9], [173]–[174], have also been investigated for detecting and 

monitoring debonding between the steel and concrete surfaces in CFST. For this 

purpose, three lead zirconate titanate (PZT)-based smart aggregates were positioned 

at different heights in a rectangular CFST column (Figure 2.15), and steel/concrete 

debonding was created artificially by adhering styrofoam plates to the inner surface 

of the steel tube. Experiments showed that a debonding thickness of 4 mm was 

detectable using this technique [173]; however, this is larger than the most 

commonly found width of circumferential debonding gaps. Also, the fragility of PZT 

requires special handling and treatment to ensure that it survives in the concrete and 

functions as designed. Therefore, further research is required for measuring debonding 

gaps in the 0.5–3.0 mm range [173]. 

 

(a) (b) (c) 
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Figure 2.15: CFST specimen with embedded smart aggregates and PZT patches for 
debonding detection [173]. 
 

2.5.3 Microwave Sensors 

Microwave techniques have been applied to detect disbonds in dielectric layered 

materials [175]–[177] using an open-ended rectangular waveguide probe, taking 

advantage of the properties of microwave signals, such as penetration into dielectric 

materials and interaction with flaws in the materials [175]–[176]. Microwave near-

field detection and characterisation of disbonds in concrete structures using fuzzy 

logic techniques has also been reported [178]. However, microwave signals do not 

penetrate metal, posing practical challenges to the use of microwave techniques for 

detecting gaps between metal and concrete, especially in CFST structures. To 

overcome this limitation, a novel microwave sensor technique has been proposed for 

measuring and monitoring gaps in concrete–metal structures [179]. The technique 

explores a simple microwave single open-ended waveguide sensor embedded in the 

metal wall of a CFST [179]. Preliminary investigations into the feasibility of this 

technique for the detection and monitoring of gaps between concrete and steel 

surfaces have revealed promising results. However, knowledge of the 

electromagnetic properties of the concrete in the vicinity of the measurement area at 

different stages of its life, to increase the sensitivity of measurement and expand the 

area of the interface being inspected, are the main challenges of practical 

implementation of this technique. 

Top view 
Perspective view 
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2.6 Summary of Research Gaps 
Infrastructure health monitoring is becoming compulsory for all civil structures, 

mainly for safety and economic reasons; therefore, there are high demands for 

advanced sensory techniques. This literature review has indicated that microwave 

sensors have great advantages and potential for material characterisation and quality 

assessment of cement-based materials, and for monitoring critical parts of 

infrastructure such as a concrete-filled steel tube. Compared to conventional sensors 

such as displacement devices, strain gauges and fibre optic sensors, microwave 

sensors are non-contact, remote, one-sided, wireless, and most of them give easy and 

quick sensing data for in-situ conditions. Another important advantage of microwave 

sensor technology is that there are various microwave techniques that can be 

optimised for particular applications. 

However, there are research gaps that should be filled for the application of such 

sensors in practice. The literature review has shown that there are currently no 

reliable microwave sensors for fresh and early-age concrete characterisation, which 

is highly essential for the initial quality assessment of concrete and associated 

structures, as well as for the detection and monitoring of debonding between concrete 

and metal surfaces. 

The available data for the dielectric properties of concrete at different stages of 

its life starting from fresh to dry is limited. In particular, the lack of such data in the 

vicinity of the sensing area is very critical, since it is required for the modelling and 

simulation to be used for the development and optimisation of microwave sensors. 

Increasing the sensitivity of the sensors to debonding and small gaps, while 

decreasing their sensitivity to changes of environmental conditions, including 

changes in the concrete itself, are also important and challenging tasks. The physical 

protection of recently proposed microwave sensors from penetration of water and 

concrete obstacles in the sensing area, as well as increasing the dimensions of this 

area, require a mechanical solution. These are also electromagnetic problems, since 

the concrete core of the CFST is itself part of the sensor system. 

Overall, the literature review has shown that further advanced sensory 

techniques and methods for IHM of concrete-metal composites are required. 



 

Chapter 3 

Determination of Dielectric Permittivity of Early-Age 
Concrete Specimens  

 

3.1 Introduction 

In this chapter, the dielectric properties of early-age concrete specimens will be 

determined using measured data and simulation results obtained using a microwave 

single waveguide sensor (SWS) attached to concrete specimens. Motivation for this 

research is based on the lack of information on the dielectric properties of early-age 

concrete in the vicinity of a metal–concrete interface. The sensor is based on an 

open-ended rectangular waveguide probe which has been widely used for 

nondestructive testing and evaluation of different materials [121]. This chapter 

describes, for the first time, the complex dielectric permittivity of early-age 

concrete specimens determined using a full computational model that includes the 

open-ended SWS and a concrete specimen as a part of the sensor. For this purpose, 

an algorithm is developed to determine the dielectric permittivity of concrete 

material from the measured magnitude of the reflection coefficient and simulated 

results using CST Microwave Studio software. An analysis of the sensitivity of the 

reflection properties of the metal–concrete specimen to changes in the waveguide 

aperture–specimen arrangement is also provided.  

 

3.2 Background: Microwave Properties of Concrete and Open-
Ended Waveguide Probe 

Every material has a unique set of electromagnetic (EM) properties affecting the 

way in which it interacts with EM electrical and magnetic fields. A dielectric 

material can be characterized essentially by two independent electro-magnetic 

properties: the complex permittivity, ε, and the complex permeability, μ. In general, 

four independent measurements are necessary to establish the magnitudes of both the 

real and imaginary parts of ε and μ. However, most of the common dielectric 

materials, including concrete, are nonmagnetic, making the permeability μ very 
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similar in magnitude to the permeability of free space. Thus, the focus of this section 

is on the complex permittivity, ε, defined by [87] as: 

   ε =  ε′ − 𝑗 ε′′,      (3.1) 

where ε' is the real part of the complex permittivity, and ε'' is the imaginary part. 

Dividing Eq. (3.1) by the permittivity in free space, 𝜀0, the property becomes 

dimensionless and relative to the permittivity of free space: 

    
ε
ε0
 =  

ε′

ε0
 − 𝑗 ε

′′

ε0
 ,    (3.2) 

    ε𝑟 =  ε𝑟′ −  𝑗ε𝑟′′,    (3.3) 

where ε𝑟 is the relative complex permittivity, ε𝑟′  is the real part of the relative 

complex permittivity, or dielectric constant; ε𝑟′′ is the imaginary part of the relative 

complex permittivity, or loss factor; and 𝜀0 is the permittivity in free space (a 

lossless medium) = 8.854 × 10–12 F/m. In conductive materials such as fresh and 

early-age concrete, the loss factor is the effective loss factor ε𝑟𝑒𝑒𝑒
′′  given by [180], 

[181] 

    ε𝑟𝑒𝑒𝑒
′′ =  ε𝑟′′ + 𝑗 𝜎

𝜔ε0
 ,     (3.4) 

where σ is the conductivity; 𝜔 = 2𝜋𝜋; and f  is the frequency. 

The dielectric constant, ε𝑟′ , is a measure of how much energy from an external 

electric field is stored in a material; 𝜀𝑟′  > 1 for most solids and liquids. The imaginary 

part of the relative complex permittivity ε𝑟′′ is a measure of how dissipative or lossy a 

material is to an external electric field and is referred to as the relative loss factor, or 

simply the loss factor. The loss factor ε𝑟′′ is always > 0 and is usually much smaller 

than ε𝑟′  for dielectric materials. 

The ratio of the energy lost to the energy stored in a material is known as the 

loss tangent, 𝑡𝑡𝑡 𝛿, defined as: 

    𝑡𝑡𝑡 𝛿 =  𝜀
′′

𝜀′
=  𝜀𝑟

′′

𝜀𝑟′
 ,                                   (3.5) 

  or 
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     𝑡𝑡𝑡 𝛿 =  
𝜀𝑟𝑒𝑒𝑒
′′

𝜀𝑟′
 .        (3.6) 

  

3.2.1 Plane Wave Method 

Let us consider an incident EM plane wave from free space normal to a half-

space of an arbitrary material [87]. The geometry is shown as a schematic in Figure 

3.1, in which the material half-space at z > 0 is defined by the complex permittivity ε 

and the complex permeability μ.  

We assume that the incident plane wave has an electric field vector oriented 

along the   x-axis and is propagating along the positive z-axis. The incident fields can 

then be written, for z < 0, as 

    𝐸𝚤� =  𝑥�𝐸0𝑒−𝑗𝑘0𝑧 ,    (3.7) 

    𝐻𝚤��� =  𝑦 1
𝜂0

� 𝐸0𝑒−𝑗𝑘0𝑧,    (3.8) 

where 𝜂0is the impedance of free-space and 𝐸0is an arbitrary amplitude. Also in the 
region z < 0, a reflected wave may exist with the form 

    𝐸𝑟��� =  𝑥�𝛤𝛤0𝑒+𝑗𝑘0𝑧,    (3.9) 

    𝐻𝑟���� =  𝑦� 𝛤
𝜂0
𝐸0𝑒+𝑗𝑘0𝑧,    (3.10) 

where Γ is the unknown reflection coefficient of the reflected electric field. In 

Equations (3.9) and (3.10), the sign in the exponential terms has been chosen as 

positive, to represent waves travelling in the −𝑧̂ direction of propagation. 

Similarly, the transmitted field for z > 0 in the lossy medium is written as 

     𝐸𝑡� =  𝑥�𝑇𝑇0𝑒−𝛾𝛾,    (3.11) 

    𝐻𝑡��� =  𝑦�𝑇𝑇0
𝜂
𝑒−𝛾𝛾 ,    (3.12) 

where 𝑇 is the transmission coefficient of the transmitted electric field, and 𝜂 is the 

intrinsic complex impedance of the lossy medium in the region z > 0, defined as 

    𝜂 =  𝑗𝑗𝑗
𝛾

,     (3.13) 
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and the propagation constant 𝛾 =  𝛼 + 𝑗𝑗 

         =  𝑗𝑗√𝜇𝜇�1 − 𝑗𝑗/𝜔𝜔.   (3.14) 
  

The two unknown constants Γ and T are found by applying boundary conditions for 
𝐸𝑥 and 𝐻𝑦 at z = 0. Since these tangential components must be continuous at z = 0, 
we arrive at 

    1 +  𝛤 =  𝛵,     (3.15) 

    
1 − 𝛤
𝜂0

=  𝛵
𝜂
.     (3.16) 

Solving Eqs. (15) and (16) for the reflection and transmission coefficients gives 

    𝛤 =  𝜂 − 𝜂0
𝜂 + 𝜂0

,     (3.17) 

    𝛵 =  1 +  𝛤 

        =  2𝜂 
𝜂 + 𝜂0

.     (3.18) 

An approximate value of the complex dielectric permittivity of a material under test 

conditions can be determined using the measured 𝛤 and/or 𝛵 values; however, 

application of this method is limited by the requirement for a relatively large 

specimen with a plane surface, and the sensitivity to reflected EM waves from the 

edges of the specimen and from components of the parts of measurement setup, 

walls, etc. must be taken into account. 

 

3.2.2 Open-Ended Waveguide Method 

Dielectric property measurement using open-ended rectangular waveguides has 

received significant attention from both the modelling and experimental points of 

view. These works have primarily been focused on the inspection of infinite half 

spaces or multilayered structures [148], [154].  Figure 3.1b is a schematic of a 

waveguide aperture radiating into a half-space of an arbitrary material. In this case, 

errors may occur due to higher-order modes, which have been ignored in many 

published reports which take into account only the influence of the dominant mode. 

This results in errors when the model is used to determine the complex permittivity 
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of materials. Another issue is radiation of EM waves in free space when a waveguide 

with a finite flange is used. Overall, higher-order modes and radiation in free space 

are critical issues for the analytical determination of the complex dielectric 

permittivity of material using this method. In this chapter, a modified waveguide 

method will be developed using measurement of the reflection coefficient as the S-

parameter and a full formulation computation. 

 

Figure 3.1: Schematic of (a) plane wave reflection from, and transmission in, an 
arbitrary medium (normal incidence); and (b) an open-ended waveguide aperture 
radiating microwave signals in a half-space of an arbitrary medium. 

 

3.3 Determination of Dielectric Permittivity of Concrete 
Specimens 

In this investigation, the dielectric permittivity of a concrete specimen was 

determined using the measured reflection coefficient and an algorithm developed 

here for an open-ended single waveguide sensor at R-band (1.7 GHz – 2.6 GHz) and 

X-band (8.2 GHz – 12.4 GHz). A model of the sensor-specimen was created using 

CST Microwave Studio software. In the model, concrete is characterized by its 

dielectric constant and loss tangent. 
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3.3.1 Development of an Algorithm for Determining Dielectric Permittivity 

To determine the complex dielectric permittivity of early-age concrete using the 

measured magnitude of the reflection coefficient, an algorithm was developed as 

shown in Figure 3.2. First, the magnitudes of reflection coefficient Sm of a 

concrete specimen are measured at different locations on the specimen surface and 

the results are averaged. Then a model of a single waveguide sensor (R-band or X-

band) and concrete specimen is constructed to simulate the magnitude of the 

reflection coefficient SS with a guessed value of the complex dielectric 

permittivity, and it is compared with Sm. If the difference between the simulated 

and measured reflection coefficient magnitudes is zero (i.e., SS – Sm = 0), or 

lies within a predefined accuracy level, then the guessed value is the estimated 

complex dielectric permittivity of the concrete being tested. If the difference is not 

within the predefined accuracy level, then another value of the complex dielectric 

permittivity is guessed and new simulated reflection coefficient is compared with the 

measured value of Sm. This process continues until the difference between the 

measured and simulated magnitudes of the reflection coefficient is within the 

accuracy level, and the final guessed value is accepted as the determined complex 

dielectric permittivity of the concrete specimen. 
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Figure 3.2: Proposed algorithm for determining the complex dielectric permittivity of 
concrete using measured and simulated magnitudes of the reflection coefficient. 

 

3.3.2 Measurement Setup and Approach 

Preparation of specimens 

Several concrete specimens of dimensions 250 mm × 250 mm × 250 mm were 

prepared for this investigation in accordance with American Society for Testing and 

Materials (ASTM) standard. The proportions of water, gravel, sand and cement in the 

concrete mix was 0.5 : 2.42 : 1.57 : 1.0. All specimens with moulding cases were 

covered with plastic sheets after casting and cured naturally in outdoor conditions for 

No 

Measure │S│m 

Yes 

End 

Check 

│S│S   - │S│m = 0  

Create the model of the 
SWS-concrete specimen in 

CST 

Simulate │S│S using 
the guessed value 

Compare simulated 
│S│S   with measured 

│S│m 

Guess a value of the dielectric 
permittivity of concrete 

specimen under test 

Guess another value of 
the dielectric permittivity 



Chapter 3 
 

 
 

Page 43 
 
 

two days, then in a laboratory at a temperature of about 24°C and a humidity of 

about 55%. 

A schematic of the measurement setup is shown in Figure 3.3a. The microwave 

properties of the early-age concrete specimen were investigated using a performance 

network analyser (PNA) at R-band (1.7 GHz – 2.6 GHz) and X-band (8.2 GHz – 

12.4 GHz) as shown in Figure 3.3a. Standard R-band and X-band waveguide sections 

(aperture dimensions 109.22 mm × 54.61 mm and 22.86 mm × 10.16 mm, 

respectively) were used as SWSs as shown in Figure 3.3b. The SWSs radiated 

microwave signals into the specimen and picked up the reflected signals that were then 

received and computed by the PNA. Calibration of the setup arrangement at the output 

aperture of the microwave sensors was performed using R-band and X-band 

rectangular waveguide calibration kits. The measurements of complex reflection 

coefficient (Sm) commenced on the second day (hereafter ‘2nd day’) after the 

concrete specimen was prepared, immediately after dismantling the moulding case. 

Measurements were taken from each of the four side surfaces at 10 different 

locations during the first nine days of the curing period. Then the average magnitude 

of the reflection coefficient Sm was calculated for each day from 40 

measurements. Here, the averaged measured data for the 2nd and 9th days are 

presented for the determination of the dielectric permittivity of 2nd and 9th day 

concrete. 

 

Figure 3.3: (a) Schematic of measurement setup; (b) photograph of two SWSs. 
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3.3.3 Simulations using Measured Data 

Different views of R-band and X-band SWSs along with cubic concrete 

specimen models in CST are shown in Figure 3.4. First, as per the developed 

algorithm, the reflection coefficient │S│S over each R-band and X-band was 

simulated for different values of the complex dielectric permittivity of the concrete. 

The simulation results and measurement results at the R-band for 2nd day and 9th day 

are shown in Figures 3.5 and 3.6, respectively. 

 

Figure 3.4: Models of SWSs along with concrete cube specimen in CST at (a) R-
band, (b) X-band; and different views of the R-band SWS with the specimen: (c) side 
view, (d) top view and (e) front view. 

It can be seen from Figures 3.5 and 3.6 that a good agreement between the 

simulated and measurement results was achieved; the relative complex dielectric 

permittivity was determined to be 10.60 – j2.737 at the 2nd day and 5.5 – j1.375 at the 

9th day. It should be mentioned that the best agreement is at frequencies ranging from 

1.95 GHz to 2.2 GHz at the 2nd day, and from 1.7 GHz to 2.15 GHz at the 9th day. 
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Figure 3.5: Measured and selected simulated magnitude of reflection coefficient vs. 
frequency for 2nd day concrete at R band. 

 

Figure 3.6: Measured and selected simulated magnitude of reflection coefficient vs. 
frequency for 9th day concrete at R band. 

 

Figures 3.7 and 3.8 present the measured and simulated magnitude of reflection 

coefficient vs. frequency for 2nd day and 9th day concrete, respectively, at X band. 
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Consequently, the relative complex dielectric permittivity of the concrete specimen 

was determined to be 10.15 – j1.537 at 2nd day and 4.8 – j0.864 at 9th day. 

 

Figure 3.7: Measured and selected simulated magnitude of reflection coefficient vs. 
frequency for 2nd day concrete at X band.  

 

Figure 3.8: Measured and selected simulated magnitude of reflection coefficient vs. 
frequency for 9th day concrete at X band. 
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3.4 Sensitivity Analysis 

During the measurement of the reflection coefficient, measurement errors may 

occur due to several sources, including roughness of the surface of the concrete 

specimen, the heterogeneous nature of the concrete specimen, surface-wave and 

radiation losses. These affect the accuracy and reliability of the results. Experimental 

investigations into the influence of such sources are time consuming tasks. The 

development of advanced computational tools such as CST Microwave Studio [25] 

for electromagnetic applications significantly facilitates the simulation of microwave 

techniques for material characterisation and sensitivity analysis. In this section, a 

numerical investigation into the sensitivity of the reflection coefficient to changes in 

the sensor–specimen arrangement will be performed. Such changes are selected for 

their potential effect on measurement accuracy: they include a small gap between the 

waveguide aperture and the surface of the specimen, a shift of the aperture with 

respect to the centre of the specimen, and non-uniform dielectric property 

distribution in the concrete specimen. The sensitivity of the reflection coefficient to 

changes of specimen size will also be investigated. 

 

3.4.1 Effect of Small Gap between Sensor and Concrete Specimen 

The magnitude of the reflection coefficient vs. frequency for concrete at 2nd day 

for different values of the gap, g (c.f. Figure 3.9a) between the open-ended 

waveguide aperture and the side surface of the concrete specimen at R-band and X-

band are shown in Figures 3.9b and 3.10, respectively. It can be seen from Figure 

3.9b that the magnitude slightly decreased over the entire frequency band when g 

increased from 0.0 mm to 1.4 mm; however, a relatively large drop is observed when 

g increased from 1.4 mm to 1.5 mm. The average sensitivity of the magnitude of the 

reflection coefficient to small changes of gap    (0–1.4 mm) was ~ 0.01 mm–1.  On the 

other hand, at X-band the average sensitivity was ~ 0.25 mm–1 when the gap 

increased from 0.0 to 0.3 mm, and a relatively large drop was observed when g 

decreased from 0.3 mm to 0.4 mm, as shown in Figure 3.10. Overall, the results 

show that the sensitivity of the magnitude of the reflection coefficient to the size of 

the gap was greater at X-band than at R-band. 
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Figure 3.9: (a) Model of SWS with the specimen under test; (b) simulated magnitude 
of reflection coefficient vs. frequency for 2nd day concrete (εr = 10.60 – j2.737) for 
different values of the gap (g) between the SWS aperture and the side surface of the 
concrete specimen at R-band. 
 

 

Figure 3.10: (a) Model of SWS with the specimen under test; (b) simulated 
magnitude of reflection coefficient vs. frequency for 2nd day concrete (εr = 10.15 –

g
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 j1.522) for different values of the gap (g) between the SWS aperture and the side 
surface of the concrete specimen at X-band. 

 

The electric field intensity distributions in the sensor–specimen model were 

simulated in order to clarify these observations; the results for the top and side cross-

sectional views of the system are shown in Figures 3.11 and 3.12 (at R-band, g = 0 

and 1.5 mm) and Figures 3.13 and 3.14 (at X-band, g = 0 and 0.3 mm). Overall, the 

following features are indicated by Figures 3.9 – 3.14: 

1) The influence of the small gap is negligible. 

2) When there is no gap only the influence of the interface changes the 

distributions, and this change is very similar at both R-band and X-band. 

3) Significant changes of the magnitude of reflection coefficient and electric 

field distributions occur at a relatively large critical value of gap. This value 

is frequency-dependent and increases at lower frequencies. 

4) These changes can be attributed to the influence of higher-order modes 

whose indications can be clearly seen at the edges of the apertures in Figures 

3.12b and 3.14b as a result of the influence of gap. 

5) Reflection and radiation in free space can be clearly seen in all cases at both 

R-band and X-band. 

6) Free-space radiation patterns change when a gap occurs. 
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Figure 3.11: Cross-sectional top view of electric field intensity distribution inside the 
R-band sensor and concrete specimen at 2.0 GHz with 2nd day concrete (εr = 10.60 – 
j2.737): (a) no gap; and (b) 1.5 mm gap between sensor and concrete surface. 
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Figure 3.12: Cross-sectional side view of electric field intensity distribution inside 
the R-band sensor and concrete specimen at 2.0 GHz with 2nd day concrete (εr = 
10.60 – j2.737): (a) no gap; and (b) 1.5 mm gap between sensor and concrete surface. 
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Figure 3.13: Cross-sectional top view of electric field intensity distribution inside the 
X-band sensor and concrete specimen at 10.0 GHz with 2nd day concrete (εr = 10.15 
– j1.522): (a) no gap; and (b) 0.5 mm gap between sensor and concrete surface. 
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Figure 3.14: Cross-sectional side view of electric field intensity distribution inside the 
X-band sensor and concrete specimen at 10.0 GHz with 2nd day concrete (εr = 10.15 
– j1.522): (a) no gap; and (b) 0.5 mm gap between the sensor and concrete surface. 
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3.4.2 Effect of Changing Sensor Location on the Specimen Surface 

The location and position of the waveguide sensor aperture on the surface of the 

specimen is another potential cause of measurement error. In particular, it is critical 

at R-band since the dimensions of the R-band waveguide sensor aperture are 

relatively large. Simulations were performed for changes of the location of the centre 

of the aperture along the x- or y-axis with no gap between sensor and concrete 

specimen. Figure 3.15 shows eight locations on the specimen surface; the simulated 

magnitudes of the reflection coefficient at these locations are shown in Figures 3.16–

3.19. 

 

Figure 3.15: Positions of the centre of the open-ended waveguide aperture (x0, y0) 
with respect to the centre of the concrete specimen: (1) 0, 0; (2) 25 mm, 0; (3) 45 
mm, 0; (4) 0, 25 mm; (5) 0, 45 mm; (6) 0, 72.5 mm; (7) 125 mm, 0; (8) 0, 125 mm. 

It can be seen from Figure 3.16 that when the R-band sensor aperture is located 

within the boundaries of the specimen surface, changes of reflection coefficient 

magnitude (~ 0.01–0.02) are observed at lower and higher frequencies for cases (2) 

and (4), corresponding to a relatively small shift (25 mm) of the aperture, whereas 

they are negligible for cases (3) (45 mm shift in the x-direction), (5) (45 mm shift in 

the y-direction), and (6) (72.5 mm shift in the y-direction). However, when the sensor 

aperture moves past the edge of the specimen surface in either the x- or y-direction 

(i.e., cases (7) and (8)), significant changes are observed in the magnitude of the 

reflection coefficient, as shown in Figure 3.17. 
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Figure 3.16: Simulated magnitude of reflection coefficient vs. frequency for 2nd day 
concrete, with sensor-concrete specimen arrangements (1)–(6) in Figure 3.15 using 
the R-band SWS. 

 

Figure 3.17: Simulated magnitude of reflection coefficient vs. frequency for 2nd day 
concrete, with sensor-concrete specimen arrangements (1), (7), (8) in Figure 3.15 
using the R-band SWS. 
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The sensitivity of the magnitude of the reflection coefficient at the X-band due 

to the sensor aperture shifting in the x- and y-directions of the concrete specimen 

surface are seen in Figures 3.18 and 3.19, respectively. In these cases it was found 

that when the sensor aperture was located wholly within the surface of specimen, the 

sensitivity is extremely low (~ 0.002 mm–1); however, as for the R-band, when the 

sensor aperture overlapped one of the edges of the specimen in either the x- or y-

direction, significant changes were observed in the magnitude of the reflection 

coefficient. 

 

Figure 3.18: Simulated magnitude of reflection coefficient vs. frequency for 2nd day 
concrete, with four different sensor-concrete specimen arrangements (1)–(3), (7) in 
Figure 3.15 using the X-band SWS. 
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Figure 3.19: Simulated magnitude of reflection coefficient vs. frequency for 2nd day 
concrete, with five different sensor-concrete specimen arrangement (1), (4)–(6), (8) 
in Figure 3.15 using the X-band SWS. 

 
3.4.3 Effect of Non-uniform Dielectric Permittivity Distribution in Concrete 

Specimen 

In determining the dielectric permittivity of 2nd day concrete, it was assumed that 

the dielectric permittivity of the concrete was uniform over the cubic specimen. In 

practice, however, concrete is a heterogeneous mixture of cement, sand, water and 

coarse aggregates, and hence the dielectric property distribution is not uniform. The 

non-uniform distribution of water/moisture is one of the main reasons, of non-

uniform dielectric property distribution. In this section, the effect of the non-uniform 

dielectric constant on the magnitude of the reflection coefficient in 2nd day concrete 

is investigated numerically for both the R-band and the X-band sensors. For this 

purpose, a concrete specimen was modelled in CST as a combination of 10 layers, 

each 25.0 mm thick, and 25 layers, each 10.0 mm thick, with dissimilar dielectric 

constants. Figure 3.20 shows the model of the 10-layer specimen tested for the R-

band sensor. For simplicity, variations of dielectric constant were considered only in 

the z-direction; tan δ = 0.2582 for each layer. The layers closest to the surface of the 

M
ag

ni
tu

de
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
  

Frequency (GHz) 



Chapter 3 
 

 
 

Page 58 
 
 

2nd day specimen had a dielectric constant of εr' = 10.60, incrementally increasing to 

εr' = 14.0 towards the centre of the specimen from 10.6 to 11, 12, 13 and 14 for the 

10-layer specimen, and from 10.6 to 11.0, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 

12.75, 13.00, 13.25, 13.50 and 14 for the 25-layer specimen. 

 

Figure 3.20: A model of 10-layer concrete specimen with non-uniform distribution of 
dielectric constant with the R-band waveguide sensor in CST: (a) perspective view; 
(b) side view. 

Figures 3.21 and 3.22 show the magnitude of reflection coefficient at R band for 

2nd and 9th day, respectively, for the homogeneous and layered specimens. It can be 

seen in Figure 3.21 that the results for 10-layer specimen and the uniform specimen 

are very similar. Increasing the number of layers to 25 slightly decreases the 

magnitude of reflection coefficient. For 9th day specimens the results are very close 

for all specimens. Figures 3.23 and 3.24 show the magnitude of the reflection 

coefficient at X band for the uniform and the layered specimens. These figures 

demonstrate that the results for 10 layers and 25 layers are very similar, and resemble 

the average results for the uniform specimens of both 2nd day and 9th day concrete. 

 The electric field intensity distributions inside the sensors and concrete 

specimens at    R- and X-bands for 2nd day concrete are shown in Figures 3.25 and 

3.26, respectively. It can be seen from these figures that the difference in the 

distributions for the uniform and non-uniform layered specimens is negligible. On 

the other hand, it can be clearly seen that the microwave signal at the R-band 
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penetrated more deeply into the concrete specimen than at X-band, as expected. 

Another observation is that reflection/radiation of EM waves in free space is higher 

at X-band than at R-band, attributed to the fact that the X-band sensor is smaller than 

the R-band sensor in size. 

Overall, the results show that most of the microwave signals are reflected in the 

thin near-interface region of the metal–concrete composite. 

 

Figure 3.21: Simulated magnitude of reflection coefficient vs. frequency using R-
band waveguide sensor for uniform and layered 2nd day concrete specimens. 
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Figure 3.22: Simulated magnitude of reflection coefficient vs. frequency using R-
band waveguide sensor for uniform and layered 9th day concrete specimens. 

 

Figure 3.23: Simulated magnitude of reflection coefficient vs. frequency using X-
band waveguide sensor for uniform and layered 2nd day concrete specimens. 
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Figure 3.24: Simulated magnitude of reflection coefficient vs. frequency using X-
band waveguide sensor for uniform and layered 9th day concrete specimens.  
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Figure 3.25: Simulated electric field intensity distribution inside the R-band sensor 
and 2nd day concrete specimen at 2.15 GHz for (a) uniform specimen with εr = 10.6 – 
j2.737; (b) non-uniform 10-layer specimen; and (c) non-uniform 25-layer specimen.  
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Figure 3.26: Simulated electric field intensity distribution inside the X-band sensor 
and 2nd day concrete specimen at 10.3 GHz for (a) uniform specimen with εr = 10.15 
– j1.552; (b) non-uniform 10-layer specimen; and (c) non-uniform 25-layer 
specimen. 
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3.4.4 Effect of Different Sizes of Concrete Specimen 

The change of size of cubic specimens, L, (c.f. Figures 3.27a and 3.28a) may 

also affect the reflection properties and cause measurement error. The results for 

magnitude of reflection coefficient vs. frequency for different sizes of 2nd day 

concrete specimens with no gap between the open-ended waveguide aperture and the 

concrete surface at R-band and X-band are shown in Figures 3.27 and 3.28, 

respectively. Using the determined value of the complex dielectric permittivity of 2nd 

day concrete, simulations were performed for concrete specimens of different size. It 

can be seen from Figures 3.27b and 3.28b that the simulated magnitudes of the 

reflection coefficient are very similar for all specimens. A negligible change in SS 

is seen at the lowest and highest frequencies, attributable to simulation error at 

limited frequencies. 

 

Figure 3.27: (a) Model of the SWS and cubic specimen; (b) simulated magnitude of 
reflection coefficient vs. frequency at R-band for different sizes of 2nd day concrete 
specimens.  
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Figure 3.28: (a) Model of the SWS and cubic specimen; (b) simulated magnitude of 
reflection coefficient vs. frequency at X-band for different sizes of 2nd day concrete 
specimens.  
 

3.5 Summary 

In this chapter, an algorithm to determine the complex dielectric permittivity of 

concrete specimens from the measured and simulated magnitude of reflection 

coefficients has been developed. The developed algorithm was applied for a single 

waveguide sensor to characterise early-age (2–9 day) concrete specimens in response 

to the demand for such data for this study and, in general, in practice. The 

determined complex dielectric permittivity of 2nd day and 9th day concrete specimens 

in R-band (X-band) was 10.15 – j1.552 (10.60 – j2.737) and 4.8 – j0.864 (5.5 – 

j1.375), respectively. 

The sensitivity of the magnitude of the reflection coefficient to the variations of 

a small gap between the sensor aperture and the specimen, changes in the sensor 

aperture position on the specimen surface, non-uniform dielectric permittivity 

distribution, and the effect of the size of the concrete specimen were numerically 
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investigated. It is shown that small gaps between sensor and specimen up to 1.5 mm 

for R-band and 0.3 mm for X-band SWS do not have significant effects on the 

measured magnitude of the reflection coefficients. However, significant changes 

were observed for gaps larger than those, attributable to the influence of higher-order 

modes at the aperture. It was also found that the magnitude of the reflection 

coefficient varies significantly when the sensor aperture locations approached and 

passed the edge of the concrete specimen. It is also shown that the influence of a 

selection of non-uniform dielectric permittivity distributions in early-age concrete 

specimens is negligible. On the other hand, it was clearly seen that the R-band 

microwave signal penetrated more deeply than at X-band into both the uniform and 

the non-uniform concrete specimens. This is attributed to higher losses in concrete at 

higher frequencies. Finally, it was found that changing the dimension of the cubic 

specimens from 150 mm to 350 mm had a negligible effect on the magnitude of the 

reflection coefficient at both the R band and the X band when the sensor aperture 

was located at the centre of specimen surface. 



 

Chapter 4 

Dual Waveguide Sensor 

 

4.1 Introduction 
The design, development and applications of a microwave dual waveguide 

sensor (DWS), comprising two waveguide sections and a metal plate/wall attached to 

a concrete specimen, are described in this chapter. Firstly, the proposed sensor is 

modelled along with the concrete specimen as a part of the sensor. Secondly, 

extensive simulation of this model operating as DWS and SWS is performed and 

compared with the results obtained with these sensors. Then, a DWS is fabricated 

and applied to measure a small gap between the metal plate and cement-based fresh 

concrete and dry concrete materials. The simulated electric field intensity distribution 

inside the waveguide sections of the DWS, and the gap between the specimen and 

the metal plate are illustrated to give a clear explanation of the ‘guided wave’ 

phenomenon. The DWS is further used to measure the small distance from a steel 

plate; comparative results of reflection and transmission properties of the steel plate, 

the fresh concrete and the dry concrete specimens in X-band frequencies are 

presented. The numerical investigations for the detection of cracks in dry concrete 

specimens using the proposed DWS, and the effect of the size and position of the 

crack on the reflection and transmission coefficients are also included in this chapter. 

Finally, an analysis of the sensitivity of the proposed dual waveguide sensor to 

variations in the concrete dielectric constant, loss factor and surface roughness is 

presented. CST Microwave Studio software was used to model the DWS with 

different specimens for simulation purposes. Extensive simulations were performed to 

determine the complex dielectric permittivity of the concrete in the measurement 

zone from the measured data, and to carry out the parametric studies. 

 

4.2 Sensor Design  
A schematic of the proposed microwave DWS is shown in Figure 4.1. The 

sensor consists of two hollow rectangular waveguide sections with broad and narrow 

dimensions a and b, respectively, installed in the metal wall of the structure under 
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inspection, with flanges for connection to the measurement system (Figure 4.1a). The 

distance between the two waveguide sections is L. A cross-sectional side view of the 

sensor for detecting the gap between the metal wall and the concrete specimen is 

shown in Figure 4.1b. 

 

Figure 4.1: Schematic of the dual waveguide sensor: (a) top view, (b) cross-sectional 
view of the sensor with concrete structure under test in the E-plane of the 
waveguides. 

 

4.2.1 Modelling the Sensor 

For the numerical investigation of the cement-based composite specimen using 

the proposed sensor, a model of the microwave DWS and specimen was constructed 

using the time domain solver in CST Microwave Studio software. In the simulations, 

a Gaussian excitation signal and format X-band (8.2–12.4 GHz) were used. 
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Figure 4.2: Model of DWS with concrete specimen and gap between surfaces of 
metal plate and concrete specimen: (a) perspective; and (b) cross-sectional top view. 

Figure 4.2a is a perspective view of the model of a 250 mm cubic concrete 

specimen with DWS, including two standard X-band microwave rectangular 

waveguide sections (dimensions of the aperture of each section is 22.86 mm × 

10.16 mm). The thickness of the metal plate is 4 mm. The distance between the 

waveguide sections is denoted by L as shown in Figure 4.2b. This model was used 

for a parametric study of the DWS with a concrete specimen. 

 

4.2.2 DWS vs. SWS 

Figure 4.3 shows the simulated magnitude of the reflection coefficient (in dB) 

vs. frequency for three different values of the gap between the metal and concrete 

surfaces, for different values of the dielectric constant of the concrete specimen (tan 

δ = 0.105) using SWS. It can be clearly seen that the magnitude of the reflection 

coefficient decreases with the increase of gap between the metal plate and the 

concrete specimen. Furthermore, the magnitude of the reflection coefficient 

decreases with decreasing dielectric constant of the concrete at each gap size. This is 

seen in Figure 4.4 platted at a frequency of 10.0 GHz; for example, the magnitude of 

the reflection coefficient for a dielectric constant of 14.0 with no gap is –3.64 dB, 

whereas with gaps of 1.0 and 2.0 mm they are –6.79 and –10.15 dB, respectively. 

Also, for the no-gap condition, the magnitude of the reflection coefficient dropped 

from –3.64 to –4.29 dB due to the decrease in dielectric constant from 14.0 to 8.0. 
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It is important to note that the change in magnitude of the reflection coefficient 

due to the change of dielectric constant of the concrete is less than that due to the 

change of gap between metal plate and specimen surface. The investigation into 

electric field intensity distributions in the model (shown and analysed below) 

indicated that this is one of the effects of electromagnetic wave propagation between 

the metal plate and the specimen (termed ‘guided wave’) when a gap occurs. This 

effect leads to greater losses in the electromagnetic energy of the waves reflected 

from, and penetrating into, the concrete. Furthermore, in this study this effect became 

a physical background of the proposed DWS, which is able to create, collect and 

measure the guided wave for the purpose of characterising the metal–concrete 

composite, including detecting and monitoring the gap between the metal plate and 

the concrete. 

 

Figure 4.3: Simulated magnitude of reflection coefficient vs. frequency, for gaps of 
different magnitude between the metal plate and the concrete specimen and for 
different values of dielectric constant the single waveguide sensor.  
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Figure 4.4: Simulated magnitude of reflection coefficient vs. dielectric constant of 
the concrete specimen for different gaps between the metal plate and the concrete 
specimen, using the single waveguide sensor at a frequency of 10.0 GHz. 

Figure 4.5 shows the simulated magnitude of the reflection coefficient S11 vs. 

frequency with SWS and DWS, for different values of gap between metal plate and 

fresh concrete (εr = 14.8 – j1.8). Four values of the distance between the waveguide 

sections, L, were considered for the DWS study. The solid line represents S11 

determined by DWS; the dotted line represents the S11 determined by SWS. It can be 

seen from the figure that, for L = 5 mm and 10 mm, S11 at gaps of 0.0 and 0.5 mm 

are almost the same for both SWS and DWS, but at gaps of 1.0, 1.5 and 2.0 mm, S11 

is different for SWS and DWS. The differences tend to decrease as L increases to 

20 mm. Larger L implies that larger areas of the concrete specimen are under 

inspection; however, it may result in a lower transmission coefficient. Considering 

both practical aspects, L has been chosen to be 15 mm for fabricating the DWS. For 

these reasons, L = 15 mm is assumed in all the following DWS simulations and 

measurements. 

Figure 4.6 shows the magnitude of the transmission coefficient of an empty dual 

waveguide sensor vs. frequency for three metal–concrete gaps and four values of 

dielectric constant for each gap. It is clearly seen that the magnitude of the 
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transmission coefficient (in dB) is low at the no-gap condition and increases with 

increasing gap. Additionally, the magnitude of the transmission coefficient decreases 

with decreasing dielectric constant of the concrete specimen when there is a gap 

between the metal plate and the specimen, and for the no-gap condition the opposite 

is true. For instance, Figure 4.7 shows that at a frequency of 10.0 GHz, the 

magnitude of the transmission coefficient for a dielectric constant of 14.0 at no gap is 

–50.38 dB, and increases to –35.60 and –24.57 dB at 1.0 and 2.0 mm gap, 

respectively. For a gap of 1.0 mm, the transmission coefficient decreases from –

35.60 to –37.61 dB when the dielectric constant of the concrete drops from 14 to 8, 

but for the no-gap condition it increases from –50.38 to –45.95 dB for the same 

reduction in dielectric constant. 

Another important issue is the influence of the configuration of the waveguide 

sections in DWS. Figure 4.8 shows the electric field intensity distribution in 

amplitude and phase for E-plane and H-plane configurations at the plane of the DWS 

apertures for the no-gap condition, at 10.3 GHz. It clearly indicates that microwaves 

propagate mostly in the E-plane of the DWS apertures, providing stronger E-plane 

mutual coupling between them than in the H-plane configuration. This result is also 

consistent with coupling between two open-ended apertures on a common-ground 

plane radiated in free space, where the coupling coefficient of the E-plane exceeds 

that of the H-plane [182]-[183]. Therefore, to ensure higher mutual coupling between 

the waveguide apertures, the E-plane configuration between waveguide sections has 

been chosen. 

The results show that the proposed DWS may have the following additional 

advantages over SWS for characterising metal–concrete structures: (1) data for 

transmission coefficient, (2) data for reflection coefficients at two different places on 

the metal–concrete interface at the same stage of concrete, and (3) a larger interface 

area under inspection. 
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Figure 4.5: Simulated magnitude of reflection coefficient vs. frequency at different 
gap values (mm) between the surfaces of the metal plate and concrete specimen (εr = 
14.8 – j1.8) using SWS, and DWS with different distances between its waveguide 
sections.  
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Figure 4.6: Simulated magnitude of transmission coefficient vs. frequency for 
different gap values between metal plate and concrete and for different dielectric 
constants, using the DWS. 

 

 

Figure 4.7: Simulated magnitude of transmission coefficient vs. dielectric constant of 
concrete specimen for three gaps between metal plate and concrete specimen using 
DWS at 10.0 GHz. 
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Figure 4.8: Cross-sectional views of electric field intensity distribution (amplitude 
and phase) at the plane of DWS apertures, with no gap between surfaces of metal and 
concrete specimen (εr = 14.8 – j1.8) for (a) E-plane; and (b) H-plane configuration at 
10.3 GHz. 

 

4.2.3 Fabricated Sensor  

In accordance with the model of the DWS developed and optimised in CST, the 

sensor was fabricated with two standard X-band rectangular waveguide sections and 

a 4 mm-thick metal plate with dimensions 250 mm × 250 mm, as shown in Figure 

4.9. Dissimilar lengths of waveguide sections were chosen (97 mm and 45 mm) for 
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convenient connection with the measurement device. Two rectangular openings, each 

25.4 mm × 12.7 mm (the external dimensions of the X-band rectangular waveguide) 

were cut in the central area of the metal plate. These were separated 27.70 mm 

centre-to-centre, producing a distance of 15 mm between the walls of the two 

waveguides. Then the waveguide sections were embedded and soldered into the 

openings as shown in Figure 4.9. The other flanged, open end of each waveguide 

section was fitted with a waveguide-coaxial adapter to allow for a cable connection 

to a performance network analyser (PNA). 

 

Figure 4.9: X-band dual waveguide sensor: (a) side view; (b) perspective view of the 
sensor design showing waveguide-coaxial adapters; and (c) photograph of fabricated 
sensor without adapters. 

 

4.3  Measurement with Fresh Mortar Specimens 
This section describes the measurement approach and gives the results for the 

DWS. The magnitudes of the reflection coefficients and transmission coefficients for 
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different metal plate–concrete gaps were measured during first four days after 

preparing mortar. 

4.3.1 Measurement System 

A schematic of a relatively simple microwave system for measuring the gap in a 

cement-based composite structure using DWS is shown in Figure 4.10. For 

simplicity, a cross-sectional side view of a part of a concrete–metal structure (a 

concrete-filled steel tube) is shown. The system consists of the DWS, a microwave 

transceiver, a measurement unit and an indicator. One section of the proposed DWS 

is used to illuminate the interface between the metal wall and the concrete and to 

receive the signal reflected from the structure, while another waveguide is used to 

receive the signal transmitted through the part of the structure between the sections, 

including the interface. The transceiver generates the microwave signal and transmits 

it to the DWS. The measurement unit and the indicator produce information about 

the magnitude of the reflection and transmission coefficients. 

 

Figure 4.10: Schematic of the microwave measurement system with a cross-sectional 
side view of the DWS and the structure being tested. 
 

4.3.2 Specimens and Measurement Setup 

For simplicity, in this investigation fresh mortar (i.e., concrete without coarse 

aggregates such as gravel) was used. An open-topped 250 mm cubic wooden mould 

was used to prepare the mortar specimen, as shown in Figure 4.11a. The mortar was 

prepared by mixing cement, sand and water in an approximately 1:3:1 ratio and 

placed on the coarse aggregate/sand mixture. The thickness of the fresh mortar 
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specimen was 50 mm. A very thin, transparent polythene film was then used to cover 

the fresh mortar specimen to prevent the entry of water or sand–cement paste into the 

hollow DWS during measurement and affecting the measurements. 

 
Figure 4.11: Photographs of (a) fresh mortar specimen in the mould, and (b) the 
measurement arrangement for detecting and monitoring the gap between the surfaces 
of the metal plate and the fresh mortar specimen using the DWS. 

 

Figure 4.11b shows the experimental setup used in this investigation to measure 

the gap between the surfaces of the fresh mortar specimen and the metal plate, using 

the proposed DWS. An Agilent N5225A PNA was used as a combined unit of 

transceiver, measurement unit and indicator. Two waveguide sections were 

connected to the PNA via the waveguide coaxial adapters and joining cables. The 

desired gap (spacing) was created using thin paper sheets. The microwave sensor 

radiated microwave signals into the specimen and picked up the reflected and 

transmitted signals that were then processed by the PNA. The arrangement at the 

output apertures of the waveguide–coaxial adapters was calibrated using an X-band 

rectangular waveguide calibration kit. The reflection coefficient, S11 and the 

transmission coefficient S21 for the five gap values 0, 0.5, 1.0, 1.5 and 2.0 mm were 

measured on the first six hours of Day 1 (the day on which the fresh mortar specimen 

was prepared). Measurement data was stored in the PNA as a function of frequency, 

then processed and plotted using MATLAB software. S11 and S21 data for each gap 

(a) (b) 

Wooden 
mould 

Fresh mortar Polythene film 
covering 

Metal plate 
DWS 

PNA 

Mould with 
fresh mortar 



Chapter 4 
 

 
 

Page 79 
 

value was taken three times on each of Day 2, Day 3 and Day 4, and averaged. The 

hourly S11 and S21 values for each gap for the first six hours on Day 1 were also 

averaged. 

 

4.3.3  Measurement Results and Discussion 

Figure 4.12 shows the measured magnitude of the reflection coefficient, S11 (in 

dB) vs. frequency for different gap widths between the fresh mortar surface and 

metal plate in the first six hours after the specimen was prepared. It is seen that S11 

decreased with the increase of gap widths over the entire frequency band in each 

hour. The differences of S11 between adjacent curves are almost constant, with the 

exception of the 0–0.5 mm gap curve. This comparatively small difference in the 

magnitude of S11 for the 0–0.5 mm gap was probably an artefact of the presence of 

the thin polythene film on top of the fresh, wet specimen during measurement. This 

is also seen clearly in Figure 4.13, which illustrates the magnitude of reflection 

coefficient vs. gap value in first six hours after preparing the mortar specimen at a 

frequency of 10.0 GHz that S11 started to decrease with the hourly ageing of the fresh 

mortar specimen. The figure indicates that at gap values less than 1.0 mm the 

magnitude of S11 decreased only marginally in the first six hours. 

The measured magnitude of the transmission coefficient S21 vs. frequency for 

the different gap values between fresh mortar surface and metal plate in the first six 

hours after preparing the specimen are presented in Figure 4.14. It was found that S21 

increased with the increase of gap value over the entire X-band frequency range in 

each hour. Although in some hours (e.g., hours 1, 3 and 4) the differences between 

adjacent S21 curves are not equal, the curves do not overlap and the gaps are 

distinguishable for each value of S21. 

Figure 4.15 shows another way in which S21 varied as a function of gap width in 

the first six hours after preparing the fresh mortar specimen, in this case at the single 

frequency of 10.0 GHz. It is clearly seen that the wider gaps correlate to an increase 

in S21, but the ageing of the mortar specimen in its first six hours had little effect on 

the value when gaps were more than 0.5 mm wide. 
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Figure 4.12: Measured magnitude of reflection coefficient vs. frequency at different 
gap values (mm) between the surfaces of the fresh mortar specimen and the metal 
plate at hour: (a) 1, (b) 2, (c) 3, (d) 4, (e) 5 and (f) 6. 

M
ag

ni
tu

de
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (d

B
) Hour 2 

(b) 
Frequency (GHz) 

M
ag

ni
tu

de
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (d

B
)  

Frequency (GHz) 
(c) 

Hour 3 

M
ag

ni
tu

de
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (d

B
) Hour 1 

(a)  
Frequency (GHz) 

Hour 5 

(e) 

M
ag

ni
tu

de
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (d

B
) 

Frequency (GHz) 
(f) 

M
ag

ni
tu

de
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (d

B
) Hour 6 

Frequency (GHz) 

M
ag

ni
tu

de
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (d

B
) 

Frequency (GHz) 
(d) 

Hour 4 



Chapter 4 
 

 
 

Page 81 
 

 

Figure 4.13: Measured magnitude of reflection coefficient vs. gap value between the 
surfaces of the fresh mortar specimen and metal plate in the first six hours, at a 
frequency of 10.0 GHz. 
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Figure 4.14: Measured magnitude of transmission coefficient vs. frequency for 
different gap values (mm) between the surfaces of the fresh mortar specimen and the 
metal plate at hour: (a) 1, (b) 2, (c) 3, (d) 4, (e) 5 and (f) 6. 
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Figure 4.15: Measured magnitude of transmission coefficient vs. gap between fresh 
mortar specimen and metal plate in the first six hours, at a frequency of 10.0 GHz. 
 
 

The average measured magnitude of the reflection coefficient, S11 in the first six 

hours after sample preparation is shown in Figure 4.16a as the Day 1 average S11 vs. 

frequency. For Days 2, 3 and 4, the average S11 was calculated from three measured 

reflection coefficient values taken on each day for each gap condition; these are 

shown in Figure 4.16b–d. The plots also show one standard deviation (STD) as ± σ 

on either side of the averaged curves at each frequency point of S11 for each gap 

value. 

Several observations can be made from Figure 4.16. The average S11 decreases 

with increasing gap value over the entire frequency band. When the average S11 for 

any gap value (including the standard deviation) does not overlap that of adjacent 

gap values, the measured magnitude of the reflection coefficient clearly indicates a 

particular gap between the metal and fresh mortar surface. With this knowledge, the 

measurement data at the 0 and 0.5 mm gaps on Days 1 and 2 has a little uncertainty, 

and at the 0.5, 1.0 and 1.5 mm gaps for Day 4 the data has greater uncertainty; Day 3 

shows the best measurement results. Figure 4.17 shows the average measured 

magnitude of the reflection coefficient as a function of gap value for different ages of 

mortar specimen in days after preparation. It indicates that S11 tended to decrease 
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with the age of the fresh mortar specimen, but the decrease is minor compared to the 

decrease in S11 related to the gap between metal and specimen surface. 

 

Figure 4.16: Average measured magnitudes of reflection coefficient vs. frequency, 
showing the standard deviation at different values of gap (mm) between the surfaces 
of fresh mortar and metal plate on the first four days: (a) Day 1, (b) Day 2, (c) Day 3 
and (d) Day 4. 
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Figure 4.17: Average measured magnitude of reflection coefficient vs. gap value 
between fresh mortar specimens and metal plate on first four days at a frequency of 
10 GHz. 
 

Figure 4.18 shows the average measured magnitude of transmission coefficient 

S21 vs. frequency for different gap values on the first four days after preparing the 

fresh mortar specimen. Standard deviations of S21 for different gap values are also 

shown. It is clear that average S21 increases with increasing gap value. Similarly to the 

average S11, when the average S21 with standard deviation does not overlap adjacent 

values, the measured magnitude of the transmission coefficient clearly indicates a 

particular value of the gap between metal and fresh mortar surface. Figure 4.18 

shows that the measured S21 at 0 and 0.5 mm gap has a little uncertainty on Days 1 

and 2, and at 0, 0.5, 1.0 and 1.5 mm gap on Day 4 it has higher uncertainty; Day 3 

shows the best measurement results. 

Figure 4.19 shows the average measured transmission coefficient in dB as a 

function of gap value for different ages of mortar specimen in days after preparation. 

It indicates that S21 starts to decrease with increasing age of the specimen, but this 

decrease is minor compared to that related to the size of the gap between the metal 

and specimen surfaces. 
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Figure 4.18: Average measured magnitude of transmission coefficient vs. frequency, 
showing standard deviations at different values of the gap between the surfaces of the 
fresh mortar specimen and the metal plate on the first four days after preparing the 
specimen: (a) Day 1, (b) Day 2, (c) Day 3 and (d) Day 4. 
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Figure 4.19: Average measured magnitude of transmission coefficient vs. gap value 
between fresh mortar specimen and metal plate on the first four days after mortar 
preparation, at a frequency of 10.0 GHz. 

4.3.4  Comparison between Measurement and Simulation Results 

 
Figure 4.20: A model of DWS with fresh mortar specimen and gap between 
specimen and metal plate surfaces in CST: (a) perspective view, and (b) cross-
sectional top view. 

The model of the proposed dual waveguide sensor with mortar specimen is 

shown in Figure 4.20. The lengths of the waveguide sections are chosen as 97 mm 
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and 45 mm consistent with the measurement arrangement for the fresh mortar 

specimen. In the simulation, the dielectric permittivity of the fresh mortar was 

initially selected as 14.8 – j0.18, and subsequently varied for comparison with the 

measured results. 

Figure 4.21 shows the average Day 1 measured magnitudes of the reflection 

coefficient with standard deviation, and the simulated reflection coefficient vs. 

frequency for different values of the gap between the fresh mortar specimen and the 

metal plate. It is seen that S11 decreased with increasing gap value and with 

frequency, both for the measured and the simulated results, which are similar and 

comparable for all gap values except 0 and 0.5 mm. The differences between 

adjacent S11 curves are equal in the simulations but not in the measured results, 

especially for gaps of 0 to 0.5 mm and from 0.5 to 1.0 mm. The differences in 

magnitude of the reflection coefficient at 0 and 0.5 mm gap are probably due to the 

presence of the thin polythene film placed over the fresh specimen during 

measurement, whose thickness and dielectric properties were not taken into account 

in the simulation. 

Similar types of observations are found for the transmission coefficient S21 in 

Figure 4.22, which shows both the average measured and simulated S21 vs. frequency 

for Day 1 at different gap values. The simulated magnitudes of the transmission 

coefficients gaps wider than 0.5 mm agree well with the measured values. These 

findings are readily explained by Figures 4.23 and 4.24. Figure 4.23 shows the 

magnitude of the reflection coefficient vs. gap width for the average of the first four 

days’ measurements for the fresh mortar and the simulations with variable dielectric 

constants at a fixed loss tangent of 0.105 and at the single frequency of 10.0 GHz. It 

is seen that at εr' = 17, the simulation curve is very similar to the average Day 4 

curve. Likewise, the magnitude of the transmission coefficient for the first four days’ 

average measurements and simulations with variable dielectric constants at a fixed 

loss tangent of 0.105 and a single frequency of 10.0 GHz is illustrated in Figure 4.24. 

It is clearly seen that at εr' = 17, the simulation curve agrees very closely with the 

measured results. The roughness of the top surface of the mortar specimen together 

with the thickness of the polythene film is possible reasons for the small differences 

between the measured and simulated results. Therefore, it is obvious that the 
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microwave dual waveguide sensor can be used to measure the gap between the fresh 

mortar specimen and the metal plate, provided that the dielectric properties of the 

specimen are known. 

 

Figure 4.21: Comparison of measured and simulated magnitude of reflection 
coefficient vs. frequency for different values of the gap between the surfaces of metal 
plate and mortar specimen on Day 1 (εr = 14.8 – j1.8) using DWS. 

 
 
Figure 4.22: Comparison of measured and simulated magnitude of transmission 
coefficient vs. frequency for different values of the gap between the surfaces of metal 
plate and mortar specimen on Day 1 (εr = 14.8 – j1.8) using DWS. 
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Figure 4.23: Comparison of measured and simulated magnitude of reflection 
coefficient vs. gap value at a frequency of 10.0 GHz using DWS. 
 

 
Figure 4.24: Comparison of measured and simulated magnitude of transmission 
coefficient vs. gap value at the frequency of 10.0 GHz using DWS. 
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distribution (amplitude and phase) inside a DWS, both in the interface area and in the 

fresh mortar (εr = 17.0 – j3.4) for the three gap values 0, 1 and 2 mm, at 10.3 GHz. 

Figure 4.25a shows that waveguide 1 (W1) radiated microwaves into the fresh mortar 

specimen and that a small proportion of these waves penetrated into the other 

waveguide (W2) for the no-gap condition. Figure 4.25b, c clearly show changes in 

the electric field intensity distribution at the interface of the mortar and metal 

surfaces due to differences in the gap. An animated phase version of these 

distributions (not included here) shows the propagation of electromagnetic waves 

between the metal and mortar surfaces (referred as guided waves) at the 1.0 and 2.0 

mm gaps. These guided waves lead to losses in the electromagnetic energy of both 

the incident and reflected waves. Another important observation from Figures 4.25b, 

c is that a part of the guided wave and a part of the wave radiated by W1 in fresh 

mortar penetrated into W2, causing interference there. It was also found that for the 

no-gap condition, the microwave signals are more focused inside the mortar 

specimen; but, with an increase of the gap between metal and specimen they tend to 

scatter vertically within the mortar. The guided-wave phenomenon is clearly 

illustrated in Figures 4.26–4.28, described in the following. 

Figure 4.26 shows a cross-sectional top view of the simulated electric field 

intensity distribution (amplitude and phase) inside W2 and the mortar specimen at 

10.3 GHz. It is seen that when there is no gap, a very small amount of the transmitted 

signal is present in W2 (Figure 4.26a), but it increases significantly at gaps of 1.0 and 

2.0 mm (Figure 4.26b, c). 

Figure 4.27 illustrates the amplitude and phase of the electric field intensity 

distribution in a 3D cutting plane at 10.3 GHz. It is seen in Figure 4.27a that, in the 

no-gap condition at x = 0 in the yz cutting plane, microwave signals radiating from 

W1 penetrate only into the mortar specimen in a focused way, and very little of the 

signal enters W2; however, for 1.0 and 2.0 mm gaps, the microwave signals pass 

through the gaps between the metal and the fresh mortar specimen as guided waves, 

and establish a strong mutual coupling between the waveguides. Therefore, a 

significant amount of the signal is present in W2 (Figure 4.27b, c). 

Figure 4.28 illustrates the amplitude and phase of the electric field distribution in 
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the zx cutting plane at y = 27.7 mm (i.e., in the middle of W2) for 0, 1.0 and 2.0 mm 

gap conditions at 10.3 GHz frequency. It is clearly seen that the gap between the 

metal plate and the mortar specimen contributed guided wave signals to W2. 
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Figure 4.25: Cross-sectional side view of electric field intensity distribution inside 
waveguides of DWS and fresh mortar specimen (εr = 17.0 – j3.4) for different values 
of the gap between the metal and specimen surfaces at 10.3 GHz. 
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Figure 4.26: Cross-sectional top view of electric field intensity distribution inside 
waveguide 2 of DWS and fresh mortar specimen (εr = 17.0 – j3.4) for different 
values of gap between surfaces of metal and specimen at 10.3 GHz. 
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Figure 4.27: Electric field intensity distribution inside waveguides of DWS and fresh mortar specimen (εr = 17.0 – j3.4) for different values of 
the gap between the metal and specimen surfaces at x = 0 of the yz cutting plane at 10.3 GHz. 
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Figure 4.28: Electric field intensity distribution inside waveguide 2 of the DWS and the fresh mortar specimen (εr = 17.0 – j3.4) for different 
values of the gap between the metal and specimen surfaces at y = 27.7 (i.e., middle of waveguide 2) of the zx cutting plane at 10.3 GHz. 
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4.4  Measurement with Fresh Concrete Specimens 
This section presents the measurement approach and measurement results for 

fresh concrete specimens using the DWS. The magnitudes of the reflection 

coefficients and transmission coefficients at different values of the gap between fresh 

and early-age concrete specimens and the metal plate were measured. Firstly, the 

measurements were taken at hour 1 and hour 6 of Day 1 of the fresh concrete 

specimen. Then S11 and S21 were also measured at different gap values on Days 2 

and 3 of the concrete specimen. 

4.4.1 Specimens and Measurement Setup 
 

 
Figure 4.29: Experimental setup for measuring the gap between the fresh concrete 
specimen and metal plate surfaces using the microwave DWS. 
 

A fresh concrete specimen was prepared by mixing cement, sand, coarse 

aggregate and water in roughly 2:4:4:1 ratio, and the mould was filled with the fresh 

concrete mix as shown in Figure 4.29. A very thin, transparent polythene film was 

used to cover the fresh concrete specimen during measurement to prevent the entry 

of water or sand-cement paste into the empty dual waveguide sections and affecting 

the measurement results. The measurement approach was similar to that described in 

subsection 4.3.2. 

The magnitude of the reflection coefficient S11 and the transmission coefficient S21 

were measured for five different gap values (i.e., 0, 0.5, 1.0, 1.5, 2.0 mm) at hours 1 
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and 6 of Day 1 of preparing the fresh concrete specimen. S11 and S21 were measured 

on Days 2 and 3 for each gap value three times on each day and were averaged. 

 

4.4.2 Measurement Results and Discussion 

Figure 4.30 shows the measured magnitude of the reflection coefficient vs. 

frequency for five values of the gap between the metal and fresh concrete surfaces, 

taken at hours 1 and 6 on Days 2 and 3 after preparing the specimen. It is seen that at 

hour 1, S11 decreases with increasing gap value; however, the differences between 

S11 at the different gap values are not equal over the full frequency band; rather, the 

differences decrease at frequencies above 10.5 GHz. It is observed that with 

increasing concrete age, S11 decreases at all gap values: for instance, for the no-gap 

condition at 10.0 GHz and at the concrete ages of hours 1 and 6 on Days 2 and 3, S11 

is respectively –7.10, –12.80, –14.40 and –14.60 dB. 

Figure 4.31 illustrates the measured transmission coefficient vs. frequency at 

different values of the gap between the surfaces of the metal plate and the fresh 

concrete at hours 1 and 6 on Days 2 and 3. It is clearly seen that S21 increases with 

increasing gap value, and that the differences of S21 between adjacent gap values 

decreases with increasing gap value. It is also observed that S21 decreases with 

increasing concrete age for all gap conditions: for example, the value of S21 for a 1.0 

mm gap between the hour 1 concrete and the metal plate at 10.0 GHz frequency is –

14.6 dB, decreasing to –16.1, –18.5 and –18.7 dB for concrete of hour 6, on Days 2 

and 3, respectively, for the same gap value and at the same frequency. 

In Figure 4.32 shows the magnitudes of both the reflection coefficient and the 

transmission coefficient vs. gap value between the metal plate and the fresh concrete 

specimen at different ages and at a frequency of 10.6 GHz. It is seen that for hour 1 

concrete, S11 decreases sharply with gap value non-monotonically; however, for hour 

6, on Days 2 and 3, S11 decreases monotonically with gap value at a slower rate 

(Figure 4.32a). Conversely, it is observed in Figure 4.32b that S21 increases with 

increase in gap value; at gap values greater than 0.5 mm, the value of S21 for hour 1 

concrete is seen to drop significantly to the Day 2 and Day 3 values. During specimen 

preparation for this laboratory investigation, it was found that the sand to be used in 

the concrete mix was wet: because of this, the fresh concrete specimen contained more 
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moisture in the first few hours than the standard fresh concrete specimen. 

 

 
Figure 4.30: Measured magnitude of reflection coefficient vs. frequency at different 
values of gap between the metal and fresh concrete surfaces at four different times 
after preparing the specimen. 
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Figure 4.31: Measured magnitude of transmission coefficient vs. frequency at 
different values of gap between the metal and fresh concrete surfaces at four different 
times after preparing the specimen. 

 
Figure 4.32: Measured magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. gap values between the metal plate and fresh concrete surfaces at 10.6 
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GHz using DWS. 
 
4.5  Measurement with Dry Concrete Specimens 

This section describes the measurement procedure and results for different gap 

values between the dry concrete specimen and the metal plate of the DWS, as a 

function of the reflection coefficient and transmission coefficient. The age of the dry 

concrete specimen used in this investigation was about two years. 

4.5.1 Specimens and Measurement Setup 

 

Figure 4.33:  Experimental setup for measurement of the gap between the surfaces of 
the concrete specimen and metal plate using the microwave dual rectangular 
waveguide sensor. 

The photograph in Figure 4.33 shows the experimental arrangement for 

measuring the gap between the dry concrete and metal plate using the proposed dual 

waveguide sensor. A dry concrete cube with side dimension 250 mm and initial 

water : cement ratio of 1 : 2 was used in this investigation. Thin sheets of paper were 

used to create the desired gap (spacing), as shown in the figure. Ten measurements of 

the reflection and transmission coefficients were taken for each gap value (0.0, 0.5, 

1.0, 1.5, 2.0 mm), then averaged and presented together with the standard deviation. 
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4.5.2 Measurement Results and Discussion 

Figure 4.34a, b show the measured average magnitudes of the reflection 

coefficient and transmission coefficients, respectively, at different gap values over 

the operating frequency band. The vertical bars in Figure 4.34 represent one standard 

deviation (s.d., ± σ) of the average value at each measurement frequency. It is seen in 

Figure 4.34a that the magnitude of the reflection coefficient decrease with increasing 

gap from 0 to 2 mm over the operating frequency range. The differences between the 

magnitudes for different gap values at each frequency were measurable and, taken 

together with the STD, they demonstrate that the gap was measured to an accuracy in 

the order of ~0.2 mm. The magnitude of the transmission coefficient increases with 

increasing gap values between 0.5 and 2 mm, as shown in Figure 4.34b. It is also 

seen in Figure 4.34b that it is not possible to distinguish gaps between 0 and  0.5 mm 

at most frequencies. The relatively low transmission coefficient and high standard 

deviations in this range may suggest that the low probability of evaluating these 

small gap values is the result of measurement error due to surface roughness, and 

inaccuracies in sensor fabrication and gap arrangement. 

The results also indicate that the standard deviation of the measured data differs 

between frequencies and for different gap values. For the reflection coefficient 

measurement, the STD is low at the lowest frequencies (8.4–9.2 GHz) and at the 

highest frequencies (> 12 GHz), as shown in Figure 4.34a. It should be noted that the 

smallest STD for all gap values was obtained at a frequency of ~ 9 GHz. The 

smallest STD was found for the 0 and 0.5 mm gap values. For the transmission 

coefficient measurement, the STD at gap values of 0 and 0.5 mm is much higher than 

those at wider gap values at high frequencies (> 9.7 GHz). This behaviour also 

changes with frequency change, however; at lower frequencies the STD for the 

different gap values are comparable. 

Figure 4.35 shows the measured magnitude of the reflection coefficient and 

transmission coefficient vs. size of gap between the dry concrete and metal plate 

surfaces at 10.6 GHz. It is seen that the magnitude of the reflection coefficient 

decreases monotonically with increase of gap value, but the transmission coefficient 

changes non-monotonically, initially decreasing as the gap value first increases from 

zero, then gradually increasing as the gap increases from 0.5 to 2.0 mm. 
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Figure 4.34: Measured average magnitude of (a) reflection coefficient, and (b) 
transmission coefficient vs. frequency, showing standard deviation, for different 
values of gap between  concrete and metal plate surfaces. 

 

Figure 4.35: Measured average magnitude of (a) reflection coefficient, and (b) 
transmission coefficient vs. values of gap between concrete and metal plate surfaces 
at 10.6 GHz. 
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4.5.3 Simulation Results and Discussion 

The model of DWS and fresh mortar specimen (cf. Figure 4.20) was also used in 

the simulations of DWS with dry concrete; all simulation settings (frequency range, 

boundary conditions, background properties, excitation signals) were identical. The 

model differed only in the dielectric properties of the specimen. In the fresh 

mortar/DWS simulations, the  dielectric properties of the specimen were chosen from 

reports of previous study [11], and subsequently adjusted on the basis of measured 

values. In this case, however, to avoid this uncertainty in the simulations, the 

dielectric properties of the dry concrete specimen were determined from the 

measured reflection and transmission coefficients using the procedure and algorithm 

described in Chapter 3, section 3.3. 

Figure 4.36a shows the measured average magnitude of reflection coefficient vs. 

frequency, including standard deviation, for the no-gap condition. Selected 

simulation results of the magnitude of reflection coefficient for different values of 

the dielectric properties are also plotted. Figure 4.36b shows the measured average 

magnitude of the transmission coefficient (complete with standard deviation) vs. 

frequency, and selected simulated magnitudes of the transmission coefficient vs. 

frequency. It is seen that no single combination of the complex dielectric properties 

matches both the reflection coefficient and transmission coefficient with the same 

accuracy. Therefore, considering the frequency range of 10.0–11.0 GHz and focusing 

on the DWS guided wave, the complex dielectric permittivity determined for dry 

concrete was chosen as 4.1 – j0.82; this value was then used in simulations for the 

dry concrete specimen. 

Figure 4.37 shows the magnitude and phase of the simulated reflection 

coefficient vs. frequency for different values of the gap between surfaces of concrete 

(εr = 4.1 – j0.82) and metal plate. It can be seen from Figure 4.37a that increasing the 

gap results in a lower reflection coefficient; relatively large decreases are seen in the  

reflection coefficient for 0–0.5 mm gaps over the entire frequency band. The values 

of the magnitude of reflection coefficient and its behaviour agree very closely with 

the measured results (cf. Figure 4.34a). The behaviour of the phase differ as the gap 

value increases: the change of phase gradually increases with frequency increase, and 
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at each frequency the difference between the phases in adjacent curves (i.e., the gap 

values) also increases, as shown in Figure 4.37b. 

Figure 4.38 shows the simulated magnitude and phase of the simulated reflection 

coefficient vs. gap between the surfaces of the dry concrete (εr = 4.1 – j0.82) and the 

metal plate at a frequency of 10.6 GHz. It is seen in Figure 4.38a that themagnitude 

of reflection coefficient decreases with increase in gap from –7.15 dB at no gap to –

16.03 dB at 2.0 mm gap. Similarly, at 10.6 GHz the phase of the reflection coefficient 

decreases from –81.70° at no gap to –98.37° at 2.0 mm gap (Figure 4.38b). 

Figure 4.39 shows the magnitude and phase of the simulated transmission 

coefficient vs. frequency at different values of the gap between surfaces of dry 

concrete (εr = 4.1 – j0.82) and metal plate. Figure 4.39a shows an initial marginal 

decrease in S21 with the increasing gap value from no gap to 0.5 mm gap, followed 

by an increase with increase of gap value from 0.5 mm to 2.0 mm. This is clearly 

shown in the plot of transmission coefficient vs. gap value at 10.6 GHz frequency in 

Figure 4.40a. In Figure 4.39b it is seen that the phase of S21 shifts as the gap value 

increases. The amount of shift changes as frequency increases; however, at any given 

frequency (e.g. 10.6 GHz, Figure 4.40b), the phase of the transmission coefficient 

increases monotonically with increasing gap values. These variations in the phase 

and magnitude of the transmission coefficient (and reflection coefficient) with 

changes in gap values between dry concrete and metal plate can be best understood 

by analysing the electric field intensity distribution near the concrete–dual 

waveguide sensor interface, as shown in Figures 4.41 to 4.44. 
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Figure 4.36: Measured and simulated magnitude of (a) reflection coefficient, and (b) 
transmission coefficient vs. frequency with no gap between concrete and metal plate 
surfaces using DWS. 

 

 

Figure 4.37: Simulated reflection coefficient vs. frequency at different gap values 
between dry concrete (εr = 4.1 – j0.82) and metal plate surfaces: (a) magnitude, (b) 
phase. 
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Figure 4.38: (a) Magnitude and (b) phase of reflection coefficient vs. gap between 
surfaces of dry concrete εr = 4.1 – j0.82) and metal plate, simulated at 10.6 GHz. 

 

 

 

Figure 4.39: (a) Magnitude, and (b) phase of simulated transmission coefficient vs. 
frequency for different gaps between surfaces of dry concrete (εr = 4.1 – j0.82) and 
metal plate. 
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Figure 4.40: (a) Magnitude and (b) phase of transmission coefficient vs. gap between 
concrete  and metal plate surfaces, simulated at 10.6 GHz. 

 

Figures 4.41a–c is a cross-sectional side view of the simulated electric field 

intensity distribution in the DWS and concrete for 0, 1 and 2 mm gaps at 10.6 GHz. 

Figure 4.41a shows that W1 radiated microwaves into the dry concrete, with a small 

proportion penetrating into W2 at the no-gap condition. Several observations may be 

made from Figure 4.41b and c. They clearly show changes in the electric field 

intensity distribution at the interface between the concrete and metal surfaces when a 

gap is present. An animated-phase version of these distributions (not shown here) 

show electromagnetic waves propagating between the metal and concrete surfaces 

(guided waves) at the 1.0 and 2.0 mm gap. Such guided waves cause losses in 

electromagnetic energy both of the incident wave and the reflected wave. Another 

important observation from the figure is that a part of the guided wave and a part of 

the wave radiated by W1 into the concrete penetrate into W2 and cause interference 

there. As a result, due to the change of interference conditions as the gap increases 

from zero, the magnitude of the transmission coefficient changes non-monotonically 

as the gap increases from 0 to 1.0 mm, then increases when the value of the gap 

exceeds 1.0 mm. 

Figure 4.42 is a cross-sectional top view of the simulated electric field intensity 

distribution (amplitude and phase) inside both W2 and the dry concrete (εr = 4.1 – 
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j0.82) at 10.6 GHz. A small change is observed in the electric field intensity 

distribution in W2 from 0.0 gap (Figure 4.42a) to 1.0 mm gap (Figure 4.42b) and 2.0 

mm gap, consistent with the results presented in Figure 4.39a. For comparison with 

the electric field distribution in the fresh mortar specimen (εr = 17.0 – j3.4; Figure 

4.26), S21 = –52.32, –34.8 and –23.62 dB at 0.0, 1.0 and 2.0 mm gap, respectively; for 

the dry concrete specimen S21 = –41.56, –39.4 and –30.67 dB at 0.0, 1.0 and 2.0 mm 

gaps, respectively. 

Figure 4.43 illustrates the amplitude and phase of the electric field intensity 

distribution in 3D cutting plane at 10.6 GHz. It is seen in Figure 4.43a that, for the 

no-gap condition at x = 0 of the yz cutting plane, microwave signals radiated from 

W1 penetrated a larger zone of the dry concrete specimen than the mortar specimen, 

and more signals entered W2. The reason for this is that the fresh mortar contained 

more moisture, preventing microwave signal penetration. At 1.0 and 2.0 mm gap 

conditions, microwave signals passed through the gaps between the metal and dry 

concrete specimen as guided waves; this also occurred in the dry concrete specimen, 

but to a lesser extent. 

Figure 4.44 illustrates the amplitude and phase of the electric field distribution in 

the zx cutting plane at y = 27.7 mm  (i.e., the middle of W2) for 0, 1.0 and 2.0 mm 

gap conditions at 10.6 GHz frequency. It is clearly seen that the gap between the 

metal plate and the dry concrete specimen contributed guided wave signals to W2. 
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Figure 4.41: Cross-sectional side view of electric field intensity distribution inside 
waveguides of DWS and dry concrete specimen (εr = 4.1 – j0.82) for different gap 
values between metal and specimen at 10.6 GHz. 
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Figure 4.42: Cross-sectional top view of electric field intensity distribution inside 
waveguide 2 of DWS and dry concrete specimen (εr = 4.1 – j0.82) for different gap 
values between metal and specimen at 10.6 GHz. 
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Figure 4.43: Electric field intensity distribution inside waveguides of DWS and dry concrete specimen for different gaps between surfaces of 
metal and specimen (εr = 4.1 – j0.82) at x = 0 of yz cutting plane at 10.6 GHz. 
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Figure 4.44: Electric field intensity distribution inside waveguide 2 of DWS and dry concrete specimen for different gaps between surfaces of 
metal and specimen (εr = 4.1 – j0.82) at y = 27.7 (i.e., middle of waveguide 2) of zx cutting plane at 10.3 GHz. 
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4.5.4 Comparison of Measurement and Simulation Results 

 

Figure 4.45: Simulated and measured results for (a) reflection coefficient, (b) 
transmission coefficient vs. gaps between concrete and metal plate surfaces at 10.6 
GHz. 

Figure 4.45 shows the measured and simulated magnitude of reflection 

coefficient and transmission coefficient vs. gap value at 10.6 GHz. Figure 4.45a 

clearly shows good agreement between the measured and simulated reflection 

coefficient. Figure 4.45b shows some discrepancy between the measured and 

simulated transmission coefficient, attributable to sensor fabrication error and gap 

arrangement error due to roughness of the concrete specimen surface. This error is 

very critical at small gap values. Therefore, the dual waveguide sensor is capable of 

detecting and measuring small gaps, using the magnitude reflection coefficient and 

transmission coefficient separately. 

4.6 Measurement and Simulation with Metal Plate Specimens 

Sections 4.1–4.5 have described the design and development of the microwave 

dual waveguide sensor and its application for detecting and monitoring the size of the 

gap between different cement-based specimens and a metal plate. This section 

compares these with the results obtained when a steel plate specimen replaces the 

concrete specimen. 
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4.6.1 Measurement Setup 

 

Figure 4.46: Experimental setup for measuring the air gap between a steel plate 
specimen and the metal plate of the dual waveguide sensor. 

 

Figure 4.46 shows the experimental setup for measuring the reflection and 

transmission coefficients for various air gaps between a steel plate and the proposed 

DWS. A performance network analyser was the measuring tool, with a coaxial cable 

connection to the DWS, using coaxial-waveguide adapters as shown in the figure. 

The dimensions of the steel plate was 260 mm × 260 mm × 5 mm; thin paper 

sheets were used as before to create the desired gap between the plate specimen and 

the DWS. The arrangement was calibrated at the output apertures of the coaxial-

waveguide adapters using an X-band rectangular waveguide calibration kit. Eight 

measurements of the reflection and transmission coefficients were made for each gap 

value (0.0, 0.5, 1.0, 1.5 and 2.0 mm), then averaged. 
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4.6.2 Measurement Results and Discussion 

 

Figure 4.47: Average measured magnitude of (a) reflection coefficient, and (b) 
transmission coefficient vs. frequency for different values of the gap between the 
surfaces of the steel plate specimen and the metal plate of dual waveguide sensor. 

Figure 4.47 shows the average measured magnitudes of the reflection and 

transmission coefficients vs. frequency for different values of the gap between the 

steel plate specimen and the DWS. It is seen in Figure 4.47a that with no gap, the 

reflection coefficient is very close to 0.0 dB over the entire frequency band. The 

reason is that the steel is a very good conductor, and almost all signals radiated from 

the DWS aperture are reflected back to it. The reflection coefficient decreases with 

increasing gap value, with a greater decrease occurring at low frequency than at high 

frequency. It is seen in Figure 4.47b that the magnitude of the transmission 

coefficient at zero gap ranges from –40 to –45 dB, increasing with greater gap value; 

however, small differences of S21 are seen for other gap values, the difference 

decreasing with increasing gap value. It is also observed that, for all gaps, S21 is 

slightly higher at the lower frequencies. 

4.6.3 Simulation Results and Discussion 

For these simulations, the same dual waveguide sensor model created in CST 

Microwave Studio was used, but with the steel plate specimen as shown in Figure 

4.48. For the simulation purposes of the model, the steel specimen was regarded as a 
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pure electric conductor (PEC). All other simulation settings (frequency range, 

boundary conditions, background properties, excitation signals) were identical to 

those for the concrete specimens. 

 

Figure 4.48: A model of the DWS created in CST, with a steel plate specimen and 
gap between specimen and DWS surfaces. 

Figure 4.49 shows the simulated magnitude of reflection and transmission 

coefficients vs. frequency for different gaps between the steel plate specimen and the 

DWS. It is seen in Figure 4.49a that the trend of the simulated magnitude of 

reflection coefficient is very similar to the measured value (cf. Figure 4.47a). The 

value of S11 at the no-gap condition is very close to 0 dB. For other gaps, S11 

decreases with increasing gap value. It is observed that S11 is greater at higher 

frequencies. The magnitude of the simulated transmission coefficient shown in 

Figure 4.52b is negligible (–200 dB) at no gap, and increases as gap value increases. 

The differences in S21 at different gap values are relatively small, except from 0 to 

0.5 mm, and decrease with rise in gap value. 

Figure 4.50 shows the simulated magnitude of reflection coefficient and 

transmission coefficient vs. gap value at a frequency of 10.3 GHz for three dissimilar 

specimens, namely steel, fresh concrete and dry concrete. In these simulations the 

complex dielectric permittivity of the fresh and dry concrete were chosen as 15 – j4.5 

and 4.1 – j0.82, respectively. It is clear in Figure 4.50a that S11 decreases with gap 

value for all specimen types, but at any given gap value the steel has the highest 

reflection coefficient, and dry concrete has the lowest. It is also observed in Figure 

4.50b that S21 increases with gap value; again, the steel specimen produces the 

highest transmission coefficient at gaps more than 0.25 mm. 

Metal plate specimen 
Air gap 

Waveguide section 2 

Waveguide section 1 
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Figure 4.49: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gaps between the steel plate specimen and the 
metal plate of the DWS.  

 

Figure 4.50: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. gap between metal wall of DWS and steel metal, fresh concrete         
(15 – j4.5) and dry concrete (4.1 – j0.82) specimens at a frequency of 10.3 GHz. 

 

4.6.4 Comparison of Measurement and Simulation Results 

Figure 4.51 illustrates the measured and simulated magnitude of the reflection 

and transmission coefficients vs. gap value at the three frequencies 8.5, 10.0 and 12.0 
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GHz. In Figure 4.51a it is clear that the measured and simulated S11 are comparable; 

however, they are in closer agreement at 8.5 and 12.0 GHz than at 10.0 GHz. In 

Figure 4.51b it is seen that the measured and simulated transmission coefficients are 

very close at all gap values at all three frequencies, except at zero gap, since in 

practice it is not possible to ensure precisely zero gap between the steel plate 

specimen and the DWS (surface scratches, roughness of the metal etc.); once there is 

any gap, however small, the S21 signal passes through the two conducting materials. 

Figure 4.52 shows the measured and simulated magnitude of the transmission 

coefficient vs. gap at 10.3 GHz between the metal plate of DWS and the steel, fresh 

concrete and dry concrete specimens. It is seen that the steel specimen provides the 

highest transmission coefficient. Measurements and simulations agree well in all 

cases. To consider the 0.5 mm measurement error in a practical scenario such as 

surface roughness, or a tiny scratch on the steel specimen, or the thickness of 

polythene film for fresh concrete, or surface roughness for the dry concrete 

specimen, Figure 4.53 illustrates very good agreement between simulated and 

measured results. 

Figure 4.51: Measured and simulated magnitudes of (a) reflection coefficient, and (b) 

transmission coefficient vs. gap between the steel plate specimen and DWS at three 

different frequencies.  
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Figure 4.52: Measured and simulated magnitude of transmission coefficient vs. gap 
value between metal plate of DWS and three different specimens at a frequency of 
10.3 GHz. 

 
Figure 4.53: Measured and simulated magnitude of transmission coefficient vs. gap 
value between metal plate of DWS and three different specimens at a frequency of 
10.3 GHz after measurement data for 0.5 mm are adjusted. 
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4.7 Numerical Investigation of Crack Detection inside Dry 
Concrete Specimens 

Cracks develop in concrete under different environmental, structural and 

manufacturing conditions. They may be in different sizes and shapes, but need to be 

detected and evaluated before causing any damage to structure. In this section, the 

effect of the location, dimensions and shape of cracks in a dry concrete specimen   

(εr' = 4.1 – j0.82) on the magnitude of the reflection and transmission properties of 

that specimen will be investigated numerically using the developed DWS. Figure 

4.54a shows a model of dry concrete specimen with a through crack in the zx plane; 

Figure 4.54b shows the DWS with the cracked specimen: in this model, the lengths 

of waveguide sections were equal and 30 mm apart. Figure 4.54c–d shows models 

containing a crack in each (rectangular or triangular, as shown) and its location with 

respect to the DWS. 

 

Figure 4.54: A model of DWS and dry concrete specimen with cracks in CST: (a) 
perspective view; (b) with metal plate of DWS; (c) rectangular crack in position 1; 
(d) rectangular crack in position 2; and (d) triangular crack in position 3. 
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Figure 4.55 shows the magnitudes of the reflection and transmission coefficients 

vs. frequency at different gap values, for the DWS and dry concrete (εr' = 4.1 – 

j0.82) without cracks. In Figures 4.56 to 4.59 the magnitudes of the reflection and 

transmission coefficients vs. frequency are presented for different values of the gap 

between the DWS and dry concrete specimens containing rectangular cracks 1, 2, 3 

and 4 mm wide, respectively, located at position 1 (shown in Figure 4.54c). In all 

cases, the cracks are 50 mm deep. It is seen that S11 decreases with increasing gap 

value for all cases. The values of S11 are almost identical for the different gap values, 

with small fluctuations in the periodic frequencies when cracks are present. Although 

these fluctuations are minor, they are indicative of the presence of small cracks; the 

fluctuations increase with the increasing crack width. However, the magnitude of the 

reflection coefficients for different gaps between the DWS and the dry concrete 

specimen with/without cracks are somewhat irregular. The S21 values in the 

uncracked specimen are irregular but linear at different gaps; only the 1.0 mm gap 

curve generates resonance at 10.5 GHz. For specimens with cracks, S21 values at 

zero gap are almost linear, with higher values; the S21 at other gap values creates 

either oscillation or resonance at different frequencies. 

Figure 4.60 shows the magnitude of the reflection and transmission coefficients 

vs. frequency for dry concrete specimens (εr' = 4.1 – j0.82) with no crack and with 

cracks of different width at zero gap between DWS and specimen. It is seen in Figure 

4.60a that the magnitude of the reflection coefficient for specimens with cracks 

fluctuates around the linear S11 value for the uncracked specimen. Thus, S11 

measurement can be used for detecting cracking in dry concrete. Figure 4.60b shows 

that the magnitude of the transmission coefficient decreases with increase of 

frequency for uncracked and cracked specimens, and with increasing crack width. It 

is also observed that within the lower frequency range of   8.4–9.3 GHz, S21 

decreases with increasing crack width, and the differences are comparable. This 

implies that the width of cracks can be monitored by analysing the measurements of 

magnitude of transmission coefficient. 
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Figure 4.55: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different values of the gap between the metal plate of 
the DWS and the dry, uncracked concrete specimen (εr' = 4.1 – j0.82).  

 

Figure 4.56: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different values of the gap between the metal plate of 
the DWS and dry concrete specimen (εr' = 4.1 – j0.82) with a rectangular crack 1 
mm wide and 50 mm deep at position 1 shown in Figure 4.54c. 
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Figure 4.57: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different values of the gap between the metal plate of 
the DWS and dry concrete specimen (εr' = 4.1 – j0.82) with a rectangular crack 2 
mm wide and 50 mm deep at position 1 shown in Figure 4.54c. 

 

 

Figure 4.58: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different values of the gap between the metal plate of 
the DWS and dry concrete specimen (εr' = 4.1 – j0.82) with a rectangular crack 3 
mm wide and 50 mm deep at position 1 shown in Figure 4.54c. 
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Figure 4.59: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different values of the gap between the metal plate of 
the DWS and dry concrete specimen (εr' = 4.1 – j0.82) with a rectangular crack 4 
mm wide and 50 mm deep at position 1 shown in Figure 4.54c. 

 

Figure 4.60: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different widths of crack 50 mm deep at position 1 in 
Figure 4.54c, with no gap between the metal plate of the DWS and the dry concrete 
specimen (εr' = 4.1 – j0.82). 
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Figures 4.61 and 4.62 show the magnitudes of the reflection and transmission 

coefficients vs. frequency for different gap values between the DWS and dry concrete 

(εr' = 4.1 – j0.82) with rectangular cracks 1 mm and 3 mm wide, respectively at 

position 2 shown in Figure 4.54d. It is seen that because the crack is immediately 

beneath waveguide section 1, the magnitude of the reflection coefficient decreases 

significantly for all gap conditions compared to specimens with either no crack or 

with a crack in position 1. For instance, at the no-gap condition and 10.3 GHz, for 

the no-crack specimen, S11 is –6.88 dB (cf. Figure 4.57a); for the specimen with a 

crack 1 mm wide at position 1, the value of S11 is –6.82 dB, whereas when the crack 

is at position 2, the value of S11 is –7.68 dB. It is also found that an increase in crack 

width reduces the magnitude of reflection coefficient. At the no-gap condition and 

10.3 GHz, S11 decreases from –7.68 dB for the 1 mm-wide crack to –9.18 dB for the 

3 mm-wide crack (Figure 4.62a). It is observed that for cracks in position 2, the 

magnitude of the transmission coefficient at the no-gap condition increases with 

crack width. For example, at the no-gap condition, S21 increases from –35.41 dB to –

32.71 dB at 10.3 GHz frequency. 

Figures 4.63 and 4.64 show the magnitudes of the reflection and transmission 

coefficients vs. frequency for different gap values between the DWS and dry 

concrete (εr' = 4.1 – j0.82) with triangular cracks with a 4 mm base and with heights 

of 50 mm and 100 mm, respectively, at position 3 shown in Figure 4.54e. It is seen 

that the magnitudes of the reflection and transmission coefficients at no-gap fluctuate 

slightly more when the crack is 50 mm deep than when it is 100 mm deep possibly 

because the microwave signal strongly penetrates a dry concrete specimen (εr' = 4.1 

– j0.82) up to 40 or 50 mm, but beyond that the signal strength is very low. 

Therefore, a triangular crack 100 mm depth has less effect than a crack 50 mm depth. 

This and other crack phenomena can best be understood by analysing the electric field 

intensity distribution inside the cracked concrete specimens. 

Figure 4.65 illustrates the electric field intensity distributions inside the 

waveguides and concrete specimens (εr' = 4.1 – j0.82) with cracks of different width 

and height at 10.3 GHz frequency for the no-gap condition. Furthermore, in Figures 

4.66 and 4.67, the electric field intensity distribution inside the waveguides and 

concrete specimens (εr' = 4.1 – j0.82) with cracks of different widths and 50 mm 
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height at different frequencies are presented for the cases where the gap between the 

DWS and the top surface of the specimen is 0.5 mm and 1.5 mm, respectively. 

 

Figure 4.61: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different values of the gap between the metal plate of 
the DWS and dry concrete specimen (εr' = 4.1 – j0.82) with a rectangular crack 1 
mm wide and 50 mm deep at position 2 shown in Figure 4.54d. 

 

 

Figure 4.62: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different values of the gap between the metal plate of 
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the DWS and dry concrete specimen (εr' = 4.1 – j0.82) with a rectangular crack 3 
mm wide and 50 mm deep at position 2 shown in Figure 4.54d. 

 

Figure 4.63: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different values of the gap between the metal plate of 
the DWS and dry concrete specimen (εr' = 4.1 – j0.82) with a triangular crack of 4 
mm base and 50 mm depth at position 3 shown in Figure 4.54e. 

 

 

Figure 4.64: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different values of the gap between the metal plate of 
the DWS and dry concrete specimen (εr' = 4.1 – j0.82) with a triangular crack of 4 
mm base and 100 mm depth at position 3 shown in Figure 4.54e. 
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Figure 4.65: Electric field intensity distribution inside waveguides and concrete specimen (εr' = 4.1 – j0.82) with cracks of different width and 
height at 10.3 GHz frequency when there is no gap between the DWS and the top surface of the specimen. 
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Figure 4.66: Electric field intensity distribution inside waveguides and concrete specimen (εr' = 4.1 – j0.82) with cracks of different width and 
50 mm height at different frequencies, when there is a 0.5 mm gap between the DWS and the top surface of the specimen. 
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Figure 4.67: Electric field intensity distribution inside waveguides and concrete specimen (εr' = 4.1 – j0.82) with cracks of different width and 
50 mm height at different frequencies, when there is a 1.5 mm gap between the DWS and the top surface of the specimen. 
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4.8  Sensitivity Analysis 

During the measurement with cement-based specimen using DWS, it has been 

found that there are some situations that may affect the accuracy of the measured 

parameter. For instance, the fresh mortar specimen lost moisture by natural 

dehydration as it aged, thus varying its dielectric properties. This section contains 

numerical analyses of events that might change the measured magnitude of the 

reflection coefficient, S11, and the transmission coefficient S21. 

Figure 4.68 shows the simulated magnitude of the reflection and transmission 

coefficient vs. frequency for different dielectric constant values of the fresh mortar 

specimen for no gap between the specimen and the metal plate of the DWS. The loss 

tangent of the specimen was set as 0.105. It is seen that the magnitude of the reflection 

coefficient decreases with the decrease of dielectric constant over the entire X-band 

frequency, and also decreases with increasing frequency, with equal differences in S11 

between adjacent dielectric constant curves. On the other hand, the magnitude of the 

transmission coefficient decreases with increase of dielectric constant and the 

differences in S21 between adjacent dielectric constant curves are not equal, but 

increase with decreasing dielectric constant of the specimen. 

In Figure 4.69, the simulated magnitudes of the reflection coefficient and 

transmission coefficient vs. frequency for different loss tangents for the fresh mortar 

at no gap between specimen and DWS metal plate are presented. The dielectric 

constant of the specimen under test was fixed at 17.0. It is clearly seen in Figure 

4.69a that variations in the loss tangent of the specimen have negligible effect on the 

magnitude of the reflection coefficient. However, the magnitude of the transmission 

coefficient is significantly affected by variations in loss tangent, decreasing with 

increasing loss tangent (Figure 4.69b). 

Figure 4.70 shows the simulated magnitudes of reflection coefficient and 

transmission coefficient vs. frequency for very small values of the gap between 

specimen and DWS. These may be attributable to the thickness of the polythene film 

covering the specimen, or the surface roughness of the specimen, operator error, and 

so on. It is clearly seen that small gaps up to 0.3 mm have a minor effect on both S11 
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and S21 but, once the gap exceeds 0.3 mm, large jumps are seen in the magnitude of 

both the reflection and transmission coefficients. 

 

Figure 4.68: Simulated magnitude of (a) reflection coefficient and (b) transmission 
coefficient vs. frequency for different values of dielectric constant of fresh mortar 
with no gap between specimen and DWS metal plate. 
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Figure 4.69: Simulated magnitude of (a) reflection coefficient and (b) transmission 
coefficient vs. frequency for different values of loss tangent of mortar specimen with 
no gap between specimen and DWS metal plate. 
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Figure 4.70: Simulated magnitude of (a) reflection coefficient and (b) transmission 
coefficient vs. frequency for different values of small gap (0.1–0.5 mm) between the 
mortar specimen (εr = 17.0 – j 3.4) and the DWS metal plate. 
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4.9 Summary 

The design and development of a novel microwave dual waveguide sensor for 

cement-based composite structures are presented in this chapter. The proposed sensor 

mainly consists of two standard X-band waveguide sections having each end 

embedded in a metal plate. A parametric study of the proposed DWS with fresh 

concrete specimens performed in single waveguide mode (described in Chapter 3) 

and in dual waveguide mode showed that the dual waveguide mode of the proposed 

DWS may provide more measurement data than the single waveguide mode for 

characterising metal–concrete structures, such as: (1) transmission properties of wave 

propagated along the gap between the metal and concrete surfaces (i.e., guided 

wave); (2) reflection properties of the metal–concrete interface at two different 

places at the same stage of concrete; and (3) data for a larger area of the interface 

under inspection. These measurements may provide advanced characterisation of the 

metal–concrete structures, including the detection of gaps and cracks, and the 

dielectric/physical properties of concrete. 

The DWS was fabricated and applied to measure small gaps (0.0–2.0 mm) 

between fresh and dry concrete specimens and a steel plate specimen. For this 

purpose, the reflection and transmission coefficients were measured with no gap to 

determine the dielectric permittivity of the fresh concrete specimen in the area of 

measurement, using the algorithm developed in Chapter 3. Ultimately, it was found 

that the fabricated DWS was capable of measuring small gap between the metal plate 

of the DWS and fresh (or dry) concrete specimens. Comparisons between measured 

and simulated results clearly indicated that the highest accuracy was attained in the 

range 1.0–2.0 mm for fresh concrete, and 0.5 –2.0 mm gaps for dry concrete. The 

relatively large measurement error at small gaps are attributed to sensor fabricated 

error as well as the arrangement of the gap (mainly for fresh concrete) and surface 

roughness of concrete (mainly for dry concrete). 

The proposed DWS was tested by measuring small distances between its metal 

plate and a steel plate specimen. It was shown that the DWS measured small 

distances from the steel plate specimen using the reflection coefficient and the 

transmission coefficient. Additionally, a comparison of the reflection and 
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transmission properties at different gap values for the steel plate and the concrete 

specimens showed that the steel plate specimen had higher S11 and S21 magnitudes 

than the concrete specimens at all gap values. 

The detection of cracks inside dry concrete specimens, and the influence of the 

size, position and shape of the crack were also numerically investigated using the 

proposed dual waveguide sensor. It was shown that variations in the reflection 

coefficient and transmission coefficient were the indicators of crack depth and 

location. 

Finally, the sensitivity of the magnitude of the reflection coefficient and 

transmission coefficient of the proposed DWS to variations in dielectric constant and 

loss tangent of concrete specimens, and the effects of surface roughness or polythene 

film thickness were studied numerically. It was found that the magnitude of the 

reflection coefficient was most sensitive to changes of dielectric constant, while the 

transmission coefficient was most sensitive to changes of loss tangent in the concrete 

specimens. These results showed that the measurement and analysis of both the 

reflection coefficient and the transmission coefficient can distinguish the effect of 

changes of gap size and dielectric properties of concrete. 



 

Chapter 5 

Dual Waveguide Sensor with Rectangular Dielectric 
Insertions  

 

5.1 Introduction 
In the previous chapter it was shown that the proposed dual waveguide sensor 

comprising empty waveguide sections was capable of measuring a small gap       

(e.g., a debonding gap) between the concrete and a metal plate. However, for 

measurement with fresh and early-age concrete specimens there is always a risk of 

cement paste and/or water entering the waveguide sections and significantly 

affecting the results. The main aim of the work included in this chapter was to 

overcome this problem in the proposed rectangular dielectric insertions implanted in 

the dual waveguide sensor (referred to as the dielectric-loaded DWS) such that their 

component parts prevent the penetration of undesired substances and thus improve 

sensor performance. The design and fabrication of the proposed dielectric-loaded 

DWS is described. Next, the reflection, transmission and resonant properties of the 

sensor with a concrete–metal structure with no gap are investigated, and the complex 

dielectric permittivities of specimens of fresh and dry concrete are determined using 

measured data and extensive simulations combined with an improved algorithm. 

Measurement and simulation are then performed to detect and monitor the gap 

between the metal plate and concrete specimens of different age, and the results are 

compared. Finally, the sensitivity of the dielectric-loaded DWS to variations of 

dielectric and geometrical properties of the insertions is analysed. 

 

5.2  Design of Sensor 
Figure 5.1 is a schematic of the proposed microwave dielectric-loaded DWS. 

The sensor consists of two dielectric-loaded rectangular waveguide sections installed 

in a metal plate complete with flanges for connection to the measurement system 

(Figure 5.1a). The distance between the waveguide sections is L. The cross-sectional 

side view of the sensor for detecting the gap between a metal plate and concrete is 
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shown in Figure 5.1b. Figure 5.1c is a perspective-view schematic of one of the 

dielectric insertions with dimensions a × b, which are equal to the aperture 

dimensions of the rectangular sections, and of variable length. 

Figures 5.2a, b are two views of the fabricated X-band dielectric-loaded DWS, 

showing the waveguide sections and a metal plate similar to those described in Chapter 

4. Two rectangular acrylic dielectric insertions measuring 22.75 × 22.5 × 10.0 mm are 

shown in Figure 5.2c. The length was selected to provide a resonant response within 

the X-band. 

 

Figure 5.1: Schematic of the proposed dielectric-loaded dual waveguide sensor: (a) 
top view; (b) cross-sectional side view with concrete structure; and (c) perspective-
view schematic of the dielectric insertion. 
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Figure 5.2: Photographs of (a) top of DWS and (b) its rear view, showing dielectric 
inserts, and (c) the rectangular dielectric insert made of acrylic material. 
 
 
5.3 Measurement with Fresh and Early-Age Concrete Specimens 

This section describes the measurement approach and results with concrete 

specimens using the proposed dielectric-loaded DWS. First, the reflection coefficient, 

S11, and transmission coefficient, S21, were measured with no gap between the 

concrete specimen and the metal plate. Second, S11 and S21 were measured for 

different gaps with early-age concrete specimens of variable ages. 

5.3.1 Specimens and Measurement Setups 

In this study, a standard specimen of fresh concrete with maximum aggregate 

size of 10 mm, 18 mm slump and 40 MPa 28-day compressive strength was prepared. 

A cubic wooden mould measuring 250 × 250 × 250 mm was used to hold the fresh 

concrete specimen; the fabricated dielectric-loaded DWS replaced one side of the 

mould to ensure a no-gap condition between the fresh concrete and metal plate, as 

shown in Figure 5.3a, b. 
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Figure 5.3: Cubic wooden mould with one side replaced by the dielectric-loaded 
DWS: (a) empty mould, and (b) with fresh concrete, adapters and cables. 

 

Two measurement arrangements were used in this investigation for measuring 

the magnitude and phase of the reflection and transmission coefficients of fresh and 

early-age concrete with the microwave dielectric-loaded DWS, using a performance 

network analyser (PNA). Figure 5.4a shows measurement setup 1, where one side of 

fresh specimen holding mould is replaced by the fabricated sensor, thereby ensuring 

that no gap would be present between the specimen and the metal plate of the DWS. 

In measurement  setup 2, the early-age concrete specimen with the mould removed 

was used as shown in Figure 5.4b, to provide air gaps of values (0, 0.5, 1.0, 1.5 and 

2.0 mm between the specimen and metal plate, using thin paper sheets. Suitable 

adapters and cables were used to connecting the sensor to the PNA. The dielectric-

loaded DWS radiated microwave signals from the PNA into the specimen through 

the dielectric insertions and picked up the reflected and transmitted signals again 

through insertions. The calibration of the setup at the output apertures of the 

waveguide-coaxial adapters was performed using an X-band rectangular waveguide 

calibration kit. 
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Figure 5.4: Measurement setup, including PNA and dielectric-loaded DWS: (a) for 
fresh concrete at no-gap condition, and (b) for early-age / semi-dry / dry concrete 
specimens with different gaps between metal and specimen. 
 
 
5.3.2  Measurement Results and Discussion 
 

No gap between metal plate and specimens 

The reflection and transmission coefficients were measured at each of first six 

hours after casting the fresh concrete specimen. Measurements were also conducted 

for five times in each day from the second to the eighth day using identical settings, 

and averaged for each day. 
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Figure 5.5 shows the measured magnitude and phase of the reflection coefficient 

vs. frequency at the first six hours after casting the fresh concrete specimens obtained 

with the dielectric-loaded DWS at the no-gap condition. The reflection coefficient 

showed a resonant response which decreased over time at all frequencies; the most 

noticeable decrease takes place at the resonant frequency at approximately 10.9 GHz. 

It should be emphasised that the resonant frequency did not change in this case. Also, 

it was observed that the phase of the reflection coefficient showed no significant 

change in the first six hours. During the first six hours, changes of loss factor of the 

concrete were the main contributor to changes in the reflection coefficient. 

For illustrative purposes, Figure 5.6 presents the average measured magnitude 

and phases of the reflection coefficient along with and standard deviation vs. 

frequency for the first day after casting the concrete using the dielectric-loaded DWS 

in the no-gap condition. The average of the first six hours’ measurements is shown; 

the standard deviation is a measure of the changes of measured magnitude and phase 

at these measurement times. It is clearly seen that the change in magnitude exceeds 

the phase change for the reflection coefficient in the first-day fresh concrete. 

Figure 5.7 shows the measured magnitude and phase of the transmission 

coefficient vs. frequency for the first six hours after casting the concrete specimen, 

using the dielectric-loaded DWS at the no-gap condition. It is seen that the magnitude 

of the transmission coefficient has no resonant response, but S21 fluctuates over the 

frequency band. It is also noted that S21 (dB) increases over time for the entire 

frequency band. Furthermore, it is observed that the phase of S21 shifts significantly 

towards higher frequencies with increasing time in the first six hours of the fresh 

concrete. 

The average measured magnitude and phase of the transmission coefficient, 

along with the standard deviations vs. frequency of first-day fresh concrete using 

dielectric-loaded DWS in the no-gap condition are shown in Figure 5.8. It is clearly 

seen that both the magnitude and the phase of the transmission coefficient change 

over time at each frequency. The two sets of measurement results shown in Figures 

5.6 and 5.8 were used to determine the complex dielectric permittivity of first-day 

fresh concrete specimen as described in section 5.5.2. 
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Figure 5.9 shows the average measured magnitude and phase of the reflection 

coefficient vs. frequency for the first eight days for the no-gap condition. It is seen 

that S11 decreases significantly from the first to second day over the entire operating 

frequency range, attributed to the transition from fresh to hardened concrete on the 

first day [13], [14]. Changes of the magnitude are negligible over the next six days. 

The phase of the reflection coefficient demonstrates similar behaviour, as Figure 5.9b 

shows; however, it is notable that the change of phase occurs only in the vicinity of 

the resonant frequency (10.9 GHz). These results show that the changes in the 

dielectric constant of concrete contribute most to the changes of the reflection 

properties during the transition from fresh to hardened concrete. 

Figure 5.10 shows the average measured magnitude and phase of transmission 

coefficient vs. frequency in first eight days for the no-gap condition. It is seen that 

S21 increases significantly from the first to second day, and by a small amount from 

the second to fourth day over the entire operating frequency range, then barely 

changes. It is also found that the phase of the transmission coefficient shifts towards 

the higher frequencies by a reasonable amount from the first to second day, then 

continues to shift but by a lesser amount. 

 

Figure 5.5: Measured magnitude and phase of reflection coefficient vs. frequency for 
the first six hours after casting the concrete specimens, using the dielectric-loaded 
DWS with no gap between specimen and metal plate. 
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Figure 5.6: Average measured magnitude and phase of reflection coefficient vs. 
frequency along with standard deviations for first-day concrete using the dielectric-
loaded DWS with no gap between specimen and metal plate.  
 
 
 

 

Figure 5.7: Measured magnitude and phase of transmission coefficient vs. frequency 
for first six hours of first-day concrete using the dielectric-loaded DWS with no gap 
between specimen and metal plate.  
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Figure 5.8: Average measured magnitude and phase of transmission coefficient vs. 
frequency along with standard deviations for first-day concrete using the dielectric-
loaded DWS with no gap between specimen and metal plate. 
 
 

 

Figure 5.9: Average measured magnitude and phase of reflection coefficient vs. 
frequency at selected days in the first eight days of the concrete specimen using 
dielectric-loaded DWS with no gap between specimen and metal plate. 
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Figure 5.10: Average measured magnitude and phase of transmission coefficient vs. 
frequency at selected days in the first eight days of the concrete specimen using 
dielectric-loaded DWS with no gap between specimen and metal plate. 

Different gaps between metal plate and specimens 

The magnitudes and phases of the reflection and transmission coefficients were 

measured for five selected gaps between the early-age concrete specimens and the 

metal plate (0.0, 0.5, 1.0, 1.5, 2.0 mm). Measurements were conducted five times a 

day for each gap from the ninth to the 17th day with identical settings, then averaged 

for each day. Selected results are presented here. 

Figure 5.11 shows the average measured magnitude of the reflection coefficient 

vs. frequency at all five values of the gap between the metal plate and concrete 

specimens of different age (days 9, 12, 15 and 17). It is clearly seen that for concrete 

specimens of all ages, resonance takes place in all S11 curves for all gap values. It is 

seen that the resonant frequency changes with different gap values, but not 

appreciably with the age of the concrete. Furthermore, S11 changes at the resonant 

frequencies for different gap values. 

Figure 5.12 shows the average measured phase of the reflection coefficient vs. 

frequency for all five values of the gap between the metal plate and concrete 

specimens of different age (days 9, 12, 15 and 17). Phase shifts are seen for S11 in the 
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frequency scale with increasing gap, and the shift changes at corresponding resonant 

frequencies. 

Figure 5.13 shows the average measured magnitude of transmission coefficient 

vs. frequency for all five values of the gap between the metal plate and concrete 

specimens of different age (days 9, 12, 15 and 17). It is clearly seen that S21 increases 

with the increase of gap value over the entire frequency band for concrete specimens 

of all ages. It is also found that concrete age does not affect S21 at gap values of 1.0, 

1.5 and 2.0 mm, but S21 is seen to change at gap values of 0.0 and 0.5 mm. 

Figure 5.14 shows the average measured phase of transmission coefficient vs. 

frequency for all five values of the gap between the metal plate and concrete 

specimens of different age (days 9, 12, 15 and 17). It is seen that phase of S21 increases 

with increase in gap from 0.5 to 2.0 mm over almost the entire frequency band, the 

exception being at the lowest and highest frequencies, significantly decreasing from 

no gap  to  0.5 mm gap over the same frequency band. 
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Figure 5.11: Average measured magnitude of reflection coefficient vs. frequency for 
different gaps between concrete specimens of different age and metal plate using the 
dielectric-loaded DWS.  
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Figure 5.12: Average measured phase of reflection coefficient vs. frequency for 
different gaps between concrete specimens of different age and metal plate using 
dielectric-loaded DWS.  
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Figure 5.13: Average measured magnitude of transmission coefficient vs. frequency 
for different gaps between concrete specimens of different age and metal plate using 
the dielectric-loaded DWS.  
 

9th Day 12th Day 

Frequency (GHz) 

M
ag

ni
tu

de
 o

f t
ra

ns
m

is
sio

n 
co

ef
fic

ie
nt

 (d
B

) 

M
ag

ni
tu

de
 o

f t
ra

ns
m

is
sio

n 
co

ef
fic

ie
nt

 (d
B

) 

Frequency (GHz) 

15th Day 17th Day 

Frequency (GHz) 

M
ag

ni
tu

de
 o

f t
ra

ns
m

is
sio

n 
co

ef
fic

ie
nt

 (d
B

) 

M
ag

ni
tu

de
 o

f t
ra

ns
m

is
sio

n 
co

ef
fic

ie
nt

 (d
B

) 

Frequency (GHz) 



Chapter 5 
 

 
 

Page 152 
 

 

Figure 5.14: Average measured phase of transmission coefficient vs. frequency for 
different gaps between concrete specimens of different age and metal plate using 
dielectric-loaded DWS.  
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5.4  Measurement with Semi-Dry and Dry Concrete Specimens 
This section discusses the measurement results for semi-dry and dry concrete 

specimens using the dielectric-loaded DWS. For this investigation, the ages of the 

concrete specimens were 50 days (semi-dry) and two years (dry). The measurement 

setup shown in Figure 5.4b was adopted to measure S11 and S21 for the same five gap 

values as above (0.0, 0.5, 1.0, 1.5 and 2.0 mm) between the specimens and the metal 

plate of the proposed dielectric-loaded DWS. Five measurements were conducted 

and averaged for each gap value as for the early-age concrete specimens. 

Semi-Dry Concrete Specimens 

Figure 5.15 shows the average measured magnitude and phase of the reflection 

coefficient vs. frequency for different gaps between the semi-dry concrete specimens 

and the metal plate. It is clearly seen that resonance occurred in all S11 curves for 

each gap value, but the resonant frequencies differ for all gap values. It is also found 

that the resonant frequencies for different gaps for semi-dry concrete are very similar 

to those for early-age concrete. The phase of the reflection coefficient shifts in 

frequency scale with increasing gaps and there are changes in shifts at corresponding 

resonant frequencies. 

Figure 5.16 shows the average measured magnitude and phase of the transmission 

coefficient vs. frequency for different gaps between the semi-dry concrete specimens 

and metal plate. It is seen that S21 increases with the increasing gap value over the 

entire operating frequency as for the early-age concrete case. It is also observed that 

the phase of S21 increases with increase of gap value from 0.5 to 2.0 mm in the 

frequency range 9.0–11.5 GHz. However, the phase of S21 decreases from no gap to 

0.5 mm gap in the same frequency range. 
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Figure 5.15: Average measured magnitude and phase of reflection coefficient vs. 
frequency at different values of gap between semi-dry concrete specimens and metal 
plate at day 50. 
 

 

 

Figure 5.16: Average measured magnitude and phase of transmission coefficient vs. 
frequency at different values of gap between semi-dry concrete specimens and metal 
plate at day 50. 
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Dry Concrete Specimens 

Figure 5.17 shows the average measured magnitude and phase of the reflection 

coefficient vs. frequency and standard deviations for dry concrete with no gap 

between specimen and metal plate. The average and standard deviation were 

calculated from five measurements. It is clearly seen that the variation in magnitude 

measurements is higher at resonant frequency than at other frequencies. However, 

variations in measurement for phase are negligible. 

Figure 5.18 shows the average measured magnitude and phase of transmission 

coefficient vs. frequency and standard deviations for dry concrete with no gap 

between specimen and metal plate. The average and standard deviation were 

calculated from five measurements. It is clearly seen that the variations in magnitude 

measurements is highest at the higher frequencies; however, variations in phase 

measurement are lower by comparison, except around 10.0 GHz. The measurement 

results in Figures 5.17 and 5.18 were used to determine the complex dielectric 

permittivity of dry concrete specimen as described in section 5.5.2. 

Figure 5.19 shows the average measured magnitude and phase of the reflection 

coefficient vs. frequency for different gap values between dry concrete specimen and 

metal plate. It is seen that the resonant frequency in the S11 curve changes with the 

change of gap value. Another important observation is that although S11 changes at 

resonant frequencies (cf. early-age and semi-dry concrete specimen), the resonant 

frequencies do not change very much with change of concrete type. The phase of the 

reflection coefficient curves shift with frequency scale as the gap increases, 

accompanied by shift changes at corresponding resonant frequencies. 

Figure 5.20 shows the average measured magnitude and phase of transmission 

coefficient vs. frequency at different values of the gap between the dry concrete 

specimen and the metal plate. It is seen that the magnitude of S21 increases with the 

increasing gap value from 0.5 to 2.0 mm over the entire frequency band. The 

difference between adjacent curves decreases as the gap increases. S21 at no gap 

changes with frequency non-monotonically over the entire frequency band and 

intersects the 0.5 mm gap curve in several places. It is also observed that the phase of 
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the transmission coefficient increases with larger gap value at frequencies below 10 

GHz. 

Figure 5.21 shows the resonant frequency in the average measured magnitude of 

the reflection coefficient vs. gap between concrete specimen of different ages and 

metal plate. It is clear that the resonant frequency decreases with increase of the gap 

between concrete specimens of all ages and the metal plate of the proposed 

dielectric-loaded DWS. The resonant frequency at different gap values does not vary 

excessively for early-age and semi-dry concrete, but the resonant frequency for dry 

concrete is slightly less than the other concrete specimens for gaps greater than 0.5 

mm. 

Figure 5.22 shows the average measured magnitude of transmission coefficient 

vs. gap between concrete specimens of different age and metal plate at 10.3 GHz. 

The transmission coefficient increases monotonically with increasing gap value for 

early-age and semi-dry concrete. For dry concrete, S21 initially decreases from 0.0 to 

0.5 mm gap, then increases with the increasing gap value. It is also observed that 

values of S21 at different gap values for early-age and semi-dry concrete specimens 

are very close, and for dry concrete they are a little less than for early-age and semi-

dry concrete. 
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Figure 5.17: Average measured magnitude and phase of reflection coefficient vs. 
frequency with standard deviations for dry concrete with no gap between specimen 
and metal plate.  
 
 
 

 

Figure 5.18: Average measured magnitude and phase of transmission coefficient vs. 
frequency with standard deviations for dry concrete with no gap between specimen 
and metal plate.  
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Figure 5.19: Average measured magnitude and phase of reflection coefficient vs. 
frequency for different gaps between dry concrete and metal plate.  
 

 
 

 

Figure 5.20: Average measured magnitude and phase of transmission coefficient vs. 
frequency for different gaps between dry concrete and metal plate. 
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Figure 5.21: Resonant frequency in measured magnitude of reflection coefficient vs. 
gap between concrete specimens of different age and metal plate. 

 

Figure 5.22: Measured magnitude of transmission coefficient vs. gap between 
concrete specimens of different age and metal plate at a frequency of 10.3 GHz. 
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5.5 Numerical Investigation into the Concrete Specimens  

In the previous sections, measurement procedure and results for concrete 

specimens of different ages have been presented. Reflection coefficients and 

transmission coefficients at no gap and for different gap values between concrete 

specimens and metal plate were measured. In this section, the proposed dielectric-

loaded DWS along with concrete specimen will be modelled and extensive 

simulations will be performed to determine the complex dielectric permittivity of the 

fresh and dry concrete specimens using measured S11 and S21 and the developed 

algorithm. Then, a parametric study of the different concrete specimens at different 

gap values will be conducted using the determined dielectric properties of concrete 

specimens. 

5.5.1 Modelling of Sensor 

A model of the microwave dielectric-loaded DWS and concrete specimen was 

created (Figure 5.23). In the model, all previously listed dimensions of the fabricated 

model (waveguide section length, aperture dimensions, distance between waveguides, 

thickness of metal plate and cubic concrete specimen) are used. The dielectric 

permittivity of acrylic dielectric insertions is considered as 2.6 – j0.01 [154]. The 

model provided simulated magnitude of reflection coefficient, │S11│s and magnitude 

of transmission coefficient, │S12│s with a setting value of concrete dielectric 

constant (real part), εr' and loss tangent, tan δ (ratio of imaginary part to real part of 

complex dielectric permittivity). 

Figure 5.23: A model of dielectric-loaded DWS and concrete specimen in CST: (a) 
perspective general view and (b) perspective transparent view showing the dielectric 
inserts. 
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5.5.2 Determination of Complex Dielectric Permittivity of Concrete Specimen 
using Improved Algorithm 

Figure 5.24 is a flow chart developed and used for the determination of the 

complex dielectric permittivity of concrete using measured magnitude of reflection 

coefficient and transmission coefficient. In Chapter 3, a similar algorithm was used 

to determine the complex dielectric permittivity of early-age concrete using open-

ended SWS, and hence only the measured magnitude of reflection coefficient was 

taken into account. Here, that algorithm has been updated for used with the 

dielectric-loaded DWS, where the measured magnitude of reflection coefficient and 

transmission coefficient are both taken into consideration. The │S11│s and │S21│s 

were calculated with a guessed value of the dielectric permittivity of concrete and 

compared with │S11│m and │S21│m. The initial guessed values for fresh and dry 

concrete were chosen as in [11], [18]. If the difference between the simulated and 

measured magnitudes of the coefficients is zero or within a predefined accuracy 

level, then the guessed value is the estimated dielectric permittivity of the concrete. If 

the difference is not within the predefined accuracy level, then another value is 

guessed and the reflection and transmission coefficient is again compared with the 

measurement value of │S11│m and │S21│m. 

Figures 5.25 and 5.26 show the average measured magnitude of the reflection 

and transmission coefficients for day 1 fresh concrete along with selected simulation 

results after applying the developed algorithm. Figure 5.25a shows │S11│m and 

│S11│s vs. frequency for different values of dielectric constant and a loss tangent of 

0.3. Figure 5.25b shows │S11│m and │S11│s vs. frequency for a dielectric constant of 

15 and at different values of loss tangent. It is clearly seen that the simulation results 

with εr' = 15 and tan δ = 0.3 match the measurement results very well. Similar 

observations may be made from Figure 5.26a, b for the transmission coefficient. 

Therefore, the determined complex dielectric permittivity of day 1 fresh concrete is 

15.0 – j4.5. In addition, the results show that magnitude of reflection coefficient is 

more sensitive to changes of dielectric constant than to changes of loss tangent value 

and magnitude of transmission coefficient is more sensitive to changes of loss 

tangent than to changes of dielectric constant.   
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Likewise, Figures 5.27 and 5.28 show the average measured magnitude of the 
reflection and transmission coefficient with selected simulation results after applying 
the developed and updated flow chart for dry concrete. Figure 5.27a shows │S11│m 
and │S11│s vs. frequency at different values of dielectric constant and at loss tangent 
of 0.2. Figure 5.27b shows │S11│m and │S11│s vs. frequency for a dielectric constant 
of 4.1 and for different values of loss tangent. It is clearly seen that the simulations 
with εr' = 4.1 and tan δ = 0.2 match the measured results very closely. Figure 5.28a, 
b shows similar results. Therefore, the complex dielectric permittivity of dry concrete 
specimen is determined as 4.1 – j0.82.  

 
Figure 5.24: An improved algorithm for determining complex dielectric permittivity 
of concrete specimens from the measured magnitude of reflection and transmission 
coefficients. 
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Figure 5.25: Average measured (with STD) and simulated magnitude of reflection 
coefficient vs. frequency at selected values of (a) dielectric constant and (b) loss 
tangent for day 1 concrete at no gap condition.  
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Figure 5.26: Average measured (with STD) and simulated magnitude of transmission 
coefficient vs. frequency at different selected values of (a) dielectric constant and (b) 
loss tangent for day 1 concrete at no gap condition. 
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Figure 5.27: Average measured (with STD) and simulated magnitude of reflection 
coefficient vs. frequency at different selected values of (a) dielectric constant and (b) 
loss tangent for dry concrete at no gap condition.  
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Figure 5.28: Average measured (with STD) and simulated magnitude of transmission 
coefficient vs. frequency at different selected values of (a) dielectric constant and (b) 
loss tangent for dry concrete at no gap condition. 

Frequency (GHz) 

M
ag

ni
tu

de
 o

f t
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt
 (d

B
) 

Frequency (GHz) 

M
ag

ni
tu

de
 o

f t
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt
 (d

B
) 

(b) At different values of loss tangent 

(a) At different values of dielectric constant 



Chapter 5 
 

 
 

Page 167 
 

5.5.3 Simulation Results for Measurement of Gap between Metal Plate and 
Concrete Specimen 

The determined complex dielectric permittivity of day 1 fresh concrete and dry 

concrete in the previous section are 15.0 – j4.5 and 4.1 – j0.82 respectively, and these 

values will be used in a parametric analysis of the gap values between the concrete 

specimen and metal plate of dielectric-loaded dual waveguide sensor. 

Figure 5.29 shows the simulated magnitude of the reflection coefficient and the 

transmission coefficient vs. frequency for different gaps between the metal plate and 

fresh concrete (εr = 15.0 – j 4.5). It is clearly seen that resonance takes place at all 

S11 curves for each gap value, and the resonant frequency changes with the change of 

gap value. It is found in Figure 5.29b that the magnitude of transmission coefficient 

increases with gap increase over the entire frequency band. Furthermore, the 

difference between adjacent curves decreases with increase of gap value. 

Figure 5.30 illustrates the simulated magnitude of the reflection coefficient and 

transmission coefficient vs. frequency at different gap values between metal plate 

and dry concrete (εr = 4.1 – j 0.82). It is observed in Figure 5.30a that resonance 

takes place at all S11 curves for each gap value and the resonant frequency changes 

with the change of gap value, although values of S11 are different from the fresh 

concrete, as expected. Additionally, Figure 5.30b shows that the magnitude of the 

transmission coefficient decreases with increasing frequency for all gap values, and 

S21 increases with gap value from 0.5 to 2.0 mm. 

Figure 5.31 shows the simulated resonant frequency in S11 vs. gap value 

between the metal plate and the concrete with different dielectric constants and loss 

factors. The blue line represents the resonant frequency for fresh concrete; the pink 

line represents dry concrete. Simulations were also executed for concretes with two 

other values of complex dielectric permittivity. It is seen that the resonant frequency 

decreases with the increase of gap values for all concrete types, and increases with 

the decreasing dielectric constants for all gap values up to 0.5 mm, after which the 

resonant frequency increases with the increase of concrete dielectric constant. 

Figure 5.32 presents the simulated magnitude of transmission coefficient vs. gap 

value between metal plate and concrete specimens with different dielectric constant 
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and loss factor at a frequency of 10.3 GHz. The blue line represents the magnitude of 

transmission coefficient for fresh concrete; the pink line represents dry concrete. 

Simulations were also executed for concretes with two other values of complex 

dielectric permittivity. It is clearly seen that fresh concrete S21 increases 

monotonically when gap value increases. However, as the concrete starts to dry (i.e., 

when the dielectric constants tend to decrease), S21 changes non-monotonically, 

initially decreasing with increasing gap value up to 0.5 mm, then it increases with 

gap value. For gaps more than 0.5 mm, a higher dielectric constant of concrete raises 

its transmission coefficient. 

These results clearly show that gaps of 0.5–2.0 mm between the concrete and the 

metal plate can be effectively and independently monitored by measuring the resonant 

frequency and magnitude of the transmission coefficient. The variations in reflection 

and transmission coefficients caused by the gap between the concrete and the metal 

plate can be better understood by analysing the electrical field intensity distribution 

inside the dielectric-loaded DWS, and in the interface area of the sensor-specimen as 

well as in the concrete specimen. These are shown in Figures 5.33 to 5.36. 
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Figure 5.29: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gaps between metal plate and fresh concrete  
(εr = 15.0 – j4.5). 
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Figure 5.30: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gaps between metal plate and dry concrete     
(εr = 4.1 – j0.82). 
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Figure 5.31: Simulated resonant frequency in S11 vs. gap value between metal plate 
and concrete specimens with different dielectric constants and loss factors. 

 

Figure 5.32: Simulated magnitude of transmission coefficient vs. gap value between 
metal plate and concrete specimens with different dielectric constants and loss 
factors at a frequency of 10.3 GHz. 
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Figure 5.33 is a cross-sectional side view of the simulated electric field intensity 

distribution inside the dielectric-loaded DWS, in the interface area and in fresh 

concrete specimens (εr = 15.0 – j4.5) for gaps of 0.0, 1.0 and 2 mm at 10.3 GHz. 

Figure 5.33a shows that waveguide 1 (W1) radiates microwaves through the dielectric 

insertion in the fresh concrete specimen, some of which penetrate into waveguide 2 

(W2) through the dielectric insertion in the no-gap condition. Figure 5.33b, c clearly 

show changes in the electric field intensity distribution at the interface of concrete 

and metal surface due to the gap. An animated phase version of these distributions 

(not shown here) demonstrates the propagation of electromagnetic waves between 

metal and concrete surfaces (guided waves) at 1.0 and 2.0 mm gap. These guided 

waves lead to losses in electromagnetic energy of the incident wave as well as the 

reflected wave. Another important observation from Figure 5.33b, c is that part of the 

guided wave and part of the wave radiated by W1 in fresh concrete penetrate into W2 

and interfere there. It is also found that at the no-gap condition, microwave signals 

are more focused inside the mortar specimen. However, with increasing gap between 

metal and specimen they tend to scatter vertically within concrete specimen. 

Figure 5.34 is a cross-sectional top view of the simulated electric field intensity 

(amplitude and phase) inside waveguide 2 and fresh concrete (εr = 15.0 – j4.5) at 

10.3 GHz for three gap values between specimens and metal plate. It is seen that at 

the no-gap condition, only a very small amount of the transmitted signal (no guided 

waves, only minor penetration through fresh concrete) is present in W2 (Figure 

5.34a), but the amount of the transmitted signal increases significantly inside W2 

(Figure 5.34b, c) when the gap value increases to 1.0 and 2.0 mm. 

Figures 5.35 is a cross-sectional side view of the simulated electric field intensity 

distribution in the dielectric-loaded DWS and dry concrete (εr = 4.1 – j0.82) for the 

three gap values 0.0, 1.0 and 2.0 mm at 10.3 GHz. Figure 5.35a shows that W1 

radiates microwaves in dry concrete, part of which penetrates into W2 at the no-gap 

condition. However, microwave signals penetrate further with increased concrete 

dryness at the no-gap condition. Figure 5.35b, c shows clear changes in the electric 

field intensity distribution at the interface of concrete and metal with changes in gap. 

An animated phase version of these distributions (not shown here) demonstrated the 

propagation of guided waves for gaps of 1.0 and 2.0 mm. The guided waves lead to 



Chapter 5 
 

 
 

Page 173 
 

losses in electromagnetic energy both of the incident wave and the reflected wave. 

Another important observation from Figures 5.35b, c is that some of the guided wave 

and some of the wave radiated by W1 penetrate and cause interference in W2. The 

change of interference when a gap occurs and then increases from 0.0 to 1.0 mm 

causes the magnitude of the transmission coefficient to change non-monotonically, 

whereas the transmission coefficient increases when the value of the gap is equal to 

or greater than 1.0 mm. 

Figure 5.36 is a cross-sectional top view of the simulated electric field intensity 

distribution (amplitude and phase) inside W2 and dry concrete (εr = 4.1 – j0.82) at 

10.3 GHz. Small changes in electric field intensity distribution are observed in W2 

from no gap (Figure 5.36a) to 1.0 mm gap (Figure 5.36b); but significant changes are 

observed for a 2.0 mm gap (Figure 5.36c), which is consistent with Figure 5.32. 
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Figure 5.33: Cross-sectional side view of electric field intensity distribution inside 
waveguides of dielectric-loaded DWS and fresh concrete specimen (εr = 15.0 – j4.5) 
for different gaps between metal and specimen surfaces at 10.3 GHz.  
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Figure 5.34: Cross-sectional top view of electric field intensity distribution inside 
waveguide 2 of dielectric-loaded DWS and fresh concrete specimen (εr = 15.0 – j4.5) 
for gaps between metal and specimen surfaces at 10.3 GHz. 

(b) 1.0 mm gap between metal and dry concrete 
Gap  

Guided wave Guided wave 

  
W2 

  
W2 

  
W2 

(a) No gap between metal and dry concrete 

Fresh 
concrete 

Metal plate  

  
W2 

  
W2 

Phase  Amplitude  

Fresh 
concreter  

Metal plate  

  
W2 

(c) 2.0 mm gap between metal and dry concrete 

Guided wave Guided wave 

Gap  

  
W2 

  
W2 

  
W2 

Fresh concrete  

Dielectric insertion  
inside waveguide  



Chapter 5 
 

 
 

Page 176 
 

 

Figure 5.35: Cross-sectional side view of electric field intensity distribution inside 
waveguides of dielectric-loaded DWS and dry concrete specimen (εr = 4.1 – j0.82) 
for different gaps between metal and specimen surfaces at 10.3 GHz. 
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Figure 5.36: Cross-sectional top view of electric field intensity distribution inside 
waveguide 2 of dielectric-loaded DWS and dry concrete specimen (εr = 4.1 – j0.82) 
for different gaps between metal and specimen surfaces at 10.3 GHz.  
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The variations in resonant frequency due to the gap between concrete specimen 

and metal plate can be better understood by analysing the electric field intensity 

distribution inside an empty DWS and a dielectric-loaded DWS, in the sensor–

specimen interface area and in a concrete specimen, as shown in Figures 5.37–5.40. 

Figure 5.37 is a cross-sectional side view of the simulated electric field intensity 

distribution (amplitude) in empty waveguide sections and in dielectric-loaded DWS 

waveguide sections and in concrete specimen εr = 4.1 – j0.82 for no-gap conditions 

at non-resonant (9.0 GHz) and resonant (11.0 GHz) frequencies. It is seen that the 

intensity and wavelength of the incident microwave signal decreases in the dielectric 

insertions in W1 compared to the empty waveguide. It is also observed that intensity 

and wavelength further decrease at resonant frequency; however, the signal strength 

in W2 increases in the dry concrete specimen at the no-gap condition. 

Figure 5.38 is a cross-sectional top view of the simulated electric field intensity 

distribution (amplitude) inside the empty waveguide section W1 and in dielectric-

loaded waveguide section W1 with concrete specimen for the no-gap condition at 

two frequencies. It is clearly seen that the intensity and wavelength of the microwave 

signal decreases more in the dielectric insertions of the dielectric-loaded DWS both 

at resonant and non-resonant frequencies. 

Figure 5.39 is a cross-sectional side view of schematic and simulated electric 

field intensity distribution (amplitude) inside the empty waveguide sections and the 

dielectric-loaded waveguide DWS sections, with part of the concrete specimen, for a 

2.0 mm gap at non-resonant (9.0 GHz) and resonant (11.0 GHz) frequencies. The 

signal intensity decreases in the dielectric insertion, and some of the incident signal 

passes through the gap to reach W2 when there is a 2.0 mm gap; thus more signals 

are present in W2 than at the no-gap condition. 

Figure 5.40 is a cross-sectional top view of simulated electric field intensity 

distribution (amplitude) inside W1 of an empty waveguide section and a dielectric-

loaded waveguide section, along with the concrete specimen, for a 2.0 mm gap at 

different frequencies. As in the previous case, it shows a reduction of signal intensity 

and wavelength. The dielectric insertions and a gap between the metal plate and the 

concrete specimen both contribute to this change. Therefore, an insertion with suitable 

dielectric properties provides options for optimising dielectric-loaded DWS. 
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Figure 5.37: Cross-sectional side view of schematic and simulated electric field 
intensity distribution (amplitude) inside empty waveguide sections and dielectric-
loaded waveguide sections of DWS along with concrete specimen (εr = 4.1 – j0.82) 
for no-gap condition at different frequencies. 
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Figure 5.38: Cross-sectional top view of simulated electric field intensity distribution 
(amplitude) inside empty waveguide section W1 and dielectric-loaded waveguide 
section W1 with concrete specimen for no-gap condition at different frequencies. 
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Figure 5.39: Cross-sectional side view of schematic and simulated electric field 
intensity distribution (amplitude) inside empty waveguide sections and dielectric-
loaded waveguide sections of DWS, with part of concrete specimen for 2.0 mm gap 
condition at different frequencies. 
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Figure 5.40: Cross-sectional top view of simulated electric field intensity distribution 
(amplitude) inside empty waveguide section W1 and dielectric-loaded waveguide 
section W1 with concrete specimen for 2.0 mm gap at different frequencies. 
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5.6 Comparison between Measurement and Simulation Results 

Figure 5.41 shows measured and simulated resonant frequency of the reflection 

coefficient vs. gap between different concrete specimens and metal plate using the 

dielectric-loaded DWS for concrete at days 9 and 17, and for two-year dry concrete. 

The simulated results are presented for day 1 concrete (εr = 15.0 – j4.5) and two-year 

concrete (εr = 4.1 – j0.82). It is clear that both the measured and simulated resonant 

frequencies of the different specimens decrease with increasing gap value, and also 

that the measured resonant frequency of day 9 concrete and the simulated resonant 

frequency concrete (εr = 15.0 – j4.5) are similar. Differences between the measured 

and simulated resonant frequencies increase a little with the age of the concrete. 

Figure 5.42 illustrates the measured and simulated transmission coefficient vs. 

gap value for different concrete specimens using the dielectric-loaded DWS. As in 

the previous case, the measurement results are for concrete at days 9 and 17, and for 

two-year dry concrete, and the simulated results are presented for day 1 concrete  

(εr = 15.0 – j4.5) and two-year concrete (εr = 4.1 – j0.82). It is obvious from Figure 

5.42 that the measured and simulated S21 both increase monotonically with larger 

gaps for fresh and early-age concrete; however, for dry concrete, the measured and 

simulated S21 initially decrease for gaps up to 0.5 mm, then increase for gaps up to 

2.0 mm. In general, the measured and simulated results are in good agreement. Small 

differences may be attributed to sensor fabrication error, gap arrangement error due 

to surface roughness on both the concrete specimen and the metal plate, variations in 

dielectric permittivity of the insertions and variations in their geometry, and so on. 

Some of the situations that may affect measurement using the dielectric-loaded DWS 

are discussed in the next section. 
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Figure 5.41: Comparison between measured and simulated resonant frequency in S11 
vs. gap between metal plate and different concrete specimens of different dielectric 
constants and loss tangents using the dielectric-loaded DWS. 

 

Figure 5.42: Comparison between measured and simulated transmission coefficient 
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and loss tangents using dielectric-loaded DWS at a frequency of 10.3 GHz. 
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5.7 Sensitivity Analysis 

A numerical investigation into the sensitivity of the reflection and transmission 

properties of the dielectric-loaded DWS to a relatively wide range of changes of 

geometrical and electric properties of the rectangular dielectric insertions was also 

performed. Variations in their dielectric constant (i.e., electrical length) and the effect 

of changing their physical dimensions (length, height and width) was studied for the 

case where there was no gap between the DWS metal plate and the dry concrete 

specimen (εr = 4.1 – j0.82). 

Figure 5.43a shows the simulated reflection coefficient vs. frequency for different 

dielectric constants of the insertions. In this case, the loss factor of the insertions was 

taken to be 0.01. It is clear from the figure that the magnitude of S11 at the resonant 

frequency, and the resonant frequency, both decrease with increase of dielectric 

constant. Conversely, Figure 5.43b illustrates that S21 does not change significantly 

with the same change of dielectric constant of the insertions. 

Figure 5.44 shows the simulated magnitude of reflection and transmission 

coefficients vs. frequency for different values of loss factor of the dielectric 

insertions. The dielectric constant of the insertions was considered to be 2.6 in this 

case. Figure 5.44a shows that the change in loss factor creates small changes in S11 

only at resonant frequency, and the resonant frequency does not change with loss 

factor variation. However, Figure 5.44b shows only small changes of S21 over the 

entire frequency range. 

Figures 5.45 and 5.46 show the simulated magnitude of reflection and 

transmission coefficients vs. frequency for different dielectric insert dimensions. It is 

seen in Figures 5.45a and 5.46a that the resonant frequency and the magnitude of S11 

change significantly with increasing lengths and heights of the insertions. It is also 

seen that variations in height have more effect on the value of S11 at resonant 

frequencies than variation in length. Furthermore, Figures 5.45b and 5.46b show that 

for all changes in length and height of the insertions, the corresponding changes in 

the transmission coefficient are relatively small.  
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Figure 5.47 shows the simulated reflection and transmission coefficients vs. 
frequency for different widths of the dielectric insertions. Figure 5.47a clearly shows 
that the magnitude of reflection coefficient at resonant frequency changes 
significantly when the width of the insertion is reduced from 22.5 mm (the width of 
the waveguide aperture) to 22.0 mm, whereas no change is seen when the width is 
reduced from 22.0 to 21.0 mm. Negligible change of transmission coefficient is seen 
in Figure 5.47b. Overall, the transmission coefficient is less sensitive to changes of 
geometrical and dielectric properties of the dielectric insertions than the reflection 
coefficient.

 

Figure 5.43: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different dielectric constant of the insertions inside the 
DWS waveguides for dry concrete (εr = 4.1 – j0.82) at no-gap condition. 
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Figure 5.44: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different loss factors of the dielectric insertions inside 
the DWS waveguides for dry concrete specimen (εr = 4.1 – j0.82) at no-gap condition. 
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Figure 5.45: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different lengths of dielectric inserts inside waveguides 
of DWS for dry concrete specimen (εr = 4.1 – j 0.82) at no gap condition. 
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Figure 5.46: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different heights of dielectric inserts inside waveguides 
of DWS for dry concrete specimen (εr = 4.1 – j0.82) at no-gap condition. 
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Figure 5.47: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different widths of dielectric inserts inside waveguides 
of DWS for dry concrete specimen (εr = 4.1 – j0.82) at no gap condition. 
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5.8 Summary 

The design and application of the proposed dual waveguide sensor incorporating 

rectangular dielectric insertions have been presented in this chapter. The main goal of 

this work was to improve the dual waveguide sensor for characterisation of concrete–

metal structures at different stages of the concrete life, including its fresh stage. The 

sensor was fabricated to operate at X-band and was applied for three interdependent 

cases. The first case included the investigation of the reflection, transmission and 

resonant properties of the sensor with a concrete–metal structure without any gap 

between the concrete and metal surfaces. It was shown that the dielectric insertions 

in the sensor–concrete system prevents water and concrete entering the waveguides 

and allows long-term monitoring of the concrete hydration, including the detection of 

the transition from fresh to hardened concrete (settling of concrete) on its first day. In 

particular, the magnitude and phase of the reflection coefficient at the resonant 

frequency are sensitive changes experienced by the concrete as it hydrates. The second 

case included the determination of the complex dielectric permittivity of fresh and dry 

concrete specimens using measured data and extensive simulations with an improved 

algorithm. The determined complex dielectric permittivity of day 1 fresh concrete and 

year 2 dry concrete were 15.0 – j4.5 and 4.1 – j0.82, respectively. The third case was 

the measurement and simulation of the reflection and transmission properties of the 

sensor system for different gaps between concrete and metal plate. 

It was clearly shown that the DWS measured 0.5 to 2.0 mm gaps. Comparison of 

measured and simulated results clearly showed that they were in good agreement. 

Small differences may be attributed to sensor fabrication error, gap arrangement 

error due to surface roughness of the concrete specimen and metal plate. Finally, 

numerical investigation into the sensitivity of the reflection and transmission 

properties of the dielectric-loaded DWS to changes in the geometry and dielectric 

properties of the rectangular insertions showed that the magnitude of reflection 

coefficient at the resonant frequency and the resonant frequency itself are sensitive to 

changes in physical (geometrical) and electrical length of the insertions as expected, 

whereas changes of magnitude of the transmission coefficient are relatively small 

and are attributed to the influence of  guided-wave interference; however, loss factor 

changes in the insertions make only small changes to the magnitude of both the 

reflection and transmission coefficients. 



 

Chapter 6 

Dual Waveguide Sensor with Attached Dielectric Layer  

 

6.1 Introduction 

In the previous two chapters, the design, development and applications of empty 

and dielectric-loaded dual waveguide sensors have been presented. In this chapter a 

modified DWS with a dielectric layer attached to the metal plate of DWS (referred to 

as a dual waveguide sensor with attached dielectric layer) is presented and applied. It 

is expected that the dielectric layer as a part of the sensor will lead to new features 

and hence new application of DWSs. One potential application is the characterisation 

of fresh concrete in a mould with a plastic wall or on-line, which are in demand 

because of the low accuracy of the widely used slump test. Another potential 

application is the investigation of the shrinkage of different concretes types (cement 

concrete, geopolymer concrete, etc.) which are still at the research stage and require 

novel sensory and measurement approaches. 

Firstly, an empty DWS with attached dielectric layer is modelled together with 

fresh and dry concrete specimens, and parametric studies are performed with different 

thicknesses of dielectric layers for both types of concrete. Then, the proposed DWS is 

fabricated and applied for the determination of complex dielectric permittivity of 

fresh concrete, and for the detection of small gaps between concrete specimens of 

different ages and the dielectric layer. 

Secondly, the dielectric-loaded DWS with attached dielectric layer with concrete 

specimen is modelled. Simulations are performed and measurements are conducted 

for the detection of small gaps between concrete specimens and attached dielectric 

layers using the proposed DWS with attached dielectric layer. 

Finally, the measurement and simulation results for both sensors are compared. 

The electric field intensity distributions inside the waveguide sections of the proposed 

sensors, dielectric layers and concrete specimens are also simulated and presented to 

confirm some observations made from parametric studies and measurements.  
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6.2  Design of Sensors 

Schematic cross-sectional side views of the proposed dual waveguide sensors 

with attached dielectric layer are shown in Figure 6.1. As described in the previous 

chapters, both the empty DWS and dielectric-loaded DWS consist of two X-band 

rectangular waveguide sections with broad and narrow dimensions a and b, 

respectively, installed in the metal wall of the structure under inspection. The distance 

between the two waveguide sections is L. In the new sensor a dielectric layer is placed 

between the metal plate and the concrete as shown in Figure 6.1.  

 

Figure 6.1: Schematic cross-sectional side view of the proposed (a) empty DWS, and 
(b) dielectric-loaded DWS with attached dielectric layer and concrete. 
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and dry concrete specimens and the attached dielectric layers. The simulated results for 

different thicknesses of attached dielectric layers will be presented and discussed. 

 

6.3 Modelling and Simulation using the Empty DWS with 
Attached Dielectric Layer 

6.3.1 Modelling of Sensor 

A model of the microwave empty DWS with attached dielectric layer along with 

a concrete specimen was created as shown in Figure 6.2. Two X-band microwave 

rectangular waveguide sections with standard aperture dimensions 22.86 × 10.16 mm 

were used. The lengths of waveguide sections are 45.0 mm and 97 mm and the 

distance between waveguide sections is 15.0 mm. The thickness of the metal plate is 

4 mm and the attached dielectric layer (εr = 2.6 – j0.01) measuring 250 × 250 mm is of 

variable thickness. The dimensions of the concrete specimen is 250 × 250 × 250 mm. 

 

Figure 6.2: Model of empty DWS with attached dielectric layer together with concrete 
specimen: (a) perspective and (b) cross-sectional side view showing attached dielectric 
layer and the gap between concrete and dielectric layer. 

6.3.2 Parametric Study with Fresh Concrete Specimens 

The sensor model will be used in a parametric study to simulate the X-band 

reflection and transmission coefficients of fresh concrete. The complex dielectric 

permittivity of fresh concrete is set as εr = 15.0 – j4.5, which is the determined 

permittivity of day 1 fresh concrete. Simulations are further performed for different 

thicknesses of the attached dielectric layer. 
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Figures 6.3–6.7 show the simulated magnitude of reflection and transmission 

coefficients vs. frequency at 2, 3, 6, 8 and 10 mm thick dielectric layers for different 

gaps between the fresh concrete specimen and the dielectric layer. It is seen from 

Figures 6.3a and 6.7a that the magnitude of the reflection coefficient in the system  

without gap decreases (increases) at 2 mm, 3 mm and 10 mm (6 mm and 8 mm) 

layers with increase of frequency At these thicknesses the changes of gap values 

result in a decrease (increase) of the magnitude. Regarding the magnitude of the 

transmission coefficient, Figures 6.3b–6.7b show that the magnitude of transmission 

coefficients do not change notably with increase of frequency for the 2 mm and 3 

mm layers, but change significantly for the 6 mm, 8 mm and 10 mm thick layers. 

However, a significant change of magnitude can be observed for the 2 mm and 3 mm 

layers in particular when the gap value changes from 0.0 to 0.5 mm. This result 

shows that the optimum thickness of layer and operating frequency can be selected 

for certain applications.  

For instance, the 8 mm layer can be used to determine the dielectric property of 

fresh concrete, because the effect of the changes of gap on the changes in magnitude 

both of the reflection and transmission coefficients at 9.8 GHz is the smallest suitable 

at these values. A dielectric layer 2–3 mm thick can be used to detect a gap between 

the concrete and the dielectric layer.  This is clear in Figure 6.8, which shows the 

magnitude of transmission coefficient vs. gap between fresh concrete and dielectric 

layers 2 mm and 3 mm thick (Figure 6.8a, b) at 10.3 GHz. In both cases, S21 

increases with increasing gap, but the magnitude of the transmission coefficient is 

higher at for a 3 mm layer than a 2 mm layer for all gap values. 
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Figure 6.3: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gaps between the concrete (εrc = 15.0 – j4.5) 
specimen and a 2 mm-thick dielectric layer (εrd = 2.6 – j0.01). 

 

Figure 6.4: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gaps between the concrete (εrc = 15.0 – j4.5) 
specimen and a 3 mm-thick dielectric layer (εrd = 2.6 – j0.01). 
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Figure 6.5: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gaps between the concrete (εrc = 15.0 – j4.5) 
specimen and a 6 mm-thick dielectric layer (εrd = 2.6 – j0.01). 

 

Figure 6.6: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gaps between the concrete (εrc = 15.0 – j4.5) 
specimen and an 8 mm-thick dielectric layer (εrd = 2.6 – j0.01). 
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Figure 6.7: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gaps between the concrete (εrc = 15.0 – j4.5) 
specimen and a 10 mm-thick dielectric layer (εrd = 2.6 – j0.01). 

 

 

Figure 6.8: Simulated magnitude of transmission coefficient vs. gap at 10.3 GHz 
between concrete (εrc = 15.0 – j4.5) and dielectric layer using the empty DWS with 
attached (a) 2 mm-thick, and (b) 3 mm-thick dielectric layer (εrd = 2.6 – j0.01). 
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6.3.3 Parametric Study with Dry Concrete Specimens 

 The following parametric study with dry concrete uses the complex dielectric 

permittivity of dry concrete as εr = 4.1 – j0.82, which is the permittivity determined 

for dry concrete about two years old. Simulations are performed for attached dielectric 

layers variously 2, 3, 6, 8 and 10 mm thick. 

Figure 6.9 shows the simulated magnitude of reflection and transmission 

coefficients vs. frequency for different gaps between the dry concrete specimen and a 

dielectric layer 2 mm thick, using the empty DWS with attached dielectric layer. It is 

seen from Figure 6.9a that the magnitude of the reflection coefficient decreases with 

increase of frequency and gap value, for no gap and 0.5 mm gap value. At other gap 

values the changes in S11 are non-monotonic with frequency and gap values. In 

Figure 6.9b it is clear that S11 decreases slowly with frequency, but S21 increases 

with increase of gap values over the entire operating frequency range. The 

differences between adjacent gap values in S21 decrease as gap value increases. 

Figure 6.10 illustrates the simulated magnitude of reflection and transmission 

coefficients vs. frequency for different gaps between the dry concrete specimen and 

the dielectric layer of 3 mm thickness using empty DWS with attached dielectric 

layer. It is seen in Figure 6.10a that the magnitude of the reflection coefficient 

increases with increasing gap within the frequency range 10.5–12.4 GHz; however, 

the magnitude of the transmission coefficients increases with the increasing gap over 

the entire frequency range (Figure 6.10b). Comparing Figures 6.9b and 6.10b, it is 

seen that, although the differences between adjacent gap values decrease in S21 with 

increased gap value for both cases, the 3 mm dielectric layer results in a higher value 

of S21 for all gap conditions. 

Figure 6.11 shows the simulated magnitude of the reflection and transmission 

coefficient vs. frequency for different gaps between the dry concrete specimen and 

the 6 mm-thick dielectric layer using the empty DWS with attached dielectric layer. 

It is clearly seen in Figure 6.11a that the increase of gap increases the magnitude of 

the reflection coefficient, and there are relatively large increases in the magnitude of 

the reflection coefficient from 0.0 to 0.5 mm gap conditions over the entire frequency 

band. It is also noted that the differences between adjacent curves (i.e., gap values) 
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decrease with the increasing gap. In Figure 6.11b (simulated transmission coefficient 

vs. frequency for different gaps), it is observed that the magnitude of transmission 

coefficient increases with increasing gap over the entire frequency range, with a 

significant increase from 0.0 to 0.5 mm gap conditions. 

Figure 6.12 shows the simulated magnitude of reflection and transmission 

coefficients vs. frequency for different values of the gap between dry concrete 

specimen and an 8 mm-thick dielectric layer using the empty DWS with attached 

dielectric layer. It is seen in Figure 6.12a that increasing the gap increases the 

reflection coefficient at low frequencies, but at frequencies above 11.0 GHz, an 

increase in gap decreases the reflection coefficient. In Figure 6.12b it is observed that 

the transmission coefficient increases with increasing gap, but the differences 

between adjacent curves decrease with increasing gap up to the mid-frequency range, 

then increase at higher frequencies. 

Figure 6.13 shows the simulated magnitude of reflection and transmission 

coefficients vs. frequency for different values of the gap between dry concrete 

specimen and a 10 mm-thick dielectric layer using the empty DWS with attached 

dielectric layer. It is found in Figure 6.13a that increasing the gap decreases the 

magnitude of reflection coefficient, but the differences in S11 at different gap values 

are not equal in the lower and higher frequencies. However, Figure 6.13b shows that 

the increase of gap increases the magnitude of transmission coefficient, and again the 

differences in S21 between the gap values at low and high frequencies are not equal. 

From the above simulation results, it is found that for the dry concrete specimen, 

the empty DWS with 6 mm-thick attached dielectric layer (2.6 – j0.01) produces the 

highest magnitude of transmission coefficients and, in this case, the results for both 

the reflection coefficient and transmission coefficient can be used to detect a gap 

between the specimen and the dielectric layer, as further explained by Figure 6.14. 

Figure 6.14a, b respectively show the simulated magnitude of reflection and 

transmission coefficient vs. gap between dry concrete and dielectric layer (εrd = 2.6 – 

j0.01) using empty DWS with a 6 mm-thick dielectric sheet attached to the metal plate 

at 10.6 GHz frequency. It is seen that both coefficients increase with the increase of 

gap. 
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Figure 6.9: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gap values between concrete (εrc = 4.1 – j0.82) 
specimen and 2 mm-thick dielectric layer (εrd = 2.6 – j0.01). 

 

 

Figure 6.10: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gap values between concrete (εrc = 4.1 – j0.82) 
specimen and 3 mm-thick dielectric layer (εrd = 2.6 – j0.01). 
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Figure 6.11: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gap values between concrete (εrc = 4.1 – j0.82) 
specimen and 6 mm-thick dielectric layer (εrd = 2.6 – j0.01). 

 

 

Figure 6.12: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gap values between concrete (εrc = 4.1 – j0.82) 
specimen and 8 mm-thick dielectric layer (εrd = 2.6 – j0.01). 
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Figure 6.13: Simulated magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gap values between concrete (εrc = 4.1 – j0.82) 
specimen and 10 mm-thick dielectric layer (εrd = 2.6 – j0.01). 

 

 

Figure 6.14: Simulated magnitude of (a) reflection coefficient and (b) transmission 
coefficient vs. gap value between concrete (εrc = 4.1 – j0.82) and dielectric layer    
(εrd = 2.6 – j0.01) using the empty DWS with 6 mm-thick dielectric layer at 10.6 GHz. 
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6.4  Measurement using Empty DWS with Attached Dielectric 
Layer 

The measurement approach and measurement results for fresh concrete specimen 

using empty DWS with attached dielectric layer is described in this section. First, the 

measurement of the reflection coefficient, S11 and the transmission coefficient, S21 is 

conducted with no gap between the concrete specimen and 3 mm-thick dielectric 

layer attached to the empty DWS. Then, S11 and S21 are also measured for different 

gaps between 2 mm-thick and 3 mm-thick layers of dielectric acrylic sheet and the 

dry concrete specimens. Each measurement approach has a separate measurement 

arrangement which is described in the following. 

6.4.1 Specimens and Measurement Setup  

Figure 6.15a is a schematic of the experimental setup for measuring the 

magnitude of reflection and transmission coefficients with no gap between the fresh 

concrete and dielectric layer using empty DWS with attached dielectric layer. It is 

seen that one side of an open-top 250 mm cubic wooden mould is replaced by the 

proposed empty DWS with attached dielectric layer. In the previous section, it is 

numerically shown that a 3 mm-thick dielectric acrylic sheet with complex 

permittivity εrd = 2.6 – j0.01 results in a higher transmission coefficient for fresh 

concrete than other thicknesses. Therefore, a 3 mm-thick acrylic sheet was used as 

the attached dielectric layer with empty DWS. Suitable waveguide-to-coaxial 

adapters and coaxial cables are used to connect the proposed sensor to the PNA. 

Fresh concrete was prepared by mixing cement, sand, coarse aggregates and water 

roughly in a ratio of 2:4:4:1 and the mould was filled with this fresh concrete mix. 

The measurements of S11 and S21 were recorded at each of the first eight hours after 

preparing the fresh concrete. 

In the second experimental setup (Figure 6.15b), the magnitudes of reflection 

and transmission coefficients were measured for different gaps between the early-age 

concrete and dielectric layers at the top of the cubic concrete-filled wooden mould. A 

separate fresh concrete specimen was prepared by mixing cement, sand, coarse 

aggregates and water in a roughly 2:4:4:1 ratio; and the top of the fresh concrete in 

the mould was then covered by a transparent polythene film. Thin paper sheets were 
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used to create 0.5, 1.0, 1.5 and 2.0 mm air gaps between the specimen and the empty 

DWS with the attached layer. Suitable waveguide-to-coaxial adapters and coaxial 

cables connected the sensor to the PNA. In this setup, both 2 and 3 mm-thick acrylic 

sheet was used as the dielectric layers attached to the empty DWS. Five 

measurements were conducted on each of the first three days after preparing the 

specimen. 
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Figure 6.15: Schematic of experimental setup for measuring S11 and S21 of concrete 
specimen using the proposed empty DWS with dielectric layer: (a) with no air gap, 
and (b) with different air gaps between specimen and dielectric layer. 
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6.4.2  Measurement Results with Fresh and Early-Age Concrete Specimens 

Figure 6.16 shows the measured reflection and transmission coefficients vs. 

frequency for fresh concrete specimen at different hours after preparation for the no-

gap condition using empty DWS with attached 3 mm-thick dielectric sheet. It is seen 

in Figure 6.16a that the reflection coefficient decreases with frequency over the 

entire frequency range and that S11 decreases slightly with the hourly age of the fresh 

concrete, with a significant decrease between hours 5 and 7. Figure 6.16b shows that 

the magnitude of the transmission coefficient also decreases with the increase of 

hourly age of fresh concrete specimen. 

The measured magnitudes of the reflection and transmission coefficients vs. 

frequency for hour 1 fresh concrete are presented in Figure 6.17a, b, together with 

selected simulated results for S11 and S21 for concrete specimens of different complex 

dielectric permittivities which were selected after applying the improved algorithm for 

determining complex dielectric permittivity of concrete specimen described in section 

5.5.2. Therefore, the complex dielectric permittivity of hour 1 fresh concrete for that 

composition and environment is 21.5 – j4.3. 

Figures 6.18 to 6.20 show the measured magnitudes of the reflection coefficient 

and transmission coefficient vs. frequency for different gap values between a 2 mm-

thick dielectric sheet attached with empty DWS and fresh concrete specimen for days 

1, 2 and 3 respectively. It is seen in Figures 6.18a, 6.19a and 6.20a that, for concrete 

specimens 1, 2 and 3 days old, the reflection coefficients increase with the increase 

of frequency, and also the increase in gap increases the magnitude of the reflection 

coefficient mainly from 9.5 to 12.4 GHz. Similarly, it is observed in Figures 6.18b, 

6.19b and 6.20b that the magnitudes of the transmission coefficients decrease with 

increase of frequency. In addition, the increase in gap increases the transmission 

coefficient over the entire frequency band. However, the differences in S21 between 

adjacent gap values decrease with the increase of gap values, and these differences 

increase with the age of concrete specimens. 

Figures 6.21 to 6.23 show the measured magnitudes of the reflection and 

transmission coefficient vs. frequency for different gap values between a 3 mm-thick 

dielectric sheet attached with empty DWS and fresh concrete specimen of days 1, 2 
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and 3 respectively. It is seen in Figures 6.21a, 6.22a and 6.23a that, for concrete 

specimens 1, 2 and 3 days old, the magnitude of the reflection coefficients increase 

with increasing frequency, and also the increase in gap value increases the magnitude 

of reflection coefficient, mainly from 8.8 to 12.4 GHz. Similarly, it is observed in 

Figures 6.21b, 6.22b and 6.23b that the magnitudes of the transmission coefficients 

decrease with increasing frequency. In addition, the increase in gap value changes 

(increases and decreases) the transmission coefficient over the entire frequency band. 

However, these changes and differences in S21 between adjacent gap values are 

either uneven or very small. 

Figure 6.24 summarises the changes in the transmission coefficients for different 

gap values between dielectric layers and days 1, 2 and 3 early-age concrete specimens 

at a single frequency of 10.3 GHz. It is seen in Figure 6.24a that S21 increases with 

increase of gap value between a 2 mm-thick dielectric sheet attached to an empty 

DWS, and day 1 concrete. The same is true for the days 2 and 3 concrete specimen, 

but at lower values of S21. However, the magnitude of transmission coefficient 

increases to a peak value, then decreases with increasing gap between the 3 mm-

thick dielectric sheet attached to an empty DWS, and the fresh day 1 concrete 

specimen (Figure 6.24b). Again, the same is true for the days 2 and 3 concrete 

specimens but at lower values of S21. Therefore, the empty DWS with 2 mm-thick 

attached dielectric layer is preferred for detecting and monitoring the gap between 

the fresh concrete and the dielectric layer. 
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Figure 6.16: Measured magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for fresh concrete at different hours after preparation for no-
gap condition using empty DWS with 3 mm-thick dielectric sheet (εrd = 2.6 – j0.01) 
attached to the metal plate. 
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Figure 6.17: Measured and simulated magnitude of (a) reflection coefficient, and (b) 
transmission coefficient vs. frequency for fresh concrete at first hour for no-gap 
condition using empty DWS with 3 mm-thick dielectric sheet (εrd = 2.6 – j0.01) 
attached to the metal plate. 
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Figure 6.18: Measured magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gap values between day 1 fresh concrete and 
dielectric layer (εrd = 2.6 – j0.01) using empty DWS with 2 mm-thick dielectric sheet  
attached to the metal plate. 

 

 

Figure 6.19: Measured magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gap values between day 2 fresh concrete and 
dielectric layer (εrd = 2.6 – j0.01) using empty DWS with 2 mm-thick dielectric sheet  
attached with the metal plate. 
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Figure 6.20: Measured magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gap values between day 3 fresh concrete and 
dielectric layer (εrd = 2.6 – j0.01) using empty DWS with 2 mm-thick dielectric sheet  
attached to the metal plate. 

 

 

Figure 6.21: Measured magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gap values between day 1 fresh concrete and 
dielectric layer (εrd = 2.6 – j0.01) using empty DWS with 3 mm-thick dielectric sheet  
attached to the metal plate. 
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Figure 6.22: Measured magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gap values between day 2 fresh concrete and 
dielectric layer (εrd = 2.6 – j0.01) using empty DWS with 3 mm-thick dielectric sheet 
attached to the metal plate. 

 

 

Figure 6.23: Measured magnitude of (a) reflection coefficient, and (b) transmission 
coefficient vs. frequency for different gap values between day 3 fresh concrete and 
dielectric layer (εrd = 2.6 – j0.01) using empty DWS with 3 mm-thick dielectric sheet  
attached to the metal plate. 
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Figure 6.24: Measured magnitude of transmission coefficient vs. gap value between 
early-age concrete and dielectric layer (εrd = 2.6 – j0.01) using the empty DWS with 
(a) 2 mm- and (b) 3 mm-thick dielectric sheet attached to metal plate at 10.3 GHz . 

 

6.4.3  Measurement Results with Dry Concrete Specimens 

The experimental setup in Figure 6.15b was used to measure the magnitude of 

reflection and transmission coefficients for different gaps between the dielectric layer 

and dry concrete specimens using the proposed empty DWS with attached dielectric 

layer. The only difference was that the drier concrete specimen was removed from 

the wooden mould. The acrylic sheet with dielectric permittivity εrd = 2.6 – j0.01, 

and 2, 3, 6, 8 and 10 mm thick were used as the dielectric layer. The dimensions of 

dielectric layers were 250 mm × 250 mm. Five coefficient measurements were 

conducted for each gap value of 0.0, 0.5, 1.0, 1.5 and 2.0 mm and for each dielectric 

layer. 

Figure 6.25 shows the measured average magnitude of reflection and 

transmission coefficient vs. frequency for different gaps between the dry concrete 

and dielectric layer using the empty DWS with a 2 mm-thick dielectric sheet attached 

to the metal plate. It is seen in Figure 6.25a that the increase of gap lowers the S11 

from 0.0 to 1.0 mm gap at 8.2–11.0 GHz. With further increase in gap, S11 decreases 

at low frequencies and increases at high frequencies. It is also observed in Figure 
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6.25b that the increase in gap increases the magnitude of transmission coefficient 

over the entire frequency range and the differences between adjacent gap values for 

S21 decrease with increasing gap value. 

Figure 6.26 illustrates the average measured magnitude of the reflection and 

transmission coefficient vs. frequency at different gap values between dry concrete 

specimen and dielectric layer using the empty DWS with a 3 mm-thick dielectric 

sheet attached to the metal plate. It is seen in Figure 6.26a that increasing gap 

increases the reflection coefficient at higher frequencies (11.0–12.4 GHz), but 

increases the magnitude of transmission coefficient over the entire frequency range 

(Figure 6.26b). The difference in S21 between adjacent gap values decreases with 

increase in gap. One important observation is that S21 values are higher for all gap 

values with 3 mm-thick dielectric layer than with a 2 mm-thick dielectric layer. 

Figure 6.27 shows the average measured magnitude of reflection and 

transmission coefficient vs. frequency at different gap values between dry concrete 

and dielectric layer using the empty DWS with a 6 mm-thick dielectric sheet attached 

to the metal plate. It can be seen in Figure 6.27a that increasing the gap increases the 

reflection coefficient, with relatively large increases in S11 from 0.0 to 0.5 mm gap 

over the entire frequency band. It is also noted that the difference between adjacent 

gap curves in Figure 6.27a decreases with increasing gap value. The transmission 

coefficient (Figure 6.27b) increases with increasing gap value over the entire 

frequency range, showing a significant increase from 0.0 to 0.5 mm. The differences 

in S21 between adjacent curves at higher gap values are relatively small; therefore, 

gaps smaller than 0.5 mm are easily detected using the transmission measurement. 

This was not possible for small gap detection in the concrete–metal structure. 

Figure 6.28 shows the average measured reflection and transmission coefficient 

vs. frequency at different gap values between dry concrete and dielectric layer using 

the empty DWS with an 8 mm-thick dielectric sheet attached to the metal plate. It 

can be seen in Figure 6.28a that increasing the gap increases the reflection coefficient 

within the lower half of the frequency range, but at higher frequencies it decreases 

with increasing gap. It is also noted in Figure 6.28b that the magnitude of 
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transmission coefficient increases with increasing gap, although the differences 

between adjacent curves in S21 are relatively small at higher gap values. 

Figure 6.29 shows the average measured magnitude of reflection and 
transmission coefficient vs. frequency at different gap values between dry concrete 
and dielectric layer using empty DWS with a 10 mm-thick dielectric sheet attached 
to the metal plate. It is observed in Figure 6.29a that the reflection coefficient 
decreases with increasing gap values in frequency range 9.0–12.0 GHz. Figure 6.29b 
shows that the magnitude of the transmission coefficient increases with increasing 
gap. At lower frequencies, differences in S21 at higher gap values are very small, but 
from 10.0 to 12.0 GHz gaps up to 2.0 mm are detectable. 

From the measurement results shown in Figures 6.25–6.29 it is clear that, for dry 
concrete, the empty DWS with 6 mm-thick attached dielectric layer (εrd = 2.6 – 
j0.01) to the metal plate produces the highest magnitude of transmission coefficient. 
The measured magnitude of both the reflection coefficient and the transmission 
coefficient can be used to detect gaps between a dry concrete surface and the 
dielectric layer; see Figure 6.30. 

Figure 6.30a, b shows the measured magnitude of reflection and transmission 
coefficient vs. gap between dry concrete and dielectric layer using the empty DWS 
with 6 mm-thick dielectric sheet attached to the metal plate at 10.6 GHz. It is clearly 
seen that both coefficients increase with increasing of gap value. 

Figure 6.25: Average measured magnitude of (a) reflection coefficient, and (b) 
transmission coefficient vs. frequency for different gaps between dry concrete and 
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dielectric layer (εrd = 2.6 – j0.01) using the empty DWS with 2 mm-thick dielectric 
sheet attached to the metal plate. 

 

 

Figure 6.26: Average measured magnitude of (a) reflection coefficient, and (b) 
transmission coefficient vs. frequency for different gaps between dry concrete and 
dielectric layer (εrd = 2.6 – j0.01) using the empty DWS with 3 mm-thick dielectric 
sheet attached to the metal plate. 

 

Figure 6.27: Average measured magnitude of (a) reflection coefficient, and (b) 
transmission coefficient vs. frequency for different gaps between dry concrete and 
dielectric layer (εrd = 2.6 – j0.01) using the empty DWS with 6 mm-thick dielectric 
sheet attached to the metal plate. 
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Figure 6.28: Average measured magnitude of (a) reflection coefficient, and (b) 
transmission coefficient vs. frequency for different gaps between dry concrete and 
dielectric layer (εrd = 2.6 – j0.01) using the empty DWS with 8 mm-thick dielectric 
sheet attached to the metal plate. 

 

 

Figure 6.29: Average measured magnitude of (a) reflection coefficient, and (b) 
transmission coefficient vs. frequency for different gaps between dry concrete and 
dielectric layer (εrd = 2.6 – j0.01) using the empty DWS with 10 mm-thick dielectric 
sheet attached to the metal plate. 
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Figure 6.30: Magnitude of (a) reflection coefficient, and (b) transmission coefficient 
at 10.6 GHz vs. gap between dry concrete and dielectric layer (εrd = 2.6 – j0.01) for 
empty DWS with a 6 mm-thick dielectric sheet attached to the metal plate. 

 

6.5 Numerical Investigation using the Dielectric-loaded DWS with 
Attached Dielectric Layer  

In this section, the dielectric-loaded DWS with attached dielectric layer is 

modelled along with the concrete specimens. Simulations are performed for the 

magnitude of the reflection coefficient and the transmission coefficient for different 

gaps between the dry concrete specimens and the dielectric layers. The simulated 

results for different dielectric layer thicknesses are presented and discussed. 

6.5.1 Modelling of Sensor 

A model of the rectangular dielectric-loaded DWS with attached dielectric layer, 

together with the concrete specimen, was created as shown schematically in Figure 

6.31. For this purpose, a model of the dielectric-loaded DWS was first created as in 

Chapter 5. A sheet of acrylic material (εrd = 2.6 – j0.01) 250 mm × 250 mm forms 

the dielectric layer attached to the metal plate of the DWS. 

(a) (b) 

M
ag

ni
tu

de
 o

f t
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt
 

 

Gap value (mm) 

M
ag

ni
tu

de
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (d

B
) 

Gap value (mm) 



Chapter 6 
 

 
Page 220 

 
 

 

Figure 6.31: Model of rectangular dielectric-loaded DWS with attached dielectric 
layer and concrete specimen created in CST: (a) perspective view, and (b) cross-
sectional side view showing attached dielectric layer and gap between concrete and 
dielectric layer. 

6.5.2 Parametric Study with Dry Concrete Specimens 

The model will be used to simulate the magnitude of reflection and transmission 

coefficients for five values of the gap between the dry concrete specimen and the 

dielectric layers attached to the sensor (gap 0.0, 0.5, 1.0, 1.5 and 2.0 mm). In this 

case the complex dielectric permittivity of the dry concrete was taken to be εr = 4.1 – 

j0.82, which is the permittivity that was earlier determined for concrete about two 

years old. Simulations were performed for dielectric layers variously 2, 3, 6, 8 and 10 

mm thick. 

Figure 6.32 shows the simulated magnitude of the reflection and transmission 

coefficient vs. frequency for different gaps between the dry concrete specimen and a 

dielectric layer 2 mm thick. Figure 6.32a shows resonances in the reflection coefficient 

curves for different gap values. The resonant frequency is approximately 9.5 GHz, 

changing slightly with different gap values. It is also noted that S11 decreases at the 

resonant frequency with larger gap values. It is observed in Figure 6.32b that the 

magnitude of transmission coefficient increases with increase in gap value at all 

frequencies; differences in S21 between adjacent gap curves decreases with 

increasing gap value. 
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Figure 6.33 shows the simulated magnitude of the reflection and transmission 

coefficient vs. frequency for different gaps between the dry concrete specimen and a 

dielectric layer 3 mm thick. Figure 6.33a shows resonance in the reflection coefficient 

curves for different gap values. The resonant frequency is approximately 9.3 GHz 

(i.e., less than the 9.5 GHz for the 2 mm-thick attached dielectric sheet) and changes 

slightly with gap values. A decrease in S11 at resonant frequency also occurs with 

increasing gap values. It is observed in Figure 6.33b that the magnitude of the 

transmission coefficient increases with the increase in gap value over the entire 

frequency range; the difference in S21 between adjacent gap curves decreases with 

increase of gap value. However, with the 3 mm dielectric sheet, the values of S21 at 

all gap values are higher than those for the attached 2 mm dielectric sheet. 

Figure 6.34 shows the simulated magnitude of the reflection and transmission 

coefficient vs. frequency for different gaps between the dry concrete and a dielectric 

layer 6 mm thick. Figure 6.34a shows resonance in the reflection coefficient curves 

for different gap values at a frequency of about 9.0 GHz (i.e., less than the 9.3 GHz 

for the 3 mm-thick attached dielectric sheet) and changes slightly with gap values. It 

is also noted that S11 decreases at resonant frequency with increasing gap values. It is 

observed in Figure 6.34b that the magnitude of the transmission coefficient increases 

with increasing gap value at all frequencies; however, at low and high frequencies 

S21 changes non-monotonically. In the middle of the frequency range 9.0–11.0 GHz, 

the differences in S21 between adjacent gap curves decrease with increasing gap. 

Figure 6.35 shows the simulated magnitude of the reflection and transmission 

coefficient vs. frequency for different gaps between the dry concrete and a dielectric 

layer 8 mm thick. Figure 6.35a shows resonance in the reflection coefficient curves 

for different gap values at a frequency of about 9.0 GHz, and decreases slightly as 

gap values increase. It is also noted that S11 increases at resonant frequency with 

increasing gap. It is observed in Figure 6.35b that the magnitude of the transmission 

coefficient increases with increasing gap value at all frequencies; however, at low 

and high frequencies S21 changes non-monotonically. In the middle of the frequency 

range 9.0–10.5 GHz, the differences in S21 between adjacent gap curves decrease 

with increasing gap. 
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Figure 6.36 shows the simulated magnitude of the reflection and transmission 
coefficient vs. frequency for different gaps between the dry concrete and a dielectric 
layer 10 mm thick. Figure 6.36a shows resonance in the reflection coefficient curves 
for different gap values at a frequency of about 8.8 GHz and decreases slightly with 
increase in gap values. It is also noted that S11 increases at resonant frequency with 
increasing gap values. It is observed in Figure 6.36b that the transmission coefficient 
increases with increasing gap value at all frequencies; however, at low and high 
frequencies S21 changes non-monotonically. In the middle of the frequency range 
9.5–11.0 GHz, the differences in S21 between adjacent gap curves decrease with 
increasing gap value 

From the simulation results in Figures 6.32–6.36, it is clear that for dry concrete, 
the rectangular dielectric-loaded DWS with attached dielectric layer (εrd = 2.6 – j0.01)  
2 or 3 mm thick produce the most uniform value of the transmission coefficient for 
detecting gaps between the concrete and the dielectric layer, clearly demonstrated in 
Figure 6.37. 

Figures 6.37a, b illustrate the simulated magnitude of transmission coefficient 
vs. gap between the dry concrete and the dielectric layer using the rectangular 
dielectric-loaded DWS with attached dielectric layer (εrd = 2.6 – j0.01) 2 mm and 3 
mm thick at 10.3 GHz. In both cases, S21 increases as gap increases; however the 3 
mm thickness results in a higher magnitude of transmission coefficient for all gap 
conditions.

 

Figure 6.32: Simulated magnitude of (a) reflection, and (b) transmission coefficient 
vs. frequency for different gaps between concrete (εrc = 4.1 – j0.82) and dielectric 

(a) (b) 

M
ag

ni
tu

de
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (d

B
) 

Frequency (GHz) 

M
ag

ni
tu

de
 o

f t
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt
 (d

B
) 

Frequency (GHz) 



Chapter 6 
 

 
Page 223 

 
 

layer (εrd = 2.6 – j0.01) using the rectangular dielectric-loaded DWS with a 2 mm-
thick dielectric sheet attached to the metal plate. 

 

Figure 6.33: Simulated magnitude of (a) reflection, and (b) transmission coefficient 
vs. frequency for different gaps between concrete (εrc = 4.1 – j0.82) and dielectric 
layer (εrd = 2.6 – j0.01) using the rectangular dielectric-loaded DWS with a 3 mm-
thick dielectric sheet attached to the metal plate. 

 

Figure 6.34: Simulated magnitude of (a) reflection, and (b) transmission coefficient 
vs. frequency for different gaps between concrete (εrc = 4.1 – j0.82) and dielectric 
layer (εrd = 2.6 – j0.01) using the rectangular dielectric-loaded DWS with a 6 mm-
thick dielectric sheet attached to the metal plate. 
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Figure 6.35: Simulated magnitude of (a) reflection, and (b) transmission coefficient 
vs. frequency for different gaps between concrete (εrc = 4.1 – j0.82) and dielectric 
layer (εrd = 2.6 – j0.01) using the rectangular dielectric-loaded DWS with an 8 mm-
thick dielectric sheet attached to the metal plate. 

 

Figure 6.36: Simulated magnitude of (a) reflection, and (b) transmission coefficient 
vs. frequency for different gaps between concrete (εrc = 4.1 – j0.82) and dielectric 
layer (εrd = 2.6 – j0.01) using the rectangular dielectric-loaded DWS with a 10 mm-
thick dielectric sheet attached to the metal plate. 

(a) (b) 

M
ag

ni
tu

de
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (d

B
) 

Frequency (GHz) 

M
ag

ni
tu

de
 o

f t
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt
 (d

B
) 

Frequency (GHz) 

(a) (b) 

M
ag

ni
tu

de
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (d

B
) 

Frequency (GHz) 

M
ag

ni
tu

de
 o

f t
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt
 (d

B
) 

Frequency (GHz) 



Chapter 6 
 

 
Page 225 

 
 

 

Figure 6.37: Simulated magnitude of transmission coefficient vs. gap between 
concrete (εrc = 4.1 – j0.82) and dielectric layer (εrd = 2.6 – j0.0) using the rectangular 
dielectric-loaded DWS with (a) 2 mm- and (b) 3 mm-thick dielectric sheet attached 
to the metal plate at 10.3 GHz frequency. 

 

6.6  Measurement using the Dielectric-loaded DWS with Attached 
Dielectric Layer  

The measurement approach and results using the rectangular dielectric-loaded 

DWS with attached dielectric layer is described in this section. In this experimental 

investigation, only the dry concrete is considered as the specimen. The measurement 

of the reflection and transmission coefficient for different gaps between the concrete 

and the dielectric layer attached to the proposed sensor will be conducted. 

6.6.1 Specimens and Measurement Setup 

A cube of dry concrete (age about 2 years) with side dimension 250 mm and 

initial water: cement ratio 1:2 was used as the specimen in this investigation. The 

experimental setup for measuring the gap between the dry concrete and the dielectric 

layer using the rectangular dielectric-loaded DWS with attached dielectric layer is 

shown in Figure 6.38. An Agilent N5225A PNA acted as transceiver, measurement 

unit and indicator. The sensor was connected to the PNA by waveguide-to-coaxial 

adapters and coaxial cables. The gaps between the specimen and the sensor were 

made by inserting thin paper sheets to the desired gap values (0.0, 0.5, 1.0, 1.5 and 

2.0 mm). Acrylic sheet was used as the dielectric layer (εrd = 2.6 – j0.01). 
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Figure 6.38: Experimental setup for measuring the gap in cement-based composites 
using the microwave dual rectangular waveguide sensor. 

 

6.6.2 Measurement Results with Dry Concrete Specimens 

Dielectric layers 2, 3, 6, 8 and 10 mm thick, were attached to the rectangular 

dielectric-loaded DWS. In each case, S11 and S21 were measured, recorded and 

averaged five times for each gap value (0.0, 0.5, 1.0, 1.5 and 2.0 mm). 

Figures 6.39–6.41 show average measured magnitude of reflection and 

transmission coefficient vs. frequency for different gaps between the dry concrete and 

the dielectric layer using the rectangular dielectric-loaded DWS with 2-, 3- and 6 

mm-thick dielectric sheets attached to the metal plate. Figures 6.39a, 6.40a and 6.41a 

show resonance at frequencies of approximately 8.8, 8.6 and 8.4 GHz, respectively, in 

the reflection coefficient curves for different gap values, changing slightly with gap 

changes. It is also noted that S11 decreases at the resonant frequencies with increasing 

gap values. It is observed in Figures 6.39b, 6.40b and 6.41b that the transmission 

coefficient increases with increasing gap value at all frequencies. The differences in 

S21 between adjacent gap curves decrease with increasing gap value. 

Figures 6.42 and 6.43 show the average measured magnitude of reflection and 

transmission coefficient vs. frequency for different gaps between dry concrete and 

dielectric layer using the rectangular dielectric-loaded DWS with 8- and 10 mm-thick 
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dielectric sheets attached to the metal plate. Figures 6.42a and 6.43a show resonance 

at frequencies of about 11.1 and 10.9 GHz in the reflection coefficient curves for 

different gap values, changing slightly with gap changes. It is also noted that S11 

increases at the resonant frequencies with increasing gap values. It is observed in 

Figures 6.42b and 6.43b that the magnitude of transmission coefficient increases with 

increasing gap value at higher frequencies in the X-band; at lower frequencies, S21 

differences between adjacent gap curves are either very small, or they overlap. 

Therefore, from the results in Figures 6.39–6.43 it is obvious that the rectangular 

dielectric-loaded DWS with attached dielectric layers of acrylic sheet (εrd = 2.6 – 

j0.01) of 2- and 3 mm thick offer uniform transmission coefficients for detecting gaps 

between dry concrete and the dielectric layer, as is clearly shown in Figure 6.44. 

Figure 6.44a, b show the measured magnitude of transmission coefficient vs. gap 

between dry concrete and dielectric layer using the rectangular dielectric-loaded 

DWS with attached dielectric (εrd = 2.6 – j0.01) layer 2- and 3 mm thick at 10.3 

GHz. It is seen that in both cases, S21 increases with the increasing gap value, but the 

3 mm dielectric layer results in higher transmission coefficients for all gap 

conditions. 

 

Figure 6.39: Average measured magnitude of (a) reflection, and (b) transmission 
coefficient vs. frequency for different gaps between the dry concrete specimen and 
the dielectric layer (εrd = 2.6 – j0.01) using the rectangular dielectric-loaded DWS 
with 2 mm-thick dielectric sheet attached to the metal plate. 

(a) (b) 

M
ag

ni
tu

de
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (d

B
) 

Frequency (GHz) 

M
ag

ni
tu

de
 o

f t
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt
 (d

B
) 

Frequency (GHz) 



Chapter 6 
 

 
Page 228 

 
 

 

Figure 6.40: Average measured magnitude of (a) reflection, and (b) transmission 
coefficient vs. frequency for different gaps between the dry concrete specimen and 
the dielectric layer (εrd = 2.6 – j0.01) using the rectangular dielectric-loaded DWS 
with 3 mm-thick dielectric sheet attached to the metal plate. 

 

Figure 6.41: Average measured magnitude of (a) reflection, and (b) transmission 
coefficient vs. frequency for different gaps between the dry concrete specimen and 
the dielectric layer (εrd = 2.6 – j0.01) using the rectangular dielectric-loaded DWS 
with 6 mm-thick dielectric sheet attached to the metal plate. 
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Figure 6.42: Average measured magnitude of (a) reflection, and (b) transmission 
coefficient vs. frequency for different gaps between the dry concrete specimen and 
the dielectric layer (εrd = 2.6 – j0.01) using the rectangular dielectric-loaded DWS 
with 8 mm-thick dielectric sheet attached to the metal plate. 

 

 

Figure 6.43: Average measured magnitude of (a) reflection, and (b) transmission 
coefficient vs. frequency for different gaps between the dry concrete specimen and 
the dielectric layer (εrd = 2.6 – j0.01) using the rectangular dielectric-loaded DWS 
with 10 mm-thick dielectric sheet attached to the metal plate. 
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Figure 6.44: Measured magnitude of transmission coefficient vs. gap between dry 
concrete and dielectric layer (εrd = 2.6 – j0.01) using the rectangular dielectric-loaded 
DWS with (a) 2 mm and (b) 3 mm-thick dielectric sheet attached to the metal plate at 
10.3 GHz. 

6.7 Comparison of Measurement and Simulation Results 
The measurement and simulation results for different dual waveguide sensors 

with attached dielectric layer discussed in previous sections are compared here. In 

the simulations, the dielectric permittivities adopted for fresh, early and dry concrete 

are (22.0 – j6.6), (15.0 – j4.5) and (4.1 – j0.82) respectively. 

Figure 6.45 shows the measured and simulated magnitude of transmission 

coefficient vs. gap between fresh/early-age concrete and the dielectric layer (εrd = 2.6 

– j0.01) using the empty DWS with attached 2 mm and 3 mm-thick dielectric layers 

respectively at 10.3 GHz. In both cases, the S21 values measured on days 1, 2 and 3 

of concrete curing are compared with two simulation results. It is seen on both 

graphs that the trends and behaviours of the measurement and simulated results are 

similar; and that the values of S21 agree reasonably well for gaps larger than 0.5 mm 

and 1.0 mm using 3 mm and 2 mm-thick dielectric layers, respectively. 

Figure 6.46 illustrates the measured and simulated reflection and transmission 

coefficient vs. gap between dry concrete and dielectric layer (εrd = 2.6 – j0.01) at 

10.6 GHz using the empty DWS with a 6 mm-thick dielectric sheet attached to the 

metal plate. It is observed that, in the reflection coefficient measurement case, the 
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difference between the measurement and simulation is less than 1 dB for all gaps. 

The results agree even more closely for the transmission coefficient. 

Figure 6.47 shows the measured and simulated magnitude of transmission 

coefficient vs. gap between the dry concrete and dielectric layer (εrd = 2.6 – j0.01) at 

10.3 GHz using the rectangular dielectric-loaded DWS with 2- and 3 mm-thick 

dielectric layers attached to the metal plate. It is clearly seen in Figure 6.47a, b that, 

with the dielectric layers of both thicknesses, the rectangular dielectric-loaded DWS 

gives excellent agreement between measurement and simulation results. 

Therefore, except for the fresh concrete specimen in the smaller gap range   

(0.0–0.5 mm), the measured and simulated results using the proposed sensors with 

dry concrete exhibit good agreement; small differences are attributable to errors in 

sensor fabrication, gap arrangement error due to roughness of the concrete surface 

and metal plate surface, variations in dielectric permittivity of insertions, variations 

in geometry of insertions and so on. It is also noted that 3 mm is the preferred 

thickness of the attached dielectric layer for dielectric-loaded DWS. In the numerical 

investigation with the fresh concrete, the thickness and dielectric properties of the 

transparent polythene film covering the freshly cast concrete during measurement 

has not been considered. Furthermore, the fresh concrete requires very precise 

handling due to its sensitivity to environment and age. 

 

Figure 6.45: Measured and simulated magnitude of transmission coefficient vs. gap 
between fresh/early-age concrete and dielectric layer (εrd = 2.6 – j0.01) at 10.3 GHz 
using the empty DWS with (a) 2 mm and (b) 3 mm-thick dielectric sheet attached to 
the metal plate. 
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Figure 6.46: Measured and simulated magnitude of (a) reflection coefficient, and (b) 
transmission coefficient vs. gap at 10.6 GHz between the dry concrete and dielectric 
layer (εrd = 2.6 – j0.01) using empty DWS with 6 mm-thick dielectric sheet attached 
to the metal plate. 

 

 

Figure 6.47: Measured and simulated magnitude of transmission coefficient vs. gap 
between dry concrete and dielectric layer (εrd = 2.6 – j0.01) at 10.3 GHz using the 
dielectric-loaded DWS with (a) 2 mm and (b) 3 mm-thick dielectric sheet attached to 
the metal plate. 
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6.8 Electric Field Intensity Distributions 

The electric field distribution inside the waveguide sections of the proposed DWS, 

in the attached dielectric layers and in the concrete will be presented and analysed in 

this section. 

Figure 6.48 shows a cross-sectional side view of the electric field intensity 

distributions (amplitude and phase) inside the waveguide sections W1 and W2, the 

3 mm-thick dielectric layer attached to the empty DWS, and in the fresh concrete  

(εr = 15.0 – j4.3) at 10.3 GHz for gaps of 0.0, 1.0 and 2.0 mm between the attached 

dielectric layer and the concrete. It can be seen from the figure that W1 radiates 

electromagnetic waves in fresh concrete across the dielectric layer, and a small part 

of this wave penetrates into W2 through the dielectric layer at the no-gap condition 

due to minor penetration in the presence of more water particles. Figure 6.48 clearly 

show changes in the electric field intensity distribution inside the dielectric layer and 

W2 when there is a gap. It should be noted that a comparison between the field 

distribution in this arrangement and in the arrangement without a dielectric layer   

(cf. Figure 4.25, Chapter 4) demonstrates that the dielectric layer enhances the 

electric field intensity in W2. It also shows the lesser influence of increasing the gap. 

Figure 6.49 shows a cross-sectional side view of the electric field intensity 

distributions (amplitude and phase) inside W1 and W2 and inside the 6 mm-thick 

dielectric layer attached to the empty DWS and the dry concrete (εr = 4.1 – j0.82) at 

10.6 GHz for gaps of 0.0, 1.0 and 2.0 mm between the attached dielectric layer and 

the concrete. It can be seen from the figure that W1 radiates electromagnetic waves 

in the dry concrete across the dielectric layer, and that a part of this penetrates into 

W2 through the dielectric layer in the no-gap condition. Figure 6.49 clearly shows 

changes in the electric field intensity distribution inside the dielectric layer and W2 

when a gap exists. It should be noted that a comparison between the field distribution 

in this arrangement and the arrangement without a dielectric layer (cf. Figure 4.41, 

Chapter 4) demonstrates that the dielectric layer enhances the electric field intensity 

in W2. It also shows the lesser influence of increasing the gap.  

Figures 6.50 shows a cross-sectional side view of the electric field intensity 

distributions (amplitude and phase) inside W1 and W2 and inside the 3 mm-thick 
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dielectric layer attached to the rectangular dielectric-loaded DWS and dry concrete 

(εr = 4.1 – j0.82) at 10.3 GHz for gaps of 0.0, 1.0 and 2.0 mm between the attached 

dielectric layer and the concrete. It can be seen from the figure that W1 radiates 

electromagnetic waves in the dry concrete across the dielectric insertion and layer, 

and that a part of this penetrates into W2 through the dielectric layer in the no-gap 

condition. Moreover, Figure 6.50 clearly show changes in the electric field intensity 

distribution inside the dielectric layer and W2 when a gap exists. It should be noted 

that a comparison between the field distribution in this arrangement and the 

arrangement without a dielectric layer (cf. Figure 5.35, Chapter 5) demonstrates that 

the dielectric layer enhances the electric field intensity in W2. It also shows the lesser 

influence of increasing the gap. 
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Figure 6.48: Cross-sectional side view of electric field intensity distribution inside 
the waveguide sections W1 and W2, in the 3 mm-thick dielectric layer attached to 
the empty DWS, and in the fresh concrete (εr = 15.0 – j4.5) for three gap values at a 
frequency of 10.3 GHz. 
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Figure 6.49: Cross-sectional side view of electric field intensity distribution inside 
waveguide sections W1 and W2, in the 6 mm-thick dielectric layer attached to the 
empty DWS, and in the dry concrete (εr = 4.1 – j0.82) for three gap values at a 
frequency of 10.6 GHz. 
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Figure 6.50: Cross-sectional side view of electric field intensity distribution inside 
the waveguide sections W1 and W2, in the 3 mm-thick dielectric layer attached to 
the rectangular dielectric-loaded DWS, and in the dry concrete (εrc = 4.1 – j0.82) for 
three gap values at a frequency of 10.3 GHz. 
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6.9 Summary 

In this chapter, the modified DWSs were presented. They consisted of empty 

DWS and dielectric-loaded DWS with the attached dielectric layers. The proposed 

empty DWS with attached dielectric layer was built and tested for the determination 

of the complex dielectric permittivity of fresh concrete as well as for the detection 

and monitoring of gaps in concrete-based composite structures of different ages. The 

dielectric-loaded DWS with attached dielectric layer was used to measure debonding 

gaps between the dry concrete and the attached layer. 

The empty DWS with an attached dielectric layer was modelled together with 

the various concrete specimens; then an extensive parametric analysis was performed 

for different thicknesses of the attached layer (2, 3, 6, 8 and 10 mm) with fresh, 

early-age and dry concrete. The numerical investigation into fresh concrete showed 

that the 3 mm-thick acrylic layer provided the highest transmission coefficient 

whereas the 6 mm-thick acrylic layer provided the highest transmission coefficient 

with dry concrete. Therefore, an empty DWS with attached 3 mm-thick acrylic sheet 

was constructed, and measurements were conducted to determine the complex 

dielectric permittivity of hour 1 fresh concrete using the measured and simulated data 

and the developed algorithm. The dielectric permittivity of the hour 1 concrete was 

determined as 21.5 – j4.3. 

This fabricated sensor was further used to detect small gaps between early-age 

concrete and the attached dielectric layer. It was found that it can detect and measure 

the gap using the reflection and transmission coefficient data independently in the 

range of 0.5–2.0 mm with moderate accuracy. To detect gaps between dry concrete 

and the dielectric layer, the proposed empty DWS with a 6 mm-thick dielectric layer 

produced the best results, especially for gap values in the range of 0.0–0.5 mm over 

the entire X-band frequency range. 

A model of the dielectric-loaded DWS with attached dielectric layer and a dry 

concrete specimen was developed for a parametric study of the effect of different 

thicknesses of the attached layer and different gaps between the dry concrete and the 

dielectric sheet. The study revealed that 2 mm and 3 mm-thick acrylic layers give the 

most useful results for gap detection between concrete and dielectric layer, using the 
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magnitude of the transmission coefficient. It was also shown that resonant responses 

occurred in the magnitude of reflection coefficient curves due to the presence of 

dielectric insertions inside the waveguide sections; however, the changes of the 

resonant frequencies were not consistent with the changes of gap values. 

Consequently, reflection coefficient measurement was not suitable for gap detection; 

rather, measurement of the magnitude of the transmission coefficient can readily detect 

and measure the gap. 

The measurements with the dielectric-loaded DWS with attached dielectric layer 

were conducted using dielectric layers in five thicknesses (2, 3, 6, 8 and 10 mm). It 

was shown that the measurement of the transmission coefficient using the proposed 

sensor with 2 mm or 3 mm-thick attached dielectric layer detect and monitor gaps 

between the dielectric layer and dry concrete very effectively, with good agreement 

of simulated and measured results. The presented electric field intensity distribution 

demonstrates the propagation of guided waves in the attached dielectric layer, and 

between the layer and concrete; this is the physical background of most observations 

relating to the magnitude of the transmission coefficient.  

The modified DWSs can be applied to characterise fresh concrete in a mould 

with a plastic wall or on-line, and to investigate the shrinkage of different categories 

of concrete. 



 

Chapter 7 

Dual Waveguide Sensor with Tapered Dielectric Insertions 

 

7.1 Introduction 

In chapter 5, a microwave dual waveguide sensor with rectangular dielectric 

insertions was proposed to determine the complex dielectric permittivity of concrete 

specimens of different ages and to measure the gap in concrete-based composite 

structures. The dielectric insertions were inserted in the waveguide sections of DWS 

to prevent the penetration of water and concrete obstacles inside the waveguide 

sections in the case of fresh concrete. It was shown that the dielectric insertions could 

add new features of sensors such as resonant responses. However, an impedance 

matching between the empty and the dielectric-filled sections of the waveguide was 

not considered which led to relatively high wave reflection from an insertion in 

waveguide 1 and, as a result, lower wave transmission to the waveguide 2. In this 

chapter, a DWS with tapered dielectric insertions (referred to as a DWS with tapered 

dielectric insertions) is proposed to reduce the wave reflection from the insertions 

and create opportunity to optimise the sensor by changing the dimensions of their 

tapered and regular parts. Therefore, parametric study is performed with different 

lengths of tapered and rectangular parts of the insertions for the purpose of achieving 

good impedance matching between the empty and the dielectric-filled sections of the 

waveguide to increase the wave transmission. Then, the DWS with tapered dielectric 

insertions is further modified by adding a dielectric layer between the metal plate and 

concrete (referred to as a DWS with tapered dielectric insertions and attached 

dielectric layer). Simulations are performed and measurements are conducted for the 

detection of small gaps between dry concrete specimens and attached dielectric 

layers using the proposed sensor. The comparison between measurement and 

simulation results for both sensors is also performed. The electric field intensity 

distributions inside the waveguide sections of the proposed sensors, dielectric layers 

and concrete specimens are studied to verify observations made from the simulation 

and measurement results. 
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7.2  Design of Sensor with Tapered Dielectric Insertions 

The schematic of the proposed microwave dual waveguide sensors with tapered 

dielectric insertions is shown in Figure 7.1. It consists of two rectangular waveguide 

sections with broad and narrow dimensions of a and b, respectively, installed in 

metal wall of the structure under inspection, and flanges for connection with the 

measuring system as shown in Figure 7.1a. A tapered dielectric insert is installed 

inside each waveguide section of the DWS as shown in Figures 7.1b and 7.1c. The 

insert is tapered along the E-plane of the dominant mode of the waveguide at one 

end, providing good impedance match between the empty and the dielectric-filled 

sections of the waveguide. The other end of the insert is ended at the aperture of 

waveguide that is attached to the concrete surface. The lengths of rectangular and 

taper parts of dielectric insertions are designated by d1 and d2, respectively. 
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Figure 7.1: Schematic of a dual waveguide sensor with tapered dielectric insertions: 
(a) top view and cross-sectional side view (b) without and (c) with attached dielectric 
layer.  

 

7.3 Numerical Investigation using The DWS with Tapered 
Dielectric Insertions 

In this section, the proposed DWS with tapered dielectric insertions is modelled 

along with the concrete specimen. Simulations are performed for the magnitude of 

reflection coefficients and transmission coefficients at different gap values between 

dry concrete specimens and metal plate. The results of parametric study with 

different combinations of d1 and d2 values are presented and discussed. 
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7.3.1 Model of the Sensor 

Figure 7.2a shows a perspective view of the model of DWS with tapered 

dielectric insertions along with concrete specimen. In this investigation two X-band 

microwave rectangular waveguide sections with standard aperture dimensions of 

22.86 mm × 10.16 mm, the lengths of waveguide sections of 45.0 mm and 97 mm 

and the distance between waveguide sections of 15.0 mm are used. The tapered 

dielectric insert with complex dielectric permittivity of εd = 2.6 – j0.01 is inserted in 

each waveguide section as shown in Figure 7.2b (schematic of the insert is shown in 

Figure 7.2c). In the simulation, excitation signal of Gaussian type and frequency 

range from 8.2 GHz to12.4 GHz were used. The time domain solver of CST has been 

used in this investigation. The complex dielectric permittivity of dry concrete 

specimen was chosen as, εc = 4.1 – j0.82. 

 

Figure 7.2: A model of DWS with tapered dielectric insertions and concrete 
specimen in CST: (a) perspective general view, (b) perspective transparent view 
showing the tapered dielectric insertions and (c) schematic of side view of the 
tapered dielectric insertion. 

 

7.3.2 Parametric Study with Dry Concrete Specimens 

The extensive simulation with the proposed DWS was performed at different 
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10 mm), and at five different gap values (0, 0.5, 1.0, 1.5, and 2.0 mm) between the 

dry concrete specimen and the metal plate of the proposed sensor.  

Figures 7.3 - 7.5 show the simulated magnitudes of reflection and transmission 

coefficients vs. frequency at different gap values between concrete (εrc = 4.1 – j0.82) 

and metal plate using the DWS with tapered dielectric insertion at d1 = 5 mm and 

different d2. It is clearly seen in Figures 7.3a, 7.4a and 7.5a that the resonant 

responses occurs at the magnitude of reflection coefficient curves and they moved 

towards to lower frequencies at all gap values. These resonant responses can be 

attributed to quarter-wavelength resonator conditions formed in the dielectric-filled 

area of the waveguide when the resonator has an open end at the tapered part and 

shorted part at the interface between the aperture and concrete. It is observed that the 

changes of gap value change the values of magnitude of S11 as well as the resonant 

frequencies. In general, magnitude of reflection coefficient is < -10 dB that is 

significantly lower than in the DWS with rectangular dielectric insertions (c.f., 

Figure 5.30a), i.e., a good matching between an empty part and a dielectric-filled part 

of the DWS with the tapered dielectric inserts is achieved. Furthermore, it can be 

seen from Figures 7.3b, 7.4b and 7.5b that there are no resonant responses in the 

magnitude of transmission coefficient curves at all gap values and  S21 does not 

change when d2 changes from 25 mm to 35 mm. However, the magnitude of 

transmission coefficient non-monotonically increases when gap value increases from 

0.5 mm to 2.0 mm over the entire operating frequency band. It is noted that 

compared to the results of the DWS with rectangular dielectric insertions (c.f., Figure 

5.30b) the increase of the magnitude of transmission coefficient of 1dB - 2 dB is 

observed in the DWS with the tapered dielectric inserts. This increase is less than 

expected from the increase of the magnitude of reflection coefficient. These results 

and comparison show that efficiency of transmission of waves from waveguide 1 to 

waveguide 2 mostly depends of the transformation of waveguide waves (the guided 

wave) into the guided wave (waveguide waves).  

Similar simulation was performed at d1 = 10 mm and the results are shown in 

Figures 7.6 - 7.8. Again, there is low level of reflection from the inserts (i.e., a good 

matching) at all d2 . It can be seen from Figures 7.6a, 7.7a and 7.8a that two resonant 
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responses occur at each gap values at  d2  = 25 mm but only one prominent resonant 

response exist at no gap condition at d2  = 30 and 35 mm. The magnitude of this 

resonant response is very sensitive to a small gap between the metal plate and 

concrete, e.g., at d2  = 30 mm (35 mm) it changes from -40 dB to -23 dB (-32 dB to -

18 dB) when 0.5-mm gap occurs as shown in Figures 7.7a and 7.8a. Then, the 

magnitude gradually increases when gap value increases. There are no resonant 

responses in the magnitude of transmission coefficient curves at all gap values and  

S21 does not change when d2 changes from 25 mm to 35 mm. The magnitude of 

transmission coefficient non-monotonically increases when gap value increases from 

0.5 mm to 2.0 mm over the entire operating frequency band as shown in Figures 

7.6b, 7.7b and 7.8b, and its values are equal to those obtained at d2  = 5 mm (c.f. 

Figures  7.3b, 7.4b and 7.5b). These results confirmed observations made from the 

results d1 = 5 mm together with them indicate that the transmission of waves from 

waveguide 1 to waveguide 2 does not depend on d1 and d2 . 

 

Figure 7.3: Simulated magnitude of (a) reflection and (b) transmission coefficient vs. 
frequency at different gap values between concrete (εrc = 4.1 – j0.82) and metal plate 
using the DWS with tapered dielectric insertion at d1 = 5 mm and d2 = 25 mm. 
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Figure 7.4: Simulated magnitude of (a) reflection and (b) transmission coefficient vs. 
frequency at different gap values between concrete (εrc = 4.1 – j0.82) and metal plate 
using the DWS with tapered dielectric insertion at d1 = 5 mm and d2 = 30 mm. 

 

 

Figure 7.5: Simulated magnitude of (a) reflection and (b) transmission coefficient vs. 
frequency at different gap values between concrete (εrc = 4.1 – j0.82) and metal plate 
using the DWS with tapered dielectric insertion at d1 = 5 mm and d2 = 35 mm. 
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Figure 7.6: Simulated magnitude of (a) reflection and (b) transmission coefficient vs. 
frequency at different gap values between concrete (εrc = 4.1 – j0.82) and metal plate 
using the DWS with tapered dielectric insertion at d1 = 10 mm and d2 = 25 mm. 

 

 

 

Figure 7.7: Simulated magnitude of (a) reflection and (b) transmission coefficient vs. 
frequency at different gap values between concrete (εrc = 4.1 – j0.82) and metal plate 
using the DWS with tapered dielectric insertion at d1 = 10 mm and d2 = 30 mm. 
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Figure 7.8: Simulated magnitude of (a) reflection and (b) transmission coefficient vs. 
frequency at different gap values between concrete (εrc = 4.1 – j0.82) and metal plate 
using the DWS with tapered dielectric insertion at d1 = 10 mm and d2 = 35 mm. 

 

7.4 Measurement using the DWS with Tapered Dielectric 
Insertions 

The measurement approach and measurement results for dry concrete specimen 

using the DWS with tapered dielectric insertions is described in this section. First, 

the measurement of magnitude of reflection coefficient, S11, and transmission 

coefficient, S21, is conducted at no gap condition between the dry concrete specimen 

and the metal plate of DWS with tapered dielectric insertions. Then, S11 and S21 at 

different gap values (0.5, 1.0, 1.5 and 2.0 mm) between specimen and the metal plate 

are also measured. These procedures are repeated for 5 times at no gap and other gap 

values and then average values are calculated at each gap condition. 

7.4.1 Specimens and Measurement Setup 

A 250-mm concrete cube (age of about 2 years) initial water-to cement ratio of 0.5 

was used as the specimen in this investigation. Two tapered insertions made of 10-

mm thick Acrylic sheet with εr = 2.6 – j0.01, d1 = 10 mm and d2 = 20 mm are 

(a) (b) 

M
ag

ni
tu

de
 o

f r
ef

le
ct

io
n 

co
ef

fic
ie

nt
 (d

B
)  

 

Frequency (GHz)  

M
ag

ni
tu

de
 o

f t
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt
 (d

B
)  

Frequency (GHz)  



Chapter 7 
 

 
 

Page 249 
 
 

fabricated and inserted inside the waveguide sections of the DWS. The experimental 

setup is shown in Figure 7.9. Thin paper sheets were used to create desired (0.5, 1.0, 

1.5 and 2.0 mm) air gap values between specimen and the sensor.  

 

Figure 7.9: Measurement setup including a performance network analyser (PNA), the 
dry concrete specimen and the DWS with tapered dielectric insertions. 

 

7.4.2 Measurement Results with Dry Concrete Specimens 

Figure 7.10 shows the average measured magnitude of reflection and 

transmission coefficient vs. frequency at different gap values between dry concrete 

specimen and metal plate of the DWS with tapered dielectric insertions. It can be 

clearly seen from Figure 7.10a that two resonant responses occur in the magnitude of 

reflection coefficient curves over the X-band frequency for all gap values. It is found 

that S11 significantly decreases when gap of 0.5 mm occurs and then it non-

monotonically increases with the increase of gap values. It is also noted that the 

resonant frequency decreases slightly with the increase of gap value from 0.5 mm to 

2.0 mm. Furthermore, it is observed from Figure 7.10b the increase of gap values 

from 0.5 mm to 2.0 mm increases the magnitude of transmission coefficient over the 

entire frequency band. Overall, the behaviour and trends of  measurement results are 

similar to the simulation results (with some differences which can be attributed to 

measured and fabrication errors) and the results obtained with the DWS with 

rectangular insertions (c.f. Figure 5.20a).   
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Figure 7.10: Average measured magnitude of (a) reflection and (b) transmission 
coefficient vs. frequency at different gap values between dry concrete specimen and 
metal plate of DWS with tapered dielectric insertions having d1 = 10 mm and d2 = 
35 mm. 

 

7.5 Numerical Investigation using The Tapered Dielectric-loaded 
DWS with Attached Dielectric Layer 

In this section, a DWS with tapered dielectric insertions and attached dielectric 

layer is modelled along with the concrete specimen. Parametric studies are 

performed for the magnitude of reflection and transmission coefficients at different 

gap values between dry concrete specimens and attached dielectric layers, and 

different thicknesses of the attached dielectric layers. The main aim of these studies 

is to increase wave transmission (i.e., coupling) between waveguide 1 and waveguide 

2 of the DWS. 

7.5.1 Modelling of Sensor 

A model of the proposed DWS with a dielectric layer along with concrete 

specimen is shown in Figure 7.11. The tapered insertions and dielectric layer are 

made of acrylic with dielectric permittivity of 2.6 – j0.01 and dimensions of d1 = 10 

mm and d2 = 35 mm, and 250 mm × 250 mm, respectively. 
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Figure 7.11: A model of the DWS with the tapered dielectric insertions and the 
attached dielectric layer along with concrete specimen: (a) perspective and (b) cross-
sectional side view showing the attached dielectric layer and the gap between 
concrete and dielectric layer. 

 

7.5.2 Parametric Study with Dry Concrete Specimens 

The parametric studies of the proposed DWS with attached dielectric layer were 

performed at five different gap values (0, 0.5, 1.0, 1.5, and 2.0 mm) between and the 

dielectric layer  and the concrete specimen (εr = 4.1 – j0.82) for different thicknesses 

of the dielectric layer; namely, 2, 3, 6, 8 and 10-mm. 

Figures 7.12 - 7.16 show the simulated magnitude of reflection and transmission 

coefficient vs. frequency at different gap values between dry concrete specimen and 

dielectric layer using the tapered dielectric-loaded DWS with 2-, 3-, 6-, 8- and 10-

mm thick dielectric layer, respectively. It can be seen from Figures 7.12a - 7.16a that 

reflection (matching) at non-resonant frequencies is slightly higher (lower) than it 

was without layer (c.f. Figure 7.8a). However, for example, with 2-mm and –mm 

thick layer it monotonically decreases (increases) when gap value increases from 0 to 

2 mm at frequency range from 8.2 GHz – 10.7 GHz and from 12.2 GHz – 12.4 GHz 

(c.f. Figures 7.12a and 7.13a). Moreover, there is a resonant response area between 

these two ranges where the magnitude of reflection coefficient at the resonant 

frequency of 11.1 GHz decreases monotonically from -13 dB to -36 dB (Figure 
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7.12a) and from -15dB to -33 dB (Figure 7.13a) when gap value increases from 0 to 

2 mm. These results show that the DWS with a dielectric layer can be used for the 

evaluation of gap value between the dielectric layer and concrete. It should be noted 

that in DWS with the thicker layer, i.e., >6 mm, behaviour of the magnitude of 

reflection coefficient vs gap value is complex as shown in Figures 7.14a – 7.16a.  

However, behaviour of the magnitude of transmission coefficient is straightforward, 

i.e., the magnitude increases with the increase of gap value over the entire frequency 

range at all thicknesses of the layer as shown in Figures 7.12b – 7.16b. Comparison 

between the results with 2-mm layer (Figure 7.12b) and without layer (Figure 7.8b) 

shows that the layer increases magnitude of transmission coefficient at all gaps and 

over entire frequency band. Moreover, the further increase of this magnitude can be 

achieved by the increasing of layer thickness. To emphasise these observations 

Figure 7.17 shows the magnitude of transmission coefficient without layer and with 

layer of different thicknesses at single frequency of 10.3 GHz. At least two important 

observations can be made from Figure 7.17.  

1) The magnitude monotonically increases when gap value increases at all 

thicknesses of layer and 2) the highest magnitude is achieved at thickness of 6 mm. 

 

Figure 7.12: Simulated magnitude of (a) reflection and (b) transmission coefficient 
vs. frequency at different gap values between dry concrete (εrc = 4.1 – j0.82) and 2-
mm thick dielectric layer (εrd = 2.6 – j0.01).  
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Figure 7.13: Simulated magnitude of (a) reflection and (b) transmission coefficient 
vs. frequency at different gap values between dry concrete (εrc = 4.1 – j0.82) and 3-
mm thick dielectric layer (εrd = 2.6 – j0.01). 

 

Figure 7.14: Simulated magnitude of (a) reflection and (b) transmission coefficient 
vs. frequency at different gap values between dry concrete (εrc = 4.1 – j0.82) and 6-
mm thick dielectric layer (εrd = 2.6 – j0.01). 
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Figure 7.15: Simulated magnitude of (a) reflection and (b) transmission coefficient 
vs. frequency at different gap values between dry concrete (εrc = 4.1 – j0.82) and 8-
mm thick dielectric layer (εrd = 2.6 – j0.01). 

 

 

 

Figure 7.16: Simulated magnitude of (a) reflection and (b) transmission coefficient 
vs. frequency at different gap values between dry concrete (εrc = 4.1 – j0.82) and 10-
mm thick dielectric layer (εrd = 2.6 – j0.01). 
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Figure 7.17: Simulated magnitude of transmission coefficient vs. gap value between 
dry concrete and dielectric layer with different thicknesses at 10.3 GHz (“No layer” 
curve is shown for comparison). 
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10 mm) were made and used with the measurement setup similar to that shown in 

Figure 7.9 to verify the simulations results.  

7.6.2 Measurement Results with Dry Concrete Specimens 
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specimen and 2-, 3-, 6-, 8- and 10-mm thick acrylic layer, respectively. The 

comparison of simulated and measured magnitudes of reflection coefficient shows 

the measured magnitude have two resonant responses while as mentioned the 

simulated magnitude had one resonant response. However, that they have similar 

similar behaviour and trends which have been discussed for the simulations results. 

The magnitudes of transmission coefficient also have similar behaviour and trends. 

These observations can also be seen from Figure 7.23 showing the magnitude of 

transmission coefficient vs gap value at different thicknesses of the layer, and 

following subsection 7.7 (Comparison of Measurement and Simulation Results).   

 

Figure 7.18: Measured average magnitude of (a) reflection and (b) transmission 
coefficient vs. frequency at different gap values between dry concrete specimen and 
2-mm thick acrylic layer. 
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Figure 7.19: Measured average magnitude of (a) reflection and (b) transmission 
coefficient vs. frequency at different gap values between dry concrete specimen and 
3-mm thick acrylic layer. 

 

 

Figure 7.20: Measured average magnitude of (a) reflection and (b) transmission 
coefficient vs. frequency at different gap values between dry concrete specimen and 
6-mm thick acrylic layer. 
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Figure 7.21: Measured average magnitude of (a) reflection and (b) transmission 
coefficient vs. frequency at different gap values between dry concrete specimen and 
8-mm thick acrylic layer. 

 

 

Figure 7.22: Measured average magnitude of (a) reflection and (b) transmission 
coefficient vs. frequency at different gap values between dry concrete specimen and 
10-mm thick acrylic layer. 
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Figure 7.23: Average measured magnitude of transmission coefficient vs. gap value 
between dry concrete and dielectric layer with different thicknesses at 10.3 GHz 
(“No layer” curve is shown for comparison). 

 

7.7 Comparison of Measurement and Simulation Results 

The results of comparison between measurement and simulation transmission 

coefficients obtained in previous sections 7.4 – 7.6 using the DWS with tapered 
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Figure 7.24 shows the measured and simulated magnitude of transmission 
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proposed DWS with tapered dielectric insertion at a frequency of 10.3 GHz. It is 

clearly seen that the behaviour of both the measured and simulated magnitudes of 

transmission coefficient is similar; however, there are about differences between 

their values, which can be attributed to measurement errors.  
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DWS with 2-mm and 3-mm thick dielectric layer at 10.3 GHz. It is seen from Figure 

7.25 that again the measured and simulated results demonstrate similar behaviour 

and trends. However, there is a difference between their values which is constant (~2 

dB) at 3-mm thickness while it increases from 1 dB to 2.25 dB at 2-mm thickness 

when gap value increases from 0 to 2 mm.  

Overall, measured and simulated results demonstrated similar behaviour and 

trends when gap value changes. Differences between their values can be attributed to 

error of fabrication of dielectric insertions and measurement errors as well as a 

difference between the complex dielectric permittivity of acrylic provided in its 

specification, which was used in the simulation and the complex dielectric 

permittivity of acrylic used in the measurement.  

 

Figure 7.24: Measured and simulated magnitude of transmission coefficient vs. gap 
value between the concrete specimen and metal plate using the proposed DWS with 
tapered dielectric insertions and without dielectric layer at 10.3 GHz.  
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Figure 7.25: Measured and simulated magnitude of transmission coefficient vs. gap 
value between the concrete specimen and the dielectric layer using the proposed 
DWS with tapered dielectric insertion (d1 = 10 mm and d2 = 35 mm) and (a) 2-mm 
and (b) 3-mm thick dielectric layer at 10.3 GHz. 

 

7.8 Electric Field Intensity Distributions 

The electric field distribution inside the waveguide sections of the proposed 

DWSs, and concrete specimens at different gap conditions will be presented and 

analysed in this section. 

Figures 7.26 and 7.27 show the cross-sectional views of simulated electric field 

intensity distribution (amplitude and phase) inside waveguides of DWS with tapered 

dielectric insertion, in the interface area and in dry concrete specimens for three 

values of gap; namely, 0 mm, 1 mm and 2 mm at a frequency of 10.3 GHz. Figures 

7.26a and 7.27a show that waveguide 1 (W1) radiates microwaves through tapered 

dielectric insertions in dry concrete specimen and a part of these waves penetrates 

into another waveguide 2 (W2) through concrete at “no gap” condition. Figures 

7.26b-c and 7.27b-c clearly show changes in the electric field intensity distribution at 

the interface between concrete and metal surfaces due to the gap, and in W2. 

Animated phase version of these distributions (not shown here) demonstrated the 

propagation of electromagnetic waves between metal and concrete surfaces (referred 
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to as guided waves) at 1.0 and 2.0 mm gap. These guided waves lead to losses in 

electromagnetic energy of the incident wave as well as the reflected wave. Another 

important observation from Figures 7.26b-c 7.27b-c is that a part of the guided wave 

and a part of the wave radiated by W1 in dry concrete penetrate into W2 and 

interfere there. It is also found that at ‘no gap’ condition, microwave signals are more 

focused inside the concrete specimen. 

Figures 7.28 and 7.29 show the cross-sectional views of electric field intensity 

distributions (amplitude and phase) inside the waveguide sections (W1 and W2),     

3-mm thick dielectric layer and dry concrete specimen at three gap values; namely 0, 

1.0 and 2.0 mm between the dielectric layer and concrete specimen at 10.3 GHz. It 

can be seen from Figure 7.28a and 7.29a that waveguide 1 (W1) radiates 

electromagnetic wave in the dielectric layer and concrete specimen and a part of this 

wave penetrates into another waveguide 2 (W2) through the dielectric layer at “no 

gap” condition. Moreover, Figure 7.28b-c clearly show changes of the electric field 

intensity distribution inside the dielectric layer and W2 when the gap exists. The 

comparison of the electric field intensity distribution with and without dielectric 

layer (c.f. Figures 7.28, 7.29 and 7.26, 7.27) shows that the dielectric layer enhances 

the electric field intensity in W2 at all considered gaps. These results confirm 

observation made from the measured and simulated results related to the magnitude 

of transmission coefficients. 
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Figure 7.26: Cross-sectional side view of electric field intensity distribution inside 
waveguides of DWS with tapered dielectric insertion having d1 = 10 mm and d2 = 35 
mm and dry concrete specimen (εr = 4.1 – j 0.82) for different gap conditions 
between surfaces of metal and specimen at 10.3 GHz (without dielectric layer).  
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Figure 7.27: Cross-sectional top view of electric field intensity distribution inside 
waveguides of DWS with tapered dielectric insertions having d1 = 10 mm and d2 = 
35 mm and dry concrete specimen (εr = 4.1 – j 0.82) for different gap conditions 
between surfaces of metal and specimen at 10.3 GHz (without dielectric layer).  
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Figure 7.28: Cross-sectional side view of electric field intensity distribution inside 
the waveguides (W1 and W2), 3-mm thick dielectric layer attached with tapered 
dielectric-loaded DWS having d1 = 10 mm and d2 = 35 mm, and dry concrete (εrc = 
4.1 – j0.82) specimen for three gap values at a frequency of 10.3 GHz (with 
dielectric layer). 
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Figure 7.29: Cross-sectional top view of electric field intensity distribution inside 
waveguides of DWS with tapered dielectric insertions having d1 = 10 mm and d2 = 
35 mm and dry concrete specimen (εr = 4.1 – j 0.82) for different gap conditions 
between surfaces of metal and specimen at 10.3 GHz (with dielectric layer). 
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7.9 Summary 

In this chapter, the design and modification of DWS with tapered dielectric 

insertions are proposed to reduce wave reflection from the insertions. Firstly, the 

proposed DWS was modelled with the concrete specimens, and parametric studies 

were performed with variable lengths of rectangular and taper part of the insertions. 

The DWS with optimized dimensions of the insertions made of acrylic was built and 

tested. Simulation and measurement results showed that that the resonant responses 

occurred at the magnitude of reflection coefficient curves. These resonant responses 

can be attributed to quarter-wavelength resonators formed in the dielectric-filled area 

by an open end at the tapered part and shorted part at the interface between the 

aperture and concrete. It was observed that the changes of gap value changed the 

values of magnitude of reflection coefficient as well as the resonant frequencies. In 

general, magnitude of reflection coefficient is < -10 dB that is significantly lower 

than in the DWS with rectangular dielectric insertions, i.e. a good matching between 

an empty part and a dielectric-filled part of the DWS with the tapered dielectric 

inserts is achieved. Furthermore, no resonant responses in the magnitude of 

transmission coefficient curves at all gap values and it did not depend on the 

dimensions of insertions. However, the magnitude of transmission coefficient non-

monotonically increases when gap value increases from 0.5 mm to 2.0 mm over the 

entire operating frequency band. Compared to the results with the DWS with 

rectangular dielectric insertions the increase of 1dB - 2 dB was observed in the DWS 

with the tapered dielectric inserts. This increase is less than expected from the 

increase of the magnitude of reflection coefficient. These results showed that 

efficiency of transmission of waves from waveguide 1 to waveguide 2 mostly 

depends of the transformation of waveguide waves (the guided wave) into the guided 

wave (waveguide waves).  

Secondly, a dielectric layer was inserted between the metal plate and concrete in 

the proposed DWS to increase wave transmission (i.e., coupling) between waveguide 

1 and waveguide 2 of the DWS. It was shown that the insertion of the layer 

significantly increased the magnitude of transmission coefficient over an entire 

frequency band the highest magnitude is achieved at the layer thickness of 6 mm. 
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Moreover, the magnitude increased when gap value increased and the highest 

increase was achieved at the layer thickness of 2 mm.   It was also shown that the 

magnitude of reflection coefficient at non-resonant frequencies was slightly higher 

than it was without layer. However, at the resonant frequency the relatively thin      

(2 mm and 3 mm) dielectric layer decreased significantly the magnitude of reflection 

coefficient at all gap values.  

The results showed that the DWS with a dielectric layer can be used for the 

evaluation of gap value between the dielectric layer and concrete.  
 



 

Chapter 8 

Conclusions and Recommendations 

 

8.1 Conclusions 

Infrastructure health monitoring is becoming compulsory for all civil 

engineering structures mainly for safety and economic reasons, and therefore, there 

are high demands of advanced sensory techniques. Microwave sensory techniques 

have great advantages and potential for material characterization and quality 

assessment of concrete-metal composite materials, and monitoring of critical parts of 

infrastructure such as concrete-filled steel tubes. However, several practical 

drawbacks still exist in those techniques and need to be solved. One of them is the 

detection and monitoring of disbonding gap between concrete and metal surfaces. 

Another drawback is characterization of fresh and early-age concrete, which is very 

essential for initial quality assessment of concrete. In particular, lack of such data in 

the vicinity of the sensing area is very critical and it is required for modelling and 

simulation which are needed for the development and optimization of microwave 

sensors. 

In this thesis, methodology for the determination of the complex dielectric 

permittivity of concrete at different stages of its life and four advanced microwave 

sensors for the detection and monitoring of small gaps in concrete-based composites 

were proposed. They were explicitly elaborated in Chapters 3-7, and the major 

investigations and outcomes can be summarised as follows: 

In chapter 3, the methodology for the determination of the complex dielectric 

permittivity of concrete specimens from the measured and simulated magnitude of 

reflection coefficient using a single flanged open-ended waveguide sensor was 

developed and applied for early-age concrete specimens. The main challenging and 

limitation of this method were related to electromagnetic waves radiation by the 

sensor in free space and reflection and scattering of electromagnetic waves from 

boundaries and edges of the specimen under test. Therefore, the sensitivity of the 

magnitude of the reflection coefficient to the gap between the sensor aperture and the 
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specimen, changes in the sensor aperture position on the specimen surface, non-

uniform dielectric permittivity distribution, and the effect of the size of the concrete 

specimen was numerically investigated. It was shown that small gaps between sensor 

and specimen up to 1.5 mm for R-band and 0.3 mm for X-band SWS did not have 

significant effects on the measured magnitude of the reflection coefficients. 

However, significant changes were observed for gaps larger than those, attributable 

to the influence of higher-order modes at the aperture. It was found that the 

magnitude of the reflection coefficient varied significantly when the sensor aperture 

locations approached and passed the edge of the concrete specimen. It was also 

shown that the influence of the non-uniform dielectric permittivity distributions in 

early-age concrete specimens was negligible. 

The design, development and application of a novel microwave dual waveguide 

sensor for concrete-metal composite structures are presented in chapter 4. A 

parametric study of the proposed DWS with fresh concrete specimens performed in 

single waveguide mode and in dual waveguide mode showed that the dual 

waveguide mode of the proposed DWS may provide more measurement data than 

the single waveguide mode for characterising concrete-metal structures such as: (1) 

transmission properties of guided waves along the gap between the metal and 

concrete surfaces,  (2) reflection properties of the metal–concrete interface at two 

different places at the same stage of concrete; and (3) data for a larger area of the 

interface under inspection. The DWS was fabricated and applied to measure small 

gaps between concrete specimens of different ages and a steel plate.  The measured 

magnitude of reflection and transmission coefficients and simulation with CST were 

used to determine the dielectric permittivity of the fresh concrete specimen in the 

area of measurement using the modified algorithm. Comparisons between measured 

and simulated results showed a good agreement and clearly indicated capability of 

the proposed sensor for detection of a small debonding gap with improved accuracy.   

It was also shown that cracks in concrete filling can be detected using the magnitude 

and/or phase of transmission coefficient. Finally, the sensitivity of the magnitude of 

the reflection coefficient and transmission coefficient of the proposed DWS to 

variations in dielectric constant and loss tangent of concrete specimens, and the 

effects of surface roughness and were studied numerically. It was found that the 
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magnitude of the reflection (transmission) coefficient was most sensitive to changes 

of dielectric constant (loss tangent) of concrete specimens. These results showed that 

the measurement and analysis of both the reflection coefficient and the transmission 

coefficient can distinguish the effect of changes of gap size and dielectric properties 

of concrete. Application of this sensor in practice can be limited by possible 

penetration of water and/or concrete obstacles in the waveguide sections. 

In chapter 5, the design and application of a dual waveguide sensor with 

rectangular dielectric insertions were presented. The main goal of this work was to 

improve the dual waveguide sensor for characterisation of concrete–metal structures 

at different stages of the concrete life, including its fresh stage. The sensor was 

designed, numerically investigated with concrete specimens, fabricated, and tested. It 

was shown that the dielectric insertions prevented water and concrete entering the 

waveguides, created the resonant responses, and allowed long-term monitoring of the 

concrete hydration, including the detection of the transition from fresh to hardened 

concrete (settling of concrete) on its first day. The proposed sensor was used for the 

determination of the complex dielectric permittivity of fresh and dry concrete 

specimens using measured data and extensive simulations with an improved algorithm. 

The measurement and simulation of the reflection and transmission properties of the 

sensor with concrete specimens for different gaps between concrete and metal plate 

were performed and it was clearly shown that the DWS measured 0.5 to 2.0 mm 

gaps. Comparison between measured and simulated results clearly showed that they 

were in good agreement. Furthermore, numerical investigation into the sensitivity of 

the reflection and transmission properties of the dielectric-loaded DWS to changes in 

the geometry and dielectric properties of the rectangular insertions showed that the 

magnitude of reflection coefficient at the resonant frequency and the resonant 

frequency itself are sensitive to changes in physical (geometrical) and electrical 

length of the insertions, whereas changes of magnitude of the transmission 

coefficient are relatively small. 

In chapter 6 two modifications of the DWSs were made to increase matching 

between the waveguide section waves and the guided waves. They consisted of 

empty DWS and dielectric-loaded DWS with the attached dielectric layers. The 
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proposed DWSs with the dielectric layer of different thicknesses were designed, 

numerically investigated, built and applied for the determination of the complex 

dielectric permittivity of fresh and dry concrete as well as for the detection and 

monitoring of debonding gaps in concrete-metal composite structures of different 

ages. It was found that it can detect and measure the gap using the reflection and 

transmission coefficient data independently in the range of 0.5–2.0 mm with 

moderate accuracy. To detect gaps between dry concrete and the dielectric layer, the 

proposed empty DWS with a 6 mm-thick dielectric layer produced the best results, 

especially for gap values in the range of 0.0–0.5 mm over the entire X-band 

frequency range. The parametric studies were performed and measurements were 

conducted for the DWS with the rectangular insertions and the attached dielectric 

layer. It was shown that the measurement of the transmission coefficient using the 

proposed sensor with 2-mm or 3 mm-thick attached dielectric layer detect and 

monitor gaps between the dielectric layer and dry concrete very effectively, with 

good agreement between simulated and measured results. The modified DWSs can 

be applied to characterise fresh concrete in a mould with a plastic wall or on-line, 

and to investigate the shrinkage of different categories of concrete. 

In chapter 7, the design and modifications of DWS with tapered dielectric 

insertions were proposed to reduce wave reflection from the insertions. After 

modelling and extensive simulations the proposed DWS with optimized dimensions 

of the insertions was built and tested. Simulation and measurement results showed 

that that the resonant responses occurred at the magnitude of reflection coefficient 

curves can be attributed to quarter-wavelength resonators formed in the dielectric-

filled area by an open end at the tapered part and shorted part at the interface 

between the aperture and concrete. It was observed that the changes of gap value 

changed the values of magnitude of reflection coefficient as well as the resonant 

frequencies. In general, magnitude of reflection coefficient is less than -10 dB that is 

significantly lower than in the DWS with rectangular dielectric insertions, i.e. a good 

matching between an empty part and a dielectric-filled part of the DWS with the 

tapered dielectric inserts is achieved. Furthermore, no resonant responses in the 

magnitude of transmission coefficient curves were observed and the magnitude of 

transmission coefficient increased non-monotonically when gap value increases from 



Chapter 8 
 

 
 

Page 273 
 
 

0.5 mm to 2.0 mm over the entire operating frequency band. Compared to the results 

with the DWS with rectangular dielectric insertions the increase of 1dB - 2 dB was 

observed in the DWS with the tapered dielectric inserts. These results showed that 

efficiency of transmission of waves from waveguide 1 to waveguide 2 mostly 

depends of the transformation of waveguide waves (the guided wave) into the guided 

wave (waveguide waves). Therefore, a dielectric layer was inserted between the 

metal plate and concrete in the proposed DWS to increase wave transmission       

(i.e., coupling) between waveguide 1 and waveguide 2 of the DWS. It was shown 

that the insertion of the layer significantly increased the magnitude of transmission 

coefficient over an entire frequency band and the highest magnitude is achieved at 

the layer thickness of 6 mm. The results showed that the DWS with a dielectric layer 

can be used for the evaluation of gap value between the dielectric layer and concrete. 

 

8.2 Recommendations for Future Research 

In this thesis, methodology for characterization of concrete and four novel 

microwave dual waveguide sensors were proposed to solve problems of a single 

microwave waveguide sensor for infrastructure health monitoring application. 

Although the results are promising, several remaining issues can still be addressed in 

the future research plan as follows:  

 In this thesis the developed methodology for the determination of the 

complex dielectric permittivity of concrete was developed and applied for a 

flanged open-ended waveguide sensor and the proposed dual waveguide 

sensors. Simulated data were obtained with a computational tool CST 

Microwave studio, which provided a full electromagnetic formulation of the 

problem. However, in spite of relative simplicity of the sensors, some 

limitation may occur due to limited accuracy of mesh setting, boundary 

conditions, etc. It would be interesting and useful to perform a strict 

analytical consideration and numerical investigation into the proposed 

sensors with concrete specimens, and compare the results with the results of 

this thesis. 
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 In chapters 5-7 the DWSs with dielectric insertions and dielectric layers were 

presented. To provide experimental verification of the simulation results only 

acrylic was used as a dielectric material. However, there are numerous 

suitable materials with different dielectric and physical properties which can 

increase coupling between the waveguide through the guided waves (i.e., 

gaps)  and as a result, the sensitivity to disbonding gap will be increased. 

Therefore, it is important to investigate the proposed sensors with other 

materials.  

 In this thesis, for all the proposed microwave sensors, measurements were 

conducted using the performance network analyser which is bulky and 

expensive device, and microwave cables. On the other hand, it was shown in 

the thesis that only magnitude of reflection or transmission coefficient can be 

used for desired measurements. It means that a relatively simple 

measurement unit as a transceiver can be designed and attached to the 

sensor. Furthermore, wireless link instead of the cables can be created 

between the transceiver and wireless node or base station. 

 The proposed DWSs with attached dielectric layer showed improved 

performance. It could not be applied for characterization of concrete-metal 

structures such as concrete-filled steel tubes. However, a comprehensive 

research can be conducted to design and apply a measurement unit consisting 

of the proposed microwave DWS and a dielectric mould made of low loss 

materials such as acrylic or ceramic for the quick and high-accuracy 

characterization of the fresh concrete in construction sites. 
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