8 research outputs found

    Metastability-Containing Circuits

    Get PDF
    In digital circuits, metastability can cause deteriorated signals that neither are logical 0 or logical 1, breaking the abstraction of Boolean logic. Unfortunately, any way of reading a signal from an unsynchronized clock domain or performing an analog-to-digital conversion incurs the risk of a metastable upset; no digital circuit can deterministically avoid, resolve, or detect metastability (Marino, 1981). Synchronizers, the only traditional countermeasure, exponentially decrease the odds of maintained metastability over time. Trading synchronization delay for an increased probability to resolve metastability to logical 0 or 1, they do not guarantee success. We propose a fundamentally different approach: It is possible to contain metastability by fine-grained logical masking so that it cannot infect the entire circuit. This technique guarantees a limited degree of metastability in---and uncertainty about---the output. At the heart of our approach lies a time- and value-discrete model for metastability in synchronous clocked digital circuits. Metastability is propagated in a worst-case fashion, allowing to derive deterministic guarantees, without and unlike synchronizers. The proposed model permits positive results and passes the test of reproducing Marino's impossibility results. We fully classify which functions can be computed by circuits with standard registers. Regarding masking registers, we show that they become computationally strictly more powerful with each clock cycle, resulting in a non-trivial hierarchy of computable functions

    Metastability-Aware Memory-Efficient Time-to-Digital Converters

    Get PDF
    International audienceWe propose a novel method for transforming delay-line time-to-digital converters (TDCs) into TDCs that output Gray code without relying on synchronizers. We formally prove that the inevitable metastable memory upsets (Marino, TC'81) do not induce an additional time resolution error. Our modified design provides suitable inputs to the recent metastability-containing sorting networks by Lenzen and Medina (ASYNC'16) and Bund et al. (DATE'17). In contrast, employing existing TDCs would require using thermometer code at the TDC output (followed by conversion to Gray code) or resolving metastability inside the TDC. The former is too restrictive w.r.t. the dynamic range of the TDCs, while the latter loses the advantage of enabling (accordingly much faster) computation without having to first resolve metastability. Our all-digital designs are also of interest in their own right: they support high sample rates and large measuring ranges at nearly optimal bit-width of the output, yet maintain the original delay-line's time resolution. No previous approach unifies all these properties in a single device

    Configurable pseudo noise radar imaging system enabling synchronous MIMO channel extension

    Get PDF
    In this article, we propose an evolved system design approach to ultra-wideband (UWB) radar based on pseudo-random noise (PRN) sequences, the key features of which are its user-adaptability to meet the demands provided by desired microwave imaging applications and its multichannel scalability. In light of providing a fully synchronized multichannel radar imaging system for short-range imaging as mine detection, non-destructive testing (NDT) or medical imaging, the advanced system architecture is presented with a special focus put on the implemented synchronization mechanism and clocking scheme. The core of the targeted adaptivity is provided by means of hardware, such as variable clock generators and dividers as well as programmable PRN generators. In addition to adaptive hardware, the customization of signal processing is feasible within an extensive open-source framework using the Red Pitaya ® data acquisition platform. A system benchmark in terms of signal-to-noise ratio (SNR), jitter, and synchronization stability is conducted to determine the achievable performance of the prototype system put into practice. Furthermore, an outlook on the planned future development and performance improvement is provided

    Metastability-Containing Circuits

    No full text
    Communication across unsynchronized clock domains is inherently vulnerable to metastable upsets; no digital circuit can deterministically avoid, resolve, or detect metastability (Marino, 1981). Traditionally, a possibly metastable input is stored in synchronizers, decreasing the odds of maintained metastability over time. This approach costs time, and does not guarantee success. We propose a fundamentally different approach: It is possible to \emph{contain} metastability by logical masking, so that it cannot infect the entire circuit. This technique guarantees a limited degree of metastability in---and uncertainty about---the output. We present a synchronizer-free, fault-tolerant clock synchronization algorithm as application, synchronizing clock domains and thus enabling metastability-free communication. At the heart of our approach lies a model for metastability in synchronous clocked digital circuits. Metastability is propagated in a worst-case fashion, allowing to derive deterministic guarantees, without and unlike synchronizers. The proposed model permits positive results while at the same time reproducing established impossibility results regarding avoidance, resolution, and detection of metastability. Furthermore, we fully classify which functions can be computed by synchronous circuits with standard registers, and show that masking registers are computationally strictly more powerful

    An Energy-Efficient System with Timing-Reliable Error-Detection Sequentials

    Get PDF
    A new type of energy-efficient digital system that integrate EDS and DVS circuits has been developed. In these systems, EDS-monitored paths convert the PVT variations into timing variations. Nevertheless, the conversion can suffer from the reliability issue (extrinsic EDS-reliability). EDS circuits detect the unfavorable timing variations (so called ``error'') and guide DVS circuits to adjust the operating voltage to a proper lower level to save the energy. However, the error detection is generally susceptible to the metastability problem (intrinsic EDS-reliability) due to the synchronizer in EDS circuits. The MTBF due to metastability is exponentially related to the synchronizer delay. This dissertation proposes a new EDS circuit deployment strategy to enhance the extrinsic EDS-reliability. This strategy requires neither buffer insertion nor an extra clock and is applicable for FPGA implementations. An FPGA-based Discrete Cosine Transform with EDS and DVS circuits deployed in this fashion demonstrates up to 16.5\% energy savings over a conventional design at equivalent frequency setting and image quality, with a 0.8\% logic element and 3.5\% maximum frequency penalties. VBSs are proposed to improve the synchronizer delay under single low-voltage supply environments. A VBS consists of a Jamb latch and a switched-capacitor-based charge pump that provides a voltage boost to the Jamb Latch to speed up the metastability resolution. The charge pump can be either CVBS or MVBS. A new methodology for extracting the metastability parameters of synchronizers under changing biasing currents is proposed. For a 1-year MTBF specification, MVBS and CVBS show 2.0 to 2.7 and 5.1 to 9.8 times the delay improvement over the basic Jamb latch, respectively, without large power consumption. Optimization techniques including transistor sizing, FBB and dynamic implementation are further applied. For a common MTBF specification at typical PVT conditions, the optimized MVBS and CVBS show 2.97 to 7.57 and 4.14 to 8.13 times the delay improvement over the basic Jamb latch, respectively. In post-Layout simulations, MVBS and CVBS are 1.84 and 2.63 times faster than the basic Jamb latch, respectively

    Hazard-free clock synchronization

    Get PDF
    The growing complexity of microprocessors makes it infeasible to distribute a single clock source over the whole processor with a small clock skew. Hence, chips are split into multiple clock regions, each covered by a single clock source. This poses a problem for communication between these clock regions. Clock synchronization algorithms promise an advantage over state-of-the-art solutions, such as GALS systems. When clock regions are synchronous the communication latency improves significantly over handshake-based solutions. We focus on the implementation of clock synchronization algorithms. A major obstacle when implementing circuits on clock domain crossings are hazardous signals. We can formally define hazards by extending the Boolean logic by a third value u. In this thesis, we describe a theory for designing and analyzing hazard-free circuits. We develop strategies for hazard-free encoding and construction of hazard-free circuits from finite state machines. Furthermore, we discuss clock synchronization algorithms and a possible combination of them. In the end, we present two implementations of the GCS algorithm by Lenzen, Locher, and Wattenhofer (JACM 2010). We prove by rigorous analysis that the systems implement the algorithm. The theory described above is used to prove that our clock synchronization circuits are hazard-free (in the sense that they compute the most precise output possible). Simulation of our GCS system shows that it achieves a skew between neighboring clock regions that is smaller than a few inverter delays.Aufgrund der zunehmenden Komplexität von Mikroprozessoren ist es unmöglich, mit einer einzigen Taktquelle den gesamten Prozessor ohne großen Versatz zu takten. Daher werden Chips in mehrere Regionen aufgeteilt, die jeweils von einer einzelnen Taktquelle abgedeckt werden. Dies stellt ein Problem für die Kommunikation zwischen diesen Taktregionen dar. Algorithmen zur Taktsynchronisation bieten einen Vorteil gegenüber aktuellen Lösungen, wie z.B. GALS-Systemen. Synchronisiert man die Taktregionen, so verbessert sich die Latenz der Kommunikation erheblich. In Schaltkreisen zwischen zwei Taktregionen können undefinierte Signale, sogenannte Hazards auftreten. Indem wir die boolesche Algebra um einen dritten Wert u erweitern, können wir diese Hazards formal definieren. In dieser Arbeit zeigen wir eine Methode zum Entwurf und zur Analyse von hazard-freien Schaltungen. Wir entwickeln Strategien für Kodierungen die Hazards vermeiden und zur Konstruktion von hazard-freien Schaltungen. Darüber hinaus stellen wir Algorithmen Taktsynchronisation vor und wie diese kombiniert werden können. Zum Schluss stellen wir zwei Implementierungen des GCS-Algorithmus von Lenzen, Locher und Wattenhofer (JACM 2010) vor. Oben genannte Mechanismen werden verwendet, um formal zu beweisen, dass diese Implementierungen korrekt sind. Die Implementierung hat keine Hazards, das heißt sie berechnet die bestmo ̈gliche Ausgabe. Anschließende Simulation der GCS Implementierung erzielt einen Versatz zwischen benachbarten Taktregionen, der kleiner als ein paar Gatter-Laufzeiten ist

    Metastability-containing circuits, parallel distance problems, and terrain guarding

    Get PDF
    We study three problems. The first is the phenomenon of metastability in digital circuits. This is a state of bistable storage elements, such as registers, that is neither logical 0 nor 1 and breaks the abstraction of Boolean logic. We propose a time- and value-discrete model for metastability in digital circuits and show that it reflects relevant physical properties. Further, we propose the fundamentally new approach of using logical masking to perform meaningful computations despite the presence of metastable upsets and analyze what functions can be computed in our model. Additionally, we show that circuits with masking registers grow computationally more powerful with each available clock cycle. The second topic are parallel algorithms, based on an algebraic abstraction of the Moore-Bellman-Ford algorithm, for solving various distance problems. Our focus are distance approximations that obey the triangle inequality while at the same time achieving polylogarithmic depth and low work. Finally, we study the continuous Terrain Guarding Problem. We show that it has a rational discretization with a quadratic number of guard candidates, establish its membership in NP and the existence of a PTAS, and present an efficient implementation of a solver.Wir betrachten drei Probleme, zunächst das Phänomen von Metastabilität in digitalen Schaltungen. Dabei geht es um einen Zustand in bistabilen Speicherelementen, z.B. Registern, welcher weder logisch 0 noch 1 entspricht und die Abstraktion Boolescher Logik unterwandert. Wir präsentieren ein zeit- und wertdiskretes Modell für Metastabilität in digitalen Schaltungen und zeigen, dass es relevante physikalische Eigenschaften abbildet. Des Weiteren präsentieren wir den grundlegend neuen Ansatz, trotz auftretender Metastabilität mit Hilfe von logischem Maskieren sinnvolle Berechnungen durchzuführen und bestimmen, welche Funktionen in unserem Modell berechenbar sind. Darüber hinaus zeigen wir, dass durch Maskingregister in zusätzlichen Taktzyklen mehr Funktionen berechenbar werden. Das zweite Thema sind parallele Algorithmen die, basierend auf einer Algebraisierung des Moore-Bellman-Ford-Algorithmus, diverse Distanzprobleme lösen. Der Fokus liegt auf Distanzapproximationen unter Einhaltung der Dreiecksungleichung bei polylogarithmischer Tiefe und niedriger Arbeit. Abschließend betrachten wir das kontinuierliche Terrain Guarding Problem. Wir zeigen, dass es eine rationale Diskretisierung mit einer quadratischen Anzahl von Wächterpositionen erlaubt, folgern dass es in NP liegt und ein PTAS existiert und präsentieren eine effiziente Implementierung, die es löst
    corecore