
HAZARD-FREE
CLOCK
SYNCHRONIZATION

A dissertation submitted towards the

degree Doctor of Engineering of the

Faculty of Mathematics and Computer

Science of Saarland University

by Johannes Bund
Saarbrücken, 2022



Day of Colloquium: 28.02.2023

Dean of the Faculty: Univ.-Prof. Dr. Jürgen Steimle

Chair of the Committee: Prof. Dr. Markus Bläser

Reporters
First reviewer: Dr. Christoph Lenzen
Second reviewer: Prof. Dr. Andreas Steininger
Third reviewer: Dr. Matthias Függer
Fourth reviewer: Prof. Dr. Kurt Mehlhorn

Academic Assistant: Dr. Roohani Sharma





Abstract

The growing complexity of microprocessors makes it infeasible to distribute a single
clock source over the whole processor with a small clock skew. Hence, chips are split
into multiple clock regions, each covered by a single clock source. This poses a problem
for communication between these clock regions. Clock synchronization algorithms
promise an advantage over state-of-the-art solutions, such as GALS systems. When
clock regions are synchronous the communication latency improves significantly over
handshake-based solutions. We focus on the implementation of clock synchronization
algorithms.

A major obstacle when implementing circuits on clock domain crossings are haz-
ardous signals. We can formally define hazards by extending the Boolean logic by
a third value u. In this thesis, we describe a theory for designing and analyzing
hazard-free circuits. We develop strategies for hazard-free encoding and construction
of hazard-free circuits from finite state machines. Furthermore, we discuss clock
synchronization algorithms and a possible combination of them.

In the end, we present two implementations of the GCS algorithm by Lenzen,
Locher and Wattenhofer [67]. We prove by rigorous analysis that the systems im-
plement the algorithm. The theory described above is used to prove that our clock
synchronization circuits are hazard-free (in the sense that they compute the most
precise output possible). Simulation of our GCS system shows that it achieves a skew
between neighboring clock regions that is smaller than a few inverter delays.

iv



Zusammenfassung

Aufgrund der zunehmenden Komplexität von Mikroprozessoren ist es unmöglich, mit
einer einzigen Taktquelle den gesamten Prozessor ohne großen Versatz zu takten.
Daher werden Chips in mehrere Regionen aufgeteilt, die jeweils von einer einzelnen
Taktquelle abgedeckt werden. Dies stellt ein Problem für die Kommunikation zwischen
diesen Taktregionen dar. Algorithmen zur Taktsynchronisation bieten einen Vorteil
gegenüber aktuellen Lösungen, wie z.B. GALS-Systemen. Synchronisiert man die
Taktregionen, so verbessert sich die Latenz der Kommunikation erheblich.

In Schaltkreisen zwischen zwei Taktregionen können undefinierte Signale, soge-
nannte Hazards auftreten. Indem wir die boolesche Algebra um einen dritten Wert
u erweitern, können wir diese Hazards formal definieren. In dieser Arbeit zeigen wir
eine Methode zum Entwurf und zur Analyse von hazard-freien Schaltungen. Wir
entwickeln Strategien für Kodierungen die Hazards vermeiden und zur Konstruktion
von hazard-freien Schaltungen. Darüber hinaus stellen wir Algorithmen Taktsynchro-
nisation vor und wie diese kombiniert werden können.

Zum Schluss stellen wir zwei Implementierungen des GCS-Algorithmus von Lenzen,
Locher undWattenhofer [67] vor. Oben genannte Mechanismen werden verwendet, um
formal zu beweisen, dass diese Implementierungen korrekt sind. Die Implementierung
hat keine Hazards, das heißt sie berechnet die bestmögliche Ausgabe. Anschließende
Simulation der GCS Implementierung erzielt einen Versatz zwischen benachbarten
Taktregionen, der kleiner als ein paar Gatter Laufzeiten ist.

v



Publications

This dissertation summarizes the work carried out during my doctoral studies at the
Max-Planck Institute for Informatics and CISPA Helmholtz Center for Information
Security. The work is published in the following research papers (sorted by the order
of appearance in this thesis).

[17] Bund, J., Lenzen, C., and Medina, M. Small hazard-free transducers.
In 13th Innovations in Theoretical Computer Science Conference, ITCS 2022,
January 31 - February 3, 2022, Berkeley, CA, USA (2022), M. Braverman,
Ed., vol. 215 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
pp. 32:1–32:24

[16] Bund, J., Lenzen, C., and Medina, M. Optimal metastability-containing
sorting via parallel prefix computation. IEEE Trans. Computers 69, 2 (2020),
198–211

[18] Bund, J., Lenzen, C., and Rosenbaum, W. Fault tolerant gradient clock
synchronization. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August
2, 2019 (2019), P. Robinson and F. Ellen, Eds., ACM, pp. 357–365

[12] Bund, J., Függer, M., Lenzen, C., and Medina, M. Synchronizer-free
digital link controller. IEEE Trans. Circuits Syst. 67-I, 10 (2020), 3562–3573

[13] Bund, J., Függer, M., Lenzen, C., Medina, M., and Rosenbaum, W.
PALS: plesiochronous and locally synchronous systems. In 26th IEEE Interna-
tional Symposium on Asynchronous Circuits and Systems, ASYNC 2020, Salt
Lake City, UT, USA, May 17-20, 2020 (2020), IEEE, pp. 36–43

In parts, the presented work is an extension of the published work. At the beginning
of each chapter, I give more detail about the individual content.

Figures and graphics used in this dissertation are either taken from the stated
research papers or newly created for this thesis, with one exception: Figure 2.2 was
created by Ian W. Jones to help me visualize the behavior of metastable latches.

Remark. The research paper [16] is a major part of my master’s thesis. It is not
regarded as a contribution to achieving the doctoral degree. The research paper is
included in this thesis as it is an essential part of this line of work.

vi



Contribution. All authors contributed equally to the research papers listed above.
In the following, I state my contribution in more detail. In general, I contributed
to circuit design, simulation, and evaluation. However, in most works, I was also
involved in correctness proofs and write-up.

[18] The work presents a purely theoretical result. I was involved in discussing the
results and proofs, as well as proofreading the write-up.

[16, 12] Both works present theoretical constructions of circuits which are supported
by extensive computer simulations. I was involved in developing the circuits
and proving them correct. Largely, I contributed to the implementation and
simulation of the circuits, including subsequent evaluation of the experiments.

[13] The work discusses the implementation of an algorithm, starting from a descrip-
tion of the algorithm and circuit, to correctness the of the circuit, to extensive
simulations. I contributed to developing the circuits and formal proofs. As
for [16, 12], I largely contributed to the implementation and simulation of the
circuits, including subsequent evaluation of the experiments.

[17] The work presents a theoretical framework and its correctness proof. The idea
was developed during the work on [16]. My contribution was identifying the
problem, finding a solution, and proving the correctness of the construction
together with my co-authors.

vii



viii



Acknowledgments

My gratitude goes to all people that I met along the way to completing this important
step, regardless of whether they are family, friends, colleagues, or unique encounters.

I appreciate every support that I received, thank you!

ix



Contents

Abstract iv

Publications vi

Acknowledgments ix

1 Introduction 1
1.1 Basic Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Circuits and Hazards 7
2.1 Basic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Circuits and Kleene Logic . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Hazard-Free Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Implementation of Basic Gates . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Example: The Hazard-Free Multiplexer . . . . . . . . . . . . . . . . . 15
2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Encoding 23
3.1 Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Preserving and Recoverable Codes . . . . . . . . . . . . . . . . . . . . 24
3.3 Example Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Follow-Up Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Hazard-Free Transducers 35
4.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Classic PPC and Hazards . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Hazard-Free PPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Extension of the Input Encoding . . . . . . . . . . . . . . . . . . . . . 59
4.5 Bound on k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Follow-Up Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Hazard-Free Sorting 65
5.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Sorting Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Comparator Specification . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Sorting Transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 Hazard-free Implementation . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6 Simulation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

x



6 Clock Synchronization 79
6.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Lynch-Welch Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 Gradient Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . 86

7 Fault Tolerant Gradient Clock Synchronization 97
7.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3 Cluster Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4 Inter-cluster Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Implementation of Clock Synchronization Algorithms 111
8.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Hardware Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

9 Single Link Synchronization 119
9.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . 119
9.2 System Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.3 Continuous Threshold Controller . . . . . . . . . . . . . . . . . . . . . 125
9.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 132

10 Network Synchronization 139
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.2 Hardware Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.3 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.4 Simulation and Comparison . . . . . . . . . . . . . . . . . . . . . . . . 154
10.5 Follow-Up Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

11 Conclusions 167
11.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
11.2 Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

List of Acronyms 172

xi



xii



1Introduction

Famously, Gordon E. Moore stated in the year 1965 what later became known as
Moore’s law [79]:

The number of transistors on a microprocessor
doubles every two years.

While this is not an actual law but an observation formulated decades ago, we see
that this is still true to date. Transistor sizes on microchips are shrinking to low
single-digit nanometer ranges, allowing more transistors in the same area.

Although it seems that the physical limitations on transistor sizes will be reached
very soon, Moore’s law is coming to an end only in a literal sense [95]. There are
plenty of other possibilities to increase the computational power of microprocessors.
As long as manufacturers keep increasing the functionality, Moore’s law will continue
from a consumer’s point of view. A more up-to-date version of Moore’s law could
be: The complexity of chips doubles every two years. The “complexity of a chip” is
kept vague on purpose. It includes various factors from power management and clock
distribution to application-specific circuitry.

Due to the growth of complexity, one of the fundamental design principles becomes
infeasible: Having a single clock source whose signal is distributed over the entire
microprocessor by a clock tree. To understand the reasons behind this challenge we
now provide a basic overview of clock distribution and its problems. On the following
pages, we give a brief introduction to the basic terms. We cover historical background
and current developments that help to contextualize the presented work. In particular,
we discuss the problems of using a single clock source.

1.1 Basic Terms

Clocks and Registers. The clock on a microprocessor is the heart of a chip. It is an
internal time reference that allows for synchronous computation and communication
of data between different parts. Microprocessors operate in stages where the outcome
of one stage is forwarded to the next.

an alternative design
approach is asynchronous
design

The clock signal is a reference that determines
when the previous stage is finished, i.e., when data is ready for use. The time between
two clock ticks needs to be larger than the time a stage needs for its computation.

Registers are used to transport data from one stage to the next, they update
their data on each clock beat. Registers are such a fundamental building block of
microprocessors that can be found in every part of the chip. A clock signal needs
to be propagated to every register, i.e., it needs to be propagated over the complete
microprocessor chip. Due to their implementation, registers pose timing constraints
on when the data in relation to the clock signal must arrive. In other words, for
synchronous computation, the clock signal should arrive at each register at the same

1



Chapter 1. Introduction

time. A common design scheme that addresses this challenge is a clock tree. It
distributes a clock signal over the complete microprocessor.

Clock Trees. A clock tree is a series of repeaters (buffers) and forks that connect
one root to a set of leaves. The clock signal is fed to the root of the tree which then
propagates the signal to its leaves where the registers are located. In an idealized
model, all paths from the root to a leaf that have the same length also have the same
propagation delay. Hence, a clock tree is perfect if each leaf has the same distance to
the root. Then, in the ideal model, the clock signal arrives at the same time at each
leaf. We call the difference in arrival time of the signal between two leaves skew.

Clock trees do not scale well to more complex designs. In contrast to the idealized
model, in the real world, the possibility of building a perfect tree vanishes. With the
increasing complexity of the chip, the layout process becomes more intricate. Also,
variations in the manufacturing and application affect single path delays in the clock
tree significantly. The design principle of having a single clock, distributed via a clock
tree becomes infeasible for complex chips.

Remark. No layout of a single clock tree can achieve a small skew for large chips. In
Section 10.4.2 we prove formally that the skew between neighbors grows proportional
to the side length of a chip.

Multiple Clock Sources. A solution to the skew problem follows one of the
standard design methodologies in computer science: divide and conquer. Split the
chip into small regions that can be covered by a clock tree with negligible skew, then
handle each region with its own clock source.

The approach brings many advantages such as modularity. Modularity allows the
integration of new components as new clock regions without the need to compile a new
clock tree. Clock regions can independently slow down for less power consumption
or speed up for faster computation. If one clock source fails other clock regions can
continue operating.

So far, however, regions are isolated and cannot communicate with each other by
sending data. Clock sources of different regions are uncorrelated. No data or infor-
mation can be transferred without either synchronizing the clocks or synchronizing
the data. A popular design approach for communication between clock regions are
globally asynchronous locally synchronous (GALS) systems [94].

GALS systems. The term has first been coined by Chapiro [22] in 1984. The basic
idea is to keep clock regions isolated, but adding asynchronous communication on
top. In GALS systems, local computation within a clock region is synchronous, and
global communication between clock regions is asynchronous.

Asynchronous communication requires the addition of data buffers and synchro-
nizers on every communication link between two clock regions.

a synchronizer reduces the
probability of reading

corrupted data
Synchronizers will

add a latency of two to three clock cycles to the data transfer. Depending on the

2



1.1. Basic Terms

amount of data that needs to be transferred, buffers may add a significant overhead
in cost to the chip.

GALS systems overcome the skew problem by surrendering to the scalability issues,
small skew is maintained only on a manageable scale. Computations are synchronous
only on a local level, globally the chip runs asynchronously. Thus, on a global scale,
GALS systems lose the advantages of synchronous design such as timing guarantees
and low latency communication. A more detailed discussion of GALS systems follows
in Section 8.1.

Hardware on clock domain crossings faces a fundamental issue: metastability [21].
Data that passes from one clock domain to another may get corrupted when both
domains have no timing relation. This is due to metastability in hardware registers.

Metastability. Storage elements such as registers store a digital value by changing
their internal state to low voltage (logical 0) or high voltage (logical 1). If registers
sample data that is in transition they may become metastable. This means that the
register enters an unstable equilibrium state where its internal state is somewhere
between high and low voltage. The register remains unstable until the state resolves
to either high or low after some (unknown) time. This spurious mode of operation
cannot be avoided when there are no timing guarantees [74]. Essentially, clock domain
crossings cannot maintain timing guarantees, because different clock domains may
have different clock speeds or different initialization.

Recent work on metastability-containment [41] showed that the uncertainty of
metastable signals can be contained without further amplification. A circuit designed
for metastability-containment can limit the instability of its outputs. Limiting this
instability is not a trivial task. It will be discussed in this dissertation. First, we will
see that the digital abstraction is not capable of modeling metastable behavior.

Remark. The term metastability-containment is replaced by the term hazard-freedom
throughout this dissertation.

Digital Abstraction. Digital circuit design relies on a fundamental abstraction of
the physical world. Electric voltages transmitted by wires are abstracted by Boolean
values, where the supply voltage level corresponds to logical 1 (true) and low voltage
level corresponds to logical 0 (false). By this abstraction, the behavior of digital
circuitry can be described with Boolean algebra. However, the abstraction does not
account for the behavior of digital circuits in all cases: It offers no way of representing
unstable signals, transitioning, oscillating, etc.

There is a plethora of algebras that can model different kinds of signal behav-
iors [10]. In this work, we study a classic extension of Boolean logic due to Kleene [58],
which allows for the presence of unspecified signals. We abstract all signal behaviors
that do not fit into the Boolean abstraction by a new logic value u. Intuitively, u
models an unstable signal, i.e., a voltage level that is not sufficiently close to logic 1
or 0.

3



Chapter 1. Introduction

Remark. Value u differs from an unknown value which is stable but not known whether
it is 0 or 1. The third logical value u can be regarded as the superposition of 0 and 1.
When taking a copy of u both copies may resolve to different stable values. A formal
discussion follows in Chapter 2.

Hazards. Kleene logic also defines the behavior of logic operators (such as and, or,
and not) in the presence of logic value u. A circuit is an arrangement of logic gates
that compute logic operators. Given a function on Boolean values, we can define an
extension of this function tothe extension is called the

hazard-free extension
Kleene values. The extension adopts the output whenever

a part of the inputs defines a stable output. A circuit that computes the Boolean
function does not necessarily compute its Kleene extension. If a circuit computes
the Boolean function but not the Kleene extension we call this a hazard. A formal
definition follows in Chapter 2.

The use of Kleene logic to model hazards dates back to Huffman [51]. The most
famous example of a circuit that computes the Boolean function but not the extension
to Kleene logic is the multiplexer (MUX). We discuss the MUX and a MUX without hazards
(the CMUX) in Section 2.5. To our knowledge the first occurrence of the CMUX dates
back to Goto [46].

1.2 Contributions

In our work we aim at both: maintaining the modularity of GALS systems and
providing advantages of globally synchronous systems. We keep the idea of separating
the chip into local clock regions, but on top, we use clock synchronization algorithms
(known from distributed computing) to synchronize different regions.

Implementation of these algorithms is highly non-trivial. Clearly, clock synchro-
nization needs to be implemented in hardware. A software solution would be too slow
to guarantee small skews because computation will take multiple clock cycles before
we can adjust a clock region. A software solution requires functioning hardware up-
front which is not necessarily given on clock domain crossings. We aim at a hardware
solution, which also is subject to the fundamental issue of metastability.

The content of this thesis can be split into two major topics. We start with the
theory of hazard-free circuits. In the second part, we show applications of hazard-free
circuits in clock synchronization algorithms. We present designs that achieve low
skew by implementing a clock synchronization algorithm.

Hazard-Free Circuits. The first part of this dissertation focuses on the design
of circuits that have no hazards (so-called hazard-free or metastability-containing
circuits). Hazard-free circuits compute the most precise outputs in the face of unstable
inputs. A formal definition follows in Chapter 2.

The hazard-free circuits that we present throughout this dissertation can be split
into two approaches:

4



1.3. Outline

general construction Given a formal specification of a circuit in Boolean logic, con-
struct a hazard-free circuit that computes the hazard-free extension. Chapter 4
presents a general construction that produces a hazard-free circuit from any
given specification in the form of a finite state transducer. We also pick up
the question of how circuits and their hazard-free counterparts differ in their
complexity. The question recently gained interest due to the work of Ikenmeyer
et al. [52].

problem specific If the problem description allows for some adjustments to the
circuit specification, then we have more freedom to find a hazard-free solution.
In Chapter 5, e.g., we choose an input encoding that is robust against unstable
signals in the sense that it does not amplify uncertainty (like other encodings).
We then define how to compare and sort inputs in the specified encoding. Fi-
nally, we provide a hazard-free circuit for sorting these inputs. Also, the clock
synchronization approaches presented in Chapters 9 and 10 fall into the category
of problem-specific solutions.

In several instances, we see that the type of encoding chosen is important in Kleene
logic. In Boolean logic, every encoding can be translated to any other encoding
without loss of information. In Kleene logic, this is not possible for every encoding.
Many encodings lose information (cf. Chapter 3), the choice of encoding matters.

Hazard-Free Clock Synchronization Algorithms. After introducing hazard-
free circuits we come back to the implementation of clock synchronization algorithms
in the second part. A circuit implementation eventually communicates with two or
more clock domains. Digital circuits that operate on clock domain crossings may
face unstable signals. Without sacrificing time to reduce the probability of unstable
signals, we aim to compute the most precise clock adjustments in the presence of
unstable inputs. The main research question we want to answer in this work is:

Can we design hazard-free circuits that implement
clock synchronization algorithms?

In the final chapter of this dissertation, we present a design that implements a clock
synchronization algorithm. It is proven to be hazard-free and maintains the worst-
case skew bounds of the algorithm. The design can be adjusted to any system with
multiple clock regions on a chip.

1.3 Outline

This dissertation is organized in the following way. The technical content follows
after this introductory chapter, it concerns two major topics. First, Chapters 2
to 5 cover the theory of hazard-free circuits. Second, Chapters 6 to 10 cover clock
synchronization and its implementation using hazard-free circuits.

5



Chapter 1. Introduction

Chapter 2 and Chapter 3 provide necessary background on hazards by giving formal
definitions and going through examples. In Chapter 2, we define Kleene logic as an
extension of Boolean logic. We use Kleene logic to model hazards in Boolean circuits.
We define k-bit hazards and discuss one of the most prominent examples of circuits
that have a hazard: the MUX.
The extension of the Boolean logic has an unfavorable side effect: the encoding we
choose for data becomes important. In Chapter 3 we discuss why the standard binary
encoding is infeasible for hazard-free circuits. We continue with a discussion on
desirable properties of encodings in the Kleene logic and present different encodings.

Chapter 4 presents a general construction for hazard-free circuits that is based on
a well-known construction for adder circuits. However, the standard encoding used in
the construction is lossy in Kleene logic. We deploy a more elaborate encoding that
achieves the required precision.

In Chapter 5, we show that the construction for hazard-free circuits can be applied
to a primitive that is of importance for clock synchronization algorithms: sorting of
two input numbers. Moreover, we can improve over the general construction and find
an asymptotically optimal implementation of the hazard-free sorting primitive.

We define the model and problem of clock synchronization in Chapter 6, including
the two clock synchronization algorithms that are used in this work; the Lynch-
Welch algorithm and the OffsetGCS algorithm. Both algorithms have advantages and
disadvantages in terms of fault-tolerance and network structure. Chapter 7 presents
an approach to combine both algorithms into a hybrid algorithm that combines the
best of both worlds.

Before we present two hardware implementations of the clock synchronization
approach in Chapters 9 and 10, we discuss related work and basic building blocks used
for both in Chapter 8. Chapter 9 then presents an implementation on a simple network
structure, the sender-receiver link. It covers communication and synchronization on
a single link between a producer and a consumer. Both share a data buffer that
can help to synchronize both nodes. Chapter 9 presents a detailed description and
simulation of the single link implementation.

Chapter 10 highlights the implementation and simulation of a clock synchroniza-
tion algorithm on an arbitrary network. It represents the state-of-the-art answer to
our research question for hazard-free clock synchronization on arbitrary networks.

We conclude this dissertation in Chapter 11 with a summary of our most important
findings and an outlook on further research.

6



2Circuits and Hazards

In this section, we describe basic notation and tools used in the study of hazard-free
circuits and the complexity of hazard-free circuits. First, we walk the reader through
the important definitions before we apply them in a demonstrative example. Finally,
we discuss related work. We start with a collection of common notations.

2.1 Basic Notation

Natural Numbers. The set of positive integers including 0 is denoted by N0. Given
an integer M ∈ N0 we denote by [M ] the set of all integers up to (not including) M ,

[M ] = {0, . . . , M − 1} .

For i, j ∈ N0, such that i ≤ j, the interval ⟨i, j⟩M is a set of consecutive integers from
[M ]. Integers are consecutive in the sense that after M − 1 we continue again at 0.
The interval is defined by

⟨i, j⟩M := {i mod M, . . . , j mod M} .

Power Set. The power set of a set is the set of all subsets. Given a set S, we denote
the power set of S by P(S), it is defined by

P(S) := {S′|S′ ⊆ S} .

Bits and Words. The set of binary values is denoted by B and the set of ternary
values is denoted by T. For the third logical value, we use the symbol u.

B := {0, 1} and
T := {0, u, 1} .

The set of all binary (respectively ternary) words of length ℓ ∈ N is denoted by Bℓ

(respectively Tℓ). For a word x ∈ Bℓ or x ∈ Tℓ and index i ∈ {1 . . . ℓ}, xi denotes the
ith bit of x. For i, j ∈ {1 . . . ℓ}, where i ≤ j, we denote the substring of x from index
i to j by xi,j ,

x = x1x2 . . . xℓ ,

xi,j = xixi+1 . . . xj .

We denote by xy the concatenation of (possibly 1-bit) words x and y.

7



Chapter 2. Circuits and Hazards

o 0 u 1

0 0 0 0
u 0 u u
1 0 u 1

o = and(a, b)

o 0 u 1

0 0 u 1
u u u 1
1 1 1 1

o = or(a, b)

a o

0 1
u u
1 0

o = not(a)

Table 2.1: Natural extension of the basic operators and, or, and not to Kleene logic.

Parity. The parity of a binary word denotes whether a binary word has an even or
an odd number of bits of value 1.

the parity can be
computed by xor over all

bits in the word

Definition 2.1 (Parity). The parity of an n-bit word x ∈ Bn is defined by the sum
over all bits modulo 2.

par(x) :=

(
n∑

i=1

xi

)
mod 2 .

Functions. For notational convenience, we extend all functions f : A→ B to sets
of inputs. For non-empty input A′ ⊆ A take the union of f applied to each element
of A′,

f(A′) =
⋃
a∈A′

f(a) .

2.2 Circuits and Kleene Logic

2.2.1 Kleene Logic

Kleene logic is an extension of Boolean logic. It extends the set of Boolean values by
a third logical value. We call the Boolean values stable values, while the value u is
called the unstable value.

the third logical value, u,
may also be called

uncertain
We regard the third logical value, u, as the superposition

of the logical values 0 and 1. Intuitively, the unstable state u may evaluate to any
stable state at any point in the circuit, regardless of previous evaluations.

Basic Gates. In Kleene logic, the basic operators compute a stable value if and only
if the inputs fully determine the output. The natural extension of the basic operators
and, or, and not is given in Table 2.1. The specific choice of basic operators does not
matter if the set of basic operators is functionally complete [52]. Thus, we stick to
the standard model of operators and, or and not.

In ternary logic familiar identities and(a, 1) = a, and or(a, 0) = a hold. The
idempotent laws and(a, a) = a, and or(a, a) = a and null laws and(a, 0) = 0, and
or(a, 1) = 1 hold. The operators and and or are associative, commutative, and

8



2.2. Circuits and Kleene Logic

a

b
ao

a

b
o o

o = and(a, b) o = or(a, b) o = not(a)

o = const-0 o = const-1

o o0 1

Figure 2.1: Circuit symbols for the basic gates and, or, not, const-0, and const-1.

distributive. Besides that, by the truth tables, we can verify that De Morgan’s laws
hold:

not(and(a, b)) = or(not(a), not(b)) ,

not(or(a, b)) = and(not(a), not(b)) .

Remark. A difference between Boolean logic and Kleene logic is for example the law
of non-contradiction. In Boolean logic, it holds for all x ∈ B that and(x, not(x)) = 0.
In Kleene logic, the law is false, because and(u, not(u)) = u.

2.2.2 Circuits

A Boolean circuit is a directed acyclic graph, where each node is either an input
node, an output node, or one of the following basic gates: and, or, not, const-0,
and const-1. The fan-in of a gate is the number of its inputs. In our model, logic
gates and and or have fan-in 2, not has fan-in 1, and constant gates const-0 and
const-1 fan-in 0, i.e., they have no incoming edges. All basic gates have a single
output. Circuit symbols for the basic gates are depicted in Figure 2.1.

Remark. For the implementation of hazard-free circuits, it is necessary to allow for
constant output gates. We will show this in Definition 2.8 after the definition of
hazard-free circuits.

A Boolean circuit C with n input nodes and m output nodes implements the function
C : Tn → Tm. The function of an output node is defined by induction over the circuit

9



Chapter 2. Circuits and Hazards

structure and the specification of the basic gates. The function C is then defined by
the concatenation of all output nodes.

Remark. We simplify the notation by using the same symbol for operators in ternary
logic and basic gates: and, or, and not. Each basic gate is defined by the corresponding
operator, they compute the same function.

2.3 Hazard-Free Circuits

We strive for circuits that behave similarly to basic gates when receiving unstable
inputs. That is, given all inputs, if changing an input bit from 0 to 1 has no effect on
the output, then setting this input bit to u should also not affect the output. This
concept is called hazard-freedom. To formalize this concept, we make use of two
operations. The first operation is the resolution, which replaces the unstable value
with both stable values. The second operation is the superposition, which results in
the unstable value u whenever its inputs do not agree on a stable value.

Resolution. The third logical value may resolve to a stable value, i.e., real circuits
may interpret an unstable value as logic 0 or logic 1. The resolution is a function that
maps a ternary word to a set of binary words. Intuitively, the resolution of a word
includes all possible words that can be obtained by replacing each u with a 0 or a 1.

Definition 2.2 (Resolution). The resolution is the function res : Tn → P(Bn). For
x ∈ Tn the resolution is defined by

res(x) := {y ∈ Bn | ∀i ∈ {1, . . . , n} : xi ̸= u⇒ yi = xi}.

Example. The resolutions of 0101, 010u, and 0u0u are given by

res(0101) = {0101} ,
res(010u) = {0100, 0101} ,
res(0u0u) = {0000, 0001, 0100, 0101} .

Remark. As stated before, applying a function to a set is given by the union over all
applications on each element, e.g., res({0u0, 1u0}) = {000, 010, 100, 110}.

Superposition. The third logical value is the superposition of both binary values.
We extend this notion to words. If two bits do not agree on a value, their superposition
is unstable.

Definition 2.3 (Superposition). Denote the superposition by the operator ∗. The
superposition is the function ∗ : Tn × Tn → Tn. For x, y ∈ Tn the superposition is
defined by bit-wise application. Let i ∈ {1, . . . , n}, then

(x ∗ y)i =

{
xi if xi = yi,

u otherwise.

10



2.3. Hazard-Free Circuits

The ∗-operation is associative and commutative. Hence, we can compute the super-
position of a non-empty set A ⊆ Tn regardless of the order of application. Consider
A = {a0, . . . , aℓ−1}, we use the following equivalent notations for the superposition
of all elements of A;

∗A := ∗
a∈A

a = a0 ∗ · · · ∗ aℓ−1 .

Example. Some superpositions of the words 0000, 0001, 0100, and 0101 are given by

0101∗0100 = 010u ,

0001∗0100 = 0u0u ,

∗{0000, 0001, 0100, 0101} = 0u0u .

Resolution and superposition are functions that allow to compare the behavior of
operations in the ternary logic to their behavior in binary logic. However, resolution
and superposition are not inverse functions. The resolution of the superposition of a
set A ⊆ Tn may add further words.

Observation 2.4. Let A ⊆ Tn be a non-empty set, then A ⊆ res(∗A).

However, if a ternary word ∗A has at most one u bit, then its resolution is equal to
A. Note that a word a has at most one u bit iff | res(a)| ≤ 2.

Observation 2.5. For any subset of words A ⊆ Bn, if | res(∗A)| ≤ 2, then

res(∗A) = A .

Proof. Since ∗A can contain at most one u bit, we know that A can contain at
most two words that differ in one position. It is then straightforward to show that
every word in res(∗A) is an element of A. Together with Observation 2.4 this shows
equality.

Observation 2.6. Let a ∈ Tn, then a = ∗ res(a).

Remark. Note that a strict superset relation is possible in Observation 2.4. For
example let A = {101, 110}, then res(∗A) = res(1uu) = {100, 101, 110, 111}.

2.3.1 Hazards

A circuit has as a hazard if it computes a u although the stable inputs determine a
stable output. With the definitions of the resolution and the superposition at our
disposal, we can define how to extend a binary function to unstable inputs. We call
this extension the hazard-free extension. The hazard-free extension gives the most
precise output we can hope for when using Boolean circuits; no correct implementation
can do better.

11



Chapter 2. Circuits and Hazards

Definition 2.7 (Hazard-free Extension). Given a function f : Bn → Bm, denote by
fu : Tn → Tm its hazard-free extension, where

fu(x) := ∗
y∈res(x)

f(y) .

Hazards are defined by the hazard-free extension. A circuit that does not implement
the hazard-free extension has a hazard. If the number of u’s in the input can be
bounded by a number k we call it a k-bit hazard.

Definition 2.8 (k-Bit Hazards). Any circuit C implementing f : Bn → Bn has a
hazard at x ∈ Tn iff C(x) ̸= fu(x). If x contains at most k u’s, for some k ∈ N, and
C has a hazard at x, then C has a k-bit hazard at x.

A circuit is hazard-free if it has no hazard, i.e., if it implements the hazard-free
extension. Likewise, it is k-bit hazard-free if it has no k-bit hazards.

Definition 2.9 (k-Bit Hazard-Free). Any circuit C implementing f : Bn → Bm is
k-bit hazard-free iff for all x ∈ Tn that contain at most k u’s,

C(x) = fu(x) .

Boolean circuits can be implemented using two types of gates only. A minimal set of
basic gates includes and and not gates only. Hazard-free circuits, however, require
additionally a constant gate. Consider a function f : B→ B that gets one input and
has a constant output. E.g., let f(x) = 0 and its hazard-free extension fu(x) = 0.
None of the basic gates and and or produce a constant output for input (u, u). Note
that not(u) = u. Hence, if x = u, no combination of basic gates can produce a stable
output. Thus, any hazard-free circuit implementing f requires a constant output gate.
The simplest hazard-free implementation of f(x) is a single const-0 gate.

2.3.2 Metastability

A textbook example of instability is the metastable state of flip-flops. Digital storage
elements such as data flip-flops and latches are bistable elements. In other words, they
store a binary value. Physically a flip-flop stores a value by setting the voltage level
of its inner storage loop to ground level (GND) or supply level (VDD). In the Boolean
abstraction, we map GND level to logic 0 and VDD level to logic 1.the metastable state

cannot be avoided,
detected, or resolved!

By Marino [74], no
bistable element can avoid an intermediate, metastable, state. The metastable state
is an unstable equilibrium state between two stable states.

Figure 2.2 shows a series of simulations where a latch is operated close to its
metastable state. If the signal on the data input arrives before the enable signal
changes, then the latch output transitions to logic 1. This behavior can be seen in the
first blue and red transitions. Accordingly, if the signal arrives late the latch output
remains stable at logic 0. The latch becomes metastable if the data input arrives
shortly before the enable signal is switched off. Each simulation moves the arrival

12



2.3. Hazard-Free Circuits

Figure 2.2: Simulation traces of a latch with enable signal en, data input d and
output q.

q traces on longer
metastability are partial
only, due to the mode of
simulation (which
achieves higher precision)

time of the data input closer to the metastable point. We observe that the output of
the latch rises to roughly the midpoint between GND (0V) and VDD (1V) before it
resolves to either GND or VDD.

Any subsequent circuit that obtains inputs from storage elements may receive a
metastable signal. We denote a metastable signal by M. We denote any signal that
cannot be interpreted as logic 0 or logic 1 by M. That is for example signals with
long transitions between GND and VDD or oscillating signals. The input signal to the
circuit, hence, can be any value in {GND, M,VDD}. This perfectly matches the logic
values {0, u, 1}. Thus, we make use of the ternary logic to model metastable behavior.

If we disregard the possibility that metastability resolves over time, i.e., if we do
a worst-case analysis, then we see that metastability propagates through the circuit.
CMOS gates that have a metastable input can have a metastable output. Metastable
signals may be interpreted as any stable signal at any point in the circuit, e.g., after
forks the same signal can have different interpretations.

This makes the metastable signal M a perfect real-world example for the unstable
logic value u. In the worst-case model, metastability is an unstable value between
GND (logic 0) and VDD (logic 1). It may evaluate to any stable signal at any point in
the circuit.

Basically, this means that we can use u to model M. The line of research we
present in this work is motivated by metastability as it occurs in latches. Practical
results such as [12, 16] use the M notation. More theoretical results, e.g. [17], use the

13



Chapter 2. Circuits and Hazards

u notation in order to fit in with the notation of related work. Contributions [12],[13],
and [16] use the M notation and contribution [17] uses the u notation. Throughout
this work, we use u for consistency.

2.3.3 Metastability-Containment.

The theory of hazard-free circuits can be applied to compute the most precise output in
the face of metastability. A circuit that has no hazard can also be called ametastability-
containing circuit. It implements the hazard-free extension of its function, which is also
known as the metastable closure. A hazard-free circuit will propagate metastability
only if the stable inputs do not determine the output, i.e., the uncertainty of metastable
signals is not amplified but contained. Superposition and resolution can be applied
to M in the same way as for u. A circuit that computes the metastable closure of a
function is called metastability-containing (mc).

Remark. We are aware that the notion of a hazard is ambiguous. Sometimes, especially
in work that studies metastable behavior, a hazard describes a short transient fault.
For example an electrical pulse on a signal that is supposed to be stable. This behavior
is also called a glitch. In order to remain consistent with related work (cf. Section 2.6),
we stick to the notion of a hazard denoting the misbehavior of circuits on unstable
inputs.

The notion of a hazard has been coined by Huffman in the study of glitches in
switching networks [51]. Circuits that prevent glitches are called glitch-free. When an
input changes its value a circuit might produce a glitch at the output due to internal
delays. If the output is the same before and after the input transition Huffman called
this behavior a static hazard. If the output changes its value Huffman called this a
dynamic hazard. A hazard in our sense corresponds to a static hazard in the sense
of Huffman,

dynamic hazards cannot
be captured by a ternary

logic [11]
we do not handle dynamic hazards.

Hazard-freedom in our sense describes a more general resilience to unstable signals.
An unstable signal can be glitching, oscillating, or any other arbitrary behavior
between GND and VDD. As a consequence, every hazard-free circuit is also static
glitch-free.

2.4 Implementation of Basic Gates

In this section, we make a short excursion to the implementation of basic gates on
the transistor-level. We want to show that it is feasible to assume that there are
basic gates that implement the behavior of the basic operators in Table 2.1. To
keep this section brief, we expect basic knowledge of complementary metal-oxide-
semiconductor (CMOS) technology. The knowledge is needed for this section only.
The main takeaway of this section is that hazard-free basic gates are not artificial but
can be built in real world. These basic building blocks are part of standard processes
already.

14



2.5. Example: The Hazard-Free Multiplexer

o 0 u 1

0 1 1 1
u 1 u u
1 1 u 0

o = nand(a, b)

o 0 u 1

0 1 u 0
u u u 0
1 0 0 0

o = nor(a, b)

a o

0 1
u u
1 0

o = not(a)

Table 2.2: Natural extension of the basic operators nand, nor, and not.

CMOS Gates. Standard CMOS gates are suitable choices for basic gates. The
functions nand and nor are defined in Table 2.2, where nand(a, b) = not(and(a, b))
and nor(a, b) = not(or(a, b)). Implementations of nand, nor, and not gates in CMOS
logic are given in Figure 2.3. Formally we show the following theorem in [16].

Theorem 2.10. The CMOS gates depicted in Figure 2.3 implement the basic gates
defined in Table 2.2.

Intuitively, the theorem states that the standard CMOS implementation of nand, nor,
and not gates implement the natural extension to the respective ternary operators.

Remark. We stress that the property of implementing the metastable closure is not uni-
versal for CMOS logic. A CMOS gate is not necessarily mc. For instance, standard
transistor-level multiplexer implementations are not mc. However, custom imple-
mentations can be tailored for metastability. An mc CMOS implementation of the
multiplexer is given in [42].

2.5 Example: The Hazard-Free Multiplexer

In this section, we walk through an example that demonstrates the application of the
basic definitions. The example emphasizes that designing hazard-free circuits is not
straightforward.

We discuss the specification and implementation of a MUX and its hazard-free
implementation CMUX, where CMUX actually abbreviates: metastability-containing mul-
tiplexer. To our knowledge, the first appearance of a CMUX dates back to Goto [46].
The metastability-containing multiplexer (CMUX) is a very handy device in hazard-free
circuit complexity, it will appear oftentimes later in this work.

Specification of a MUX. The MUX has two data inputs a and b, a select input s, and
a single output o. The select input determines which data input is forwarded to the
output.

15



Chapter 2. Circuits and Hazards

a b a
o

a

b
o

o

o = nand(a, b) o = nor(a, b) o = not(a)

VDD

a

VDD

ba

VDD

a

b

Figure 2.3: Standard transistor-level implementations of nand, nor, and not in
CMOS technology.

Definition 2.11 (MUX). Let a, b, s ∈ B, then

MUX(a, b, s) :=

{
a if s = 0 ,

b if s = 1 .

The hazard-free extension determines the most precise output of the MUX for any kind
of unstable inputs. We obtain for a, b, s ∈ T,

MUXu(a, b, s) :=


a if s = 0 ,

a ∗ b if s = u ,

b if s = 1 .

2.5.1 Implementation of a MUX

The standard implementation of the MUX uses a not gate to invert the select input,
two and gates to mask inputs a and b, and an or gate to combine the results. The
implementation is depicted in Figure 2.4 (left).

When comparing the output of mux(a, b, s) to the output of MUXu(a, b, s)MUX(a, b, s) denotes the
function, mux(a, b, s)
denotes the circuit

we ob-
serve that the standard implementation has a hazard. On one hand, the standard

16



2.5. Example: The Hazard-Free Multiplexer

o = mux(a, b, s) o = cmux(a, b, s)

a

b

s

o
a

b

o

s

Figure 2.4: Standard implementation of a MUX with basic gates (left) and implemen-
tation of a CMUX with basic gates (right).

a circle at the input
denotes a not gate before
the respective input

a single large fan-in gate
denotes a tree of
respective gates

implementation computes on input a = b = 1, s = u

mux(1, 1, u) = or(and(1, not(u)), and(1, u))

= or(and(1, u), and(1, u))

= or(u, u)

= u .

On the other hand, the hazard-free extension requires on input a = b = 1, s = u

MUXu(1, 1, u) = ∗{MUX(1, 1, 0), MUX(1, 1, 1)}
= 1 ∗ 1
= 1 .

Remark. This is the only input on which mux(a, b, s) has a hazard. Hence, we can
extend the standard implementation to account for this case, given that we do not
introduce new hazards.

2.5.2 Implementation of a CMUX

The hazard-free implementation of the MUX is similar to the standard implementation.
It adds an and gate and an or gate to the standard implementation. The cmux(a, b, s)
is depicted in Figure 2.4 (right).

17



Chapter 2. Circuits and Hazards

Hazard-freedom of the cmux(a, b, s) circuit can be verified by checking all possible
input pairs. Here, we only show that the hazard in mux(a, b, s) disappeared. On input
a = b = 1, s = u we obtain

cmux(1, 1, u) = or(and(1, not(u)), and(1, 1), and(1, u))

= or(and(1, u), and(1, 1), and(1, u))

= or(u, 1, u)

= 1

2.5.3 ℓ-select Multiplexer

For later use, we define the ℓ-select multiplexer MUXℓ, i.e., a multiplexer that selects
one of 2ℓ inputs according to a dedicated select input of width ℓ. The select input
encodes index i ∈ [2ℓ].

Definition 2.12. Let ℓ, b ∈ N>0. An ℓ-input multiplexer MUXℓ receives inputs xi ∈ Bb

for i ∈ [2ℓ], and select input s ∈ Bℓ. Let ⟨·⟩ : Bℓ → [2ℓ] be the standard binary decoding
function. Interpreting the select input s as an index, MUXℓ outputs x⟨s⟩, i.e.,

MUXℓ(x0, . . . , x2ℓ−1, s) := x⟨s⟩ .

By [52, Lemma 5.1] the ℓ-input multiplexer can be implemented by a hazard-free
circuit.

we formally define the
standard binary encoding

γbin
n in Chapter 3

Lemma 2.13. Let ℓ, b ∈ N>0, there is a hazard-free implementation of MUXℓ computing
(MUXℓ)u (x0, . . . , x2ℓ−1, s) with xi ∈ Tb for i ∈ [2ℓ] and s ∈ Tℓ. The implementation
has

size O(2ℓb)
and depth O(ℓ) .

Proof. The hazard-free implementation of a multiplexer receiving two input bits and
a single select bit is given by MUXu in Figure 2.4; it has constant size and and depth.
We first extend it to ℓ select bits and then to b-wide inputs.

The multiplexer can be extended to ℓ select bits by a recursive construction. For
ℓ = 1 we compute (MUXℓ)u (x0, x1, s) by MUXu(x0, x1, s). For ℓ > 1 we recursively
compute

(MUXℓ)u (x0, . . . , x2ℓ−1−1, s2,ℓ) = x⟨s2,ℓ⟩ and

(MUXℓ)u (x2ℓ−1 , . . . , x2ℓ−1, s2,ℓ) = x2ℓ−1+⟨s2,ℓ⟩ .

Then, we can compute (MUXℓ)u (x0, . . . , x2ℓ−1, s) by MUXu(x⟨s2,ℓ⟩, x2ℓ−1+⟨s2,ℓ⟩, s1). In-

tuitively, we build a tree of multiplexers where each layer is controlled by one bit of
the select input. The tree uses 2ℓ instances of MUXu and it has depth ℓ.

Extension to inputs of width b is simply done by copying the tree of multiplexers
b times. For i ∈ {1 . . . b}, we can compute the ith output bit by a (MUXℓ)u selecting
from the ith bits of inputs x0 to x2ℓ−1.

18



2.6. Related Work

2.6 Related Work

The cmux example (in Section 2.5) demonstrates that an implementation of the
hazard-free extension might be more complex than an implementation of the function
itself. A measure of complexity of hazard-free circuits is the overhead a hazard-free
implementation has compared to its Boolean counterpart. In general, an exponential
blow-up cannot be avoided [52]. In this section, we discuss related work that studies
the complexity of hazard-free circuits.

Switching Networks. The strive for hazard-free circuits naturally arises from
switching networks. Glitches electronic glitches are

sometimes known as
hazards

might occur at the output, when delays in a network do
not match. Consider for example the mux from Figure 2.4. Let a = b = 1 and input s
switches from 1 to 0. If the upper and has a greater delay than the lower one, then
there is a short time where both inputs to the or are 0. A short 1-0-1 glitch occurs at
the output, although it should be constant 1 as we saw in the example. This behavior
is called a static hazard. In contrast to a 1-bit hazard, a static hazard determines also
the input (bit) that causes the glitch. A circuit that eliminates all static hazards is
also hazard-free.

Huffman [51] shows that every Boolean function can be computed by a hazard-
free circuit. Essentially the proof shows that the disjunctive normal form (DNF) of
a Boolean function whose terms are prime implicants is 1-bit hazard-free. Huffman
also notes that the results carry over to higher-order hazards. Yoeli and Rinon [96]
relate the notion of hazards to ternary logic.

Hazard-free Complexity. More recently, Ikenmeyer et al. [52] showed that the
hazard-free complexity of a function is equal to its monotone complexity. A monotone
circuit has only and and or gates, not gates are not allowed. From lower bounds on
monotone circuit complexity, they can infer an exponential blow-up for the hazard-free
complexity. Also Ikenmeyer et al. [52] showed a conditional lower bound, which states
the exponential blow-up for non-monotone circuits.

Jukna [55] presents an upper bound on the complexity of the hazard-free imple-
mentation of a Boolean function f . We state the theorem for later use.

Theorem 2.14. Given a Boolean function f : Bn → B, there is a hazard-free circuit
implementing f that has size O(2n/n) and depth O(n).

Jukna presents a construction that formally proves the upper bound. The formal
argument only concerns the circuit size, a bound on the depth follows by the following
argument. The presented construction consists of two parts, that are both recursively
defined. The first part uses at most m recursions and the second part uses n −m
recursions, where each recursion step has constant depth. Outputs of the first part
are inputs to the second part. Hence, the construction has depth O(n).

19



Chapter 2. Circuits and Hazards

Hazard Detection. After the attention to static hazards rose, detecting and elimi-
nating these has been extensively studied [37, 76, 96]. Only a recent result of Komarath
and Saurabh [61] shows that detecting hazards is computationally hard. The authors
show a lower bound, which proves that no algorithm can decide in polynomial time
whether a circuit with n inputs has a hazard.

Metastability-Containment. Metastability is a spurious mode of operating stor-
age elements. When a storage element, e.g., a flip-flop, is metastable it is in an
unstable equilibrium state that is neither 0 nor 1. The term metastability-containing
is coined by Friedrichs et al. [41]. They apply techniques known from hazard-free
switching circuits to prevent the propagation of metastability beyond the unavoidable
upsets.

An mc circuit in the sense of Friedrichs et al. neglects the need for synchronizers. A
synchronizer trades time for reliability [5]. A signal that is suspected to be metastable
can be piped through a synchronizer to increase the probability that metastability
resolves. The synchronization approach comes with no deterministic guarantees,
usually a figure of merit is the mean time between failures (MTBF).

Remark. Synchronizers and clock synchronization should not be confused. A synchro-
nizer is a device, which might be used for clock synchronization.

Furthermore, Friedrichs et al. introduce a new kind of register: the masking register
that can hide internal metastability. There are two types of masking registers; one
that outputs 0 and one that outputs 1 on internal metastability. Essentially, masking
registers trade metastable upsets for late transitions. A late transition is a clean
transition from a stable value to the other. The transition can have an arbitrary
delay. It enters the metastable state only for a short time. The authors show that
circuits using masking registers have more computational power than conventional
circuits. Hazard-free circuits using masking registers are significantly smaller than
conventional circuits. Unfortunately, masking registers are not part of standard
circuit design flows. It is not obvious how to build such registers. Further research
on implementations is required. When using masking registers elaborate timing of
signals is required as each type of register can only hide metastability occurring on
an up or a down transition. The register has to be reset when it is not read.

Subsequently, more mc circuits have been introduced. The mc MUX of [42] presents
an improvement of the cmux on transistor-level. The mc sorting networks from [16]
are discussed in detail in Section 5.2.

Tarawneh et al. [93] explore the interplay of mc design and resolution of metasta-
bility. In a state machine, metastable signals are synchronized during the state/data
computation. Assuming that metastability resolves after sufficient time, they present
a framework for modeling synchronous state machines. Metastable upsets can be
reduced to a subset of the computations, such that mc design needs to be applied
only partially.

20



2.6. Related Work

Cybersecurity. Studying hazard-free circuits also became interesting for applica-
tions in cybersecurity. Techniques like gate level information flow tracking (GLIFT)
are proposed to secure information flow on the hardware level. Hu et al. [50] relates
GLIFT logic to hazard-free circuits, also showing that constructing GLIFT logic is
NP-complete.

Summary. The study of hazard-free circuits naturally rises from the study of
switching networks. The field gained a lot of attention in the 1960’s. More recently it
became interesting as new lower bounds were shown and there are modern applications
such as GLIFT logic. We are interested in a general construction for hazard-free
circuits. Known constructions add significant overhead to the circuit size. Ikenmeyer
et al. show that it is impossible to avoid these large overheads. However, in Chapter 4
we present a construction for small hazard-free circuits from small transducers. In our
construction, we encounter a basic problem of hazard-free circuits: encoding matters.
The type of encoding chosen is important in ternary logic. Superposition of values
may lose important information about the original data. In the following chapter, we
discuss in detail the problems and properties of codes in ternary logic.

21



Chapter 2. Circuits and Hazards

Bn Tn

set of codewords

set of extended codewords
(of precision p ≤ k)

γ([M ])
{∗γ(〈i, i+ p〉M)|i ∈ [M ], p ≤ k}

[2n]

[M ]

P([2n])

{〈i, i+ p〉M |i ∈ [M ], p ≤ k}

i
I

x

xI

γ(i) γ−1(x)
∗γ(I) γ−1(res(xI))

Figure 3.1: Overview of encoding and decoding functions and their extension to the
ternary world. The encoding function γ maps a number i to a codeword x of length n.
Its inverse, the decoding function γ−1 maps x back to i. The superposition of all
codewords of an interval I is the extended codeword xI . In Kleene logic decoding all
resolutions of xI may result in a set of numbers not equal to I.

a point in the power set is
a set again

the set of codewords is
only the intersection of

extended codewords and
binary strings

22



3Encoding

In hazard-free circuits the type of encoding chosen for data is important. Some encod-
ings lose precision when superpositioning multiple values. In this section, we discuss
encodings in detail. We formally define encodings and identify two desirable proper-
ties of codes. The properties provide information on whether a code is appropriate
for hazard-free circuits or not.

At the end of the chapter, we define three popular codes that will be used through-
out this thesis and examine their preservation and recoverability properties. The
codes are standard binary code, unary thermometer code, and Binary Reflected Gray
Code (BRGC).

3.1 Codes

A code is a mapping between a finite set of numbers and strings of bits of a fixed
length. Any code is defined by its encoding function. The encoding function defines
the set of codewords and the decoding function.

Definition 3.1 (Codes). A code is given by an injective function γ : [M ]→ Bn that
maps integers from a set [M ] to n-bit strings. We call γ the encoding function and its
image γ([M ]) the set of codewords. The inverse of γ on the set of codewords, denoted
by γ−1 : Bn → [M ], is called the decoding function. The decoding function is only
defined on the domain γ([M ]).

A subset of the domain can be mapped to a string of ternary bits by taking the
superposition over all codewords. We call this an extended codeword of the subset. In
this work, we always consider subsets of consecutive integers, which we call intervals
By definition (cf. Chapter 2) intervals count modulo M , hence, 0 is the successor of
M − 1. An overview of sets and mappings defined by a code is part of Figure 3.1.

Definition 3.2. For an interval I = ⟨i, i+ k⟩M we define

the extended codeword xI by xI := ∗ γ(I),
the range rxI of xI by rxI

:= I, and
the imprecision of xI by p := |I| − 1.

Depending on the encoding function such an extended codeword does not preserve
the information about the original set. It cannot be mapped back in every case.

Example 3.3 (Binary Code). Let γbinn : [2n] → Bn be the encoding function of the
standard binary encoding. Regard the interval ⟨3, 4⟩M = {3, 4}, where codewords
are given by γbinn (3) = 0011 and γbinn (4) = 0100. The extended codeword is the
superposition of all codewords, it is 0uuu. Resolution of the extended codeword yields
more codewords, such that res(0uuu) ̸= {γbinn (3), γbinn (4)}.

23



Chapter 3. Encoding

As stated before (cf. Observation 2.4) the superposition is not reversible in general
because it is not an injective function. For codes, this means that there may be
multiple intervals that map to the same extended codeword. Thus, mapping an
interval to ternary strings loses information about the original interval.

Example (Binary Code (continued)). The binary encoding γbinn maps intervals ⟨5, 6⟩M
and ⟨4, 7⟩M to the same ternary string. From the binary encoding, we obtain the
following codewords:

γbinn (4) = 0100 , γbinn (5) = 0101 ,

γbinn (6) = 0110 , γbinn (7) = 0111 .

Hence, extended codewords of intervals ⟨5, 6⟩M and ⟨4, 7⟩M are given by

⟨5, 6⟩M = ∗{0101, 0110} = 01uu and

⟨4, 7⟩M = ∗{0100, 0101, 0110, 0111} = 01uu .

Remark. Thus, the range (as given in Definition 3.2) is not well defined. For an
extended codeword, there may be multiple ranges that map to the codeword, as
shown in the above example. We use the range notation to denote the interval only
when the interval is clear from context.

3.2 Preserving and Recoverable Codes

We define two properties of codes that prevent loss of information when mapping to
extended codewords. Parameter k describes the maximum size of an interval that
can be mapped to an extended codeword without loss of information.

Preserving Codes. First, preservation ensures that the original interval is pre-
served, i.e., a resolution of an extended codeword will not add new codewords to the
original interval. The resolution may, however, add strings that are non-codewords.
A positive and a negative illustration are given in Figure 3.2.

Definition 3.4 (k-preserving Codes). A code γ on domain [M ] is k-preserving iff
for each interval I = ⟨i, i+ p⟩M , where p ≤ k, the resolution res(xI) does not contain
codewords which are not in γ(I). Formally,

γ([M ]) ∩ res(xI) = γ(I) .

Recoverable Codes. Second, the recoverability property makes sure that every
non-codeword in the resolution of an extended codeword can be mapped back to the
original interval. The property is illustrated in Figure 3.3 and defined in Definition 3.5.

24



3.2. Preserving and Recoverable Codes

Bn Tn

set of extended codewords
(of precision p ≤ k)

xI
γ(I)

set of codewords

res

γ([M ])

res(xI)

Bn Tn

set of codewords set of extended codewords
(of precision p ≤ k)

xI

res

γ(I)

γ([M ])

res(xI)

Figure 3.2: Illustration of a code that is not preserving (top) and a code that is
preserving (bottom). Hatched areas denote res(xI) and checkered areas denote γ(I).
For a code that is preserving, the resolution of extended codeword xI must not add
new codewords. It may add binary strings that are not codewords.

xI

P([2n])

{〈i, i+ p〉M |i ∈ [M ], p ≤ k}

I

Tn

set of extended codewords
(of precision p ≤ k)

∗γ(I)

γ̃−1(res(xI))

Figure 3.3: Illustration of the recoverability property.

25



Chapter 3. Encoding

Before the definition of k-recoverable codes, we need to define extensions to functions.
Let f : A → C and g : B \ A → C be two functions and let f̃ be the extension of f
from A to B by g. Then f̃ : B → C is given by

f̃(x) :=

{
f(x) , if x ∈ A

g(x) , if x ∈ B \A .

Definition 3.5 (k-recoverable Codes). Let x be an extended codeword of imprecision
px ≤ k. A code γ is k-recoverable iff there exists an extension of γ−1 from codewords
to bit strings, such that each resolution of x is mapped to the range of x. Denote the
extension of γ−1 : Bn → [M ] by γ̃−1 : Bn → [M ]. Formally, for I = ⟨i, i+ p⟩M and
p ≤ k,

γ̃−1(res(xI)) ⊆ I .

Observations on Preserving and Recoverable Codes. We observe for any
code γ and any extension γ̃−1 that I ⊆ γ̃−1(res(xI)). This leads us to the observation
that in any k-recoverable code the extended decoding function maps to the original
interval.

Observation 3.6. Consider I = ⟨i, i+ p⟩M and p ≤ k. If γ is k-recoverable, in fact

γ̃−1(res(xI)) = I .

Proof. As γ is k-recoverable we have that γ̃−1(res(xI)) ⊆ I. We show that also
I ⊆ γ̃−1(res(xI)). Consider an arbitrary i ∈ I. By definition of superposition and
resolution (Definition 2.3 and Definition 2.2) we know that γ(i) must be element of
res(xI). Hence, i is also an element of γ−1(res(xI)). As γ̃−1 is only an extension
to γ−1, i is also an element of γ̃−1(res(xI)). Thus, for each i ∈ I we have that
i ∈ γ̃−1(res(xI)).

Moreover, we note that preservation is a necessary condition for recoverability.

Lemma 3.7. Every code that is k-recoverable is also k-preserving.

Proof. We prove the contrapositive, i.e., no code is k-recoverable if it is not k-
preserving. Assume that a code γ is not k-preserving. By Definition 3.4 there is
an interval I such that there is some x ∈ γ([M ]) ∩ res(xI) that is not an element
of γ(I). By Definition 3.1 the decoding function satisfies γ−1(γ(I)) = I. Hence,
since x /∈ γ(I) it follows that γ−1(x) /∈ I. Thus, no extension to γ−1 can satisfy the
requirement γ̃−1(res(xI)) ⊆ I.

the inverse of the
redundancy is also known

as the rate of a code

Optimal Codes. In error-correcting codes, the efficiency of a code is measured by
its redundancy. The redundancy of a code is the ratio of the number of bits in use
compared to the minimum number necessary to encode the same information [49].

Definition 3.8. The redundancy of a code γ : [2m]→ Bℓ is the ratio ℓ/m ≥ 1.

26



3.2. Preserving and Recoverable Codes

A code that has redundancy 1 is a bijection. Each binary string is a codeword that
can be mapped to a natural number. From Definition 3.4 we can infer that no code
with redundancy 1 can be more than 1-preserving. Consider an arbitrary interval of
three elements, the corresponding extended codeword must have at least 2 unstable
bits. The resolution of the extended codeword thus has four elements, each of them
is a codeword as there are no redundant non-codewords. By Lemma 3.7 this also
applies to recoverability.

Corollary 3.9. Any code with (optimal) redundancy 1 is at most 1-recoverable.

A class of codes that is of special interest to us are Gray codes. the code presented by
Gray was introduced a
decade earlier by George
R. Stibitz [90]

They are named after
Frank Gray who presented the most prominent Gray code in [48]. A code is a Gray
code if two consecutive codewords differ in exactly one bit.

Definition 3.10 (Gray codes). A code γ : [M ] → Bn is a Gray code if for i ∈ [M ]
the codewords γ(i) and γ(i + 1 mod M) have Hamming distance 1. The Hamming
distance between two strings is the number of positions at which the bits are different.

Every Gray code is 1-preserving and 1-recoverable. In Section 3.3 we present two
Gray codes. The code γsn with suboptimal redundancy and the code γgn with optimal
redundancy 1.

Recoverability Requires Redundancy. Larger recoverability requires also more
redundancy. The main result we present in this chapter is a lower bound on the
redundancy required for recoverability. We show the statement for codes that are
Gray codes.

It is feasible to assume that recoverable codes with low redundancy are Gray codes.
Codes that flip more than one bit per step are likely to require more redundancy.
For example, consider a code that flips two bits on the step from γ(i) to γ(i + 1).
Then the extended codeword of ⟨i, i+ 1⟩M has two u’s and its resolution has size four.
Hence, for the code to be 1-preserving we use four words in the codomain, whereas a
Gray code uses two.

An n-bit code which is k-recoverable can encode at most 2n−k(k+ 1) values. The
redundancy of a k-recoverable code is bounded below by n/(n− k + log(k + 1)). We
first show that two codewords of distance ℓ < k have at least Hamming distance ℓ.

Lemma 3.11. For k, n ∈ N, let γ be an n-bit, k-preserving Gray code. Let i ∈ [M−k]
and ℓ ≤ k, then the two codewords γ(i) and γ(i+ ℓ) have at least Hamming distance
ℓ.

Proof. We prove the claim by induction on ℓ. The base case ℓ = 0 is trivial as
codewords γ(i) and γ(i+ ℓ) are identical and have Hamming distance 0.

Next, we show the induction step from ℓ − 1 to ℓ, where 0 < ℓ ≤ k. Intuitively,
the claim follows from the observation that when going from γ(i+ ℓ− 1) to γ(i+ ℓ),
a k-preserving code has to flip a bit that remains unchanged when going from γ(i) to
γ(i+ ℓ− 1). Formally, let I = ⟨i, i+ ℓ− 1⟩M be an interval containing all numbers

27



Chapter 3. Encoding

i to i+ ℓ− 1. The extended codeword xI is the superposition of all codewords γ(i)
to γ(i+ ℓ− 1). As γ is k-preserving, we have that γ([M ]) ∩ res(xI) = γ(I), i.e., the
codewords in res(xI) are the codewords γ(i) to γ(i+ ℓ− 1). In particular, codeword
γ(i+ ℓ) is not an element of res(xI).

Each bit that is flipped when going from γ(i) to γ(i + ℓ − 1) becomes u in the
extended codeword xI . We obtain the resolution res(xI) by replacing each u in xI
by 0 and 1. As codeword γ(i+ ℓ) is not an element of res(xI), there is at least one
stable bit that differs for xI and γ(i+ ℓ). Since the bit is stable in xI we obtain that,
for all j ∈ I, all codewords γ(j) agree on this bit. Hence, γ(i + ℓ − 1) and γ(i + ℓ)
differ in at least one bit on which γ(i) and γ(i+ ℓ− 1) agree.

It remains to show that that γ(i) and γ(i+ ℓ) differ in all bits that are different
for γ(i) and γ(i+ ℓ− 1). As γ is a Gray code γ(i+ ℓ− 1) and γ(i+ ℓ) differ in exactly
one bit, which is the bit that is stable in xI . Hence, going from γ(i) to γ(i+ ℓ) flips
one bit more than going from γ(i) to γ(i+ ℓ− 1). The induction hypothesis states
that γ(i) and γ(i + ℓ − 1) have Hamming distance at least ℓ − 1. By the induction
hypothesis, we obtain that γ(i) and γ(i+ ℓ) have at least Hamming distance ℓ.

With Lemma 3.11 at hand, we can show that a k-recoverable Gray code can encode
at most 2n−k(k + 1) + 1 codewords.

Theorem 3.12. For k, n ∈ N, the domain of any Gray code γ : [M ] → Bn has at
most size M ≤ 2n−k(k + 1), if γ is k-recoverable.

Proof. Consider a k-recoverable Gray code γ on domain [M ] for some M ∈ N. We
show that for a fixed M = 2n−k(k + 1) the codomain has at least size 2n. Consider a
family of intervals Iℓ of size k+1. For ℓ ∈ [2n−k] define Iℓ = ⟨ℓ(k + 1), ℓ(k + 1) + k⟩M .
The family of intervals Iℓ is a partition of [M ]. Since γ is k-recoverable, there is an
extension γ̃−1 such that γ̃−1(res(xIℓ)) ⊆ Iℓ, for all ℓ. As Iℓ ∩ Iℓ′ = ∅, for ℓ, ℓ′ ∈ [2n−k]
and ℓ ̸= ℓ′, we obtain that res(xIℓ) ∩ res(xIℓ′ ) = ∅. Hence, there are 2n−k many
distinct intervals that have extended codewords with non-overlapping resolutions.

We show that for each Iℓ the resolution res(xIℓ) has size at least 2
k. The resolution

res(xIℓ) contains codewords γ(i) and γ(i+k), which have at least Hamming distance k
(by Lemma 3.11). Thus, xI has at least k-many u’s. It follows that | res(xI)| ≥ 2k.
Hence, there are [2n−k] many distinct intervals Iℓ, with resolutions res(xIℓ) of size at
least 2k. Accordingly, there have to be at least 2n−k · 2k = 2n possible words in the
codomain. Thus, if M = 2n−k(k + 1) the codomain has at least size 2n.

Finally, fix codomain Bn, i.e., a codomain of size 2n. Assume for contradiction
a domain M > 2n−k(k + 1). We partition M into intervals of size k + 1. There
are more than 2n−k intervals with one interval possibly smaller than k + 1. By the
conclusion above we use 2n words in the codomain for the first 2n−k intervals. The
remaining intervals require further words, but all words in the codomain are allocated
already.

28



3.3. Example Codes

Theorem 3.12 shows that, for k-recoverability, an n-bit Gray code γ can encode at most
2n−k(k + 1) codewords. We conclude that any Gray code with domain [2n−k(k + 1)]
and codomain Bn is at most k-recoverable.

Corollary 3.13. For k, ℓ, n ∈ N, no code γ : [M ] → Bn with |M | > 2n−k(k + 1) is
k-recoverable.

A direct result of Corollary 3.13 is that no Gray code with M = 2n can be more than
1-recoverable. In the following section, we present two optimal redundancy codes,
one that is not 1-recoverable (standard binary code) and one that is 1-recoverable
(BRGC).

3.3 Example Codes

In this section, we present three common codes: standard binary code, unary ther-
mometer code, and BRGC. They differ in their redundancy, preservation, and recov-
erability properties. Each property is discussed for the respective code. While the
standard binary code serves as an example of a well-known code that is unsuitable
for hazard-free circuits, the BRGC is extensively used throughout the remainder of
this thesis. The unary thermometer code comes in two flavors that can be combined
into a new code, the snake-in-the-box code, which we also review.

3.3.1 Standard Binary Code

We denote the encoding function of standard binary code

the standard binary code
is also known as the
base-2 numeral systemby γbinn

Definition 3.14. For n ∈ N>0 and i ∈ [2n] we define the binary encoding function
γbinn : [2n]→ Bn by

γbinn (i) := γbinn−1(⌊i/2⌋)xn ,
where xn := (i mod 2).

The standard binary code has (optimal) redundancy 1, each number in [2n] can be
mapped to a binary string in Bn and vice versa. From Example 3.3 we observe that
the code is not 1-preserving.

Observation 3.15. The standard binary encoding is not k-preserving, for any k > 0.

Proof. As indicated in Example 3.3, the codewords of 2n−1 − 1 and 2n−1 differ in all
bits. For any n let k = 1 and I =

〈
2n−1 − 1, 2n−1

〉
M
. The extended codeword

xI = γbinn (2n−1 − 1) ∗ γbinn (2n−1) = u . . . u

consists of u’s only. Hence, the resolution of xI contains all codewords of length n,

γbinn ([2n − 1]) ∩ res(xI) = γbinn ([2n − 1]) ̸= γbinn ({2n−1 − 1, 2n−1}) .

From Lemma 3.7 we conclude that the standard binary encoding is not recoverable.

Corollary 3.16. The code γbinn is not k-recoverable, for any k > 0.

29



Chapter 3. Encoding

i γu4 (i) γu4(i)

0 0000 1111
1 1000 0111
2 1100 0011
3 1110 0001
4 1111 0000

Table 3.1: Unary thermometer codes γu4 and γu4 .

3.3.2 Unary Thermometer Codes

Next, we define the unary thermometer code in two different flavors indicated by γun
and γun. The code γun is obtained from γun by flipping all bits. Hence, both are equally
expressive.

Definition 3.17 (Unary Thermometer Codes). For n ∈ N and i ∈ [n+ 1] we define
the encoding function γun : [n+ 1]→ Bn for a unary thermometer code by

γun(i) := 1i0n−i .

We also define a unary thermometer code with flipped bits γun : [n+ 1]→ Bn by

γun(i) := γun(i) = 0i1n−i .

Both γun and γun for n = 4 are listed in Table 3.1. From the table, we observe that any
extended codeword of an interval without a wrap-around equals the superposition of
its start and end points.

Observation 3.18. Let n, p ∈ N and i ∈ [n + 1]. For any I = ⟨i, i+ p⟩M , where
i+ p ≤ n, it holds that

∗ γun(I) = γun(i) ∗ γun(i+ p) = 1iup0n−i−p , and

∗ γun(I) = γun(i) ∗ γun(i+ p) = 0iup1n−i−p .

The observation shows that, in this case, each extended codeword has i-many stable
bits in the front part and (n− i− p)-many stable bits in the rear part. In particular,
each resolution has the same front and rear parts as the extended codeword. It follows
that the resolution of an interval without a wrap-around does not add new codewords.

Observation 3.19. Let n, p ∈ N and i ∈ [n + 1]. For any I = ⟨i, i+ p⟩M , where
i+ p ≤ n, it holds that

γun([n+ 1]) ∩ res(∗ γun(I)) = γun(I) , and

γun([n+ 1]) ∩ res(∗ γun(I)) = γun(I) .

30



3.3. Example Codes

i γs4(i) i γs4(i)

0 0000 4 1111
1 1000 5 0111
2 1100 6 0011
3 1110 7 0001

Table 3.2: Snake-in-the-box code γs4.

Both codes γun and γun are n-preserving up to intervals that wrap around the maximum
value, i.e., up to the point where i + p > n. As our definition of preserving codes
also requires the wrap-around, codes γun and γun would only satisfy a weaker notion
of n-preserving.

We can overcome this issue by combining both codes by appending the codewords
of γun to the codewords of γun (cf. Table 3.2). The result is a so-called snake-in-the-box
code.

Definition 3.20. For n ∈ N and i ∈ [2n] we define the encoding function γsn : [2n]→
Bn for a snake-in-the-box code by

γsn(i) :=

{
γun(i) , if i ∈ [n]

γun(i− n) , otherwise. .

Snake-in-the-box codes were introduced by Kautz [56] motivated by the research on
error-correcting codes. The snake-in-the-box code overcomes the issue of the unary
thermometer code, which was not recoverable on intervals with a wrap-around.

Remark. The snake-in-the-box code is a Gray code (cf. Definition 3.10).

Observation 3.21. Snake-in-the-box code γsn is (n− 1)-preserving.

Proof. We first prove that γsn is (n− 1)-preserving on intervals that use only one of
both encodings. From Observation 3.19 we follow for interval I = ⟨i, i+ p⟩M , with
either i ≥ 0 and i+p ≤ n−1 or i ≥ n and i+p ≤ 2n−1, that γsn(I) = γsn([M ])∩res(xI).

We show the claim for the remaining intervals in a similar fashion. From Table 3.2
we observe for the interval I = ⟨i, i+ p⟩M , where i ≤ n− 1 and i+ p > n− 1, that

xI = ui+p−n1n−pun−i .

Accordingly, for the interval I = ⟨i, i+ p⟩M where n < i ≤ 2n− 1 and p ∈ [n], we get
that

xI = ui+p−n0n−pun−i .

Hence, in both cases, each codeword in the resolution of xI is a codeword in γsn(I),
and no codeword outside of γsn(I) is added.

31



Chapter 3. Encoding

The Snake-in-the-box code γsn is an example of a code that increases redundancy to be
preserving. Code γsn has redundancy n/(log n+ 1). According to Corollary 3.13 this
is far from optimal. Despite being (n− 1)-preserving, γsn it is not (n− 1)-recoverable.

Observation 3.22. Snake-in-the-box code γsn is not (n− 1)-recoverable.

Proof. Let γ̃−1 be an extension to the decoding function (γsn)
−1. We need to show

that there is no γ̃−1 that, for every interval, maps non-codewords to the original
interval.

Let I = ⟨0, n− 1⟩M and J = ⟨n+ 1, 2n⟩M such that xI = un−10 and xJ = 0un−1.
Note that I ∩ J = {0}. Now regard the word 01n−20, which is in both, the resolution
of xI and the resolution of xJ . Hence, any extension γ̃−1 has to map 01n−20 to a
number that is in both intervals. Thus,

γ̃−1(01n−20) = 0 .

However, the word 01n−20 is also in the resolution of extended codeword u1n−2u, i.e.,
the extended codeword of ⟨n− 1, n+ 1⟩M . As 0 is not an element of the interval, the
extension γ̃−1 does not correctly map the resolutions back to the original interval.
Moreover, this proves that there is no extension that can do so.

3.3.3 Gray Code

Gray codes have the property that two consecutive codewords have Hamming dis-
tance 1. That is, to obtain the successor of a codeword exactly one bit is flipped.
This is also true in the case of a wrap-around, i.e., when defining 0 as the successor of
M−1. An example of a Gray code is the snake-in-the-box code γsn. In this section, we
will discuss the optimal redundancy Binary Reflected Gray Code, which is arguably
the most famous Gray code.

Binary Reflected Gray Code. As the name suggests, the code is built from the
standard binary code with a reflection process. Intuitively, for an n bit code, we count
through all codewords of length n−1 with the first bit fixed to 0. Next, the first bit is
flipped to 1, while fixing the remaining n−1 bits. Afterwards, we reflect the counting
order. With the first bit fixed to 1, we count backward through all codewords of
length n − 1. For example, this can be seen in the first two columns of Table 3.3.
The code counts through bits three and four before flipping bit two and reflecting the
order. Formally, we define γgn, the BRGC of length n, by recursion.

Definition 3.23 (BRGC). For n ∈ N we recursively define the encoding function
γgn : [2n]→ Bn as follows. A 1-bit BRGC is given by γg1(0) := 0 and γg1(1) := 1. For
n > 1 and i ∈ [2n], the encoding function γgn is defined by

γgn(i) :=

{
0γgn−1(i) , if i ∈ [2n−1]

1γgn−1(2
n − i− 1) , if i ∈ [2n] \ [2n−1] .

32



3.3. Example Codes

i γg4(i) i γg4(i) i γg4(i) i γg4(i)

0 0000 4 0110 8 1100 12 1010
1 0001 5 0111 9 1101 13 1011
2 0011 6 0101 10 1111 14 1001
3 0010 7 0100 11 1110 15 1000

Table 3.3: Binary Reflected Gray Code γg4 .

For example, the code γg4 is listed in Table 3.3. The BRGC has (optimal) redundancy 1;
each number in [2n] can be mapped to a binary string in Bn and vice versa. The code
γgn is a Gray code (cf. Definition 3.10).

Lemma 3.24. For n ∈ N, given two numbers i ∈ [2n] and j = i + 1 mod 2n, the
codewords γgn(i) and γgn(j) have Hamming distance 1.

Proof. We show the claim by an inductive argument over n, the length of the code.
The base case n = 1 is simple, all possible codewords (i.e. 0 and 1) have Hamming
distance 1. For the induction step (n > 1) we make a case distinction on i, where in
the case i ∈ [2n] \ {2n−1 − 1, 2n − 1} the claim follows from the recursive definition of
γgn. In case i = 2n−1 − 1, we obtain that

γgn(i) = 0γgn−1(2
n−1 − 1) and

γgn(j) = 1γgn−1(2
n−1 − 1) .

Hence, the codewords differ in the first bit and the claim holds. In case i = 2n − 1,
we obtain that

γgn(i) = 1γgn−1(0) and

γgn(j) = 0γgn−1(0) .

Hence, the codewords differ in the first bit and the claim holds.

As BRGC is a Gray code it follows that BRGC is 1-preserving.

Observation 3.25. The Binary Reflected Gray Code γgn is 1-preserving.

Proof. Consider any interval I = ⟨i, i+ 1⟩M with i ∈ [M ]. By Lemma 3.24 we know
that γgn(i) and γgn(i+1) differ in exactly one bit. Hence, xI has exactly one u bit and
thus res(xI) = {γgn(i), γgn(i+ 1)}.

We make an observation on extended codewords xI that have exactly one u bit. If
(xI)m = u at position m, then the remaining n−m bits are the maximum codeword
of a (n−m)-bit code. Note that the maximum codeword of a (n−m)-bit code is

γgn−m(2n−m − 1) = 10n−m−1 .

The observation is important in the correctness proof of the sorting primitive in
Chapter 5.

33



Chapter 3. Encoding

Observation 3.26. For xI , where I = ⟨i, i+ 1⟩M , if there is a single index 1 ≤ m < n
such that (xI)m = u, then (xI)m+1,n = 10n−m−1.

Proof. List the codewords in order. By the recursive definition of the code, removing
the firstm−1 bits of the code leaves us with 2m−1 repetitions of a (n−m+1)-bit BRGC
code alternating between correct order and reflected order. Hence, we only need to
regard the case m = 1, where the first bit is unstable, the other cases follow from this.
Also by the recursive definition, the first bit toggles when the remaining (n− 1)-bit
code reaches its last codeword. The last codeword is γgn−1(2

n−1−1) = 10n−2. Thus, for
any interval I, where (xI)m = u for only one m, we get that (xI)m+1,n = 10n−m−1.

3.4 Follow-Up Questions

Hazard-Free Arithmetic. This chapter leans towards a formal understanding of
properties that are desirable for hazard-free circuits. While there are surely circuits
that compute the hazard-free extension of a binary increment, Example 3.3 shows
that the result of such a circuit is useless.

It is out of the scope of this thesis to evaluate and elaborate more on the properties
of encodings that are used in hazard-free circuits. A deeper understanding of such
properties is desirable for further study of a hazard-free arithmetic. Hazard-free
addition requires a code that is k-recoverable and 2k-preserving, assuming the same
encoding is used for both inputs and the output. If both addends have up to 2k
unstable bits in total the output has uncertainty up to 2k. Hence, the encoding
should be 2k-preserving. If each addend has at most k unstable bits, k-recoverability
suffices.

Hazard-free arithmetic can be of interest for the Lynch-Welch algorithm from
Section 6.3. The algorithm computes the the average of two numbers. In a practical
implementation, each input can become metastable. Hence, the algorithm requires
hazard-free addition and hazard-free division by 2.

Error Correcting Codes. We claim that further study of error-correcting codes
is required. As we point out several times in this chapter, the field of error-correcting
codes is closely related to the problems described here. Preservation and recoverability
properties are similar to error detection and error correction properties.

The field of error-correcting codes has seen extensive research. It is of interest to
formally relate both fields, as a relation shows whether innovative results in one field
apply to the other.

Conclusion. Finally, we state the take-home message for this chapter that became
a theme throughout this work:

Encoding matters!

34



4Hazard-Free Transducers

This chapter presents the results of our work published in ITCS 22 (cf. [17]). We
describe a general construction of hazard-free circuits from finite-state transducers.
The construction is based on a framework of Ladner and Fischer [65] that constructs
Boolean circuits from transducers. It is best known for its construction of fast adders.

Outline. After an introduction in Section 4.1 we discuss related work in Section 4.1.3.
With the help of a toy example, Section 4.2 builds intuition and presents the key ideas
needed to obtain the main result Theorem 4.20. That is, Section 4.2.1 explains why
the Ladner and Fischer framework fails, and Section 4.3.1 introduces the encoding used
to resolve the main shortcoming of their approach. Finally, we prove Theorem 4.20
in Section 4.3.3. Afterward, we discuss in detail how to extend the input encoding
(cf. Section 4.4) and how to bound parameter k (cf. Section 4.5). Last, we give an
outlook in Section 4.6.

4.1 Introduction and Related Work

4.1.1 Introduction

Ikenmeyer et al. proved unconditional lower bounds on the complexity of hazard-free
circuits implementing explicit functions [52]. More precisely, they show exponential
gaps between the size of several Boolean circuits and their hazard-free counterparts.
They show that hazard-free verification circuits for NP-hard problems cannot be of
polynomial size unless the circuit equivalent of P=NP holds. On the other hand, as
we prove in Chapter 5, there are efficient implementations of sorting networks that
avoid certain hazards. This shows that hazard-free implementations do not always
come at a high cost. That contrast leads to the following question:

Which classes of Boolean functions allow for an efficient
hazard-free implementation?

Ladner and Fischer [65] presented a general framework providing an efficient circuit
implementation of arbitrary (small) transducers, giving rise to the most efficient adder
circuits known to date. While the Ladner and Fischer framework fails to yield hazard-
free circuits, the result from [16] suggests the possibility of a general hazard-free
construction.

Transducers. A deterministic finite-state transducer is a finite Mealy and Moore
automata have the same
computational power

state machine that
outputs a symbol on each state transition. We phrase our results for Mealy ma-
chines [77], but our techniques are not specific to this type of transducer. A Mealy

35



Chapter 4. Hazard-Free Transducers

machine is defined by a finite set of states, a starting state, the input and output
alphabets, a state transition function, and an output function.

Definition 4.1 (Mealy Machine). A Mealy machine, denoted by T , is given by the
6-tuple T = (S, s0,Σ,Λ, t, o), where

S is the finite set of states,
s0 ∈ S is the starting state,
Σ is the finite input alphabet,
Λ is the finite output alphabet,
t : S × Σ→ S is the state transition function, and
o : S × Σ→ Λ is the output function.

Each Mealy machine induces a transcription function mapping a string of input
symbols to a string of output symbols of the same length.

Definition 4.2 (Transcription Function τ). Let T = (S, s0,Σ,Λ, t, o) be a Mealy
machine and n ∈ N. The transcription function τT,n : Σ

n → Λn is given in the
following way. Define for i ∈ {1, . . . , n} and x ∈ Σn the state si after i steps
inductively via si := t(si−1, xi). Then τT,n(x)i := o(si−1, xi).

Remark. Every Boolean function f : Bn → Bm can (essentially) be realized by a
deterministic finite-state transducer. A simple implementation could read the entire
input string x and output f(x) on reception of the last input symbol. This approach,
however, requires an exponential number of states |S| ∈ O(2n) to memorize the input.
Accordingly, it is of interest to consider small transducers. In particular, important
basic operations, like addition, max, and min, can be implemented by constant-size
transducers.

Parallel Prefix. In the course of presenting their framework, Ladner and Fischer
present also the parallel prefix circuit that makes the implementation possible. Es-
sentially, the parallel prefix circuit is a construction that computes the application of
a given subcircuit on all prefixes of an input word. An essential insight is that if the
function of the subcircuit is associative then the prefixes can be computed in parallel.
A parallel prefix circuit hence requires associativity of the given operator.

Definition 4.3 (Parallel Prefix Circuit). Given input x ∈ Σn and an implementation
of the associative operator ◦ : Σ× Σ⇒ Σ, a parallel prefix circuit computes for each
i ∈ {1, . . . , n}

πi := x1 ◦ . . . ◦ xi .

The construction of Ladner and Fischer and others are not discussed further in this
work. We assume that there is a construction with asymptotically optimal size O(n)
and depth O(log n), e.g., the construction of Ladner and Fischer. Parallel prefix
circuits are applied as a black box.

36



4.1. Introduction and Related Work

4.1.2 Contribution

In this chapter, we establish that constant-size transducers allow for an efficient
hazard-free circuit implementation. Denoting by ℓ and m the (constant) number of
bits encoding an input symbol and an output symbol, respectively. Denoting by n
the length of the input string, by |S| the number of states of the transducer, and by
k an upper bound on the number of unstable bits in the input, our main result is as
follows.

Theorem 4.20. For any integers k ∈ N, ℓ,m, n ∈ N>0 (with k ≤ n) and Mealy
machine T = (S, s0,Σ = Bℓ,Λ ⊆ Bm, t, o), there is a k-bit hazard-free circuit imple-

menting τT,n. For κ :=
∑min{|S|,2k}

i=0

(|S|
i

)
and λ := min{m, 2|S|·|Σ|} the circuit has

size O
(
(κ3 + (2ℓ/ℓ)κ2 + 2ℓκλ)n

)
and depth O (log κ log n+ ℓ) .

Remark. The proof of Theorem 4.20 shows that we can save a factor of κ in the
third term, provided that the preimage of 1 under o(·, σ)j (i.e., bit j of the output
function with the second input fixed to σ) has size at most 2k for each σ ∈ Σ and
j ∈ [m]. In this case, there is a k-bit hazard-free circuit implementing τT,n of
size O

(
(κ3 + 2ℓκ2 + 2ℓλ)n

)
.

The asymptotic complexity depends on k, i.e., the upper bound on the numbers of
u’s. We identify two scenarios that lead to different corollaries of Theorem 4.20. For
k ∈ N we consider the cases: 2k ≥ |S| and 2k < |S|, i.e., whether the largest possible
resolution (bounded by 2k) has more elements than the state space. In both cases let
λ := min{m, 2|S|·|Σ|}.

First Scenario. If 2k ≥ |S|, we apply the trivial bound of 2|S| for the sum over the
binomial coefficients κ. Note that in this case, trivially the preimage of 1 under o(·, σ)
has size at most 2k. Hence, as discussed above, the factor of κ in the third term of
the size bound can be removed. This gives us the following size and depth bounds
for a fully hazard-free implementation.

Corollary 4.4. For any integers ℓ, n ∈ N and Mealy machine T , with Σ = Bℓ and
2k < |S|, the transcription function τT,n can be implemented by a hazard-free circuit

of size O((23|S| + 22|S|+ℓ/ℓ+ 2ℓλ)n)

and depth O(|S| log n+ ℓ) .

We stress that this result stands out against the lower bound from [52], which proves
an exponential dependence of the circuit size on n, for any general construction
of hazard-free circuits. While the above theorem incurs exponential overheads in
terms of the size of the transducer, the dependence on n is asymptotically optimal.
Thus, for constant-size transducers, we obtain asymptotically optimal hazard-free

37



Chapter 4. Hazard-Free Transducers

implementations of their transcription functions, both for size and depth. More
generally, Theorem 4.20 shows that the task of implementing transcription functions
is fixed-parameter tractable with respect to max{ℓ, |S|}.

Second Scenario. If 2k < |S|, the Binomial Theorem [47] provides a stronger
bound for κ, the sum over the binomial coefficients. Note that the respective factor in
the third term of the size bound can still be removed if the output function satisfies
the above requirement, but this does not hold in general.

Corollary 4.5. Given integers k, ℓ, n ∈ N and Mealy machine T , with Σ = Bℓ and
2k < |S|, the transcription function τT,n can be implemented by a k-bit hazard-free
circuit

of size O((|S|3·2k + (2ℓ/ℓ)|S|2·2k + 2ℓ|S|2kλ)n)
and depth O(2k log(|S|) log n+ ℓ) .

Encoding Matters. The main insight underlying the proof of Theorem 4.20 is an
understanding of how the encoding of a piece of information (such as an input) affects
the ability of the circuit to keep track of this information. Due to the ambiguity
presented by u signals, naive encodings may lose information crucial for determining a
stable output, which cannot be recovered later. We tackle this problem by introducing
a universal encoding that explicitly stores for each A ⊆ S (of size at most 2k) whether
the state machine is currently in a state from A. This redundancy is sufficient to
completely eliminate k-bit hazards, yet it is affordable when |S| or k are small.

Remark. The main result holds also for Σ ⊆ Bℓ when choosing an (arbitrary) extension
for the transition function to domain S × Bℓ. However, the choice of how to extend
the transition function t matters for the behavior of the hazard-free state machine.
The decision on how to treat non-input symbols is important because it is possible
that an unstable input resolves to such a non-input symbol. If this happens, the
choice of where t maps such resolutions to affects the value the hazard-free extension
takes. A bad extension may result in unstable output without need, decreasing the
utility of the constructed circuit. The task of finding a useful extension is nontrivial
and depends on the application. A detailed discussion at hand of an example is given
in Section 4.4.

Note that in some sense the solution is only an incomplete or partial answer to the
posed research question. We clarify that every Boolean formula can be computed
by a transducer, hence the lower bound applies also to this general construction.
However, the presented work gives more insight into which functions have an efficient
hazard-free implementation.

Functions that can be implemented by a small transducer have an
efficient hazard-free implementation.

Transducer notation introduces various parameters which have different trade-offs
and which influence the size of the hazard-free implementation.

38



4.1. Introduction and Related Work

4.1.3 Related Work

We already describe related work on the complexity of hazard-free circuits in Sec-
tion 2.6. In this section, we discuss how our work relates to the work of Ladner and
Fischer and how it relates to the lower bound of Ikenmeyer.

Transducers. Our approach can be seen as an extension of the work of Ladner
and Fischer [65]. This celebrated result yields the only asymptotically optimal adder
constructions known to date, cf. [92]. Alongside the result for binary addition, the
authors point out the general applicability of their parallel prefix computation (PPC)
framework: for any transcription function, it allows constructing a circuit implement-
ing it. However, as we discuss in detail in Section 4.2, their approach cannot be
applied to our setting, as it does not take into account the uncertainty imposed by
unstable inputs.

Our approach might also remind the reader of the power set construction [86,
Thm. 1.39], which translates a non-deterministic finite-state automation into a deter-
ministic one operating on the power set of the state space. This analogy is correct to
the extent that we seek to maintain information on the set of states that are reachable
by resolutions of the input. However, Kleene logic has the fundamentally different
characteristic that the choice of encoding (e.g. of states) affects to what extent the
circuit can keep track of the encoded information. In a nutshell, we prove that it is
sufficient to maintain a bit vector indicating for each element A ⊆ S of the power set
whether, given the input, all states that could have been reached by the state machine
are a subset of A. This resolves an issue that has no connection to the original power
set construction.

Parallel Prefix Circuit. The parallel prefix circuit is an arrangement of subcircuits
implementing a function ◦Σ× Σ⇒ Σ. The circuit computes all prefixes x1 ◦ . . . ◦ xi
for i ∈ {1, . . . , n} and input x ∈ Σn (cf. Definition 4.3).

In [65] Ladner and Fischer present an implementation of the parallel prefix circuit
that is parametrized by k < log n. It achieves

depth: (log n+ k) · depth(◦), and
size: (2(1 + 1/2k)n− k − Flogn+5−k + 1) · size(◦) ,

where Fℓ is the ℓth Fibonacci number. I.e., parameter k offers to trade a smaller size
for a larger depth. Note that for k = 0 the construction has optimal depth log n.

There is a body of work presenting different constructions for parallel prefix circuits
starting from the probably best known constructions [9, 60, 87]. However, there is
not a clear state-of-the-art parallel prefix circuit as different constructions optimize
for different parameters, such as the maximum fan-out and the number of cross wires
(besides size and depth). In addition, we propose a modification of Ladner and Fischer
that offers a trade-off between size and maximum fan-out [16].

39



Chapter 4. Hazard-Free Transducers

In this work, we apply the parallel prefix circuit as a black box. We assume that
there is a construction with asymptotically optimal size O(n) and depth O(log n),
e.g., Ladner and Fischer with k = log n− 1.

Lower Bound. In Section 2.6 we state the result from Ikenmeyer et al. [52], i.e.,
that an exponential blow-up cannot be avoided for general hazard-free constructions.
The lower bound also applies to our contribution. However, it is not perfectly clear to
us how the lower bound exactly applies as it is not fixed how a transducer for a function
is constructed. A computationally hard function might have an exponential size state
space or input alphabet. Both lead to an exponential blow-up in our construction.
We further discuss this issue in Section 4.6.

4.2 Classic PPC and Hazards

In this section, we walk the reader through the main idea of the PPC framework by
Ladner and Fischer [65]. At the hand of a simple running example, we demonstrate
how a naive application of the PPC framework results in circuits that are not hazard-
free. We then use the running example to illustrate how to overcome this hurdle and
to obtain a hazard-free circuit by making use of the universal encoding.

Running Example. The running example we use throughout this section is an
extremely simple transducer: It simply shifts the input sequence by one bit, outputting
a 0 on reception of the first symbol; see Figure 4.1 for an illustration. It has two states
(referred to as 0 and 1), they are used to keep track of the most recently processed
input bit. Hence, the transition and output functions are obvious: the automaton
transitions to state s ∈ {0, 1} on reception of input s, and outputs s when leaving
state s. Thus, the transducer is formally specified by the 6-tuple

(S := {0, 1}, s0 := 0, Σ := {0, 1}, Λ := {0, 1}, t(s, i) = i, o(s, i) = s).

Clearly, this transducer is a toy example, and it is pointless to construct a circuit
implementing its transcription function. This is easily achieved by suitable rewiring
of the inputs instead. However, the shift transducer serves as a minimal example
for illustrating both the obstacle we need to overcome and the general solution we
provide for doing so.

4.2.1 The Classic PPC Framework

In their work, Ladner and Fischer observe that any transcription function τT,n on
inputs x ∈ Bn can be efficiently implemented as a circuit by following four steps. The
transition function can be restricted to an input symbol. For input symbol σ ∈ Σ
the function tσ : S → S denotes the transition function t restricted to σ; tσ := t(·, σ).
Given an encoding of tσ the four steps compute for each i ∈ {1, . . . , n}:

40



4.2. Classic PPC and Hazards

0 1

0/0

1/0

1/1

0/1

Figure 4.1: The shift transducer delays the input by one symbol. It serves as a
running example.

(Step 1) compute (the encoding of) the restricted transition function txi of ith input,

(Step 2) compute the composition πi := txi ◦ . . .◦ tx1 of restricted transition functions
for the prefix of i,

(Step 3) compute the ith state, i.e., evaluate si = πi(s0), and

(Step 4) compute the ith output o(si−1, xi) = τT,n(x)i.

Asymptotics. Steps 1, 3, and 4 can be performed independently and hence in
parallel for each i. This means that each of them can be performed by n parallel
copies of a circuit whose size (and depth) are independent of n. In contrast, Step 2,
the computation of all prefixes, inherently relies on information across all i’s. A circuit
computing Step 2 will never achieve size and depth independent of n. To achieve
a small depth without blowing up the circuit size, Ladner and Fischer exploit the
associativity of function composition.

For a constant-size Mealy machine, Steps 1, 3, and 4 can be performed by circuits
of size O(n) and depth O(1), and Step 2 can be done by a circuit of size O(n) and
depth O(log n). In their argument showing this, Ladner and Fischer encode the space
of functions S → S as Boolean |S| × |S| matrices. Functional composition (Step 2),
hence, becomes Boolean matrix multiplication, while evaluation of functions (Step 3)
becomes Boolean matrix-vector multiplication.

4.2.2 Running Example.

Applying this to our example, states 0 and 1 of our transducer are represented by the
column unit vector e(0) =

(
1
0

)
and e(1) =

(
0
1

)
, respectively. Representing tσ : S → S as

a Boolean matrix in the natural way, the column corresponding to state s is the unit
vector e(t(s,σ)). Assuming that we make the best effort and use a hazard-free circuit
for computing the encodings of tσ, the hazard-free extension determines what our
circuit will compute when receiving u as an input symbol. Denote byMtσ the matrix
computed by this hazard-free circuit for (the encoding of) the transition function

41



Chapter 4. Hazard-Free Transducers

i 0 1 2 3 4

input xi - 0 0 1 0
Step 1, function encoding Mtxi

- Mt0 Mt0 Mt1 Mt0

Step 2, function composition Mπi - Mt0 Mt0 Mt1 Mt0

Step 3, function evaluation si = πi(s0) e(0) e(0) e(0) e(1) e(0)

Step 4, output o(si−1, xi) - 0 0 0 1

stable input word 0010

i 0 1 2 3 4

input xi - 0 u 1 0
Step 1, function encoding Mtxi

- Mt0 Mtu Mt1 Mt0

Step 2, function composition Mπi - Mt0 Mtu Mtu Mtu

Step 3, function evaluation si = πi(s0) e(0) e(0)
(
u
u

) (
0
u

) (
0
u

)
Step 4, output o(si−1, xi) - 0 0 u u

unstable input word 0u10

Table 4.1: Application of the Ladner and Fischer approach to the example transducer
for stable input word 0010 (top) and unstable input word 0u10 (bottom). Gray area:
these values do not match the results from a hazard-free computation.

restricted to the input symbol σ. We thus obtain

Mt0 =

(
1 1
0 0

)
, Mt1 =

(
0 0
1 1

)
, Mtu =

(
1 1
0 0

)
∗
(
0 0
1 1

)
=

(
u u
u u

)
,

where the ∗ operator is applied component-wise: as each entry of the computed matrix
depends on whether the input symbol was 0 or 1, u must result in the all-u matrix.

Function composition corresponds to Boolean matrix multiplication, i.e., for re-
stricted functions tσ and tσ′ (σ, σ′ ∈ Σ),Mtσ◦tσ′ =Mtσ · Mtσ′ , where · denotes the
Boolean matrix multiplication operator. Similarly, function evaluation corresponds
to matrix-vector multiplication, meaning that the framework stipulates to compute
the encoding of πi asMtxi

· . . . ·Mtx1
and hence si asMtxi

· . . . ·Mtx1
· e(s0). Again,

we make the best effort, i.e., assume that hazard-free circuits are used. Therefore,
the circuit will computeMtxi−1

·u . . . ·uMtx1
·u e(s0).

Finally, the ith output bit is computed according to the output function by
mapping e(0) to output 0 and e(1) to output 1. Note that the redundant representation
allows for some freedom: we can choose for

(
0
0

)
and

(
1
1

)
whether to map them to 0

or 1, respectively. As these state vectors cannot occur anyway, this choice has no
impact on stable inputs. It might, however, affect the behavior of a (hazard-free)
circuit confronted with unstable inputs.

42



4.2. Classic PPC and Hazards

Example Runs. Now consider Table 4.1(a), which breaks down the computation
for a stable input string 0010. Any hazard-free circuit should output 0001 in this
case. In contrast, Table 4.1(b) breaks down the computation for an input containing
a single unstable bit, 0u10. A hazard-free circuit should output 00u1 here. However,
multiplication of any function encoding with the all-u matrix results again in the all-u
matrix, such that any further step of function composition will returnMtu . Hence, for
the second input, the hazard-free extension of the established approach will compute
u as the last symbol.

The Problem. To identify the key issue, examine the sequence of matrices deter-
mined from the input symbols, which represent the transition functions restricted to
the respective input bit. Mt0 will map any vector corresponding to a stable state,
i.e., each unit vector, to e(0). This reflects the fact that a 0 is guaranteed to result
in state 0. Accordingly, multiplying Mt0 with any matrix representing the transi-
tion function restricted to a stable input symbol will result inMt0 : no matter what
happened to the state machine before, the state after receiving input symbol 0 is 0
(represented by e(0)).

On the other hand, Mtu is the “correct” representation for input symbol u: re-
gardless of the previous state, the resolutions 0 and 1 of input symbol u reach state 0
or 1 respectively, and

(
1
0

)
∗
(
0
1

)
=
(
u
u

)
. Unfortunately, (the hazard-free extension of)

Boolean matrix multiplication of any matrix with the all-u matrix Mtu can never
yield a matrix that is composed of column unit vectors. The circuit computes

Mt1 ·uMtu ·uMt0 ·u e(s0) =
(
0 0
1 1

)
·u
(
u u
u u

)
·u
(
1 1
0 0

)
·u
(
1
0

)
=

(
0 0
u u

)
·u
(
1
0

)
=

(
0
u

)
as the (encoding of) state s3 in Step 3. Thus, in Step 4 the circuit at its best effort
can only output

ou

((
0

u

)
, 0

)
= o

((
0

0

)
, 0

)
∗ o
((

0

1

)
, 0

)
= o

((
0

0

)
, 0

)
∗ 1 ,

which is 1 if o
((

0
0

)
, 0
)
= 1 and u if o

((
0
0

)
, 0
)
= 0.

This might give the false hope of escaping the problem by leveraging our afore-
mentioned freedom to choose o

((
0
0

)
, 0
)
by setting it to 1, but this is a red herring.

If o
((

0
0

)
, 0
)
= 1, then the input string 0u00 forces the circuit to incorrectly output

ou
((

u
0

)
, 0
)
= o

((
0
0

)
, 0
)
∗ 0 = u as the final bit.

43



Chapter 4. Hazard-Free Transducers

Intuitively, the main takeaway from this example is that encoding the transition
function as an |S| × |S| matrix is insufficient to keep track of the set of reachable
states. The crucial problem is that uncertainty about the transducer’s state can be
removed (or reduced) by later input symbols. In our example, we have a very simple
case: any stable input symbol fully determines the attained state, regardless of the
previous state.

4.3 Hazard-Free PPC

In this section, we start with an example to give an intuition to the new encoding
of transition functions. We formally define the universal encoding in Section 4.3.2
and we outline the proof of the main Theorem in Section 4.3.3. Afterwards, we prove
correct the main Theorem. We exclude two important discussions from the main
proof for better readability. We assign them to external sections that are appended
to the proof section. Section 4.4 discusses the importance of the input encoding and
Section 4.5 presents the effects of bounding k.

In our approach, we keep track of a strict subset of states A ⊂ S the state machine
could have reached when facing some inputs with some uncertainty, such that we
can infer the set of states B ⊂ S (ideally a singleton, if the uncertainty has been
completely masked) that can be reached by the current state transition.

4.3.1 Running Example

Before formalizing our encoding, we provide some intuition, by using, again, our toy
example, the shift transducer. As we kept the example tiny, the number of subsets
of the state space, i.e., the power set of S, is small: the four possible subsets are ∅,
{0}, {1} and {0, 1}. Already a single u input leads to the largest possible uncertainty
about the state of the transducer, hence we choose k = 1 throughout the example.

New Encoding. To avoid the pitfall discussed in Section 4.2.1, we now choose
a highly redundant matrix representation. Fix an input symbol σ ∈ {0, 1}. The
corresponding 2|S| × 2|S| Boolean matrix encodes for each pair of sets A,B ⊆ S
whether for each state in A receiving σ as the next input symbol will result in a state
from B. Again, assuming that a hazard-free circuit is used to compute the matrix
representation, this choice fully determines the matrixMtu =Mt0 ∗Mt1 resulting
from input symbol u. Labeling the rows by subsets B and columns by the subsets A,
the resulting matricesMt0 ,Mt1 , andMtu are

Mt0 =

∅ {0} {1} {0, 1}


∅ 1 0 0 0
{0} 1 1 1 1
{1} 1 0 0 0
{0, 1} 1 1 1 1

,

44



4.3. Hazard-Free PPC

Mt1 =

∅ {0} {1} {0, 1}


∅ 1 0 0 0
{0} 1 0 0 0
{1} 1 1 1 1
{0, 1} 1 1 1 1

,

Mtu =

∅ {0} {1} {0, 1}


∅ 1 0 0 0
{0} 1 u u u
{1} 1 u u u
{0, 1} 1 1 1 1

,

respectively. Consider, for example, input symbol 0 and the corresponding matrix
Mt0 . Each set of states {0}, {1} and {0, 1} will transition to state 0. As 0 is a subset
of {0} and {0, 1} the respective column vectors of the matrix are

(
0 1 0 1

)⊺
.

Remark. Each matrix maintains the trivialities that the empty set will always be
mapped to a subset of any set (leftmost column), no non-empty set is mapped to a
subset of the empty set (top row), and any set will be mapped to a subset of S = {0, 1}
(bottom row). Note also that the submatrices induced by the rows and columns of
singleton sets equal those we got in Section 4.2.1. Since we opted for a minimal
example with only two states, none of the additional entries depend on the specific
transition function. Note that this changes for |S| > 2. Crucial to us is the point that
the encoding now reflects that even when an input symbol is u, it remains certain
that any resolution of the input must end up in some state. This is reflected in the
bottom row ofMtu .

Example Run. Applying the framework of Section 4.2.1 with the new encoding to
the input string 0u10, this time Step 2 yields for π3:

Mt1 ·uMtu ·uMt0 =


1 0 0 0
1 0 0 0
1 1 1 1
1 1 1 1

 ·u

1 0 0 0
1 u u u
1 u u u
1 1 1 1

 ·u

1 0 0 0
1 1 1 1
1 0 0 0
1 1 1 1



=


1 0 0 0
1 0 0 0
1 1 1 1
1 1 1 1

 ·u

1 0 0 0
1 u u u
1 u u u
1 1 1 1



=


1 0 0 0
1 0 0 0
1 1 1 1
1 1 1 1


=Mt1 .

45



Chapter 4. Hazard-Free Transducers

As we can see, multiplying withMt1 from the left now correctly recoversMt1 , i.e.,
regardless of previous possibly unstable input symbols, the computed matrix reflects
that reading input symbol 1 results in state 1.

Remark. The above behavior is not a corner case due to the small size of our example,
a larger example is given in Section 4.5.

A fundamental problem in hazard-free circuits is that the resolution of the superposi-
tion may add undesired values (Observation 2.4). Recall that for a Boolean function
f : Bn → Bm, we obtain fu(x) by mapping each y ∈ res(x) using f and then taking
the ∗ operation over the resulting set. The latter might, depending on x and the
encoding, lose information, as res(fu(x)) might be a strict superset of f(res(x)). This
becomes problematic when we subsequently apply some function, e.g., g : Bm → B,
that is constant on f(res(x)), but not on res(fu(x)) for some x ∈ Tn; we then get that

u = gu(fu(x)) = ∗(g(res(fu(x)))) ̸= ∗(g(f(res(x))) = (g ◦ f)u(x) ∈ B .

4.3.2 Universal Encoding

The key idea underlying our solution to this problem is to maintain the information
that f maps res(x) to f(res(x)). As illustrated by the example, the encoding stores
for each A ⊆ Bn and B ⊆ Bm whether f(A) ⊆ B. When composing functions, we
then can retrieve the information that g ◦ f is constant on res(x).

The size of the encoding can be reduced if we only regard k-bit hazards. If the
number of u’s in the input x can be bounded by an integer k, then there is also
an upper bound on |f(res(x))|. As each u has two stable resolutions, we can readily
bound |f(res(x))| ≤ | res(x)| ≤ 2k. Hence, the encoding can be reduced to sets A ⊆ Bn

and B ⊆ Bm, where |A| ≤ 2k and |B| ≤ 2k. This leads to the following encoding,
which is universal in the sense that it gives rise to k-bit hazard-free implementations
of arbitrary transducers.

Definition 4.6 (Universal Function Encoding). Denote by Pt(A) the set of all subsets
of A with cardinality smaller equal to t ∈ {0, . . . , |A|}:

Pt(A) := {A′ ⊆ A | |A′| ≤ t} .

Given a function f : S → T and k ∈ N, define

∀A ∈ P2k(S), B ∈ P2k(T ) : (Mf )BA
:=

{
1 if f(A) ⊆ B

0 else.

The Boolean matrixMf has dimension

|P2k(T )| × |P2k(S)| =
min{|T |,2k}∑

i=0

(
|T |
i

)
×

min{|S|,2k}∑
i=0

(
|S|
i

)
.

46



4.3. Hazard-Free PPC

For s ∈ S and A ∈ P2k(S), define the state vector e(s) via e
(s)
A := 1 if s ∈ A and

e
(s)
A := 0 otherwise. Hence, for all B ∈ P2k(T ) we have that

(
Mf · e(s)

)
B

= 1 if

f(s) ∈ B and
(
Mf · e(s)

)
B
= 0 otherwise.

Remark. We are mostly interested in the case where T = S, since for the restricted
transition functions computed in Step 1 we only need to represent functions from S
to S. However, we prove the more general statement.

4.3.3 Proof Outline

Our goal in this subsection is to show Theorem 4.20. To this end, we first establish
that the above encoding indeed keeps track of all required information to remove
uncertainty in case the input allows it. We show that the above matrix representation
is a suitable encoding, i.e., we show that the representation is capable of encoding
the transition function without dropping information, here the transition function is
restricted to a single input symbol.

Ladner and Fischer. Recall that the classic PPC framework computes states si
by (Step 1) translating input symbol xi into the matrix representation of txi , (Step 2)
determining by matrix multiplication the transition function πi resulting from a
sequence of input symbols, and (Step 3) evaluating the transition function πi on
e(s0) via matrix-vector multiplication. Given state si the output at position i can
be determined by application of oxi (Step 4). In the PPC framework we replace the
original matrix representation with the new universal function encoding. We show
that the universal encoding overcomes the issue of information loss during function
composition.

If function composition does not lose information, then repeated application of
function composition gives hazard-free transition functions πi, which will be formalized
in Corollary 4.13.

Key Stepping Stone. To show that for the universal encoding the strategy also
succeeds in the face of unstable inputs, we need to prove that composing functions
and translating the composed function into its matrix representation is equivalent to
first translating each function to its matrix representation and then multiplying these
matrices. This is captured by the following theorem, which is our key stepping stone
towards Theorem 4.20.

Theorem 4.7. Let k ∈ N, fj : S → T for all j ∈ J , gi : T → U for all i ∈ I,
A ∈ P2k(S), and C ∈ P2k(U). If |J | · |A| ≤ 2k, then((

∗
i∈I
Mgi

)
·u
(
∗
j∈J
Mfj

))
CA

=

(
∗

(i,j)∈I×J
Mgi◦fj

)
CA

.

The condition |J | · |A| ≤ 2k may seem non-intuitive at first. The product |J | · |A|
corresponds to the number of resolutions of the input that has been processed so far.

47



Chapter 4. Hazard-Free Transducers

The product is bounded by 2k, i.e., the number of resolutions of k many u’s. In the
application of Theorem 4.7, set J corresponds to the resolutions of respective parts
of the input. Set A corresponds to the current state of the transducer, and its size
depends on the uncertainty of previous transitions. More intuition is provided in the
example in Section 4.5.

Before we prove the key stepping stone we discuss tools that are used in the
proof of the main result and the key stepping stone. First, we define hazard-free
multiplexers which are used in Step 4 of the PPC framework. Second, we show that
there is an efficient implementation of hazard-free matrix multiplication. Third, we
introduce monotone resolutions, a technique used in the proofs. Last, we state a
recent result on the complexity of hazard-free circuits for general functions, which is
applied in the proof of the main theorem.

4.3.4 Hazard-free Matrix Multiplication

For Theorem 4.7 to be of use, we need a circuit implementing ·u, i.e., hazard-free
matrix multiplication. The standard Boolean matrix multiplication algorithm is
known to be appropriate.

Corollary 4.8 (of [52, Lemma 4.2]). There is a circuit of size (2β − 1)αγ and depth
⌈log β⌉+ 1 that computes A ·u B for matrices A ∈ Tα×β and B ∈ Tβ×γ.

Proof. The standard algorithm for Boolean matrix multiplication is monotone, i.e.,
does not use negations, and requires for each of the αγ entries of A ·u B a binary tree
of β and gates (the leaves) and β− 1 or gates (internal nodes); monotone circuits are
hazard-free.

We observe that hazard-free Boolean matrix multiplication is associative.

Observation 4.9 (·u is associative). For all A ∈ Tα×β, B ∈ Tβ×γ, and C ∈ Tγ×δ,
we have that (A ·u B) ·u C = A ·u (B ·u C).

Proof. As(T, or, and) is only a
(commutative) semiring,
as its addition, i.e., or,

has no inverses.

or and and are associative also on T, this follows by the same straightfor-
ward calculation as for matrices over arbitrary (semi)rings.

To prove Theorem 4.7, we first need to establish that matrix multiplication indeed is
equivalent to function composition for stable inputs.

Lemma 4.10. Let f and g be functions f : S → T and g : T → U . For all A ∈ P2k(S)
and C ∈ P2k(U), it holds that (Mg · Mf )CA = (Mg◦f )CA.

Proof. Suppose that (g ◦ f)(A) = g(f(A)) ⊆ C, such that the matrixMg◦f has entry
1 at position CA. If the set A is element of P2k(S) then applying the function f to
set A results in a set contained in P2k(T ), i.e., f(A) ∈ P2k(T ). By Definition 4.6 we

48



4.3. Hazard-Free PPC

obtain for matrixMf at position f(A)A that (Mf )f(A)A = 1. Additionally, we have

that (Mg)Cf(A) = 1, because g(f(A)) ⊆ C. Thus,

((Mg) · (Mf ))CA =
∑

B∈P
2k

(T )

(Mg)CB (Mf )BA

≥ (Mg)Cf(A) (Mf )f(A)A

= 1 · 1
= 1 .

Now consider the case that (Mg◦f )CA = 0, i.e., there exists a ∈ A so that g(f(a)) ̸⊆ C.
Accordingly,

∀B ∈ P2k(T ) : (Mf )BA = 1⇒ (Mg)CB = 0 ,

because

(Mf )BA = 1⇔ f(A) ⊆ B ⇒ g(B) ̸⊆ C ⇔ (Mg)CB = 0 .

Thus, for all B ∈ P2k(T ), we have that (Mf )BA (Mg)CB = 0, leading to

(Mg · Mf )CA =
∑
B⊆T

(Mg)CB (Mf )BA = 0 .

Monotone Resolution. To understand how multiplying matrices plays out when
the multiplicands are not stable, we exploit the monotonicity of matrix multiplication.
Because flipping matrix entries of multiplicands from 0 to 1 can only flip entries from
0 to 1 in the product, we can restrict our attention to only two resolutions of each
matrix: we simultaneously replace all u entries by either 0 or 1, respectively.

Definition 4.11. For A ∈ Tα×β and b ∈ B, define A(b) ∈ Bα×β via

∀(i, j) ∈ {1, . . . , α} × {1, . . . , β} : A(b)
ij :=

{
b if Aij = u

Aij else .

With this definition, the above intuition is formalized by the following lemma.

Lemma 4.12. For all G ∈ Tα×β, F ∈ Tβ×γ and all i ∈ {1, . . . , γ}, j ∈ {1, . . . , α},
we have

(G ·u F )ij = u⇔
(
G(0) · F (0)

)
ij
= 0 ∧

(
G(1) · F (1)

)
ij
= 1 .

Proof. Fix i ∈ {1, . . . , γ} and j ∈ {1, . . . , α}. If (G ·u F )ij = b ∈ B, i.e., for all G′, F ′

such that G′ ∈ res(G) and F ′ ∈ res(F ), (G′ · F ′)ij = b, then since G(0), G(1) ∈ res(G)

and F (0), F (1) ∈ res(F ) it holds that that(
G(0) · F (0)

)
ij
=
(
G(1) · F (1)

)
ij
= b .

49



Chapter 4. Hazard-Free Transducers

Now consider the case that (G ·u F )ij = u. Thus, there are G′, G′′ ∈ res(G) and
F ′, F ′′ ∈ res(F ) satisfying that (G′ · F ′)ij = 0 and (G′′ · F ′′)ij = 1, respectively. It
follows that(

G(0) · F (0)
)
ij
=

β∑
k=1

G
(0)
ik F

(0)
kj ≤

β∑
k=1

G′
ikF

′
kj =

(
G′ · F ′)

ij
= 0

and, analogously, (
G(1) · F (1)

)
ij
≥
(
G′′ · F ′′)

ij
= 1 .

4.3.5 Proving the Key Stepping Stone

Using Lemma 4.12, proving Theorem 4.7 is reduced to showing correct behavior for

matrices
(∗j∈JMfj

)(0)
and

(∗j∈JMfj

)(1)
instead of all resolutions of ∗j∈JMfj and

∗i∈IMgi .

Proof of Theorem 4.7. Define ⪯ as the partial order b ≺ u for b ∈ B and observe that

∗X ⪯ ∗Y for X ⊆ Y ⊆ B. By Observation 2.4, we obtain forMgi (and accordingly
Mfj ) that

{Mgi |i ∈ I} ⊆ res

(
∗
i∈I
Mgi

)
.

Thus, by the definition of the hazard-free extension (cf. Definition 2.7) and the
resolution (Definition 2.2),((

∗
i∈I
Mgi

)
·u
(
∗
j∈J
Mfj

))
CA

= ∗
(
res

(
∗
i∈I
Mgi

)
· res

(
∗
j∈J
Mfj

))
CA

⪰ ∗ ({Mgi |i ∈ I} · {Mfj |j ∈ J}
)
CA

=

(
∗

(i,j)∈I×J
Mgi · Mfj

)
CA

=

(
∗

(i,j)∈I×J
Mgi◦fj

)
CA

,

where the last equality follows from Lemma 4.10. The claimed equality follows if the
l.h.s. equals b ∈ {0, 1}.

It remains to show the claimed equality assuming that the l.h.s. equals u. By
application of Lemma 4.12 with G = ∗i∈IMgi and F = ∗j∈JMfj , we obtain that((

G(0) · F (0)
)
CA

= 0
)
∧
((

G(1) · F (1)
)
CA

= 1
)
.

By the definition of matrix multiplication, this is equivalent to

∀B ∈ P2k(T ) : G
(0)
CB = 0 ∨ F

(0)
BA = 0 , (4.1)

∃B ∈ P2k(T ) : G
(1)
CB = 1 ∧ F

(1)
BA = 1 . (4.2)

50



4.3. Hazard-Free PPC

We observe from Definition 4.11 that for b ∈ B we have that(
∗
i∈I
Mgi

)(b)

CB

= b⇔ ∃i ∈ I : (Mgi)CB = b ;

an analogous statement holds forMfj . We can plug this observation into equations
(4.1) and (4.2), then we get that

∀B ∈ P2k(T ) ∃(i, j) ∈ I × J : (Mgi)CB = 0 ∨
(
Mfj

)
BA

= 0 (4.3)

∃B ∈ P2k(T ) ∃(i, j) ∈ I × J : (Mgi)CB = 1 ∧
(
Mfj

)
BA

= 1 . (4.4)

Let B0 =
⋃

j∈J fj(A) be the subset of T , to which states in A are mapped to by any fj .

As |fj(A)| ≤ |A|, cardinality |B0| is at most |J | · |A|. By assumption |J | · |A| ≤ 2k, we
obtain B0 ∈ P2k(T ). Since fj(A) ⊆ B0 by construction, it holds that

(
Mfj

)
B0A

= 1

for all j ∈ J . Equation Equation (4.3) thus entails that

∃i ∈ I : (Mgi)CB0
= 0⇔ ∃i ∈ I : gi(B0) ̸⊆ C .

Hence, there are i0 ∈ I and x ∈ B0 such that gi0(x) /∈ C. By construction, x ∈ fj0(A)
for some j0 ∈ J , yielding that (gi0 ◦ fj0)(A) = gi0(fj0(A)) ̸⊆ C. We conclude that(
Mgi0◦fj0

)
CA

= 0.

Now consider equation Equation (4.4), which says that there are indices i1 ∈ I
and j1 ∈ J such that gi1(B1) ⊆ C and fj1(A) ⊆ B1. This immediately yields that

(gi1 ◦ fj1)(A) ⊆ C and thus
(
Mgi1◦fj1

)
CA

= 1. The desired equality now follows,

because (
∗

(i,j)∈I×J
Mgi◦fj

)
CA

⪰
(
∗
{
Mgi0◦fj0 ,Mgi1◦fj1

})
CA

= ∗
{(
Mgi0◦fj0

)
CA

,
(
Mgi1◦fj1

)
CA

}
= ∗{0, 1} = u

and b ⪰ u only holds if b = u.

4.3.6 Proving the Main Result

With Theorem 4.7 at our disposal, we are ready to prove our main result, Theorem 4.20.
Following Step 1 and Step 2 of the parallel prefix framework given in Section 4.2.1,
we need to compute πi = txi ◦ . . . ◦ tx1 for all prefixes xi . . . x1 of the input string.
This computation can be phrased in terms of matrix multiplications, which is shown
by the following corollary. It readily follows by inductive application of Theorem 4.7.

Corollary 4.13. Suppose that for i ∈ [n], we are given mappings Ei : Bℓ → Fi from
input symbols Bℓ to function spaces Fi. Moreover, for all i ∈ [n− 1] the codomain of
functions from Fi equals the domain of functions from Fi+1. Let E denote a function,

51



Chapter 4. Hazard-Free Transducers

with E : Bnℓ → (F0 → Fn−1), that maps a binary string x ∈ Bnℓ to the composition
of the corresponding functions, E(x) := ◦n−1

i=0 Ei(xi). Then, for all x ∈ Tnℓ,(
ME(·)

)
u
(x) =

(
MEn−1(·)

)
u
(xn−1) ·u

(
MEn−2(·)

)
u
(xn−2) ·u . . . ·u

(
ME0(·)

)
u
(x0) .

Following this insight we observe that the evaluation of the functions corresponds to
hazard-free matrix-vector multiplication.

Corollary 4.14. For j ∈ J , let fj : S → T . Assume that A ∈ P2k(T ), S′ ∈ P2k(S),
and |J | · |S′| ≤ k. Then((

∗
j∈J
Mfj

)
·u
(
∗

s∈S′
e(s)
))

A

=

(
∗

(j,s)∈J×S′
e(fj(s))

)
A

.

Proof. Define gs : {•} → S by gs(•) := s for s ∈ S, such that (Mgs){•}A =
(
e(s)
)
A
.

By Theorem 4.7, we thus get that((
∗
j∈J
Mfj

)
·u
(
∗

s∈S′
e(s)
))

A

=

((
∗
j∈J
Mfj

)
·u
(
∗

s∈S′
Mgs

))
{•}A

=

(
∗

(j,s)∈J×S′
Mgs◦fj

)
{•}A

=

(
∗

(j,s)∈J×S′
e(fj(s))

)
A

.

Prefix Multiplication. Corollary 4.13 uses the hazard-free matrix product of all
input prefixes. This can be efficiently implemented, similarly to the parallel prefix
computation approach of Ladner and Fischer.

Corollary 4.15 (of [65, Section 2]). For input matrices An−1, . . . ,A0 of size α× α,
there is a circuit computing the hazard-free Boolean matrix multiplication of all prefixes;
Ai ·u . . . ·u A0, for each i ∈ [n]. The circuit

has size O
(
α3n

)
and depth O (logα log n) .

Proof. By Observation 4.9, ·u is associative. For an associative operator, Ladner and
Fischer [65] present a family of circuits computing the application of all prefixes of
the input. Let c be the size and d the depth of a circuit implementing the operator.
The family has asymptotically optimal size O(cn) and depth O(d log n). Corollary 4.8
offers an implementation of hazard-free Boolean α× α matrix multiplication of size
c = α3 and depth d = logα.

52



4.3. Hazard-Free PPC

Output Step. Before putting the above pieces together to derive our main results,
we need to address how the final output is computed, i.e., Step 4. Here, we can
exploit that (i) the output does not need to be represented in the universal encoding,
and (ii) the universal encoding used in the previous computations holds additional
information that simplifies determining the output in a hazard-free way. We leverage
these points in a case analysis to minimize the cost of the output stage.

The input to Step 4 is the vector encoding state si−1 and input xi for each
i ∈ {1 . . . n}; it computes output o(si−1, xi). We restrict the output function to an
input symbol, as we did for the transition function, i.e., oσ : S → Λ for σ ∈ Σ is
defined by oσ(s) := o(s, σ). In what follows we describe the computation of output
bit oσ(s)j (= o(s, σ)j), for j ∈ [m]. We remark that the preimage of 1 under oσ(s)j
is a set of states. Recall that by Definition 4.6, the state vector e(si−1) encodes not
only state si−1, but indicates for each subset of states S′ ⊆ S (with cardinality less or
equal to 2k) whether si−1 ∈ S′. Thus, we can simply check whether si−1 lies in the
set that of states which oσ(si−1)j maps to 1 (provided its cardinality is at most 2k).

Definition 4.16. For an input symbol σ ∈ Σ and j ∈ [m], we define

Aσ,j := {s ∈ S|o(s, σ)j = 1} .

Note that if 2k < |S|, we reduce the size of the universal encoding by encoding only
sets of size less or equal to 2k. Hence, we might not have computed a bit indicating
whether si−1 ∈ Aσ,j as an entry of the vector e(si−1). However, essentially all output
bits are conveniently available if maxσ∈Σ,j∈[m] |Aσ,j | ≤ 2k, which is captured by the
following lemma.

Lemma 4.17. For k ∈ N and S′ ⊆ S, Σ′ ⊆ Σ, if maxσ∈Σ,j∈[m] |Aσ,j | ≤ 2k we have
that

∗
s∈S′,σ∈Σ′

o(s, σ)j = ∗
s∈S′,σ∈Σ′

e
(s)
Aσ,j

. (4.5)

Proof. First, as 2k ≥ maxσ∈Σ′,j∈[m] |Aσ,j |, by Definition 4.6 every Aσ,j is encoded in

the vector e(s), i.e., every entry e
(s)
Aσ,j

exists.

Next, we distinguish three cases for every evaluation of the l.h.s. of Equation (4.5):
1, 0, and u. In the first case, ∗s∈S′,σ∈Σ o(s, σ)j = 1, we apply Definition 4.16 and
Definition 4.6 to show the claim, as follows.

∗
s∈S′,σ∈Σ′

o(s, σ)j = 1 ⇔ ∀s ∈ S′, σ ∈ Σ′ : o(s, σ)j = 1

⇔ ∀s ∈ S′, σ ∈ Σ′ : s ∈ Aσ,j by Def. 4.16

⇔ ∀s ∈ S′, σ ∈ Σ′ : e
(s)
Aσ,j

= 1 by Def. 4.6

⇔ ∗
s∈S′,σ∈Σ′

e
(s)
Aσ,j

= 1

53



Chapter 4. Hazard-Free Transducers

The second case, ∗s∈S′,σ∈Σ o(s, σ)j = 0, is treated analogously.

∗
s∈S′,σ∈Σ′

o(s, σ)j = 0 ⇔ ∀s ∈ S′, σ ∈ Σ′ : o(s, σ)j = 0

⇔ ∀s ∈ S′, σ ∈ Σ′ : s /∈ Aσ,j by Def. 4.16

⇔ ∀s ∈ S′, σ ∈ Σ′ : e
(s)
Aσ,j

= 0 by Def. 4.6

⇔ ∗
s∈S′,σ∈Σ′

e
(s)
Aσ,j

= 0

In case the l.h.s. of Equation (4.5) evaluates to u the statement follows from the first
two cases. As we showed equivalence in case 1 and 0, we deduce, that in case the l.h.s.
of Equation (4.5) evaluates to u, the r.h.s. of Equation (4.5) also evaluates to u.

If the size of the largest preimage (maxσ∈Σ,j∈[m] |Aσ,j |) exceeds 2k not all preimages

have a corresponding entry in e(si−1). We need to compute whether si−1 is in the
preimage. To this purpose, we define a cover of Aσ,j with sets of size at most 2k.

Definition 4.18. For an input symbol σ ∈ Σ, j ∈ [m], and k ∈ N we define Ak
σ,j, the

cover of Aσ,j containing sets of cardinality smaller or equal to 2k:

Ak
σ,j :=

{
{Aσ,j} if |Aσ,j | ≤ 2k ,

{A ⊆ Aσ,j ||A| = 2k} else.

If the state of the transducer is in one of the sets in Ak
σ,j , then it is also in Aσ,j . All

sets in Ak
σ,j have a corresponding entry in the state vector. We can take the or over

all entries to see whether the transducer is in a state of Aσ,j and hence whether it
outputs 1.

Lemma 4.19. For k ∈ N, j ∈ [m], S′ ⊆ S, and Σ′ ⊆ Σ with 2k < maxσ∈Σ,j∈[m] |Aσ,j |,
if |S′| ≤ 2k we have that

∗
s∈S′,σ∈Σ′

o(s, σ)j = ∗
σ∈Σ′

∨
A∈Ak

σ,j

∗
s∈S′

e
(s)
A (4.6)

Proof. Every A ∈ Ak
σ,j has cardinality smaller or equal to 2k. Hence, there is an entry

in vector e(s) corresponding to A, i.e., entry e
(s)
A exists in the encoding. From its

definition we observe that Ak
σ,j is indeed a cover of Aσ,j , i.e.,⋃

A∈Ak
σ,j

A = Aσ,j . (4.7)

Moreover, Definition 4.18 ensures that every subset of Aσ,j of size at most 2k is
contained in at least one set from Ak

σ,j . On the other hand, each A ∈ Ak
σ,j is a subset

of Aσ,j . Hence, the assumption that |S′| ≤ 2k implies that

S′ ⊆ Aσ,j ⇔ ∃A ∈ Ak
σ,j : S

′ ⊆ A . (4.8)

54



4.3. Hazard-Free PPC

We make a case distinction on every possible evaluation of the l.h.s. of Equation (4.6)

and show the equality for each case. The first case is ∗s∈S′,σ∈Σ′ e
(s)
Aσ,j

= 1. We get
that

∗
s∈S′,σ∈Σ′

o(s, σ)j = 1 ⇔ ∀s ∈ S′, σ ∈ Σ′ : o(s, σ)j = 1

⇔ ∀s ∈ S′, σ ∈ Σ′ : s ∈ Aσ,j

⇔ ∀σ ∈ Σ′ : S′ ⊆ Aσ,j

⇔ ∀σ ∈ Σ′ : ∃A ∈ Aσ,j : S
′ ⊆ A by Eq. (4.8)

⇔ ∀σ ∈ Σ′ : ∃A ∈ Aσ,j : ∀s ∈ S′ : s ∈ A

⇔ ∀σ ∈ Σ′ : ∃A ∈ Aσ,j : ∀s ∈ S′ : e
(s)
A = 1

⇔ ∀σ ∈ Σ′ : ∃A ∈ Aσ,j : ∗
s∈S′

e
(s)
A = 1

⇔ ∀σ ∈ Σ′ :
∨

A∈Ak
σ,j

∗
s∈S′

e
(s)
A = 1

⇔ ∗
σ∈Σ′

∨
A∈Ak

σ,j

∗
s∈S′

e
(s)
A = 1.

The second case, ∗s∈S′,σ∈Σ′ e
(s)
Aσ,j

= 0, is treated similarly, where now S′ ∩ Aσ,j = ∅
for each σ ∈ Σ′.

∗
s∈S′,σ∈Σ

o(s, σ)j = 0 ⇔ ∀s ∈ S′, σ ∈ Σ′ : o(s, σ)j = 0

⇔ ∀s ∈ S′, σ ∈ Σ′ : s /∈ Aσ,j

⇔ ∀s ∈ S′, σ ∈ Σ′, A ∈ Ak
σ,j : s /∈ A

⇔ ∀s ∈ S′, σ ∈ Σ′, A ∈ Ak
σ,j : e

(s)
A = 0

⇔ ∀σ ∈ Σ′, A ∈ Ak
σ,j : ∗

s∈S′
e
(s)
A = 0

⇔ ∀σ ∈ Σ′ :
∨

A∈Ak
σ,j

∗
s∈S′

e
(s)
A = 0

⇔ ∗
σ∈Σ′

∨
A∈Ak

σ,j

∗
s∈S′

e
(s)
A = 0

In the final case, i.e., that the l.h.s. of Equation (4.6) evaluates to u, equality follows
from the equivalence established in the previous two cases.

Main Theorem. We are left with the task of showing that indeed the obtained
circuit is correct, i.e., prove Theorem 4.20. The correctness of the construction is

55



Chapter 4. Hazard-Free Transducers

e(s0)

xn

(e(sn−1))u

PPCA·uBn

Step 1

Step 2

Step 3

e(s0)

xn−1

A ·u B

e(s0)

x1

(e(s1))u(e(sn))u

κ× κ κ× κ κ× κ

κ× κ κ× κ κ× κ

κ

κ κ κ

κ κ

`

Mπn Mπn−1 Mπ1

Mtxn−1
Mtxn Mtx1

A ·u B A ·u B

Enc

`

Enc

`

Enc

Figure 4.2: Steps 1 to 3 of the circuit implementing the transcription function. Enc
denotes the computation of the universal encoding by the generic construction of [55].
Hazard-free Boolean matrix multiplication is denoted by A ·u B.

proven foremost by the application of Corollary 4.13 and Corollary 4.14. The proof is
mainly concerned with establishing the size and depth bound for the obtained circuit.
Without going into detail, for constant |S| the reader should be convinced that the
depth of the circuit is logarithmic in n, because all operations except for Step 2 can be
computed in parallel, while Step 2 exploits the associativity of matrix multiplication
to obtain a circuit of depth logarithmic in n. The size of the circuit is linear in n, as
Step 1, Step 3 and Step 4 each use a constant number of operations for each input
symbol and Step 2 can be performed asymptotically optimally with a linear number
of operations.

Theorem 4.20. For any integers k ∈ N, ℓ,m, n ∈ N>0 (with k ≤ n) and Mealy
machine T = (S, s0,Σ = Bℓ,Λ ⊆ Bm, t, o), there is a k-bit hazard-free circuit imple-

menting τT,n. For κ :=
∑min{|S|,2k}

i=0

(|S|
i

)
and λ := min{m, 2|S|·|Σ|} the circuit has

size O
(
(κ3 + (2ℓ/ℓ)κ2 + 2ℓκλ)n

)
and depth O (log κ log n+ ℓ) .

Proof. We show that there is a circuit computing the hazard-free extension of the
transcription function (τT,n)u (x) for every x ∈ Σn, where we replace at most k many

56



4.3. Hazard-Free PPC

bits with u’s. We follow the steps of the PPC framework presented in Section 4.2.1
to compute output ((τT,n)u(x))i = ou(si−1, xi) at each position i ∈ {1 . . . n}.

The block diagram of steps 1 to 3 of the circuit is depicted in Figure 4.2. The
circuit mostly consists of hazard-free matrix multiplication blocks. In particular, the
n-input parallel prefix circuit is an arrangement of hazard-free matrix multiplication
blocks.

Step 1 computes the universal encoding of the restricted transition function txi

(a κ × κ matrix) from input xi. Noting that the computation in Step 1 evaluates
a function from Bℓ to Bκ2

, we can directly apply Theorem 2.14 for each output bit
separately. Hence, there is a hazard-free encoding circuit of size O((2ℓ/ℓ)κ2) and
depth O(ℓ) implementing this step. Thus, the computation of the universal encoding
of txi for each i in parallel has size O((2ℓ/ℓ)κ2n) and depth O(ℓ).

Step 2 computes the encoding Mπi of the composition πi = txi ◦ . . . ◦ tx1 . We
define Ej(xj) = t(·, xj) for j ∈ {1, . . . , i} such that for E(x) = ◦ij=1Ej(xj) we have

(Mπi)u =
(
ME(x)

)
u
=
(
ME(·)

)
u
(x) .

Application of Corollary 4.13 then yields(
ME(·)

)
u
(x) =

(
MEj(·)

)
u
(xj) ·u

(
MEj−1(·)

)
u
(xj−1) ·u . . . ·u

(
ME1(·)

)
u
(x1) . (4.9)

By Corollary 4.15, there is an efficient circuit computing the r.h.s. of (4.9) for each i.
The Corollary gives also size O(κ3n) and depth O(log κ log n) for Step 2.

Step 3 computes the column unit vector corresponding to the ith state, i.e.,
evaluation of the composition πi on the initial state s0. By Corollary 4.14, we can
compute (

e(si)
)
u
=
(
e(πi(s0))

)
u

by matrix-vector multiplication of (Mπi)u and
(
e(s0)

)
u
= e(s0). Hence, by Corollary 4.8

there is a k-bit hazard-free circuit that computes si. Evaluation of πi in parallel for
each i yields size O(κ2n) and depth O(log κ) for Step 3.

Finally, Step 4 computes the ith output o(si−1, xi) for each i ∈ {1 . . . n}. W.l.o.g.,
assume that the width of an output symbol is 1, i.e., m = 1 and hence Λ ⊆ B (otherwise
repeat the computation for each output bit separately). Viewing the computation
in Step 4 as a function from Bκ+ℓ to B, we could apply Theorem 2.14 to obtain a
circuit of size O(2κ+ℓ/(κ+ℓ)) and depth O(κ+ℓ). We now show how to obtain better
results, bounding the size by O(2ℓκ) with a circuit of depth O(log κ+ ℓ).

Recall Definition 4.16. As j = 0 we omit j from the notation and write Aσ and
Ak

σ instead of Aσ,j and Ak
σ,j . First, consider the case that maxσ∈Σ |Aσ| ≤ 2k. A

depiction of this case is given in Figure 4.3 (1). By directly using the outputs of the
gates computing the respective bits of (the universal encoding of) the state vector, we
readily obtain o(si−1, σ) for each σ ∈ Σ. Thus, we are left with the task of choosing
the output corresponding to input xi. We can do so by using a MUX. By Lemma 2.13,

the implementation MUX(e
(si−1)
Aσ

, . . . , e
(si−1)
Aσ′ , xi) has size O(2ℓ) and depth O(ℓ), where

57



Chapter 4. Hazard-Free Transducers

(MUX`)u

(e
(sn−1)
Aσ′

)u(e
(sn−1)
Aσ

)u
xn

(MUX`)u

(e
(sn−2)
Aσ′

)u(e
(sn−2)
Aσ

)u
xn−1

(MUX`)u

(e
(s0)
Aσ′

)u(e
(s0)
Aσ

)u
x1

(o(sn−1, xn))u (o(sn−2, xn−1))u (o(s0, x1))u

Step 4 (1)

Step 4 (2) (MUX`)u

(e(sn−1))u

(MUX`)u (MUX`)u

(o(sn−1, xn))u (o(sn−2, xn−1))u (o(s0, x1))u

σ-or

(e(sn−1))u (e(sn−2))u (e
(sn−2))u (e(s0))u (e(s0))u

xn xn−1 x1

σ’-or σ-or σ’-or σ-or σ’-or

(e
(s0)
Aσ

)u

` ` `

```

κ κ κ κ κκ

Figure 4.3: Step 4, assuming m = 1. (1) Every preimage is encoded in the state
vector. (2) At least one preimage is not encoded in the state vector. To increase
readability we do not enumerate all elements of Σ but use σ, σ′, and dots to denote
that the step is repeated for every element of Σ.

σ, σ′ are representatives for every input symbol in Σ. If m > 1, the multiplexer is
copied m times and wired accordingly. Step 4 can be performed in parallel for each i,
hence the resulting size and depth bounds are O(2ℓmn) and O(ℓ), respectively.

The other case is that maxσ∈Σ |Aσ| > 2k. A depiction of the corresponding circuit

is given in Figure 4.3 (2), where σ-or denotes the or-tree over all e
(si)
A for A ∈ Ak

σ.
Here, we compute the output o(si−1, σ) as the or over all entries corresponding to Ak

σ

in the state vector. Correctness readily follows from Lemma 4.19. To bound the size
and depth of the resulting circuit, observe that the cardinality of Ak

σ is bounded by(|S|
2k

)
, hence each or-tree has size O(

(|S|
2k

)
) and depth O(log

(|S|
2k

)
). As in the previous

case, the ith output is selected by a multiplexer. Hence, applying Lemma 2.13, we
get that in this case Step 4 requires size O(

(|S|
2k

)
2ℓmn) and depth O(log

(|S|
2k

)
+ ℓ).

Furthermore, there is a natural cap on m. Similar to the previous paragraph,
consider each bit of the output separately, i.e., for each position of an output symbol
consider the function o : S × Σ → B. For inputs from S and Σ there are 2|S|·|Σ|

different one bit functions. Hence, we can enumerate all possible output functions.
If m > 2|S|·|Σ|, we simply compute and reuse as often as needed the output of each
of these possible functions, rather than replicating computations for identical output
bits.

Finally, we can derive the asymptotic size and depth of the presented k-bit hazard-
free implementation of the transcription function τT,n. We distinguish two cases

58



4.4. Extension of the Input Encoding

depending on the size of the largest preimage of o. In both cases m is capped at
2|S|·|Σ| as discussed above. Assume maxσ∈Σ |Aσ| ≤ 2k, then the presented circuit has

size O
(
(κ3 + (2ℓ/ℓ)κ2 + 2ℓm)n

)
, and

depth O (log κ log n+ ℓ) .

In case maxσ∈Σ |Aσ| > 2k (and hence |S| > 2k) we bound
(|S|
2k

)
by κ, such that the

circuit has

size O
(
(κ3 + (2ℓ/ℓ)κ2 + 2ℓκm)n

)
, and

depth O (log κ log n+ ℓ) .

Remark. The main result holds also for Σ ⊆ Bℓ, when choosing an (arbitrary) exten-
sion for the transition function to domain S×Bℓ. However, the choice of how to extend
the transition function t matters for the behavior of the hazard-free state machine.
The decision on how to treat non-input symbols is important because it is possible
that an unstable input resolves to such a non-input symbol. If this happens, the
choice of where t maps such resolutions to affects the value the hazard-free extension
takes. A bad extension may result in unstable output without need, decreasing the
utility of the constructed circuit. The task of finding a useful extension is nontrivial
and depends on the application. A detailed discussion at hand of an example is given
in Section 4.4.

4.4 Extension of the Input Encoding

The main result, Theorem 4.20, assumes that each binary string of length ℓ is part of
the input alphabet, i.e., Σ = Bℓ. In this section, we discuss the case where Σ is a strict
subset of Bℓ. We choose extensions of the transition function t : Σ × S and output
function o : Σ × S to domain Bℓ × S. The choice of extension is arbitrary, for any
transition function and output function defined on Bℓ the construction described in
the proof of the main theorem computes the hazard-free extension of the transcription
function. An arbitrary extension may lead to undesirable results, however. We discuss
this issue at hand of an example. Note that both, t and o have to be extended and
the same problems may arise in both functions. We construct an example, that
provides intuition on the problem, by extending the output function o. The transition
function t is not discussed in further detail.

Running Example. Consider a simple finite-state transducer with a single state
(S = {0}) with single bit outputs (output alphabet Λ = B). Input symbols have three
bits (ℓ = 3) and the output function computes the and over the three input bits. See
Table 4.2 for the output table. For the sake of the example, assume that input 000
never occurs, such that the input alphabet is defined by Σ = B3 \{000}. Even though

59



Chapter 4. Hazard-Free Transducers

σ 000 001 010 100 011 101 110 111

o(σ, 0) - 0 0 0 0 0 0 1
(1) 0 0 0 0 0 0 0 1
(2) 1 0 0 0 0 0 0 1

Table 4.2: Output function of the example transducer and extensions (1) and (2).

the example is artificial, in the sense that it could be solved by simpler circuits, it is
worth the discussion as it provides intuition to the problem.

Unknown inputs (which we model by u) may arise from transitioning input signals.
Due to the analog behavior of signal transitions, it might be the case that a bit is
neither digital 0 nor 1 for some time during the transition. The signal can float near
the threshold for 0 or 1 and the circuit designer can not be sure whether the electronics
interpret the signal as digital 0 or 1.

Extension. For an application of the framework, we have to define an extension
to o on input 000. As there is only a single output bit, we are left with exactly two
choices:

o(0, 000) = 0 , or (1)

o(0, 000) = 1 . (2)

Assume the input switches from 001 to 010, such that the input transitions via 0uu for
some time. We choose extension (2), then the framework computes the hazard-free
extension of the output function

ou(0, 0uu) = ∗{o(0, 000), o(0, 001), o(0, 010), o(0, 011)}
= ∗{1, 0} = u .

In the sense of hazard-freedom, this is perfectly fine, because we compute the most
precise output for all specified inputs and the extension. However, input 001 and 010
both produce output 0. Hence, the output has no transition when switching from 001
to 010. But, due to the chosen extension, the output is u during the transition.

Contrary to that, if we choose extension (1) we obtain that the output signal
remains 0 during the transition of the inputs;

ou(0, 0uu) = ∗{o(0, 000), o(0, 001), o(0, 010), o(0, 011)}
= ∗{0} = 0 .

Also one can verify that for each input transition, the output remains stable unless
there is a transition in the output (for any input transition to or from 111). Hence,
the advisable choice of the extension for the specific application is extension (1).

60



4.5. Bound on k

0 1 2

0/0

1/0

0/0

1/1

1/1

0/1

Figure 4.4: Extension of the first example transducer, that shifts to outputting ones
only after the reception of two consecutive ones. Vice versa the transducer shifts to
outputting zeros upon reception of two consecutive zeros.

The example shows that finding an extension of the transition function, in case Σ is
a strict subset of Bℓ, is not a straightforward task. We refrain from defining a notion
of the optimum choice and generating the according extension, as this is beyond the
scope of this work.

4.5 Bound on k

Running Example. We present an extension of our earlier example, the shift
transducer. Here, we switch from output 0 to output 1 only if we see two consecutive
1’s in the input. Vice versa, we switch from 1’s to 0’s only we see two consecutive 0
inputs. The transducer has three states S = {0, 1, 2}. It is depicted in Figure 4.4.

Bound. What we seek to demonstrate is the impact of bounding k. Accordingly,
we choose k = 1, such that 2k = 2 < 3 = |S|. Thus, the encoding takes into account
P2(S) = P(S) \ S, i.e., all proper subsets of S. For restricted transition functions t0,
t1, and tu, the encoding yields the matrices given in Figure 4.5.

In matrixMtu , we see again the same behavior as in the naive encoding of the
shift transducer. Columns corresponding to {0, 1}, {1, 2}, and {0, 2} contain only 0
and u entries. These columns hence cannot prevent the resolution from containing
the all 0’s vector, which cannot be mapped to a single state in a way that guarantees
correct output.

However, columns corresponding to {0}, {1}, and {2} can be mapped to states
without uncertainty, presuming the next input symbol allows it. Taking a look at
Figure 4.4, we can see that the transducer goes back to state 0 after the reception
of two consecutive 0 inputs, regardless of the previous state. For the sake of this
example, consider the input sequence u00. Hence, we need to calculate the matrix
corresponding to t0 ◦ t0 ◦ tu. The calculation can be seen in Figure 4.6.

Here it becomes apparent why we need the assumption |A| · |J | ≤ 2k in Theo-
rem 4.20. In matrixMt0◦t0◦tu only column unit vectors corresponding to singletons
can be mapped to stable states. Column vectors corresponding to sets {0, 1}, {1, 2}
and {0, 2} contain only 0’s and u′s, no 1’s. Hence, they cannot be “properly” mapped

61



Chapter 4. Hazard-Free Transducers

Mt0 =

∅ {0} {1} {2} {0, 1} {1, 2} {0, 2}



∅ 1 0 0 0 0 0 0
{0} 1 1 1 0 1 0 0
{1} 1 0 0 1 0 0 0
{2} 1 0 0 0 0 0 0
{0, 1} 1 1 1 1 1 1 1
{1, 2} 1 0 0 1 0 0 0
{0, 2} 1 1 1 0 1 0 0

Mt1 =

∅ {0} {1} {2} {0, 1} {1, 2} {0, 2}



∅ 1 0 0 0 0 0 0
{0} 1 0 0 0 0 0 0
{1} 1 1 0 0 0 0 0
{2} 1 0 1 1 0 1 0
{0, 1} 1 1 0 0 0 0 0
{1, 2} 1 1 1 1 1 1 1
{0, 2} 1 0 1 1 0 1 0

Mtu =

∅ {0} {1} {2} {0, 1} {1, 2} {0, 2}



∅ 1 0 0 0 0 0 0
{0} 1 u u 0 u 0 0
{1} 1 u 0 u 0 0 0
{2} 1 0 u u 0 u 0
{0, 1} 1 1 u u u u u
{1, 2} 1 u u 1 u u u
{0, 2} 1 u 1 u u u 0

Figure 4.5: Matrix encodings of the transition functions t0, t1, and tu.

62



4.6. Follow-Up Questions

Mt0◦t0◦tu =Mt0 · Mt0 · Mtu

=Mt0 ·



1 0 0 0 0 0 0
1 1 u u u u u
1 0 u u 0 u 0
1 0 0 0 0 0 0
1 1 1 1 u u u
1 0 u u 0 u 0
1 1 u u u u u


=



1 0 0 0 0 0 0
1 1 1 1 u u u
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 1 1 u u u
1 0 0 0 0 0 0
1 1 1 1 u u u


.

Figure 4.6: Matrix multiplication of the encoding of transition functions t0 and tu.

to any state. We apply Theorem 4.20 to the last step, i.e., the multiplication ofMt0

andMt0◦tu . Here, set J is mapped to res(0u) yielding |J | = 2. As k = 1, condition
|A| · |J | ≤ 2k is only satisfied for |A| = 1 (A cannot be the empty set). Thus, the
condition is only satisfied for singleton sets, which is what we observed from the
example.

4.6 Follow-Up Questions

Small Transducers. In the introduction, we state that the presented work is
not a complete answer to the question of which classes of functions allow for an
efficient hazard-free implementation. We show that small transducers can be efficiently
implemented in a hazard-free manner. So far the design of the transducer is left to
the reader.

The construction we present introduces some parameters that influence the com-
plexity of the resulting circuit. First and foremost the size of the state space, the
sizes of the input and the output encoding. We do not fully understand how the
complexity of a function relates to the parameters. With a better understanding, we
would be able to show how the lower bound of Ikenmeyer et al. [52] applies.

To answer the question of which classes of functions allow for small transducers
further study of finite-state machines is required. Transducers are very powerful
tools and to us, it is not clear how to achieve small transducers in general. A simple
transducer could for example read the whole input before computing the output upon
reception of the last symbol. Another transducer could read the whole input at once
and output the result in one step. However, as these approaches either require a large
state space or a large in-/output alphabet they will be inefficient in the presented
construction.

The question that arises can be formulated as follows: How does the complexity
of a function relate to the size of the smallest transducer computing the function?

63



Chapter 4. Hazard-Free Transducers

This question is solely related to the study of finite-state machines, it is out of scope
for this work.

Applications. An application of the framework can be seen in Chapter 5. We apply
the construction to the sorting primitive, such that we obtain an efficient hazard-free
sorting circuit. Despite the application to the sorting primitive, we are interested in
finding further applications to the framework.

Hazard-free implementations of arithmetic functions are of interest, e.g., for further
steps towards an implementation of the Lynch-Welch algorithm in Chapter 6. After
sorting the algorithm computes the average of clock values. This requires hazard-free
addition and hazard-free division by 2. Needless to say, hazard-free arithmetic goes
hand in hand with the development of preserving and recoverable codes (Chapter 3).
In the scope of this work, we can only cover the groundwork for this goal.

64



5Hazard-Free Sorting

This chapter presents (a part of) the results published in Transactions on Comput-
ers [16]. We describe how to sort N inputs, where each input is a binary word that
may have an unstable bit. The key to the sorting primitive is a comparator circuit
(COMP) that sorts two inputs. The circuit construction makes use of the framework
presented in Chapter 4. Furthermore, we improve the construction by adjusting the
framework.

Outline. Section 5.1 covers an introduction to the topic and related work. We
discuss Sorting networks in Section 5.2. Formally the specification of the circuit is
given in Section 5.3, before a transducer implementation and the hazard-free imple-
mentation are given in Section 5.4 resp. Section 5.5.

5.1 Introduction and Related Work

5.1.1 Introduction

We describe a variant of the clock synchronization algorithm by Lundelius-Welch
and Lynch in Section 6.3. The Lynch-Welch algorithm is a distributed fault-tolerant
algorithm that runs on fully connected networks. Essential for fault-tolerance of the
algorithm is an approximate agreement step [35]. Differences between each clock in
the network are measured and sorted. The algorithm picks measurements f + 1 and
n− f to compute the adjustments. Hence, up to f faulty nodes can be tolerated.

Clocks in the system are uncorrelated. Hence, any digital measurement of the differ-
ence between two clocks inherently bears the risk of un-/metastable signals [74]. Any
circuit sorting these measurements has to account for possible instability. Friedrichs
et al. show in [41] that it is possible to implement the Lynch-Welch algorithm with
digital components, given that the components are metastability-containing. Inputs
are restricted to binary words that may have an unstable bit only in specific positions.
Such inputs result from a suitable choice of measurement circuits [43].

Instability or metastability may or may not resolve during computation. As
described in Chapter 2 we consider the worst-case propagation of unstable signals,
i.e., outputs of the sorting circuit also might be unstable. According to Friedrichs et
al. the subsequent step, frequency adjustment, maintains the precision of unstable
signals for careful choice of oscillators. The step involves mapping digital to analog
values. Suitable oscillators are those that are controlled by analog effects, e.g., voltage
controlled oscillators (VCOs) such as [2, 91] that will be discussed in Section 8.2. The
implementation has a guaranteed end-to-end uncertainty of a single bit.

Our goal is to sort any number of inputs that are encoded in BRGC encoding.
We first show that we can sort an arbitrary number of inputs by designing a circuit

65



Chapter 5. Hazard-Free Sorting

that sorts two inputs and plugging them into a sorting network. Then we show how
to implement an asymptotically optimal, hazard-free comparator.

5.1.2 Related Work

We cover related work on transducers in Section 4.1.3 and related work on hazard-free
circuits in Section 2.6. Sorting networks are discussed in Section 5.2.

Lynch-Welch Algorithm. The first to suggest a hazard-free implementation of the
Lynch-Welch algorithm were Friedrichs et al. [41]. They identify 4 steps to imple-
ment the algorithm, where step 1 (mapping from analog to digital) bears the risk
of metastable signals. Hence, subsequent steps either need to use synchronizers or
metastability-containing circuits. As the use of synchronizers, which only lower the risk
of metastability, is too time-consuming, it is advisable to use metastability-containing
circuits.

Inputs to the sorting circuit are called valid strings. Friedrichs et al. show the
existence of hazard-free circuits comparing two valid strings and returning the max-
imum and minimum. The valid strings may arise from a suitable design of time to
digital converters (TDCs) and appropriate encoding. Memory-efficient TDC circuits
that already return a valid string at their output are presented by Függer et al. [43].

Sorting. The presented work is the last part in a line of research focusing on the
implementation of a valid string comparator. After Friedrichs et al. showed that it is
possible to implement the circuit [41], a first implementation has been given in [68].
The authors describe a recursive circuit design that has size O(n2) and depth O(n).

We present in [15] an improvement to the recursive design of [68]. By splitting
up the recursive design into a sorting and a controlling part we achieve near-optimal
size O(n log n) and asymptotically optimal depth O(log n).

The best implementation, to our knowledge, is given in [16]. We present the
design, based on a transducer implementation, in this chapter. Practical simulations
in [16] show that the design improves delay by 48.46% and chip area by 71.58% in a
16-bit design. Also, the simulations indicate that the design performs similarly to a
(non-hazard-free) binary design, after transistor-level optimization of both.

5.2 Sorting Networks

Sorting networks (see, e.g., [59]) sort N -many inputs from a totally ordered universe
by feeding them into N parallel wires that are connected by COMP elements, i.e.,
subcircuits sorting two inputs; these can act in parallel whenever they do not depend
on each other’s output. A correct sorting network sorts all possible inputs, i.e., the
wires are labeled 1 to N such that the ith wire outputs the ith element of the sorted
list of inputs. The size of a sorting network is its number of COMP elements and its

66



5.3. Comparator Specification

depth is the maximum number of COMP elements an input may pass through until
reaching the output.
The 0-1-principle [59] states that a sorting network, assuming the COMP circuits are
correct, is correct if and only if it sorts 0-1 inputs correctly. Thus, we obtain sorting
networks for inputs that may suffer from unstable inputs by constructing COMP cir-
cuits (w.r.t. a suitable order on such inputs) and plugging them into existing sorting
networks.

Sorting networks have been extensively studied. Tight lower bounds of depth
O(logN) (trivial) and size O(N logN) (see, e.g., [27]) are known and can be simulta-
neously asymptotically matched [3]. More practically, for small values of N optimal
depth and/or size networks are known [20, 26, 59]. Accordingly, our task boils down
to finding optimal (or close to optimal) hazard-free COMP circuits. For n-bit inputs, our
COMP circuits have depth and size O(log n) and O(n), respectively, which is (trivially)
optimal up to constants.

5.3 Comparator Specification

In this section, we formally define the comparator primitive which will be implemented
by the circuit presented in Section 5.5. The primitive sorts two inputs according to
their encoded value. It has two outputs; (1) the input that encodes the larger value
will be called the maximum, and (2) the input that encodes the smaller value will be
called the minimum. We restrict the set of possible inputs and denote it by the set
of valid strings.

Valid Strings. The set of valid strings is a subset of all BRGC encoded strings that
have no or one unstable bit. The BRGC encoding is defined in Chapter 3. We denote
the set of valid strings of length n ∈ N by Sgn. It contains all BRGC strings of length
n and all superpositions of two consecutive codes. As shown in Lemma 3.24, two
consecutive BRGC strings have Hamming distance one, such that their superposition
has exactly one unstable bit. For ease of notation we denote the set of all BRGC
strings of length n by Γg

n, with

γgn([2
n]) = Γg

n = Bn ,

and we denote the decoding function of the BRGC code by

(γgn)
−1(·) = ⟨·⟩gn .

Intuitively, Γg
n is the set of all inputs that purely consists of binary values, and Sgn

extends it to ternary inputs. For example, Sg4 the set of valid strings of length 4 is
given in Table 5.1.

67



Chapter 5. Hazard-Free Sorting

I ∗ γg4(I) I ∗ γg4(I) I ∗ γg4(I) I ∗ γg4(I)
{0} 0000 {4} 0110 {8} 1100 {12} 1010
{0, 1} 000u {4, 5} 011u {8, 9} 110u {12, 13} 101u
{1} 0001 {5} 0111 {9} 1101 {13} 1011
{1, 2} 00u1 {5, 6} 01u1 {9, 10} 11u1 {13, 14} 10u1
{2} 0011 {6} 0101 {10} 1111 {14} 1001
{2, 3} 001u {6, 7} 010u {10, 11} 111u {14, 15} 100u
{3} 0010 {7} 0100 {11} 1110 {15} 1000
{3, 4} 0u10 {7, 8} u100 {11, 12} 1u10

Table 5.1: All valid strings of length 4, Sg4 .

Definition 5.1 (Set of Valid Strings). The set of valid strings Sgn of length n is
given by the union of all BRGC codes of length n and the superposition of any two
consecutive BRGC codes. Formally,

Sgn := Γg
n ∪

⋃
x∈[2n−1]

∗{γgn([x]), γgn([x+ 1])} .

Remark. The set of valid strings is more restricted than the set of all BRGC encoded
strings that have no or one unstable bit, because u may only occur in certain positions.
However, the set naturally emerges from the outputs of TDCs [43]. Hence, restricting
the inputs to valid strings is suitable for the intended application.

5.3.1 Hazard-free Sorting

Total Order on Valid Strings. We aim to build a circuit that computes the
maximum and minimum of two valid strings. First, however, we need to answer the
question of what it means to ask for the maximum or minimum of valid strings.
While there is a natural order on Γg

n, we need to define an order on the valid
strings that contain an unstable bit as well. To this end, suppose a valid string is

∗{γgn(x), γgn(x + 1)} for some x ∈ [N − 1]. The unstable bit makes it impossible to
interpret this string as x or x+ 1. Resolution of the valid string will cover γgn(x) and
γgn(x + 1). Accordingly, it makes sense to consider ∗{γgn(x), γgn(x + 1)} in between
γgn(x) and γgn(x+ 1), resulting in the following total order on valid strings.

Definition 5.2 (Total order on valid strings (≻)). Let g, h ∈ Γg
n be two BRGC strings.

We define the total order ≻ by

g ≻ h⇔ ⟨g⟩gn > ⟨h⟩gn .

Furthermore, let x ∈ [2n − 1], then

γgn(x+ 1) ≻ ∗{γgn(x), γgn(x+ 1)} ≻ γgn(x) .

68



5.3. Comparator Specification

We extend the resulting relation on Sgn × Sgn to a total order by taking the transitive
closure.

Remark. From Definition 5.2 we can define ⪰ via g ⪰ h⇔ (g = h ∨ g ≻ h).

Our aim, hence, amounts to building a circuit that computes the maximum and the
minimum with respect to this order. It turns out that a circuit that sorts two BRGC
codes and that is hazard-free also sorts valid strings.

Comparator circuit COMPn. First, we formally define COMPn. Any circuit that
implements COMPn computes the maximum and minimum of two BRGC codes.

Definition 5.3 (Maximum and minimum of BRGC codes). Let g, h ∈ Γg
n, then

maxg(g, h) : Γg
n × Γg

n → Γg
n and ming(g, h) : Γg

n × Γg
n → Γg

n are defined by

maxg(g, h) :=

{
g if ⟨g⟩gn ≥ ⟨h⟩

g
n ,

h otherwise.
ming(g, h) :=

{
h if ⟨g⟩gn ≥ ⟨h⟩

g
n ,

g otherwise.

The comparator circuit COMPn gets two inputs and computes two outputs. It sorts
the inputs w.r.t. the natural order on Γg

n, i.e., it computes maxg and ming.

Definition 5.4 (COMPn). Let g, h ∈ Γg
n, then

COMPn(g, h) := (maxg(g, h),ming(g, h)) .

Sorting Valid Strings. We now show that any circuit that implements the hazard-
free extension of COMPn sorts its inputs according to the order (≻). To this end,
we prove that the hazard-free extension of functions maxg and maxg compute the
maximum and minimum respectively.

Lemma 5.5. Let g, h ∈ Sgn. If and only if g ⪰ h, then

maxgu(g, h) = g ,

mingu(g, h) = h .

Proof. Let g, h ∈ Sgn, we prove the claim by case distinction on the cases g ≻ h, g ≺ h,
and g = h. First, if g ≻ h, Definition 5.1 and Definition 5.2 imply for all g′ ∈ res(g)
and all h′ ∈ res(h) that g′ ⪰ h′. Hence, maxg(g′, h′) = g′ and ming(g′, h′) = h′. From
Definition 2.7 and Observation 2.6, we can thus conclude that

maxgu(g, h) = ∗ res(g) = g ,

mingu(g, h) = ∗ res(h) = h .

Next, if g ≺ h, analogous reasoning shows that

maxgu(g, h) = h ̸= g ,

mingu(g, h) = g ̸= h .

69



Chapter 5. Hazard-Free Sorting

The remaining case is that g = h. Assume g and h do not contain an u bit, then
we have maxgu(g, h) = maxg{g, h} = g = h. Now assume g = h = γgn(x) ∗ γgn(x + 1),
for x ∈ [2n − 1]. We get that maxgu(g, h) = ∗{γgn(x), γgn(x + 1)} = h. Likewise,
mingu(g, h) = g.

In other words, maxgu and mingu are the max and min operators w.r.t. the total order
on valid strings shown in Table 5.1.

Corollary 5.6. Let g, h ∈ Sgn. If and only if g ⪰ h, then

(COMPn(g, h))u = (g, h) .

Example. Let n = 4 then the maxgu function computes

maxgu{1001, 1000} = maxgu{γ
g
4(14), γ

g
4(15)} = γg4(15) = 1000 ,

maxgu{0u10, 0010} = maxgu{∗ γg4({3, 4}), γg4(3)} = γg4(3) ∗ γ
g
4(4) = 0u10 , and

maxgu{0u10, 0110} = maxgu{∗ γg4({3, 4}), γg4(4)} = γg4(4) = 0110 .

5.4 Sorting Transducer

We define a finite state machine performing the comparison of two BRGC codes. In
each step, the transducer is fed the pair of ith input bits. That is, when processing
inputs g, h ∈ Γg

n, in step i it receives input pair gihi. The transducer performs a
four-valued comparison. When processing the inputs it determines whether g and
h are equal with even parity, with odd parity, or whether the encoded value of g is
larger than h, or smaller. A depiction of the transducer is given in Figure 5.1.

Definition 5.7 (Sorting Transducer). The transducer comparing two BRGC codes
step by step is given by state space S = {0, 1, 2, 3}, starting state s0 = 0, Σ = B2, and
Λ = B2. The transition function t : S ×Σ→ S and the output function o : S ×Σ→ Λ
are given in Table 5.2.

The transducer describes a transcription function τ (cf. Definition 4.2). To show the
correctness of the transducer we show that τ(g, h) computes COMP(g, h).

Example. A run of the transducer of Definition 5.7 on inputs g = 1011 and h = 1001
is given in Table 5.3.

5.4.1 Correctness of the Transducer

In order to show the correctness of the transducer for BRGC strings we first show
that the transition function is correct, i.e., that the transducer transitions to the
state according to the natural order on BRGC strings. Subsequently, we show the
correctness of the output function, i.e., that in each state the transducer outputs the
correct pair of bits. In combination, these statements yield the correctness of the
transducer

70



5.4. Sorting Transducer

0

2 3

1

11

00

1001

true true11

10 01

00

Figure 5.1: Visualization of the transducer that, at step i, processes the pair of ith

input bits.

t(s, σ) 00 01 11 10

0 0 2 1 3
1 1 3 0 2
2 2 2 2 2
3 3 3 3 3

o(s, σ) 00 01 11 10

0 00 10 11 10
1 00 01 11 01
2 00 10 11 01
3 00 01 11 10

Table 5.2: The transition function t(s, σ) (left) and output function o(s, σ) (right).

i 0 1 2 3 4

gihi 11 00 10 11

s(i) = t(s(i−1), gihi) 0 1 1 2 2

o(s(i−1), gihi)1 1 0 0 1

o(s(i−1), gihi)2 1 0 1 1

Table 5.3: Example run of the sorting transducer on inputs g = 1011 and h = 1001.

71



Chapter 5. Hazard-Free Sorting

state encoding meaning

0 00 g0,i−1 = h0,i−1 and par(g0,i−1) = 0
1 11 g0,i−1 = h0,i−1 and par(g0,i−1) = 1
2 01 g ≺ h
3 10 g ≻ h

Table 5.4: Binary encoding and intuitive meaning of the states of the transducer
from Definition 5.7.

Correctness of the Transition Function. The meaning of the states is indicated
in Section 5.4.1. In BRGC encoding the parity indicates whether the remaining bits
are to be compared w.r.t. the standard or reflected order. If the processed parts of
the inputs are equal, then the transducer also keeps a record of their parity. Such
that the state machine performs the comparison correctly w.r.t. the meaning of the
states.

Lemma 5.8. Let g, h ∈ Γg
n and i ∈ [n+ 1], then the following equivalences hold

s(i) = 0 ∨ s(i) = 1⇔ g1,i = h1,i

s(i) = 0⇔ g ≺ h, if and only if gi+1,n ≺ hi+1,n

s(i) = 1⇔ g ≺ h, if and only if gi+1,n ≻ hi+1,n

s(i) = 2⇔ g ≺ h

s(i) = 3⇔ g ≻ h

Proof. We show the claim by induction on i. For the induction basis, i = 0, we need
to show the claim for s(i) = s(0) = 0. The first equivalence holds as g1,0 = h1,0 is the
empty string. Also the second equivalence holds as gi+1,n = g and hi+1,n = h. For
the induction step from i− 1 ∈ [n] to i, we make a case distinction on s(i−1).

Case s(i−1) = 0: By the induction hypothesis, g1,i−1 = h1,i−1 and g ≺ h if and only if
gi,n ≺ hi,n. Thus, if gihi = 00, s(i) = 0, g1,i = h1,i, and by the recursive definition
of the code, gi,n ≺ hi,n ⇔ gi+1,n ≺ hi+1,n. Similarly, if gihi = 1, also g1,i = h1,i,
but the code for the remaining bits is “reflected”, i.e., g ≺ h⇔ gi+1,n ≻ hi+1,n.
If gihi = 2, the definition implies that g ≺ h regardless of further bits, and if
gihi = 3, g ≻ h regardless of further bits.

Case s(i−1) = 1: Analogously to the previous case, noting that reflecting a second
time results in the original order.

Case s(i−1) = 2: By the induction hypothesis, g ≺ h. For any σ ∈ Σ, we obtain from
the definition of the transition function that s(i) = t(2, σ) = 2.

72



5.5. Hazard-free Implementation

Case s(i−1) = 3: By the induction hypothesis, g ≻ h. For any σ ∈ Σ, we obtain from
the definition of the transition function that s(i) = t(3, σ) = 3.

Correctness of the Output Function. It is left to show that the output function
is correct, i.e., that upon reception of an input pair, the transducer returns the correct
output (depending on its state).

Lemma 5.9. Let g, h ∈ Γg
n, then for all i ∈ [n+ 1]

maxg(g, h)i = o(s(i−1), gihi)1

ming(g, h)i = o(s(i−1), gihi)2

Proof. We distinguish two cases. The proof is simple in case gi = hi, i.e. gihi = 00
and gihi = 11. We know that maxg(g, h)i = ming(g, h)i. By Table 5.2 we can verify
for each s(i−1) ∈ S that o(s(i−1), gihi)1 = gi = hi = maxg(g, h)i and o(s(i−1), gihi)2 =
gi = hi = ming(g, h)i. In case gi ̸= hi we verify the claim by going over all possible
states s(i−1) ∈ S.

Case s(i−1) = 0: We know by Lemma 5.8 that maxg(g, h)i = max{gi, hi} and
ming(g, h)i = min{gi, hi}. Table 5.2 verifies that o(s(i−1), gihi)1 = max{gi, hi}
and o(s(i−1), gihi)2 = min{gi, hi}.

Case s(i−1) = 1: We know by Lemma 5.8 that maxg(g, h)i = min{gi, hi} and
ming(g, h)i = max{gi, hi}. Table 5.2 verifies that o(s(i−1), gihi)1 = min{gi, hi}
and o(s(i−1), gihi)2 = max{gi, hi}.

Case s(i−1) = 2: We know by Lemma 5.8 that maxg(g, h)i = gi and ming(g, h)i = hi.
Table 5.2 verifies that o(s(i−1), gihi)1 = gi and o(s(i−1), gihi)2 = hi.

Case s(i−1) = 3: We know by Lemma 5.8 that maxg(g, h)i = hi and ming(g, h)i = gi.
Table 5.2 verifies that o(s(i−1), gihi)1 = hi and o(s(i−1), gihi)2 = gi.

Together Lemma 5.8 and Lemma 5.9 imply that the transducer sorts two inputs
according to the BRGC encoding. And τ(g, h) computes COMP(g, h).

Corollary 5.10. Let g, h ∈ Γg
n and define x ∈ Σn such that (x)i = gihi, where

i ∈ [1, n]. For all i we have that

maxg(g, h)i = (τ(x)i)1

ming(g, h)i = (τ(x)i)2

5.5 Hazard-free Implementation

We now move on to implement a circuit that sorts two valid strings according to the
order (≻). In Corollary 5.6 we show a hazard-free COMP circuit suffices to sort valid
strings. The previous section shows a finite state transducer that computes COMP.
Hence, we can readily apply Theorem 4.20 from Chapter 4 to obtain the desired
hazard-free circuit from the transducer.

73



Chapter 5. Hazard-Free Sorting

5.5.1 Small Hazard-Free Transducer.

We apply the construction from Chapter 4 to the transducer defined in Definition 5.7
as a black box. Valid strings have one unstable bit at most, we get two valid strings
as input. Hence, we can choose k = 2, such that the framework constructs a 2-bit
hazard-free circuit. By Theorem 4.20 we obtain a hazard-free COMP circuit.

Corollary 5.11. Let g, h ∈ Sgn, then there is a circuit that computes COMPu(g, h) that
has asymptotically optimal

size O (n)

and depth O (log n) .

Unfortunately, Theorem 4.20 yields large constants for an implementation of the
transducer with four states and an in-/output alphabet using two bits. By observing
the structure of valid strings we can improve and construct a smaller circuit.

5.5.2 Improvements.

The framework of Chapter 4 does not take into account that the position of an unstable
bit in a valid string is restricted. It can only occur in certain positions.The framework allows

both u’s in one input word.
Moreover,

it does not take into account that there is only one unstable bit per valid string.
Fortunately, we can make use of the restrictions on the inputs. If we do not use the
framework as a black box, but adjust it to the restrictions, we can show that there is
a better implementation in terms of size and depth. In the following, we describe the
adjustments and the resulting improvements. The implementation described in the
following has the same asymptotic behavior, but the constants are smaller.

The key step to the improvements is to observe that the transition function is
associative. Instead of function composition (of the transition functions), we can use
the transition function directly as the PPC operator. The correctness proof then uses
the fact that the position of unstable bits is restricted.

Three Hurdles. We want to replace the universal encoding and matrix multiplica-
tion. We can do so by specifying an encoding of the states and designing a hazard-free
circuit of the transition function. But, even with this modification, it is not obvious
that our approach yields correct outputs. There are three hurdles to overcome in the
hazard-free extension. For i ∈ {1, . . . , n} and g, h ∈ Sgn we need to show that

tu(s, σ) is associative (P1)

tu(·, g1h1) ◦ . . . ◦ tu(·, gihi)(s(0)) = s
(i)
u (P2)

ou(s
(i−1)
u , gihi) = (maxgu(g, h)i,mingu(g, h)i) (P3)

The encoding of the states is given in Section 5.4.1. In the following pages, we prove
propositions (P1) to (P3). In combination, these propositions then show that the
improvement correctly implements COMP(g, h).

74



5.5. Hazard-free Implementation

Associativity of the Transition Function. Regarding (P1), we note the state-
ment that tu(s, σ) is associative does not depend on n. In other words, it can be
verified by checking for all possible x, y, z ∈ T2 whether tu(tu(x, y), z) = tu(x, tu(y, z)).
While it is tractable to manually verify all 36 = 729 cases (exploiting various symme-
tries and other properties of the operator), it is tedious and prone to errors. Instead,
we verified that both evaluation orders result in the same outcome by a short computer
program.

Theorem 5.12. (P1) holds, i.e., tu(s, σ) is associative.

Apart from being essential for our construction, this theorem simplifies notation; in
the following, we may write

(πi)u := tu(·, g1h1) ◦ tu(·, g2h2) ◦ . . . ◦ tu(·, gihi) ,

where the order of evaluation does not affect the result. Because tu(s
(0), σ) = σ,

(πi)u = (πi)u(s
(0)) .

Remark. We stress that in general the hazard-free extension of an associative operator
is not associative. A counter-example is given by binary addition modulo 4:

(0u+u 01) +u 01 = uu ̸= 1u = 0u+u (01 +u 01).

Determining State i. For hurdle (P2) we need to show that repeated application

of the transition function to the input pairs gjhj , j ∈ [1, i], actually results in s
(i)
u .

We make use of Observation 3.26, i.e., if there is an u bit at position m of a valid
string, then the remaining n−m bits of a valid string are the maximum codeword of
a (n−m)-bit code.

Our reasoning will be based on distinguishing two main cases: one is that s
(i)
u

contains at most one u bit, the other that s
(i)
u = uu. For each case, we formulate a

technical statement.

Observation 5.13. If s
(i)
u contains at most one u bit, then resolution of the ith state

equates to repeated application of the transition function to the resolution of the inputs.
For i ∈ [n+ 1],∣∣∣res(s(i)u

)∣∣∣ ≤ 2⇒ res(s
(i)
u ) = t(·, res(g1h1)) ◦ . . . ◦ t(·, res(gihi))(s(0)) .

Proof. Let S := t(·, res(g1h1))◦. . .◦t(·, res(gihi))(s(0)). From the hazard-free extension

we obtain s
(i)
u = ∗S. Plugging this in, the l.h.s. becomes res

(
s
(i)
u

)
= res(∗S). The

claim thus follows from Observation 2.5.

Lemma 5.14. Suppose that for valid strings g, h ∈ Sgn, it holds that s
(i)
u = uu, for

some i ∈ [1, n]. Then g = h and s
(j)
u = uu, for all j ∈ [i, n].

75



Chapter 5. Hazard-Free Sorting

Proof. As in the previous proof let S := t(·, res(g1h1)) ◦ . . . ◦ t(·, res(gihi))(s(0)) such
that s

(i)
u = ∗S. It must hold that (i) {00, 11} ⊆ S, or (ii) {01, 10} ⊆ S. By Lemma 5.8,

(i) implies that there are stabilizations g′, g′′ ∈ res(g1,i) and h′, h′′ ∈ res(h1,i) such that
g′ = h′, par(g′) = 0, g′′ = h′′, and par(g′′) = 1, while (ii) implies such g′, g′′, h′, h′′ with
g′ ≺ h′ and g′′ ≻ h′′. Checking Definition 5.2 and Table 5.1, we see that both options
necessitate that g1,i = h1,i with some u bit. Denoting by m ∈ [1, i− 1] the index such
that gm = hm = u. Observation 3.26 shows that gm+1,n = hm+1,n = 10n−m−1. In
particular, g = h, showing (again by Lemma 5.8) that (i) or (ii) (in fact both) also
apply to t(·, res(g1h1)) ◦ . . . ◦ t(·, res(gjhj))(s(0)) for any j ∈ [i, n]. We conclude that

s
(j)
u = uu for any such j.

Equipped with these tools, we are ready to prove (P2). Note that we can abbreviate
tu(·, g1h1) ◦ . . . ◦ tu(·, gihi) by (πi)u because of Theorem 5.12.

Theorem 5.15. (P2) holds, i.e., for all g, h ∈ Sgn and i ∈ [1, n], s
(i)
u = (πi)u.

Proof. We show the claim by induction on i. Trivially, we have that s
(0)
u = s(0) = 00

and thus for i = 1 that

s
(1)
u = ∗(t(s(0), res(g1h1))) = ∗(res(g1h1)) = g1h1 = tu(s

(0), res(g1h1)) .

Hence, suppose that the claim has been established for i− 1 ∈ [1, n− 1] and consider

index i. If
∣∣∣res(s(i−1)

u

)∣∣∣ ≤ 2, then Observation 5.13 and the induction hypothesis

yield that

tu(·, g1h1) ◦ . . . ◦ tu(·, gihi)(s(0)) = tu(s
(i−1)
u , gihi)

= ∗
(
t(res

(
s
(i−1)
u

)
, res(gihi))

)
= ∗ t(·, res(g1h1)) ◦ . . . ◦ t(·, res(gihi))
= s

(i)
u .

It remains to consider the case that s
(i−1)
u = uu. By Lemma 5.14, s

(i)
u = uu, too.

Thus,

(πi)u = tu(s
(i−1)
u , gihi) = tu(uu, gihi) = uu = s

(i)
u .

Obtaining the Outputs from State i. Recall that o : B2 × B2 → B2 is the
operator given in Table 5.2 computing maxg{g, h}iming{g, h}i out of s(i−1) and gihi.
We derive (P3) by again distinguishing cases where s(i−1) has at most one unstable
bit and s(i−1) = uu.

Theorem 5.16. (P3) holds, i.e., given valid inputs g, h ∈ Sgn and i ∈ [1, n],

ou(s
(i−1)
u , gihi) = maxgu(g, h)imingu(g, h)i .

76



5.5. Hazard-free Implementation

i 0 1 2 3 4

gihi 00 u0 11 00

s
(i)
u = tu(s

(i−1)
u , gihi) 00 00 u0 1u 1u

ou(s
(4)
u , gihi) 00 uu 11 00

ou(s
(i−1)
u , gihi) 00 u0 11 00

Table 5.5: Run of the FSM on inputs g = 0u10 and h = 0010, showing
that computation of only the last state is insufficient. The computation yields
ou(1u, u0) = ∗{00, 01, 10} = uu, where ou(00, u0) = ∗{00, 10} = u0 is the correct
output at the second position.

Proof. Assume first that
∣∣∣res(s(i−1)

u

)∣∣∣ ≤ 2, then

ou(s
(i−1)
u (g, h), gihi)

= ∗ o
(
res
(
s
(i−1)
u (g, h)

)
, res(gihi)

)
= ∗ o (t(·, res(g1h1)) ◦ . . . ◦ t(·, res(gi−1hi−1)), res(gihi)) by Obs. 5.13

= ∗ (maxg{res(g), res(h)}iming{res(g), res(h)}i) by Cor. 5.10

= maxgu(g, h)imingu(g, h)i .

Otherwise, s
(i−1)
u = uu. Then, by Lemma 5.14, g = h. In particular, gi = hi. We

observe that for all b ∈ T, it holds that ou(uu, bb) = bb. Therefore,

ou(s
(i−1)
u (g, h), gihi) = gihi = maxgu(g, h)imingu{g, h}i .

Remark. The reader may ask why we compute s
(i)
u for all i ∈ [0, n − 1] instead of

computing only s
(n)
u with a simple tree of tu elements, which would yield a smaller

circuit. State s
(n)
u determines the result of the comparison of the entire strings. It could

be used to compute all outputs, i.e., we could compute the output by ou(s
(n)
u , gihi)

instead of ou(s
(i−1)
u , gihi). However, in case of instability, this may lead to incorrect

results. We show an example run of the transducer and the outputs for ou(s
(n)
u , gihi)

and ou(s
(i−1)
u , gihi) in Table 5.5. The example shows that, in this case, a single u in

the input can affect both outputs. We thus need to compute every intermediate state

s
(i)
u .

Putting it Together. We can combine propositions (P1) to (P3) to show that the
improvement correctly implements COMP(g, h). By Theorem 5.12 and Definition 4.3 we
can compute (πi)u = tu(·, g1h1)◦. . .◦tu(·, gihi) by a PPC circuit for each i ∈ {1, . . . , n}.
Given a hazard-free implementation of tu(s, gh), Theorem 5.15 states that we can

77



Chapter 5. Hazard-Free Sorting

input width B

Figure 5.2: Simulation results of [16]. Comparison of COMP (here “PPC Sort”) and a
binary benchmark in terms of chip area, delay, and number of gates for input widths
2, 4, 8, and 16.

compute s
(i)
u from (πi)u(s

(0)). Finally, Theorem 5.16 shows that any hazard-free
implementation of ou(s, gh) can be used to compute the output of COMP(g, h).

Hazard-free implementations of tu(s, gh) and ou(s, gh) do not offer significant
novelty. In fact, they can be implemented by the same circuit, which is similar to the
CMUX. Gate-level implementations are deferred to [16].

5.6 Simulation and Results

In [16] we perform simulations to compare COMP to a binary benchmark. Here we
shortly highlight the results. The binary benchmark is a simple circuit sorting two
inputs in the standard binary encoding. The circuit is implemented in VHDL and
synthesized by computer aided design (CAD) tools.

Both designs are layed out for input widths of 2, 4, 8, and 16 bits and plugged in
sorting networks for 2, 3, 7, and 10 inputs. Results are depicted in Figure 5.2. Even
though the comparison disfavors COMP the simulations show that it performs on par
with the benchmark. The comparison favors the benchmark in the sense that the
benchmark undergoes standard optimization while COMP is not optimized because we
have to ensure hazard-freedom. The optimization deploys faster gates for input width
16, which reduces the delay of the benchmark. COMP could be further optimized by
the use of the transistor-level implementation of the CMUX in [42].

The results show that (application-specific) hazard-free circuits are able to perform
on par with conventional circuits. Furthermore, there is room to improve the results
by incorporating hazard-free solutions in the design flow. For example, hazard-free
optimization and integration of the CMUX into standard cell libraries are expected to
yield better hazard-free transistor-level implementations.

78



6Clock Synchronization

In the following pages, we introduce the basic terminology and definitions for the
problem of clock synchronization. We present two algorithms for clock synchronization:
the Lynch-Welch algorithm and the OffsetGCS algorithm. We defer a discussion of
related work on clock synchronization algorithms to Section 7.1.3 in the following
chapter.

Outline. We present the computational model in Section 6.1 followed by the problem
specification in Section 6.2. The Lynch-Welch algorithm is discussed in Section 6.3
and the OffsetGCS algorithm in Section 6.4.

6.1 Model

Network, Communication, and Timing. A network is modeled by a graph
G = (V,E), where V is the set of nodes and E is the set of edges. An edge is a
pair of nodes v, w in V . Edges in a network are bidirectional, for each edge (v, w) E
also contains (w, v). Furthermore, for each v ∈ V , set E contains edge (v, v). The
diameter D of a network is the maximum length of a shortest path in the network.

We denote real time, i.e., an external reference time for analysis of the algorithms,
by Newtonian time. A node has no access to Newtonian time, each node has its own
(internal) time reference.

Nodes communicate by sending content-less messages, known as pulses. A pulse
is sent via broadcast to all neighboring nodes. The message delay is the time a pulse
travels between sender and receiver. It is constrained by a maximum delay d and a
minimum delay d− U , where U is the delay uncertainty. A pulse sent by a node at
Newtonian time t is received between time t+d−U and time t+d. The pulse arrives
at Newtonian time t′ ∈ [t+ d− U, t+ d].

Computations are event-driven, an incoming message or a timing threshold triggers
the next step. The model does not account for computational delay. Any computations
are instantaneous, i.e., calculations take no time. An incoming message triggers
immediate transmission of the next message. We can account for computational
delays in the message delay.

Faults. Below we present an algorithm that is robust against faulty nodes. Formally,
we denote the set of faulty nodes by F ⊆ V . All nodes v ∈ F are Byzantine, i.e., we
make no assumptions whatsoever about their behavior. In particular, they are not
required to communicate by broadcast, pulses can be sent to different neighbors at
different times. Usually, we assume that the number of faulty nodes in the network
is bounded by a parameter f , such that |F | ≤ f

79



Chapter 6. Clock Synchronization

Hardware Clock. Each node has an associated time reference, given by its hardware
clock. The hardware clock is prone to uncertainty, which we model by a variable rate
that may change over time. The uncertainty is called the hardware clock drift (short
clock drift). For each v ∈ V there is an integrable function hv : R≥0 → R called the
hardware clock rate. Parameter ρ > 0 is an upper bound on the one-sided hardware
clock drift of all nodes. The hardware clock rate satisfies 1 ≤ hv(t) ≤ 1 + ρ for all
t ∈ R≥0. Formally, Hv(t), the hardware clock value of v at time t, is defined by

Hv(t) =

∫ t

t0v

hv(τ)dτ +H0
v ,

where H0
v is the, possibly negative, initial value of v’s hardware clock and t0v is the

Newtonian time at which v initializes. The hardware clock is v’s internal reference of
time. A node can only access its own hardware clock value, the rate of the hardware
clock remains unknown to a node. The main purpose of a hardware clock is to
estimate the time difference between local events.

6.2 Problem

Even when perfectly initialized, neighboring nodes may drift apart at rate ρ. Without
further tools, the system cannot cope with the drift of the hardware clock. The longer
the system runs, the longer nodes would have to wait for incoming messages. The
response time of an event-based system would increase with its running time.

In order to cope with this issue we introduce an artificial clock, the logical clock. It
is artificial in the sense that it is computed by the node itself. In general, the logical
clock follows the rate of the hardware clock with slight adjustments.

different approaches that
go beyond adjusting the
frequency of the logical
clock are discussed in

Section 8.1

The difference
between two logical clock values is called skew. The problem of clock synchronization
lies in computing synchronous logical clocks with small skew, despite uncertainties in
the hardware clock and message delays.

Logical Clock. The logical clock value is given by Lv : R≥0 → R. A node’s logical
clock follows the rate of its hardware clock, but it is adjustable by a constant factor. It
may speed up in order to catch up to other nodes. The logical clock Lv(t) is initialized
to 0, when Hv(t) reaches 0.

The formal specification of the logical clock slightly varies between both algorithms
that we present. According definitions are given in the specific sections. Intuitively,
the GCS algorithm (cf. Section 6.4) controls a binary switch that puts the logical
clock in either slow or fast mode; whereas in slow mode the logical clock follows the
hardware clock and in fast mode, it advances at the hardware clock rate adjusted
by a constant factor larger than 1. The Lynch-Welch algorithm on the other hand
is round-based. In each round it computes an adjustment, which is applied to the
logical clock.

80



6.2. Problem

We require that the logical clocks progress at least at the normalized rate 1, we
do not allow to halt a clock. In other words, each node advances at all times. This
guarantees progress of the system at all times.

Remark. Without the minimum rate requirement, the task becomes trivial: all nodes
can simply set Lv(t) = 0 for all times t to achieve perfect synchronization.

Skew. The skew between two nodes describes the difference in their logical clock
value. The upper bound on the skew is a figure of merit for clock synchronization
algorithms. For a graph, we define two types of skew, the global skew and the local
skew.

Global Skew The global skew G(t) is the maximum skew between any two nodes in
the network. Formally, it is defined by

G(t) := max
v,w∈V

{Lw(t)− Lv(t)} .

Local Skew The local skew L(t) is the maximum skew between any two neighboring
nodes in the network. Formally, it is defined by

L(t) := max
(v,w)∈E

{Lw(t)− Lv(t)} .

Clock Synchronization. The goal of a clock synchronization algorithm is to pro-
vide a distributed algorithm that keeps clocks synchronized. A clock synchroniza-
tion algorithm should be able to tolerate clock drift and varying message delays.
When executed on each node, the algorithm computes a logical clock minimizing L(t)
(or G(t)) at any time t.

Initialization. The analysis of the algorithms requires that at time 0 neighboring
nodes have a small initial skew.

in Section 8.2 we further
discuss initial
requirements on the clocks

The initial local skew is bounded by ∆,

L(0) = max
(v,w)∈E

{Hv(0)−Hw(0)} ≤ ∆ . (6.1)

To achieve good initialization, we could, e.g., perform an initial flooding of the sys-
tem [73]. For an initial flooding, we require a spanning tree with low depth. Assuming
we are given a root node we can construct a Breadth-First Search (BFS) tree using
the Bellman-Ford algorithm [6]. BFS trees are spanning trees with optimal depth,
the longest path from the root to a leaf has length D, the diameter of the network.
The algorithm can be executed asynchronously, it requires asymptotic running time
in O(dD). We can afford the running time because the algorithm only needs to be
executed once. After execution of the algorithm, each node v has a record of D and
its distance to the root, i.e., its depth in the tree, which we denote by depth(v).

After constructing the optimal-depth spanning tree we can perform the flooding
as follows: The root node r starts up, initializes H0

r := −(d − U)D, and sends a

81



Chapter 6. Clock Synchronization

message to all its children. When receiving a message a node initializes and forwards
a message to all its children. On initialization node v sets its initial value according
to its depth in the tree; H0

v := −(d−U) · (D−depth(v)). We define Newtonian time 0
as the time the last node in the system initializes. At time 0 the hardware clock of
each node v is non-negative, i.e., Hv(0) ≥ 0. We now show that the flooding achieves
a local skew that is bounded by (1 + ρ)UD.

Lemma 6.1. The initial local skew is bounded by ∆ = (1 + ρ)UD.

Proof. Assume we are given a BFS tree, we perform a flooding as described above.
We denote by tf the Newtonian time the flooding starts. We show the claim by
showing that neighboring nodes in the graph are located on the same or adjacent
levels. Then we show skew bounds for nodes on the same or adjacent levels.

First, we show that neighboring nodes in the graph are located on the same or
adjacent levels in the BFS tree. A level of the tree is the set of all nodes with the
same depth. For contradiction assume nodes v and w are neighboring in the graph
but depth(w) > depth(v) + 1. As v and w are neighbors there exists a path in the
graph from w to the root r of length at most depth(v) + 1. As the tree is a BFS
tree we obtain that depth(w) ≤ depth(v) + 1. This contradicts the assumption that
depth(w) > depth(v) + 1.

Next, we show the skew bound for nodes that are on the same level. Nodes on
the same level initialize H0

v to the same value, and skew emerges from the different
arrival times of the message. Each node v at depth depth(v) receives its message
earliest at time tf + (d − U) · depth(v) and latest at time tf + d · depth(v). Hence,
two nodes at the same depth receive their message with a time difference of at most
U · depth(v). As the hardware clock may drift, the skew of two nodes at the same
depth is bounded by (1 + ρ)U · depth(v). Bounding the depth by D results in a skew
bound of (1 + ρ)UD.

Last, we show the skew bound for nodes that are on adjacent levels. Node v at
depth(v) receives its message earliest at time tf + (d − U) · depth(v). Node w at
depth(v) + 1 receives its message latest at time tf + d(depth(v) + 1). Hence, the
initializations have a time difference of at most U ·depth(v)+ d. Node v initializes its
hardware clock value to −(d−U)(D−depth(v)) and advances at least at rate 1. Hence,
when w initializes, Hv has value at least −(d− U)(D − depth(v)) + U · depth(v) + d.
Node w initializes its hardware clock to −(d − U)(D − (depth(v) + 1)). Hence, the
difference in clock values of nodes in adjacent levels is at most (depth(v) + 1)U . As
depth(v) is at most D, we obtain a bound of (D + 1)U . Assuming that ρD > 1, we
obtain that the skew is bounded by the skew of nodes on the same level.

For the gradient clock synchronization (GCS) algorithm the bound on the local skew
achieved by a flooding does not match the requirement(cf. Theorem 6.8). However,
in [14] we show that given an arbitrary global skew G(0) the system will converge to
the skew bounds claimed in Theorem 6.8. We now show that the flooding technique
can bound the initial global skew by G(0) ≤ (ρd+U)D. Further evaluation is deferred
to Section 6.4.1.

82



6.3. Lynch-Welch Algorithm

Lemma 6.2. The initial global skew G(0) is bounded by (ρd+ U)D.

Proof. Assume we are given a BFS tree, we perform a flooding as described above.
We denote by tf the Newtonian time the flooding starts. In the proof of Lemma 6.1
we derived skew bounds for nodes on the same or adjacent levels. Analogous argu-
mentation shows that the skew of two nodes v and w is bounded by U · depth(w),
where depth(w) > depth(v) and v is not the root node. The skew of any two nodes
in the graph is bounded by the skew of the node at a larger depth to the root node.
At time tf the root initializes to −(d− U)D. A node v receives its message latest at
time tf + d · depth(v). Hence, the root is initialized at most depth(v) · d time before
v. It may drift at rate 1 + ρ. Hence, the value of the hardware clock of the root is
at most −(d− U)D + (depth(v) · d)(1 + ρ) when v initializes. Node v initializes its
hardware clock to −(d−U)(D− depth(v)). Subtraction of the clock values results in
(ρd+ U)depth(v). The diameter D is an upper bound on depth(v). Thus, the global
skew after flooding is bounded by (ρd+ U)D.

We do not further discuss initialization procedures. Although it is an important part,
initialization is not the main focus of this work. It complicates the description of the
algorithms and circuits. Hence, we assume the bounds on global and local skew given
above.

6.3 Lynch-Welch Algorithm

In this section, we describe the algorithm of Lundelius-Welch and Lynch [71]. We
present a variant of the algorithm similar to the one described by Khanchandani and
Lenzen [57]. The algorithm is restricted to fully connected networks, also known as
cliques. It is fault-tolerant, in the sense that it allows for up to f ≤ (n− 1)/3 nodes
to be faulty.

Following the description in [57], the algorithm proceeds in rounds. During each
round, each (correct) node pulses once at a specified logical time. Once a node records
the relative times of its neighbors’ pulses, it computes an adjustment to its logical
clock using an “approximate agreement” step (cf. [35]). The clock adjustment is then
made by adjusting the logical clock to an appropriate rate for the remainder of the
round. The length of each round is inductively defined, where the initial round’s
length depends on (an upper bound on) the initial clock skew in the network.

Remark. Jennifer Lundelius Welch appears in the bibliography as Jennifer Lundelius
or Jennifer L. Welch due to her marriage. For consistency with previous work, we
stick with Lynch-Welch algorithm.

6.3.1 Algorithm

We assume that the network G = (V,E) is fully connected, i.e., for each v, w ∈ V the
edge (v, w) is in set E. Nodes communicate by broadcast, a message that is sent by
(non-faulty) node v is received by each node in the network (including v).

83



Chapter 6. Clock Synchronization

The algorithm controls its logical clock by adjusting the logical clock rate relative to
the hardware clock. Specifically, the algorithm controls the parameter δv(t) ∈ R≥0.
The logical clock value Lv(t) with offset L0

v at time 0 is computed to be

Lv(t) =

∫ t

0
(1 + φ · δv(τ))hv(τ) dτ + L0

v . (6.2)

The parameter φ is a constant whose value will be determined later on, we now already
fix that 0 < φ < 1.

The algorithm is executed in rounds on a cluster of nodes. When the network is a
clique, the cluster spans the whole network. In Chapter 7 clusters will be subgraphs of
the network. Hence, we call our variant of the Lynch-Welch algorithm the ClusterSync
algorithm. Each round r ∈ N consists of three phases, of logical durations τ1(r), τ2(r),
and τ3(r), respectively; the total round length is T (r) = τ1(r) + τ2(r) + τ3(r). The
phases play the following roles:

Phase 1. This phase is sufficiently long for all non-faulty nodes within a cluster to
have transitioned to round r by the end of Phase 1. Each node sends a pulse
at the end of Phase 1.

Phase 2. During this phase, each node waits to receive pulses from its neighbors.
Phase 2 is sufficiently long that by the end of this phase, each node will have
received pulses from all of its (correct) neighbors within its cluster. At the end
of the phase, each node v computes an adjustment ∆v(r) to its own logical
clock.

Phase 3. During this final phase, v implements the clock adjustment computed at
the end of Phase 2 by setting δv to an appropriate value for the duration of the
phase.

During Phase 1 and Phase 2, each node sets δv = 1. We give the pseudo-code in
Algorithm 1. The algorithm uses the following notation. For each round r and nodes
v, w ∈ C, at Newtonian time

tv(r) node v begins round r,
pv(r) node v sends its pulse in round r, and
twv(r) node v receives the pulse node w sent in (w’s) round r.

In case node v or node w is faulty, the values above may not be well-defined. In such
a case, we can assign their values arbitrarily. While the notation above is convenient
for describing the algorithm, we emphasize that nodes cannot access the values tv(r),
pv(r), and twv(r) directly. Instead, v stores, for example, Lv(twv(r)), the logical time
at which it receives w’s round r pulse.

We state the ClusterSync algorithm executed at each node in Algorithm 1. The
algorithm is parametrized by τ1, τ2, and τ3.

In [57], Lv is discontinuously adjusted by −∆v(r) at the end of Phase 2, and
increases at the nominal rate at all other times. The advantage of our formulation

84



6.3. Lynch-Welch Algorithm

Algorithm 1 ClusterSync at node v

1: Lv ← 0

2: for each round r ∈ N do

3: δv ← 1

4: at time Lv(tv(r)) + τ1(r) do

5: broadcast clock pulse

6: at time Lv(tv(r)) + τ1(r) + τ2(r) do

7: Sv ← ∅ ▷ multiset, ordered ascendingly

8: at each node w ∈ Cv do

9: τwv ← Lv(twv(r))− Lv(tvv(r))

10: Sv ← Sv ∪ {τwv}

11: ∆v(r)← (Sf+1
v + Sn−f

v )/2 ▷ Si
v is the i-th element of Sv

12: δv ← 1−
(
1 + 1

φ

)
∆v(r)/(τ3(r) + ∆v(r))

13: at time Lv(tv(r)) + τ1(r) + τ2(r) + τ3(r) do

14: end round r

of ClusterSync is that Lv(t) is continuous and increases at a rate that can be kept
close to the nominal rate by choosing τ3(r) sufficiently large. This becomes essential
in Chapter 7.

6.3.2 Analysis

In [19], we employ the analysis from [57] with the adjustments necessary for our
variant of the algorithm. We define the following parameters:

ϑg = 1 + ρ ,

ξg = (ϑg − 1)(1 + φ) ,

αg =
1

1− ξg

(
2ϑ2

g + 5ϑg − 5

2(ϑg + 1)
+ ξg · (1 + 1/φ)

)
,

βg =
1

1− ξg
(3ϑg − 1 + ξg/φ) · U +

ξg
1− ξg

d , and

e∞g =
βg

1− αg
.

(6.3)

Suppose αg < 1 (which is possible for sufficiently small ρ and suitable choice of
φ). Then the analysis implies the upper bound in Lemma 6.3 on the skew, for
suitable choices of τ1, τ2, and τ3. In what follows, we define p(r) to be the multiset of
(Newtonian) times at which the non-faulty nodes in the network generate their round

85



Chapter 6. Clock Synchronization

r pulses. That is,
p(r) = {pv(r) | v ∈ C \ F} .

We define the pulse width of round r, denoted ∥p(r)∥, to be the difference between
maximum and minimum times in p(r):

∥p(r)∥ = maxp(r)−minp(r).

Since every node produces its round r pulse at the same logical time, i.e.,

Lv(pv(r)) = T (0) + T (1) + · · ·+ T (r − 1) + τ1(r) ,

bounds on the pulse width ∥p(r)∥ together with bounds on T (r) and logical clock
rates imply corresponding bounds on the skew in round r. Our analysis in [19] yields
the following bound on skew.

Lemma 6.3. Suppose logical clocks are initialized so as to ensure ∥p(0)∥ ≤ e∞g , and
parameters are chosen such that αg < 1 in Equation (6.3). Then for all r ∈ N take

τ1(r) = τ1 = ϑg · e∞g ,

τ2(r) = τ2 = ϑg · (e∞g + d) ,

τ3(r) = τ3 = ϑg ·
1

φ
· (e∞g + U) .

(6.4)

Suppose ρ > 0 is sufficiently small. Then for suitable choices of µ and φ, for all
t ∈ R+ and non-faulty nodes v, w ∈ C \ F , we have

L(t) ≤ 6e∞g . (6.5)

We note that L(t) is bounded by O(ρ · d + U), which asymptotically matches the
best possible bound for fault-tolerant clock synchronization in a fully connected net-
work [72].

Remark. In fully connected networks L(t) = G(t).

6.4 Gradient Clock Synchronization

In this section, we present the GCS algorithm of Lenzen et al. [67]. The algorithm
achieves close synchronization between neighboring nodes in an arbitrary network,
i.e., it minimizes L(t). Let δ be an upper bound on how precisely the skew between
neighbors is known. Provided that the global skew does not exceed a bound of O(δD),
it achieves asymptotically optimal local skew bounded by O(δ logµ/ρD). In other
words, local skew grows only logarithmic in the hop diameter of the network, still, we
have clocks that progress at a minimum rate of 1. The local and global skew bounds
are optimal up to roughly factor 2 [67].

Intuitively, the algorithm executed by node v continuously measures the skew
to each neighbor w. By a set of rules, the algorithm decides whether to progress

86



6.4. Gradient Clock Synchronization

the logical clock at a fast or a slow rate. The set of rules basically defines pairs of
thresholds on the measured skews. Skew is measured in discrete steps. When there is
a neighbor that has larger skew (negative or positive) than all other neighbors, then
the algorithm changes the rate accordingly. We associate a slow rate with waiting for
a neighbor and a fast rate with catching up to a neighbor.

6.4.1 Algorithm

The GCS algorithm by Lenzen et al. computes a logical clock from the hardware clock
in two different modes; fast and slow. In slow mode, the logical clock follows the rate
of the hardware clock. In fast mode, the logical clock advances at the hardware clock
rate and speedup factor µ > 0. Formally, a node in fast mode advances its logical clock
with rate (1 + µ)hv(t). Factor µ is not constrained by the system, it is a parameter
adjustable by the designer. A node controls a binary switch γv(t) ∈ {0, 1} to adjust
its logical clock. In fast mode γv is set to 1 and, accordingly, in slow mode γv is set
to 0. The logical clock value of v at time t with offset L0

v at time 0 is determined by

Lv(t) =

∫ t

0
(1 + µ · γv(τ))hv(τ) dτ + L0

v .

Clearly, a node in fast mode must be able to catch up to a node in slow mode. Hence,
we pose the constraint that fast mode (without clock drift) can never be slower than
slow mode (with clock drift). This can be formalized as

1 + ρ < 1 + µ . (6.6)

The algorithm specifies two conditions that control when to switch between fast
and slow mode. Accordingly, conditions are named fast condition (FC) and slow
condition (SC). The algorithm is parametrized by κ, which determines the quality of
synchronization.

Definition 6.4 (fast and slow condition). Let κ ∈ R+ be a positive, non-zero, real
number. A node v ∈ V satisfies the fast condition at time t if there is a natural
number s ∈ N such that the following two statements hold:

∃(v, x) ∈ E : Lx(t)− Lv(t) ≥ (2s+ 1)κ (FC-1)

∀(v, y) ∈ E : Ly(t)− Lv(t) ≥ −(2s+ 1)κ (FC-2)

Node v ∈ V satisfies the slow condition at time t if there is a natural number s ∈ N
such that the following two conditions hold:

∃(v, x) ∈ E : Lx(t)− Lv(t) ≤ −2sκ (SC-1)

∀(v, y) ∈ E : Ly(t)− Lv(t) ≤ 2sκ (SC-2)

Intuitively, skew is measured in steps of κ. Node v satisfies FC if there is at least
one node u, that is ahead of v and no other node behind v exceeds the absolute skew

87



Chapter 6. Clock Synchronization

between v and u. Node v satisfies SC if there is a node u behind v that has a larger
absolute skew to v than all nodes ahead of v. The thresholds use odd multiples of κ
for FC and even multiples of κ for SC to ensure mutual exclusion.

If v is the node with the largest logical clock value in the network, then all
other nodes are behind v, they have negative offset. Thus, SC is satisfied for s = 0.
Accordingly, if v is the node with the smallest clock value in the network, then it
satisfies FC as all offsets to other nodes are positive.

Definition 6.5. An algorithm is a GCS algorithm with parameters ρ, µ, κ if the
following invariants hold, for every node v ∈ V and all times t, t′:

µ > ρ , (I1)

Hv(t
′)−Hv(t)≤Lv(t

′)− Lv(t)≤(1 + µ)(Hv(t
′)−Hv(t)) , (I2)

if v satisfies FC at time t then v is in fast mode at time t, (I3)

if v satisfies SC at time t then v is in slow mode at time t. (I4)

Invariant (I2) only states that the rate of the logical clock is at least the rate of the
hardware clock and at most (1 + µ) times the rate of the hardware clock.

Remark. Every algorithm that meets Definition 6.5 is a GCS algorithm. In this
work we often regard the algorithm by Lenzen, Locher, and Wattenhofer [67], we will
present it later as the OffsetGCS algorithm. The analysis of [62], however, applies to
every GCS algorithm.

Offset Estimates. Nodes have no access to the logical clocks of their neighbors.
Hence, precise skews remain unknown to the node. In order to fulfill the invariants of
the algorithm a node maintains an estimate of each offset to a neighbor. The offset
estimate of node v to its neighbor w is denoted by Ôw. Intuitively, a node maintains
Ôw(t) ≈ Lw(t) − Lv(t). Parameter δ gives a two-sided bound on the quality of the
estimates. ∣∣∣Ôw(t)− (Lw(t)− Lv(t))

∣∣∣ ≤ δ (6.9)

Given an estimate of each neighboring clock, the GCS algorithm specifies the fast
trigger (FT). Every node that satisfies fast condition (FC) must satisfy FT, but a
node that satisfies slow condition (SC) must not satisfy FT. A node determines by
FT whether to go to fast or slow mode.

Definition 6.6 (fast trigger). Let κ ∈ R+ be a positive, non-zero, real number. A
node v ∈ V satisfies the fast trigger at time t if there is a natural number s ∈ N such
that the following two statements hold:

∃(v, x) ∈ E : Ôx(t) ≥ (2s+ 1)κ− δ (FT-1)

∀(v, y) ∈ E : Ôy(t) ≥ −(2s+ 1)κ− δ (FT-2)

88



6.4. Gradient Clock Synchronization

Algorithm 2 GCS algorithm at node v

at each time t do

for each neighbor w do

ow ← Ôw(t) ▷ save offset estimate to w

ft1(s)← ∃w : ow ≥ (2s+ 1)κ− δ

ft2(s)← ∀w : ow ≥ −(2s+ 1)κ− δ

if ∃s : ft1(s) ∧ ft2(s) then

γv(t)← 1 ▷ switch to fast mode

else

γv(t)← 0 ▷ switch to slow mode

We are now able to state the GCS algorithm in Algorithm 2. Intuitively, the algorithm
checks the fast trigger (FT) at all times. If v satisfies FT then v switches to fast mode,
otherwise v defaults to slow mode.

Remark. As the decision to run fast or slow is a discrete decision, a hardware im-
plementation will be prone to metastability [74]. We discuss how to deal with this
problem in Chapters 9 and 10.

Maximal and Minimal Offset. The fast and slow condition of Lenzen et al. can
be reformulated using the largest and smallest offset to node v. The maximal offset
at node v is given by

Omax(t) := max
(v,x)∈E

{Lx(t)− Lv(t)} .

The node with largest offset to v is the node most ahead of v. Similarly, the minimal
offset is defined by

Omin(t) := min
(v,x)∈E

{Lx(t)− Lv(t)} .

A node v ∈ V satisfies FC if there is a neighbor that reaches a certain (positive)
threshold and no offset to any neighbor crosses the corresponding negative offset.
If the maximal offset reached a certain threshold we are certain that there is a
corresponding neighbor with this offset. Accordingly, if the minimal offset is larger
than the corresponding negative offset, we are certain that there is no neighbor with
an offset smaller than the threshold. Formally, we restate the fast condition as

Omax(t) ≥ (2s+ 1)κ (FC-1)

Omin(t) ≥ −(2s+ 1)κ (FC-2)

Accordingly, we can restate the slow condition as

Omin(t) ≤ −2sκ (SC-1)

Omax(t) ≤ 2sκ (SC-2)

89



Chapter 6. Clock Synchronization

Algorithm 3 OffsetGCS algorithm at node v

at each time t do

for each adjacent node w do

Float ow ← Ôw(t) ▷ save offset estimate to w

omax ← max{ow} ▷ compute maximal estimate

omin ← min{ow} and minimal estimate

ft1(s)← omax ≥ (2s+ 1)κ− δ

ft2(s)← omin ≥ −(2s+ 1)κ− δ

if ∃s : ft1(s) ∧ ft2(s) then

γv(t)← 1 ▷ switch to fast mode

else

γv(t)← 0 ▷ switch to slow mode

We define the maximal and the minimal estimate of v’s offset estimates by

Ômax := max
(v,x)∈E

{Ôx} , and

Ômin := min
(v,x)∈E

{Ôx} .

We can bound s by a natural number ℓ. The largest skew between two neighbors
is bounded by L. Let ℓ be the largest number such that (2ℓ + 1)κ − δ ≤ L. Then
node v ∈ V satisfies the fast trigger at time t if there is an s ∈ [ℓ+ 1] such that the
following two statements hold:

Ômax(t) ≥ (2s+ 1)κ− δ (FT-1)

Ômin(t) ≥ −(2s+ 1)κ− δ (FT-2)

We are now able to restate the GCS algorithm with respect to Ômax and Ômin rather
than quantifiers “exists” and “for all” over all neighbors. The algorithm is presented
in Algorithm 3. It is called OffsetGCS, it will be used throughout the rest of this
dissertation.

Figure 6.1 visualizes conditions FC and SC. In a coordinate system where we mark
Omin along the x-axis and Omax along the y-axis we can mark FC and SC as colored
regions. We mark maximal and minimal offsets as point (Omin, Omax) in the plane.
Offsets are denoted by a small rectangle. An algorithm that satisfies Definition 6.5
has to go to fast mode at any time (Omin, Omax) falls into the FC (yellow) region.
Similarly, if (Omin, Omax) falls into the SC (blue) region, the algorithm needs to go to
slow mode.

Due to the uncertainty in message delay the actual point (Ômin, Ômax) may lie in
the δ surrounding of a measurement, which is depicted by a larger box surrounding

90



6.4. Gradient Clock Synchronization

−2κ−4κ

κ

3κ

2κ

−κ−3κ

4κ

Omin

Omax
fast condition (FC)

fast trigger (FT)

slow condition (SC)

2δ

2δ

δ

δ

> 2δ

> 2δ

Ômax/

Ômin/

Figure 6.1: Visualization of FC and SC in the plane of Omin and Omax. The exact
measurement (Omin, Omax) is denoted by a small rectangle. FT is marked only by a
line in the plane of Ômin and Ômax. The actual measurement (Ômin, Ômax) is depicted
as a small cross. According to Definition 6.5, the logical clock must be fast when
(Omin, Omax) is within the FC region. Respectively, it must be slow when (Omin, Omax)
is within the SC region. The OffsetGCS algorithm switches to fast when (Ômin, Ômax)
is within the FT region and to slow otherwise.

91



Chapter 6. Clock Synchronization

(Omin, Omax). The point (Ômin, Ômax) is denoted by a cross. With regard to Ômin

and Ômax along the x-axis and y-axis we can also mark FT as a region. A node that
executes OffsetGCS chooses fast or slow mode depending on whether (Ômin, Ômax)
lies in the FT region. Intuitively, every cross that is above the FT border causes the
OffsetGCS algorithm to go to fast mode.

Furthermore, Figure 6.1 visualizes that for any (Omin, Omax) in the FC region,
all possible points (Ômin, Ômax) will be within the FT region, they can never cause
OffsetGCS to go slow. Similarly any (Omin, Omax) in the SC region can never cause
OffsetGCS to go fast.

Remark. Only the second quadrant of the coordinate plane is of interest. As we also
include all edges (v, v), each node measures the offset to itself. Thus, we also include
an offset measurement of 0, disregarding the measurement error δ. Hence, Ômax is
bounded below and Ômin is bounded above by 0.

Example 6.7. Figure 6.2 shows an example trajectory of (Omin, Omax) for an ex-
ecution of OffsetGCS. Small rectangles denote the position of (Omin, Omax) when
measuring. Large boxes denote the set of all possible estimates and a cross denotes the
actual measurement (Ômin, Ômax). Measurements are continuous, there is a measure-
ment at every point along the trajectory. Exemplary, we depict only the measurements
where the algorithm changes mode. Fast mode is indicated by a dash-dot-dot line and
slow mode by a dash-dot line. In Chapter 10 we implement and simulate the OffsetGCS
algorithm. A trajectory of (Ômin, Ômax) from a simulation of our implementation is
depicted in Figure 10.15. The simulation setup is described in Section 10.4.1.

6.4.2 Analysis

In what follows, we show that for a suitable choice of parameters, OffsetGCS is a GCS
algorithm in the sense of Definition 6.5. Thus, OffsetGCS maintains the skew bounds
of [13], which can be stated as follows.

Theorem 6.8 (from [13]). Suppose algorithm A is a GCS algorithm in the sense of
Definition 6.5 with µ > 2ρ. Then A maintains global and local skew

G(t) ≤ µκD

µ− 2ρ
L(t) ≤

(
2

⌈
logµ/ρ

µD

µ− 2ρ

⌉
+ 1

)
κ

for initial skew ∆ ≤ µκD/(µ− 2ρ).

Remark. In the formal analysis, the precise local and global skew bounds achieved
by a GCS algorithm at an arbitrary time t depend on the initial state of the system.
GCS algorithms are self-stabilizing in the sense that starting from an arbitrary initial
state, the algorithm will eventually achieve the skew bounds claimed in Theorem 6.8
(cf. [62]). For the implementations in Chapters 9 and 10 this is not true in general.
Initial skew exceeding the capability of the measurement circuit will lead to non-
stabilizing behavior.

92



6.4. Gradient Clock Synchronization

−2κ−4κ

κ

3κ

2κ

−κ−3κ

4κ

fast condition (FC)

fast trigger (FT)

slow condition (SC)

Omin

Omax

Ômax/

Ômin/

Figure 6.2: Example trajectory of (Omax, Omin) of a node executing OffsetGCS. The
node is starting with large offsets to its neighbors, during execution it is converging
to smaller offsets. Measurements are taken continuously, we only depict the ones that
change the mode of the clock. Fast mode is indicated by a dash-dot-dot line and slow
mode by a dash-dot line.

93



Chapter 6. Clock Synchronization

Initialization. The bound on the local skew achieved by flooding described in Sec-
tion 6.2 does not match the requirement ∆ ≤ µκD/(µ− 2ρ). As the GCS algorithm
is self-stabilizing we can start the execution with a larger initial skew and the system
will converge to the claimed skew bounds. In [14] we show that given an arbitrary
global skew of G(0) the system will converge to the skew bounds claimed in Theo-
rem 6.8 within time O(G(0)/µ). The flooding technique can bind the initial global
skew by G(0) ≤ (ρd+ U)D. We could choose µ = U/d, such that convergence takes
O(dD) time. Then convergence is as fast as the initialization procedure itself, i.e., it
takes O(dD) time to achieve the bounds claimed in Theorem 6.8.

Uncertainty. In our analysis, it will be helpful to distinguish two sources of uncer-
tainty faced by any implementation of the GCS algorithm. The first is the propagation
delay uncertainty, which is the absolute timing variation in signal propagation adding
to the measurement error. We use the parameter δ0 > 0 to denote an upper bound
on this value.

The second source of error is the time between initiating a measurement and
actually using it in control of the logical clock speed. During this time, the logical
clocks advance at rates that are not precisely known. Here, we can exploit that the
maximum rate difference between any two logical clocks is (1+ρ)(1+µ)−1 = ρ+µ+ρµ.
Thus, denoting the maximum end-to-end latency by Tmax, this contributes an error
of at most (ρ+ µ+ ρµ)Tmax at any given time. Time Tmax includes the time for the
logical clock to respond to the control signal. Once suitable values of δ0 and Tmax are
determined, δ can be computed easily.

Lemma 6.9. When δ = δ0 + (ρ+ µ+ ρµ) · Tmax, then inequality (6.9) holds.

Based on δ, we now seek to choose κ as small as possible to realize the invariants
given in Definition 6.5. The basic idea is to ensure that if a node v satisfies FC at
time t, then it must satisfy FT. In turn, if SC is satisfied, we must make sure that FT
is not satisfied.

Theorem 6.10. Suppose for all times t an implementation of OffsetGCS satisfies

µ > ρ , (Equation (I1))

δ ≥
∣∣∣Ôw(t)− (Lw(t)− Lv(t))

∣∣∣ , (Equation (6.9))

and additionally

κ > 2δ ,

then OffsetGCS is a GCS algorithm.

Proof. We verify the conditions of Definition 6.5. By assumption condition (I1) is
satisfied. Condition (I2) is a direct consequence of the algorithm specification. For
Condition (I3), suppose first that v satisfies the fast condition at time t. Therefore,

94



6.4. Gradient Clock Synchronization

there exists some s ∈ N and neighbor x of v such that Lx(t) − Lv(t) ≥ (2s + 1)κ.
Therefore, by (6.9), Ôx(t) ≥ (2s+1)κ−δ, so that (FT-1) is satisfied. Similarly, since v
satisfies the fast condition, all of its neighbors y satisfy Lv(t)−Ly(t) ≤ (2s+ 1)κ− δ.

Therefore, Ôy(t) ≥ −(2s+1)κ, hence (FT-2) is satisfied for the same value of s and v
runs in fast mode at time t.

It remains to show that if v satisfies the slow condition at time t, then it does not
satisfy FT at time t and, accordingly, is in slow mode. Suppose that v satisfies SC
and FT at time t. Then by SC,

∃x : Lv(t)− Lx(t) ≥ 2sκ− δ , (6.11)

∀y : Ly(t)− Lv(t) ≤ 2sκ+ δ . (6.12)

Since v is assumed to satisfy FT at time t, combining (FT-1) and (FT-2) with (6.9)
imply that there exists some s′ ∈ N with

∃x : Lx(t)− Lv(t) ≥ (2s′ + 1)κ− δ , (6.13)

∀y : Lv(t)− Ly(t) ≤ (2s′ + 1)κ+ δ . (6.14)

Combining (6.12) and (6.13), we must have

(2s′ + 1)κ− δ ≤ 2sκ+ δ

⇔ 2s′κ ≤ 2sκ− κ+ 2δ .

Since 2δ < κ, the previous expression implies that s′ < s. Similarly, combining (6.11)
and (6.14) gives

2sκ− δ · Tmax ≤ (2s′ + 1)κ+ δ

⇔ 2sκ ≤ 2s′κ+ 2δ

⇔ 2sκ < 2(s′ + 1)κ

Thus, s < s′ + 1, or equivalently (since s and s′ are integers), that s ≤ s′. However,
this contradicts the previous conclusion, that s′ < s. Thus FT cannot be satisfied at
time t if the slow condition is satisfied at time t, as we assumed.

The OffsetGCS algorithm is a GCS algorithm, hence we can apply an analysis similar
to [62]. The analysis is given in [19], and it yields the skew bounds mentioned in
Theorem 6.8.

95



Chapter 6. Clock Synchronization

96



7Fault Tolerant Gradient Clock
Synchronization

This chapter presents the results published at PODC 2019 (cf. [18]). The complete
proof of the main result is given in the full version [19]. We show how to combine the
Lynch-Welch and a variant of the GCS algorithm by Lenzen, Locher, and Wattenhofer.
The combination gets the best of both worlds; a fault-tolerant algorithm on arbitrary
networks, assuming that we can extend the network.

Outline. We introduce the topic and discuss related work in Section 7.1. We formal-
ize our computational model in Section 7.2. Section 7.3 provides further description
of the intra-cluster synchronization portion of our algorithm, ClusterSync, and states
our main technical lemmas. Section 7.4 contains a description of the inter-cluster
synchronization portion of our algorithm, InterclusterSync, and provides a proof of
our main result, Theorem 7.1. Due to space restrictions, we do not provide proofs
of the technical lemmas leading to the proof of Theorem 7.1. Technical details are
provided in the full version of this paper, which is available online [19].

7.1 Introduction and Related Work

7.1.1 Introduction

Synchronizing clocks across distributed systems is a fundamental task. Clock synchro-
nization may be used for coordination, e.g. in a time division multiple access scheme
to a shared resource such as a wireless channel. Clock synchronization also plays a
crucial role in (distributed) measurements by enabling a system to correctly correlate
data, and it can form the basis of a decentralized system clock for a System-on-Chip
or Network-on-Chip.

Gradient clock synchronization (GCS) algorithms aim to minimize the local skew,
i.e., the worst-case phase difference between the logical clocks computed by neighbors
in a network graph. While the global skew is linear in the network diameter D [7],
a bound of Θ(logbD) on the local skew was established in [67]. Here, the base is
b = µ/ρ, where 1 + µ is the maximum factor by which a node speeds up its logical
clocks relative to its hardware clock. The bound of Θ(logbD) is tight, subject to the
constraints that (i) the nodes’ hardware clocks always run at rates between 1 and
1 + ρ, (ii) nodes’ logical clocks always run at rates between 1 and (1 + ρ)(1 + µ), and
(iii) µ/ρ = 1 + Ω(1).

The problem of minimizing the local skew is well-studied. Under worst-case
assumptions (on hardware clock rates, message delays, etc), small bounds on the
local skew can be achieved with logical clocks whose parameters (e.g., maximum

97



Chapter 7. Fault Tolerant Gradient Clock Synchronization

and minimum rates) are only slightly worse than the parameters of the underlying
hardware clocks. Results in the same vein hold for dynamic graphs [63, 62]. The
results for dynamic networks immediately imply analogous results for networks with
crash faults. From the perspective of the remaining system, a node crashing is
equivalent to removing all of its incident links. The algorithm achieving small local
skew is inherently self-stabilizing, provided one ensures that excessive global skews
are detected and reduced, e.g., by a reset procedure.

Unfortunately, the GCS algorithm utterly fails in the face of non-benign faults.
Even a single node that refuses to adjust its logical clock rate would invalidate any
non-trivial bound on skews. Given that distributed systems of sufficient size invariably
tend to violate (overly optimistic) specifications [85], this raises the following question.

Can small local skew be achieved despite Byzantine faults?

When posing this question, obviously we need to restrict attention to skews between
non-faulty nodes only. Nonetheless, the answer is trivially “no” in general: a node
with exactly two neighbors, one of which is Byzantine, cannot reliably decide which
neighbor’s clock it should follow. More generally, a node with up to f faulty neighbors
must have at least 2f+1 neighbors to avoid the trivial impossibility of synchronization.
A more careful argument shows that, without cryptographic assumptions, n > 3f is
necessary even if the network is a clique [32]. In the case of a clique, the Lynch-Welch
algorithm [71] achieves asymptotically optimal skew for any n and f satisfying n > 3f .

The Lynch-Welch algorithm, like other fault-tolerant clock synchronization al-
gorithms designed for cliques, can be extended to networks of larger diameter in a
straightforward way. The approach is discussed in [33] for the synchronous setting,
but the argument transfers to the “semi-synchronous” model we consider without
issue. The idea is to set up a central cluster running the algorithm and synchronize
“slave” clusters of nodes to the central cluster. That is slave clusters simply “echo” the
clock pulses generated by the central cluster. Clusters farther away from the central
cluster echo the messages of slave clusters, and so on, resulting in a tree structure
with each tree node corresponding to a cluster of nodes. So long as in each cluster,
less than one third of the nodes is faulty, subsequent groups can synchronize both to
their parent cluster in the tree and among themselves, using the same technique based
on approximate agreement [35] that lies at the heart of the Lynch-Welch algorithm.

If clusters have uniform size of 3f+1 and nodes fail independently with probability
p, then the probability that more than f nodes in a cluster are faulty is

3f+1∑
i=f+1

(
3f + 1

i

)
pi(1− p)3f+1−i ≤

(
3f + 1

f + 1

)
pf+1 ≤ (3ep)f+1 . (7.1)

Thus, if the distribution of faults across the system is benign, even small choices of f
can improve reliability dramatically, without causing impractically large degrees. For
f ∈ Θ(log n), the system as a whole operates correctly with high probability even for
a constant failure probability p of individual nodes.

98



7.1. Introduction and Related Work

The simplistic approach of synchronizing clusters to a central cluster succeeds in
the sense that it achieves asymptotically optimal global skew in a sparse network
(assuming that at most f nodes fail in each cluster). However, it does not offer a
non-trivial bound on the local skew. Setting f = 0, the algorithm specializes in a
simple master-slave synchronization algorithm on (fault-free) tree topologies. If a
clock pulse propagates through a line network with the global skew equally distributed
over the line, this will “compress” the full global skew onto a single edge, cf. [70]. In
contrast, GCS algorithms need to take into account whether neighbors are lagging
behind when deciding how to adjust their logical clocks. More sophisticated strategies
are needed for a fault-tolerant GCS algorithm!

7.1.2 Contribution

We present a simple and general transformation that takes an arbitrary network G and
yields a larger network on which we can achieve fault-tolerant GCS with asymptotically
optimal local skew. The basic idea is simple enough: each node is replaced by a (fully
connected) cluster of 3f + 1 nodes and each edge is replaced by a complete bipartite
graph between the respective clusters. We then use the Lynch-Welch algorithm [71]
to synchronize within clusters and simulate the (non-fault-tolerant) GCS algorithm
from [67] on virtual clocks defined for the clusters.

Our approach is simplified by employing the two algorithms (almost) as black boxes.
This is made possible by leveraging the worst-case assumptions on clock rates the
Lynch-Welch algorithm can handle: Our algorithm treats the speed adjustments made
by the concurrently running GCS algorithm as changes in “hardware” clock speeds.
Thus we fully exploit the analysis of the Lynch-Welch algorithm without having to
prove statements again from scratch. Similarly, the GCS algorithm from [67] can be
phrased such that each node acts solely on estimates of real-time differences between
events (which any node gets from its hardware clock) and estimates of neighboring
logical clocks. We exploit the latter by having nodes use their own logical clocks in
the Lynch-Welch algorithm as stand-ins for the (virtual) cluster clocks, which they
can never know precisely.

The main obstacle to this approach is that using both algorithms as black boxes
results in the problem with the “additional” (amortized) clock drift induced by the
Lynch-Welch algorithm’s corrections to nodes’ clocks. This additional drift is pro-
portional to the (intra-cluster) synchronization quality divided by the length of the
resynchronization interval. The synchronization quality is proportional to the dif-
ference between the maximum and minimum clock rate times the length of the
resynchronization interval. This means that a naive analysis would require that the
clock drift the GCS algorithm needs to combat is at least as large as the increase in
clock speed the GCS algorithm is willing to use to do so. In other words, fast-running
clocks would need to be able to outrun other fast-running clocks, leaving the GCS
algorithm with no way of reducing skews at all.

We resolve this circularity in the naive implementation by exploiting the conver-
gence properties of the Lynch-Welch algorithm in combination with the flexibility

99



Chapter 7. Fault Tolerant Gradient Clock Synchronization

of the GCS algorithm. The GCS algorithm allows for slack between conditions un-
der which logical clocks must run fast or slow, and triggers that indicate when a
node actually switches from fast to slow mode, or vice versa. This slack enables an
implementation despite the fact that the clock values of neighbors are never known
exactly. We also use this slack to buy some time for responding to critical skews.
By the time a cluster is required to be in, say, fast mode, all (correct) nodes in the
cluster will have satisfied the fast trigger for some time. The period of time between
when the fast triggers are unanimously satisfied and when the node is required to run
fast is sufficiently long that the Lynch-Welch algorithm converges to a smaller skew
within the cluster. Thus, when the cluster is required to run fast, the Lynch-Welch
corrections are significantly smaller than the worst-case bounds for non-unanimous
clusters. This behavior allows us to bind the amortized clock rates of individual nodes
in clusters satisfying the fast or slow conditions, thereby showing that fast clusters
indeed run faster than slow clusters. The gap is sufficiently large that we can apply
the analysis of the GCS algorithm as a black box. Specifically, we show the following.

Theorem 7.1. Let G = (C, E) be an arbitrary network. Let G = (V,E) be the
augmented graph formed by replacing each node in G with a clique of k ≥ 3f + 1
nodes, and fully connecting such cliques if they correspond to neighbors in G. Suppose
messages in G are subject to maximum delay d, delay uncertainty U , and hardware
clock drifts are at most ρ, where ρ is sufficiently small. Suppose further that within
each cluster corresponding to a node in G, at most f of the nodes are faulty. Then there
exists an algorithm that computes logical clocks Lv(t) for each correct node v ∈ V \ F
such that (i) for each v ∈ V \ F , Lv increases at rates between 1 and 1 +O(ρ) and
(ii) for all {v, w} ∈ E with v, w ∈ V \ F , and for all t ∈ R+, we have

|Lv(t)− Lw(t)| = O((ρ · d+ U) logD) ,

where D is the network diameter.

7.1.3 Related Work

Srikanth and Toueg [89] introduced a basic synchronization algorithm that can cope
with Byzantine faults. In a fully connected network, the Srikanth-Toueg algorithm
maintains synchronization among the nodes by a propose-and-pull mechanism: Nodes
propose to resynchronize either after a local timeout or upon having received at
least f + 1 proposals. The nodes then resynchronize after receiving at least n − f
proposals. This procedure achieves asymptotically optimal [72] skew of O(d) despite
f < 3n Byzantine faults in the case where there is no guaranteed lower bound on
the communication delay. The Lynch-Welch algorithm [71] improves the skew to
O(U +(ϑ− 1)d) under the additional assumption that message delay is at least d−U
time. The skew O(U +(ϑ− 1)d) is asymptotically optimal, and is strictly better than
the O(d) skew attained by the Srikanth and Toueg algorithm when there is some
a priori lower bound on the minimum message delay. The Lynch-Welch algorithm
achieves synchronization by simulating synchronous rounds, each of which is used to

100



7.1. Introduction and Related Work

perform an approximate agreement [35] step on when the round should have started
and adjusting clocks accordingly.

Either the Srikanth-Toueg or the Lynch-Welch algorithm could be employed in
our construction, where we chose Lynch-Welch for its better skew. Both algorithms
also share the characteristic that, in their basic variants, logical clocks “jump” to
implement phase corrections. This discontinuous behavior is incompatible with the
requirement that logical clocks satisfy lower and upper bounds on their rates in a
GCS algorithm. This issue is easily addressed by amortizing clock adjustments over
sufficient periods of time [66]. The amortization process requires that we adjust the
“round length” of these algorithms, but this change has no asymptotic impact on skews.

A series of works considers synchronization algorithms that are simultaneously
resilient to f < n/3 Byzantine faults and self-stabilizing [29, 34, 36, 57, 69]. That is,
synchronization is re-established despite the (ongoing) interference from Byzantine
faulty nodes after transient faults cease. Dolev and Welch [36] proposed the problem,
proving that it can actually be solved. However, their algorithm has exponential
stabilization time, i.e., 2Ω(f)d time may pass after transient faults cease before the
logical clocks meet the synchronization and progress requirements. The stabilization
time was improved to polynomial [29], then linear [34], and finally (randomized)
logarithmic [69]. The latter construction transforms any synchronous R-round con-
sensus algorithm into a solution to the problem that stabilizes in O(R log n) time
and sends O(M log n) bits over each link in Θ(d) time, where M is the message size
of the consensus algorithm. If the consensus algorithm is randomized, the trans-
formation works the same way, but the stabilization time bound holds with high
probability (instead of deterministically). Besides the smallest known stabilization
time, this transformation also yields the best-known trade-offs between stabilization
time and the amount of communication. All of these algorithms have in common that
they achieve O(d) skew, as they rely on the propose-and-pull mechanic underlying
the Srikanth-Toueg algorithm. However, such algorithms can be used to make the
Lynch-Welch algorithm self-stabilizing, by utilizing the inaccurate (and typically also
infrequent) synchronization events to “jump-start” the simulation of synchronous
approximate agreement rounds upon which the Lynch-Welch algorithm is based [57].
The result is a routine that combines the extreme resilience of the self-stabilizing
routine, with the asymptotically optimal skew of the Lynch-Welch algorithm.

To date, GCS has been studied in fault-free networks only. The problem was intro-
duced by Fan and Lynch [39], alongside a surprising lower bound of Ω(logD/ log logD)
on the local skew. The first non-trivial upper bound of O(

√
D) on the local skew is

due to Locher and Wattenhofer [70]. In the algorithm of [70], nodes try to catch up
with the maximum logical clock value among their neighbors, but under the constraint
that they never run faster than their hardware clock rate when there is a neighbor
whose clock lags Θ(

√
D) or more behind. As the global skew is bounded by O(D),

at most O(
√
D) consecutive nodes can be “blocked” from catching up. Thus, an

individual node is not prevented from speeding up for more than Θ(
√
D) time. This

gives rise to the bound on the skew. Subsequently, the tight bound of Θ(logD) on the

101



Chapter 7. Fault Tolerant Gradient Clock Synchronization

local skew was established in [67]. The GCS algorithm in [67] can be seen as switching
between the “catching up” and “blocking” strategy depending on the amount of local
skew witnessed by a node. Specifically, each node compares the largest s ∈ N0 such
that some neighbor’s clock is at least sκ ahead to the largest s′ ∈ N0 such that some
neighbor’s clock is at least s′κ behind, for some suitably chosen κ. One can then
show that the length of paths with a sufficient skew to “block” nodes from catching
up decreases exponentially with s, which yields the stated bound.

The algorithmic approach of the GCS algorithm [67] turns out to be quite robust
and flexible. The GCS algorithm generalizes to networks in which edges e = {v, w}
have weights εe indicating the accuracy with which v and w can estimate each other’s
clock values, by simply choosing κ proportional to εe. The generalization to heteroge-
neous networks was described by Kuhn and Oshman in [64], who also introduced the
description of the GCS algorithm in terms of the fast and slow conditions we use in
our exposition (see Section 6.4). The GCS algorithm is also “almost” self-stabilizing,
in the sense that it will re-establish its local skew bound from any state in O(S/µ)
time, provided that a global skew bound of S is satisfied. As logical clocks must not
run more than factor 1+µ faster than hardware clocks, this time bound is optimal so
long as we impose this restriction on the maximum rate of logical clocks. Moreover,
the stabilization property can be leveraged to allow for dynamic topologies. That is,
edges may appear and disappear in a worst-case fashion, yet the algorithm maintains
its skew bounds on all paths that consist only of edges that have been present for
Ω(S/µ) time. Adding a mechanism to carefully “activate” the consideration of newly
arriving edges level by level (i.e., for increasing values of s) in a well-timed fashion, the
algorithm guarantees the claimed skew bounds with no further modification [63, 62].
In addition, choosing µ = Θ(1) and using that the algorithm achieves S = O(D),
where D is the (weighted, dynamic) diameter of the graph, we see that the algorithm
stabilizes new edges in O(D) time. Again, this bound is worst-case optimal [62].
The dynamic version of the algorithm in particular shows that crash failures can be
tolerated, as repeatedly checking the liveness of nodes (which is implicit, as estimating
clock values necessitates communication) enables the mapping of crash failures. Live
nodes can then “delete” all incident links to the crashed node.

In this work, we provide the first (non-trivial) GCS algorithm resilient to non-
benign faults. As it is based on the same algorithmic concept and a generic construc-
tion, we anticipate that all of the results mentioned in the preceding discussion can
be carried over, even though we confine ourselves to the static setting in this paper.

7.2 Computational Model

The computational model used in this chapter largely follows the model described in
Chapter 6. Nodes communicate by sending messages with minimum delay d−U and
maximum delay d.

102



7.2. Computational Model

Fault-tolerant GCS is not possible on arbitrary graphs. We augment a given graph
to a graph that allows for fault-tolerant GCS. Given a graph G we extend it to graph
G as described in the following.

Network. Let G = (C, E) be an arbitrary graph. We consider a network G = (V,E)
constructed from G in the following way. We identify each C ∈ C with a set of k nodes
C = {v1, v2, . . . , vk}. We refer to the sets C ∈ C as clusters. For distinct clusters
B,C ∈ C, the corresponding sets of nodes in V are disjoint, i.e., V =

⋃
C∈C C. The

edge set E contains two different “types” of edges defined as follows:

cluster edges: for each C ∈ C and v, w ∈ C, we have (v, w) ∈ E;

intercluster edges: for each (B,C) ∈ E , v ∈ B and w ∈ C we have (v, w) ∈ E.

Thus, each cluster C ∈ C is a clique in G, and for each pair of adjacent clusters
(B,C) ∈ E , E contains all possible edges between B and C. We refer to G as the
physical network.

Remark. We assume that each vertex v ∈ V knows the identities of its neighbors, as
well as the identity of the cluster to which each neighbor belongs.

Logical Clock. While hv determines the (unknown) rate of v’s hardware clock, our
algorithm controls its logical clock by adjusting the logical clock rate relative to the
hardware clock. Specifically, the algorithm controls two parameters: δv(t) ∈ R≥0, and
γv(t) ∈ {0, 1}. The parameter δv(t) is adjusted by the intra-cluster synchronization
algorithm in order to maintain synchronization within each cluster in accordance with
the Lynch-Welch algorithm (see Section 7.3). The parameter γv(t) indicates whether
or not a node runs in “fast mode” in accordance with the inter-cluster algorithm
simulating the GCS algorithm between clusters (see Section 7.4). The logical clock
value Lv(t), with offset L0

v at time 0, is computed to be

Lv(t) =

∫ t

0
(1 + φ · δv(τ))(1 + µ · γv(τ))hv(τ) dτ + L0

v . (7.2)

The parameters φ and µ are constants whose values will be determined later on,
where we already fix that 0 < φ < 1 and µ > 0. The parameters δv(t) and γv(t) are
controlled by two algorithms independently operating at each node.

Given Newtonian times t < t′, we define the logical duration or logical length of
the interval [t, t′] for v to be

Lv(t
′)− Lv(t) =

∫ t′

t
(1 + φ · δv(τ))(1 + µ · γv(τ))hv(τ) dτ. (7.3)

7.2.1 Faults

We assume that the network G contains a fixed subset F ⊆ V of faulty processes. The
nodes v ∈ F are Byzantine. We assume that the number of faulty nodes within each

103



Chapter 7. Fault Tolerant Gradient Clock Synchronization

cluster is bounded by a parameter f , i.e., ∀C ∈ C |F ∩ C| ≤ f , and we require that
k ≥ 3f +1, for the clusters of size k. Recall that Ineq. (7.1) relates this deterministic
requirement to a setting in which nodes fail uniformly and independently at random
with probability p; in this case, one can tolerate a value of p up to roughly n−1/f . In
contrast, an adversarial placement of faults would necessitate degrees larger than the
total number of faults.

7.3 Cluster Algorithm

In this section, we only consider nodes and edges within a fixed cluster C ∈ C. Within
C, the logical clocks maintain synchronization by the variant of the Lynch-Welch
algorithm [71] described in Section 6.3.

Algorithm ClusterSync adjusts δv(t) to manipulate the logical clock and hence
the round length. We define the nominal clock rate of node v as

hnomv (t) = (1 + φ)(1 + µ · γv(t))hv(t). (7.4)

The nominal length of an interval [t, t′] is defined to be
∫ t′

t hnomv (τ) dτ .
The following lemma shows that ClusterSync simulates an execution of the Lynch-

Welch algorithm (cf. [57]), where the nominal clock in ClusterSync plays the role of
the hardware clock in the Lynch-Welch algorithm.

Lemma 7.2. Fix a non-faulty node v ∈ C \F and a round r ∈ N. Then the nominal
length of round r for v is T (r) + ∆v(r), where T (r) = τ1(r) + τ2(r) + τ3(r) is the

logical length of round r. That is,
∫ tv(r+1)
tv(r)

hnomv (τ) dτ = T (r) + ∆v(r).

Lemma 7.2 shows that Algorithm 1 achieves the same effect at the end of the round as
the variant of the Lynch-Welch algorithm given in [57]. In [57], Lv is discontinuously
adjusted by −∆v(r) at the end of Phase 2 and increases at the nominal rate at all other
times. The advantage of our formulation of Algorithm 1 is that Lv(t) is continuous
and increases at a rate that can be kept close to the nominal rate by choosing τ3(r)
sufficiently large. This is essential for the inter-cluster algorithm and its analysis, as
the analysis of GCS assumes clock rates are bounded from above and below.

7.3.1 Cluster clocks and estimates

Here we define the notion of a “cluster clock” which is a function of the logical clocks
of correct nodes in the cluster. In Section 7.4 we describe an algorithm such that the
cluster clocks simulate an execution of the GCS algorithm from [62, 67]. Our main
result then follows from the analysis of the GCS algorithm, and Corollary 7.5 below,
which shows that logical clocks within each cluster approximate the cluster clock.

Definition 7.3. Fix a cluster C. For each time t define L+
C(t) and L−

C(t) to be
the maximum and minimum values (respectively) of logical clock values of non-faulty
clocks in C at time t. That is, the maximum value L+

C(t) = max {Lv(t) | v ∈ C \ F}

104



7.3. Cluster Algorithm

and the minimum value L−
C(t) = min {Lv(t) | v ∈ C \ F}. We define C’s cluster clock

LC by the formula LC(t) = (L+
C(t) + L−

C(t))/2.

At several points, we will appeal to the following result about cluster clocks:

Observation 7.4. Suppose that over some interval [t′, t] the logical clock of each
v ∈ C \ F increases at a rate at most ϑ. Then we have LC(t)− LC(t

′) ≤ ϑ · (t− t′).
Indeed, if each clock individually satisfies some upper (lower) bound on its rate, then
in particular the rates of L+

C(t) and L−
C(t) satisfy the same bound, hence so does LC(t).

Symmetrically, if all logical clock rates are at least ϑ, then we have that the logical
duration LC(t)− LC(t

′) ≥ ϑ · (t− t′).

Suppose C is a cluster and w a node adjacent to C (i.e., w ∈ B where (B,C) ∈ E).
Then w computes an estimate L̃w

C(t) of LC(t) as follows. The node w listens to the
pulses of nodes in C and simulates the ClusterSync algorithm, without sending pulses
itself. Then w takes L̃w

C(t) to be the logical clock value computed in its simulation
of ClusterSync. Applying the analysis of ClusterSync (unchanged!) to w’s estimate
L̃w
C(t), we obtain the following guarantee.

Corollary 7.5. Let C be a cluster and w a node adjacent to C. Suppose L is as
in (6.5). Then for all v ∈ C \ F and times t we have |L̃w

C(t)− Lv(t)| ≤ L. Thus for

all t, we have |L̃w
C(t)− LC(t)| ≤ L/2.

7.3.2 Bounds for unanimous clusters

In this section, we state bounds on the amortized rates of cluster clocks when all
correct nodes are running in fast or slow modes. We say that a cluster C is unanimous
at time t if either (1) for all v ∈ C\F , γv(t) = 1 or (2) for all v ∈ C\F , γv(t) = 0. In the
former case, we call C (unanimously) fast, and in the latter case, C is (unanimously)
slow. For a round r ∈ N, we say that C is (unanimously) fast (resp. slow) in round r
if every v ∈ C \ F is in fast mode (resp. slow mode) for all t ∈ [tv(r), tv(r + 1)].

In order to implement the GCS algorithm for cluster clocks, we must show that
unanimously fast clusters can “catch up” to unanimously slow clusters. This is true
for individual nominal clocks: if v is in fast mode and w is in slow mode, then
hnomv (t)/hnomw (t) ≥ (1 + µ)/(1 + ρ) = 1 + Ω(µ− ρ). So as long as µ≫ ρ, a fast node
can always catch up to a slow node.

The story for clusters is, unfortunately, more complicated. Suppose C is (unani-
mously) fast for an entire round r. Even though the individual nominal clocks in C\F
all run at rates at least (1 + φ)(1 + µ), the amortized rate of LC may be significantly
slower because of the adjustment made to the logical clocks in the Lynch-Welch step.
Specifically, this adjustment could be as large as e∞g ∼ µT (r). Thus, the amortized
rate of LC over round r could be as small as (1 + φ)(1 + µ − e∞g /T (r)) ∼ (1 + φ).
Thus, the logical clock of a cluster in fast mode may increase slower than a cluster
in slow mode!
To address this potential problem, observe that if a cluster is unanimous, then the
nominal clocks for v ∈ V satisfy ζ ≤ hnomv ≤ ζ · ϑu, where ϑu = 1 + ρ and ζ = 1 + φ

105



Chapter 7. Fault Tolerant Gradient Clock Synchronization

or (1+φ)(1+µ) depending on whether the cluster is unanimously slow or fast. Thus,
the nominal clock drift between nodes is at most ρ, rather than (1 + ρ)(1 + µ) − 1.
This smaller hardware clock drift allows the cluster synchronization algorithm to
converge to a smaller skew. In particular, ClusterSync achieves skews of size εe∞g for
an arbitrarily small ε > 0 for suitable choices of parameters, assuming that the cluster
is unanimous for sufficiently many rounds. Thus, we ensure that the amortized rate
of LC when C is unanimously fast is at least (1 + φ)(1 + 7µ/8). Similarly, we show
that any cluster in slow mode increases at an amortized rate between (1+φ)(1−µ/8)
and (1 + φ)(1 + µ/8), assuming it has been in slow mode for sufficiently long.

We denote the steady-state error for a unanimous execution (in which all nodes
are unanimously fast or slow in all rounds) to be e∞u . We derive explicit bounds on
e∞u in the full version [19]. The following lemma shows that by choosing appropriate
values of µ and φ, we can ensure that e∞u is significantly smaller than e∞g . To make
the dependence on ρ in all expressions explicit, we define parameters c1 and c2 and
take

φ = ρ/c1 and µ = c2 · ρ .

Lemma 7.6. Let φ = ρ/c1 and µ = c2 · ρ, and define τ1, τ2, and τ3 by (6.4). Suppose
logical clocks are initialized so as to ensure ∥p(0)∥ ≤ e∞g , and parameters are chosen
such that αg < 1 in Equation (6.3). Then there exist constants c1, c2, and k with
k ≥ 1 such that for all sufficiently small ρ > 0 the following hold:

(1) If C is unanimously fast for rounds r− k, r− k+1, . . . , r then for all v ∈ C \F
we have

(1 + φ)

(
1 +

7

8
µ

)
≤ Lv(tv(r + 1))− Lv(tv(r))

tv(r + 1)− tv(r)
.

(2) If C is unanimously slow for rounds r−k, r−k+1, . . . , r, then for all v ∈ C \F
we have

(1 + φ)

(
1− 1

8
µ

)
≤ Lv(tv(r + 1))− Lv(tv(r))

tv(r + 1)− tv(r)
≤ (1 + φ)

(
1 +

1

8
µ

)
.

If additionally C is unanimously fast (resp. slow) in round r + 1, then the cluster
clock LC(t) satisfies conclusion 1 (resp. 2) above.

7.4 Inter-cluster Algorithm

In this section, we describe an algorithm that synchronizes clocks between adjacent
clusters. The algorithm simulates an execution of the GCS algorithm [62, 67], where
each cluster plays the role of a single node in the GCS algorithm. Specifically, our
algorithm ensures that the cluster clocks LC (cf. Definition 7.3) faithfully simulate
an execution of the GCS algorithm, in a sense made precise below. While LC is
only defined implicitly from the logical clocks of individual nodes within a cluster,
Lemma 6.3 and Corollary 7.5 ensure that every node maintains good estimates of

106



7.4. Inter-cluster Algorithm

its own and neighboring cluster clocks. In our algorithm, each node individually
simulates the GCS algorithm. We then apply Lemma 7.6 to argue that when the
behavior of nodes within a cluster is unanimous, the corresponding cluster clocks
behave as required by the GCS algorithm.

7.4.1 Fast and slow conditions and triggers

We know fast and slow conditions already from Chapter 6. For the remainder of this
chapter, we reformulate them for clusters. Let κ be a parameter (to be chosen later),
and let C be a cluster. We denote the set of neighboring clusters of C by NC . The
following definitions give conditions under which the cluster C should be in fast mode
or slow mode in order to implement the GCS algorithm.

Definition 7.7. We say that C satisfies the fast condition (FC) at time t if there
exists s ∈ N such that the following conditions hold:

There exists A ∈ NC such that LA(t)− LC(t) ≥ 2sκ . (FC-1)

For all B ∈ NC . LC(t)− LB(t) ≤ 2sκ . (FC-2)

Definition 7.8. We say that C satisfies the slow condition (SC) at time t if there
exists s ∈ N such that the following two conditions hold:

There exists A ∈ NC such that LC(t)− LA(t) ≥ (2s− 1)κ . (SC-1)

For all B ∈ NC . LB(t)− LC(t) ≤ (2s− 1)κ . (SC-2)

In order to implement the GCS algorithm, we must guarantee that if a cluster satisfies
the fast (resp. slow) condition, then the cluster is unanimously fast (resp. slow).
Further, in order to maintain the guarantees on amortized rates of cluster clocks of
Lemma 7.6, our implementation of the fast and slow conditions should guarantee
that clusters remain unanimously fast or slow for several rounds before any round in
which the respective (fast or slow) condition is satisfied. To this end, for each v ∈ C
and B ∈ NC , v maintains an estimate L̃v

B of LB (see Corollary 7.5 and preceding
discussion). In order to implement the fast and slow conditions, we define the following
triggers. The parameter δ will be chosen later.

Definition 7.9. We say that v ∈ C satisfies the fast trigger (FT) at time t if there
exists s ∈ N such that the following two conditions hold:

There exists A ∈ NC such that L̃v
A(t)− Lv(t) ≥ 2sκ− δ . (FT-1)

For all B ∈ NC . Lv(t)− L̃v
B(t) ≤ 2sκ+ δ . (FT-2)

Definition 7.10. We say that v ∈ C satisfies the slow trigger (ST) at time t if there
exists s ∈ N the following two conditions hold:

There exists A ∈ NC such that Lv(t)− L̃v
A(t) ≥ (2s− 1)κ− δ . (ST-1)

For all B ∈ NC . L̃v
B(t)− Lv(t) ≤ (2s− 1)κ+ δ . (ST-2)

107



Chapter 7. Fault Tolerant Gradient Clock Synchronization

Algorithm 4 InterclusterSync(v, κ, δ, T )

1: for each round r ∈ N do

2: at time Lv(tv(r)) do

3: if v satisfies FT then

4: γv ← 1

5: if v satisfies ST then

6: γv ← 0

The following lemma shows that for all δ < 2κ the triggers above cannot both be
simultaneously satisfied. In particular, taking δ = 0, the following lemma implies that
the fast and slow conditions are also mutually exclusive.

Lemma 7.11 ([64]). The conditions FT and ST are mutually exclusive. That is, if
C satisfies FT, then C does not satisfy ST, and vice versa.

With the fast and slow triggers defined, we describe the inter-cluster algorithm,
InterclusterSync (Algorithm 4). InterclusterSync differs from other descriptions of
the GCS algorithm [67, 64, 62] in that it can only switch from fast to slow mode, or
vice versa, at predetermined discrete times. For the analysis of the GCS algorithm,
we require that the fast (resp. slow) trigger implements the fast (resp. slow) condition
in the sense that whenever the condition is satisfied, the corresponding trigger is also
satisfied. For clusters we require more: Even if a cluster is unanimously fast or slow,
we cannot immediately infer sufficiently tight bounds on the rate of LC . Instead, we
must apply Lemma 7.6. In particular, we must wait until k = O(1) unanimous rounds
have elapsed until we can guarantee sufficiently tight bounds on the rate of LC to
apply the GCS algorithm analysis as a black box. The following definition describes
sufficient conditions under which InterclusterSync guarantees that a node has been
in fast (resp. slow) mode “sufficiently long” whenever the fast (resp. slow) condition
is satisfied.

Definition 7.12. Let T : N → R be a sequence of round lengths, C a cluster, and
v ∈ C. For every r ∈ N, let tv(r) denote the time at which v begins round r in an
execution of the ClusterSync algorithm. Let k be a constant such that the conclusion
of Lemma 7.6 is satisfied. For any time t, let rt = max {r | tv(r) ≤ t}. We say that
an execution of InterclusterSync is faithful for v if the following conditions hold:

(1) For all t ∈ R+ such that C satisfies FC at time t, v satisfies FT
at all t′ ∈ [tv(rt − k − 1), tv(rt)].

(2) For all t ∈ R+ such that C satisfies SC at time t, v satisfies ST
at all t′ ∈ [tv(rt − k − 1), tv(rt)].

We say that the execution is faithful for C if it is faithful for every node v ∈ C \ F .

108



7.4. Inter-cluster Algorithm

Applying Definition 7.12 we obtain the following consequence of Lemma 7.6:

Corollary 7.13. Suppose X is a faithful execution for C. Then for every t ∈ R the
following holds. If C satisfies FC at time t then

(1 + φ)

(
1 +

7

8
µ

)
≤ Lv(tv(rt + 1))− Lv(tv(rt))

tv(rt + 1)− tv(rt)
.

If C satisfies SC at time t then

(1 + φ)

(
1− 1

8
µ

)
≤ Lv(tv(rt + 1)− Lv(tv(rt))

tv(rt + 1)− tv(rt)
≤ (1 + φ)

(
1 +

1

8
µ

)
.

We will show that Corollary 7.13 is strong enough that we can apply the analysis of
the GCS algorithm as a black box to bound skew between adjacent clusters. In the
remainder of this section, we will give sufficient conditions under which every execution
is guaranteed to be faithful. We fix k to be a constant such that the conclusion of
Lemma 7.6 is satisfied.

Lemma 7.14. Suppose the hypotheses of Lemma 6.3 are satisfied, and that k is
sufficiently large that the conclusion of Lemma 7.6 holds. Let δ = (k + 5)L and
κ = 3δ. Then for every cluster C ∈ C, every execution X is faithful for C.

7.4.2 InterclusterSync simulates GCS

We now show that a faithful execution X of InterclusterSync on the (physical) network
G simulates an execution X of the GCS algorithm on the network G in a sense made
precise below. As a result, we can apply the analysis of the GCS algorithm to X
to derive bounds on the local skew between adjacent cluster clocks in X. Before
defining simulation formally, we adapt the axioms required by the GCS algorithm
(cf. Definition 6.5) to clusters.

Definition 7.15. Suppose G = (C, E) is a network, and each C ∈ C computes a logical
clock LC : R→ R. We say that the logical clocks satisfy the GCS axioms if there exist
constants ρ, µ > 0 such that the following hold for all times t ∈ R and nodes C ∈ C:

1 ≤ d

dt
Lv(t) ≤ (1 + ρ)(1 + µ) . (A1)

If C satisfies SC at time t, then
d

dt
Lv(t) ≤ 1 + ρ . (A2)

If C satisfies FC at time t, then 1 + µ ≤ d

dt
Lv(t) . (A3)

µ/ρ > 1 . (A4)

Any execution of any algorithm satisfying these axioms is said to implement GCS.

109



Chapter 7. Fault Tolerant Gradient Clock Synchronization

In general, an execution of our algorithm does not satisfy the GCS axioms for the
values of ρ and µ as specified in the previous sections. However, for suitable choices
of these parameters, we can find different parameters ρ, µ for which our logical clocks
do satisfy the GCS axioms. In the full version [19], we prove the following.

Lemma 7.16. Suppose X is a faithful execution of InterclusterSync on G. Then the
cluster clocks {LC |C ∈ C} satisfy the GCS axioms for ρ = (1 + φ)(1 + (1/4)µ) − 1
and µ = (1 + φ)(1 + (7/8)µ)− 1.

7.4.3 Derivation of main result

So far, we have neglected the global skew S. We can bound S = O(D), where D is the
network diameter as follows. Each node v maintains an (under)-estimate Mv of the
maximum logical clock value of any node in the network. If Lv is not too far behind
Mv, and v does not satisfy FT-1 for any s, then v defaults to slow mode, even if ST is
not satisfied. This behavior ensures that if Lv(t) is the maximal logical clock in the
network, then v runs in slow mode. On the other hand, if Lv is significantly behind
Mv (Mv(t)− Lv(t) ≥ c ·D for some suitable constant c) and v does not satisfy ST-1
for any s, then v defaults to fast mode. This behavior ensures that if the global skew
is large, the slowest node runs in fast mode. Together, the two additional triggers
described above ensure that the global skew satisfies S = O(D).

We now have all the pieces in place to prove our main result, Theorem 7.1. We
assume the parameters ρ, d, and U are given with ρ sufficiently small, and choose
suitable values of µ and φ such that the conclusions of all required lemmas hold.

Proof of Theorem 7.1. Let v, w ∈ V \ F with {v, w} ∈ E. We first consider the case
where v, w ∈ C for some cluster C. Then by Lemma 6.3, we have |Lv(t)− Lw(t)| ≤ L
for all t, where L = 6βg/(1− αg) = O(ρ · d+ U).

Now consider the case where v ∈ B and w ∈ C with (B,C) ∈ E . By Lemma 7.16,
InterclusterSync implements the GCS algorithm on G for cluster clocks LC , with
ρ = (1 + φ)(1 + (1/4)µ) − 1 and µ = (1 + φ)(1 + (7/8)µ) − 1. Since φ = ρ/c1 and
µ = c2 · ρ for some absolute constants c1 and c2, there exists an absolute constant
c > 0 such that

µ

ρ
= 1 + c+O(ρ).

Thus µ/ρ ≥ 1 + c/2 for sufficiently small ρ. By Theorem 6.8, we therefore have

|LB(t)− LC(t)| = O(κ logµ/ρ S) = O(L logD).

We then bound the skew to obtain the desired conclusion.

|Lv(t)− Lw(t)| ≤ |Lv(t)− LB(t)|+ |LB(t)− LC(t)|+ |LC(t)− Lw(t)|

≤ 1

2
L+O(L logD) +

1

2
L

= O(L logD) .

110



8Implementation of Clock
Synchronization Algorithms

In the subsequent chapters we present two implementations of the GCS algorithm.
First, an implementation for a single link, i.e., two neighbors connected by an edge.
Second, an implementation for arbitrary networks. Both implementations are different,
e.g., only the link implementation includes data communication. However, there is a
large overlap for both concepts.

In this chapter we summarize shared features of the subsequent chapters. That
is: the related work on GALS systems and the hardware modules that are used as
building blocks.

Outline. We discuss related work on GALS systems in Section 8.1. Subsequently
we discuss three modules necessary for the implementations in Section 8.2.

8.1 Related Work

As discussed earlier, GALS systems overcome the scalability issues of centralized
clocking. The microchip is divided into smaller regions that can be covered by a clock
tree with small skew. Communication between clock regions happens asynchronously
by handshakes, synchronizers and buffers. Hence, on a global scale GALS systems do
not provide a synchronous abstraction and timing guarantees. Moreover, they add
latency and cost to the communication paths.

A synchronizer reduces the probability of failure due to metastability. The proba-
bility of reading a meta-/unstable signal drops exponentially with the time allocated
for resolution. A simple synchronizer circuit connects one or more flip-flops in series.
With every flip-flop the resolution time increases by one clock cycle. Synchronizer
circuits provide a large mean time between failures (MTBF).

According to [94], GALS systems can be classified by their clocking schemes: pau-
sible clocked systems, asynchronous systems with uncorrelated clocks, and loosely
synchronous systems, with (partially) synchronized clocks. We shortly review com-
munication in these three approaches.

Pausible Clocking. Pausible Clocking overcomes synchronization issues by halting
the clock until metastability is resolved [80]; e.g., the design in [81] guarantees no
glitches on stopping and starting. This requires that the clock cannot be started
again before metastability has been resolved. Metastability inside the control loop
may lead to an arbitrary delay of the final pulse on stopping. This approach has
no guarantees on progress of the system as resolution of metastability can have an

111



Chapter 8. Implementation of Clock Synchronization Algorithms

arbitrary delay in our worst case model. However, because metastability has been
resolved when continuing the pausible clocking provides an infinite MTBF.

Uncorrelated Clocks. Communication between uncorrelated clock frequencies
and phases is traditionally done by combining classical two-flop synchronizers with
buffers and flow-control circuitry. A downside of these approaches is that the latency
and the throughput are determined by the handshake cycle that has to include (at
least) two synchronizer cycles at both sides. Clearly, this approach has a non-zero
upset probability and thus finite MTBF. In [23], a mixed-clock first-in first-out
pipeline (FIFO) with flow control logic is proposed. Instead of classical handshaking,
synchronized full/empty and almost full/empty signals are used. The throughput is
one data item per clock cycle until the almost full signal is raised; afterwards, the true
full signal has to be considered, at the cost of increased latency and lower throughput.
The approach has finite MTBF.

In [25], a ripple FIFO solution with almost full/empty signals is proposed. The
approach requires slow sender/receiver speeds compared to data propagation within
the ripple FIFO. Moreover, full/empty flags have to be synchronized, which leads
to increased latency and finite MTBF. In [31], a locally delayed latching (LDL) ap-
proach is proposed: conflicting read/write operations are delayed by an asynchronous
controller with a mutual exclusion (MUTEX) element. Controller latency is in the
order of 20 gate delays, and the minimum feasible clock cycle is no less than 69 gate
delays, accounting for sufficient time for the MUTEX to stabilize. Gradual synchro-
nization [53] allows fine-grained interweaving of synchronization and computation,
also shifting conflicting ripple FIFO requests by MUTEX elements at each stage. Like
synchronizer chains, this approach has finite MTBF that can be increased at the cost
of higher latency.

Dally and Tell [30] propose a scheme in which the MTBF can be made arbitrarily
large without increasing latency. They use synchronizers to continually determine
phase offsets between sender and receiver clocks only. A drawback is that the fre-
quency and phase measurement circuits require accurate phase tracking (64 bit in
their implementation) and can account for slow phase drifts only.

Loosely Synchronous Systems. In contrast to the approaches above, synchroniz-
ing clocks allows obtaining worst-case guarantees on latency and throughput together
with provable absence of metastable upsets. Our approaches also fall into this class.
The closest work to our approach in Chapter 9 presumably is proposed in [83]. By
using the Distributed Algorithms for Robust Tick Synchronization (DARTS) clock
generation mechanism [44], a buffer size of 9 and latency of 9 clock cycles was achieved
for a receiver-sender clock shift of 4 ticks at around 25MHz in an FPGA. While these
numbers clearly can be improved in ASIC designs, DARTS inherently is slower than
our approach.

Teehan et al. [94] present the term plesiochronous designs, a subclass of loosely
synchronous GALS design style. Here, clock regions operate at the same nominal

112



8.1. Related Work

frequency but may have a slight frequency mismatch. The mismatch may lead to
a drifting phase, which in turns leads to an unbounded skew. We also call the
system in Chapter 10 a plesiochronous system, although there is a slight mismatch
in terminology. In our system clocks can speed up by a small factor, but essentially
they run at the same nominal frequency. We allow for a slight frequency drift of
oscillators, which may always happen due to manufacturing. In contrast to [94], we
bound the skew by measuring the phase difference and adjusting the speed-up. The
phase difference is bounded well below one clock cycle, such that communication
without buffers and synchronizers is possible.

Phase Locked Loops. Our control module in Chapter 9 has some similarities
to a phase locked loop (PLL) with an all-digital phase detector; see e.g., [1, 24] for
all-digital PLLs designs. We briefly summarize commonalities and differences in the
following.

Classical PLLs lock a slave clock to a typically more stable master clock. In
Chapter 9 we do not distinguish between a slave and a master, but our controller
treats both receiver and sender clocks equally; one might think of this as a peer-to-
peer PLL. The reason is that our goal is not to stabilize the absolute frequency of
a poor clock by ensuring a bounded phase offset to a more stable master clock, but
rather to bound the phase offset between a sender and receiver clock of similar quality.
Additionally, we provide lower and upper bounds on the frequency of the clocks which
are close to the frequency bounds free-running oscillators of the same quality have.
For example, this is useful when communicating with the environment.

The initial stage of a classical PLL is a phase frequency detector (PFD), which
measures the phase difference between the master and slave clock signals. Designs
range from conventional PFDs, which measure negative and positive phase offsets
on separate binary output signals by producing pulses whose width is the nega-
tive/positive phase offset, to more advanced setups [82]. Phase differences are then
either forwarded to charge pumps (analog PLLs) [4] or converted to digital counter
offsets (digital PLLs). For the latter, an unstable phase difference poses a risk for
increased power consumption and likelihood of metastable upsets; see [1], where a
filter on phase difference signals for a low-power digital PLL is proposed.

In Chapter 9, there is a (digital) unary-encoded up/down-counter at the heart of
the controller, allowing to measure the phase difference between both clocks. Note
that since our goal is not to lock to a highly stable oscillator, our design is much
simpler: our circuit only determines whether the actual phase offset is larger or smaller
than the desired phase offset. It is also worth noting that, while our oscillators are
analog components, our circuit relies on the ability to switch between fast and slow
oscillator mode only. This binary decision may become meta-/unstable frequently.
In stark contrast to a classical digital PLL with a binary counter, this does not pose
a problem for our design. We ensure that the potentially metastable output signal
of our controller is only used to control the oscillator. The oscillator frequency is
required to remain in the range spanned by the frequencies possible under stable

113



Chapter 8. Implementation of Clock Synchronization Algorithms

operation (slow and fast mode) in presence of a metastable, or in general, unstable
signal. This is the case for starved inverter ring oscillators.

The use of local clocks in our design has a further advantage over locking to a cen-
tralized clock that is assumed to provide a highly stable frequency reference. In our
system the sender and receiver are not impaired by the failure of the respective other’s
clock. While correct communication between the two nodes inherently requires both
oscillators to work correctly, our design guarantees that if one of the oscillators fails,
the respective other keeps running within the same frequency bounds. Potential top-
level error-detection based on the (non-)communicated data then provides adequate
application-specific reaction to such scenarios.

8.2 Hardware Modules

In this section we describe hardware modules that are utilized in the hardware im-
plementations described in Chapters 9 and 10. We identify three modules in the
algorithm that are required for a hardware implementation: a tunable oscillator, an
offset measurement, and a control module. In the following pages we describe each
module, its specification and constraints to its hardware realization.

The modules have a cyclic dependency/connection on each other. The output of
one module is connected to the input of the next module. The measurement modules
captures offset estimates Ôw(t) of tunable oscillators, the controller module checks
the fast trigger FT and forwards a mode signal to the tunable oscillator.

The measurement module captures the phase difference of two different clock
regions. Any synchronous circuit that operates on clock domain crossings of uncor-
related clocks cannot avoid meta-/unstable signals. Hence, the module cannot avoid
corrupted measurements. In turns it may produce a meta-/unstable output that is
forwarded to the tunable oscillator. We discuss in Section 8.2.1 that the tunable
oscillator, when chosen carefully, can cope with meta-/unstable inputs. In general, we
can say that meta-/instability arises in the offset measurement, it propagates through
the control module and is handled in the oscillator. Hence, we require the control
module to be hazard-free, i.e., we require it to only propagate meta-/unstable signals
if the output is undetermined.

Implementations of the single link and the network synchronization differ also in
the communication structure. In consequence they have partly different requirements
on the modules. Constraints and solutions specific to each implementation are dis-
cussed further in the respective chapter. We now discuss confirming constraints in
the remainder of this chapter.

8.2.1 Tunable Oscillator

Each node maintains a logical clock on top of a hardware clock. The hardware clock
is prone to uncertainty that is modeled by drift ρ. The logical clock can be adjusted
by factor µ to catch up to neighbors that are known to be ahead.

114



8.2. Hardware Modules

In the implementations we derive the logical clock from a tunable oscillator. Each
node is associated with its own oscillator that can be tuned in its frequency. In some
sense the oscillator combines both the hardware and the logical clock, it is prone to
drift but also adjustable in its frequency.

Remark. An oscillator alone does not make a clock in the sense that is described in
Chapter 6. It is a simple pulse giving device that has no sense of how much time has
passed in total. In fact no hardware can implement a clock as described in Chapter 6,
as no hardware can count indefinitely, eventually it will overflow. A solution, that
comes close, is to add a modulo counter. The counter counts the rising transitions of
the oscillator. In Chapter 9 we see this approach, where the modulo counter can be
as small as modulo 2. In Chapter 10 we see that an oscillator alone suffices for the
application we have in mind.

There are two modes of the oscillator, fast and slow mode. The tunable oscillator
has one input and one output port. The input port is called md, it is a binary input
that controls the mode of the oscillator. The output, called clk, of the oscillator is
its clock signal that pulses either at fast or slow frequency if md is stable for at least
the time the oscillator requires to respond. For properly chosen response time of the
tunable oscillator Tosc ≥ 0 and properly chosen initialization, we require the following
conditions.

We assume a small initial skew of the system. The oscillators are started roughly
at the same time, the global skew is bounded by c · κ. we discuss a possible

initialization scheme in
Section 6.1G(0) ≤ c · κ . (C1)

Denote by ˙clk the rate of the signal clk. If mode signal of node v is constantly 0 for
time Tosc, the oscillator with output clkv is in slow mode at time t:

∀t′ ∈ [t− Tosc, t]. mdv(t
′) = 0⇒ ˙clkv(t) ∈ [1, 1 + ρ] . (C2)

If a mode signal is constantly 1 for time Tosc, the respective oscillator is in fast mode
at time t:

∀t′ ∈ [t− Tosc, t]. mdv(t
′) = 1⇒ ˙clkv(t) ∈ [1 + µ, (1 + µ)(1 + ρ)] . (C3)

If a mode signal is neither constantly 0 nor constantly 1 for time Tosc, then the
respective oscillator is unlocked at time t:

∃t′, t′′ ∈ [t− Tosc, t]. mdv(t
′) ̸= mdv(t

′′)⇒ ˙clkv(t) ∈ [1, (1 + µ)(1 + ρ)] . (C4)

The constraint that clocks in slow mode are never faster than clocks in fast mode
(cf. Section 6.1) carries over to oscillators:

1 + ρ < 1 + µ

⇔ ρ < µ . cf. Condition (6.6)(C5)

Our requirements on the oscillator are fairly weak, making it easy to implement:
Only if the control signal is stable for Tosc time, the oscillator needs to guarantee the

115



Chapter 8. Implementation of Clock Synchronization Algorithms

respective frequency. At any other time, it is not locked to a fixed mode and may run at
any frequency between the slowest and fastest possible. Especially the unlocked mode
may be entered when the control signal is meta-/unstable or transitioned recently. I.e.
an oscillator that satisfies (C4) is able to cope with meta-/unstable inputs in the sense
that it produces stable outputs. Meta-/Unstable signals only affect the frequency.

It is an essential requirement of the algorithm that the skew between two nodes
cannot increase if the algorithm tries to reduce that skew. Condition (C5) is a minimal
requirement ensuring that the phase offset between the two clocks cannot increase
further when a clock in fast mode is chasing a clock in slow mode.

Remark. A tunable oscillator that satisfies (C4) is not pausible.

8.2.2 Control Module

The control module checks whether the fast trigger is satisfied and controls the tunable
oscillator accordingly. The control module outputs md. The input to the control
module is given by the offset measurement. As implementations of Chapter 9 and
Chapter 10 have different approaches to the offset measurement we specify the inputs
in each section. The requirements to the control module are given by the GCS
algorithm. They can be formulated for both implementations.

We denote the response time of the control module by Tctr, the control module
must satisfy the following three constraints. If OffsetGCS continuously maps the
switch γ(t) to 0 for time Tctr, then the output of the control module is 0 at time t:

∀t′ ∈ [t− Tctr, t]. γv(t
′) = 0⇒ mdv(t) = 0 . (L1)

If OffsetGCS continuously maps the switch γ(t) to 1 for time Tctr, then the output of
the control module is 1 at time t:

∀t′ ∈ [t− Tctr, t]. γv(t
′) = 1⇒ mdv(t) = 1 . (L2)

If γ(t) is noncontinuous for time Tctr, then the output of the control module is
unconstrained:

∃t′, t′′ ∈ [t− Tctr, t]. γv(t
′) ̸= γv(t

′′)⇒ mdv(t) ∈ {0, u, 1} . (L3)

Since the result of the offset measurement may be unstable, the control module might
be faced with unstable inputs. Constraints (L1) to (L3) require that the output is
stable if the inputs determine the output. In other words the control module must
be hazard-free.

In Chapter 9 we present a single control module that controls oscillators of both
nodes in the system. Formally, we can regard the control module as two merged
control modules, one for each oscillator. In contrast, Chapter 10 shows a system
where each node has its own control module that steers only one oscillator.

116



8.2. Hardware Modules

8.2.3 Offset Measurement

In general, the offset measurement estimates the difference between two local clock
sources and sends it to the control module. The phase offset of two nodes in our system
is bounded by L. Due to its nature, the offset measurement module may output
meta-/unstable signals. As discussed earlier, we refrain from using synchronizers,
because this comes at the cost of worse clock synchronization.

The delay of the offset measurement, Tmeas, adds to the precision of the estimates,
as clocks may drift during that time. Hence, any time spent on synchronizers comes
at the burden of inaccurate measurements.

Measuring offsets to neighboring nodes is solved inherently different for implemen-
tations in Chapter 9 and Chapter 10. Hence, any constraints on the measurement
module are discussed in the respective chapter.

The offset measurement in Chapter 9 utilizes a data buffer, which readily gives
information about the offset by its fill level. In Chapter 10 we discuss a traditional
way to measure offset between two oscillator signals. Later on we show an advanced
approach that yields better results.

117



Chapter 8. Implementation of Clock Synchronization Algorithms

118



9Single Link Synchronization

This chapter presents parts of the results published in Transactions on Circuits and
Systems [12]. We present a producer-consumer link for a single sender and receiver sce-
nario. Sender and receiver both have their own (independent) clock domain, hence any
communication bears the risk of metastable signals. Our objective is to synchronize
the clock domains while improving the latency and throughput of the communication
link.

Outline. An introduction is given in Section 9.1.1. We start with presenting the
problem of communication in a system of two nodes with controllable oscillators
in Section 9.2. We then break the system down into modules, formally specifying
their requirements. Section 9.3 discusses gate-level implementations of the modules,
together with proofs that the implementations satisfy the formal requirements. In
Section 9.4, we present simulations of our implementation at the gate level and
transistor level. The simulation results are consistent with our formally proven results
and allow us to obtain detailed performance metrics. This chapter is followed by
Chapter 10 which can be seen as an extension of the work that is presented here.

9.1 Introduction and Related Work

9.1.1 Introduction

Links that enable communication between different clock domains are an important
ingredient in every GALS system [94]. This communication is performed in a producer-
consumer manner: In one clock domain, the producer pushes messages to the link,
while in the other clock domain the consumer pulls messages from the other side.
Inherently, link implementations are susceptible to failures induced by metastable
upsets; Even if such errors can be handled, they negatively impact the performance
of the link.

Previous digital controller designs resort to different methods to deal with me-
tastability (cf. Section 8.1): clock-masking [25], clock-pausing [80, 81], or adding
synchronizers (while sacrificing latency) to maintain a realistic (yet finite) MTBF
of the link [23, 25, 30, 31, 53]. This requires almost-full flags [25], long handshake
latencies that increase the dead time and affect the latency and throughput, addi-
tional slack in a controller cycle accounting for metastability resolution time in the
controller’s flip-flops, or MUTEX elements [31, 53]. The downside of these approaches
is that synchronized fill-level flags are inherently stale by the time they affect the
system.

At the heart of the problems faced in these controllers lies the impossibility of solving
discrete decision problems, e.g., writing to a cell at a certain clock tick or skipping

119



Chapter 9. Single Link Synchronization

this work [83] [30]

Performance
Latency 1 ns 375 ns 1.3 ns
Throughput 1/2 ns 1/41 ns 1/1.3 ns
MTBF ∞ ∞ Finite

Overhead

N 2 9 2
# Gates 8 > 100 > 100
# Flip-Flops 4 > 50 > 100
Oscillator Type tune distributed quartz

Table 9.1: Performance and hardware overhead (buffer size N , gates, flip-flops,
oscillator type) of the proposed controller with a tunable 2 to 2.3GHz oscillator, [30],
and [83].

a clock cycle, under continuous inputs (i.e., arbitrary phase shifts between producer
and consumer clocks) within bounded time [74]. One way out of this impossibility
is to resort to end-to-end analog designs, e.g., by letting an analog controller apply
continuous phase shifts by (slightly) tuning the producer and/or consumer oscillator.
This comes at the burden of a fully-fledged analog design.

An interesting alternative was proposed in [88], where the authors advocate the
use of asynchronous controllers, sensing and controlling analog processes. With this
approach, analog components are required at the controller interfaces only, and the
controller itself is implemented by a digital asynchronous circuit. For certain classes
of controllers, this approach allows to completely circumvent metastable upsets within
the controller circuit, essentially by allowing for the occurrence of (digital) controller
outputs within a continuous time range, rather than at discrete clock ticks only.

Table 9.1 shows a comparison of our controller with the most closely related works,
[83] and [30] (cf. Section 9.4 for details).

Contribution. We propose a fundamentally different approach, exemplifying it
at the hand of highly efficient link controllers: like [88], we replace large parts of a
(conceptually) analog controller by standard digital circuitry. However, we do not
resort to asynchronous circuits. Instead, we allow unstable/metastable signal values
within our circuit. Clearly, care must be taken that such values do not affect the
whole controller logic, leading to unconstrained control outputs.

Specifically, we propose a digital controller that drives tunable ring oscillators
as presented in [45] at the sender and receiver side and prove its correctness. The
controller is small in size, has low control latency, and allows for small link buffers.
We show that this guarantees high throughput and low latency communication. Most
notably, while the controller may become metastable, we ensure that metastability is
contained within the controller, and does not lead to metastable upsets, corruption, or

120



9.2. System Specification

Snd Rcv

Buff

0N−1
1
...Buff

clksnd clkrcv

Oscsnd OscrcvCtrl
mdsnd mdrcv

Figure 9.1: Link with Digital Controller

drops of communicated data words in the ring buffer between the sender and receiver.
We complement our provable system guarantees with simulations (see Section 9.4).

In the next chapter (Chapter 10) we present a synchronization scheme for more
than two nodes, i.e., a network of nodes. Here we discuss the groundwork at hand of
a single link. Some components and concepts, e.g., oscillators, are equal or adjusted
versions of the ones presented here. A further difference is that this work also includes
communication of the nodes while the network synchronization does not.

9.2 System Specification

We specify the system requirements and functionality next. The system topology is
depicted in Figure 9.1. We identify three main components:

tunable oscillators Oscsnd and Oscrcv, (i)

a (ring) buffer Buff, and (ii)

a buffer controller Ctrl. (iii)

The link enables communication between two parties, a sender Snd and a receiver
Rcv, that interact with the link via prescribed interfaces, discussed later on.

The sender writes data to a ring buffer of even size N > 0, which is read by the
receiver. Cells are numbered from 0 to N − 1. Read and write access is clocked:
following transitions of clksnd, the sender writes to the ring buffer. The register
address is specified by the current value of its address pointer, which it subsequently
increments (modulo N); likewise, following transitions of clkrcv, the receiver reads
from its current address and subsequently increments its pointer.

We remark that our design can easily be altered for bidirectional communication.
Each party needs to perform a read/write sequence instead of just a read (respectively
write) operation when it is accessing a buffer cell; The only effect is that the respective
higher access time needs to be respected in the timing constraints on the system. For
ease of presentation, we stick to the asymmetric setting in the remainder of this
chapter.

121



Chapter 9. Single Link Synchronization

9.2.1 Local Clocks

The sender and receiver clocks clksnd and clkrcv are derived from clock sources Oscsnd

and Oscrcv, respectively. We require that these clock sources (or oscillators) are
tunable in frequency. The frequency is controlled by the mode signals mdsnd and
mdrcv.

Denote by Clk(t) ∈ Z a discrete clock value at Newtonian time t ∈ R≥0. This
discrete clock is derived from a continuous clock clk(t) ∈ R as Clk(t) := ⌊clk(t)⌋, with
current frequency ˙clk(t). Let Clks(t), Clkr(t) be the discrete clock values of sender
and receiver at Newtonian time t, and clks(t), clkr(t) their continuous clocks.

The local clock is realized by a tunable oscillator and a modulo-counter. It follows
the constraints of the tunable oscillator in Section 8.2. In the remainder of this
chapter, we denote slow and fast rates of the oscillator by s and f and by − and +
the drift of the hardware clock, such that

s− := 1, s+ := 1 + ρ, f− := 1 + µ, f+ := (1 + ρ)(1 + µ) .

Remark. For δ = 1, Condition (C1) is a fairly weak constraint. If the sender and
receiver each access one element of the ring buffer per clock cycle, the condition requires
that both oscillators are started within one clock cycle of each other. However, smaller
values of δ may reduce the minimum feasible ring size by 2 in some cases.

9.2.2 Buffer Access Specification

Next, we specify buffer access in an abstract model with few parameters. We assume
that access to a buffer cell starts when the respective clock modulo N (possibly with
a fixed offset) equals the buffer index. A computational cycle is defined by the local
time between accessing consecutive buffers.

Intuitively, a buffer cell is valid (i.e., ready to be read) if it contains stable, logical
data and is currently not written. A buffer cell is invalid (i.e., ready to be written)
if it is not valid and currently not read. Formally, we define the receiver’s (discrete)
address pointer as

Pr(t) := ⌊pr(t)⌋ mod N = Clkr(t) mod N , (B1)

where the receiver’s (continuous) address pointer is pr(t) := clkr(t). That is, the
receiver starts to access cell ℓ at each time t when Pr(t) = pr(t) mod N = ℓ.

The sender pointer has a (nominal) offset of half the ring size relative to the
receiver pointer. We define the sender’s address pointer to be

Ps(t) := ⌊ps(t)⌋ mod N , (B2)

where ps(t) := clks(t) + N/2. In the following, we will simply drop the “starts
to” and say that the receiver (sender) accesses cell ℓ at time t if pr(t) mod N = ℓ
(ps(t) mod N = ℓ).

122



9.2. System Specification

Read and write operations take non-zero time. We account for setup/hold times and
latency by parameters τs and τr, which denote the maximum duration of write and
read operations. Concretely,

if the sender accesses a cell at time t,

the receiver must not do so during [t, t+ τs),

and if the receiver accesses a cell at time t,

the sender must not do so during [t, t+ τr).

(B3)

On initialization, cells 0 ≤ ℓ < N/2 are valid, while cells N/2 ≤ ℓ < N are invalid.

If the sender accesses an invalid cell at time t,

the cell becomes valid at time t+ τs.

If the reader accesses a valid cell at time t,

it becomes invalid at time t+ τr.

(B4)

This inductively defines for each cell and each time t ≥ 0 whether it is valid or invalid.
Note that these definitions are crafted in such a way that if the sender accesses

only invalid cells and the reader accesses only valid cells, we have mutual exclusion
of read and write operations and for each individual cell, reads and writes alternate.
This is the intended mode of operation, which we will formalize in Section 9.2.6.

Remark. This approach is a normalization of the time axis so that one computational
cycle takes 1 unit of local time as measured by the sender or receiver oscillator,
respectively. Note that this will typically not be 1 unit of Newtonian time, as oscillator
speeds may vary.

9.2.3 Metastability

To minimize the dead time of the control loop regulating the clock speeds, we do not
make use of synchronizers. Forgoing their use can result in meta-/unstable signals.
At any point in time, a signal has a value in {0, u, 1}, where u means that a signal is
potentially unstable or in transition. In particular, a flip-flop latching when its input
is u will “store” an u until a stable input is latched again. Note that an output signal
may also be unstable due to a transitioning signal, e.g. after latching a new value
different from the previously stored one.

9.2.4 Link Controller Interface Specification

The mode signals themselves are generated by the controller Ctrl. Controller deci-
sions are based on full/empty flags of the ring-buffer cells, which we describe shortly.
We stress that, inherently, the controller acts at the border of two clock domains.
Any digital implementation (including ours) is thus susceptible to unstable upsets.
Accordingly, the voltage levels of mdsnd and mdrcv may become meta-/unstable, de-
noted by u (between logical 0 and 1). In order to minimize delay, we do not pipe
them through a synchronizer chain before making use of them.

123



Chapter 9. Single Link Synchronization

F3(t)

F4(t)

F0(t)

F1(t)

FN−1(t)

F2(t)

0

0

0u

1

1

pr(t− τr)pr(t)

ps(t− τs)

ps(t)

Pr(t)

Ps(t)

Figure 9.2: Ring buffer access at time t. The sender currently accesses cell 4. Hence,
its full/empty flag is u. The receiver has just finished accessing cell 1. Thus, its
full/empty flag is 0. In executions, we mark (potential) instability in red, cf. Figure 9.8.

Let Tctr denote the maximum end-to-end delay of the controller circuit, i.e., between
its input (the full/empty flags) and its output (mdsnd and mdrcv). The specification
of the link controller’s interface follows the specification of the control module in
Section 8.2.

9.2.5 Full/Empty Flags

With each buffer cell ℓ, we associate a full/empty flag Fℓ. It is specified as

Fℓ(t) = 1 if the cell is valid at time t and it either has

not been accessed yet or the most recent access to it was by the sender;
(F1)

Fℓ(t) = 0 if the cell is invalid at time t and it either has

not been accessed yet or the most recent access to it was by the receiver;
(F2)

if neither applies at time t, then Fℓ(t) ∈ {0, u, 1}. (F3)

In other words, we allow for the possibility that Fℓ(t) = u at any point in time during
read and write operations.

124



9.3. Continuous Threshold Controller

Figure 9.2 depicts the state of the above-described cell pointers at time t. Observe
that all cells between the sender and the receiver are full and thus their full/empty
flags equal to 1, those between the receiver and the sender are empty with full/empty
flags equal to 0, and the flags of those currently accessed are u.

9.2.6 System Correctness

Expressing the correct order of and separation in time between cell accesses, we can
now succinctly state what the correct operation of the link architecture means.

Definition 9.1. A link is correct if the following holds in any execution adhering to
our model.

No underrun: the receiver accesses only valid cells. (P1)

No overflow: the sender accesses only invalid cells. (P2)

Definition 9.2. Controller Ctrl is correct if it computes the signals mdsnd and
mdrcv out of the inputs Fℓ so that the link is correct.

The goal is now to design a (simple) controller that is correct even if the ring size N
is small: this minimizes both the size of the buffer and its latency.

9.3 Continuous Threshold Controller

Our control algorithm ContTh(T ) is specified in Algorithm 5. It is parametrized
by T ∈ R>0. In the remainder of this section, we explain the intuition behind the
approach.

For the purpose of exposition, denote by fill(t) := ps(t) − pr(t), such that
fill(t) = N/2 + clks(t) − clkr(t), the fill level of the buffer. Recall that one of our
design goals is to have a simple digital controller. The most straightforward choice
for such a control algorithm is presumably the threshold controller: If the fill level of
the ring buffer is larger than N/2, the sender is forced to slow mode and the receiver
is forced to fast mode. If the fill level is less than N/2, the sender and receiver are
forced into fast and slow mode, respectively.

However, as the various involved circuit components incur non-zero delays, we
cannot expect instantaneous (and thus also not exact) information on the fill level.
Also, changing the oscillators’ speeds takes non-zero time, so we cannot hope for an
immediate response to a small/large fill level. Algorithm 5 takes this into account by
introducing two thresholds.

Example. Figure 9.3 shows an execution where the controller Ctrl runs the algorithm.
The fill-level increases until it hits N

2 + T , which makes the mdrcv signal drive 1 after
Tctr time. After another Tosc time, the receiver and sender clocks are required to run
in fast and slow mode, respectively (cf. Section 9.2). Note that the second phase
during which the threshold N

2 +T is crossed is too short for Ctrl and the oscillators
to react with certainty.

125



Chapter 9. Single Link Synchronization

Algorithm 5 Controller ContTh(T )

at each time t do

mdrcv(t)← choose arbitrarily in {0, M, 1}
mdsnd(t)← choose arbitrarily in {0, M, 1}
if clks(t)− clkr(t) ≥ T then

mdrcv(t)← 1

mdsnd(t)← 0

if clkr(t)− clks(t) ≥ T then

mdrcv(t)← 0

mdsnd(t)← 1

t

fill(t)

N
2 + T

N
2 − T

mdrcv

Oscrcv fast

Tctr

Tosc

Tctr

Figure 9.3: ContTh(T )’s signals of the receiver. When the fill level crosses the
threshold the oscillator switches after Tctr + Tosc time.

126



9.3. Continuous Threshold Controller

9.3.1 Correctness of ContTh(T )

Before we show that, for a T that is chosen sufficiently large, ContTh(T ) is imple-
mentable by a digital circuit in Section 9.3.2, we show that ContTh(T ) indeed is
correct (as per Definition 9.2) if T is chosen small enough.

Theorem 9.3. ContTh(T ) is correct if

δ ≤ T
≤ N/2− (f+ − s−)(Tosc + Tctr)− f+max{τs, τr}.

(9.1)

Recall that pr(t) = clkr(t) and ps(t) = clks(t) +N/2. Thus, when perfectly synchro-
nized, the sender and receiver concurrently access opposite cells of the buffer. The first
subtrahend accounts for the fact that the clocks remain unconstrained for Tosc + Tctr

time even after a threshold is reached: the controller guarantees corresponding output
only after Tctr time, which is bound to affect clock speeds at most another Tosc time
later; During this time period, one clock may catch up to the other at rate f+ − s−.
The second subtrahend accounts for the fact that the sender must always access a
cell at least τr time before the receiver, while the receiver must do so τs time before
the sender (B3).

Note that these two conditions become fully symmetric when using max{τs, τr} as
the minimum required separation between accesses. Translating this wall-clock time
difference to the address pointers using the upper bound of f+ on clock frequencies,
we see that the following lemma is the key to showing Theorem 9.3.

Lemma 9.4. If Eq. (9.1) holds, then

∀t ∈ R≥0 : | clks(t)− clkr(t)| ≤ N/2− f+max{τs, τr} .

Proof. Assume for contradiction that clks(t) − clkr(t) > N/2 − f+max{τs, τr} > T
for some time t. Let t0 ∈ R≥0 be the minimal time such that clks(τ)− clkr(τ) ≥ T
for all τ ∈ [t0, t]; as | clks(0)− clkr(0)| < δ ≤ T by (C1) and (9.1) and both clks and
clkr are continuous, such a time t0 must exist. Observe that clks(t0)− clkr(t0) = T .

By the specification of the controller (L1), we have that mdsnd(τ) = 0 and
mdrcv(τ) = 1 for all τ ∈ [t0+Tctr, t]. Thus, we have that ˙clkr(τ) ≥ f− ≥ s+ ≥ ˙clks(τ)
for all τ ∈ [t0 +Tctr +Tosc, t] by the specification of the clocks ((C2), (C3), and (C5)).
Recall that also ˙clkr(τ) ≥ s− and ˙clks(τ) ≤ f+ at all times τ by (C2) to (C5). We
abbreviate tclk = t0 + Tctr + Tosc. If t− t0 ≥ Tctr + Tosc, we can thus bound

clks(t)− clkr(t) = clks(t0)− clkr(t0) +

∫ t

t0

˙clks(τ)− ˙clkr(τ) dτ

≤ T +

∫ tclk

t0

f+ − s− dτ +

∫ t

tclk

0 dτ

≤ T + (f+ − s−)(Tctr + Tosc)

≤ N

2
− f+max{τs, τr} . by Eq. (9.1)

127



Chapter 9. Single Link Synchronization

If t − t0 < Tctr + Tosc, the second part of the integral vanishes and the first part
becomes smaller, showing that the same bound holds. Either way, this contradicts
our assumption that clks(t)− clkr(t) exceeds this bound.

Finally, in the case that clkr(t)− clks(t) > N/2− f+max{τs, τr} we argue analo-
gously, but the roles of the sender and receiver are exchanged.

Proof of Theorem 9.3. By Lemma 9.4,

|ps(t)− pr(t)| = | clks(t) +N/2− clkr(t)|
∈ [f+max{τs, τr}, N − f+max{τs, τr}].

(9.2)

In particular, the (continuous) sender and receiver address pointers never have the
same value modulo N and thus cannot pass each other. Moreover, by our assumptions
on the initial clock values (C1), and since δ ≤ 1, we have that clks(0), clkr(0) ∈ (−1, 0],
i.e., pr(0) ∈ (−1, 0] and ps(0) ∈ (N/2 − 1, N/2] by (B1) and (B2), respectively.
Together with (B4), this implies that (i) the first access to each cell that is invalid at
time 0 is by the sender, (ii) the first access to each cell that is valid at time 0 is by
the receiver, and (iii) each cell is accessed alternatingly by the sender and receiver.

It remains to show that the receiver does not access a cell less than τs time after
a sender access to the same cell. Similarly, we need to show that the sender does
not access a cell less than τr time after a receiver access. To this end, suppose
cell ℓ is accessed by the sender and receiver at times ts and tr, respectively. Thus,
ℓ = pr(tr) + aN = ps(ts) + bN for some a, b ∈ Z, i.e.,

|pr(tr)− pr(ts)| = |ps(ts)− pr(ts) + (b− a)N |
≥ f+max{τs, τr} . by Eq. (9.2)

As ṗr(t) = ˙clkr(t) and ˙clkr(t) ≤ f+ at all times t by (C2) to (C5), we also have
|pr(tr) − pr(ts)| ≤ f+|tr − ts| and therefore |tr − ts| ≥ max{τs, τr}. Thus, (P1) and
(P2) are satisfied for any access to cell ℓ; Since ℓ was arbitrary, this completes the
proof.

9.3.2 Clocked Implementation ClockedTh

Next, we provide a simple and efficient controller implementation that works if T
is sufficiently large. Recall that our goal is to detect when cs(t) − cr(t) ≥ T or
cr(t)− cs(t) ≥ T . By Lemma 9.4, assuming a correct implementation satisfying (9.1),
it holds that the address pointers never reach each other. Together with the equality
cr(t)− cs(t) = pr(t) +N/2− ps(t), it follows that all we need to check is whether one
pointer is more or less than N/2 cells ahead of the other or not. This gives us an
indication of whether the buffer is more or less than half full, and the more accurately
we can decide, the smaller T can be for the implementation to be correct.

We use the receiver’s clock to sample whether the sender’s address pointer is
currently by more or less than N/2 cells ahead of the receiver’s address pointer. This
is where the full/empty flags come in handy. Instead of having to communicate and

128



9.3. Continuous Threshold Controller

sample cs(t), the receiver simply samples the flag of cell ℓ+N/2 mod N when accessing
cell ℓ ∈ [N ]. This occurs at each time t when ℓ = pr(t) mod N = cr(t) mod N , which
means that if the buffer is exactly half full, we had that ps(t) mod N = ℓ+N/2 mod N ,
i.e., the sender accesses cell ℓ+N/2 mod N at precisely the same time. This means
that it starts setting the full/empty flag of the cell from 0 to 1 at time t, i.e., if the
buffer is less than half full, the receiver will successfully sample a stable 0 into flip-flop
‘ffa’, see Figure 9.4.

Remark. For simplicity, we attribute any unstable reading to the transition of the
memory flag of the cell via τs. Of course, the parameters of the flip-flop we sample
into, the quality of the clock signal, and the delay from the flag’s output to the
flip-flop’s input through the MUX all have an effect. Based on a timing analysis of the
circuit and adding a suitable phase shift to the clock input of ‘ffs’ by, e.g., using a
buffer, the abstract behavior we assume can be realized. Then, τs simply describes
the size of the time window during which ‘ffs’ is vulnerable to metastability induced
by a transition of the memory flag of cell ℓ.

In contrast, if the buffer is more than half full, it may be the case that the receiver
reads an M because the sender is still writing the full/empty flag. Only if it accessed
the cell at the latest at time t − τs, we can be certain that the result of the read
operation is a stable 1. To avoid this asymmetry, we sample cell ℓ at times t when
cr(t) mod N = ℓ+ f+τs/2.

Lemma 9.5. Suppose time t and ℓ ∈ [N ] are such that cr(t) mod N = ℓ + f+τs/2
and Eq. (9.2) holds. Then

(1) cs(t)− cr(t) ≥ f+τs/2 ⇒ Fℓ(t) = 1, and

(2) cr(t)− cs(t) ≥ f+τs/2 ⇒ Fℓ(t) = 0.

Proof. We show (1 ) first, i.e., assume that cs(t) ≥ cr(t) + f+τs/2. Then

ps(t− τs) = cs(t− τs) ≥ cs(t)− f+τs ≥ cr(t)− f+τs/2 .

Note that

cr(t)− f+τs/2 mod N = ℓ ,

i.e., the sender completed writing cell ℓ (for the most recent time) at time t; Here,
(9.2) shows that neither the sender nor receiver cannot have accessed the cell again
after the operation was complete. In other words, Fℓ(t) = 1, as claimed.

Now we show statement (2 ). We assume that cs(t) ≤ cr(t)− f+τs/2, while also
cr(t)− f+τs/2 mod N = ℓ. Hence, the most recent access to cell ℓ was by the reader
(again using also (9.2)), which also completed its access (as N ≥ 2 and we assume
that operations are completed within a single clock cycle). In other words, Fℓ(t) = 0,
as claimed.

129



Chapter 9. Single Link Synchronization

D
Q

D Q

Q

F0 F1

0 1

mdsnd

mdrcvclkrcv
ffa ffs

Figure 9.4: Controller ClockedTh for ring-size N = 2. Flip-flop ‘ffa’ stores the
address (modulo 2) that is sampled and ‘ffs’ is the sampled full/empty flag.

Remark. It is worth noting that one could use a purely combinational controller to
achieve the same result, i.e., there is no need to rely on clocking. Making use of the
clock does also not guarantee that stable values are sampled. However, making use of
the clock results in a controller with a smaller threshold value than a straightforward
combinational implementation due to the known alignment of the sampling times
with one of the clocks.

Based on this idea, we derive a straightforward implementation of the controller. Put
simply, the receiver samples the full/empty flag of the cell opposite to the one it
currently reads in the ring. More precisely, mdrcv is the output of a flip-flop (flip-
flop ‘ffs’ in Figure 9.4), into which the receiver samples Fℓ(t) at times t such that
cr(t) mod N = ℓ + f+τs/2. Signal mdsnd is obtained by negating mdrcv. A circuit
implementing this approach for ring size N = 2 is shown in Figure 9.4. Here, flip-flop
‘ffa’ is a modulo 2 counter used to track the address to the current cell to sample.
It is initialized to the opposite of the receiver address. We need to ensure that the
MUX switches to forwarding the respective full flag before flip-flop ‘ffs’ latches the
output of the MUX. We do so by computing the select bit on the negated clock signal.
This shifts the computation of the select bit by half a clock cycle and ensures correct
timing. Note that here we might get metastable mode signals due to switching full
flags. Naturally, it is necessary that the mode signal is computed within a single clock
cycle; Given the simplicity of the circuit, this is easily achieved.

In the following, denote by τmax the maximum propagation time through the
circuit shown in Figure 9.4 from the full/empty flags at the top to mdsnd (without τs,
which is already taken into account by Lemma 9.5). Lemma 9.5 then characterizes
the proposed controller.

Corollary 9.6. Assume that the control circuit ClockedTh is used in accordance with
Lemma 9.5 and that (P1) and (P2) hold until time t > Tctr = 1/s− + τmax.

130



9.3. Continuous Threshold Controller

If for all t′ ∈ [t− Tctr, t] we have that

clks(t
′)− clkr(t

′) ≥ f+τs/2 , then mdrcv(t) = 1 and mdsnd(t) = 0 (case (i))

If for all t′ ∈ [t− Tctr, t] we have that

clkr(t
′)− clks(t

′) ≥ f+τs/2 , then mdsnd(t) = 1 and mdrcv(t) = 0 (case (ii))

Proof. The outputs mdrcv(t) and mdsnd(t) at time t are derived from the output of
‘ffs’ at time t (or one inverter delay earlier). As the receiver clock runs at least at
speed s− (by (C2) to (C4)), flip-flop ‘ffs’ is latched at least every 1/s− time. Hence,
taking into account the propagation time through the MUX and the definition of τmax,
the outputs correspond to the output of one of the flags at some time t′ ∈ [t− Tctr, t].
As the MUX selects the flag output it forwards according to Lemma 9.5, we can apply
the lemma to time t′, yielding in case (i) that a stable 1 is latched and in case (ii)
that a stable 0 is latched. This results in the desired corresponding circuit outputs
mdrcv(t) = 1 and mdsnd(t) = 0 (case (i)) or mdsnd(t) = 1 and mdrcv(t) = 0 (case (ii)),
respectively.

We now can derive the correctness of the controller, expressed in Theorem 9.7, condi-
tional on simple constraints on T .

Theorem 9.7. Assume that Eq. (9.1) holds, where Tctr = 1/s− + τmax, and T ≥
f+τs/2. Then ClockedTh is an implementation of ContTh(T ).

Proof. If there is some access to a valid cell by the sender or to an invalid cell by
the reader, there must be a minimal such time (because the start of a cell access is a
discrete event). Denote by t the minimal such time if such an access occurs and set t
to infinity otherwise.

We claim that the circuit implements ContTh(T ) at all times 0 ≤ t < t; from
this, we will infer the statement of the theorem. Recall that by (L1) and (L2), the
controller implementation needs to output a specific (and stable) signal only if the
condition in Line 3 or the one in Line 7 of Algorithm 5 continuously holds during the
previous Tctr time. According to Algorithm 5, this is the case at time t if and only if
cs(t

′)− cr(t
′) ≥ T for all t′ ∈ [t− Tctr, t] or cr(t

′)− cs(t
′) ≥ T for all t′ ∈ [t− Tctr, t].

Consider such a time t. Note that t > Tctr, as |cs(0) − cr(0)| < δ ≤ T by (C1)
and Eq. (9.1), i.e., neither condition is satisfied at time 0. We consider the two cases
(i) clks(t

′) − clkr(t
′) ≥ T for all t′ ∈ [t − Tctr, t] and (ii) clkr(t) − clks(t) ≥ T for all

t′ ∈ [t− Tctr, t].

Case (i): Since T ≥ f+τs/2, we may apply case (i) of Corollary 9.6. We conclude
that mdrcv(t) = 1 and mdsnd(t) = 0.

Case (ii): In this case we may apply case (ii) of Corollary 9.6, from which we deduce
that mdrcv(t) = 0 and mdsnd(t) = 1.

131



Chapter 9. Single Link Synchronization

We conclude that the circuit meets the specification at all times t < t. In particular,
we can apply Lemma 9.4 at times t < t, showing that

|cs(t)− cr(t)| ≤ N/2− f+max{τs, τr} .

If t ̸=∞, continuity of cs and cr implies that also

|cs(t )− cr(t )| ≤ N/2− f+max{τs, τr} .

Reasoning analogously to the proof of Theorem 9.3, it follows that (P1) and (P2) are
not violated at times t ≤ t, contradicting the definition of t. We conclude that t =∞,
implying that the circuit from Figure 9.4 indeed implements ContTh(T ).

Finally, we translate the theorem into a sufficient condition for the correctness of the
link implementation. To state its performance, we define the latency as the maximum
time between consecutive accesses of the sender and receiver to the same cell, plus
the setup/hold time at the receiver (as the data should be stable before it is used).
The throughput is the guaranteed minimum rate of delivered packets; Note that no
packet drops or corruptions occur in our implementations.

Corollary 9.8. For N ≥ 2∆, the given clocked link implementation is correct with
latency N/s− and throughput 1/s−, where

∆ = ⌈(f+ − s−)(Tosc + 1/s− + τmax) + f+max{τs, τr}+max{δ, f+τs/2}⌉ .

Proof. Set Tctr = 1/s−+τmax. We choose T such that (9.1) and T ≥ f+τs/2 are both
satisfied. This is possible if and only if N/2 ≥ ∆, which holds by the prerequisites
of the corollary. Then Theorem 9.7 yields that the circuit from Figure 9.4 indeed
implements ContTh(T ), and Theorem 9.3 shows that the implemented controller is
correct. The performance bounds follow immediately from correctness and the fact
that the guaranteed minimum clock rate is s−.

9.4 Performance Evaluation

In this section we discuss an ASIC design for which weapplication-specific
integrated circuit (ASIC)

carried out simulations. The
design is implemented with the UMC 65nm standard cell library. It operates at
roughly 2GHz. This demonstrates that the derived performance bounds indeed lead
to promising results.

Metastability. In this section, we also demonstrate simulated executions that show
the circuit behaving according to the specification, despite the reoccurring metastabi-
lity of its control signals; see Figure 9.8. In fact metastability of the control signals is
likely to be observed in an implementation, since by its attempt to synchronize the
two oscillators, the controller repeatedly drives the control signals into metastability;
much like the experimental setups to measure deep metastability of synchronizers

132



9.4. Performance Evaluation

D Q

Q

D

Q

Q
D

Q
Q

01 s

mdsnd mdrcv

clksnd clkrcv

Q

Q

F0 F1

Buffercell

Buffercell

Oscsnd Oscrcv

Buff

snd rdv

Esnd

Esnd Ercv

Ercv

Ctrl

Figure 9.5: Implementation of the system with buffer size N = 2. Clock regions are
marked red (sender) and blue (receiver).

[97, 84]. We would like to point out that any such demonstration, however, does
not replace the correctness proofs in Section 9.3. Proving that metastability is not a
problem would require to verify the absence of metastability (or resulting effects) in
all circuit components, except for the places to which our proofs show metastability
to be confined.

9.4.1 ASIC Implementation

The complete design is shown in Figure 9.5. It comprises the digital controller
(Ctrl), tunable sender and receiver oscillator (Oscsnd,Oscrcv), and the ring buffer
of size N = 2.

At a buffer size of 2, the address logic in Snd and Rcv reduces to a simple modulo
2 counter. Hence, we only have a single register for the sender and the receiver side.
The modulo counter operates on the negated clock to ensure a stable output at the
time a register in the buffer is accessed. The buffer consists of two buffer cells that
store the full/empty flags. The design of a buffer cell that can be set to 1 by one
clock domain and reset to 0 by another clock domain is given in Figure 9.6. The
design uses a flip-flop for each clock domain that forwards its output to a xor which
computes the output. If the sender flip-flop is enabled it copies the negation of the

133



Chapter 9. Single Link Synchronization

Q

Q

E

D

D

E

Q

clksnd

clkrcv

Esnd

Ercv

Figure 9.6: Implementation of a buffer cell that can only be set by the sender and
only be reset by the receiver.

receiver state. For differing states, the xor will output a 1. If the receiver enables its
flip-flop the state of the sender is copied. Hence, the output of the buffer cell is reset
to 0.

We can optimize the controller from Figure 9.4, as we already compute the write
address of the sender. We remove the flip-flop ‘ffa’ and read the address from the Snd
address logic. The MUX in Ctrl is connected such that we sample from the buffer cell
that is currently not written by the sender. The timing diagram in Figure 9.7 shows
the behavior of Ctrl.

Recall that we require the sender and receiver oscillators to be well-behaved even
when control bits are unstable. Specifically, we require that (i) oscillator frequencies
are always within [s−, f+], and (ii) frequency mode changes occur within Tosc time
((C2) to (C5)). This is why we resorted to starved-inverter ring oscillators that
guarantee such behavior [2]; we designed the sender and receiver starved inverter
rings at transistor level following [91]. Note that we do not need the full control logic
overhead typically required to drive the starved inverter cells, since we only need two
speeds: slow and fast. Hence, the control logic of the oscillator takes a single bit
and adjusts the delay of the starved inverters according to fast or slow mode. As the
receiver oscillator Oscrcv additionally drives the control logic Ctrl its load is higher
than the load driven by the sender oscillator. The effect is that Oscrcv has slightly
slower fast and slow modes. The difference does not matter as long as the oscillator
speeds lie within their theoretical bounds. One can keep the imbalance very small by
decoupling the oscillators from the load with buffers.

Signals mdrcv and mdsnd are used as control signals of the rings, which run at
roughly 2GHz and 2.3GHz for input 0 and 1, respectively.

Extracting delay and frequency parameters from the standard cell library we get
∆ = 1 in Corollary 9.8, i.e., ClockedTh is provably correct for N ≥ 2. This fits to the
bounds given in Table 9.1.

134



9.4. Performance Evaluation

mdrcv

mdsnd

F1

F0

addrrcv

clkrcv

12.2ns 12.4ns 12.6ns 12.8ns 13ns 13.2ns 13.4ns 13.6ns 13.8ns 14ns 14.2ns 14.4ns

Figure 9.7: Timing diagram of the controller Ctrl. The address addrrcv decides
which full flag is sampled into the register of the controller at a rising clock transition.

9.4.2 Frequency Stability of Tunable Oscillators

Typically, the accuracy of oscillator frequencies is stated as a two-sided error, i.e., if
the nominal frequency of the oscillator is f and it has a relative frequency error of at
most r, then at any time its momentary frequency is between (1− r)f and (1 + r)f .

Recall from (C5) that we require that the fast oscillator mode is always faster
than the slow oscillator mode. For a 2 to 2.3GHz clock we must therefore tune the
clock within an error r that satisfies the condition 2 · (1 + r)2/(1 − r)2 ≤ 2.3, i.e.,
r ≤ 3.49% is a sufficient bound on the frequency error. In case these error margins
are too restrictive, we could choose a clock with a larger gap between fast and slow
modes, e.g., 2 to 2.5GHz. Depending on the outcome of the timing analysis (see also
Corollary 9.8), this may require a larger buffer size N .

For comparison, the accuracy requirements for the oscillators used in [30] are as
follows. If both the sender and receiver oscillator run at (roughly) the same nominal
frequency, ∆p < g/S is proven to be sufficient for the correctness of the design, where
∆p is the relative phase change per clock cycle, S = 4 the number of synchronizer
stages, and g = 0.1 the guard band. However, the proof assumes a perfectly stable

135



Chapter 9. Single Link Synchronization

d

clk_rcv

clk_snd

full[0]
full[1]

md_rcv

md_snd

195ns 196ns 197ns 198ns

Figure 9.8: Gate-level simulations for link with ClockedTh.

receiver clock. If the receiver and sender oscillator may drift, the above inequality
becomes 2∆p(1 + ∆p) < g/S. This is equivalent to a frequency error of less than
1.24%.

9.4.3 Gate level and SPICE Simulations

We first ran gate-level VHDLVHSIC hardware
description

language (VHDL)

simulations of designs of our ClockedTh controller with
delay and setup/hold parameters from the ASIC design. The starved-inverter rings
were simulated by forward Euler integration of a first-order ordinary differential equa-
tion (ODE) model, where current clock rates are independently uniformly distributed
in each integration step to account for drift. The high respectively low frequency of
the starved inverter rings were set to 2.3GHz respectively 2GHz. Potential meta-
/instability of signals was simulated by X in a worst-case manner; this includes flip-flops
with setup/hold violations, full/empty flags, and oscillator mode signals. Simulated
traces were 5ms (107 clock cycles) long and all in accordance with the proven correct-
ness results. We stress that signals mdrcv and mdsnd were unstable (X) almost all the
time due to the conservative gate model assumptions, yet no buffer over-/underrun
is encountered; cf. Figure 9.8.

We then ran Spice simulations for the ClockedTh design: The design was im-
plemented in Spice using standard cells and parameters of the UMC 65nm library
combined with an implementation of a tunable ring oscillator. The oscillator runs at
speed 2.09GHz in slow mode and 2.42GHz in fast mode. Taking into account timing
constraints and propagation delays of the elements we can use a ring buffer of size
two, according to Corollary 9.8.

When simulating the design for 500 ns (about 1100 clock cycles) no faulty behavior
could be detected. However, the simulation confirms what we stressed previously. In
almost 50% of the cases, the setup time of ‘ffs’ (see Figure 9.4) is violated due to
late transitions of the full flags. Still, the controller behaves correctly and the two
oscillators run synchronously.

Figure 9.9(a) shows the full flags of the buffer. Sender and receiver alternatingly
access cell 0 and cell 1. Figure 9.9(b) shows the clock signals produced by the sender

136



9.4. Performance Evaluation

0.0V

1.0V

100ns 101ns 102ns 103ns 104ns 105ns 106ns 107ns 108ns

full flags

0.0V

1.0V

100ns 101ns 102ns 103ns 104ns 105ns 106ns 107ns 108ns

clock signals

0.0V

1.0V

100ns 101ns 102ns 103ns 104ns 105ns 106ns 107ns 108ns

mode signals

Figure 9.9: Ring buffer with two cells. (a) Rising and falling full flags of cell 0
(purple) or 1 (green) show write and read access to the respective cell. (b) Clock
signals of the sender (red) and receiver (blue) oscillator. When stabilized both run
at 2.28GHz on average. (c) The mode signals for the sender (red) and receiver (blue)
sides alternate between fast (2.42GHz) and slow (2.09GHz) mode.

and receiver oscillators. When stabilized, the sender is ahead by slightly more than a
clock cycle. Both run on average with a frequency of roughly 2.28GHz. Figure 9.9(c)
shows the mode signals of the sender and receiver which are computed by ClockedTh.

9.4.4 Increasing Initialization Slack

If a sufficiently small δ (i.e., initial clock offset) cannot be guaranteed, the address
pointers may collide. However, if the pointers move apart sufficiently far, the link will
resume operating as intended. Note that the pointers colliding and moving at the same
speed (i.e., the clocks running at the same speed) is an unstable equilibrium state, as
the control logic aims at pushing them apart. Accordingly, this is a metastable state
of the link, which can be expected to resolve fairly quickly.

We used a variation of the Spice simulation that allows us to initialize sender and
receiver clocks to a specific offset (due to the machinery, the simulation does not start
exactly at 0 ns). Together with a suitable initialization of the full/empty flags, this
simulates one of the clocks being started earlier.

We simulated the link with small initial offsets of the continuous pointers, i.e.,
ps(0) − pr(0) = Cs(0) − Cr(0) + N/2 ≈ 0, with the goal of finding a good tradeoff

137



Chapter 9. Single Link Synchronization

-400ps

-200ps

0ps

200ps

400ps

600ps

800ps

0ns 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns

(50ps)
(30ps)

(0ps)
(-75ps)

Figure 9.10: Offset of the sender and receiver pointers over simulation time. When
initializing the pointer offset to 0 ps, 30 ps, 50 ps and −75 ps, we observe different
times to stabilization. According to the analysis, setup, and hold times cannot be
violated once the link is stabilized.

between resolution time and precision of the initialization. Figure 9.10 shows the
pointer offset of the sender and the receiver clock (ps(t) − pr(t) − N/2) over time
t for different initializations. We see that simulations with an initial offset of 0 ps,
30 ps and 50 ps stay in the metastable state until eventually, the sender advances
by one clock cycle relative to the receiver and the simulation stabilizes. Similarly,
a simulation with an initial offset of −75 ps stays in the metastable state until the
receiver advances by one clock cycle relative to the sender and the simulation reaches
the corresponding stable state. Simulations with 30 ps resp. −75 ps offsets resolve
after 11 ns resp. 10 ns. Hence, if the designer is willing to wait 11 ns after initialization,
it is sufficient to guarantee to avoid this window of 105 ps during initialization. At the
given clock speed, this corresponds to a much larger δ = 1/f+ − 0.5 ∗ 105 ps, which
in our setting is roughly 360 ps. In general, waiting for a couple of clock cycles after
initialization increases the slack δ to being close to a full clock cycle.

138



10Network Synchronization

In this chapter, we present and extend the results published at the ASYNC 2020
conference [13]. Here we bring everything together, we use hazard-free circuits to
implement the GCS algorithm. In [13] we propose a hardware implementation, which
we discuss in this chapter. Furthermore, we show full proof of the implementation.
Extensive simulations show the advantages of our design over state-of-the-art clock
generation grids.

Outline. Starting in Section 10.1 we give an introduction. Section 10.1 also discusses
related work. We evaluate on the hardware modules in Section 10.2 and present their
implementation in Section 10.3. Finally, Section 10.4 presents Spice simulations of
the implementation and compares our implementation to related solutions. We briefly
discuss follow-up questions in Section 10.5.

10.1 Introduction

By using a distributed clock synchronization algorithm, we essentially create a single,
system-wide clock domain without needing to spread a clock signal from a single
dedicated source with a small skew. In our setting, local clock regions correspond to
nodes in a graph, they are connected by an edge if they directly communicate (i.e.
exchange data). Thus, nodes of the clock synchronization algorithm communicate only
if the respective regions exchange data for computational functionality. This leads to
an easy integration of our algorithm into the existing communication infrastructure.

In contrast to Chapter 9, we present synchronization of more than two nodes. As
the synchronization algorithm is integrated into an existing communication structure,
we do not incorporate data buffers or similar into the implementation. Estimates of
the offsets are made solely by measuring the clocks of neighboring nodes. Modules
for measurement and control, thus, also differ from the previous implementation.

We measure the offset between two nodes by measuring the time difference in
their clock pulses. This is achieved by an approach similar to classical TDC cir-
cuits [43]. The control module evaluates the measurements and sets the oscillator
speed accordingly. The measurement is forwarded to the control module without the
use of synchronizers. Hence, the control module may face meta-/unstable inputs. We
show that the implementation of the control module is hazard-free. Thus, the mode
signal is stable when the GCS algorithm requires it.

Asymptotic Guarantees. Recall that the GCS algorithm guarantees a local skew
of O(δ logµ/ρD) and a global skew of O(δD) (cf. Section 6.4). Parameter ρ is the
oscillator drift, µ is the speedup factor, and δ is the measurement error.

139



Chapter 10. Network Synchronization

We can control the base of the logarithm in the local skew bound by choosing µ.
Picking, e.g., µ = 100ρ means that logµ/ρD ≤ 1 for any D ≤ 100. The constants
hidden in the O-notation matter, but they are reasonably small. Concretely, for
a grid network of 32 × 32 nodes in the 15 nm FinFET-based Nangate open cell
library (OCL) [75], 2GHz clock sources with an assumed drift of ρ = 10−5, and
µ = 10−3, our simple sample implementation guarantees that δ ≤ 5 ps in the worst
case. The resulting local skew is 30 ps, well below a clock cycle. We stress that
this enables much faster communication than for handshake-based solutions incurring
synchronizer delay.

In order to show that the asymptotic behavior is relevant already to current
systems and with our (pessimistic) ρ, we compare the above results to skews obtained
by clock trees in the same grid networks in Section 10.4.2.

10.2 Hardware Modules

For a hardware implementation of the OffsetGCS algorithm, we break down the
distributed algorithm into modules as we did in Chapter 9. Here we are concerned
with a network that comprises an arbitrary number of nodes connected by (more than
one) link. Data buffers are not included, the offset between nodes is estimated by
sampling the clock.

We distinguish between the implementation of a node and the implementation of
a link. Per node, we have a local clock and a controller. Per link, we have two offset
measurement modules, one for each node connected by the link. We introduce the
modules in Section 8.2. In this section, we specify parts of the offset measurement
and the control module that are left open. Further, we relate the delay Tmax from
Section 6.4 to the module delays.

10.2.1 Local Clock

The clock signal of node v is derived from a tunable oscillator. We present the
specification of a tunable oscillator in Section 8.2. The oscillator follows requirements
(C1) to (C5). It has input mdv, the mode signal (given by the control module,
described in Section 10.2.3), and output clkv, the clock signal. The mode signal mdv
is used to tune the frequency of the oscillator within a factor of 1 + µ. An oscillator
responds within time Tosc ≥ 0, i.e., switching between the two frequency modes takes
at most Tosc time.

10.2.2 Time Offset Measurement

In order to check whether the FT conditions are met, a node v needs to measure the
current phase offset Lw(t) − Lv(t) to each of its neighbors w. This is achieved by
a time offset measurement module between v and each neighbor w. Node v has no
direct access to Lw(t) as propagation delays are prone to uncertainty. Hence, a node
can only estimate the offset to w, where the offset estimate is denoted by Ôw(t).

140



10.2. Hardware Modules

Inputs to the offset measurement are signals clkv and clkw. The output Ôw(t) is
encoded by a unary encoding of length 2ℓ, for ℓ > 0. We evaluate further on the
output in the following paragraph.

Thresholds. The algorithm does not require full access to the function Ôw(t), but
only to the knowledge of whether Ôw(t) has reached one of the thresholds defined by
(FT-1) and (FT-2). FT defines infinitely many thresholds, i.e., the algorithm checks for
each s ∈ N whether (FT-1) or (FT-2) is satisfied. However, practically the system can
only measure finitely many thresholds. The maximum skew between two neighbors
is bounded by the local skew. Hence, the local skew is also a bound on the largest
threshold that can be reached.

We encode Ôw(t) by an unary encoding of the reachable thresholds. Let ℓ ∈ N
be the largest number such that (2ℓ+ 1)κ+ δ < L, where L is the upper bound on
the local skew. Then Ôw(t) is defined as a binary word of length 2ℓ. The bits are
denoted (from left to right) by Qℓ

w, . . . , Q
1
w, Q

−1
w , . . . , Q−ℓ

w . For example, a module
with ℓ = 2 has 4 outputs Q2

w, Q
1
w, Q

−1
w , and Q−2

w corresponding to thresholds −3κ−δ,
−κ − δ, κ − δ, and 3κ − δ. Each signal Qℓ

w, . . . , Q
1
w, Q

−1
w , . . . , Q−ℓ

w is a function of
time. For better readability, we omit the function parameter t when it is clear from
context. For i ∈ {1, . . . , ℓ} each output bit Q±i

w (t) denotes whether Ôw(t) has reached
the corresponding threshold. All possible offsets will always be in the measurement
range because we encode each offset that is smaller than L.

Decision Separator. Any realistic hardware implementation of the offset measure-
ment will have to account for the setup/hold times of registers used for the output.
We dedicate the decision separator ε to account for (small) additional setup/hold
times.

We require that signal Q±i
w (t) is 1 at time t if the offset exceeds the ith threshold

and we require that signal Q±i
w (t) is 0 at time t if the offset does not exceed the ith

threshold. When the offset is close to the threshold (within ε), then we allow that
Q±i

w (t) is unconstrained, i.e., Q±i
w (t) ∈ {0, u, 1}.

Definition 10.1 (decision seperator). Let ε be a (small) time span with κ≫ ε > 0.
At time t, we require the following constraints for all i ∈ {1, . . . , ℓ}. Signal Q±i

w (t) is
set to 1 if the offset estimate is larger than ∓(2i− 1)κ− δ.

Ôw(t) ≥ −(2i− 1)κ− δ ⇒ Qi
w(t) = 1

Ôw(t) ≥ (2i− 1)κ− δ ⇒ Q−i
w (t) = 1

(M1)

Signal Q±i
w (t) is set to 0 if the offset measurement is smaller than ∓(2i− 1)κ− δ − ε.

Ôw(t) ≤ −(2i− 1)κ− δ − ε ⇒ Qi
w(t) = 0

Ôw(t) ≤ (2i− 1)κ− δ − ε ⇒ Q−i
w (t) = 0

(M2)

141



Chapter 10. Network Synchronization

Ôw

Q−1
w

Q−2
w

−3κ− δ

ε

Q1
w

ε

ε

Q2
w

ε

3κ− δκ− δ−κ− δ 0

Figure 10.1: Signal transitions of the output bits Q±i
w relative to Ôw(t).

Otherwise, Q±i
w (t) is unconstrained.

Ôw(t) ∈ −(2i− 1)κ− δ − (0, ε) ⇒ Qi
w(t) ∈ {0, u, 1}

Ôw(t) ∈ (2i− 1)κ− δ − (0, ε) ⇒ Q−i
w (t) ∈ {0, u, 1}

(M3)

Figures 10.1 to 10.3 show the timing of signals Q−1
w (t), Q1

w(t), and Q2
w(t) in relation

to the clock of neighbor w. When clkv transitions to 1 the measurement module takes
a snapshot of the outputs Q±i

w . In Figure 10.3 we show two examples.

Figure 10.1 depicts transitions of the signals Q±i
w (t). Along the x-axis the figure

shows increasing Ôw. As Ôw increases bits Q±i
w (t) flip to 1. The decision separator

ε is small enough that no two bits can flip at the same time. If Ôw(t) = 0 all bits
Qi

w(t) = 1 and Q−i
w (t) = 0.

Figure 10.2 also depicts transitions of the signals Q±i
w (t), but along the x-axis

Lv(t) increases while Lw is fixed. We mark time Lw at which Lv(t) = Lw. A digital
implementation is only able to measure the offset on a clock event, e.g., a rising clock
transition. Hence, Lw will be the time where clkw rises. When Lv(t) = Lw, we have
that Ôw(t) = 0, such that all bits Qi

w(t) = 1 and Q−i
w (t) = 0. As Lv(t) increases Ôw(t)

decreases. Hence, the signal transitions look like a mirror image of Figure 10.1.

Example 10.2. Regarding Figure 10.3, a measurement module with ℓ = 2 can have
output Qu(t) = 1100 if κ − δ − ε ≥ Ôu(t) ≥ −κ − δ. The output may become
Qw(t) = 11u0 if κ− δ > Ôw(t) > κ− δ − ε.

In general, closely synchronized clocks have output Q±i
w (t) = 1ℓ0ℓ. If the clock of

v is ahead of ws clock, the measurement Q±i
w (t) contain more 0s than 1s. Similarly,

if vs clock is behind the clock of w, the outputs contain more 1s than 0s.

Furthermore, we can bind the number of unstable bits by a single bit, i.e., at most
one output is u at a time:

142



10.2. Hardware Modules

Lw + κ+ δ
Lv(t)

clkw

Q1
w

Q−1w

LwLw − κ+ δ

ε

Lw + 3κ+ δ

Q2
w

ε

ε

Figure 10.2: Signal transitions of the output bits Q±i
w (t) relative to clkw, assuming

that Lw(t) is known to v (Ôw(t) = Lw(t)− Lv(t)).

clkw

clku

q±iu

q±iw

clkv

Lv

11M0

1110

ε

Tmeas

Lv − κ− δ Lv + κ− δ Lv + 3κ− δ
t

Figure 10.3: Example measurements from node v to nodes u and w.

143



Chapter 10. Network Synchronization

Lemma 10.3. At every time t there is at most a single i ∈ {1, . . . ℓ} such that Q±i
w

is unconstrained.

Proof. Assume for i > 0, that Qi
w(t) is unconstrained. Then we have that

−(2i− 1)κ− δ − ε < Ôw(t) < −(2i− 1)κ− δ .

Hence, for all i′ < i it holds that Ôw(t) < −(2i′−1)κ−δ, such that, by Definition 10.1,
Qi′

w = 0 and Q−j
w = 0 for all j. For all i′ > i we obtain Ôw(t) > −(2i′− 1)κ− δ− ε, as

κ > ε. Thus, by Definition 10.1, Qi′
w = 1. An analogous argument shows that there

is only one bit unconstrained if Q−i
w (t) is unconstrained.

Remark. In essence the proof of Lemma 10.3 shows that the ε-regions in Figures 10.1
and 10.2 do not overlap.

No hardware implementation of the measurement can have instantaneous transitions
of the output. Although we account for setup/hold times, we also have to account for
signal transition and gate delays. Let Tmeas denote the maximum end-to-end latency
of the measurement module, i.e., an upper bound on the elapsed time from when
Q±i

w (t) is set to when the measurements are available at the output. More precisely,
if Q±i

w (t′) is set to x ∈ {0, 1} for all t′ in [t− Tmeas, t], then the corresponding output
q±i
w (t) is x as depicted in Figure 10.3.

10.2.3 Control Module

Each node v is equipped with a control module. Its input is the (unary encoded) time
measurement, i.e., bits q±i

w (t), for each of v’s neighbors. The control module controls
the tunable oscillator, i.e., it outputs the mode signal mdv(t).

Algorithm OffsetGCS pushes v to fast mode if FT is satisfied, otherwise the al-
gorithm defaults to slow mode. Intuitively, FT triggers when there is an offset that
crosses threshold i and no other offset is below threshold −i for some i ∈ {1, . . . , ℓ}.
Hence, we select the maximum and minimum of the offsets Q±i

w to all neighbors
w. The maximum offset indicates for each i that there is an offset that crosses the
threshold. Similarly, the minimum offset indicates for each i that all offsets crossed
the corresponding threshold.

Since the network also includes self-loops (cf. Section 6.1), each node, conceptually,
measures the offset to itself. The offset to self is always 0. In practice, that means that
the maximum only needs to consider neighbors that are ahead and the minimum only
needs to consider neighbors that are behind. For i ∈ {1, . . . , ℓ}, signals Q−i

w (t) indicate
whether node w is ahead and similar bits Qi

w(t) indicate whether w is behind. Thus,
the ℓ-bit encodings of maximum (Q−i

max(t)) and minimum (Qi
min(t)) are computed as

Q−i
max(t) :=

∨
{Q−i

w (t) | w is neighbor of v} ,

Qi
min(t) :=

∧
{Qi

w(t) | w is neighbor of v} .

144



10.2. Hardware Modules

As FT is satisfied if Q−i
max(t) and Qi

min(t) are both 1 for any i in {1, . . . , ℓ}. The
mdv(t) signal can easily be computed by

mdv(t) :=
∨
{Q−i

max ∧Qi
min | i ∈ {1, . . . , ℓ}} .

A discussion of instability in the controller is deferred to Section 10.3.2. In Figure 10.4
we visualize the metastable region together with the parameters we introduced. It
shows how to compute the mdv(t) signal. If the slow condition is satisfied then
mdv(t) = 0 and if the fast condition is satisfied then mdv(t) = 1.

Although the computation can be performed by simple combinational logic, a
hardware implementation needs to account for propagation delays. Denote by Tctr the
maximum end-to-end delay of the controller circuit, i.e., the delay between its inputs
(the measurement offset outputs) and its output mdv(t). The formal specification of
the control module is given in Section 8.2.

10.2.4 ClockedGCS Algorithm

The module specifications above, together, specify a realization of the OffsetGCS algo-
rithm in hardware that we name ClockedGCS. In the following lines, we describe how
to relate the measurement error to the hardware modules. We state the ClockedGCS
algorithm and prove that it implements the OffsetGCS algorithm.

We denote the maximum end-to-end latency of the computation by Tmax, it
combines the delays of the three modules, i.e., Tmax = Tmeas + Tctr + Tosc. For a
simple implementation, Tmax naturally becomes a lower bound on the clock period.
Tmax denotes the time it takes from a rising clock edge until the oscillator guarantees
a stable rate. Designs with a clock period beyond Tmax are possible when buffering
measurements and mode signals.

Example 10.4. A timing diagram with the output signals of the modules and the
clock rate is given in Figure 10.5. The offset measurement switches from 1100 (close
to synchronous) to 1110 (v lagging behind w) and causes the oscillator to go to fast
mode.

Measurement Error. We relate the module delays to δ. Recall that δ describes
the quality of the offset estimate. We split δ into two parts, the propagation delay
uncertainty and the maximum end-to-end latency. The propagation delay uncertainty
accounts for variations in the time a signal takes to propagate from a node’s oscillator
to the measurement module of its neighbors. Suppose clock signals arrive at the
measurement module with a larger or smaller delay than expected (usually due to
variation in the fabrication process or environmental influences), then the module
may measure larger or smaller offsets. We denote the propagation delay uncertainty
by δ0.

The second source of error is the drift of the clocks when not measuring. The
offset is measured once per clock cycle, it is used until the next measurement is made.

145



Chapter 10. Network Synchronization

−2κ

κ

3κ

2κ

−κ− δ−3κ− δ

δ

δ

ε

ε

fast conodition (FC)

fast trigger (FT)

> δ

> δ

00

κ− δ
u0

1u

11

10

111000 10

(SC)

metastable region

2δ

2δ

1uu0

Q−1,−2
max

Q2,1
min

slow condition

Omin

Omax

Ômax/

Ômin/

Figure 10.4: As before we visualize FC and SC with respect to Omin and Omax. FT
and the metastable region are visualized with respect to Ômin and Ômax. Along the
axis we show the encodings Q2,1

min and Q−1,−2
max , marking also the effect of instability.

146



10.2. Hardware Modules

clkv

mdv

q±i
w

˙clkv

t
Tmeas ToscTcnt

fast rateslow rate

1100 1110

Tmax

Figure 10.5: Timing diagram for the maximum end-to-end delay of the computation.

During this time the actual offset may change due to different modes and drift of
oscillators. We denote the duration of a clock cycle (in slow mode with no drift) by
Tclk. The maximum difference in rate between any two logical clocks is bounded by
(1+ρ)(1+µ)−1 = ρ+µ+ρµ. Thus, the maximum change of the offset during a clock
cycle is at most (ρ+µ+ρµ)(Tclk+Tmax). This describes the second contribution to the
uncertainty of the measurement. Summing up both contributions the measurement
error becomes

δ = δ0 + (ρ+ µ+ ρµ) · (Tclk + Tmax) .

Clocked Algorithm. An essential difference of our implementation to the continu-
ous time algorithm OffsetGCS is that measurements are performed only at clock ticks,
i.e., at discrete time steps. The discrete-time algorithm ClockedGCS as carried out by
the modules described above is given in Algorithm 6.

Each module definition comprises a maximum propagation delay (e.g. Tctr). For
the measurement module, we defined a possible metastable assignment using the
decision separator ε. We denote the possibly metastable assignment that also accounts
for the propagation delay by←u. Once suitable values of δ0 and Tmax are determined,
δ can be computed easily.

Lemma 10.5. With δ = δ0+(ρ+µ+ ρµ) ·Tclk, ClockedGCS satisfies Inequality (6.9)
at all times t.

Proof. The algorithm measures the offset Ôw(t) at each clock tick. Hence, we show
that between two clock ticks the uncertainty never grows beyond δ. Let tclk and t′clk
be two consecutive clock ticks at node v. By the specification above, the measurement
at time tclk has precision δ0, such that∣∣∣Ôw(tclk)− (Lw(tclk)− Lv(tclk))

∣∣∣ ≤ δ0 .

147



Chapter 10. Network Synchronization

Algorithm 6 Clocked algorithm ClockedGCS. The assignment←u denotes a possibly
unstable assignment.

1: at each clock tick, at time tclk do

2: for each i ∈ {1, . . . , ℓ} do
3: for each w is neighbor of v do

4: Qi
w ←u Ôw(tclk) ≥ −(2i− 1)κ− δ

5: Q−i
w ←u Ôw(tclk) ≥ (2i− 1)κ− δ

6: at each time t do

7: Qi
min ←u

∧
{Qi

w(t) | w is neighbor of v}
8: Q−i

max ←u
∨
{Q−i

w (t) | w is neighbor of v}
9: mdv ←u

∨
{Qi

min(t) ∧Q−i
max(t) | i ∈ {1, . . . , ℓ}}

During time interval [tclk, t
′
clk) ≤ Tctr the clock rates may be different for neighbors.

The difference between logical clocks grows at most by

(1 + ρ)(1 + µ) · Tclk − Tclk = (ρ+ µ+ ρµ) · Tclk ,

such that for t ∈ [tclk, t
′
clk),∣∣∣Ôw(t)− (Lw(t)− Lv(t))

∣∣∣
≤
∣∣∣Ôw(tclk)− (Lw(tclk)− Lv(tclk))

∣∣∣+ (ρ+ µ+ ρµ) · Tclk

≤ δ0 + (ρ+ µ+ ρµ) · Tclk .

Hence, at every time the error is at most δ, such that Inequality (6.9) is satisfied.

The skew bounds known from the GCS algorithm apply to ClockedGCS, as ClockedGCS
implements the OffsetGCS algorithm for suitable choice of ℓ, δ0, ρ, µ and κ. The
constraints of Theorem 6.10 are met by the following choices:

Equation (I1) is satisfied when choosing µ > 2ρ,
Equation (6.9) is satisfied according to Lemma 10.5, and
Constraint κ > 2δ is satisfied by choosing κ accordingly.

Corollary 10.6. For suitable choices of ℓ, δ0, ρ, µ and κ, ClockedGCS maintains the
local skew of Theorem 6.8.

10.3 Hardware Implementation

In this section, we discuss the gate-level design and its performance measures of the
modules from Section 10.2. Target technology is the 15 nm FinFET-based Nangate
OCL [75]. The gate-level design is laid out and routed with Cadence Encounter,

148



10.3. Hardware Implementation

clkv

clkw

2κ

5κ+ δ

Q3
w Q2

w Q1
w Q−1

w Q−2
w Q−3

w
D Q D Q D Q D Q D Q D Q

Figure 10.6: Schematics of the time offset measurement module for ℓ = 3.

which is also used for the extraction of parasitics and timing. Local clocks run at a
frequency of approximately 2GHz, controllable within a factor of 1 + µ ≈ 1 + 10−4.
We use µ = 10−4 here to make the interplay of ρ and µ better visible in traces. We
compile two systems of 4 respectively 7 nodes connected in a line. To resemble a
realistically sparse spacing of clocks, we placed nodes at distances of 200 µm.

10.3.1 Gate-level Implementation

Offset Measurement. We depict schematics of the time offset measurement in
Figure 10.6. The figure shows a linear TDC-based time to digital

converter (TDC)
circuitry for the module which

measures the time offsets between nodes v and w. Buffers are used as delay elements
for incoming clock pulses. The offset is measured in steps of 2κ, hence, buffers in the
upper delay line have a delay of 2κ. The delay line is tapped after each buffer for
corresponding Q±i

w . A chain of flip-flops takes a snapshot of the delay line by sampling
the taps. We require Q−i

w = 0 and Qi
w = 1 when Ôw ≥ −κ − δ and Ôw ≤ κ − δ − ε

(cf. Figure 10.1). Thus, we delay clkv by 5κ+ δ + ε.

Example 10.7. If both clocks are perfectly synchronized, i.e., Lv = Lw, then the
state of the flip-flops will be Q3

wQ
2
wQ

1
wQ

−1
w Q−2

w Q−3
w = 111000 after a rising transition

of clkv. Now, assume that clock w is ahead of clock v, say by a small ε > 0 more than
κ+ δ, i.e., Lw = Lv + κ− δ + ε. For the moment assuming that we do not make a
measurement error, we get Ôw = Lw−Lv = κ− δ+ε. From the delays in Figure 10.6
one verifies that in this case, the flip-flops are clocked before clock w has reached the
second flip-flop with output Q1, resulting in a snapshot of 110000. Likewise, an offset
of Ôw = Lw − Lv = 3κ− δ + ε results in a snapshot of 100000, etc.

149



Chapter 10. Network Synchronization

Q−i
max Qi

min

Qi
w1

Qi
w2

Qi
w3

Q−i
w1

Q−i
w2

Q−i
w3

Figure 10.7: Schematics of the controller part that, for i ∈ {1, 2, 3}, computes the
minimum and maximum offset to neighbors w1, w2, and w3.

Control Module. Given node v’s time offsets to its neighbors in unary encoding
the control module computes the minimal and maximal threshold levels that have
been reached. The circuits in Figures 10.7 and 10.8 implement the control module for
3 neighbors w1, w2, and w3. As described in Section 10.2.3 we only need to compute
the maximal value of bits Q−i

w and the minimal value of bits Qi
w. They can be easily

computed by a or resp. and over all w as shown in Figure 10.7.
Given the maximal and minimal values, the circuit in Figure 10.8 computes if FT

conditions are satisfied, i.e., if there is an i ∈ {1, 2, 3} that satisfies both FT-1 and
FT-2. If FT is satisfied, then mdv is set to 1.

Tunable Oscillator. As a local clock source, we use a ring oscillator. Some of
the inverters in the ring oscillator are starved-inverters which allows us to control
the frequency by a voltage input. The control voltage is used to switch between fast
mode and slow mode. Nominal frequency is around 2GHz, controllable by a factor
1 + µ ≈ 1 + 10−4 via the mdv signal. We choose ρ ≈ µ/10 ≈ 10−5, assuming a
moderately stable oscillator. This is below drifts achievable with uncontrolled ring
oscillators. We defer a discussion of the issue to Section 10.5.

Timing Parameters. We next discuss how the modules’ timing parameters relate
to the extracted physical timing of the above design.

The time required for switching between oscillator modes Tosc is about the delay of
the ring oscillator, which in our case is about 1/(2 ·2GHz) = 250 ps. An upper bound
on the measurement latency Tmeas plus the controller latency Tctr is given by a clock
cycle (500 ps) plus the delay (25 ps) of the circuitry in Figure 10.7 and Figure 10.8.
In our case, delay extraction of the circuit yields Tmeas + Tctr < 500 ps + 25 ps. We
thus have, Tmax < Tmeas + Tctr + Tosc = 775 ps.
The uncertainty in measuring if Ôw has reached a certain threshold, δ0, is given by
the uncertainties in latency of the upper delay chain plus the lower delay chain in
Figure 10.7. For the described naive implementation using an uncalibrated delay
line, this would be problematic. With an uncertainty of ±5% for gate delays, and
starting with moderately sized κ, extraction of minimum and maximum delays showed

150



10.3. Hardware Implementation

mdv

Q−3
max Q−2

max Q−1
max

Q1
minQ2

minQ3
min

Figure 10.8: Schematics of the controller part that computes the mode signal.

that the constraints for δ and κ from Theorem 6.10 were not met. Successive cycles
of increasing δ and κ do not converge due to the linear dependency of δ and κ on
the uncertainty δ0 with a too large factor. Rather, delay variations (of the entire
system) have to be less than ±1% for the linear offset measurement circuit, depicted
in Figure 10.6, to fulfill requirements of Theorem 6.10.

Improved Offset Measurement. Figure 10.9 shows an improved TDC-type offset
measurement circuit that does not suffer from the problem above. Conceptually the
TDC of node v that measures offsets w.r.t. node w is integrated into the local ring
oscillator of neighboring node w. If w has several neighbors, e.g., up to 4 in a grid,
they share the taps but have their own flip-flops within node w.

Figure 10.9 presents a design for ℓ = 2 with 4 taps and a single neighbor v. In
our hardware implementation we set ℓ = 2, as even for µ/ρ = 10 this is sufficient for
networks of diameter up to around 80 hops (see how to choose this set of thresholds
in the specification of this module in Section 10.2). The gray buffers at the offset
measurement taps decouple the load of the remaining circuitry. An odd number
of starved inverters is used to set slow or fast mode for node w (at the bottom of
the oscillator ring). The delay elements at the top are inverters instead of buffers
to achieve a latency of κ = 10ps. We inverted the clock output to account for the
negated signal at the tap of clock w at the top.

Integration of the TDC into w’s local ring oscillator greatly reduces uncertainties
at both ends: (i) the uncertainty at the remote clock port (of node w) is removed to a

151



Chapter 10. Network Synchronization

Starved invs
#inv = 2i+ 1

mdw

κ κ

2κ 2κ

Q1
w

D Q Q D
Q−1

w

clkv

Q D
Q−2

wQ2
w

D Q

Lw + 3κ+ δ Lw − 3κ+ δ

Lw − κ+ δLw + κ+ δ
clkw

δ
Lw

Lw + δ

Figure 10.9: Schematic of the improved offset measurement implementation. The
v’s offset measurement is integrated into w’s ring oscillator. Labels of the delay
elements denote their delay. We also annotate the phase offset that we measure at
each tap.

152



10.3. Hardware Implementation

large extent, since the delay elements which are used for the offset measurements are
part of w’s oscillator, and (ii) the uncertainty at the local clock port is greatly reduced
by removing the delay line of length 5κ+ δ. The remaining timing uncertainties are
the latency from taps to the D-ports of the flip-flops and from clock v to the clkv-ports
of the flip-flop. Timing extraction yielded δ0 < 4 ps in presence of ±5% gate delay
variations.

From Theorem 6.10, we thus readily obtain κ ≈ 10 ps and δ ≈ 5 ps which matched
the previously chosen latencies of the delay elements. Applying Theorem 6.8 finally
yields the bounds:

G(t) ≤ 1.223κD = 12.23D ps and

L(t) ≤ (2⌈log10(1.223D)⌉+ 1)κ .

For our design with diameterD = 3 this makes a maximum global skew of 36.69 ps and
a maximum local skew of 3κ = 30ps. Also, for our design with diameter D = 6 this
makes a maximum global skew of 73.38 ps and a maximum local skew of 3κ = 30ps.

Remark. Considerably larger systems, e.g., a grid with side length of W = 32 nodes
and diameter D = 2W − 2 = 62, still are guaranteed to have a maximum local skew
of 3κ = 30ps. If we choose µ = 10−3, the base of the logarithm in the skew bound
increases from 10 to 100.

10.3.2 Hazard-Free Control Module

It remains to show that the control module is hazard-free. We can split the task by
showing first that the circuit in Figure 10.7 is hazard-free, i.e., that the following
equations hold:

1 . . . 1Q−1
max . . . Q

−ℓ
max = (Ômax)u ,

Qℓ
min . . . Q

1
min0 . . . 0 = (Ômin)u .

Then it is left to show that the circuit in Figure 10.8 computes γv(t) as defined in
Section 6.4.1.

Lemma 10.8. The implementation of the control module, given in Figures 10.7
and 10.8, is hazard-free, i.e., it computes mdv(t) = (γv(t))u.

Proof. Signal Qi
min is computed by and over all Qi

w. The and will only propagate an u
if there is (at least) one Qi

w = u and all other Qi
w′ = 1. If for the smallest measurement

Qi
w = 0, then this will mask all u’s of larger measurements. Only the (single) u of

the smallest measurement can propagate to the Qmin output. Thus, the output has
a single u at most. Similar, for or over all Q−i

w , u only propagates when all Qi
w′ = 0.

The 1 part of the largest measurement will mask all u’s of smaller measurements.
Hence, Qmax has at most a single u in the position the largest measurement has an
u.

Remark. Alternatively, we can show that the control module is hazard-free by the
results of Ikenmeyer et al. [52]. Both, the circuit in Figure 10.7 and the circuit in

153



Chapter 10. Network Synchronization

Figure 10.8, are monotone, i.e., both use and and or gates only. By [52] any monotone
circuit is hazard-free.

By Lemma 10.3 and constraints (M1) to (M3) the unary encoding of measurement Ôw

has the form 1∗0∗ or 1∗u0∗. In other words, the output of the measurement module
has a single u (at most) that is conveniently located between 1’s on the left and 0’s
on the right.

10.4 Simulation and Comparison

We ran SPICEsimulation program with
integrated circuit
emphasis (SPICE)

simulations of the post-layout extracted design with Cadence Spectre.
Simulated systems had 4 and 7 nodes arranged in a line, as described in Section 10.3.
Nodes are labeled 0 to 3 (respectively 6). For the simulations, we set µ = 10ρ (instead
of 100ρ), resulting in slower decrease of skew, to better observe how skew is removed.

10.4.1 SPICE Simulations on a 4 Node Topology

Scenarios. We present three simulation scenarios with different initial skews. By
starting with a significant initial skew we can simulate best the behavior of the
algorithm. Simulation time of all scenarios is 1000 ns (≈ 2000 clock cycles). We
simulated the following three scenarios:

ahead Node 1 is initialized with an offset of 40 ps ahead of all other nodes.

behind Node 1 is initialized with an offset of 40 ps behind all other nodes.

gradient Nodes are initialized with small skews on each edge, that sum up to a
large 105 ps global skew.

Remark. All three scenarios break the assumption that the initial skew maintains
the local skew bound of 30 ps. Due to its self-stabilizing features an execution of the
algorithm still converges to a small skew. In our implementation, the initial skew
should not exceed half a clock cycle (≈ 250 ps), as otherwise, the algorithm tends to
synchronize clock pulses that belong to different clock cycles.

Global and Local Skews. Figure 10.10 depicts the local and global skews of all
scenarios. Observe that, from the beginning, all local skews decrease until they reach
less than 9 ps. The local skew then remains in a stable oscillatory state. This is well
below our worst-case bound of 30 ps on the local skew. We observe that the global
skew slightly increases at the beginning of scenario ahead and after roughly 500 ns
in scenario behind.

154



10.4. Simulation and Comparison

0ps

10ps

20ps

30ps

40ps

50ps

60ps

70ps

80ps

90ps

100ps

110ps

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns 900ns 1000ns

ahead, local skew
ahead, global skew
behind, local skew
behind, global skew
gradient, local skew
gradient, global skew

Figure 10.10: Maximum local skew (solid) and global skew (dotted) for scenarios
ahead (green), behind (yellow), and gradient (red).

0ps

5ps

10ps

15ps

20ps

25ps

30ps

35ps

40ps

45ps

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns 900ns 1000ns

edge 01
edge 12
edge 23

Figure 10.11: Skews in simulation of scenario ahead.

155



Chapter 10. Network Synchronization

0V

0.8V

0.48ns 0.5ns 0.52ns 0.54ns 100.04ns 100.08ns 175.22ns

Figure 10.12: Excerpt of scenario ahead. Clock signals of node 0 (purple), 1
(green), 2 (blue), and 3 (yellow). Nodes from left to right: (i) 1 before 0, 2, 3, (ii) 1
before 0, 2 before 3, (iii) 1 before 0, 2 before 3.

One Node Ahead. Figure 10.12 shows the clock signals of nodes 0 to 3 at three
points in time for the first scenario ahead: (i) shortly after the initialization, (ii)
around 100 ns, and (iii) after 175 ns. The skews on the edges (0, 1), (1, 2), and (2, 3)
are depicted in Figure 10.11.

For the mode signals, in the first scenario, we observe the following: Since node 1
is ahead of nodes 0 and 2, node 1’s mode signal is correctly set to 0 (slow mode) while
node 0 and 2’s mode signals are set to 1 (fast mode). Node 3 is unaware that node
1 is ahead since it only monitors node 2. By default, its mode signal is set to slow
mode. Node 2 then advances its clock faster than node 3. When the gap between 2
and 3 is large enough node 3 switches to fast mode. This configuration remains until
nodes 0 and 2 catch up to 1, where they switch to slow mode, to not overtake node 1.
Again node 3 sees only node 2 which is still ahead and switches to slow mode only
after it catches up to 2.

One Node Behind. For scenario behind the skews on the edges (0, 1), (1, 2), and
(2, 3) are depicted in Figure 10.13. We plot the absolute value of the skew, e.g., at
roughly 500 ns node 1 overtakes node 0. The simulation shows that the algorithm
immediately reduces the local skew. After the system reaches a small local skew after
200 ns we observe that nodes drift relative to each other, e.g., node 2 drifts ahead of
node 3 and node 1 overtakes node 0. We point out that the local skew remains in the
stable (oscillatory) state after 200 ns and does not increase significantly.

Gradient Skew. Simulation scenario gradient outlines how the OffsetGCS algo-
rithm works internally. It reduces the local skew in steps of (odd multiples of) κ, as
seen in the plot in Figure 10.10, which looks like a staircase. The algorithm reduces
skew on one edge at a time until it reaches the next plateau.

Figures 10.14 and 10.15 vividly show the behavior of the algorithm. Figure 10.15
is a direct reference to the depiction in Figure 6.2, it shows the behavior of a real
simulation. OffsetGCS reduces the skew on edge (1, 2) until it reaches a plateau with
(0, 1) and (2, 3). One by one it then reduces skew on edges (0, 1), (1, 2) to (2, 3) until

156



10.4. Simulation and Comparison

0ps

5ps

10ps

15ps

20ps

25ps

30ps

35ps

40ps

45ps

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns 900ns 1000ns

edge (0,1)
edge (1,2)
edge (2,3)

Figure 10.13: Skews in simulation of scenario behind.

5ps

10ps

15ps

20ps

25ps

30ps

35ps

40ps

45ps

50ps

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns 900ns 1000ns

edge (0,1)
edge (1,2)
edge (2,3)

Figure 10.14: Skews in simulation of scenario gradient.

157



Chapter 10. Network Synchronization

−2κ−4κ

κ

3κ

2κ

−κ−3κ

4κ

fast condition (FC)

fast trigger (FT)

slow condition (SC)

Omin

Omax

Ômax/

Ômin/

Figure 10.15: Trajectory of Ômax and Ômin of node 1 (purple) and node 2 (green).

158



10.4. Simulation and Comparison

Figure 10.16: Local skew (ps) between neighboring flip-flops in the W ×W grid.
Clock tree with ±5% delay variation (solid green) and our algorithm with ±5% delay
variation (solid magenta). The dotted line shows the clock tree with ±10% delay
variation, demonstrating linear growth of the skew also in a different setting. Clock
trees are shown up to W = 32 after which Encounter ran out of memory.

they reach the next plateau. Finally, it reduces the skews on the edges one by one
(in reverse order) until it reaches a stable (oscillatory) state.

10.4.2 Comparison to Clock Tree

For comparison, we laid out a grid ofW×W flip-flops, evenly spread in 200 µm distance
in x and y direction across the chip. The data port of a flip-flop is driven by the or of
up to four adjacent flip-flops. Clock trees were synthesized and routed with Cadence
Encounter, with the target to minimize skews. Delay variations on gates and nets were
set to ±5%. The results are presented in Figure 10.16. For comparison, we plotted
skews guaranteed by our algorithm for the same grids with parameters extracted from
the implementation described in Section 10.3. Observe the linear growth of the local
clock skew measured in the simulation compared to the logarithmic growth of the
analytical upper bound on the local skew in our implementation. The figure also shows
the simulated skew for a clock tree with delay variations of ±10%. This comparison
is relevant, as δ0 is governed by local delay variations, which can be expected to be
smaller than those across a large chip.

It is worth mentioning that it has been shown that no clock tree can avoid the
local skew being proportional to W [40]. One can show that for any clock tree there
are always two nodes in the grid that have local skew which is proportional to W .
This follows from the fact that there are always two neighboring nodes in the grid

159



Chapter 10. Network Synchronization

Ω(W ) distT = Ω(W )

dist = 1
W

Figure 10.17: A low stretch spanning tree of an W ×W (W = 8) grid [54]. The
bold lines depict the spanning tree, i.e., our clock tree in this example. The two
neighboring nodes that are of distance 13 in the tree are circled (at the middle right
side of the grid).

which are in distance proportional to W from each other in the clock tree [40, 8].
Accordingly, uncertainties accumulate in a worst-case fashion to create a local skew
which is proportional to W ; this behavior can be observed in Figure 10.17.

In order to gain intuition on this result, note that there is always an edge that,
if removed (see the edge which is marked by an X in Figure 10.17), partitions the
tree into two subtrees each spanning an area of Ω(W 2) and hence having a shared
perimeter of length Ω(W ). Thus, there must be two adjacent nodes, one on each side
of the perimeter, at distance Ω(W ) in the tree.

Our algorithm, on the other hand, manages to reduce the local skew exponentially
to being proportional to logW .

160



10.4. Simulation and Comparison

10.4.3 Comparison to State of the Art

We compare our findings to state-of-the-art schemes for global clock generation. Simple
approaches to the clock synchronization problem are wait-for-all and wait-for-one. A
node produces its next clock tick once it receives a message from one (wait-for-one)
or all (wait-for-all) of its neighbors. Each of the two approaches is vulnerable to
non-uniform message delays. By analysis of the Fairbanks clock generation grid [38],
we see that it uses a clever combination of wait-for-all and wait-for-one approaches. In
the grid both approaches alternate for adjacent nodes. For a comparison, we simulated
a digital abstraction of the Fairbanks clock generation grid. Based on ideas of the
lower bound proof [39] we construct a simulation scenario that has a large local skew.

Fairbanks Clock Generation. We compare our system to the Fairbanks and
Moore clock generation grid [38]. The clock generation grid is a self-timed analog
circuit for global clocking. It is based on the Dynamic asP FIFO control by Molnar
and Fairbanks [78].

The final version of the distributed clock generator is an analog implementation
that involves rigorous transistor sizing and layout. In this work, we aim towards
digital implementations as they are easier to adapt and manufacture for existing
design processes. Instead of implementing the analog grid, we implement a digital
abstraction of Dynamic asP as presented by the authors (cf. [38]).

Abstraction of Fairbanks. In the digital abstraction, we distinguish two types
of nodes; pull-up nodes and pull-down nodes. We add a set-reset latch on every
edge between two nodes. Pull-up nodes set the latch and pull-down nodes reset the
latch. Pull-up nodes compute the logical nor of incoming edges (this is equivalent to
a wait-for-all approach). Pull-down nodes compute the logical and of incoming edges
(this is equivalent to a wait-for-one approach). We split the and gate into a nand gate
and a not gate. An excerpt of the digital abstraction connected on a line is depicted
in Figure 10.18. The clock of a node is derived by the output of the respective nor

or nand. We adjust the frequency of the grid by adding a delay between each node
and the set-reset latch, depicted as a buffer in the schematic.

Simulation Setup. We conducted simulations that examined the behavior at dif-
ferent communication delays. To simulate slower communication paths we add a
small capacity (0.01 pF) to the communication channel. Both incoming and outgoing
channels can be affected independently. For simplicity, we differentiate between two
communication speeds; fast and slow.

Formally, the algorithm combining wait-for-all and wait-for-one approaches can
have a local skew that grows asymptotically linear with the network diameter. Through
our simulations we show a bad case in the Fairbanks implementation and that
OffsetGCS can cope with this situation. The bad skew is achieved by a non-uniform
setup of communication speeds. The setup of the simulated delays is depicted in

161



Chapter 10. Network Synchronization

Q

RS

Q

R S

Q

RS

clki clkj

pull-uppull-down

Figure 10.18: Digital abstraction of the Fairbanks clock generation scheme on a
line.

slow

slow

slow fast

slow

slow

slow

fast fast

fast fast fast

5 6 74321

Figure 10.19: Delay setup that achieves a large local skew. Dashed edges are
swapped from fast to slow communication. Round nodes denote pull-down nodes and
rectangular nodes denote pull-up nodes in the Fairbanks implementation.

Figure 10.19. Only outgoing edges of nodes 3, 4, and 5 are fast and edges outgoing
from 1, 2, 6, and 7 are slow.

Results for Fairbanks. The digital clock generation grid runs at a frequency of
roughly 2.5GHz. We measure that an additional capacity of 0.01 pF adds a delay
of approximately 7 ps. We conducted simulations with three different delay settings.
Simulation scenarios are called nocap, fullcap, and large-local.

nocap simulates the Fairbanks grid without additional delays, i.e., with fast commu-
nication,

fullcap simulates the Fairbanks grid with capacity added to every edge, i.e., with
slow communication,

162



10.4. Simulation and Comparison

10ps

15ps

20ps

25ps

30ps

35ps

40ps

0ns 10ns 20ns 30ns 40ns 50ns

fb nocap
fb fullcap

fb large-local
gcs nocap

gcs large-local

Figure 10.20: Local skews of the conducted experiments.

large-local simulates the Fairbanks grid with the setting depicted in Figure 10.19,
i.e., with non-uniform communication.

Local skews of simulation scenarios nocap, fullcap, and large-local are shown
in Figure 10.20. We observe that the Fairbanks grid achieves a very good skew if
the delay is uniform on all edges. For scenario nocap (resp. fullcap) we measure
a local skew of 15 ps (resp. 16 ps) and global skew of 22 ps (resp. 23 ps). Contrary,
we observe that the Fairbanks grid experiences poor synchronization in case of non-
uniform delays (large-local). In this case, we measure a local skew of 38 ps and a
global skew of 61 ps.

Remark. The setup in Figure 10.19 is tailored towards large local skews. Not every
setup will achieve such a large skew. However, the setup is not purely artificial.
Think of an ASIC where edges to outer nodes have higher delay due to manufacturing.
Alternatively, think of a U-shape where nodes 1 and 7 are physically close together
and close to an area that builds up more heat.

Results for GCS. The implementation of OffsetGCS runs at a frequency of roughly
2GHz. We measure that the added capacity of 0.01 pF adds a delay of approximately
1 ps.

We observe that the OffsetGCS achieves a local skew of 18 ps and global skew
of 20 ps if we do not add delay to the communication links. This is slightly worse
than the local skew of the Fairbanks grid, as shown in Figure 10.20. However, the
simulation shows that the OffsetGCS is not affected by the setting where delays in the

163



Chapter 10. Network Synchronization

25ps

30ps

35ps

40ps

45ps

50ps

55ps

60ps

65ps

0ns 20ns 40ns 60ns 80ns 100ns

local skew
global skew

Figure 10.21: Simulation of Fairbanks with delays as described in Figure 10.19.

center are fast. We simulate our implementation also with the setting of Figure 10.19.
Here we measure a local skew of 19 ps and a global skew of 20 ps.

Lower Bound Simulation. In this simulation, we apply ideas from the formal
argument that shows lower bounds on wait-for-all and wait-for-one approaches. In
short, the argument works by building up a large global skew in the system and then
step by step changing the delay on the edges such that the global skew is pushed
on one edge. The simulation in Figure 10.21 applies one of these steps. In the first
part of the simulation (until 50 ns) we see that the system builds up a large local
skew. At 50 ns we switch delays of edges outgoing from nodes 3 and 4 (as described
in Figure 10.19). We observe that we can push even more skew on the edge with the
largest local skew. We could measure a local skew of up to 47 ps.

The simulation shows that we can push (temporarily) more skew on one edge.
Following the argument of the lower bound proof we claim that by repeated application
of the process, we can push the global skew (temporarily) on one edge. Hence, the
local skew increases significantly.

Simulation of the OffsetGCS with the same delay setup shows that switching edges
from fast to slow, as for Fairbanks, has no effect on the local and global skew of the
OffsetGCS implementation.

10.5 Follow-Up Questions

164



10.5. Follow-Up Questions

2.0492GHz

2.0494GHz

2.0496GHz

2.0498GHz

2.0500GHz

2.0502GHz

2.0504GHz

2.0506GHz

2.0508GHz

0ns 100ns 200ns 300ns 400ns 500ns 600ns

node 1
node 2
node 3
node 4
node 5
node 6
node 7

Figure 10.22: Measured oscillator frequency in a simulation of the line with 7 nodes.

Fast and Slow Mode. We conducted further simulations on the 7 node imple-
mentation. The experiment includes a higher simulation time (600 ns) and a huge
initial skew (roughly 100 ps). During elaboration, we observed that the frequency
of nodes drifts in a way such that fast mode becomes slower than slow mode in the
beginning. We depict the measured frequency of the nodes in Figure 10.22. We
observe for example when node 1 switches to fast mode (at roughly 430 ns) it has a
lower frequency than in the very beginning, when it was in slow mode.

Formally, this means that the assumption µ > ρ (assumption (C5)) is not satisfied
at all times. Still, we have a clear separation of fast and slow mode for small time
windows. In future work, we want to adapt the formal requirements to allow for
more flexible µ and ρ. If we make µ and ρ functions of time, then we can require
assumption (C5) only for small time windows. This is out of the scope of this work
as it requires adjusting the formal proof and analysis of the GCS algorithm. We are
interested in the question of how the size of the time window affects the algorithm.

Oscillator Drift. In the implementation, we assume moderately stable oscillators
with drift ρ = µ/10. This is below a drift achievable with uncontrolled ring oscillators.

In [28] the authors show that guardband margins that cover static and dynamic
variability of an uncontrolled ring oscillator can be chosen lower than the drift of
the oscillator. Process, voltage, and temperature variation affect delay lines of ring
oscillators similarly to how they affect the delay of a critical path. According to the
authors, the global variation dominates the local variation. We conclude that the

165



Chapter 10. Network Synchronization

relative drift of oscillators on a chip is significantly smaller than the absolute drift of
each oscillator.

We assume that we can achieve a better analysis when studying the relative drift
of neighboring oscillators as opposed to the absolute drift of all oscillators. When
regarding the drift of an oscillator as a function of time (similar as suggested above)
and constraining the relative drift of neighboring oscillators by an upper bound we
can adjust the model. This again requires adjusting the formal proof and analysis of
the GCS algorithm.

166



11Conclusions

In this chapter, we give a brief conclusion to this dissertation. First, we summarize
the content highlighting the most important results and findings. Second, we recap
open problems and give a vision for further work. We remind the reader, that in the
introduction we stated our main research question as follows:

Can we design hazard-free circuits which implement
clock synchronization algorithms?

11.1 Summary

The research question sums it up: We aim for an implementation of a clock synchro-
nization algorithm. Every circuit on clock domain crossings, however, will have to
care for hazardous signals.

Hazard-Free Circuits. It is well known that for every circuit there is a corre-
sponding hazard-free circuit. Both implement the same Boolean function, but the
hazard-free circuit also implements the extension to ternary (Kleene) logic. Unfortu-
nately, there are circuits where the smallest hazard-free implementation is at least
exponentially larger than the normal implementation. No general construction can
avoid such an exponential blowup in circuit size. The general construction we present
in Chapter 4 constructs a hazard-free circuit from a given finite state transducer. The
size of the hazard-free circuit is parametrized by the size of the state space |S|, the
size of the input encoding ℓ. The size of the output encoding is bounded by O(λ).
A hazard-free circuit from the construction has size O((23|S| + 22|S|+ℓ/ℓ + 2ℓλ)n)
and depth O(|S| log n + ℓ). For small |S|, ℓ, and λ the construction yields a small
hazard-free circuit.

Given a specific application, we might be able to find even smaller hazard-free
circuits. Chapter 5 shows that we can find hazard-free circuits for the sorting primitive.
Our circuit (COMP), which sorts two n-bit numbers, has asymptotically optimal size
O(n) and depth O(log n). The circuit can be plugged into optimal sorting networks,
that are known from the literature. This yields a multi-input hazard-free sorting
circuit.

The realization of the sorting primitive also demonstrates that encoding matters.
In Kleene logic certain codes, like the Binary Code γbinn , lack precision when un-
stable signals are involved. They lose information when applying the superposition
function. In Chapter 3 we study encodings in Kleene logic. We identify favorable
properties of encodings, namely k-preservation and k-recoverability, which quantify
(by k) the amount of instability an encoding can handle. Intuitively, an n-bit encoding
with higher recoverability has less codewords. We prove that recoverability requires
redundancy, i.e., no recoverable code can have an optimal rate.

167



Chapter 11. Conclusions

Clock Synchronization. The goal of a clock synchronization algorithm is to min-
imize the skew in a distributed system, where each node is associated with its own
clock. We present in Chapter 6 two famous clock synchronization algorithms: the
Lynch-Welch algorithm by Lundelius-Welch and Lynch, and the OffsetGCS algorithm
by Lenzen, Locher, and Wattenhofer. Both have advantages and disadvantages as they
pose different constraints to the network and whether faults are allowed. In Chapter 7
we show that we can allow faults in an arbitrary network, not just in cliques. If we
run the Lynch-Welch algorithm on clusters of nodes, then we can run OffsetGCS on
top and synchronize connected clusters. The combination of both achieves a small
local skew in O(logD).

The OffsetGCS algorithm alone achieves local skew in O(δ logµ/ρD), where δ, ρ,
and µ are constants and D is the diameter of the network. Constants δ and ρ are
upper bounds on the message delay uncertainty and the oscillator drift, and µ is
the speed up that we allow in the oscillator. Chapter 9 shows an implementation
of OffsetGCS that achieves a small skew between two nodes, which process data in
a producer-consumer fashion. The offset to the neighbor is estimated by the fill
level of the data buffer. No explicit measurement module is needed. The clocked
implementation achieves a small skew with a data buffer of size 2.

The implementation in Chapter 9 lays a foundation for the implementation of
larger systems. In Chapter 10 we present the hardware implementation of OffsetGCS
on arbitrary networks. It achieves synchronization of neighboring nodes in the order of
a few inverter delays. The computation of a node executing the OffsetGCS algorithm
can be visualized by Figure 6.1. An idealized trajectory during execution is depicted
in Figure 6.2. Finally, Figure 10.15 shows the simulated behavior of two nodes in our
implementation.

11.2 Vision

Network Synchronization. In this dissertation, we present an important step
towards the application of clock synchronization algorithms in hardware. Chapter 10
shows a versatile implementation of the OffsetGCS algorithm on register-transfer level.
We are able to compile an ASIC and simulate its physical behavior. For simulations,
we ran SPICE, which is a software that uses differential equations to model the
physical behavior.

Simulations were carried out for a simple system with a few nodes. They verify
that the implementation behaves as predicted. The systems we simulated were graphs
with four and seven nodes connected on a line. We chose the line topology, as it allows
us to study the worst-case behavior of similar systems because the worst-case skew
in a system appears on the path representing the diameter of the system.

Further simulations of structures closer to real-world applications would be advis-
able for future work. In particular, grid-like structures will be of interest for microchips,
which are usually organized in rectangular grid layouts. Unfortunately, we reached
the limit of our capabilities with the simulations presented. SPICE simulations of

168



11.2. Vision

larger systems require significantly more computational power or time. Computer
simulation of a more abstract model, e.g., the register-transfer layer would increase
speed significantly. But, by virtue of the abstraction, we would neglect the effects of
unstable signals. It is important to simulate unstable signals and late transitions as
they pose a high risk on clock domain crossings.

We propose that further simulations be carried out closer to real hardware. For
example, FPGA field programmable gate

array (FPGA)
boards are a fast and cheap way to simulate algorithms in hardware.

FPGAs are integrated circuits that can be configured by a hardware description
language. They are easy to set up and versatile, for example, the control module can
be transferred to an FPGA with low effort. However, our implementation comprises
a tunable oscillator and a measurement module, which are likely to cause problems.
Depending on the FPGA board, implementation of one may break certain design
constraints as they do not follow standard combinatorial or synchronous design rules.
In some cases, an FPGA board may already offer a tunable oscillator. However, the
oscillator can only be used if it meets the constraints in Section 8.2. Furthermore,
when using multiple FPGA boards to simulate the implementation, then off-chip
communication will (most probably) pose a large δ. Hence, the upper bound on the
skew will become worse. An FPGA implementation has to care for many constraints.
Eventually, future work has to take the effort of building an ASIC for testing. The
advantages of OffsetGCS can be played best “on chip”. When we have a large µ/ρ
ratio and small δ, then OffsetGCS achieves a small skew.

Gradient Clock Synchronization. In Section 10.5 we point out that there is a
mismatch of the formal assumptions and the simulated behavior of our implementation.
The formal analysis assumes that at all times an oscillator in slow mode is never faster
than an oscillator in fast mode. In the simulation, we observe that the frequency
drifts over time, as the system stabilizes. Still, the implementation maintains a clear
separation of fast and slow modes within a smaller time frame.

A natural progression of this work is to adapt the formal model to the observed
behavior. This case concerns the computation of the logical clock. We propose to
replace constants µ and ρ by according functions of time µ(t) and ρ(t). Then the
constraint µ > ρ can be replaced by µ(t) > ρ(t) for t in a (small) time frame. The
proposed change allows for the observed behavior while maintaining the requirement
of separating fast and slow modes. For an analysis of the algorithm in the new model,
it could be helpful to also define bounds on µ(t) and ρ(t), for example µmin and
ρmax. We conjecture that the logarithm bounding the skew gets a base of the form
µmin/ρmax.

Hazard-Free Addition. We also discussed the Lynch-Welch algorithm which has
no full mc implementation yet. We show that sorting of measurements can be done
in asymptotically optimal size and time. It remains open to compute the mean of two
measurements. Measurements may contain unstable signals. Hence, it is important to
define a hazard-free addition and division and circuits implementing this. Discussion

169



Chapter 11. Conclusions

of the encoding, preservation, and recoverability lays a foundation to a hazard-free
arithmetic. Considerably more work will need to be done to determine recoverable
codes which also allow for fast addition algorithms. We imagine a hybrid encoding
consisting of BRGC and snake-in-the-box codes. Further study of error-correcting
codes could be advisable as we saw similar approaches in the field. Hazard-free
addition is potentially of interest for more applications, as addition is a fundamental
routine in all microprocessors.

170





List of Acronyms

ASIC application-specific integrated circuit

BFS Breadth-First Search

BRGC Binary Reflected Gray Code

CAD computer aided design

CMOS complementary metal-oxide-semiconductor

CMUX metastability-containing multiplexer

DARTS Distributed Algorithms for Robust Tick Synchronization

DNF disjunctive normal form

FC fast condition

FIFO first-in first-out pipeline

FPGA field programmable gate array

FT fast trigger

GALS globally asynchronous locally synchronous

GCS gradient clock synchronization

GLIFT gate level information flow tracking

LDL locally delayed latching

mc metastability-containing

MTBF mean time between failures

MUTEX mutual exclusion

MUX multiplexer

OCL open cell library

ODE ordinary differential equation

PFD phase frequency detector

PLL phase locked loop

PPC parallel prefix computation

SC slow condition

SPICE simulation program with integrated circuit emphasis

TDC time to digital converter

VCO voltage controlled oscillator

VHDL VHSIC hardware description language

172



Bibliography

[1] Abadian, A., Lotfizad, M., Majd, N. E., Ghoushchi, M. B. G., and
Mirzaie, H. A new low-power and low-complexity all digital PLL (ADPLL)
in 180nm and 32nm. In 17th IEEE International Conference on Electronics,
Circuits, and Systems, ICECS 2010, Athens, Greece, 12-15 December, 2010
(2010), IEEE, pp. 305–310.

[2] Abidi, A. A. Phase noise and jitter in CMOS ring oscillators. IEEE J. Solid
State Circuits 41, 8 (2006), 1803–1816.

[3] Ajtai, M., Komlós, J., and Szemerédi, E. An o(n log n) sorting network.
In Proceedings of the 15th Annual ACM Symposium on Theory of Computing,
25-27 April, 1983, Boston, Massachusetts, USA (1983), D. S. Johnson, R. Fagin,
M. L. Fredman, D. Harel, R. M. Karp, N. A. Lynch, C. H. Papadimitriou, R. L.
Rivest, W. L. Ruzzo, and J. I. Seiferas, Eds., ACM, pp. 1–9.

[4] Bashir, A., Li, J., Ivatury, K., Khan, N., Gala, N., Familia, N., and
Mohammed, Z. Fast lock scheme for phase-locked loops. In IEEE Custom
Integrated Circuits Conference, CICC 2009, San Jose, California, USA, 13-16
September, 2009, Proceedings (2009), IEEE, pp. 319–322.

[5] Beer, S., and Ginosar, R. Eleven ways to boost your synchronizer. IEEE
Trans. Very Large Scale Integr. Syst. 23, 6 (2015), 1040–1049.

[6] Bellman, R. On a routing problem. Quarterly of applied mathematics 16, 1
(1958), 87–90.

[7] Biaz, S., and Welch, J. L. Closed form bounds for clock synchronization
under simple uncertainty assumptions. Inf. Process. Lett. 80, 3 (2001), 151–157.

[8] Boksberger, P., Kuhn, F., and Wattenhofer, R. On the approxima-
tion of the minimum maximum stretch tree problem. Technical report/ETH,
Department of Computer Science 409 (2003).

[9] Brent, R. P., and Kung, H. T. A regular layout for parallel adders. IEEE
Trans. Computers 31, 3 (1982), 260–264.

[10] Brzozowski, J. A., Ésik, Z., and Iland, Y. Algebras for hazard detection.
In 31st IEEE International Symposium on Multiple-Valued Logic, ISMVL 2001,
Warsaw, Poland, May 22-24, 2001, Proceedings (2001), IEEE Computer Society,
pp. 3–14.

[11] Brzozowski, J. A., Ésik, Z., and Iland, Y. Algebras for hazard detection.
In 31st IEEE International Symposium on Multiple-Valued Logic, ISMVL 2001,

173



Bibliography

Warsaw, Poland, May 22-24, 2001, Proceedings (2001), IEEE Computer Society,
pp. 3–14.

[12] Bund, J., Függer, M., Lenzen, C., and Medina, M. Synchronizer-free
digital link controller. IEEE Trans. Circuits Syst. 67-I, 10 (2020), 3562–3573.

[13] Bund, J., Függer, M., Lenzen, C., Medina, M., and Rosenbaum, W.
PALS: plesiochronous and locally synchronous systems. In 26th IEEE Interna-
tional Symposium on Asynchronous Circuits and Systems, ASYNC 2020, Salt
Lake City, UT, USA, May 17-20, 2020 (2020), IEEE, pp. 36–43.

[14] Bund, J., Függer, M., Lenzen, C., Medina, M., and Rosenbaum, W.
PALS: plesiochronous and locally synchronous systems. CoRR abs/2003.05542
(2020).

[15] Bund, J., Lenzen, C., and Medina, M. Near-optimal metastability-
containing sorting networks. In Design, Automation & Test in Europe Con-
ference & Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 2017
(2017), pp. 226–231.

[16] Bund, J., Lenzen, C., and Medina, M. Optimal metastability-containing
sorting via parallel prefix computation. IEEE Trans. Computers 69, 2 (2020),
198–211.

[17] Bund, J., Lenzen, C., and Medina, M. Small hazard-free transducers.
In 13th Innovations in Theoretical Computer Science Conference, ITCS 2022,
January 31 - February 3, 2022, Berkeley, CA, USA (2022), M. Braverman, Ed.,
vol. 215 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 32:1–
32:24.

[18] Bund, J., Lenzen, C., and Rosenbaum, W. Fault tolerant gradient clock
synchronization. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2,
2019 (2019), P. Robinson and F. Ellen, Eds., ACM, pp. 357–365.

[19] Bund, J., Lenzen, C., and Rosenbaum, W. Fault tolerant gradient clock
synchronization. CoRR abs/1902.08042 (2019).

[20] Bundala, D., and Zavodny, J. Optimal sorting networks. In Language and
Automata Theory and Applications - 8th International Conference, LATA 2014,
Madrid, Spain, March 10-14, 2014. Proceedings (2014), A. Dediu, C. Mart́ın-
Vide, J. L. Sierra-Rodŕıguez, and B. Truthe, Eds., vol. 8370 of Lecture Notes in
Computer Science, Springer, pp. 236–247.

[21] Chaney, T. J., and Molnar, C. E. Anomalous behavior of synchronizer and
arbiter circuits. IEEE Trans. Computers 22, 4 (1973), 421–422.

174



Bibliography

[22] Chapiro, D. M. Globally-asynchronous locally-synchronous systems. Tech.
rep., Stanford Univ CA Dept of Computer Science, 1984.

[23] Chelcea, T., and Nowick, S. M. Robust interfaces for mixed-timing systems.
IEEE Trans. Very Large Scale Integr. Syst. 12, 8 (2004), 857–873.

[24] Chung, C.-C., and Lee, C.-Y. An All-Digital Phase-Locked Loop for High-
Speed Clock Generation. IEEE Journal of Solid-State Circuits 38, 2 (2003),
347–351.

[25] Coates, W. S., and Drost, R. J. Congestion and starvation detection in
ripple fifos. In 9th International Symposium on Advanced Research in Asyn-
chronous Circuits and Systems (ASYNC 2003), 12-16 May 2003, Vancouver, BC,
Canada (2003), IEEE Computer Society, pp. 36–45.

[26] Codish, M., Cruz-Filipe, L., Frank, M., and Schneider-Kamp, P.
Twenty-five comparators is optimal when sorting nine inputs (and twenty-nine
for ten). In 26th IEEE International Conference on Tools with Artificial Intel-
ligence, ICTAI 2014, Limassol, Cyprus, November 10-12, 2014 (2014), IEEE
Computer Society, pp. 186–193.

[27] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduc-
tion to Algorithms, 3rd Edition. MIT Press, 2009.

[28] Cortadella, J., Lupon, M., Moreno, A., Roca, A., and Sapatnekar,
S. S. Ring oscillator clocks and margins. In 22nd IEEE International Symposium
on Asynchronous Circuits and Systems, ASYNC 2016, Porto Alegre, Brazil, May
8-11, 2016 (2016), IEEE Computer Society, pp. 19–26.

[29] Daliot, A., Dolev, D., and Parnas, H. Self-stabilizing pulse synchronization
inspired by biological pacemaker networks. CoRR abs/0803.0241 (2008).

[30] Dally, W. J., and Tell, S. G. The even/odd synchronizer: A fast, all-digital,
periodic synchronizer. In 16th IEEE International Symposium on Asynchronous
Circuits and Systems, ASYNC 2010, Grenoble, France, 3-6 May 2010 (2010),
IEEE Computer Society, pp. 75–84.

[31] Dobkin, R. R., Ginosar, R., and Sotiriou, C. P. High rate data synchro-
nization in GALS socs. IEEE Trans. Very Large Scale Integr. Syst. 14, 10
(2006), 1063–1074.

[32] Dolev, D., Halpern, J. Y., and Strong, H. R. On the possibility and
impossibility of achieving clock synchronization. J. Comput. Syst. Sci. 32, 2
(1986), 230–250.

[33] Dolev, D., Heljanko, K., Järvisalo, M., Korhonen, J. H., Lenzen, C.,
Rybicki, J., Suomela, J., and Wieringa, S. Synchronous counting and
computational algorithm design. J. Comput. Syst. Sci. 82, 2 (2016), 310–332.

175



Bibliography

[34] Dolev, D., and Hoch, E. N. Byzantine self-stabilizing pulse in a bounded-
delay model. In Stabilization, Safety, and Security of Distributed Systems,
9th International Symposium, SSS 2007, Paris, France, November 14-16, 2007,
Proceedings (2007), T. Masuzawa and S. Tixeuil, Eds., vol. 4838 of Lecture Notes
in Computer Science, Springer, pp. 234–252.

[35] Dolev, D., Lynch, N. A., Pinter, S. S., Stark, E. W., and Weihl, W. E.
Reaching approximate agreement in the presence of faults. J. ACM 33, 3 (1986),
499–516.

[36] Dolev, S., and Welch, J. L. Self-stabilizing clock synchronization in the
presence of byzantine faults. J. ACM 51, 5 (2004), 780–799.

[37] Eichelberger, E. B. Hazard detection in combinational and sequential switch-
ing circuits. IBM J. Res. Dev. 9, 2 (1965), 90–99.

[38] Fairbanks, S., and Moore, S. W. Self-timed circuitry for global clocking. In
11th International Symposium on Advanced Research in Asynchronous Circuits
and Systems (ASYNC 2005), 14-16 March 2005, New York, NY, USA (2005),
IEEE Computer Society, pp. 86–96.

[39] Fan, R., and Lynch, N. A. Gradient clock synchronization. Distributed
Comput. 18, 4 (2006), 255–266.

[40] Fisher, A. L., and Kung, H. T. Synchronizing large VLSI processor arrays.
IEEE Trans. Computers 34, 8 (1985), 734–740.

[41] Friedrichs, S., Függer, M., and Lenzen, C. Metastability-containing
circuits. IEEE Trans. Computers 67, 8 (2018), 1167–1183.

[42] Friedrichs, S., and Kinali, A. Efficient metastability-containing multiplexers.
In 2017 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2017,
Bochum, Germany, July 3-5, 2017 (2017), IEEE Computer Society, pp. 332–337.

[43] Függer, M., Kinali, A., Lenzen, C., and Polzer, T. Metastability-
aware memory-efficient time-to-digital converters. In 23rd IEEE International
Symposium on Asynchronous Circuits and Systems, ASYNC 2017, San Diego,
CA, USA, May 21-24, 2017 (2017), IEEE Computer Society, pp. 49–56.

[44] Függer, M., and Schmid, U. Reconciling fault-tolerant distributed computing
and systems-on-chip. Distributed Comput. 24, 6 (2012), 323–355.

[45] Ghai, D., Mohanty, S. P., and Kougianos, E. Design of parasitic and
process-variation aware nano-cmos RF circuits: A VCO case study. IEEE Trans.
Very Large Scale Integr. Syst. 17, 9 (2009), 1339–1342.

[46] Goto, M. Application of logical mathematics to the theory of relay networks
(in Japanese). J. Inst. Elec. Eng. of Japan 64, 726 (1949), 125–130.

176



Bibliography

[47] Graham, R. L., Knuth, D. E., and Patashnik, O. Concrete mathematics -
a foundation for computer science (2. ed.). Addison-Wesley, 1994.

[48] Gray, F. Pulse code communication. us patent 2632058, 1953.

[49] Hamming, R. W. Error detecting and error correcting codes. The Bell system
technical journal 29, 2 (1950), 147–160.

[50] Hu, W., Oberg, J., Irturk, A., Tiwari, M., Sherwood, T., Mu, D.,
and Kastner, R. On the complexity of generating gate level information flow
tracking logic. IEEE Trans. Inf. Forensics Secur. 7, 3 (2012), 1067–1080.

[51] Huffman, D. A. The design and use of hazard-free switching networks. J.
ACM 4, 1 (1957), 47–62.

[52] Ikenmeyer, C., Komarath, B., Lenzen, C., Lysikov, V., Mokhov, A.,
and Sreenivasaiah, K. On the complexity of hazard-free circuits. J. ACM
66, 4 (2019), 25:1–25:20.

[53] Jackson, S. J., and Manohar, R. Gradual synchronization. In 22nd IEEE
International Symposium on Asynchronous Circuits and Systems, ASYNC 2016,
Porto Alegre, Brazil, May 8-11, 2016 (2016), IEEE Computer Society, pp. 29–36.

[54] James, M. Linear solver in linear time.

[55] Jukna, S. Notes on hazard-free circuits. SIAM J. Discret. Math. 35, 2 (2021),
770–787.

[56] Kautz, W. H. Unit-distance error-checking codes. IRE Transacions on Elec-
tronic Computers 7, 2 (1958), 179–180.

[57] Khanchandani, P., and Lenzen, C. Self-stabilizing byzantine clock synchro-
nization with optimal precision. Theory Comput. Syst. 63, 2 (2019), 261–305.

[58] Kleene, S. C., De Bruijn, N., de Groot, J., and Zaanen, A. C. Intro-
duction to metamathematics, vol. 483. van Nostrand New York, 1952.

[59] Knuth, D. E. The Art of Computer Programming, Volume III: Sorting and
Searching. Addison-Wesley, 1973.

[60] Kogge, P. M., and Stone, H. S. A parallel algorithm for the efficient solution
of a general class of recurrence equations. IEEE Trans. Computers 22, 8 (1973),
786–793.

[61] Komarath, B., and Saurabh, N. On the complexity of detecting hazards.
Information Processing Letters 162 (2020), 105980.

[62] Kuhn, F., Lenzen, C., Locher, T., and Oshman, R. Optimal gradient
clock synchronization in dynamic networks. CoRR abs/1005.2894 (2010).

177



Bibliography

[63] Kuhn, F., Lenzen, C., Locher, T., and Oshman, R. Optimal gradient
clock synchronization in dynamic networks. In Proceedings of the 29th Annual
ACM Symposium on Principles of Distributed Computing, PODC 2010, Zurich,
Switzerland, July 25-28, 2010 (2010), A. W. Richa and R. Guerraoui, Eds.,
ACM, pp. 430–439.

[64] Kuhn, F., and Oshman, R. Gradient clock synchronization using reference
broadcasts. In Principles of Distributed Systems, 13th International Conference,
OPODIS 2009, Nı̂mes, France, December 15-18, 2009. Proceedings (2009), T. F.
Abdelzaher, M. Raynal, and N. Santoro, Eds., vol. 5923 of Lecture Notes in
Computer Science, Springer, pp. 204–218.

[65] Ladner, R. E., and Fischer, M. J. Parallel prefix computation. J. ACM
27, 4 (1980), 831–838.

[66] Lamport, L., and Melliar-Smith, P. M. Synchronizing clocks in the pres-
ence of faults. J. ACM 32, 1 (1985), 52–78.

[67] Lenzen, C., Locher, T., and Wattenhofer, R. Tight bounds for clock
synchronization. J. ACM 57, 2 (2010), 8:1–8:42.

[68] Lenzen, C., and Medina, M. Efficient metastability-containing gray code
2-sort. In 22nd IEEE International Symposium on Asynchronous Circuits and
Systems, ASYNC 2016, Porto Alegre, Brazil, May 8-11, 2016 (2016), IEEE
Computer Society, pp. 49–56.

[69] Lenzen, C., and Rybicki, J. Self-stabilising byzantine clock synchronisation
is almost as easy as consensus. J. ACM 66, 5 (2019), 32:1–32:56.

[70] Locher, T., and Wattenhofer, R. Oblivious gradient clock synchronization.
In Distributed Computing, 20th International Symposium, DISC 2006, Stockholm,
Sweden, September 18-20, 2006, Proceedings (2006), S. Dolev, Ed., vol. 4167 of
Lecture Notes in Computer Science, Springer, pp. 520–533.

[71] Lundelius, J., and Lynch, N. A. A new fault-tolerant algorithm for clock syn-
chronization. In Proceedings of the Third Annual ACM Symposium on Principles
of Distributed Computing, Vancouver, B. C., Canada, August 27-29, 1984 (1984),
T. Kameda, J. Misra, J. G. Peters, and N. Santoro, Eds., ACM, pp. 75–88.

[72] Lundelius, J., and Lynch, N. A. An upper and lower bound for clock
synchronization. Inf. Control. 62, 2/3 (1984), 190–204.

[73] Lynch, N. A. Distributed Algorithms. Morgan Kaufmann, 1996.

[74] Marino, L. R. General theory of metastable operation. IEEE Trans. Comput-
ers 30, 2 (1981), 107–115.

178



Bibliography

[75] Martins, M. G. A., Matos, J. M., Ribas, R. P., Reis, A. I., Schlinker,
G., Rech, L., and Michelsen, J. Open cell library in 15nm freepdk technology.
In Proceedings of the 2015 Symposium on International Symposium on Physical
Design, ISPD 2015, Monterey, CA, USA, March 29 - April 1, 2015 (2015),
A. Davoodi and E. F. Y. Young, Eds., ACM, pp. 171–178.

[76] Máté, L. L., Das, S., and Chuang, H. Y. A logic hazard detection and
elimination method. Information and Control 26, 4 (1974), 351–368.

[77] Mealy, G. H. A method for synthesizing sequential circuits. The Bell System
Technical Journal 34, 5 (1955), 1045–1079.

[78] Molnar, C. E., and Fairbanks, S. M. Control structure for a high-speed
asynchronous pipeline, Aug. 10 1999. US Patent 5,937,177.

[79] Moore, G. E. Gramming more components onto integrated circuits. Electronics
38 (1965), 8.

[80] Mullins, R. D., and Moore, S. W. Demystifying data-driven and pausible
clocking schemes. In 13th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC 2007), 12-14 March 2006, Berkeley, California,
USA (2007), IEEE Computer Society, pp. 175–185.

[81] Najvirt, R., and Steininger, A. How to synchronize a pausible clock to
a reference. In 21st IEEE International Symposium on Asynchronous Circuits
and Systems, ASYNC 2015, Mountain View, CA, USA, May 4-6, 2015 (2015),
IEEE Computer Society, pp. 9–16.

[82] Pan, J., and Yoshihara, T. A Fast Lock Phase-Locked Loop Using a
Continuous-Time Phase Frequency Detector. In EDSSC (2007), pp. 393–396.

[83] Polzer, T., Handl, T., and Steininger, A. A metastability-free multi-
synchronous communication scheme for socs. In Stabilization, Safety, and
Security of Distributed Systems, 11th International Symposium, SSS 2009, Lyon,
France, November 3-6, 2009. Proceedings (2009), R. Guerraoui and F. Petit,
Eds., vol. 5873 of Lecture Notes in Computer Science, Springer, pp. 578–592.

[84] Polzer, T., and Steininger, A. An approach for efficient metastability
characterization of fpgas through the designer. In 19th IEEE International
Symposium on Asynchronous Circuits and Systems, ASYNC 2013, Santa Monica,
CA, USA, May 19-22, 2013 (2013), IEEE Computer Society, pp. 174–182.

[85] Rotem-Gal-Oz, A. https://arnon.me/wp-content/uploads/Files/fallacies.pdf.

[86] Sipser, M. Introduction to the theory of computation. PWS Publishing Com-
pany, 1997.

179



Bibliography

[87] Sklansky, J. Conditional-sum addition logic. IRE Trans. Electron. Comput.
9, 2 (1960), 226–231.

[88] Sokolov, D., Mokhov, A., Yakovlev, A., and Lloyd, D. Towards Asyn-
chronous Power Management. In FTFC (2014), pp. 1–4.

[89] Srikanth, T. K., and Toueg, S. Optimal clock synchronization. J. ACM
34, 3 (1987), 626–645.

[90] Stibitz, G. R. Binary counter. us patent 2307868, 1943.

[91] Suman, S., Sharma, K., and Ghosh, P. Analysis and design of current
starved ring VCO. In ICEEOT (2016), pp. 3222–3227.

[92] Swartzlander, E. E., and Lemonds, C. E., Eds. Computer Arithmetic,
vol. I–III. World Scientific Publishing Co, 2015.

[93] Tarawneh, G., Függer, M., and Lenzen, C. Metastability tolerant com-
puting. In 23rd IEEE International Symposium on Asynchronous Circuits and
Systems, ASYNC 2017, San Diego, CA, USA, May 21-24, 2017 (2017), IEEE
Computer Society, pp. 25–32.

[94] Teehan, P., Greenstreet, M. R., and Lemieux, G. G. A survey and
taxonomy of GALS design styles. IEEE Des. Test Comput. 24, 5 (2007),
418–428.

[95] Waldrop, M. M. More than moore. Nature 530, 7589 (2016), 144–148.

[96] Yoeli, M., and Rinon, S. Application of ternary algebra to the study of static
hazards. J. ACM 11, 1 (1964), 84–97.

[97] Zhou, J., Kinniment, D., Dike, C. E., Russell, G., and Yakovlev, A.
On-chip measurement of deep metastability in synchronizers. IEEE J. Solid
State Circuits 43, 2 (2008), 550–557.

180


	Abstract
	Publications
	Acknowledgments
	Introduction
	Basic Terms
	Contributions
	Outline

	Circuits and Hazards
	Basic Notation
	Circuits and Kleene Logic
	Hazard-Free Circuits
	Implementation of Basic Gates
	Example: The Hazard-Free Multiplexer
	Related Work

	Encoding
	Codes
	Preserving and Recoverable Codes
	Example Codes
	Follow-Up Questions

	Hazard-Free Transducers
	Introduction and Related Work
	Classic PPC and Hazards
	Hazard-Free PPC
	Extension of the Input Encoding
	Bound on k
	Follow-Up Questions

	Hazard-Free Sorting
	Introduction and Related Work
	Sorting Networks
	Comparator Specification
	Sorting Transducer
	Hazard-free Implementation
	Simulation and Results

	Clock Synchronization
	Model
	Problem
	Lynch-Welch Algorithm
	Gradient Clock Synchronization

	Fault Tolerant Gradient Clock Synchronization
	Introduction and Related Work
	Computational Model
	Cluster Algorithm
	Inter-cluster Algorithm

	Implementation of Clock Synchronization Algorithms
	Related Work
	Hardware Modules

	Single Link Synchronization
	Introduction and Related Work
	System Specification
	Continuous Threshold Controller
	Performance Evaluation

	Network Synchronization
	Introduction
	Hardware Modules
	Hardware Implementation
	Simulation and Comparison
	Follow-Up Questions

	Conclusions
	Summary
	Vision

	List of Acronyms

