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Metastability-Containing Circuits
Stephan Friedrichs, Matthias Függer, Christoph Lenzen

Abstract—In digital circuits, metastability can cause deteriorated signals that neither are logical 0 nor logical 1, breaking the
abstraction of Boolean logic. Synchronizers, the only traditional countermeasure, exponentially decrease the odds of maintained
metastability over time. We propose a fundamentally different approach: It is possible to deterministically contain metastability by
fine-grained logical masking so that it cannot infect the entire circuit.
At the heart of our approach lies a time- and value-discrete model for metastability in synchronous clocked digital circuits, in which
metastability is propagated in a worst-case fashion. The proposed model permits positive results and passes the test of reproducing
Marino’s impossibility results. We fully classify which functions can be computed by circuits with standard registers. Regarding masking
registers, we show that more functions become computable with each clock cycle, and that masking registers permit exponentially
smaller circuits for some tasks. Demonstrating the applicability of our approach, we present the first fault-tolerant distributed clock
synchronization algorithm that deterministically guarantees correct behavior in the presence of metastability. As a consequence, clock
domains can be synchronized without using synchronizers, enabling metastability-free communication between them.

Index Terms—Metastability, Metastability-Containment, Logical Masking, Masking Register, Clock Synchronization.
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1 INTRODUCTION

A classic image invoked to explain metastability is a ball
“resting” on the peak of a steep mountain. In this un-
stable equilibrium the tiniest displacement exponentially
self-amplifies, and the ball drops into a valley. While for
Sisyphus metastability admits some nanoseconds of respite,
it fundamentally disrupts operation in VLSI circuits by
breaking the abstraction of Boolean logic.

In digital circuits, every bistable storage element can
become metastable. Metastability refers to volatile states that
usually involve an internal voltage strictly between logical 0
and 1. A metastable storage element can output deteriorated
signals, e.g., voltages stuck between logical 0 and logical 1,
oscillations, late or unclean transitions, or otherwise unspec-
ified behavior. Such deteriorated signals may violate tim-
ing constraints or input specifications of gates and further
storage elements. Hence, deteriorated signals may spread
through combinational logic and drive further bistables
into metastability. While metastability refers to a state of
a bistable, we refer to the above mentioned deteriorated
signals as “metastable” for the sake of exposition.

Unfortunately, any way of reading a signal from an
unsynchronized clock domain or performing an analog-
to-digital or time-to-digital conversion incurs the risk of
a metastable result; no physical implementation of a non-
trivial digital circuit can deterministically avoid, resolve, or
detect metastability [28].

Traditionally, the only countermeasure is to write a po-
tentially metastable signal into a synchronizer [3], [4], [5],
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[17], [23], [24] and wait. Synchronizers exponentially de-
crease the odds of maintained metastability over time [23],
[24], [37]: In this unstable equilibrium the tiniest displace-
ment exponentially self-amplifies and the bistable resolves
metastability. Put differently, the waiting time determines
the probability to resolve to logical 0 or 1. Accordingly,
this approach delays subsequent computations and does not
guarantee success.

We propose a fundamentally different approach: It is
possible to contain metastability by fine-grained logical
masking so that it cannot infect the entire circuit. This
technique guarantees a limited degree of metastability in —
and uncertainty about — the output. At the heart of our ap-
proach lies a model for metastability in synchronous clocked
digital circuits. Metastability is propagated in a worst-case
fashion, allowing to derive deterministic guarantees, with-
out and unlike synchronizers.

The Challenge. The problem with metastability is that
it fundamentally disrupts operation in VLSI circuits by
breaking the abstraction of Boolean logic: A metastable
signal can neither be viewed as being logical 0 or 1. In
particular, a metastable signal is not a random bit, and does
not behave like an unknown but fixed Boolean signal. As an
example, the circuit that computes ¬x ∨ x using a NOT and
a binary OR gate may output an arbitrary signal value if x
is metastable: 0, 1, or again a metastable signal. Note that
this is not the case for unknown, but Boolean, x. The ability
of such signals to “infect” an entire circuit poses a severe
challenge.

The Status Quo. The fact that metastability cannot be
avoided, resolved or detected, the hazard of infecting en-
tire circuits, and the unpleasant property of breaking the
abstraction of Boolean logic have led to the predominant
belief that waiting — using well-designed synchronizers —
essentially is the only method of coping with the threat of
metastability: Whenever a signal is potentially metastable,
e.g., when it is communicated across a clock boundary, its
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value is written to a synchronizer. After a predefined time,
the synchronizer output is assumed to have stabilized to
logical 0 or 1, and the computation is carried out in classical
Boolean logic. In essence, this approach trades synchroni-
zation delay for increased reliability; it does, however, not
provide deterministic guarantees.

Relevance. VLSI circuits grow in complexity and operating
frequency, leading to a growing number unsynchronized
clock domains, technology becomes smaller, and the oper-
ating voltage is decreased to save power [21]. These trends
increase the risk of metastable upsets. Treating these risks
in the traditional way — by adding synchronizer stages —
increases synchronization delays and thus is counterproduc-
tive w.r.t. the desire for faster systems. Hence, we urgently
need alternative techniques to reliably handle metastability
in both mission-critical and day-to-day systems.

Our Approach. We challenge the point of view that syn-
chronizers are the only solution to metastability and exploit
that logical masking provides some leverage. If, e.g., one
input of a NAND gate is stable 0, its output remains 1 even if
its other input is arbitrarily deteriorated. This is owed to the
way gates are implemented in CMOS logic and to transistor
behavior under intermediate input voltage levels.

We conclude that it is possible to contain metastability to
a limited part of the circuit instead of attempting to resolve,
detect, or avoid it altogether. Given Marino’s result [28], this
is surprising, but not a contradiction. More concretely, we
show that a variety of operations can be performed in the
presence of a limited degree of metastability in the input,
maintaining an according guarantee on the output.

As an example, recall that in Binary Reflected Gray Code
(BRGC) x and x + 1 always only differ in exactly one
bit; each upcount flips one bit. Suppose Analog-to-Digital
Converters (ADCs) output BRGC but, due to their analog
input, a possibly metastable bit u decides whether to output
x or x+1. As x and x+1 only differ in a single bit, this bit is
the only one that may become metastable in an appropriate
implementation. Hence, all possible stabilizations are in
{x, x+1}, we refer to this as precision-1. Among other things,
we show that it is possible to sort such inputs in a way that
the output still has precision-1.

We assume worst-case metastability propagation and
still are able to guarantee correct results. This opens up an
alternative to the classic approach of postponing the actual
computation by first using synchronizers. Advantages over
synchronizers are:

1) No time is lost waiting for (possible) stabilization.
This permits fast response times as, e.g., useful for high-
frequency clock synchronization in hardware, see Section 9.
Note that this removes synchronization delay from the list
of fundamental limits to the operating frequency.

2) Correctness is guaranteed deterministically instead of
probabilistically.

3) Stabilization can, but is not required to, happen “dur-
ing” the computation, i.e., synchronization and calculation
happen simultaneously. In [33] our approach has been ap-
plied to a Network-on-Chip router: the authors replaced the
synchronizers in the receive circuit and replaced it with
a metastability-containing state machine implementation,
resulting in lower packet delivery time.

TDCTDC Sort/Select Ctrl.

analog
digital

metastability-containing
analog

TDCTDC Sort/Select Ctrl.

analog
digital

metastability-containing
analog

Figure 1. The separation of concerns (analog – digital metastability-
containing – analog) for fault-tolerant clock synchronization in hardware.

Separation of Concerns. Clearly, the impossibility of
resolving metastability still holds; metastability may still
occur, even if it is contained. Hence, a separation of concerns,
compare Figure 1, is key to our approach.

For the purpose of illustration, consider a hardware
clock-synchronization algorithm, which is discussed in
more detail in Section 9. We start in the analog world:
nodes generate clock pulses. Each node measures the time
differences between its own and all other nodes’ pulses
using Time-to-Digital Converters (TDCs). Since this involves
entering the digital world, metastability in the measure-
ments is unavoidable [28]. The traditional approach is to
hold the TDC outputs in synchronizers, spending time and
thus imposing a limit on the operating frequency. But as
discussed above, it is possible to limit the metastability of
each measurement to at most one bit in BRGC-encoded
numbers, where the metastable bit represents the “uncer-
tainty between x and x+ 1 clock ticks,” i.e., precision-1.

We apply metastability-containing components to digitally
process these inputs to derive digital correction parameters
for the node’s oscillator. These parameters contain at most
one metastable bit, as above accounting for precision-1. We
convert them to an analog control signal for the oscillator,
translating the metastability to a small frequency offset
within the uncertainty from the initial TDC measurements.

In short, metastability is introduced at the TDC, determin-
istically contained in the digital subcircuit, and ultimately
absorbed by the analog control signal.
Our Contribution. In Section 3, we present a rigorous time-
discrete value-discrete model for metastability in clocked as
well as in purely combinational digital circuits. We consider
two types of registers: simple (standard) registers that do
not provide any guarantees regarding metastability and
masking registers that can “hide” internal metastability to
some degree using high- or low-threshold inverters. The
propagation of metastability is modeled in a worst-case
fashion and metastable registers may or may not stabilize
to 0 or 1. Hence, the resulting model allows us to derive
deterministic guarantees concerning circuit behavior under
metastable inputs.

We demonstrate that the model is not too pessimistic,
i.e., that it allows non-trivial positive results. At the same
time, we are obligated to verify that it properly reflects the
physical behavior of digital circuits, i.e., that it is sufficiently
pessimistic. We perform a reality check in Section 5, showing
that the physical impossibility of avoiding, resolving, or
detecting metastability [28] holds in our model.

Having established some confidence that our model
properly reflects the physical world and allows reasoning
about circuit design, we turn our attention to the question
of computability in Section 6. In Section 6, we analyze
what functions are computable by circuits w.r.t. the available
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register types and the number of clock cycles. Let Funr
M

denote the class of functions that can be implemented in
r clock cycles; let Funr

S denote the class of functions im-
plementable in r clock cycles of circuits that can only use
simple registers. We show that the number of clock cycles is
irrelevant for combinational and simple circuits, reflecting
the intuition from electrical engineering that synchronous
Boolean circuits can be unrolled, but that this is not the case
in the presence of masking registers:

· · · = Fun2
S = Fun1

S = Fun1
M ( Fun2

M ( · · · . (1)

In Section 7, we fully classify FunS . Furthermore, we
establish the metastable closure, the strictest possible exten-
sion of a function specification that allows it to be computed
without masking registers.

Section 8 establishes that the closure can be efficiently
computed using masking registers. This is exponentially
more efficient than the best implementation without mask-
ing registers that we are aware of. Moreover, recently the
existence of circuits for which implementing the closure
without masking registers must incurr an exponential over-
head has been shown [20].

Finally, we apply our techniques to show that an ad-
vanced, useful circuit is in reach. We show in Section 9
that all operations required by the widely used [6], [25]
fault-tolerant clock synchronization algorithm of Lundelius
Welch and Lynch [27] — max and min, sorting, and conver-
sion between Thermometer Code (TC) and BRGC — can be
performed in a metastability-containing manner. Employing
the above mentioned separation of concerns, a hardware im-
plementation of the entire algorithm is within reach, provid-
ing a deterministic correctness guarantee despite metastable
upsets originating in the TDC and without synchronizers.
As a consequence, we show that (1) synchronization delay
poses no fundamental limit on the operating frequency of
clock synchronization and that (2) clock domains can be
synchronized without synchronizers. The latter shows that
we may eliminate communication across unsynchronized
clock domains as a source of metastable upsets altogether.

2 RELATED WORK

Metastability. The phenomenon of metastability has been
studied for decades [23] with the following key results.
(1) No physical implementation of a digital circuit can
reliably avoid, resolve, or detect metastability; any non–
constant digital circuit, including “detectors,” can become
metastable [28]. (2) The probability of an individual event
generating metastability can be kept low. Large transis-
tor counts and high operational frequencies, low supply
voltages, temperature effects, and changes in technology,
however, disallow to neglect the problem [4]. (3) Being an
unstable equilibrium, the probability that, e.g., a memory
cell remains in a metastable state decreases exponentially
over time [23], [24], [37]. Thus, waiting for a sufficiently
long time reduces the probability of sustained metastability
to within acceptable bounds.
Synchronizers. The predominant technique to cope with
metastable upsets is to use synchronizers [3], [4], [5], [17],
[23], [24], carefully designed [3], [17] bistable storage el-
ements that hold potentially metastable signals. After a

predefined time, the synchronizer output is assumed to have
stabilized and the computation is carried out in classical
Boolean logic. In essence, this approach trades synchroni-
zation delay for increased reliability, typically expressed as
MTBF. Synchronizers, however, do not provide determin-
istic guarantees and avoiding synchronization delay is an
important issue [34], [35].

Glitch/Hazard Propagation. Metastability-containing cir-
cuits are related to glitch/hazard-free circuits, which have
been extensively studied since Huffman [19] and Unger [36]
introduced them. Eichelberger [12] extended these results
to multiple switching inputs and dynamic hazards, Brzo-
zowski and Yoeli extended the simulation algorithm [8],
Brzozowski et al. surveyed techniques using higher-valued
logics [7] such as Kleene’s 3-valued extension of Boolean
logic, and Mendler et al. studied delay requirements needed
to achieve consistency with simulated results [29].

While we too resort to Kleene’s 3-valued to model
metastability, there are differences to the classical work on
hazard-tolerant circuits: (1) A common assumption in haz-
ard detection is that inputs only perform well-defined, clean
transitions, i.e., the assumption of a hazard-free input-gener-
ating circuitry is made. This is the key difference to metasta-
bility-containment: Metastability encompasses much more
than inputs that are in the process of switching; metastable
signals may or may not be in the process of completing a
transition, may be oscillating, and may get “stuck” at an
intermediate voltage. (2) Another common assumption in
hazard detection is that circuits have a constant delay. This
is no longer the case in the presence of metastability; unless
metastability is properly masked, circuit delays can deterio-
rate in the presence of metastable input signals, even if the
circuit eventually generates a stable output [15]. This can
cause late transitions that potentially drive further registers
into metastability. (3) Glitch-freedom is no requirement for
metastability-containment. (4) When studying synthesis, we
allow for specifications in which outputs may contain meta-
stable bits. This is necessary for non-trivial specifications in
the presence of metastable inputs [28]. (5) We allow a circuit
to compute a function in multiple clock cycles. (6) Circuits
may comprise masking registers [23].

While static hazards as studied by [19] inherently model
different signal behavior than metastable signals, our The-
orem 23 shows that similar techniques can be applied
in both cases: like in static-hazard-free circuits, covering
prime-implicants is a technique to achieve metastability-
containment. However, this method potentially leads to
exponential size circuits, which was recently proven to be
inevitable in general [20]. Sections 8 and 9 demonstrate that
metastability-containing circuits are not necessarily large:
we present a method that circumvents exponential blow-up
by using masking registers, and show that clock synchroni-
zation components do not suffer from this blow-up.

OR Causality. The work on weak (OR) causality in asyn-
chronous circuits [38] studies the computation of functions
under availability of only a proper subset of its parame-
ters. As an example, consider a Boolean function f(x, y),
where f(0, 0) = f(0, 1). An early-deciding asynchronous
module may set its output as soon as x = 0 arrives
at its input, disregarding the value of y. Early-deciding
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circuits, however, differ from our work because they are
neither clocked synchronous designs nor do they necessar-
ily operate correctly in presence of metastable input bits:
f(0,M) = f(0, 0) = f(0, 1) does not necessarily hold.
Speculative Computing. To the best of our knowledge,
the most closely related work is that by Tarawneh et al. on
speculative computing [34], [35]. The idea is the following:
When computing f(x, y) in presence of a potentially meta-
stable input bit x, (1) speculatively compute both f(0, y) and
f(1, y), (2) in parallel, store the input bit x in a synchronizer
for a predefined time that provides a sufficiently large
probability of resolving metastability of x, and (3) use x to
select whether to output f(0, y) or f(1, y). This hides (part
of) the delay needed to synchronize x.

Like our approach, speculative computations allow for
an overlap of synchronization and computation time. The
key differences are: (1) Relying on synchronizers, specu-
lative computing incurs a non-zero probability of failure;
metastability-containment insists on deterministic guaran-
tees. (2) In speculative computing, the set of potentially
metastable bits X must be known in advance. Regardless
of the considered function, the complexity of a specula-
tive circuit grows exponentially in |X|. Neither is the case
for metastability-containment, as illustrated by several cir-
cuits [9], [16], [26], [33]. (3) Our model is rooted in an
extension of Boolean logic, i.e., uses a different function
space. Hence, we face the question of computability of such
functions by digital circuits; this question does not apply
to speculative computing as it uses traditional Boolean
functions.
Metastability-Containing Circuits. Many of the pro-
posed techniques have been successfully employed to ob-
tain metastability-aware TDCs [16], metastability-containing
BRGC sorting networks [9], [26], metastability-containing
multiplexers [15], and metastability-tolerant network-on-
chip routers [33]. Simulations verify the positive im-
pact of metastability-containing techniques [9], [15], [33].
Most of these works channel efforts towards metastability-
containing FPGA and ASIC implementations of fault-
tolerant distributed clock synchronization; this paper estab-
lishes that all required components are within reach.

3 MODEL OF COMPUTATION

N0 and N denote the natural numbers with and without 0.
We abbreviate [k] := {` ∈ N0 | ` < k} for k ∈ N0. Tuples
a, b are concatenated by a ◦ b, and given a set S, P(S) :=
{S′ ⊆ S} is its power set.

We propose a time-discrete and value-discrete model in
which registers can become metastable and their resulting
output signals deteriorated. The model supports synchro-
nous, clocked circuits composed of registers and combina-
tional logic and purely combinational circuits. Specifically,
we study the generic synchronous state-machine design
depicted in Figure 2. Data is initially written into input
registers. At each rising clock transition, local and output
registers update their state according to the circuit’s com-
binational logic. Figure 2(b) shows the circuit’s behavior
over time: (1) During the first phase, the output of the
recently updated local and output registers stabilizes. This
is accounted for by the clock-to-output time that can be

local

input

output

clk

(a) Synchronous circuit

t

clk

t

local/output register out

t

local/output register in

1 2 3

(b) Phases of a clock cycle

Figure 2. Generic synchronous state machine design in (a). The input
register is initially prefilled. Local and output registers are updated at
each rising clock transition. The circuit behavior over time is depicted
in (b). The three phases of a clock cycle are shown: (1) register output
stabilization, (2) propagation of outputs through combinational logic to
register inputs, and (3) stable register inputs.

bounded, except for the case of a metastable register. In
this case, no deterministic upper bound exists. (2) During
phase two, the stable register output propagates through
the combinational logic to the register inputs. Its duration
can be upper-bounded by the worst-case propagation delay
through the combinational part. (3) In the third phase,
the register inputs are stable, ready to be read (sampled),
and result in updated local and output register states. The
duration of this phase is chosen such that it can account
for potential delays in phase (1); this can mitigate some
metastable upsets. If the stabilization in phase (1), however,
also exceeds the additional time in phase (3), a register
may read an unstable input value, potentially resulting in
a metastable register.

As motivated, metastable registers output an undefined,
arbitrarily deteriorated signal. Deteriorated can mean any
constant voltage between logical 0 and logical 1, arbitrary
signal behavior over time, oscillations, or simply violated
timing constraints, such as late signal transitions. Further-
more, deteriorated signals can cause registers to become
metastable, e.g., due to violated constraints regarding tim-
ing or input voltage. Knowing full well that metastability
is a state of a bistable element and not a signal value or
voltage, we still need to talk about the “deterioration caused
by or potentially causing metastability in a register” in
signals. For the sake of presentation — and as these effects
are causally linked — we refer to both phenomena using the
term metastability without making the distinction explicit.

Our model uses Kleene’s 3-valued logic, a ternary exten-
sion of binary logic; the third value appropriately expresses
the uncertainty about gate behavior in the presence of meta-
stability. In the absence of metastability, our model behaves
like a traditional, deterministic, binary circuit model. In or-
der to obtain deterministic guarantees, we assume worst-case
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Figure 3. Registers as non-deterministic state machines; state transi-
tions represent reads and are associated with an output. As we propose
a worst-case model, the dashed state transitions can be left out.

propagation of metastability: If a signal can be “infected” by
metastability, there is no way to prevent that.

With the example of metastability-containing multiplex-
ers (CMUXes) we demonstrates our model, and Section 5
ensures that it is not “too optimistic” by proving that it
reproduces well-known impossibility results. Concretely, we
show that for circuits in our model avoiding, detecting,
and resolving metastability is impossible, just as in physical
circuits [28]. Clearly, this obliges us to provide evidence
that our model has practical relevance, i.e., that it is indeed
possible to perform meaningful computations. Surprisingly,
the classification derived in Section 7 entails that many
interesting functions can be implemented by circuits, which
is discussed in Section 9.

In our model circuits are synchronous state machines:
Combinational logic, represented by gates, maps a circuit
state to possible successor states. The combinational logic
uses, and registers store, signal values BM := {0, 1,M}.
M represents a metastable signal, the only source of non-
determinism. The classical stable Boolean signal values are
B := {0, 1}. Let x ∈ Bk

M be a k-bit tuple. Stored in registers
over time, the metastable bits may resolve to 0 or 1. The
set of partial resolutions of x is ResM(x), and the set of
metastability-free, i.e., completely stabilized, resolutions is
Res(x). If m bits in x are metastable, |ResM(x)| = 3m and
|Res(x)| = 2m, since M serves as “wildcard” for BM and B,
respectively. Formally,

ResM(x) :=
{
y ∈ Bk

M | ∀i ∈ [k] : xi = yi ∨ xi = M
}
, (2)

Res(x) := ResM(x) ∩Bk. (3)

Registers. We consider three types of single-bit registers,
all of which behave just like in binary circuit models unless
metastability occurs: (1) simple registers which are oblivious
to metastability, and (2) registers that mask an internal me-
tastable state to an output of 1 (mask-1) or (3) to 0 (mask-0).
Physical realizations of masking registers are obtained by
flip-flops with high- or low-threshold inverters at the out-
put, amplifying an internal metastable signal to 1 or 0; see,
e.g., Section 3.1 on metastability filters in [23]. A register R
has a type (simple, mask-0, or mask-1) and a state xR ∈ BM.
R behaves according to xR and its type’s non-deterministic
state machine in Figure 3. Each clock cycle, R performs one
state transition annotated with some oR ∈ BM, which is
the result of sampling R at that clock cycle’s rising clock
edge. This happens exactly once per clock cycle in our
model and we refer to it as reading R. The state transitions
are not caused by sampling R but account for the possible
resolution of metastability during the preceding clock cycle.

Table 1
Gate behavior under metastability corresponds to Kleene logic.

fAND
M 0 1 M
0 0 0 0
1 0 1 M
M 0 M M

fOR
M 0 1 M
0 0 1 M
1 1 1 1
M M 1 M

Consider a simple register in Figure 3(a). When in state 0,
its output and successor state are both 0; it behaves sym-
metrically in state 1. In state M, however, any output in BM
combined with any successor state in BM is possible.

Since our goal is to design circuits that operate correctly
under metastability even if it never resolves, we make two
pessimistic simplifications: (1) If there are three parallel state
transitions from state x to x′ with outputs 0, 1, M, we only
keep the one with output M, and (2) if, for some fixed output
o ∈ BM, there are state transitions from a state x to multiple
states including M, we only keep the one with successor
state M. This simplification is obtained by ignoring the
dashed state transitions in Figure 3, and we maintain it
throughout the paper. Observe that the dashed lines are
a remnant of the highly non-deterministic “anything can
happen” behavior in the physical world; if one is pessimistic
about the behavior, however, one obtains the proposed
simplification that ignores the dashed state transitions.

The mask-b registers, b ∈ B, shown in Figures 3(b)
and 3(c), exhibit the following behavior: As long as their
state remains M, they output b 6= M; only when their state
changes from M to 1− b they output M once, after that they
are stable.

Gates. We model the behavior of combinational gates in the
presence of metastability. A gate is defined by k ∈ N0 input
ports, one output port — gates with k ≥ 2 distinct output
ports are represented by k single-output gates — and a Bool-
ean function f : Bk → B. We generalize f to fM : Bk

M → BM
as follows. Each metastable input can be perceived as 0,
as 1, or as metastable superposition M. Hence, to determine
fM(x), consider O := {f(x′) | x′ ∈ Res(x)}, the set of
possible outputs of f after x fully stabilized. If there is only
a single possible output, i.e., O = {b} for some b ∈ B, the
metastable bits in x have no influence on f(x) and we set
fM(x) := b. Otherwise, O = B, i.e., the metastable bits can
change f(x), and we set fM(x) := M. Observe that this is
equivalent to Kleene’s 3-valued logic and that fM(x) = f(x)
for all x ∈ Bk.

See Table 1 for an AND-gate and an OR-gate. Refer to
Figure 6(a) for an example of metastability propagation
through combinational logic.

Combinational Logic. We model combinational logic as
Directed Acyclic Graph (DAG) G = (V,A) with parallel
arcs, compare Figure 4. Each node either is an input node, an
output node, or a gate.

Input nodes are sources in the DAG, i.e., have in-degree
0 and an arbitrary out-degree, and output nodes are sinks
with in-degree 1, i.e., have in-degree 1 and out-degree 0. If
v ∈ V is a gate, denote by fv : Bkv

M → BM its gate function
with kv ∈ N0 parameters. For each parameter of fv , v is
connected to exactly one input node or gate w by an arc
(w, v) ∈ A. Every output node v is connected to exactly one
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L2 O1

L1

L2

input outputcombinational logic

Figure 4. Combinational logic DAG with gates (gray) and registers
(white). The input (I1), output (O1), and local (L1 and L2) registers occur
as input nodes, output nodes, and both, respectively.

input node or gate w by an arc (w, v) ∈ A. Input nodes and
gates can serve as input to multiple gates and output nodes.

Suppose G has m input nodes and n output nodes. Then
G defines a function fG : Bm

M → Bn
M as follows. Starting

with input x ∈ Bm
M , we evaluate the nodes v ∈ V . If v is

an input node, it evaluates to xv . Gates of in-degree 0 are
constants and evaluate accordingly. If v is a gate of non-zero
in-degree, it evaluates to fv(x̄), where x̄ ∈ Bkv

M is the recur-
sive evaluation of all nodes w with (w, v) ∈ A. Otherwise,
v is an output node, has in-degree 1, and evaluates just as
the unique node w with (w, v) ∈ A. Finally, fG(x)v is the
evaluation of the output node v.

Circuits.

Definition 1 (Circuit). A circuit C is defined by:
(1) m input registers, k local registers, and n output regis-

ters, m, k, n ∈ N0. Each register has exactly one type —
simple, mask-0, or mask-1 — and is either input, output, or
local register.

(2) A combinational logic DAG G. G has m + k input nodes,
exactly one for each non-output register, and k + n output
nodes, exactly one for each non-input register. Local registers
appear as both input node and output node.

(3) An initialization x0 ∈ Bk+n
M of the non-input registers.

Each s ∈ Bm+k+n
M defines a state of C .

A meaningful application clearly uses a stable initializa-
tion x0 ∈ Bk+n; this restriction, however, is not formally
required. Furthermore, observe that Definition 1 does not
allow registers to be an input and an output register at
the same time. This overlap in responsibilities, however, is
often used in digital circuits. We note that we impose this
restriction for purely technical reasons; our model supports
registers that are read and written — local registers — and
it is possible to emulate the above mentioned behavior: If
the computation consists of a single round, read from the
input and write to the output register. Otherwise, read form
the input register in the first round, write and read from
local registers in successive rounds, and write to the output
register in in the last round. Hence, this formal restriction
has no practical implications.

We denote by

In : Bm+k+n
M → Bm

M , (4)

Loc: Bm+k+n
M → Bk

M, and (5)

Out: Bm+k+n
M → Bn

M (6)

the projections of a circuit state to its values at input, local,
and output registers, respectively. In fact, the initialization of
the output registers, Out(x0), is irrelevant, because output
registers are never read (see below). We use the convention
that for any state s of a circuit, s = In(s) ◦ Loc(s) ◦Out(s).

Executions. Consider a circuit C in state s, and let
x = In(s) ◦ Loc(s) be the state of the non-output registers.
Suppose each register R is read, i.e., makes a non-dashed
state transition according to its type, state, and correspond-
ing state machine in Figure 3. This state transition yields a
value read from, as well as a new state for, R. We denote by

ReadC : Bm+k
M → P

(
Bm+k

M

)
(7)

the function mapping x to the set of possible values read
from non-output registers of C depending on x. When
only simple registers are involved, the read operation is
deterministic:

Observation 2. In a circuit C with only simple registers,
ReadC(x) = {x}.

In the presence of masking registers, x ∈ ReadC(x) can
occur, but the output may partially stabilize:

Observation 3. Consider a circuit C in state s. Then for x =
In(s) ◦ Loc(s)

x ∈ ReadC(x), and (8)

ReadC(x) ⊆ ResM(x). (9)

Let G be the combinational logic DAG of C with m + k
input and k + n output nodes. Suppose o ∈ Bm+k

M is read
from the non-output registers. Then the combinational logic
of C evaluates to fG(o), uniquely determined by G and o.
We denote all possible evaluations of C w.r.t. x by EvalC(x):

EvalC : Bm+k
M → P

(
Bk+n

M

)
, (10)

EvalC(x) :=
{
fG(o) | o ∈ ReadC(x)

}
. (11)

When registers are written, we allow, but do not require,
signals to stabilize. If the combinational logic evaluates
the new values for the non-input registers to x̄ ∈ Bk+n

M ,
their new state is in ResM(x̄); the input registers are never
overwritten. We denote this by

WriteC : Bm+k
M → P

(
Bk+n

M

)
, (12)

WriteC(x) :=
⋃

x̄∈EvalC(x)

ResM(x̄). (13)

Observe that this is where metastability can cause inconsis-
tencies: If a gate is read as M and this is copied to three
registers, it is possible that one stabilizes to 0, one to 1, and
one remains M.

For the sake of presentation, we write ReadC(s),
EvalC(s), and WriteC(s) for a circuit state s ∈ Bm+k+n

M ,
meaning that the irrelevant part of s is ignored.

Let sr be a state of C . A successor state sr+1 of sr is any
state that can be obtained from sr as follows.
Read phase First read all registers, resulting in read values

o ∈ ReadC(sr). Let ιr+1 ∈ Bm
M be the state of the input

registers after the state transitions leading to reading o.
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I1
I2

L1

L1

O1

(a) Circuit

r
state sr read o eval x̄r+1 write xr+1

I1I2L1O1 I1I2L1 L1O1 L1O1

0 MM11 0M1 MM 1M
1 MM1M MM1 MM MM
2 1MMM 1MM 1M 10
3 1M10 1M1 11 11
4 1M11

(b) States, reads, evaluations, and writes

Figure 5. Example execution in a circuit (a). The node states as well
as the results of the read, evaluation, and write phases are listed in the
table (b). Register I1 is a mask-0 register, all others are simple registers.
The initialization is 11, the input is MM, and hence s0 = MM11.

Evaluation phase Then evaluate the combinational logic
according to the result of the read phase to x̄r+1 =
fG(o) ∈ EvalC(sr).

Write phase Pick a partial resolution xr+1 ∈ ResM(x̄r+1) ⊆
WriteC(sr) of the result of the evaluation phase. The
successor state is sr+1 = ιr+1 ◦ xr+1.

In each clock cycle, our model determines some successor
state of the current state of the circuit; we refer to this as
round.

Note that due to worst-case propagation of metastabil-
ity, the evaluation phase is deterministic, while read and
write phase are not: Non-determinism in the read phase is
required to model the non-deterministic read behavior of
masking registers, and non-determinism in the write phase
allows copies of metastable bits to stabilize inconsistently. In
a physical circuit, metastability may resolve within the com-
binational logic; we do not model this as a non-deterministic
evaluation phase, however, as it is equivalent to postpone
possible stabilization to the write phase.

Let C be a circuit in state s0. For r ∈ N0, an r-round
execution (w.r.t. s0) of C is a sequence of successor states
s0, s1, . . . , sr. We denote by SC

r (s0) the set of possible states
resulting from r-round executions w.r.t. s0 of C :

SC
0 (s0) := {s0}, and (14)

SC
r (s0) :=

{
sr | sr successor of some s ∈ SC

r−1(s0)
}
. (15)

An initial state of C w.r.t. input ι ∈ Bm
M is s0 = ι ◦ x0. We

use Cr : Bm
M → P(Bn

M) as a function mapping an input to
all possible outputs resulting from r-round executions of C :

Cr(ι) :=
{

Out(sr) | sr ∈ SC
r (ι ◦ x0)

}
. (16)

We say that r rounds of C implement f : Bm
M → P(Bn

M) if
and only if Cr(ι) ⊆ f(ι) for all ι ∈ Bm

M , i.e., if all r-round
executions of C result in an output permitted by f . If there
is some r ∈ N, such that r rounds of C implement f , we say
that C implements f .

Observe that our model behaves exactly like a tradi-
tional, deterministic, binary circuit model if s0 ∈ Bm+k+n.

Example. Figure 5 specifies a circuit and its states, as well
as the results of the read, evaluation, and write phases. The

input registers are I1 and I2, the only local register is L1, and
the only output register is O1. Regarding register types, the
input register I1 is a mask-0 register and all other registers
are simple registers.

The initialization is x0 = 11, the input is ι = MM, and
the initial state hence is s0 = ι ◦ x0 = MM11, which is
indicated in the upper left entry in Figure 5(b). In the read
phase, all non-output registers are read. Since I2 and L1

are simple registers, their read deterministically evaluates
to M and 1, respectively, by the state machine in Figure 3(a).
The mask-0 register I1 in state M may either be read as
0 and remain in state M, or be read as M and transition
to state 1, compare Figure 3(b); in this case it does the
former. So far, we fixed the outcome of the read phase,
0M1, and the follow-up state of the input registers, MM;
the other registers are overwritten at the end of the write
phase. The evaluation is uniquely determined, a read phase
resulting in o evaluates to fG(o), here, fG(0M1) = MM.
We are left with only one more step in this round: The
non-input registers are overwritten with some value in the
resolution of the evaluation phase’s result, in our case with
1M ∈ ResM(MM). Together we obtain the successor state
s1 = MM1M.

In the next round, I1 uses the other state transition, i.e.,
is read as M, and hence has state 1 in the next round. Hence
its state remains fixed in all successive rounds by the state
machine in Figure 3(b). The other reads are deterministic,
so we obtain o = MM1 as the result of the read phase and
successor states 1M for I1 and I2. The evaluation is fG(o) =
fG(MM1) = MM the state of L1 andO1 is overwritten with
some value from ResM(MM), here by MM.

By round r = 2, the result of the read phase is deter-
ministic because the only masking register stabilized, we
read o = 1MM, and evaluate to 1M. The remaining non-
determinism is whether to write 1M or some stabilization
thereof. We examine the case that 10 is written.

Rounds r ≥ 3 now are entirely deterministic. The only
possible read is 1M1, which evaluates to fG(1M1) = 11,
fixing the result of the write phase to 11. Further rounds are
identical, the only metastable register, I2, remains metasta-
ble but has no impact on the evaluation phase as the OR
gate always receives input 1 from I2 and hence masks the
metastable input.
Metastability-Containing Multiplexers. We demonstrate
the model by developing a CMUX. Despite its simplicity, it
demonstrates our concept, and is a crucial part of the more
complex metastability-containing components required for
the clock synchronization circuit outlined in Section 9.2 [9],
[16], [26]. From a broader perspective, this shows that our
model, especially the worst-case propagation of metastabil-
ity, is not “too pessimistic” to permit positive results. We
show in Section 5 that it is not “too optimistic,” either.

Prior to discussing improved variants, let us examine a
standard Multiplexer (MUX). A (k-bit) Multiplexer (MUX) is
a circuit C with 2k + 1 inputs, such that C implements

fMUX : Bk
M ×Bk

M ×BM → Bk
M (17)

fMUX(a, b, s) =


ResM(a) if s = 0,
ResM(b) if s = 1, and
BM if s = M,

(18)
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(a) CCMUX1
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s (mask-1)
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(b) CCMUX2

Figure 6. MUX gate-level implementations. Both circuits mask a meta-
stable select bit s in the case of a = b employing additional gates (a)
and a masking register (b), respectively. Further, Figure (a) indicates
how metastability can be masked.

where we use k = 1 for the sake of presentation. In the case
of a stable select bit s, it determines whether to output (some
stabilization of) a or b. If s is metastable, an arbitrary output
may be produced.

A desirable property of a MUX is that if a = b, the output
is a, regardless of s. Being uncertain whether to select a or b
should be insubstantial in this case. If, however, s = M and
a = b = 1, a standard implementation with two AND2 and
a successive OR2 yields

(¬s∧a)∨ (s∧b) = (¬M∧1)∨ (M∧1) = M∨M = M. (19)

Hence, we ask for an improved circuit that implements

fCMUX(a, b, s) =


ResM(a) if s = 0 or a = b,
ResM(b) if s = 1, and
BM if a 6= b ∧ s = M.

(20)

We call such a circuit (k-bit) Metastability-Containing Mul-
tiplexer (CMUX). Circuit CCMUX1 in Figure 6(a) imple-
ments (20): The problematic case of s = M and a = b = 1 is
handled by the third AND-gate which becomes 1, providing
the OR-gate with a stable 1 as input, see Figure 6(a).

Lemma 4. CCMUX1
1 ⊆ fCMUX from Equation (20).

We next show how to implement (20) using a masking
register in two rounds of computation. Algorithm 1 specifies
the clocked circuit by assignments of logic expressions to
registers. The trick is to sequentially read s from a mask-
1 register, ensuring that at most one copy of s can be
metastable. This guarantees that in the case of s = M and
a = b = 1, one of the AND-clauses is stable 1.

Algorithm 1 Metastability-Containing Multiplexer.
input: a and b (simple), s (mask-1)
local: s′ (simple)
output: o (simple)
each round:

s′ ← s; o← (¬s ∧ a) ∨ (s′ ∧ b)
end

Lemma 5. Two rounds of Algorithm 1 implement (20).

One may argue that a direct realization of Algorithm 1
in hardware as a clocked state machine may be too large for
practical applications. In fact, however, the algorithm has
an optimized unclocked realization, that cannot directly be

expressed in our synchronous circuit model: The serializa-
tion of assignments in Algorithm 1 ensured by the two clock
cycles can also be enforced by local delay constraints instead
of clock cycles, see Figure 6(b): if the propagation delay
from s to the AND-gate with non-negated s input is larger
than the gate delay from s to the AND-gate with negated
input ¬s, the circuit exhibits the specified behavior. The
delay constraint can be enforced by appropriate routing or
insertion of inverters. Note that this implementation scales
well with increasing bit widths of a and b, since only the
select bit needs to be stored in a masking register.

4 BASIC PROPERTIES

We establish basic properties regarding computability in the
model from Section 3. Regarding the implementability of
functions by circuits, we focus on two resources: the number
r ∈ N of rounds and the register types available to it. In
order to capture this, let Funr

S be the class of functions
implementable with r rounds of circuits comprising only
simple registers. Analogously, Funr

M denotes the class of
functions implementable with r rounds that may use mask-
ing and simple registers.

First consider the combinational logic. Provided with
a partially metastable input x, some gates — those where
the collective metastable input ports have an impact on the
output — evaluate to M. So when stabilizing x bit by bit, no
new metastability is introduced at the gates. Furthermore,
once a gate stabilized, its output is fixed; stabilizing the
input leads to stabilizing the output.

Lemma 6. Let G be a combinational logic DAG with m input
nodes. Then for all x ∈ Bm

M ,

x′ ∈ ResM(x)⇒ fG(x′) ∈ ResM

(
fG(x)

)
. (21)

The proof is by inductively applying the definition of a
gate to the DAG’s nodes.

Stabilizing the input of the combinational logic stabilizes
its output. The same holds for the evaluation phase: If
one result of the read phase is x and another is x′ ∈
ResM(x), the combinational logic stabilizes its output to
fG(x′) ∈ ResM(fG(x)). Recall Observations 2 and 3: In
state x, simple registers are deterministically read as x, and
masking registers as some x′ ∈ ResM(x). Hence, the use of
masking registers might partially stabilize the input to the
combinational logic and, by Lemma 6, its output. The same
stabilization can also occur in the write phase. This implies
that WriteC is not influenced by the register types.

Lemma 7. Consider a circuit C in state s. Let CS be a copy of
C that only uses simple registers, and x = In(s) ◦ Loc(s) the
projection of s to the non-output registers. Then

WriteC(s) = WriteCS (s) = ResM

(
fG(x)

)
. (22)

Proof. In CS , we have ReadCS (s) = {x} by Observation 2.
So EvalCS (s) = {fG(x)}, and WriteCS (s) = ResM(fG(x))
by definition.

In C , it holds that x ∈ ReadC(s) by Observation 3, so
ResM(fG(x)) ⊆ WriteC(s). All other reads x′ ∈ ReadC(s)
have x′ ∈ ResM(x) by Observation 3, and fG(x′) ∈



9

ResM(fG(x)) by Lemma 6. It follows that WriteC(s) =
ResM(fG(x)).

Carefully note that the write phase only affects non-input
registers; input registers are never written. Hence, Lemma 7
does not generalize to multiple rounds: State transitions of
input registers in the read phase affect future read phases.

In 1-round executions, however, masking and simple
registers are equally powerful, because their state transitions
only affect rounds r ≥ 2 (we show in Section 6 that these
state changes lead to differences for r ≥ 2 rounds).

Corollary 8. Fun1
S = Fun1

M .

In contrast, simple and masking registers used as non-
input registers behave identically, regardless of the number
of rounds: A circuit C in state sr overwrites them regardless
of their state. Since WriteC(sr) is oblivious to register types
by Lemma 7, so is Loc(sr+1) ◦ Out(sr+1) for a successor
state sr+1 of sr .

Corollary 9. Simple and masking registers are interchangeable
when used as non-input registers.

Consider a circuit C in state s, and suppose x ∈
ReadC(s) is read. Since the evaluation phase is determinis-
tic, the evaluation y = fG(x) ∈ EvalC(s) is uniquely deter-
mined by x and C . Recall that we may resolve metastability
to ResM(y) ⊆ WriteC(s) in the write phase: The state of an
output registerR becomes 0 if yR = 0, 1 if yR = 1, and some
b ∈ BM if yR = M. Consequently, output registers resolve
independently:

Corollary 10. For any circuit C , C1 = g0 × · · · × gn−1, where
gi : Bm

M → {{0}, {1},BM}.

Proof. Let s = ι◦x0 be the initial state of C w.r.t. input ι, and
x = In(s)◦Loc(s). By Lemma 7, WriteC(s) = ResM(fG(x)),
i.e., C1(ι) = {Out(s′) | s′ ∈ ResM(fG(x))}. By definition,
ResM(fG(x)) =

∏
i∈[n] ResM(fG(x))i. Hence, the claim

follows with gi(ι) := ResM(fG(x))i for all ι ∈ Bm
M and

i ∈ [n].

We show in Section 7 that Corollary 10 generalizes
to multiple rounds of circuits with only simple registers.
This is, however, not the case in the presence of masking
registers, as demonstrated in Section 6.

Lemmas 6 and 7 apply to the input of circuits: Partially
stabilizing an input partially stabilizes the possible inputs
of the combinational logic, and hence its evaluation and the
circuit’s output after one round.

Observation 11. For a circuit C and input ι ∈ Bm
M ,

ι′ ∈ ResM(ι)⇒ C1(ι′) ⊆ C1(ι). (23)

Proof. Let x0 be the initialization of C , s = ι ◦ x0 its
initial state w.r.t. input ι, and x = In(s) ◦ Loc(s) the
state of the non-output registers; define s′ and x′ equiva-
lently w.r.t. input ι′ ∈ ResM(ι). Using Lemmas 6 and 7,
and that ResM(x′) ⊆ ResM(x) for x′ ∈ ResM(x), we
obtain that WriteC(s′) = ResM(fG(x′)) ⊆ ResM(fG(x)) =
WriteC(s).

Finally, note that adding rounds of computation cannot
decrease computational power, i.e., result in less functions

being implementable, since a circuit determining x in r
rounds can be transformed into one using r + 1 rounds by
buffering x for one round. Furthermore, allowing masking
registers does not decrease computational power.

Observation 12. For all r ∈ N0, we have Funr
S ⊆ Funr+1

S ,
Funr

M ⊆ Funr+1
M , and Funr

S ⊆ Funr
M .

5 REALITY CHECK

We demonstrated that our model permits the design of
metastability-containing circuits. Given the elusive nature
of metastability and Marino’s impossibility result [28], non-
trivial positive results of this kind are surprising, and raise
the question whether the proposed model is “too optimistic”
to derive meaningful statements about the physical world.
Put frankly, a reality check is in order!

In particular, Marino established that no digital circuit
can reliably (1) avoid, (2) resolve, or (3) detect metasta-
bility [28]. It is imperative that these impossibility results
are maintained by any model comprising metastability. We
show in Theorem 16 and Corollaries 17–18 that (1)–(3) are
impossible in the model proposed in Section 3 as well. We
stress that this is about putting the model to the test rather
than reproducing a known result.

We first verify that avoiding metastability is impossible
in non-trivial circuits. Consider a circuit C that produces
different outputs for inputs ι 6= ι′. The idea is to observe
how the output of C behaves while transforming ι to ι′

bit by bit, always involving intermediate metastability, i.e.,
switching the differing bits from 0 to M to 1 or vice versa.
This can be seen as a discrete version of Marino’s argument
for signals that map continuous time to continuous volt-
age [28]. Furthermore, the bit-wise transformation of ι to ι′,
enforcing a change in the output in between, has parallels
to the classical impossibility of consensus proof of Fischer
et al. [13]; our techniques, however, are quite different. The
following definition formalizes the step-wise manipulation
of bits.

Definition 13 (Pivotal Sequence). Let k ∈ N0 and ` ∈ N be
integers, and x, x′ ∈ Bk

M. Then (x(i))i∈[`+1], x(i) ∈ Bk
M, is a

pivotal sequence (from x to x′ over Bk
M) if and only if

(1) x(0) = x and x(`) = x′,
(2) for all i ∈ [`], x(i) and x(i+1) differ in exactly one bit, and
(3) this bit is metastable in either x(i) or x(i+1).

For i ∈ [`], we call the differing bit the pivot from i to i+ 1 and
Pi its corresponding pivotal register.

Carefully note that we do not use pivotal sequences as
temporal sequences of non-output register states and circuit
successor states; The bit-wise manipulation does not happen
over time, instead, we aim at examining closely related
circuit states.

We begin with Lemma 14 which applies to a single round
of computation. It states that feeding a circuit C with a
pivotal sequence x of non-output register states results in a
pivotal sequence of possible successor states s of the circuit.
Hence, if C is guaranteed to output different results for x(0)

and x(`), some intermediate element of s must contain a
metastable output bit, i.e., there is an execution in which an
output register of C becomes metastable. We argue about
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successor states rather than just the output because we
inductively apply Lemma 14 in Corollary 15.

Lemma 14. Let C be a circuit, and (s(i))i∈[`+1], s(i) ∈
Bm+k+n

M , a pivotal sequence of states of C . Then there is a pivotal
sequence (ŝ(j))j∈[`′+1], ŝ(j) ∈ Bm+k+n

M , where each ŝ(j) is a
successor state of some s(i), satisfying that ŝ(0) and ŝ(`′) are
successor states of s(0) and s(`), respectively.

Given a pivotal sequence of inputs, there are executions
producing a pivotal sequence of attainable successor states.
Using these states for another round, Lemma 14 can be
applied inductively.

Corollary 15. Let C be a circuit, x0 its initialization, and
(ι(i))i∈[`+1], ι(i) ∈ Bm

M , be a pivotal sequence of inputs
of C . Then there is a pivotal sequence of states (s(j))j∈[`′+1],
s(j) ∈ Bm+k+n

M , that C can attain after r ∈ N rounds satisfying
s(0) ∈ SC

r (ι(0) ◦ x0) and s(`′) ∈ SC
r (ι(`) ◦ x0).

We wrap up our results in a compact theorem. It states
that a circuit which has to output different results for differ-
ent inputs can produce metastable outputs.

Theorem 16. Let C be a circuit with Cr(ι) ∩ Cr(ι′) = ∅ for
some ι, ι′ ∈ Bm

M . Then C has an r-round execution in which an
output register becomes metastable.

Proof. Apply Corollary 15 to a pivotal sequence from ι to ι′

and C , yielding a pivotal sequence y of states that C can
attain after r-round executions. Since Cr(ι) 3 Out(s(0)) 6=
Out(s(`′)) ∈ Cr(ι′), some Out(s(j)) contains an M bit.

Marino proved that no digital circuit, synchronous or
not, can reliably (1) compute a non-constant function and
guarantee non-metastable output, (2) detect whether a reg-
ister is metastable, or (3) resolve metastability of the input
while faithfully propagating stable input [28]. Theorem 16
captures (1), and Corollaries 17 and 18 settle (2) and (3),
respectively. The key is to observe that a circuit detecting or
resolving metastability is non-constant, and hence, by The-
orem 16, can become metastable — defeating the purpose of
detecting or resolving metastability in the first place.

Corollary 17. There exists no circuit that implements f : BM →
P(BM) with

f(x) =

{
{1} if x = M, and
{0} otherwise.

(24)

Proof. Assume such a circuit C exists and implements f in
r rounds. Cr(0) ∩ Cr(M) = ∅, so applying Theorem 16 to
ι = 0 and ι′ = M yields that C has an r-round execution
with metastable output, contradicting the assumption.

Corollary 18. There exists no circuit that implements f : BM →
P(BM) with

f(x) =

{
{0, 1} if x = M, and
{x} otherwise.

(25)

Proof. As in Corollary 17 with ι = 0 and ι′ = 1.

In summary, our circuit model (Section 3) is consistent
with physical models of metastability, yet admits the com-
putation of non-trivial functions that are crucial in construct-
ing complex metastability-containing circuits [9], [16], [26].

I1

L1

L2

L1

L2

L1

L2

L1

L2
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Figure 7. Unrolling three rounds of the circuit in Figure 4 with three gates
(gray), and four registers (white). Local registers become fan-out buffers,
and early output is ignored.

This gives rise to further questions: (1) Is there a funda-
mental difference between simple and masking registers?
(2) Which functions can be implemented? We study these
questions in Sections 6 and 7, respectively.

6 COMPUTATIONAL HIERARCHY

In this section, we determine the impact of the number
of rounds r ∈ N and the available register types on the
computational power of circuits, i.e., the set of functions
that are implementable by such circuits. Recall that Funr

S

denotes the functions implementable using r rounds and
simple registers only, and Funr

M those implementable using
r rounds and arbitrary registers. The main results are:
(1) Even in the presence of metastability, circuits restricted

to simple registers can be unrolled (Theorem 19):
Funr

S = Funr+1
S .

(2) With masking registers, however, more functions be-
come implementable with each additional round (The-
orem 21): Funr

M ( Funr+1
M .

With Corollary 8, we obtain the following hierarchy:

· · · = Fun2
S = Fun1

S = Fun1
M ( Fun2

M ( · · · . (26)

We believe this to make a strong case for further pursu-
ing masking registers in research regarding metastability-
containing circuits.
Simple Registers. It is folklore that binary-valued syn-
chronous circuits can be unrolled such that the output after
r ∈ N clock cycles of the original circuit is equal to the
output after a single clock cycle of the unrolled circuit.
Theorem 19 states that this result also holds in presence of
potentially metastable simple registers. Note that — defying
intuition — masking registers do not permit this, see Theo-
rem 21.

Theorem 19. Given a circuit C with only simple registers such
that r ∈ N rounds of C implement f , one can construct a circuit
C ′ such that one round of C ′ implements f .

Proof sketch. Arrange r copies of the combinational logic of
C as in Figure 7 such that (1) input registers feed all copies
of gates they feed in C , (2) local registers become fan-out
buffers (gates forwarding their input), and (3) output regis-
ters are copied as well, but only the r-th copy is relevant.
We have C ′1 = Cr because simple registers merely maintain
and propagate metastability in the worst case.

Naturally, the unrolled circuit can be significantly larger
than the original one. However, the point is that adding
rounds does not affect the computational power of circuits
with simple registers only.
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Corollary 20. For all r ∈ N, Funr
S = Fun1

S =: FunS .

Arbitrary Registers. For simple registers, additional
rounds make no difference in terms of computability —
the corresponding hierarchy collapses into FunS . In the
following, we demonstrate that this is not the case in the
presence of masking registers: Funr

M ( Funr+1
M for all

r ∈ N. We demonstrate this using a metastability-containing
fan-out buffer specified by Equation (27). It creates r copies
of its input bit, at most one of which is permitted to become
metastable:

f(x) =

{
{xr} if x 6= M,⋃

i∈[r] ResM(0iM1r−i−1) otherwise.
(27)

Theorem 21. Funr
M ( Funr+1

M for all r ∈ N.

Proof sketch. Pick 2 ≤ r ∈ N and consider f from Equa-
tion (27). To see that f ∈ Funr

M , have a circuit C store the
input in a mask-0 register, and read one copy of it in each of
r rounds. If x 6= M, r rounds of C generate r stable copies
of x. Otherwise x = M and the r outputs are specified by
r state transitions of the mask-0 register starting in state M,
i.e., behave exactly as specified in (27).

As for f /∈ Funr−1
M , assume r − 1 rounds of C imple-

ment (27) and observe that the input register R can only be
read r − 1 times. Since C produces r outputs, two of these
outputs have to depend on the same read of R. If that read
operation returns M, which is possible even for masking
registers, both outputs can become metastable, violating the
specification (27).

7 THE POWER OF SIMPLE REGISTERS

The design of metastability-containing circuits requires a
quick and easy check which metastability-containing com-
ponents are implementable. In this section, we present such
a test for circuits without masking registers.

First, we present sufficient and necessary conditions for
a function to be implementable with simple registers only.
Using this classification, we demonstrate how to take an
arbitrary Boolean function f : Bm → Bn and extend it to
the most restrictive specification [f ]M : Bm

M → P(Bn
M), the

metastable closure of f , that is implementable. This is an easy
process — one simply applies Definition 24 to f .

The way to make use of this is to start with a function f
required as component, “lift” it to [f ]M, and check whether
[f ]M is restrictive enough for the application at hand. If it is,
one can work on an efficient implementation of [f ]M, other-
wise a new strategy, possibly involving masking registers,
must be devised; in either case, no time is wasted searching
for a circuit that does not exist.

Since we discuss functions implementable with simple
registers only, recall that the corresponding circuits can be
unrolled by Theorem 19, i.e., it suffices to understand C1, a
single round of a (possibly unrolled) circuit.

Natural Subfunctions. From Corollary 10 and Observa-
tion 11, we know that C1, the set of possible circuit outputs
after a single round, has three properties: (1) its output can
be specified bit-wise, (2) each output bit is either 0, 1, or
completely unspecified, and (3) stabilizing a partially meta-
stable input restricts the set of possible outputs. Hence C1 —

and by Corollary 20 all circuits using only simple registers —
can be represented in terms of bit-wise KV diagrams with
values “0, 1,BM” instead of “0, 1, D” (D for “don’t care”). We
call such functions natural and show below that f ∈ FunS if
and only if f has a natural subfunction.

Definition 22 (Natural and Subfunctions). The function
f : Bm

M → P(Bn
M) is natural if and only if it is bit-wise, closed,

and specific:
Bit-wise The components f1, . . . , fn of f are independent:

f(x) = f1(x)× · · · × fn(x). (28)

Closed Each component of f is specified as either 0, as 1, or
completely unspecified:

∀x ∈ Bm
M : f(x) ∈ {{0}, {1},BM}n. (29)

Specific When stabilizing a partially metastable input, the out-
put of f remains at least as restricted:

∀x ∈ Bm
M : x′ ∈ Res(x)⇒ f(x′) ⊆ f(x). (30)

For functions f, g : Bm
M → P(Bn

M), g is a subfunction of f (we
write g ⊆ f ), if and only if g(x) ⊆ f(x) for all x ∈ Bm

M .

Suppose we ask whether a function f is implementable
with simple registers only, i.e., if f ∈ FunS . Since any
(unrolled) circuit C implementing f must have C1 ⊆ f ,
Corollary 10 and Observation 11 state a necessary condition
for f ∈ FunS : f must have a natural subfunction. Theo-
rem 23 establishes that this condition is sufficient, too. For
the if-direction, we use a technique introduced in [19] for
hazard-free circuits: we cover all prime-implicants of f .

Theorem 23. Let g : Bm
M → P(Bn

M) be a function. Then g ∈
FunS if and only if g has a natural subfunction.

Proof. For the only-if-direction, suppose that C is a circuit
with only simple registers such that C1 ⊆ g; by Theorem 19,
such a circuit exists. C1 is bit-wise and closed by Corol-
lary 10, and specific by Observation 11. Hence, choosing
f := C1 yields a natural subfunction of g.

We proceed with the if-direction. Let f ⊆ g be a natural
subfunction of g, and construct a circuit C that imple-
ments f . As f is bit-wise, we may w.l.o.g. assume that n = 1.
If f(·) = {0} or f(·) = BM, let C be the circuit whose
output register is driven by a CONST0-gate; if f(·) = {1},
use a CONST1-gate. Otherwise, we construct C as follows.
Consider fB : Bm → {{0}, {1}} given by

fB(x) =

{
{0} if f(x) = {0} or f(x) = BM, and
{1} if f(x) = {1}.

(31)

Construct C from AND-gates, one for each prime implicant
of fB, with inputs connected to the respective, possibly
negated, input registers present in the prime implicant. All
AND-gate outputs are fed into a single OR-gate driving the
circuit’s only output register.

By construction, C1(x) = fB(x) ⊆ f(x) for all x ∈ Bm.
To see C1 ⊆ f , consider x ∈ Bm

M \ Bm and make a case
distinction.
(1) If f(x) = BM, then trivially C1(x) ⊆ f(x).
(2) If f(x) = {0}, we have for all x′ ∈ Res(x) that f(x′) =

fB(x′) = {0} by (30). Thus, for each such x′, all AND-
gate outputs are 0. Furthermore, under input x and for
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each AND-gate, there must be at least one input that is
stable 0: Otherwise, there would be some x′ ∈ Res(x)
making one AND-gate output 1, resulting in fB(x′) =
{1}. By our definition of gate behavior, this entails that
all AND-gates output 0 for all x′ ∈ ResM(x) as well,
and hence C1(x) = {0} = f(x).

(3) If f(x) = {1}, all x′ ∈ Res(x) have f(x′) = fB(x′) =
{1} by (30). Thus, fB outputs {1} independently from
the metastable bits in x, and there is a prime impli-
cant of fB which relies only on stable bits in x. By
construction, some AND-gate in C implements that
prime implicant. This AND-gate receives only stable
inputs from x, and hence outputs a stable 1. The OR-
gate receives that 1 as input and, by definition of gate
behavior, outputs stable 1. Hence, C1(x) = {1} = f(x).

As f is closed, this case distinction is exhaustive. The claim
follows as one round of C implements f .

Theorem 23 is useful for checking if a circuit without
masking registers implementing some function exists; its
proof is constructive. However, we obtain no non-trivial
bound on the size of such a circuit — covering all prime
implicants can be exponentially costly in m [10]. While
efficient metastability-containing implementations exist [9],
[26], it is an open question (1) which functions can be
implemented efficiently in general, and (2) what the over-
head for metastability-containment w.r.t. an implementation
oblivious to metastability is. However, we show in Section 8
that it is possible to efficiently implement such a circuit with
the help of masking registers.
Metastable Closure. We propose a generic method of iden-
tifying and creating functions implementable with simple
registers. Consider a classical Boolean function f : Bm →
Bn defined for stable in- and outputs only. Lift the defini-
tion of f to [f ]M dealing with (partly) metastable inputs
analogously to gate behavior in Section 3: Whenever all
metastable input bits together can influence the output,
specify the output as “anything in BM.” We call [f ]M the
metastable closure of f , and argue below that [f ]M ∈ FunS .
For f : Bm

M → P(Bn
M), i.e., for more flexible specifications,

[f ]M is defined analogously.

Definition 24 (Metastable Closure). For a function f : Bm
M →

P(Bn
M), we define its metastable closure [f ]M : Bm

M → P(Bn
M)

component-wise for i ∈ [n] by

[f ]M(x)i :=


{0} if ∀x′ ∈ ResM(x) : f(x′)i = {0},
{1} if ∀x′ ∈ ResM(x) : f(x′)i = {1},
BM otherwise.

(32)

We generalize (32) to Boolean functions. For f : Bm → Bn, we
define [f ]M : Bm

M → P(Bn
M) as above, but require f(x′)i = 0

and f(x′)i = 1, respectively (instead of asking for {0} and {1}).

By construction, [f ]M is bit-wise, closed, specific, and
hence natural.

Observation 25. [f ]M ∈ FunS for all f : Bm → Bn and for all
f : Bm

M → P(Bn
M).

An immediate consequence of Observation 25 for the
construction of circuits is that, given an arbitrary Boolean
function f : Bm → Bn, there is a circuit without masking
registers that implements [f ]M.

For f : Bm → Bn, Theorem 23 shows that [f ]M is
the minimum extension of f implementable with simple
registers: by (30) any natural extension g of f must satisfy

∀x ∈ Bm
M ,∀i ∈ [n] :

⋃
x′∈Res(x)

f(x′)i ⊆ g(x)i, (33)

and thus ∃x′, x′′ ∈ Res(x) : f(x′)i 6= f(x′′)i ⇒ g(x)i = BM
by (29).

To show that a function is not implementable with
simple registers only, it suffices to show that it violates the
precondition of Theorem 23, i.e., has no natural subfunction.

Example 26. Consider f : B2
M → P(B2

M) with

f(x) := ResM(x) \ {MM}. (34)

This function specifies to copy a 2-bit input, allowing metastabil-
ity to resolve to anything except MM. No circuit without masking
registers implements f : f /∈ FunS .

The recipe to prove such a claim is: (1) For contradiction,
assume f ∈ FunS , i.e., that f has some natural subfunction
g ⊆ f by Theorem 23. (2) By specification of f , the individual
output bits of g can become metastable for input MM. (3) Since
g is bit-wise, it follows that MM ∈ g(MM). (4) This contradicts
the assumption that g ⊆ f .

8 THE POWER OF MASKING REGISTERS

As discussed in Section 6, circuits with masking registers
are strictly more powerful than circuits restricted to simple
registers. In this section, we show that they can also make a
circuit significantly smaller. Let f : Bm → Bn be a Boolean
function. We propose a generic implementation of its meta-
stable closure [f ]M based on a Boolean implementation of f ,
i.e., a circuit disregarding metastability, but implementing f
correctly for stable inputs.

First, recall that the implementation of [f ]M without
masking registers implied by Theorem 23 relies on covering
all prime implicants of f . The number of prime implicants,
however, can be exponential in m, resulting in a circuit that
is exponentially larger than one which implements f and
is oblivious to metastability. Worse, in [20] unconditional
exponential lower bounds were shown on the size of com-
binational circuits implementing [f ]M for functions f that
allow for polynomially-sized circuit implementations. With
one round of computation, a circuit in our model computes
exactly the same function as its combinational logic, see
Lemma 6 and, for a more detailed discussion, [14, Chapter
7]. As circuits without masking registers can be unrolled
(Theorem 19), this implies exponential lower bounds on the
product of circuit size and the number of rounds of compu-
tation for circuits without masking registers in our model.
Recall also that masking registers make no difference if we
use a single round of computation only, see Corollary 8.

Using masking registers and multiple rounds enables
to break this hardness barrier. We propose a clocked im-
plementation based on masking registers that requires only
additive linear and logarithmic overheads in the gate count
and depth of the combinational logic, respectively; the
number of required rounds is 2m + 1. Thus, this approach
is provably exponentially more efficient than any solution
without masking registers.
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The idea underlying the proposed circuit is to make
sufficiently many copies of the input so that the majority of
copies is completely stable. As masking registers guarantee
that their reads are stable in all but one round, 2m + 1
such copies suffice. As the metastable closure guarantees
a stable output only if all stabilizations of the input yield
the same result (for a given output bit), either evaluating
f for each of the stable copies yields the same resulting
bit b ∈ B or arbitrary output is valid. In the former
case, sorting (separately for each output bit) the 2m + 1
computed bits with respect to the order 0 < M < 1 and
returning the (m + 1)-th bit yields the correct output. This
is exactly what a metastability-containing sorting network
does, i.e., a circuit that implements the metastable closure of
the sorting function. We discuss this in depth in Section 9,
see Lemma 28. However, we only require to sort single bits
here; hence simple AND and OR gates implement the [min]M
and [max]M, respectively, enabling to directly use standard
sorting networks with these gates implementing the 2-sort
subcircuits.

Theorem 27. Let f : Bm → Bn be a Boolean function and
G a combinational logic DAG with fG(x) = f(x) for all x ∈
Bm. Then there is a circuit C that implements [f ]M in 2m + 1
rounds that uses m masking registers, (2m + 1)n simple local
registers, and n simple output registers. The additive overhead in
complexity w.r.t. G is O(nm logm) in gate count and O(logm)
in depth.

Proof sketch. First suppose that n = 1. We propose the
following circuit C , which implements [f ]M in 2m + 1
rounds. C has m mask-0 registers I1, . . . , Im as input regis-
ters, 2m + 1 simple local registers L1, . . . , L2m+1, and one
simple output register O. In the r-th round, C performs the
following operations:

• It copies, for all 1 ≤ i ≤ 2m, the content of Li to Li+1.
• It reads the input registers, yielding x(r) ∈ ResM(ι),

where ι is the input, and feeds the result into G,
yielding fG(x(r)), and stores it in L1.

• If feeds the values stored in L1, . . . , L2m+1 into a
metastability-containing sorting network (for single bit
inputs) and writes the median, i.e., the (m+1)-th output
bit of the sorting network, to O.

We claim that C implements [f ]M in 2m + 1 rounds.
First observe that if [f ]M(ι) = BM, any output of C is
feasible. Hence, suppose [f ]M(ι) = {b} for some b ∈ B in
the following.

Recall that each masking register can be read as M at
most once in any (2m+ 1)-round execution, cf. Figure 3(b).
Hence, there must be m + 1 rounds in which all reads are
stable, i.e., where x(r) ∈ Bm. As [f ]M(ι) = {b}, f(x(r)) =
b. As fG(x) = f(x) for x ∈ Bm by assumption, in these
rounds we have fG(x(r)) = b. It follows that at least m+ 1
of the local registers Li hold the bit b after 2m + 1 rounds.
We claim that — after sorting — the (m + 1)-th bit is b and
is copied to O. To see this, consider the closure [s]M of the
(1-bit) sorting function s : Bm → Bn. The i-th output is 0
if there are at least i inputs that are 0, it is 1 if there are
n − i − 1 inputs that are 1, and M otherwise — in the latter
case, stabilizing all M inputs to either 0 or 1 would result in
different values of output i, in the first two cases it would

not. Hence, having at least m + 1 of the registers Li hold
value b implies that the (m+ 1)-th output bit of the sorting
network is b. We conclude that C behaves as claimed.

It remains to bound the number of additional gates and
the increase in depth of the combinational logic. Using a pair
of AND and OR gates as a 2-sort element and optimal sort-
ing networks [1], the sorting network contains O(m logm)
gates and has depth O(logm). This completes the proof
for the special case of n = 1. To conclude the proof, we
observe that the above construction directly generalizes to
arbitrary n— Definition 24 allows us to treat the output bits
independently.

Observe that the above construction can be specialized
to implementing [f ]M only for inputs satisfying that at most
k ≤ m bits in the input are metastable. In this case, it
is sufficient to read the input 2k + 1 times only, meaning
that m is replaced by k in all of the above complexity
bounds, i.e., the overheads become O(nk log k) in the gate
count and of O(log k) in depth. This is to be contrasted
with the construction from [20], which implements [f ]M
for inputs with at most k metastable bits without masking
registers and in a single round, but at the cost of increasing
the number of gates by a factor exceeding

(ne
k

)2k, i.e., a
multiplicative blow-up in circuit size that is exponential in k.

9 COMPONENTS FOR CLOCK SYNCHRONIZATION

This section demonstrates the power of our techniques: We
establish that a variety of metastability-containing compo-
nents are a reality. Due to the machinery established in
the previous sections, this is possible with simple checks
(usually using Observation 25). The list of components is
by no means complete, but already allows implementing a
highly non-trivial application.

We are the first to demonstrate the implementability
of the fault-tolerant clock synchronization algorithm by
Lundelius Welch and Lynch [27] in hardware, with de-
terministic correctness guarantee, despite the unavoidable
presence of metastable upsets. This algorithm is widely ap-
plied, e.g., applied in the Time-Triggered Protocol (TTP) [25]
and in FlexRay [6]. While the software–hardware based
implementations of TTP and FlexRay achieve a precision
in the order of microseconds, higher operating frequen-
cies ultimately require a pure hardware implementation.
Recently, an implementation based on an FPGA has been
presented by Kinali et al. [22]. All known implementations,
however, synchronize potentially metastable inputs before
computations — a technique that becomes less reliable with
increasing operating frequencies, since less time is available
for metastability resolution.

Moreover, classical bounds for the MTBF for metastable
upsets assume a uniform distribution of input transitions;
this is not guaranteed to be the case in clock synchroni-
zation, since the goal is to align clock ticks. Either way,
synchronizers do not deterministically guarantee stabiliza-
tion, and errors are bound to happen eventually when n
clocks take n(n− 1) samples at, e.g., 1 GHz. Ever-increasing
operating frequencies and the inevitability [28] of metastable
upsets when measuring relative timing deviations lead us to
a fundamental question: Does the unavoidable presence of
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Figure 8. Efficient TC-to-BRGC conversion.

metastable upsets pose a principal limit on the operating
frequency? We show that this is not the case.

We prepare by arguing that the right encoding is crucial
in Section 9.1 and present the algorithm and the required
components in Section 9.2.

9.1 Encoding and Precision
An appropriate encoding is key to designing metastability-
containing arithmetic components. If, for example, a control
bit u indicating whether to increase x = 7 by 1 is meta-
stable, and x is encoded in binary, the result must be a
metastable superposition of 00111 and 01000, i.e., anything
in Res(0MMMM) and thus an encoding of any number
x′ ∈ [16] — even after resolving metastability! The original
uncertainty between 7 and 8 is massively amplified; a good
encoding should contain the uncertainty imposed by u = M.

Formally, a code is an injective function γ : [n] → Bk

mapping a natural number x ∈ [n] to its encoded represen-
tation. For y = γ(x), we define γ−1(y) := x, and for sets X ,
γ(X) := {γ(x) | x ∈ X} and γ−1(X) := {x | γ(x) ∈ X}.
In this work, we consider two encodings for input and
output: TC and BRGC. For the 4-bit (unary) TC we use
un: [5] → B4 with un(1) = 0001 and un−1(0111) = 3;
un−1(0101) does not exist. BRGC, compare Figure 8(a), is
represented by rg(x), and is much more efficient, using only
dlog2 ne bits. In fact, rg : [2k]→ Bk is bijective.

We choose un and rg due to the property that in both
encodings, for x ∈ [k − 1], γ(x) and γ(x + 1) differ in a
single bit only. This renders them suitable for metastability-
containing operations. We revisit the above example with
the metastable control bit u indicating whether to increase
x = 7 by 1. In BRGC, 7 is encoded as 00100 and 8 as 01100,
so their metastable superposition resolves to Res(0M100),
i.e., only to 7 or 8. Since the original uncertainty was
whether or not to increase x = 7 by 1, the uncertainty
is perfectly contained instead of amplified as above. We
formalize the notion of the amount of uncertainty in a
partially metastable code word: x ∈ Bk

M has precision-p (w.r.t.
the code γ) if

max
{
y − ȳ | y, ȳ ∈ γ−1(Res(x))

}
≤ p, (35)

i.e., if the largest possible difference between resolutions of
x is bounded by p. The precision of x w.r.t. γ is undefined if
some y ∈ Res(x) is no code word, which is not the case in
our application.

Note that the arithmetic components presented below
make heavy use of BRGC. This makes them more involved,
but they are exponentially more efficient than their TC coun-
terparts in terms of memory and avoid the amplification of
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Figure 9. Tapped delay line TDC. Outputs 1k0n−k or 1kM0n−k−1, i.e.,
at most one metastable bit, and hence has precision-1.

uncertainties incurred by standard binary encoding. As a
matter of fact, recently proposed efficient implementations
for metastability-containing sorting networks [9], [26] and
metastability-containing TDC [16] use BRGC.

9.2 Algorithm and Components

Our core strategy is the separation of concerns outlined in
Section 1 and Figure 1. The key is that the digital part of
the circuit can become metastable, but that metastability is
contained and ultimately translated into bounded fluctuations
in the analog world, not contradicting Marino.

We propose an implementation for n clock synchroniza-
tion nodes with at most f < n/3 faulty nodes, in which each
node does the following.

Step 1: Analog to Digital. First, we step from the analog
into the digital world: Delays between n − 1 remote pulses
and the local pulse are measured with TDC. The measure-
ment can be realized such that at most one of the output
bits, accounting for the difference between x and x+1 ticks,
becomes metastable, i.e., has precision-1.

TDC can be implemented using tapped delay lines or
Vernier delay line TDC [18], [31], [32]; see Figure 9: A line of
delay elements is tapped in between each two consecutive
elements, driving the data input port of initially enabled
latches initialized to 0. The rising transition of the remote
clock signal fed into the delay line input then passes through
the line, and sequentially sets the latches to 1; the rising
transition of the local clock signal is used to disable all
latches at once. After that, the delay line’s latches contain
the time difference as unary TC. Choosing the propagation
delays between the latches larger than their setup/hold
times, we ensure that at most one bit is metastable, i.e., their
status is of the form 1∗0∗ or 1∗M0∗. The output is hence a
precision-1 TC-encoded time difference.

A traditional implementation would use synchronizers
on the TDC outputs. This delays the computation and
encourages stabilization, but does not enforce it. However,
clock synchronization cannot afford to wait. Furthermore,
we prefer guaranteed correctness over a probabilistic state-
ment: Four nodes, each sampling at 1 GHz, sample 1.2 ·1010

incoming clock pulses per second; synchronizers cannot
provide sufficiently small error probabilities when allocat-
ing 1 ns or less for metastability resolution [5].

Step 2: Encoding. We translate the time differences into
BRGC, making storage and subsequent components much
more efficient. The results are BRGC-encoded time differ-
ences with at most one metastable bit of precision-1.

With the example circuit in Figure 8, we show how
precision-1 TC-encoded data can be efficiently translated
into precision-1 BRGC-encoded data. Figure 8(b) depicts the
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circuit that translates a 7-bit TC into a 3-bit BRGC; note that
gate count and depth are optimal for a fan-in of 2. The
circuit can be easily generalized to n-bit inputs, having a
gate depth of blog2 nc. While such translation circuits are
well-known, it is important to check that the given circuit
fulfills the required property of preserving precision-1: This
holds as each input bit influences exactly one output bit,
and, due to the nature of BRGC, this bit makes exactly the
difference between rg(x) and rg(x+ 1) given a TC-encoded
input of 1xM07−x−1.

A more efficient way is to use a metastability-containing
TDC which directly produces BRGC of precision-1; such a
component is presented in [16].

Step 3: Sorting Network. A sorting network selects the
(f + 1)-th and (n − f)-th largest remote-to-local clock dif-
ferences (tolerating f faults requires to discard the smallest
and largest f values).

This requires 2-sort building blocks that pick the min-
imum and maximum of two precision-1 BRGC-encoded
inputs preserving precision-1, which can then be combined
using well-known sorting networks [1], [2]. We show that
max (analogously min and hence a 2-sort) of two precision-
1 k-bit BRGC numbers is implementable without masking
registers, such that each output has precision-1. Observe
that this is straightforward for TC-encoded inputs with bit-
wise AND and OR for min and max, respectively. We show,
however, that this is possible for BRGC inputs as well;
efficient implementations of the proposed 2-sort building
blocks are presented in [9], [26].

Lemma 28. We define the function maxBRGC : Bk × Bk →
Bk by maxBRGC(x, y) := rg(max{rg−1(x), rg−1(y)}). Then
[maxBRGC]M ∈ FunS and it determines precision-1 output from
precision-1 inputs x and y.

An analogous statement holds for minBRGC(x, y) :=
rg(min{rg−1(x), rg−1(y)}). Efficient implementations are
given in [9], [26] and improved in [15].

Step 4: Decoding and Digital to Analog. The BRGC-
encoded (f + 1)-th and (n − f)-th largest remote-to-local
clock differences are translated back to TC-encoded num-
bers. This can be done preserving precision-1: A BRGC-
encoded number of precision-1 has at most one metastable
bit: For any up-count from (an encoding of) x ∈ [2k − 1]
to x + 1, a single bit changes, which thus can become
metastable if it has precision-1. It is possible to preserve this
guarantee when converting to TC.

Lemma 29. Define rg2un: Bk → B(2k−1) as rg2un(x) :=
un(rg−1(x)). Then [rg2un]M ∈ FunS converts its parameter to
TC, preserving precision-1.

Finally, we step back into the analog world, again with-
out losing precision: The two values are used to control the
local clock frequency via a Digitally Controlled Oscillator
(DCO). However, the DCO design must be chosen with care.
Designs that switch between inverter chains of different
length to modify the frequency of a ring oscillator cannot
be used, as metastable switches may occur exactly when
a pulse passes. Instead, we use a ring oscillator whose
frequency is controlled by analog effects such as changes
in inverter load or bias current, see e.g. [11], [30], [39]. While

the at most two metastable control bits may dynamically
change the load of two inverters, this has a limited effect on
the overall frequency change and does not lead to glitches
within the ring oscillator.

Carefully note that this gives a guaranteed end-to-end
uncertainty of a single bit through all digital computations.

10 CONCLUSION

No digital circuit can reliably avoid, detect, or resolve
metastable upsets [28]. So far, the only known counter
strategy has been to use synchronizers — trading time for an
increased probability of resolving metastability. We propose
a fundamentally different method: It is possible to design
efficient digital circuits that tolerate a certain degree of
metastability in the input. This technique features critical
advantages:

1) Where synchronizers decrease the odds of failure, our
techniques provide deterministic guarantees. A synchro-
nizer may or may not stabilize in the allotted time frame.
Our model, on the other hand, guarantees to return one of
a specific set of known values — like the metastable closure,
but this depends on the application — without relying on
probabilities.

2) Our approach avoids synchronization delay and, in
principle, allows higher operating frequencies. If the re-
quired functions can be implemented in a metastability-
containing way, there is no need to use a synchronizer, i.e.,
to wait a fixed amount of clock cycles before starting the
computation.

3) Even if metastability needs to be resolved eventually,
one can still save time by allowing for stabilization during
the metastability-containing computations. In light of these
properties, we expect our techniques to prove useful for
a variety of applications, especially in time- and mission-
critical scenarios.

As a consequence of our techniques, we are the first to es-
tablish the implementability of the fault-tolerant clock syn-
chronization algorithm by Lundelius Welch and Lynch [27]
with a deterministic correctness guarantee, despite the un-
avoidable presence of metastable upsets.

Furthermore, we fully classify the functions computable
with circuits restricted to standard registers. Finally, we
show that circuits with masking registers become compu-
tationally more powerful with each round, resulting in a
non-trivial hierarchy of computable functions.
Future Work. In this work, we focus on computability
under metastable inputs. There are many open questions
regarding circuit complexity in our model of computation.
It is of interest to reduce the gate complexity and latency
of circuits, as well as to determine the complexity overhead
of metastability-containment in general. While [20] proved
the existence of functions with exponential overhead in case
of simple registers, efficient circuits have been obtained for
sorting networks [9], [26], a TDC that directly produces
precision-1 BRGC [16], and network-on-chip routers [33].
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