481 research outputs found

    Resource provisioning in Science Clouds: Requirements and challenges

    Full text link
    Cloud computing has permeated into the information technology industry in the last few years, and it is emerging nowadays in scientific environments. Science user communities are demanding a broad range of computing power to satisfy the needs of high-performance applications, such as local clusters, high-performance computing systems, and computing grids. Different workloads are needed from different computational models, and the cloud is already considered as a promising paradigm. The scheduling and allocation of resources is always a challenging matter in any form of computation and clouds are not an exception. Science applications have unique features that differentiate their workloads, hence, their requirements have to be taken into consideration to be fulfilled when building a Science Cloud. This paper will discuss what are the main scheduling and resource allocation challenges for any Infrastructure as a Service provider supporting scientific applications

    On Evaluating Commercial Cloud Services: A Systematic Review

    Full text link
    Background: Cloud Computing is increasingly booming in industry with many competing providers and services. Accordingly, evaluation of commercial Cloud services is necessary. However, the existing evaluation studies are relatively chaotic. There exists tremendous confusion and gap between practices and theory about Cloud services evaluation. Aim: To facilitate relieving the aforementioned chaos, this work aims to synthesize the existing evaluation implementations to outline the state-of-the-practice and also identify research opportunities in Cloud services evaluation. Method: Based on a conceptual evaluation model comprising six steps, the Systematic Literature Review (SLR) method was employed to collect relevant evidence to investigate the Cloud services evaluation step by step. Results: This SLR identified 82 relevant evaluation studies. The overall data collected from these studies essentially represent the current practical landscape of implementing Cloud services evaluation, and in turn can be reused to facilitate future evaluation work. Conclusions: Evaluation of commercial Cloud services has become a world-wide research topic. Some of the findings of this SLR identify several research gaps in the area of Cloud services evaluation (e.g., the Elasticity and Security evaluation of commercial Cloud services could be a long-term challenge), while some other findings suggest the trend of applying commercial Cloud services (e.g., compared with PaaS, IaaS seems more suitable for customers and is particularly important in industry). This SLR study itself also confirms some previous experiences and reveals new Evidence-Based Software Engineering (EBSE) lessons

    Autonomous management of cost, performance, and resource uncertainty for migration of applications to infrastructure-as-a-service (IaaS) clouds

    Get PDF
    2014 Fall.Includes bibliographical references.Infrastructure-as-a-Service (IaaS) clouds abstract physical hardware to provide computing resources on demand as a software service. This abstraction leads to the simplistic view that computing resources are homogeneous and infinite scaling potential exists to easily resolve all performance challenges. Adoption of cloud computing, in practice however, presents many resource management challenges forcing practitioners to balance cost and performance tradeoffs to successfully migrate applications. These challenges can be broken down into three primary concerns that involve determining what, where, and when infrastructure should be provisioned. In this dissertation we address these challenges including: (1) performance variance from resource heterogeneity, virtualization overhead, and the plethora of vaguely defined resource types; (2) virtual machine (VM) placement, component composition, service isolation, provisioning variation, and resource contention for multitenancy; and (3) dynamic scaling and resource elasticity to alleviate performance bottlenecks. These resource management challenges are addressed through the development and evaluation of autonomous algorithms and methodologies that result in demonstrably better performance and lower monetary costs for application deployments to both public and private IaaS clouds. This dissertation makes three primary contributions to advance cloud infrastructure management for application hosting. First, it includes design of resource utilization models based on step-wise multiple linear regression and artificial neural networks that support prediction of better performing component compositions. The total number of possible compositions is governed by Bell's Number that results in a combinatorially explosive search space. Second, it includes algorithms to improve VM placements to mitigate resource heterogeneity and contention using a load-aware VM placement scheduler, and autonomous detection of under-performing VMs to spur replacement. Third, it describes a workload cost prediction methodology that harnesses regression models and heuristics to support determination of infrastructure alternatives that reduce hosting costs. Our methodology achieves infrastructure predictions with an average mean absolute error of only 0.3125 VMs for multiple workloads

    Quantifying cloud performance and dependability:Taxonomy, metric design, and emerging challenges

    Get PDF
    In only a decade, cloud computing has emerged from a pursuit for a service-driven information and communication technology (ICT), becoming a significant fraction of the ICT market. Responding to the growth of the market, many alternative cloud services and their underlying systems are currently vying for the attention of cloud users and providers. To make informed choices between competing cloud service providers, permit the cost-benefit analysis of cloud-based systems, and enable system DevOps to evaluate and tune the performance of these complex ecosystems, appropriate performance metrics, benchmarks, tools, and methodologies are necessary. This requires re-examining old system properties and considering new system properties, possibly leading to the re-design of classic benchmarking metrics such as expressing performance as throughput and latency (response time). In this work, we address these requirements by focusing on four system properties: (i) elasticity of the cloud service, to accommodate large variations in the amount of service requested, (ii) performance isolation between the tenants of shared cloud systems and resulting performance variability, (iii) availability of cloud services and systems, and (iv) the operational risk of running a production system in a cloud environment. Focusing on key metrics for each of these properties, we review the state-of-the-art, then select or propose new metrics together with measurement approaches. We see the presented metrics as a foundation toward upcoming, future industry-standard cloud benchmarks

    Cloud Computing and Quality of Service: Issues and Developments

    Get PDF
    Cloud computing is a dynamic information technology (IT) paradigm that delivers on demand computing resources to a user over a network infrastructure. The Cloud Service Provider (CSP) offers applications which can be accessed online to users. Such applications can be shared by more than one user. CSPs provides programming interfaces that allows customers to build and deploy applications on the cloud; as well as providing massive storage and computing infrastructure to users. Users usually have no control on how data is stored on the cloud or where the underlying resources are located. With this limited control, customers’ requirements and Quality of Service (QoS) expectations from CSPs are spelt out using a Service Level Agreement (SLA). It is thus imperative to have the adequate QoS guarantees from a CSP. This paper examines trends in the area of Cloud computing QoS and provides a guide for future research. A review and survey of existing works in literature is done in order to identify these Cloud QoS trends. The finding is that the ultimate expectation of any QoS metrics or model is the related to cost concern for both the CSP and user

    A systematic review on cloud testing

    Get PDF
    A systematic literature review is presented that surveyed the topic of cloud testing over the period (2012-2017). Cloud testing can refer either to testing cloud-based systems (testing of the cloud), or to leveraging the cloud for testing purposes (testing in the cloud): both approaches (and their combination into testing of the cloud in the cloud) have drawn research interest. An extensive paper search was conducted by both automated query of popular digital libraries and snowballing, which resulted into the final selection of 147 primary studies. Along the survey a framework has been incrementally derived that classifies cloud testing research along six main areas and their topics. The paper includes a detailed analysis of the selected primary studies to identify trends and gaps, as well as an extensive report of the state of art as it emerges by answering the identified Research Questions. We find that cloud testing is an active research field, although not all topics have received so far enough attention, and conclude by presenting the most relevant open research challenges for each area of the classification framework.This paper describes research work mostly undertaken in the context of the European Project H2020 731535: ElasTest. This work has also been partially supported by: the Italian MIUR PRIN 2015 Project: GAUSS; the Regional Government of Madrid (CM) under project Cloud4BigData (S2013/ICE-2894) cofunded by FSE & FEDER; and the Spanish Government under project LERNIM (RTC-2016-4674-7) cofunded by the Ministry of Economy and Competitiveness, FEDER & AEI
    • …
    corecore