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In only a decade, cloud computing has emerged from a pursuit for a service-driven information and commu-
nication technology (ICT), becoming a significant fraction of the ICT market. Responding to the growth of the
market, many alternative cloud services and their underlying systems are currently vying for the attention
of cloud users and providers. To make informed choices between competing cloud service providers, permit
the cost-benefit analysis of cloud-based systems, and enable system DevOps to evaluate and tune the perfor-
mance of these complex ecosystems, appropriate performance metrics, benchmarks, tools, and methodologies
are necessary. This requires re-examining old system properties and considering new system properties, pos-
sibly leading to the re-design of classic benchmarking metrics such as expressing performance as throughput
and latency (response time). In this work, we address these requirements by focusing on four system prop-
erties: (i) elasticity of the cloud service, to accommodate large variations in the amount of service requested,
(ii) performance isolation between the tenants of shared cloud systems and resulting performance variability,
(iii) availability of cloud services and systems, and (iv) the operational risk of running a production system
in a cloud environment. Focusing on key metrics for each of these properties, we review the state-of-the-art,
then select or propose new metrics together with measurement approaches. We see the presented metrics as
a foundation toward upcoming, future industry-standard cloud benchmarks.
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1 INTRODUCTION

Cloud computing is a paradigm under which ICT services are offered on demand “as a service,”
where resources providing the service are dynamically adjusted to meet the needs of a varying
workload. Over the past decade, cloud computing has become increasingly important for the in-
formation and communication technology (ICT) industry. Cloud applications already represent a
significant share of the entire ICT market in Europe [20] (with similar fractions expected for North
America, Middle East, and Asia). By 2025, over three-quarters of global business and personal data
may reside in the cloud, according to a recent IDC report [36]. This promising growth trend makes
clouds an interesting new target for benchmarking, with the goal of comparing, tuning, and im-
proving the increasingly large set of cloud-based systems and applications, and the cloud fabric
itself. However, traditional approaches to benchmarking my not be well suited to cloud computing
environments. In classical benchmarking, system performance metrics are measured on systems-
under-test (SUTs) that are well-defined, well-behaved, and often operating on a fixed or at least
pre-defined set of resources. In contrast, cloud-based systems add new, different challenges to
benchmarking, because they can be built using a rich yet volatile combination of infrastructure,
platforms, and entire software stacks, which recursively can be built out of cloud systems and
offered as cloud services. For example, to allow its subscribers to browse the offered and then to
watch the selected videos on TVs, smart-phones, and other devices, Netflix utilizes a cloud service
that provides its front-end services, operates its own cloud services to generate different bit-rate
and device-specific encoding, and leverages many other cloud services from monitoring to pay-
ment. A key to benchmarking the rich service and resource tapestry that characterizes many cloud
services and their underlying ecosystems is the re-definition of traditional benchmarking metrics
for cloud settings, and the definition of new metrics that are unique to cloud computing. This is
the focus of our work, and the main contribution of this article.

Academic studies, concerned public reports, and even company white papers indicate that a
variety of new operational and user-centric properties of system quality (i.e., non-functional prop-
erties) are important in cloud settings. We consider four such properties. First, cloud systems are
expected to deliver an illusion of infinite capacity and capability, yet to appear perfectly elastic to
offer important economies of scale. Second, cloud services and systems have been shown to exhibit
high-performance variability [38], against which modern cloud users now expect protection (per-
formance isolation). Third, also because the recursive nature of cloud services can lead to cascading
failures across multiple clouds when even one fails, increasingly more demanding users expect that
the availability of cloud services is nearly perfect, and that even a few unavailability events will
cause significant reputation and pecuniary damage to a cloud provider. Fourth, as the risks of not
meeting implicit user-expectations and explicit service contracts (service level agreements, SLAs)
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are increasing with the scale of cloud operations, cloud providers have become increasingly more
interested in quantifying, reducing, and possibly reporting their operational risk.

With the market growing and maturing, many cloud services are now competing to retain ex-
isting customers and to attract new customers. Consequently, being able to benchmark, quantify,
and compare the capabilities of competing systems is increasingly important. We first examine
the research question: For the four properties of cloud services we consider, can existing metrics be
applied to cloud computing environments and be used to compare services? Responding to this ques-
tion, our survey of the state-of-the-art (see Section 9) indicates that the existing body of work on
(cloud) performance measurement and assessment, albeit valuable, does not address satisfactorily
the question, and in particular the existing metrics leave important conceptual and practical gaps
in quantifying elasticity, performance isolation and variability, availability, and operational risk
for cloud services. Therefore, we propose the main research question investigated in this work:

Q: Which new metrics can be useful to measure, examine, and compare cloud-based systems, for
the four properties we consider in this work?

Both designing new metrics and proving their usefulness (possibly even in comparison with
previous metrics) is non-trivial. Generally, metrics are designed to quantify a specific property of
interest, and become useful only when shared by a diverse group of stakeholders. Metrics must ad-
dress their design goals, which include domain-specific aspects, such as providing unique insights
into the performance of cloud settings, and general aspects, such as the characteristics expected
of a good metric we explain in Section 7. As with many other designed artifacts, proving that one
metric is correct, or that one metric is better than another are not merely deductive or quantitative
processes. Design often satisfies a need, rather than solving exactly (i.e., correctly) a problem. Dif-
ferent metrics are designed for different aspects and use cases; for example, the commonly used
temperature metrics Celsius (interval scale) and Kelvin (ratio scale) metrics cannot be considered
as one better than the other. Even when quantifying the same coarse-grained aspect, metrics can
differ in some essential, albeit fine-grained, detail; for example, even the traditional utilization
metric can offer different facets when considering heterogeneous resources and services.

Although elasticity, performance isolation and variability, availability, and operational risk are
already perceived as important aspects in academia and by the industry, they have not yet been
thoroughly defined and surveyed. As we show in this work, their meaning may be different for
different stakeholders, and in some cases existing definitions are inconsistent or even contrary
to each other. Toward answering the main research question, our main contribution is four-fold.
Each contribution is focusing on defining the foundations of benchmarking one property of system
quality in cloud settings and on showing exemplary applications to realistic cloud settings:

(1) Elasticity, addressed in Section 3. Elasticity offers the opportunity to automatically adapt
the resource supply to a changing demand. Observing high response times during resource
congestion or a low resource utilization during excess use allows only for an indirect,
narrow understanding of the accuracy and timeliness of elastic adaptations. We present
an extended set of metrics and methods for combining them to capture the accuracy and
timing aspects of elastic platforms explicitly. We refine the elasticity metrics from previous
work [32, 33, 37], introduce a well-defined uniform instability metric as well as the elastic
deviation.

(2) Performance isolation & variability, addressed in Section 4. The underlying cloud infras-
tructure should isolate different customers sharing the same hardware from each other
with regards to the performance they observe. We summarize how the impact of disrup-
tive workloads onto specified performance guarantees connected with a cloud service
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offering can be quantified as discussed in previous work [45]. In addition, we propose a
new metric capturing performance variability seen as an effect of imperfect isolation.

(3) Availability, addressed in Section 5. We analyze the availability definitions used by vari-
ous cloud providers, and quantify the availability of their business critical cloud applica-
tions and compare them for different contexts. We then define a metric of SLA adherence
that enables direct comparisons between providers with otherwise different definitions of
availability.

(4) Operational risk-related, addressed in Section 6. And on a more general level than the other
features, we also focus in this work on estimating different types of operational risks that
are connected with running software in the cloud. We define here various relevant metrics,
and a measurement methodology that addresses them.

Because the practicality and utility of new metrics will be determined by whether or not they
are adopted and how widely they are used, with this work we aim not only to answer the main
research question but also to: (i) initiate discussions and provide a foundation regarding possi-
ble performance metrics, evaluation methodologies, and challenges that arise in cloud comput-
ing environments; (ii) examine methods for comparing the performance, dependability, and other
non-functional properties of competing cloud offerings and technologies; (iii) influence emerging
standardization efforts; and (iv) encourage providers of cloud computing services to support and
make available monitoring of such non-functional properties, as a critical piece of infrastructure
that is often lacking in current practice. Toward these goals (i-iv) and in addition to the four main
contributions (1-4) mentioned above, we propose (I) in Section 2, a taxonomy of useful cloud met-
rics, (II) in Section 8, an in-depth discussion of open challenges that arise mainly in the context of
containerization and micro-services as new technologies in the cloud computing domain. (III) Last,
we review related work on cloud metrics in Section 9.

2 A TAXONOMY FOR CLOUD METRICS

In this section, we propose a cloud-metric hierarchy that reflects four different levels of abstraction
in cloud performance measurement and assessment. Whereas in mathematics, the term metric is
explicitly distinguished from the term measure (the former referring to a distance function), in
computer science and engineering, the terms metric and measure overlap in meaning and are often
used interchangeably. One way to distinguish between them is to look at metrics as values that
can be derived from some fundamental measurements comprising one or more measures. In cloud
settings, only a subset of the metrics can be measured directly at runtime by an end-user. Other
metrics require detailed knowledge and controlled experiments, and thus need to be reported and
measured using standards shared by cloud providers and infrastructure customers. Because there
can be many or even endless derivations, and because such standards do not yet exist, it is useful
to design a taxonomy of useful cloud metrics. We design such a taxonomy and depict it in Figure 1.
We now address each layer, in turn.

The first layer includes Traditional Metrics for performance and dependability, such as end-to-
end response time, average resource utilization, and throughput rates, are key instruments in the
performance evaluation of cloud computing services. As we discuss in Section 8.1, to ensure well-
defined and reproducible measurements, addressing the challenge of transparent placement of
measurement sensors for these metrics has become more important in a cloud computing context.

We propose to group on the next-higher level the set of Cloud Infrastructure Metrics that cover
various aspects of non-functional quality with a focus on the operation of the infrastructure, such
as energy efficiency, or the capability of the infrastructure to isolate the performance hosted vir-
tual machines and provide a certain degree of performance stability. This layer provides metrics
useful in defining service level objectives, such as performance isolation and elasticity, efficiency,
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Metrics to be measured
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Fig. 1. A hierarchical taxonomy of cloud metrics.

and operational risk. These non-functional properties of a cloud environment or cloud service de-
ployment are derived measures based on the Traditional Metrics. For example, Traditional Metrics
characterizing a system using a response time distribution can be used to derive Cloud Infrastruc-
ture Metrics that inform about the quality of isolation between tenants, or if the system’s resource
management follows the demand for resources well-enough for efficient usage.

The group of Policy Metrics, the third layer, targets quantities relevant to an end-user. Examples
include assessing the fulfillment of SLOs as experienced by users; and ranking and selecting cloud
providers using unit-free scores aggregating multiple Cloud Infrastructure Metrics.

The topmost layer is comprised of Metrics for Managerial Decisions, which uses deep aggregates
to quantify for example the risk and cost of running arbitrary cloud services in arbitrary cloud
environments.

3 ELASTICITY

Elasticity has originally been defined in physics as a material property capturing the capability
of returning to its original state after a deformation. In economics, elasticity captures the effect
of change in one variable to another dependent variable. In both cases, elasticity is an intuitive
concept and can be precisely described using mathematical formulas.

The concept of elasticity has been transferred to the context of clouds and is commonly con-
sidered a central attribute of the cloud paradigm [60]. The term is heavily used in providers’ ad-
vertisements and even in the naming of specific products or services. Even though tremendous
efforts are invested to enable cloud systems to behave in an elastic manner, no common and pre-
cise understanding of this term in the context of cloud computing has been established so far, and
no industry-standard ways have been proposed to quantify and compare elastic behavior.

3.1 Prerequisites

The scalability of a system including all hardware, virtualization, and software layers within its
boundaries is a prerequisite for speaking of elasticity. Scalability is the ability of a system to sustain
increasing workloads with adequate performance, provided that hardware resources are added. In
the context of distributed systems, it has been defined by Jogalekar and Woodside [42], as well as
in the works of Duboc et al. [19], where also a measurement methodology is proposed.

The existence of at least one adaptation process is typically assumed. The process is normally
automated, but it could contain manual steps. Without a defined adaptation process, a scalable sys-
tem cannot scale in an elastic manner, as scalability on its own does not include temporal aspects.
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When evaluating elasticity, the following points need to be checked beforehand:

e Automated Scaling: What adaptation process is used for automated scaling?

e Elasticity Dimensions: What is the set of resource types scaled as part of the adaptation
process?

e Resource Scaling Units: For each resource type, in what unit is the amount of allocated
resources varied?

e Scalability Bounds: For each resource type, what is the upper bound on the amount of
resources that can be allocated?

3.2 Definition

Elasticity is the degree to which a system is able to adapt to workload changes by provisioning
and de-provisioning resources in an autonomic manner, such that at each point in time
the available resources match the current demand as closely as possible.

Dimensions and Core Aspects. Any given adaptation process is defined in the context of at least
one or possibly multiple types of resources that can be scaled up or down as part of the adaptation.
Each resource type can be seen as a separate dimension of the adaptation process with its own
elasticity properties. If a resource type consists of other resources types, like in the case of a virtual
machine having assigned CPU cores and memory, then elasticity can be considered at multiple
levels. Normally, resources of a given resource type can only be provisioned in discrete units like
CPU cores, VMs, or physical nodes. For each dimension of the adaptation process with respect to
a specific resource type, elasticity captures the following core aspects of the adaptation:

Timing The timing aspect is captured by the percentages a system is in an under-provisioned,
over-provisioned or perfect state and by the oscillation of adaptations.

Accuracy The accuracy of scaling is defined as the average relative deviation of the current
amount of allocated resources from the actual resource demand.

A direct comparison between two systems in terms of elasticity is only possible if the same re-
source types (measured in identical units) are scaled. To evaluate the actual elasticity in a given
scenario, one must define the criterion through which the amount of provisioned resources is
considered to match the actual demand needed to satisfy the system’s given performance require-
ments. Based on such a matching criterion, specific metrics that quantify the above mentioned
core aspects, as discussed in more detail in Section 3.5, can be defined to quantify the practically
achieved elasticity in comparison to the hypothetical optimal elasticity. The latter corresponds to
the hypothetical case where the system is scalable with respect to all considered elasticity dimen-
sions without any upper bounds on the amount of resources that can be provisioned and where
resources are provisioned and de-provisioned immediately as they are needed exactly matching
the actual demand at any point in time. Optimal elasticity, as defined here, would only be limited
by the granularity of resource scaling units.

Differentiation. This paragraph discusses the conceptual differences between elasticity and the
related terms, scalability and efficiency.

Scalability is a prerequisite for elasticity, but it does not consider temporal aspects of how fast,
how often, and at what granularity scaling actions can be performed. Scalability is the
ability of the system to sustain increasing workloads by making use of additional re-
sources, and therefore, in contrast to elasticity, it is not directly related to how well the
actual resource demands are matched by the provisioned resources at any point in time.
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Efficiency expresses the amount of resources consumed for processing a given amount of work.
In contrast to elasticity, efficiency is directly linked to resource types that are scaled as
part of the system’s adaptation mechanisms. Normally, better elasticity results in higher
efficiency. This implication does not apply in the other direction, as efficiency can be
influenced by other factors (e.g., different implementations of the same operation).

3.3 Related Elasticity Metrics and Measurement Methodologies

In this section, we group existing elasticity metrics and benchmarking approaches according to
their perspective and discuss their shortcomings.

3.3.1 Related Elasticity Metrics. Several metrics for elasticity have been proposed so in
literature:

The “scaling latency” metrics [49, 50] or the “provisioning interval” [12] capture the pure time
to bring up or drop a resource. This duration is a technical property of an elastic environment
independent of the timeliness and accuracy of demand changes, thus independent the elasticity
mechanism itself that decides when to trigger a reconfiguration. We consider these metrics as
insufficient to fully characterize the elasticity of a platform.

The “reaction time” metric we proposed at an early stage of our research already in 2011 in
Reference [46] can only be computed if a unique mapping between resource demand changes and
supply changes exists. This assumption does not hold especially for proactive elasticity mecha-
nisms or for mechanisms that have unstable (alternating) states.

The “elastic speedup” metric proposed by SPEC OSG in Reference [12] relates the processing ca-
pability of a system at different scaling levels. This metric—contrary to intuition—does not capture
the dynamic aspects of elasticity and is regarded as scalability metric.

The integral-based “agility” metric also proposed by SPEC OSG [12] compares the demand and
supply over time normalized by the average demand. They state that the metric becomes invalid in
cases where service level objectives (SLOs) are not met. This “agility” metric has not been included
as part of the SPEC Cloud IaaS 2016 benchmark.! This metric resembles an early version of our
proposed “precision” metric [32]. We propose a refined version normalized by time to capture the
accuracy aspect of elastic adaptations, considering also situations when SLOs are not met.

The approaches in the work of Binning et al., Cooper et al., Almeida et al., and Dory et al. [3,
10, 15, 18] characterize elasticity indirectly by analyzing response times for significant changes
or for SLO compliance. In theory, perfect elasticity would result in constant response times for
varying arrival rates. In practice, detailed reasoning about the quality of platform adaptations
based on response times alone is hampered due to the lack of relevant information about the
platform behavior, e.g., the information about the amount of provisioned surplus resources.

Becker et al. [8] introduced in 2015 the “mean-time-to-repair” in the context of elasticity as the
time the systems needs on average to step out of an imperfectly provisioned state. This “mean-
time-to-repair” is estimated indirectly based on analyzing for how long the request response times
violate a given SLO or a systems runs below a target utilization—in other words, without know-
ing the exact demand for resources. Furthermore, the “mean-time-to-repair” metric comes with
the assumption that for each defect a unique repair is given. In practice, based on experimental
experience [33, 37, 48], this assumption does not hold. It is a common case that within one repair
phase multiple further defects and/or repair actions can occur as illustrated in Figure 2. In these
cases, this metric is not completely defined with the result that metric values might be computed
based on different interpretations and thus can be misleading.

ISPEC Cloud Iaa$ 2016: https://www.spec.org/cloud_iaas2016/.
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Numerous cost-based elasticity metrics have been proposed so far [26, 40, 66, 68, 73]. They
quantify the impact of elasticity either by comparing the resulting provisioning costs to the costs
for a peak-load static resource assignment or the costs of a hypothetical perfect elastic platform. In
both cases, the resulting metrics strongly depend on the underlying cost model and on the assumed
penalty for under-provisioning, and thus do not support fair cross-platform comparisons.

We propose a set of elasticity metrics explicitly covering the timeliness, accuracy and stability
aspects of a deployed elasticity mechanism (a.k.a. auto-scaler) together with three different way
to aggregate in a possibly weighted manner. This set of core elasticity metrics can of course be
complemented by user-oriented measures like response-time distributions, percentage of SLO vi-
olations, a cost measure by applying a cost model, or accounted and charged resource instance
times.

3.3.2  Elasticity Measurement Approaches. As a high number of auto-scaling mechanisms has
been proposed in literature over the course of the last decades, many of them come with individ-
ual and tailored evaluation approaches. We observe that in most cases an experimental comparison
against other state-of-the-art mechanisms is omitted and the mechanism’s effectiveness is justified
by show-cases of improvements in service level compliance. The field of resource management al-
gorithms has also been flooded by approaches only evaluated in simulation frameworks. A broader
simulated analysis of auto-scalers can be found in the work of Papadopoulos et al. [57]. A number
of approaches for elasticity evaluation—in some cases only on an abstract level—can be found in
literature [3, 15, 18, 26, 40, 63, 66, 68, 73]:

In the work of Folkerts et al. [26], the requirements for a cloud benchmark are described on
an abstract level. The work of Suleiman [66], Weinman [73], Shawky and Ali [63] as well as the
work of Islam et al. [40] have in common their end-user perspective on elasticity and quantify
costs or service level compliance. These are important end-user metrics, but we argue that good
results in these metrics are indirectly affected by elasticity mechanisms. Timeliness, accuracy and
stability of resource adaptations are not considered although those are the core aspect of an elas-
tic behavior. Furthermore, these approaches account neither for differences in the performance
of the underlying physical resources, nor for the possibly non-linear scalability of the evaluated
platform. As a consequence, elasticity evaluation is not performed in isolation from these related
platform attributes. In contrast, the approach proposed in this work uses the results from an initial
systematic scalability and performance analysis to adapt the generated load profile for evaluating
elasticity, in such a way that differences in the platform performance and scalability are factored
out.

Another major limitation of existing elasticity evaluation approaches is that systems are sub-
jected to load intensity variations that are not representative for real-life workload scenarios. For
example, in the work of Dory et al. [18] and of Shawky and Ali [63], the direction of scaling the
workload downwards is completely omitted. In the work of Islam et al. [40], sinus like load pro-
files with plateaus are employed. Real-world load profiles exhibit a mixture of seasonal patterns,
trends, bursts and noise. We account for the generic benchmark requirement “representative” [34]
by employing the load profile modeling formalism DLIM as presented in the article [71].

3.4 Scalability Analysis as Preprocessing Step

To capture the curve of demanded resource units over an intensity-varying workload, the scala-
bility of the system needs to be analyzed as a preprocessing step. As implemented in the BUNGEE
Cloud Elasticity Benchmark [33], a scalability analysis results in a discrete function mapping the
minimal amount of resources to a workload intensity while satisfying a given SLOs. The workload
intensity can be specified either as the number of workload units (e.g., user requests) present at

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 4, Article 19. Publication date: August 2018.



Quantifying Cloud Performance and Dependability 19:9

the system at the same time (concurrency level) or as the number of workload units that arrive
per unit of time (arrival rate). For the derivation of the mapping step function, it is proposed to
conduct a binary search for finding the maximum sustainable load intensity per configuration. The
characterization of the scalability per scaling dimension limits the evaluation of elasticity to one
dimension at time.

3.5 Proposed Elasticity Metrics

The demanded resource units of a certain load intensity is the minimal amount of resources required
for fulfilling a given performance-related SLO. The demanded resource units mapping for different
load intensity levels can be derived with the methodology proposed in Section 3.4. The following
metrics are designed to characterize two core aspects of elasticity: accuracy and timing.? As all
metrics calculate their observed elasticity aspect based on the supply and the demanded resource
units, each metric describes how the supply behavior differs from the demanded resource units;
i.e., all metrics can be seen as deviation from the perfect behavior. Hence, the optimal value is zero
and defines the perfect elastic system; the higher the metrics, the worse is the observed elasticity
aspect. For a valid comparison of elasticity based on the proposed set of metrics, the platforms
(i) require the existence of an autonomic adaption process (e.g., an auto-scaler), (ii) the scaling
of the same resource type, e.g., CPU cores or VMs, and (iii) within the same ranges, e.g., 1 to 20
resource units.

The proposed metrics evaluate the elastic behavior and are not designed for distinct descriptions
of the underlying hardware, the virtualization technology, the cloud management software or the
elasticity strategy and its configuration in isolation. As a consequence, the metric and measure-
ment methodology are applicable when not all influencing factors are known. The metrics require
two discrete curves as input: (i) the curve of demanded resource units, which defines how the de-
manded resource units vary during the measurement period, where d, is the demanded resource
units at time ¢ € [0, T]; and (ii) the supply curve, which defines how the amount of used resources
vary during the measurement, where s; is the supplied resource units at time ¢ € [0, T]

In Section 3.5.1, we describe the accuracy metrics, and in Section 3.5.2, we present a set of metrics
for the quantification of timing aspects. In Section 3.6, we outline two approaches for the aggrega-
tion of the proposed elasticity metrics enabling to compute a consistent ranking between multiple
elastic cloud environments and configurations. Afterwards, we discuss challenges of elasticity in
multi-tier applications. Finally, we conclude with a scaling behavior example and its associated
metrics.

3.5.1 Accuracy. In contrast to the definition in the previous publication [32], the provisioning
accuracy is extended so that it describes the relative amount of resources that are wrongly provi-
sioned. Furthermore, we propose two different ways to calculate this metric: (i) the provisioning
accuracy related to the current demanded resource units or (ii) the provisioning accuracy normal-
ized by the maximum number of resources that are available for the experiment.

While using the first approach and taking Figure 2 into account, the under-provisioning accu-
racy Oy is the sum of the areas U, divided by the current demanded resource units d; and, finally,
normalized by the measurement period T. Similarly, the over-provisioning accuracy 6o represents
the relative amount of resources that are over-provisioned during the measurement interval:

T T
100 max(d; — s¢,0) 100 max(s; — dy, 0)
)=y A =0 ) A 1
Ou %] T a t, 0o[%] T L a t (1)

t=1
%In the work of Herbst et al. [32], these aspects are referred to as precision and speed.
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Fig. 2. lllustration for the definition of accuracy and provisioning timeshare metrics.

While using the second approach and considering Figure 2, 0/, is the sum of the areas U; nor-
malized by the measurement period T and the maximum available resources units. Similarly, 6,
is the sum of the of the areas O, that is normalized by the time and the maximum resource units:

T T
100 max(d; — s, 0) 100 max(s; — dy,0)
0/ [%] = — - — A, 0,[%] = — - — At 2
V= ) @ LCRE D Ve e @

The advantage of the first approach is that the metric describes the relative deviations between
the allocated resource units and their respective demanded resource units. However, the range of
this metric is [0;00), while the second approach gives values between 0 and 100 (as it describes the
deviation related to the maximum available resource units). Herein, we use the term provisioning
accuracy for both approaches as they are exchangeable for the aggregated elasticity metrics.

3.5.2 Timing. We highlight the timing aspect of elasticity from the viewpoints of the pure wrong
provisioning timeshare and the instability accounting the degree of oscillation.

Wrong Provisioning Timeshare. The accuracy metrics allow no reasoning on whether the aver-
age amount of under-/over-provisioned resource units results from a few big deviations between
demanded resource units and supply, or if it is caused by a constant small deviation. The fol-
lowing two metrics address this by giving more insights about the ratio of time in which under-
or over-provisioning occurs. The metrics capture the time in percentage in which the system is
under/over-provisioned during the experiment. In other words, The under-provisioning timeshare
7y and over-provisioning timeshare 7o are computed by summing up the total amount of time
spend in an under- or over-provisioned state normalized by the duration of the measurement
period (see Figure 2). Thus, 7y and 7o measure the overall timeshare spent in under- or over-
provisioned states:

100 + 100 +
wl%] = - Z max(sgn(d; —s;),0)At,  10[%] = = Z max(sgn(s; —d;),0)At.  (3)
=1 t=1

Instability. Although the accuracy and timeshare metrics measure important aspects of
elasticity, platforms can behave differently while producing the same metric values for accuracy
and timeshare metrics. An example is shown in Figure 3: Platforms A and B exhibit the same
accuracy and spend the same amount of time in the under-provisioned and over-provisioned
states. However, B triggers three unnecessary resource supply adaptations, whereas A triggers
seven. We propose to capture this with a further metric called instability to support reasoning
for instance-time-based pricing models as well as for the operators view on estimating resource
adaptation overheads.
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Fig. 3. Platforms with different elastic behaviors that produce equal results for accuracy and timeshare.

The instability metric v is the time in percentage in which the curves of supplied and demanded
resource units are not parallel. As a requirement for the calculation of this metric, the average
provisioning and deprovisioning time has to be determined experimentally. The step-functions of
demanded resource units and supply are transformed to ramps based on the average deprovision-
ing and provisioning time as depicted in Figure 3(a). Without this transformation, the resulting
value would depend on how At is chosen. In summary, v measures the fraction of time in which
the demanded resource units and the supplied units do not change with same direction:

T
Z min(|sgn(As;) — sgn(Ad;)|, 1)At. (4)

t=2

100

YT T

An instability value close to zero indicates that the platform adapts closely to a change in demand,
like in Figure 3(a). A value close to 100 means that the platform oscillates heavily and does not
converge to the demand, like in Figure 3(b). In contrast to the accuracy and timeshare metrics, a v
value of zero is a necessary but not sufficient requirement for a perfect elastic system.

3.6 Metric Aggregation

For a direct comparison of platforms, we propose two ways to aggregate the set of elasticity metrics
and to build a consistent and fair ranking: (i) the elastic deviation and (ii) the elastic speedup score.

Elastic Deviation. To quantify the elastic deviation o of an elasticity measurement k, we propose
to calculate the deviation of the observed behavior to the theoretically optimal behavior (i.e., the
curves of the supplied and demanded resource units are identical). A system with optimal elastic
behavior in theory is assumed to have a value of 0 for this metric and, the higher the value, the
worse the behavior. For the calculation of the deviation, we propose to compute the Minkowski
distance d,,. As the theoretically optimal elastic behavior is assumed to have for each individual
metric the value 0, the d,-metric is reduced to the L,-norm and is defined as

1
o[%] = llxlls = (07 + 05 + 75y + 75 +v°)° . (5)

Please note that user-defined weights could easily be added to set a preference for either over-
or under-provisioning,.

Elastic Speedup Score. The elastic speedup score € is computed similar to the aggregation and
ranking of results in established benchmarks, e.g., SPEC CPU2006.> Here, the use of the geometric
mean to aggregate speedups in relation to a defined baseline scenario is a common approach.

3SPEC CPU2006: http://www.spec.org/cpu2006/.
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The geometric mean produces consistent rankings and is suitable for normalized measure-
ments [25]. The resulting elastic speedup score allows to compare elasticity performance without
having to compare each elasticity metric separately, and a later point in time add a new result to
the ranking (in contrast to a closed set in, e.g., a pair-wise competition).

A drawback of the elastic speedup score is its high sensitivity to values close to zero and becom-
ing undefined if one or more of the metrics are zero. To minimize the probability of zero-valued
metrics, we propose to aggregate the accuracy and timeshare sub metrics into a weighted accuracy
and a weighted wrong provisioning timeshare metric, respectively:

0[%] = we,, - Ou + we,, - Bo, (6)
T[%] = Wy, - TU + Wop, - TOs with w;, € [0, 1], wg,, + wg, = 1 and wy, + wy, = 1.

This way, 6 and 7 become zero only for the theoretical optimal auto-scaler. Thus, we compute
the metrics of a baseline platform base and for elasticity measurement k as follows:

0 Yoo (1 YT (v b
€ = ( base) . base . base 5 Wlth wg, Wr, Wy € [Os l]awe T W +wy = 1. (7)
Ok Tk Uk
The weights can be used (a) to realize user-defined preferences, e.g., for either putting more
weight on under- or overprovisioning and (b) to adjust the impact of accuracy and timeshare
metrics compared to instability if desired.

3.7 Elasticity Measurement Approach

This paragraph sketches an elasticity benchmarking concept that we propose as described in Ref-
erence [33], together with its implementation called BUNGEE.* Generic and cloud-specific bench-
mark requirements as stated in the work of Huppler et al. [34, 35] and Folkerts et al. [26] are
considered in this approach. The four main steps in the measurement process can be summarized
as follows:

(1) Platform Analysis: The benchmark analyzes the system under test (SUT) with respect
to the performance of its underlying resources and its scaling behavior.

(2) Benchmark Calibration: The results of the analysis are used to adjust the load intensity
profile injected on the SUT in a way that it induces the same resource demand on all
platforms.

(3) Measurement: The load generator exposes the SUT to a varying workload according to
the adjusted load profile. The benchmark extracts the actual induced resource demand and
monitors resource supply changes on the SUT.

(4) Elasticity Evaluation: Elasticity metrics are computed and used to compare the resource
demand and resource supply curves with respect to different elasticity aspects.

3.8 Exemplary Experimental Elasticity Metric Results

This section presents an extract of evaluation from the work of Bauer et al. [7]. In this work,
we measure the elasticity of a state-of-the-art auto-scaler depending on different inputs (Input I:
estimated CPU utilization based on service demand law; Input II: measured CPU utilization using
TOP command). The results of this measurement are depicted in Figure 4 and listed in Table 1,
where each column lists an elasticity metric and each row represents a measurement. In the figure,
the black curve represents the demanded VMs, which were determined by BUNGEE (Section 3.7),
the blue dashed curve visualizes the auto-scaling behavior with the Input I, and the red dotted

*BUNGEE Iaa$S Cloud Elasticity Benchmark: http://descartes.tools/bungee.
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Table 1. Elasticity Metrics
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curve shows the scaling behavior based on the Input II. While observing the two different scaling
behaviors, it is hard to decide which input results in a better performance as the different input
leads to contrary performance: (i) While the auto-scaler with Input I almost fits the demand during
the increasing load in the first 25min, the system is in an over-provision state during the remaining
time. (ii) While the auto-scaler with Input IT under-provisions the system until minute 35, it almost
fits the demand during the remaining time. This is reflected in the elasticity metrics: The auto-
scaler with Input I has significant better values for under-provisioning accuracy and time share,
but has significant worse values for the over-provision accuracy and time-share. As the difference
is quite similar for each compared metric, the elastic speed-up score is almost the same. A difference
in performance can be seen in the auto-scaling deviation. Here, the auto-scaling behavior based
on Input IT achieves a better value in the context of elasticity. Note that the elasticity describes the
system behavior and does not take user experience or efficient resource usage directly into account.

3.9 Discussion

Besides the publication mentioned in Section 3.8, the elasticity metrics are applied to describe
auto-scaler behavior [37, 48] or are used to measure the elasticity of a system [33]. However, the
proposed metrics are designed to quantify the elasticity on systems that host single-tier applica-
tions running on one group of resources. Hence, with the investigation of multi-tier application
and multiple auto-scalers in place for sub-groups of resources or one multi-scaler some challenges
occur: (i) While the search of the demand-intensity curve on a single-tier applications takes n
steps (n is the number of resource units), the amount of steps for a naive search for a multi-tier
application is ng - ... - n,,, where m is the number of tiers and n; the number of resources of tier i.
(ii) As the demanded resource units for a given intensity for a single tier application is distinct, the
demand derivation for multi-tier application becomes more complex, because for a constant load
intensity there could be more than one optimal resource configuration. (iii) While investigating
each tier separately, the proposed metrics remain fully applicable; however, while investigating the
metrics along all tiers, the proposed metrics are not completely sufficient. For instance, in the first
tier, there is one resource too less and in the second tier, there is one resource too much. In sum,
the number of resources are equal to the number of demanded resource units. Hence, the proposed
elasticity measurement methodology and the metrics need extensions to handle such scenarios.

4 PERFORMANCE ISOLATION AND VARIABILITY

Cloud resources are shared among several customers on various layers like IaaS, PaaS, or SaaS.
Thus, performance isolation of customers poses a major challenge. In this section, we sketch a
way for quantifying performance isolation that has previously been proposed by Krebs et al. [45]
and propose a new metric to quantify the performance variability of a cloud service offering.
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Fig. 5. Influence of the disruptive tenant onto the abiding.

Performance isolation in connection with a stable performance are important aspects for vari-
ous stakeholders. When a platform developer has to develop a mechanism to ensure performance
isolation between customers, he needs to validate the effectiveness of his approach to ensure the
quality of the product. Furthermore, to improve an existing mechanism, he needs an isolation
metric to compare different variants of the solution. When a system owner has to decide for one
particular deployment in a virtual environment, his decision might be strongly influenced also by
the quality of the non-functional performance isolation and stability properties.

The degree of performance isolation is perceived as a static quality of a given platform or envi-
ronment, whereas performance variability is a dynamic property describing fluctuations in perfor-
mance caused by imperfect isolation. To quantify performance isolation, full control of the cloud
environment is required to distinguish between and physically collocate abiding and disruptive
cloud tenants in a given experiment. Having an industry-standard benchmark for performance
isolation, cloud providers could conduct trusted experiments and advertise their results. In con-
trast, performance variability can be quantified in a black-box manner by conducting a number
of small performance measurements. Repeating performance measurements in randomized time
intervals would enable the reporting of the recently experienced variability, as this quantity may
change over time and depend on the time of the day.

A system is considered performance-isolated if, for customers working within their quotas, the
performance is not negatively affected when other customers sharing the physical hardware ex-
ceed their quotas. A decreasing performance for the customers exceeding their quotas is accepted.
A quota might be implicitly given by the specification of a service offering in combination with
the current overbooking factor. Thus, a cloud customer must not explicitly be aware of his quota.

The isolation metrics [45] distinguish between groups of disruptive and abiding customers. The
latter work within their given quota (e.g., defined number of requests/s) the former exceed their
quota. Isolation metrics are based on the influence of the disruptive customers on the abiding
customers. Thus, we have two groups and observe the performance of one group as a function of
the workload of the other group (cf. Figure 5).

4.1 Isolation Metrics based on QoS impact

For the definition of the isolation metric, a set of symbols is specified in Table 2. These metrics
depend on at least two measurements. First, the observed QoS results for every ¢ € A at a reference
workload W,.r where all customers stress the system at their quotas (or slightly less). Second, the
results for every ¢t € A at a workload Wy;s, when a subset of the customers have increased their
load to challenge the system’s isolation mechanisms. As previously defined, W,.r and Wy, are
composed of the workload of the same set of customers, which is the union of A and D. At Wy,
the workload of the disruptive customers is increased.

We consider the relative difference of the QoS (Az,) for abiding customers at the reference
workload compared to the disruptive workload. Additionally, we consider the relative difference

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 4, Article 19. Publication date: August 2018.



Quantifying Cloud Performance and Dependability 19:15

Table 2. Overview of Variables and Symbols

Symbol Meaning

t A customer in the system.

D Set of disruptive customers exceeding their quotas (e.g., contains customers induc-
ing more than the allowed requests per second). |D| > 0

A Set of abiding customers not exceeding their quotas (e.g., contains customers in-
ducing less than the allowed requests per second). |A| > 0

w; Workload caused by customer ¢ represented as numeric value € R;. The workload
is considered to increase with higher values (e.g., request rate and job size). w, € W

w The total system workload as a set of the workloads induced by all individual cus-
tomers. Thus, the load of the disruptive and abiding ones.

z; (W) A numeric value describing the QoS provided to customer ¢. The individual QoS
a customer observes depends on the composed workload of all customer W. We
consider QoS metrics where lower values of z,(W) correspond to better qualities
(e.g., response time) and z,(W) € Ry

I The degree of isolation provided by the system. An index is added to distinguish
different types of isolation metrics. The various indices are introduced later.

of the load induced by the two workloads (Aw):
 SvealziWaisr) = 2 (Wrep)] oy Wi, W DWWt
DieaZt(Wrer) | .

Based on these two differences, the influence of the increased workload on the QoS of the abiding
tenants is expressed as follows:

AZA

®)

Zw, EWref Wy

Az A
Tgos = - )
A low value of this metric represents a good isolation as the difference of the QoS in relation to
the increased workload is low. Accordingly, a high value expresses a bad isolation of the system.
Further isolation metrics can be found in the work of Krebs et al. [45], e.g., considering a mea-
surement approach where the QoS of the abiding customer is kept constant by synthetically re-

ducing its load. The amount of required reduction is taken as basis to compute isolation metrics.

4.2 Exemplary Experimental Isolation Metric Results

This section presents results based on the work of Krebs et al. [45] assessing different Xen hy-
pervisor configurations (CPU pinning vs. credit scheduler) and their effects on the performance
isolation Ip,s when executing the TPC-W benchmark for transactional web servers. Two different
scenarios are investigated in this case study. In the pinned scenario, the server with eight physi-
cal cores hosts four guest systems (dom1, dom2, dom3, dom4) and dom0. Every domU has a fixed
memory allocation of 3096MB and hosts a MySQL 5.0 database and a Tomcat web server. The var-
ious domains are exclusively pinned to the existing cores. Thus, no competition for the same CPU
resources is possible. Based on this run-time environment, four separate instances of the TPC-
W bookshop application are deployed. In the unpinned scenario, all domU and the dom0 are not
pinned to a specific CPU and free to use any existing hardware resource. Xen’s credit scheduler is
chosen to allocate the domains to the various resources.

Table 3 shows the values used to define the reference and disruptive workloads, whereas EBs
stands for the number of emulated browsers in the workload driver.
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Table 3. Performance Results for the Scenario Setup and Configuration
EBs per Total Throughput Avg. response  Max. load
Scenario domU throughput per domU time disruptive
Pinned 3,000 1,195req/s 299req/s 1,104ms 15,000
Unpinned 1,500 721req/s 180req/s 842ms 13,500
Table 4. Results of Ig,s in the Various Scenarios
Scenario | Disruptive load Responsetime | Aw Az Ig,s
Pinned 15,000 1,317ms 4.00 0.19 0.05
3,200 927ms 0.33 0.10 0.30
Unpinned 4,800 942ms 0.60 0.12 0.20
P 7,500 914ms 1.05 0.09 0.08
10,000 1,173ms 1.47 039 0.27

The highest difference in throughput for one domain compared to the mean is around 4.5% and
the highest difference of the response times around 6.5% in the pinned scenario. In the unpinned
case, we observed 2.2% difference for the throughput. The difference of the response times was
at 8.2%. As a consequence of these observations pe,q is set to 15,000 for the pinned scenario and
to 13,500 for the unpinned. It is worth to mention that in the unpinned scenario p, 4 is very close to
nine times the load of the maximum throughput for one domain. Table 4 contains the values of Ip,s
for the two scenarios. The first column of Table 4 identifies the scenario, the second the amount of
users for the disruptive domain, the third column the average response time of all abiding domains
followed by the results for Aw, Az, Ip,s. To ensure a level playing field of comparison, we select
measurements where Aw is the same in the relevant scenarios.

The pinned scenario presents a nearly perfect isolation throughout the whole range. The Ip,s
presented in Table 4 at a disruptive load of 15,000 users was below 0.05.

For the isolation metrics based on QoS impact, we determine the isolation at various disruptive
workloads shown in Table 4. We observe two significant characteristics. The first is the increasing
response time when the disruptive load is set to 3,200 users. The second is the increasing response
time at 10,000 users. Accordingly, the isolation becomes better between 3,200 and 10,000 users. This
is because of the widely constant response times by increasing load changing the ratio of Az/Aw.

4.3 Performance Variability of Virtual Cores

Typically, performance of virtualized computing offerings in the IaaS domain is indirectly ex-
pressed through the use of sizing parameters (such as RAM size, number of cores, etc.), with some
providers using their own metrics (e.g., Amazon Compute Units). In the case of nominal sizing pa-
rameters, these fail to capture the actual performance of the resources when executing a given task,
which may also depend on other parameters (e.g., sharing of some level of cache with other proces-
sors, bus speed, etc.). Furthermore, performance may fluctuate due to a number of other parame-
ters (such as collocation of virtual resources in multi-tenant infrastructures, noisy neighbor effect,
etc.). Thus, a more accurate representation of these computational capabilities could be based on a
number of benchmark tests (potentially diverse, to capture different application types and ways to
utilize the underlying hardware resources). It is not the purpose of this work to go into details on
which these benchmarks should be. The main goal is to indicate the fluctuation aspects obtained
by the benchmark scores, due to this dynamic and on demand nature of cloud services usage.
This fluctuation should include no absolute values, but percentages of deviation from the average
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Table 5. Performance of Virtual Cores Metrics

Cloud Provider | Instance Type PDVC (%) Avg. Bench. Score Serv. Eff. Score
Flexiant 2Gb-2CPU 11.2 4,423.2 0.226
Flexiant 4Gb-3CPU 31.4 10,237.0 0.169
Flexiant 4Gb-4CPU 15.2 3,052.6 0.172
Microsoft Azure A2 10.0 5,501.3 0.191
Microsoft Azure Al 7.9 9,974.3 0.213
Amazon EC2 m1.large 20.0 5,070.7 0.173
Amazon EC2 ml.medium 11.1 6,692.2 0.217
Amazon EC2 m1l.small 3.7 9,381.3 0.364

Table 6. Ranking Based on Performance of Virtual Cores Metrics

Ranks by PDVC Ranks by Avg. Bench. Score | Ranks by Serv. Eff. Score
Amazon EC2 m1.small (best) | Flexiant 4Gb-4CPU (best) Amazon EC2 m1.small (best)
Microsoft Azure Al Flexiant 2Gb-2CPU Flexiant 2Gb-2CPU
Microsoft Azure A2 Amazon EC2 m1.large Amazon EC2 ml.medium

Amazon EC2 m1.medium
Flexiant 2Gb-2CPU
Flexiant 4Gb-4CPU
Amazon EC2 m1.large
Flexiant 4Gb-3CPU (worst)

Microsoft Azure A2
Amazon EC2 m1.medium
Amazon EC2 m1.small
Microsoft Azure A1l
Flexiant 4Gb-3CPU (worst)

Microsoft Azure Al
Microsoft Azure A2
Amazon EC2 m1.]large
Flexiant 4Gb-4CPU
Flexiant 4Gb-3CPU (worst)

values, according to the “performance of virtual core” metrics given in Table 5. From the two, we
consider mainly the PVC (case 1), described below, which is a combination of the generic mean ab-
solute deviation and the mean absolute percentage error formulas, if error in this case is considered
the deviation from the mean value of the measurements. The metric (we denote it as PDVC, Per-
centage Deviation of Virtual Cores), calculates the average percentage deviation of the results from
the mean value for the same benchmark, the same workload and the same size of VM. This metric,
if also guaranteed by the respective provider, may indicate a promised limit C across all measure-
ments, where n the observation set and C the guaranteed percentage by the provider (if any):
n o |xi=x|
pvDC = 221 X1
n

<C. (10)

Applied to the measurements of Evangelinou et al. [21], the specific metric portrays in Table 6
the following ratings for the various service types on the specific examined benchmarks.

Based on the specific rating, and compared to the original average benchmark values obtained,
a clear difference may be observed in the values obtained for the PDVC metric, indicating an en-
hanced stability of the offering of Amazon small, which is ranked sixth in the absolute comparison
based on the average benchmark score. Comparing to the service efficiency column (based on the
service efficiency metric, a weighted sum of performance and cost as defined and used the work
of Kousiouris et al. [44]), which is more balanced, since it includes an aspect of the offering’s cost,
the top rated one is again EC2 small; however, there are considerable differences in the following
ones, with Azure offerings being evaluated with lower SE, while indicated as more stable from the
PDVC. Flexiant 2GB-2CPU, however, appears as one of the best offerings in terms of absolute or
relative (to cost) performance, while in the PDVC case is ranked in a lower position.
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5 AVAILABILITY

We study critical aspects of measuring availability of cloud services, existing metrics and their
relation to the de facto standards, and conditions that apply to the public cloud market. Relevance
to cloud environments is high, given that availability is one of the strong arguments for using
cloud services, together with the elastic nature of the resources and adaptable utilization. Further-
more, availability is a key performance indicator (KPI) included in most public cloud service level
agreements (SLAS).

The goal is to identify metrics that can be used for provider and service comparisons or for
incorporation into trust and reputation mechanisms. Furthermore, we intend to highlight aspects
that are needed for an availability benchmark, which in contrast to most cases of benchmarking,
does not refer to the creation of an elementary computational pattern that may be created to
measure a system’s performance. Instead, we refer mainly to a daemon-like monitoring client for
auditing provider SLAs and extracting the relevant statistics.

5.1 Prerequisites and Context

SLAs are contracts between a service provider and a potential client, that govern or guarantee a
specific aspect of the offered service. Relevant metrics may include availability, performance as-
pects, QoS, and so on, as defined service level objectives (SLOs). Research efforts have investigated
advanced aspects like direct SLA negotiation and runtime renegotiation [11], and real-time QoS
aspects [43]; however, in main public cloud environments they appear as static agreements [4, 30,
55], prepared in advance by the respective provider, and not available for adaptation to each spe-
cific user. Thus, a cloud user has no choice but accepting de facto the terms and conditions offered.

5.2 Relevant Metrics Definition

Operational Availability. For real-time monitoring of services availability, one very interesting
approach is provided by CloudSleuth [14], which has an extensive network of deployed appli-
cations in numerous providers and locations and continuously monitors their performance with
regard to response times and availability metrics. CloudSleuth’s measurement way is not adapted
to each provider’s SLA definition, so it cannot be used to claim compensation but it relates mainly
to the definition of operational availability. Furthermore, it checks the response of a web server
(status 200 return type on a GET request). Thus, it cannot distinguish between a failure due to an
unavailable VM (case of provider liability) or due to an application server crash (customer liability
in case of [aaS deployment, provider liability in case of PaaS) or pure application fault (customer
liability). However, it follows a normal availability definition that makes it feasible to compare
services from different providers, a process that cannot be performed while following their spe-
cific SLA definitions, since they have differences in the way they define availability. Equation (11)
contains CloudSleuth’s formula for availability Acg, with N as the overall number of samples S;
and M as the overall number of failed samples:

N M
NS =YY S
Acs = M (11)

Availability has also been defined using the Mean Time Between Failures [12], to avoid cases where
small uptime is combined with a small downtime (and thus result in a high availability measure).
While this is reasonable, commercial cloud providers tend to consider as uptime the entire month
duration rather than only the actual uptime the services were used by the end user. Aceto et al. [2]
conducted a thorough analysis of monitoring tools. While numerous tools exist for focusing on
service availability (and other nonfunctional properties), it is questionable whether the way they
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are calculating the specific metrics is compliant to the relevant definitions in commercial clouds
and their respective SLAs. In the work of Li et al. [50], an investigation of new metrics and relevant
measurement tools expands across different areas such as network, computation, memory and
storage. However, availability is again not considered against the actual SLA definitions.

De Facto Industrial SLAs Examination. Commercial providers provide their own definition of
availability in their respective SLAs. In many cases this implies a different calculation based on
the same samples and a set of preconditions that are necessary for a specific service deployment
to be included under the offered SLA. To investigate the ability to provide an abstraction layer for
this type of services and thus create a generic and abstracted benchmarking client, one needs to
identify common concepts in the way the SLAs are defined for the various providers (we considered
Amazon EC2, Google Compute and Windows Azure). The first and foremost point of attention
is the generic definition of availability A,, which is included in Equation (12). Here, P; is each
elementary defined time interval (can be minutes, hours, etc., depending on the examined services)
and DP; is a failed examined (downtime) period. This may seem the same as the one defined in
Equation (11); however, the providers typically define the downtime period as a step function (x
in minutes). Cp,;, is currently defined as 1min for the public cloud providers Google, Amazon, and
Microsoft:

N N
i:1Pi - Zi:lDPi

N
i=1Pi

0 ifx<Cm,-n

4g = x ifx>Chmin’

DP(x) = { (12)

Furthermore, one other key point is the existence of preconditions needed for an SLA to be ap-
plicable for a specific group of services used (e.g., need to have multiple VMs deployed in different
availability zones). There are variations between provider definitions with regard to this aspect,
with relation to where the VMs are deployed or if further action is necessary after the realization
that a virtual resource is unavailable (e.g., restart of the resource). In a nutshell, the similarities
and differences of the three examined providers are the following:

(1) Common concepts: the common concepts include the Quantum of downtime period, i.e.
the fact that providers do not accept that a downtime period is valid, unless it is higher than
a specific quantum of time. Furthermore, discount formats is the common compensation
for downtime with relation to the monthly bill, while the calculation cycle is typically set
to 1 month. Also, typically more than one VM need to be used to accept SLA applicability
(distributed across at least two availability zones) and they need to be simultaneously
unavailable for an overall sample to be considered as unavailable.

(2) Differences: differences include the quantum size (minor, since the format is the same but
also because these differences tend to extinct with the typical example of Google Compute
changing from 5 to 1min at the end of 2016). The number of discount levels is also different
(again minor, since the format is the same). For the Azure Compute case, it seems that
more than one instances for the same template ID must be deployed. However, it seems
also that the overall time interval refers only to the time a VM was actually active. Other
functional differences include the restart from the template, which is necessary in Google
App Engine before validating an unavailable sample.

5.3 Abstracted and Comparable Metrics

It is not feasible to directly compare provider-defined availability metrics between providers, as
these differ in definition. It is more meaningful to follow a more generic definition (as in Reference
[14]), or abstract to the more generic concept of SLA adherence level, which can be defined as the
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ratio of violated SLAs over the overall SLAs. Since SLA period is set to monthly cycles, this may
be the minimum granularity of observation.

SLA Adherence Levels S,. Special attention must be given for cases that sampling is not contin-
uous, indicating that the client did not have running services for a given period, applicable for an
SLA. These cases must be removed from such a ratio, especially for the cases that no violations
are examined in the limited sampling period, given that no actual testing has been performed. If
a violation is observed even for a limited period, then this may be included. Furthermore, SLA
adherence may be grouped according to the complexity of the examined service

SLA Strictness Levels Ss. Besides SLA adherence, other metrics may be defined to depict the
strictness of an SLA. As a prerequisite, we assume that the metric must follow a “higher is stricter”
approach. Stricter implies that it is more difficult for a provider to maintain this SLA. To define
such a metric, one needs to identify what are the critical factors that may affect strictness levels.
Factors should be normalized to a specific interval (e.g., 0 to 1) and appropriate levels for them
may be defined. Indicative factors may include:

(1) Size of the minimum continuous downtime period (quantum of downtime period g). A
higher size means that the SLA is more relaxed, giving the ability to the provider to hide
outages if they are less than the defined interval. The effect of such a factor may be of a lin-
ear fashion (e.g., 1 — q). Necessary edges of the original interval (before the normalization
process) may be defined per case, based, e.g., on existing examples of SLAs.

(2) Ability to use the running time of the services and not the overall monthly time, denoted
by a Boolean variable ¢ (0 false, 1 true). This would be stricter in the sense that we are not
considering the time the service is not running as available.

(3) Percentage of availability that is guaranteed. Again this may be of a linear fashion, with
logical intervals defined by the examined SLAs.

(4) Existence of performance metrics (e.g., response timing constraints). This may be a
boolean feature x, whose values may be set to higher levels (0 or 5). The importance of
this will be explained briefly.

Such metric may be useful for deploying applications with potentially different characteristics
and requirements. For example, having soft real-time applications would imply that we need to
have feature 4. Other less demanding applications may be accommodated by services whose SLAs
are less strict. Thus, suitable value intervals may be adjusted for each feature. If we use a value
of 5 for the true case of feature 4, and all the other features are linked in such a manner that their
cumulative score is not higher than 5, then by indicating a necessary strictness level of 5 implies
on a numerical level that feature 4 needs definitely to be existent in the selected cloud service.

Depending on the application types and their requirements and based on the metric definition,
one can define categories of strictness based on the metric values that correspond to according
levels (e.g., medium strictness needs a score from 2 to 3, etc.). It is evident that such a metric is
based only on the SLA analysis and is static, if the SLA definition is not changed. The indicative
formula for the case of equal importance to all parameters appears in Equation (13):

S=t+(1-s19) + s2p +x, (13)
where s; is a normalization factor for the continuous variables € [0, 1],
so that (s; - q) € [0,1]and (sz - q) - t € {0,1},x € {0,1}.

For the normalization intervals, for p we have used 99% and 100% as the edges, given that these

were the ranges encountered in the examined SLAs. For ¢ we have used 0 and 10min as the edges;
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Table 7. Example Application of the SLA Strictness Metric on Existing Public Cloud SLAs

’

Provider/Service | t q q p x S s

Google Compute | 0 1 (norm:0.1) 1 (norm:0.0167) 99.95 (norm: 0.5) 0 1.4 1.4833
Amazon EC2 0 1(norm:0.1) 1 (norm:0.0167) 99.95(norm:0.5) 0 14 1.4833
Microsoft Azure 1 1(norm:0.1) 1 (norm:0.0167) 99.95(norm:0.5) 0 24 2.4833

0 indicates the case where no minimum interval is defined (thus abiding by the formula in Equa-
tion (11)) and 10 is the maximum interval in examined compute level SLAs. However, there are
larger intervals (e.g., 60min) in terms of other layer SLAs (Azure Storage). The limit to 60 has been
tried out in the ¢’ case that is included in Table 7, along with the example of the other factors and
the overall values of the SLA strictness metrics in the three examined public SLAs.

For this parameter, while in the past differences existed (Google had a 5min value), currently
they are uniform to Imin. An example of x not being 0 would be the Azure Storage SLA, where
unavailability is also determined by response time limits to a variety of service calls.

One interesting aspect in this case refers to the usage model of cloud services that may influence
one or more parameters of the selection. As an example, if an entity uses cloud services as their
main and continuous operation platform, then the concern of whether the actual usage time or
the overall monthly time is used as the calculation interval becomes irrelevant (and, thus, the t
parameter may be omitted, resulting in equivalent rankings for the providers of Table 7). If the us-
age model considers bursting scenarios (temporary usage of external cloud services to meet peaks
in demand), then the respective ¢ parameter gains significant importance in the decision process.

5.4 Measurement Methodology

To create an availability benchmark for the aforementioned SLAs, the following require-
ments/steps in the methodology must be undertaken:

(1) Complete alignment to each provider definition to achieve non-repudiation, including:
(a) Necessary preconditions checking in terms of number and type
(b) Availability calculation formula
(c) Dynamic consideration of user actions (e.g., starting/stopping of a VM) that may
influence SLA applicability
(d) Downtime due to maintenance
(2) General assurance mechanisms in terms of faults that may be accredited to 3rd party
services/equipment:
(a) For example testing of general Internet connectivity on the client side
(b) Front-end API availability of provider
(c) Monitoring daemon not running for an interval at the client side. This can be cov-
ered by appropriate assumptions, e.g., if logs are not available for an interval then the
services are considered as available
(3) Logging mechanisms that persist the necessary range and type of information

System Setup. System setup should include a running cloud service. Furthermore, it should in-
clude the benchmark/auditing code (according to the aforementioned requirements taken under
consideration) that is typically running externally to the cloud infrastructure, to cover the case
that connectivity exists internally in the provider but not toward the outside world.

Workload. Given that this is a daemon-like benchmark, the concept of workload is not directly
applicable. The only aspect of workload that would apply would be for the number of cloud service
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instances to be monitored and the only constraint is that these cover the preconditions of the
SLA. However, an interesting consideration in this case may be the differentiation based on the
complexity of the observed service (in terms of number of virtual resources used), given that this
would influence the probabilities of not having a violation.

If we consider the case of a typical cloud deployment at the IaaS level, then we may use N
availability zones (AZ), in which M virtual machines are deployed. An availability zone is typically
defined as a part of the data center that shares the same networking and/or power supply. Thus, the
usage of multiple AZs eliminates the existence of a single point of failure. For simplicity purposes,
we assume that the number of VMs is the same across all AZs. The probability of a technical failure
in the AZ Pr depends on the probability of power supply failure Pp and the probability of network
failure Py. The probability that a VM is unavailable Py; contains Py the risk of the physical host in
which a VM is running to fail and Py the risk of the VM to fail. Assuming that these probabilities
are mutually exclusive and depending on different factors, the overall probability of failure for a
deployment in one AZ P4 is given by Equation (14). The service is deemed as unavailable in one
specific AZ if power or network connectivity is lost across the AZ or if all VMs in that AZ are at
the same time unavailable:

M
PA:PT+1_[PUl. =Pr+P), with Pr=Pp+Py and Py =Py +Py. (14)

i=1

If M VMs are deployed in each one of the N AZs, then the overall failure probability Po is
given by Equation (15), assuming that the various AZs have similar power and network probability
failures and given that we are not aware of the affinity of VM placement across physical nodes,
thus we can assume that different physical hosts are used for each VM:

y M(N-k
Po =1, Pa, = (Pr + PIYN = SN | ol PEP VY. (15)

The significant factors that indicate the complexity (M and N) can be used as a generic metric
of “workload.” In addition, they can be used to classify results according to service complexity.

5.5 Discussion

While availability has been defined in the literature in various ways, existing mainstream public
clouds such as Amazon, Google and Azure have separate definitions, which may be similar but not
identical even to each other. Thus, direct comparison of providers based on these metrics cannot
be achieved and especially benchmarked against the guarantees they advertise in their respective
SLAs. In this section, an analysis is performed regarding the similarities of provider definitions
and how these can lead to guidelines regarding the implementation of benchmarking clients for
identifying provider fulfillment of the issued service level agreements toward their customers.

Furthermore, we define a simple yet directly comparable (between providers) metric of SLA
adherence. Classes of workload can be identified based on the size and deployment characteristics
of the measured service thus further refining the aforementioned comparison.

6 OPERATIONAL RISK

In this section, we present cloud metrics laid on the top level of the pyramid in Figure 1. These
metrics may provide comparable information about the overall status of cloud systems and can
further be used for managerial decisions by operators and stakeholders. We define the Opera-
tional Risk (OR), a family of metrics determining the risk of production systems running in cloud
environments, and provide metrics and measurement approaches to quantify it.
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6.1 Goal and Relevance

Risk management is defined as a decision paradigm in grids [17] and used for the selection of an
infrastructure to host an application. Similarly, in clouds we use risk as a quality aspect reflecting
the impact of running an application in cloud infrastructures.

The operational risk derives from the risk aspect and depicts the performance impact on services
when running in cloud systems. Operational risk evaluates whether cloud services run in the
system as expected and, if not, the severity of the deviations. Given that cloud users want their
applications to run with minimum performance degradation, providers may use metrics such the
operational risk to publicly present the capabilities of their systems.

In addition, operational risk helps managers summarize and report system status in manage-
ment analysis. For instance, cloud architects need metrics to depict the overall system status and,
if possible, the future impact of cloud solutions on system performance. However, operators mon-
itoring the cloud infrastructures use different metrics for in-depth performance analysis.

The operational risk provides an overview of the system and contributes to a higher-level ap-
proach toward the performance evaluation of complex systems.

6.2 Prerequisites and Context

In this section, we describe the operational risk of cloud services deriving from their performance
levels when running in cloud infrastructures. The term risk is also used in literature for describing
security issues of cloud but the notion of security is out of scope of the presented metric.

The service performance in clouds refers to multiple kinds of performance that can be measured
in cloud services. A possible distinction among these performance types is the level of service (e.g.,
IaaS, PaaS, SaaS) in the cloud system. The service level indicates the service performance for that
level and also the suitable metrics measuring the performance.

The definition of operational risk refers to expected performance levels that cloud services should
run at to avoid degradation. The expected performance varies depending on needs. We describe
the most common benchmark objectives from which the expected performance levels derive.

First, the performance can be compared to an optimal level that bounds theoretically the mea-
surements. The implied expected performance to compare results is the optimal level. An example
is the total availability of cloud infrastructures with no downtime, as described in Section 5.

A second benchmark result can be the comparison between the performance level of a service
running alone on a dedicated environment and the performance of the same service running on
an environment where multiple services share the resources. This is a more realistic approach to
benchmark and to compare performances, since optimal performances may never be reached.

A third result in cloud benchmarks can be the success of the system in achieving the guaranteed
performance levels described in SLOs. Providers may use benchmarking to test systems against
possible SLO violations and create new SLA levels according to the results. Therefore, we set as
expected performance levels of services those defined in SLOs. In this way, we can test and tune
systems according to required performance bounds. Having SLA levels as a benchmark goal re-
quires the definition of such SLOs, which are general and applicable for many cloud-based systems.

As a result of the many variations of performance levels set as benchmark goals, we can map
these levels to the expected performance levels in operational risk. In this way, operational risk
can evaluate the severity of the deviations between monitored results and given expected levels.

6.3 Proposed Operational Risk Metrics

The proposed operational risk metric adapts the notion of the expected levels from the second
comparison type described in Section 6.2.
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Fig. 6. Metrics composing the Operational Risk metric for cloud service.

The metric quantifies the variation of service performance between the service running in a ded-
icated environment and the performance when running in another, non-dedicated environment.
The former provides an isolated environment where resources are always available to the service
under test. In contrast, due to concurrent operations of services in a non-dedicated environment,
services share the resources resulting in performance interference among the services [77]. This
interference affects the performance delivered in services. Hence, this performance may deviate
from the service performance in the dedicated environments implying degradation issues.

Since we use the notion of the expected levels for testing performance, by risk, we imply the
likelihood that the service performance in the cloud will deviate from the demanded performance.
The expected service performance is reflected by the performance in the dedicated system.

We focus on the service performance at the IaaS level, thus the operational risk utilizes IaaS-level
metrics and refers to performance levels that reflect the resource utilization by cloud services.

6.3.1 Related Metrics. The risk metric reveals an additional aspect of the service performance
in the cloud, which is the degree to which service performance is degraded. Figure 6 shows
the three metrics referring to resource type of a cloud service: the current usage (U) of the re-
source, the demanded (D) amount the service requires, and the provisioned (P) amount of resource,
which is the upper limit of resource the service is able to consume and is given by the resource
manager.

As Figure 6 shows, the D line can be higher than the U line as a service may not receive what
it requires due to contention issues in the system, e.g., resource overbooking. We consider that
usage U cannot be higher than the demanded amount D (U # D), because the real usage of resource
cannot exceed the requirements of service in resources. Similarly, U $ P as the actual resource
consumption can only reach up to the resource limit having been set by the resource manager.

Relative Levels of Metrics. Considering the three mentioned metrics, we show the possible cases
about the relative levels of the metrics. In an ideally auto-scaling and isolated environment, the
service is provisioned and consumes the demanded amount of resource (P = D = U), as in period T,
in Figure 6. The resource manager provides the demanded resources (P = D) and the service utilizes
all the demanded resources (D = U) without interfering with other co-hosted services.

However, the case of the three coinciding lines is not applicable in real environments. An auto-
scaling mechanism is not perfectly accurate and creates incompatibilities between the provisioned
and the demanded resources. When a service demands fewer resources than it has been provi-
sioned (D < P), the system hosts an over-provisioned service. The system has under-provisioned
resources to service when D > P. The two mentioned cases are depicted in periods Tj, T3 in
Figure 6.
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Finally, the real usage U cannot be higher than the demanded usage D; however, the lines of
U and D do not always coincide due to contention issues in the system. We call the deviation be-
tween D and U, which is always non-negative (D > U), as contention-metric and it presents the gap
between the demanded amount of resource and the real consumption of resource at specific time.
The higher the value of the contention-metric, the more severe is the resource-contention that is
experienced by the service; hence degrading the service performance. For instance, in Figure 6,
the service experiences more contention in its resources during period Ts than during period T; as
the gap between the resource lines D, U is bigger in the former period.

6.3.2 Definition of Metric. The operational risk metric presented in this section incorporates
the three resource metrics mentioned before and splits the metric into two partial metrics, the
provision risk (r,) and the contention risk (r.). We split the risk metric into two so that each met-
ric evaluates different risk aspects when service performances are degraded. The provision risk
evaluates the severity of performance degradation affected by inaccurate provisioned resources to
services, and the contention risk, the severity affected by the resource contention when resources
are shared among services. The combination of the two metrics, will let cloud providers have a
more comprehensive view of the system performance and adjust performance issues toward their
needs.

Provision Risk. We define the provision risk (r,,) as the degree to which the demanded resources
meet the provisioned resources:

1 (P -D,
= — —dt, -1,1], 16
neg [ 75 [-1,1] (10

where P; and D; are the provisioned and the demanded resources respectively at time ¢. T is the
time period in which we measure the two metrics. The integral value of r, measures the relative
squashed area enclosed by the resource values of P and D for time period T. The value of r,
ranges between [~1, 1], indicating an under-provisioning situation when r,, € [~1,0) and an over-
provisioning case when r, € (0,1]. The zero value indicates an accurate provision of resources
according to the demanded resources. The closer the value of r, is to zero, the less risk is indicated
for the service.

Contention Risk. Similarly, we define the contention risk (r.). This metric utilizes the resource
values of demanded and used resources over time T. The metrics D; and U; indicate the values of
the respective metrics at time #:

1 D; -U,

re = —f = "ta,  [o,1]. (17)
TJr D,

The r. value is non-negative as the amount of used resources cannot exceed the amount of

demanded resources. The higher the value of r., the more risk is estimated for a service to not
receive the demanded performance due to resource contention.

Service Risk. The risk for a cloud service should be composed of the combination of the two
aforementioned risk metrics to have better overview on the service status regarding risk levels.

We define the risk of service (r.) as the degree to which a cloud service performs as expected,
which derives from the performance of the provisioning capabilities of the system and from the
system’s capacity to keep low resource contention among hosted services. Both expected per-
formance levels contribute to evaluate if a system supplies the service adequately with enough
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resources:

1 P, —D D, - U,
rezwp-lrp|+wc-rc=T(Wp-ﬁ%dt+wc«ﬁ%dt), [0,1], (18)

t

with wy, we € [0, 1], wp + we = 1.

For the service risk metric r, in Equation (18), the difference between P, and D; is an absolute
value, because we do not focus on the provisioning type of risk but only for the level of severity
that the difference between the two metrics reflects. Factors w;,, w, € [0, 1] are used to weight the
operational risk value according to user needs.

System Risk. The operational risk of a cloud system (r;) should be an overview of the risk values
of the constituent services in the system. The aggregation method of service risks, which calculates
the system risk value, deviates according to user needs. The method will result in a variability
metric that combines values according to different purposes. For example, providers who want to
test the risk levels of the system may use quantile values to depict the risk level of a proportion of
services. When cloud environments are assessed for stable risk levels, a variability metric, like the
inter-quartile range (IQR), will show the dispersion of service risks in the systems and thus, the
performance variability in the systems.

6.4 Measurement Methodology

To measure effectively the operational risk of cloud systems, we have to determine which moni-
tored data is the respective metrics that operational risk is built upon. Additionally, the resource
type has to be decided in order for the appropriate resource metrics to be declared. We propose
the measurement of multiple resource types, since objectives in resource management by cloud
operators need to consider the joint management of different resources [41]. We focus on the most
common resource types that are currently available to clouds: CPU, memory, network, and storage.

Metrics P & U. The metric definitions of provision (P) and usage (U) are straight-forward and
one can easily monitor the respective values. Metric P refers to the capacity that resource manager
has provisioned to service and metric U is the actual resource capacity that service uses. In any
resource type, the corresponding metrics of P and U can be readily monitored.

Metric D. Although it may be confusing how the demanded amount of the aforementioned re-
source types is estimated, there is currently enough research on that topic. For the resource type
of CPU, prediction models have been introduced in Reference [39] and contemporary cloud moni-
tors provide metrics about the demanded amount of CPU. For the memory resource, the demanded
amount can also be estimated as in Reference [76] and used as the possible memory capacity that
service needs at specific time. For the resource types of network and storage, the metric D is simpler
to calculate, because the demanded capacities are either the size or the number of requests of that
resource received by the resource manager. The resource manager, after collecting the requests,
handles a subset of these requests (i.e., metric U) due to the system load.

Weights wy, w.. The values of the two weights w,,, w, represent the importance of the two met-
rics rp, ¢, respectively. One has to consider the purpose of benchmarking the cloud system to
define similarly the weights. The contention risk may be more important for testing the impact
of co-location of cloud services (w, < w,), whereas the provision risk represents better the opera-
tional risk when selecting the most promising elastic policy for a system.
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Table 8. Metric Results for a Simulated Cloud
Environment (w, = 1)

T w w — r

S
[#months] [#VMs] [#VMs/service] Te (0]
3 1,800 11 0.05 0.001
3 3,400 61 0.09 0.007

6.5 Measurement Approach

The approach of evaluating the operational risk from Section 6.3 can be summarized as follows:

(1) Measurement: The benchmark exposes the system-under-test to a given workload W
for specific time period T. Given the workload resource demands, the resource allocations
for the workload by the system and the contention levels in the system, the benchmark
estimates the current resource usage U and the provision amount P across period T.

(2) Risk Evaluation: Operational risk metrics are computed and used to compare the risk in
different time periods or different cloud environments.

We present an example of measuring operational risk using simulation of cloud services running
in a multi-datacenter multi-cluster system. To simplify the process, we focus on the contention
risk of a service (r, = r.) and for one resource type (CPU). The workload trace has a long time
period of three months, because short-term performance degradation of services do not show
representative overview of their severity. Monitoring and testing long workload traces is the main
reason of having simulation results for our measurements. The computed risk metrics are shown
in Table 8.

Each table row represents an experimental configuration with the second service load stressing
higher the system. The different operational risk values in the configurations reflect the different
impact of the CPU workloads in the system. By measuring the risk, providers may focus on the
most contended services, therefore services with risk values higher than the system risk (r, > ;).

6.6 Related Work for Operational Risk Metrics

Risk management and resource contention are not new subjects in cloud research. Risk manage-
ment has been defined as a decision paradigm in Grids [17], where selection among multiple in-
frastructures should be taken into account to host an application. Historical records about SLO
violations can be used to assess the system risk for an incoming application to fulfill the agreed
objectives [17, 24]. The risk levels are also evaluated according to the provisioned mismatches
of the elasticity mechanism. Our approach of operational risk considers the elastic aspect of the
system and incorporates it with the risk of performance interference of services.

Persico et al. [58, 59] studied the intra-network performance in AWS EC2 and Microsoft Azure,
suggesting ways to properly characterize the maximum achievable throughput; studies like these
are necessary to correctly define the baseline-level prior to a performance degradation analy-
sis. Tang et al. [67] investigated the interference of services in memory. The presented results
on performance degradation use as baseline-level the performance of a service running alone in
the system under test. Zhuravlev et al. [77] used a similar approach measuring the performance
degradation, with a more explicit definition of the degradation. The authors define the relative per-
formance degradation of memory components according to the performance level of the service
running alone. We extend this related work considering the impact of inaccurately provisioned
resources in the hosted services. The degradation of performance due to resource contention is
affected by the elastic mechanisms in clouds, thus the need to incorporate the two notions.
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6.7 Discussion

In this section, we present the feature of operational risk in clouds and introduce a representative
metric evaluating the risk in cloud services and systems not to perform as expected.

The notion of risk differentiates from the elasticity feature in cloud, because elasticity takes
into account the provisioned and the demanded values of service resource to cope with the service
load. In contrast, both performance isolation and availability utilize demand and usage metrics for
different reasons. Performance isolation concerns about the contention that a service may experi-
ence and evaluates the severity of the interference among services while availability evaluates the
periods where demand is present but the usage of resources cannot be achieved.

The operational risk incorporates the three resource-level metrics and complements the other
metrics described in previous sections to assess the severity of performance degradation regarding
the mentioned cloud features.

Usability. The operational risk metric can be used as evaluation of cloud services and systems
to assess whether the performance guarantees are met.

The measurement of service-performance in the cloud is important for both customer and cloud
provider. The customer wants to maximize profit by delivering good QoS to clients. Therefore, the
service performance is utilized by the customer to check the progress of service-runtime as well
as to compare and select the cloud environment that meets the service needs the most.

For cloud providers, they are interested in the levels of service performance, because they are
burdened with financial fees when SLO violations occur. Moreover, there is a reputation cost for
cloud providers when not delivering good performance results to customers, thus, providers also
utilize service-performance metrics to maintain competition in the cloud market.

7 METRIC DISCUSSION

In the previous sections, we defined a number of cloud relevant metrics for different non-functional
quality aspects, including ways to aggregate them. In Table 9, we provide an overview on the
presented metrics, including their value ranges, optimal points and references to show cases. In
general, it is impossible to prove correctness or superiority of a metric; a metric is a common
agreement on how to quantify a given property. One can discuss to what degree metrics fulfill
characteristics of a good, well-defined, and intuitive metric and additionally demonstrate their
usefulness by meaningful results in rows of experiments or adoption in different communities. Let
us go in the following step-by-step over a list of metric characteristics:

Definition. A metric should come along with a precise, clear mathematical (symbolic) expression
and a defined unit of measure, to assure consistent application and interpretation. We are compli-
ant with this requirement, as all of our proposed metrics come with a mathematical expression, a
unit, or are simply time-based ratios.

Interpretation. A metric should be intuitively understandable. We address this by keeping the
metrics simplistic and describe the meaning of each in a compact sentence. Furthermore, it is
important to specify (i) if a metric has a physical unit or is unite-free, (ii) if it is normalized and if
yes, how, (iii) if it is directly time-dependent or can only be computed ex-post after a completed
measurement, and (iv) clear information on the value range and the optimal point. Aggregate
metrics should keep generality and fairness, combined with a way to customize by agreement on
a weight vector.

Reliability. A metric is considered reliable if it ranks experiment results consistently with respect
to the property that is subject of evaluation. In other words, if System A performs better than
System B with respect to the property under evaluation, then the values of the metric for the two
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Table 9. Metric Summary

Quality Attribute | Metric Value Range Unit How to Measure Show Case
Ou [0; 00), opt: 0 %
6o [0; 00), opt: 0 %
Accuracy -
0y [0;100], opt: O % ex post,
05 [0;100], opt: 0 % calibration v
Elasticity ) U [0; 00), opt: 0 % required Section 3.8
Timeshare [7,37]
0 [0; c0), opt: 0 % >
Instability v [0;100], opt: 0 %
Deviation o [0; ), opt: 0 % ex post
Speedup €k [0; 00), opt: co None ex post
Isolation QoS Ioos [0; 0], opt: 0 None ex post v/ Section 4.2 [45]
Variability Deviation PVDC [0;100], opt: 0 % ex post v Section 4.3 [21]
o Adherence Sa [0;100], opt: 100 % ex post V Section 5.3
Availability - 5
Strictness S [0; 0], opt: co % der. from SLO def. | appl. on pub. clouds
Provision p [-1;1], opt: O None
Contention T [0; 1], opt: 0 None v
Operational Risk - - P ex post .
Service Te [0;1], opt: 0 None Section 6.5
System rs [0;1], opt: 0 None

systems should consistently indicate this (e.g., higher value meaning better score). In the intuitive
optimal case, a metric is considered linear if its value is linearly proportional to the degree to
which the system under test exhibits the property under evaluation. For example, if a performance
metric is linear, then twice as high value of the metric would indicate twice as good performance.
Linear metrics are intuitively appealing, since humans typically tend to think in linear terms. For
the aggregate metrics, linearity might not be given. In the long run, the metric’s distributions in
reality should be analyzed to improve the reliability of their aggregation. For our proposed metrics,
we demonstrate consistent rankings in rows of experiments.

Further Quality Aspect of Metrics in Combination with a Standardized Measurement. A transpar-
ently defined and consistently applied measurement procedure is important for reliable measure-
ments of a metric. For example, it is important to state where the sensors need to be placed (to
have an unambiguous view on the respective resource), the frequency of sampling idle/busy coun-
ters and the intervals for reporting averaged percentages. The easier a metric is to measure, the
more likely it is that it will be used in practice and that its value will be correctly determined.
For all proposed metrics, we define or refer to a measurement methodology (a.k.a. benchmarking
approach) and demonstrate their applicability. It is out of scope of this work and part of our future
agenda to support the development of standardized measurement approaches to render the metric
independent and repeatably measurable. A metric’s measurement approach is independent if its
definition complete and behavior cannot be influenced by proprietary interests of different ven-
dors or manufacturers aiming to gain competitive advantage by measuring the metric in a way that
favors their products or services. As our proposed metrics come with a mathematical definition
and a measurement methodology, we claim at this point of research, that it should be possible to
verify that a measurement was conducted according to given run-rules. Still, there could be ways
to manipulate the results in a way we are not aware of yet. Repeatability of metric measurements

Shttps://aws.amazon.com/ec2/sla/, https://cloud.google.com/compute/sla, and https://azure.microsoft.com/en-us/support/
legal/sla/virtual-machines/v1_6/.
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implies that if the metric is measured multiple times using the same procedure, the same value is
measured. In practice, small differences are usually acceptable; however, ideally, a metric’s mea-
surement approach should be deterministic when measured multiple times. In this work, we can
only partially demonstrate that repeatability is possible in a controlled experiment environment
and to a certain degree in the public cloud domain.

8 CHALLENGES

In this section, we first discuss general challenges of conducting performance experiments in cloud
environments, before we focus on the emerging challenges for metrics and measurement method-
ologies in the context of cloud microservice technologies.

8.1 On Challenges of Performance Experiments in Clouds

Obtaining performance metrics from cloud computing environments requires running experi-
ments. Unfortunately, measured performance can vary significantly during the execution of an
individual experiment and from one execution to the next [38, 47, 62]. These variations may be due
to the use of different physical machines with different performance characteristics (e.g., faster pro-
cessors) or to interference caused by other VMs that may be using the same shared resources (e.g.,
disks, processors, or networks). As a result, significant care is required to obtain valid and mean-
ingful measures of performance. Previous work [1] has shown that commonly used approaches to
conducting experiments in clouds can lead to unfair comparisons and invalid conclusions. They
propose the use of a methodology called randomized multiple interleaved trails (RMIT) in which
competing alternatives that are being compared are interleaved in a round robin fashion. For ex-
ample, the first round might run alternatives A, B, and then C and then the order is re-randomized
for each subsequent round so the second round might run B, C, and then A. Clearly, because of
variability, multiple executions will be required to obtain metrics and at least some basic statistical
analysis, such as computing and reporting means and confidence intervals, is required.

The reliability of the resulting measures, when based on system-level metrics like average re-
source utilization, pose another challenge for conducting performance experiments. The dynamic
mapping relationships of resource activities between the virtual and the physical layers makes the
profiling of system level metrics difficult. This is exacerbated by cross-resource utilization relation-
ships (e.g., due to I/O scheduling on hypervisor level) and resource multiplexing across different
VMs running on the same, possibly overbooked hardware [52]. For comparisons, the position and
type of measurement sensors need to be well-defined and consistent across experiments.

8.2 Emerging Challenges

In the recent years, the industry has increasingly been moving toward microservice, and to server-
less or Function-as-a-Service (FaaS) architectures, aiming to take advantage of the flexibility, scal-
ability, and time-to-market in cloud environments [5, 69]. This growing popularity of these mi-
croservice and FaaS architectures is introducing new challenges and opportunities to the field of
non-functional performance evaluation in cloud computing environments. In this section, poten-
tial extensions, assumptions, and changes in applicability of the cloud metrics are discussed to
address the concerns and challenges specific to these new types of architectures.

Adaptations for Resource Nesting. The increasing popularity of microservices coincides with
technological advances in containerization. In contrast to traditional VM-based virtualization,
containerization technology, such as LXC® or Docker,” offer reduced performance overhead

®https://linuxcontainers.org/.
https://www.docker.com/.
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by executing applications as isolated processes, commonly referred to as containers, directly
on the host operating system [23]. As a result, systems are increasingly deployed as a set of
smaller microservices in a container cloud. However, due to the security concerns associated with
this relatively immature technology, it is currently a common practice to deploy microservice
containers on top of a VM. Moreover, to take advantage of the container-based, environment-
agnostic cloud infrastructure, FaaS functions are typically deployed on top of containers [61].
This resource nesting, consisting of FaaS functions, containers, VMs, and physical resources,
introduces challenges for many existing metrics. Where previously metrics for the evaluation
of cloud environments focused on a single virtual layer, VMs, on top of physical hardware,
adaptations will need to be considered to ensure quality aspects consider multiple virtual layers.
One implication of this increasing resource nesting is that metrics concerned with elasticity
typically assume that underlying resources are available and can be requested with a consistent
provisioning delay. However, this assumption no longer holds true, scaling higher-level resources
depends on the scaling capabilities of the underlying, lower-level resources. To scale up a FaaS
function, in an optimistic scenario, the underlying VM and container are already provisioned,
leading to a very short provisioning time. However, in alternative scenario’s, the VM and the
container might need to be scaled first before having sufficient resources for the function to scale.
Therefore, performance metrics of systems comprised of these nested resources should not only
account for their own performance but also of that of the underlying resources.

Adaptations for Resource Prioritization. One of the important advantages to cloud computing
is the notion of “on-demand” resources. This powerful notion has allowed cloud users to avoid
large upfront costs and static maintenance costs by only paying the cloud provider for the re-
sources it uses. By effectively managing and multiplexing its resources a cloud provider can make
a profit, while reducing the costs for the cloud users. However, offering the same priority for every
application might not be the most effective. A background application collecting log data would
most likely not have the same urgency or priority as a business-critical web server. Resource cost
instead of absolute, immediate performance is the most important factor for a background appli-
cation, while in the business-critical web server the performance is required at any expense. This
scenario is especially true, with regards to microservices, where the diverse set of microservices all
have different performance/cost trade-offs. Large providers are experimenting with the notion of
spot markets, where cloud users can get resources with fewer performance guarantees at a reduced
price. For example, Amazon Spot Instances allows you to bid on spare capacity at their data-centers
and in return allow Amazon to pre-empt the resources when the capacity is needed [75]. However,
Microsoft Azure and Google Cloud offer a substantial, fixed discount on pre-emptable VMs com-
pared to regular VMs. Yet current metrics focus on optimizing performance, elasticity and other
like-wise metrics without a regard for the costs. Though metrics for absolute, functional charac-
teristics, such as performance, will continue to be of value, adaptions will be needed to reflect
how well systems can match the expected functional and non-functional objectives. Others have
started to investigate this performance/cost trade-off [64], but more research is needed on how to
adapt existing metrics and methodologies to take the costs of performance into account.

Adaptations for Resource Fragmentation. The increased adoption of the cloud by various
industries comes with a wide variety of different types of workloads, which also introduce more
and specific demand for various types of resources [9]. High-performance resources, such as
VMs with large memory allocation and CPU shares, or specific resources, such as machines with
GPUs, generally cost more relative to less performant machines. This diverse demand requires
providers to be flexible in the resource options that they offer. However, this diverse demand does
lead to physical resources being sub-optimally utilized, as it leads to resource fragmentation. For

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 4, Article 19. Publication date: August 2018.



19:32 N. Herbst et al.

example, a single application might take up most of the CPU while under-utilizing the memory.
Due to the inability to change resource characteristics on-demand, this prevents any other
application being able to make use of the resource. In the context of microservices this resource
fragmentation would increase even more as microservices are generally optimized to focus on
a similar set of related responsibilities, leading to microservice being a CPU-heavy, I/O-heavy,
or network-heavy specific resource consumer. Metrics for elasticity and performance typically
consider only a single resource. When they do consider multiple resources, they fail to take
into account over-provisioning in multiple resource dimensions. Therefore, adaptations should
become part of performance evaluations, to put more emphasis on how effectively multiple
resource dimensions are taken into account.

Adaptations for Dynamic Workloads. Current approaches in performance evaluation of cloud
applications assume a relatively static workload. However, with the rising popularity of DevOps
practices, including automated, frequent deployment of new versions of services is increasingly
becoming an industry standard, which is referred to as Continuous Deployment (CD) [28]. Accord-
ing to the 2015 State of DevOps Report [27], a significant portion of organizations already conduct
multiple software deployments per day. For example, the retailer Otto conducts more than 500
deployments per week [31]. These rapid changes in the behaviour and resource consumption of
these services cause variations in the workload that affect the entire system under test, making
it more difficult to predict workloads based on historical data. Accordingly, the methodology will
need to be adapted to focus more on evaluating the initial “warm-up time” of mechanisms. The
warm-up time is the time needed to obtain a workload characterization needed by a mechanism
or policy to perform close to optimally. For example, in auto-scaling research, many policies make
use of historical data to evaluate scaling decisions using time series analysis [51]. These policies
need historical data to function optimally. With the frequent deployments and changing config-
urations of services, the size of the workload that needs to be recorded to have a policy function
near-optimally becomes a concern. Yet, this concern is not yet represented in existing metrics for
cloud environments.

8.3 Discussion

The industry is rapidly transforming to an increasingly dynamic, on-demand model. This trend
raises a number of challenges regarding the current cloud metrics and methodology. First, adap-
tions to existing metrics will need to be considered to address increasing resource nesting. Second,
there is an increased focus on applications being cost-effective, meaning that the operational costs
should match the desired performance. Besides focusing performance of applications, there should
be research done into adaptations to the metrics to consider the performance/cost ratio. Third,
adaptations to metrics regarding resource fragmentation should be considered. Finally, these dy-
namic systems are accompanied by dynamic workloads; workloads of which the characteristics
change significantly over time. The methodology of how to evaluate policies, which may depend
on long-running static workloads for profiling purposes, will need to reevaluated.

9 RELATED WORK

We identify two distinct and large bodies of related work: one, focusing on the four categories
of metrics we address in Sections 3 through 6; the other, general work on cloud performance
measurement and assessment. For studies focusing on the four categories of metrics addressed
in this work, we have already discussed the similarities and differences with our metrics in the
corresponding sections: elasticity (Section 3), performance isolation (Section 4), availability (Sec-
tion 5), and operational risk (Section 6). Overall, this work summarizes and extends the body of
knowledge available for these metrics.
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The general work includes much innovative work during the early years, followed since around
2010 by synoptic material. From the early work, innovation has focused on metrics for quantifying
overheads [6, 13, 54], basic operational characteristics [56, 74], specific functionality such as sched-
uling [16, 53, 70] and (emerging topic in clouds) auto-scaling [37], and frameworks for comparing
clouds across multiple metrics [72]. We review in the following some important results from the
synoptic material, which our study complements with new metrics, new synoptic material, and
guidelines of how to measure specific metrics in practice.

Tosup et al. [38] propose a framework and the tools to compare clouds for HPC and many-
task workloads. The framework considers metrics for basic operational characteristics, overheads,
traditional performance, scalability, and variability, and has been applied to four commercial clouds
for a long period. Our study greatly extends the set of earlier metrics.

Garg et al. [29] propose a framework to monitor and rank cloud computing services based on
a set of given metrics. Their goal is to allow customers to evaluate and rank cloud offerings based
on the provider’s ability to meet the user’s essential and non-essential requirements, based on
metrics for QoS attributes in the SMI framework of the now defunct cloud Service Measurement
Index Consoritium (CSMIC) [65]. They frame the problem using multiple criteria decision making
(MCDM) and propose a ranking approach based on an Analytic Hierarchy Process (AHP), which
reduces bias in decision making. The problem of ranking providers based on multiple metrics is or-
thogonal to the choice of metrics to use for each non-functional quality aspect of the environment.

Li et al. [50] collect metrics used in prior cloud projects and construct a metrics catalogue. We
revise the compiled list and contrast them with our proposed metrics, in Sections 3 through 6.

Becker et al. [8] use the goal question metric (GQM) method to derive metrics for scalability,
elasticity and efficiency, with the goal of using these metrics for requirements/SLO engineering.
In contrast, our goal is to make various cloud offerings and technologies comparable to each other,
and provide a common understanding among all cloud stakeholders.

Aceto et al. and Fatema et al. [2, 22] survey existing cloud monitoring tools, identifying require-
ments, strengths and weaknesses of these tools. Our study extends this direction by analyzing how
to measure specific metrics, thus providing the conceptual tools to assess whether the metrics re-
ported by existing tools and benchmarks are appropriate and complete. Moreover, the metrics we
propose in this work could be added to the existing tools in the future.

10  CONCLUSION

Because cloud computing services, and the systems underlying them, already account for a large
fraction of the information and communication technology (ICT) market, understanding their non-
functional properties is increasingly important. Building standardized cloud benchmarks for these
tasks could lead to better system design, tuning opportunities, and eased cloud service selection.
Responding to this need, we highlight the relevance of non-functional system properties emerging
in the context of cloud computing, namely elasticity, performance isolation, availability, and op-
erational risk. We discuss these properties in depth and describe existing or new metrics that can
quantify these properties. Thus, for these four properties, we lay a foundation for benchmarking
cloud computing settings. Furthermore, we propose a hierarchical taxonomy for cloud-relevant
metrics and discuss emerging challenges.

As future activities, we plan to conduct comprehensive real-world experiments that underline
the applicability and usefulness of the proposed metrics, also refining and supporting the
standardization the corresponding measurement approaches. As a next step, we are working on
an extensive review of existing cloud-relevant benchmarks and connected domains like big data,
web services and graph processing.
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