2,770 research outputs found

    A convex formulation for semi-supervised multi-label feature selection

    Full text link
    Copyright © 2014, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. Explosive growth of multimedia data has brought challenge of how to efficiently browse, retrieve and organize these data. Under this circumstance, different approaches have been proposed to facilitate multimedia analysis. Several semi-supervised feature selection algorithms have been proposed to exploit both labeled and unlabeled data. However, they are implemented based on graphs, such that they cannot handle large-scale datasets. How to conduct semi-supervised feature selection on large-scale datasets has become a challenging research problem. Moreover, existing multi-label feature selection algorithms rely on eigen-decomposition with heavy computational burden, which further prevent current feature selection algorithms from being applied for big data. In this paper, we propose a novel convex semi-supervised multi-label feature selection algorithm, which can be applied to large-scale datasets. We evaluate performance of the proposed algorithm over five benchmark datasets and compare the results with state- of-the-art supervised and semi-supervised feature selection algorithms as well as baseline using all features. The experimental results demonstrate that our proposed algorithm consistently achieve superiors performances

    Joint Hypergraph Learning and Sparse Regression for Feature Selection

    Get PDF
    In this paper, we propose a unified framework for improved structure estimation and feature selection. Most existing graph-based feature selection methods utilise a static representation of the structure of the available data based on the Laplacian matrix of a simple graph. Here on the other hand, we perform data structure learning and feature selection simultaneously. To improve the estimation of the manifold representing the structure of the selected features, we use a higher order description of the neighbour- hood structures present in the available data using hypergraph learning. This allows those features which participate in the most significant higher order relations to be se- lected, and the remainder discarded, through a sparsification process. We formulate a single objective function to capture and regularise the hypergraph weight estimation and feature selection processes. Finally, we present an optimization algorithm to re- cover the hyper graph weights and a sparse set of feature selection indicators. This process offers a number of advantages. First, by adjusting the hypergraph weights, we preserve high-order neighborhood relations reflected in the original data, which cannot be modeled by a simple graph. Moreover, our objective function captures the global discriminative structure of the features in the data. Comprehensive experiments on 9 benchmark data sets show that our method achieves statistically significant improve- ment over state-of-art feature selection methods, supporting the effectiveness of the proposed method

    Semi-Supervised Learning for Diagnosing Faults in Electromechanical Systems

    Get PDF
    Safe and reliable operation of the systems relies on the use of online condition monitoring and diagnostic systems that aim to take immediate actions upon the occurrence of a fault. Machine learning techniques are widely used for designing data-driven diagnostic models. The training procedure of a data-driven model usually requires a large amount of labeled data, which may not be always practical. This problem can be untangled by resorting to semi-supervised learning approaches, which enables the decision making procedure using only a few numbers of labeled samples coupled with a large number of unlabeled samples. Thus, it is crucial to conduct a critical study on the use of semi-supervised learning for the purpose of fault diagnosis. Another issue of concern is fault diagnosis in non-stationary environments, where data streams evolve over time, and as a result, model-based and most of the data-driven models are impractical. In this work, this has been addressed by means of an adaptive data-driven diagnostic model

    A Novel Hybrid Dimensionality Reduction Method using Support Vector Machines and Independent Component Analysis

    Get PDF
    Due to the increasing demand for high dimensional data analysis from various applications such as electrocardiogram signal analysis and gene expression analysis for cancer detection, dimensionality reduction becomes a viable process to extracts essential information from data such that the high-dimensional data can be represented in a more condensed form with much lower dimensionality to both improve classification accuracy and reduce computational complexity. Conventional dimensionality reduction methods can be categorized into stand-alone and hybrid approaches. The stand-alone method utilizes a single criterion from either supervised or unsupervised perspective. On the other hand, the hybrid method integrates both criteria. Compared with a variety of stand-alone dimensionality reduction methods, the hybrid approach is promising as it takes advantage of both the supervised criterion for better classification accuracy and the unsupervised criterion for better data representation, simultaneously. However, several issues always exist that challenge the efficiency of the hybrid approach, including (1) the difficulty in finding a subspace that seamlessly integrates both criteria in a single hybrid framework, (2) the robustness of the performance regarding noisy data, and (3) nonlinear data representation capability. This dissertation presents a new hybrid dimensionality reduction method to seek projection through optimization of both structural risk (supervised criterion) from Support Vector Machine (SVM) and data independence (unsupervised criterion) from Independent Component Analysis (ICA). The projection from SVM directly contributes to classification performance improvement in a supervised perspective whereas maximum independence among features by ICA construct projection indirectly achieving classification accuracy improvement due to better intrinsic data representation in an unsupervised perspective. For linear dimensionality reduction model, I introduce orthogonality to interrelate both projections from SVM and ICA while redundancy removal process eliminates a part of the projection vectors from SVM, leading to more effective dimensionality reduction. The orthogonality-based linear hybrid dimensionality reduction method is extended to uncorrelatedness-based algorithm with nonlinear data representation capability. In the proposed approach, SVM and ICA are integrated into a single framework by the uncorrelated subspace based on kernel implementation. Experimental results show that the proposed approaches give higher classification performance with better robustness in relatively lower dimensions than conventional methods for high-dimensional datasets

    MACHINERY ANOMALY DETECTION UNDER INDETERMINATE OPERATING CONDITIONS

    Get PDF
    Anomaly detection is a critical task in system health monitoring. Current practice of anomaly detection in machinery systems is still unsatisfactory. One issue is with the use of features. Some features are insensitive to the change of health, and some are redundant with each other. These insensitive and redundant features in the data mislead the detection. Another issue is from the influence of operating conditions, where a change in operating conditions can be mistakenly detected as an anomalous state of the system. Operating conditions are usually changing, and they may not be readily identified. They contribute to false positive detection either from non-predictive features driven by operating conditions, or from influencing predictive features. This dissertation contributes to the reduction of false detection by developing methods to select predictive features and use them to span a space for anomaly detection under indeterminate operating conditions. Available feature selection methods fail to provide consistent results when some features are correlated. A method was developed in this dissertation to explore the correlation structure of features and group correlated features into the same clusters. A representative feature from each cluster is selected to form a non-correlated set of features, where an optimized subset of predictive features is selected. After feature selection, the influence of operating conditions through non-predictive variables are removed. To remove the influence on predictive features, a clustering-based anomaly detection method is developed. Observations are collected when the system is healthy, and these observations are grouped into clusters corresponding to the states of operating conditions with automatic estimation of clustering parameters. Anomalies are detected if the test data are not members of the clusters. Correct partitioning of clusters is an open challenge due to the lack of research on the clustering of the machinery health monitoring data. This dissertation uses unimodality of the data as a criterion for clustering validation, and a unimodality-based clustering method is developed. Methods of this dissertation were evaluated by simulated data, benchmark data, experimental study and field data. These methods provide consistent results and outperform representatives of available methods. Although the focus of this dissertation is on the application of machinery systems, the methods developed in this dissertation can be adapted for other application scenarios for anomaly detection, feature selection, and clustering

    Large-scale dimensionality reduction using perturbation theory and singular vectors

    Get PDF
    Massive volumes of high-dimensional data have become pervasive, with the number of features significantly exceeding the number of samples in many applications. This has resulted in a bottleneck for data mining applications and amplified the computational burden of machine learning algorithms that perform classification or pattern recognition. Dimensionality reduction can handle this problem in two ways, i.e. feature selection (FS) and feature extraction. In this thesis, we focus on FS, because, in many applications like bioinformatics, the domain experts need to validate a set of original features to corroborate the hypothesis of the prediction models. In processing the high-dimensional data, FS mainly involves detecting a limited number of important features among tens/hundreds of thousands of irrelevant and redundant features. We start with filtering the irrelevant features using our proposed Sparse Least Squares (SLS) method, where a score is assigned to each feature, and the low-scoring features are removed using a soft threshold. To demonstrate the effectiveness of SLS, we used it to augment the well-known FS methods, thereby achieving substantially reduced running times while improving or at least maintaining the prediction accuracy of the models. We developed a linear FS method (DRPT) which, upon data reduction by SLS, clusters the reduced data using the perturbation theory to detect correlations between the remaining features. Important features are ultimately selected from each cluster, discarding the redundant features. To extend the clustering applicability in grouping the redundant features, we proposed a new Singular Vectors FS (SVFS) method that is capable of both removing the irrelevant features and effectively clustering the remaining features. As such, the features in each cluster solely exhibit inner correlations with each other. The independently selected important features from different clusters comprise the final rank. Devising thresholds for filtering irrelevant and redundant features has facilitated the adaptability of our model to the particular needs of various applications. A comprehensive evaluation based on benchmark biological and image datasets shows the superiority of our proposed methods compared to the state-of-the-art FS methods in terms of classification accuracy, running time, and memory usage
    • …
    corecore