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Abstract

Massive volumes of high-dimensional data have become pervasive, with the num-

ber of features significantly exceeding the number of samples in many applications.

This has resulted in a bottleneck for data mining applications and amplified the

computational burden of machine learning algorithms that perform classification or

pattern recognition. Dimensionality reduction can handle this problem in two ways,

i.e. feature selection (FS) and feature extraction. In this thesis, we focus on FS, be-

cause, in many applications like bioinformatics, the domain experts need to validate

a set of original features to corroborate the hypothesis of the prediction models. In

processing the high-dimensional data, FS mainly involves detecting a limited number

of important features among tens/hundreds of thousands of irrelevant and redundant

features.

We start with filtering the irrelevant features using our proposed Sparse Least

Squares (SLS) method, where a score is assigned to each feature, and the low-scoring

features are removed using a soft threshold. To demonstrate the effectiveness of SLS,

we used it to augment the well-known FS methods, thereby achieving substantially

reduced running times while improving or at least maintaining the prediction accuracy

of the models.

We developed a linear FS method (DRPT) which, upon data reduction by SLS,

clusters the reduced data using the perturbation theory to detect correlations between

the remaining features. Important features are ultimately selected from each cluster,
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discarding the redundant features.

To extend the clustering applicability in grouping the redundant features, we

proposed a new Singular Vectors FS (SVFS) method that is capable of both removing

the irrelevant features and effectively clustering the remaining features. As such,

the features in each cluster solely exhibit inner correlations with each other. The

independently selected important features from different clusters comprise the final

rank. Devising thresholds for filtering irrelevant and redundant features has facilitated

the adaptability of our model to the particular needs of various applications.

A comprehensive evaluation based on benchmark biological and image datasets

shows the superiority of our proposed methods compared to the state-of-the-art FS

methods in terms of classification accuracy, running time, and memory usage.
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Chapter 1

Introduction and Overview

In nature, selection is one of the principal procedures of evolutionary change and

is the primary mechanism responsible for the complexity and adaptive intricacy of

living beings. Natural selection typically happens when there are limited resources

for a large number of creatures. Understanding this type of selection has been be-

coming increasingly relevant in practical contexts using nature-inspired evolutionary

algorithms [12, 17] such as Particle Swarm Optimization (PSO) [13], Ant Colony

Optimization (ACO) [15], and Genetic Algorithm (GA) [33].

A feature is an individual measurable property of the data; it is also known as an

attribute or variable. Feature Selection (FS) is an artificial selection or nature-inspired

selection process in which a subset of optimal features is selected to help reduce the

cost of computation requirement, reduce the effect of the curse of dimensionality, and

reduce data acquisition in the future by identifying the minimum number of essential

1



features that can achieve competitive prediction accuracy [27, 28]. In the past years,

in real-world machine learning or pattern recognition applications, the number of

features has expanded from hundreds to thousands of features [28].

For example, one of the applications is gene microarray analysis, where gene ex-

pression data usually includes a small number of samples with high dimensions and

noise [42, 3, 38]. A single gene chip is able to identify around tens of thousands of

genes for one sample, while in some diseases or biological processes, only a few collec-

tions of genes are essential [23]. Moreover, testing numerous redundant genes requires

tremendous memory space and significantly decreases data mining performance even

for a few samples. Therefore, selecting the disease-related genes from the original

gene expression will facilitate the design of proper remedial treatments [35, 49, 4].

In this thesis, we have demonstrated that the irrelevant features can be removed

by assigning a weight to each feature, and filtering the features with low weights

using a Sparse Least-Squares (SLS) method based on Singular Value Decomposition

(SVD). We have shown that augmenting SLS to the well-known feature selection

methods significantly reduces the running time while maintaining or even improving

the prediction accuracy.

To achieve a holistic FS that, in addition to removing the irrelevant features using

SLS, selects the important features, we proposed a Dimension Reduction based on

Perturbation Theory (DRPT) method. This method takes advantage of SLS and

defines a threshold based on the local maxima of the assigned weight and removes

2



those features whose weights are smaller than the threshold. To detect the correlations

in the resulting reduced data, we applied a nested clustering approach, where features

were clustered based on the perturbation theory. Each cluster was then turned into

sub-clusters using the entropy of features. Finally, a feature was selected from each

sub-cluster based on its assigned weight and entropy.

We extended our investigation in dimensionality reduction by proposing a Singular

Vectors-based Feature Selection (SVFS). In this approach, we introduced a signature

matrix in which the correlations between the features were encoded. The signature

matrix is used for both removing irrelevant features and clustering the remaining

features. To identify the important features among numerous redundant features,

we clustered the correlated features, with each cluster containing features that only

correlate with the features of the same cluster. Features with high mutual informa-

tion with the class label are selected from the clusters as important features. Our

comprehensive assessment over the benchmark and real-world genomic datasets has

shown the overall superior performance of the developed methods in comparison with

the state-of-the-art feature selection methods in terms of accuracy, running time, and

memory usage.

1.1 Definitions

This section describes the frequently used terms in this thesis.

• Class label: The term class label is ordinarily used in supervised machine
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learning, particularly in classification, where the goal is to learn a behavior that

estimates the class label from the values of features. The class label always falls

in a range of a limited number of distinct values.

• Classification accuracy: It refers to the accuracy of a classifier which is

calculated based on the percentage of total correct classifier outcome divided

by the total number of samples.

• Important features: Independent more informative features that are highly

correlated to the class label. Indeed, finding the most important or relevant

features is the goal of feature selection.

• Redundant features: In presence of important features, the redundant fea-

tures provide less or no information about the class label or outcome

• Irrelevant features: These non-informative features do not correlate with the

other features, including important and redundant features and the class label.

• Feature selection: refers to choose features to build feature vector according

to the insights provided by the field experts or the literature.

• Feature reduction: refers to reduce the number of features using techniques

similar to those presented in this dissertation, or according to insights from the

field experts.

• Feature extraction: refers to extract new components as the combination of
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the existing features, for instance, using principal component analysis.

• Feature engineering: refers to a combined set of feature reduction and feature

extraction techniques that produce a new set of significant features to be used

in building predictive and descriptive models.

1.2 Dimensionality Reduction

Dealing with large volumes of high-dimensional data has become common in vari-

ous domains, such as bioinformatics [32], social media [7], and healthcare [14]. The

rapid growth of high-dimensional data has introduced fruitful challenges to the effec-

tive and efficient data mining and machine learning approaches to discover knowledge

from raw data. In some domains like bioinformatics, the number of samples is consid-

erably smaller than the number of features. In such cases, applying data mining and

machine learning algorithms may cause the curse of dimensionality, which typically

arises when the data become sparser in the high-dimensional space [47], adversely

affecting those approaches designed for low-dimensional spaces [10]. Moreover, con-

sidering a large number of features for learning models can result in overfitting, which

may negatively impact the model generalizations when dealing with the unseen data

[45]. In addition to these problems, high-dimensional data analytics require high

volumes of memory storage and high-performance computing resources [8, 9]. Many

studies [40, 6, 34, 5] have shown that dimensionality reduction overcomes the curse of
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dimensionality, improves the learning performance, increases computational efficiency,

reduces memory usage, and builds more reliable generalization models.

Dimensionality reduction is mainly performed in two ways: (1) feature extraction;

(2) feature selection. In contrast to feature extraction techniques, like those based on

projection (e.g., principal component analysis and neural networks), feature selection

techniques do not modify the original features but merely select a subset of them [25].

Hence, feature selection approaches preserve the original semantics of the features and

provide the advantage of interpretability by domain experts [29]. Feature selection

is often preferred in many applications such as microarray data analysis [22, 24, 52],

fraud detection [39, 46], and text mining [48]. Also, feature selection can be applied

to both supervised and unsupervised learning methods. Supervised feature selection

approaches only use labeled data for feature selection and rank feature importance

values by calculating the correlation of feature with the class label [44]. Unsupervised

feature selection approaches evaluate feature importance values by measuring the

particular properties of the data, such as the variance or the locality preserving ability

[43]. With adequate labeled data that are expensive to obtain, supervised feature

selection approaches usually outperform the unsupervised feature selection methods

due to the utilization of labeled information. Throughout this thesis, we focus on

the problem of supervised learning or classification as the class labels are identified

beforehand in our investigation.
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1.3 Feature Selection Taxonomy

Various methods have been proposed for the appropriate selection of feature subsets

for classification. FS mainly involves a searching method, with the size of the search

space exponentially growing as the number of original features increases [50]. Apply-

ing a brute-force approach and exhaustive search for the most informative features is

impractical in most situations, particularly when the number of features is more than

tens of thousands. High dimensional data consists of irrelevant, misleading, or redun-

dant features that significantly increase the search space size, resulting in inefficient

data processing, hence no positive contribution to the learning process.

Feature selection methods are generally categorized into filter, wrapper, and em-

bedded methods [27]. Filter methods utilize the intrinsic properties of features to

measure the relevance of features. The selection of features is independent of any

machine learning algorithms, and filter methods are ordinarily utilized as a prepro-

cessing step. Instead, features are ranked based on their scores in various statistical

tests to correlate with the class label. ReliefF [41] and mRMR [37] are popular

examples of filter methods. In contrast, wrapper methods measure the weight of

features according to the performance of a classifier. Since the relationship between

the features and the class labels is examined through a trained classifier, wrapper

methods usually yield better accuracy [21]. However, wrapper methods have high

computational costs because of the ample feature space. Each selected subset must

be evaluated with a classifier that eventually makes the process slow. Some common
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examples of wrapper methods are forward feature selection [31], backward feature

elimination [30] , recursive feature elimination [19]. Embedded approaches use the

combination of an independent test and performance evaluation using a classifier for

a subset of features. They perform feature selection during the modeling process and

have lower costs compared to wrapper methods. Some of the most popular exam-

ples of embedded methods are LASSO [18] and RIDGE regression [36] which have

inbuilt penalization functions to reduce overfitting. Filter methods are fast and have

low computational costs; therefore, they are better suited for high dimensional data

[51, 16].

1.4 Contribution

This thesis started by removing irrelevant features using SLS and then clustering the

remaining features using perturbation theory. In the next phase, we proposed the

SVFS model to promote both irrelevant feature removal and clustering correlated

features. The outcomes of this study were published in two papers [1, 2], which have

been presented in Chapters 3 and 4, respectively. Moreover, the content of Chapter 2

was submitted as a journal paper in March 2020. The structure of this dissertation is

based on the format of thesis-by-article, where a series of papers, including published

papers or papers submitted or accepted for publication, describes a coherent research

study. This format also contains a short introductory chapter, explanation of the

research question, relevant literature and methodology, and a concluding chapter.
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The SLS paper that is incorporated in Chapter 2 has the following contributions:

• A sparse method (SLS) based on least squares to reduce dimensionality is pro-

posed.

• Irrelevant features can be detected and removed by SLS.

• A soft threshold can be furthered tuned to reduce the given dataset properly.

• SLS can be augmented to any feature selection algorithm.

• SLS optimizes the performance of feature selection algorithms.

The contributions for the DRPT paper that is appeared in Chapter 3 are:

• Features Correlations are encoded in ∆x = |x− x̃|.

• Features with low |xi| should be filtered and features with corresponding high

|xi| should be considered as more informative features.

• Clustering using ∆x and entropy of features help to select important features.

• Prove DRPT is robust against noise.

• Prove the performance of DRPT is insensitive to permutation of rows or columns

of the data.

The contributions for the FVFS paper that is emerged in Chapter 4 are:

• SVFS detects irrelevant features.
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• Prove the correlations of features encoded in signature matrix S.

• SVFS can be used for clustering.

• Two thresholds in the process of filtering irrelevant and redundant features are

introduced.

• SVFS can be applied in a wide range of high dimensional datasets by tuning

the thresholds.

• SVFS can turn into an unsupervised feature selection model.

1.5 Methodology

Irrelevant feature elimination accommodates a more solid understanding of data, re-

duces computation costs, and enhances classification performance. To exclude irrele-

vant features, a filter-based feature selection method needs at least a metric to mea-

sure the weight of each feature. Several techniques have been developed to tackle the

problem of filtering irrelevant and redundant features from high-dimensional datasets

[11]. Fisher score [20] and ReliefF [26] methods are two well-known examples of this

category. We take advantage of the least-square solutions method and assign a score

to each feature, and the features with low scores are filtered using a soft threshold. We

show that our method can optimize the performance of feature selection algorithms

in terms of both running time and classification accuracy. More details and results

are presented in Chapter 2.

10



During the last decade, the advent of high-dimensional microarray datasets led to

a new line of data mining research in bioinformatics. Microarray data analysis is con-

sidered a great challenge for computational techniques because of the dimensionality

of these data which are typically composed of tens of thousands of genes, despite the

small number of samples. We provide a new feature selection method (DRPT) [1]

that involves removing the irrelevant features using the least square method and then

detecting correlations between the remaining features. Using the perturbation theory,

we cluster the reduced data in a nested clustering process, where a feature is selected

from each sub-cluster based on its weight and entropy. The effectiveness of DRPT

has been verified by performing a series of comparisons with seven state-of-the-art

feature selection methods over ten genetic datasets ranging up from 9,117 to 267,604

features. The results show that the overall performance of DRPT is favorable in sev-

eral aspects compared to each feature selection algorithm. Furthermore, additional

experimental complications like the noise in microarray data have been considered

to be handled by the DRPT method, and we also prove that this method is robust

against noise. Mathematical concepts and details are presented in Chapter 3.

We have further extended the scope of our research by designing and developing

a new feature selection method based on singular vectors [2] in which the most in-

formative features are selected in a two-step process. Let D = [A | b] be a labeled

dataset, where b is the class label and the features (attributes) are the columns of

matrix A. We show that the signature matrix SA = I−A†A can be used to determine
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correlations between the columns of A, where A† is the pseudo-inverse of A. To do

this, we represent the matrix SA by a graph with the vertices being the columns of A,

and the columns Fi and Fj being connected if Si,j 6= 0. We show that the connected

components of this graph are the clusters of columns of A so that the columns in a

cluster correlate only with the columns in the same cluster. In the first step, SVFS

uses SD to find the cluster that contains b. We reduce the size of A by discarding

features in the other clusters as irrelevant features. In the next step, SVFS uses SA to

partition the remaining features into clusters and choose the most important features

from each cluster. Even though SVFS works perfectly on synthetic datasets, compre-

hensive experiments on real-world benchmark and genomic datasets show that SVFS

exhibits overall superior performance compared to the state-of-the-art feature selec-

tion methods in terms of accuracy, running time, and memory usage. Mathematical

concepts and details through some examples, as well as comprehensive experimental

results, are presented in Chapter 4.
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Chapter 2

Optimizing Feature Selection

Methods by Removing Irrelevant

Features Using Sparse Least Squares

(This chapter is submitted as a paper to journal of Expert Systems with Applications,

March 2020)

2.1 Introduction

Gene expression datasets usually consist of tens or hundreds of samples compared to

thousands or tens of thousands of features. This property of gene datasets impacts the

performance of the classifier [22] and also can cause data overfitting [10]. The purpose

of Feature Selection (FS) is to find a subset of features that are more informative and
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relevant to class labels [15]. So, in addition to improving the performance of the

classifier, feature selection avoids over-fitting [5, 12].

In genome-wide association study (GWAS), partial or all of the human genome

is genotyped for discovering the associations between genetic factors and a disease

or a phenotypic trait. In GWAS, the genetic variants under consideration are single

nucleotide polymorphisms (SNPs), the most common type of variation among people.

The number of SNPs in a disease dataset varies from tens of thousands to more than

a million. As such, one of the bottlenecks of working with these genome datasets is

their large-scale size that makes it difficult to render the data for meaningful analysis.

In these datasets, there are many embedded noisy SNPs; these are SNPs that have

minimal effect on the disease.

One of the customary methods to determine whether an SNP is associated with

a disease or not is using p-values and statistical significance. For example, in [25] a

two-step feature selection strategy was used on a dataset containing 17,000 Crohn’s

disease cases, 13,000 Ulcerative Colitis cases, and 22,000 controls with 178,822 SNPs.

In that study, Wei et al. reduced the number of features by filtering out SNPs with

p-values greater than 10−4 and then applied a penalized feature selection with L1

penalty to select a subset of SNPs. However, researchers are strongly advised against

the use of p-values and statistical significance in relation to the null-hypothesis [1, 24].

In this chapter, we propose a sparse method to remove irrelevant features. We take

advantage of the least-square solutions method and assign a score to each feature, and
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the features with low scores are filtered using a soft threshold. We show features whose

weights are very small do not affect the class label and consider them as irrelevant

features. In other words, we propose a sparse method called Sparse Least Squares

(SLS), in which we shrink the wights of irrelevant features to zero to reduce the size

of a dataset. Any feature selection algorithm can be augmented with the SLS . Of

particular interest to us are feature selection algorithms that have great prediction

power, however, suffer from high computational cost. Among these algorithms are

the wrapper methods such as SVMRFE [10] and methods based on information gain

such as mRMR [20].

To show the effectiveness of our approach, we experiment with six genomic datasets.

After reducing the size of datasets by our SLS method, we apply a feature selection

algorithm to the reduced dataset. We examine three well-known feature selection

algorithms: mRMR [20], SVMRFE [10], and ReliefF [13] ; also more description and

experimental results are presented in Sections 2.2 and 2.4 respectively. Augmenta-

tion of FS methods with SLS to classify gene expression datasets, shows significant

improvement to accuracy. Meanwhile, the running times are considerably reduced

because apply SLS results in a much smaller dataset. We shall also experiment on

image and text datasets and see that augmenting FS algorithms with our SLS, re-

duces the computational cost by orders of magnitude while maintaining or improving

the prediction accuracy of the models.

The remaining of this chapter is organized as follows. In Section 2.2, we review
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related work. We explain our methodology in Section 2.3 and report experimental

results in Section 2.4. Finally, we summarize our work and conclude the chapter in

Section 2.5.

2.2 Related work

Feature selection algorithms fall into three different categories: filter, wrappers, and

embedded methods. Filter methods are independent of classifiers and select a subset

before any classification. Relief-based methods [16] such as Minimum Redundancy

Maximum Relevance (mRMR) [20] and Relief [14], are well-known filter feature selec-

tion methods. ReliefF model [13] is another widely used filter-based approach wherein

features are scored using feature value differences between nearest-neighbor instance

pairs. Wrapper methods [15] select a subset and estimate the score of the subset by

employing the performance of the classifier. Wrapper methods have been proven to

be useful but have a high computational complexity since the induction algorithm

is called repeatedly. A well-known wrapper method is Support Vector Machines Re-

cursive Feature Elimination (SVMRFE) [10] algorithm. This algorithm repeatedly

constructs the model and eliminate features with low ranks. Filter methods are

faster than wrappers and computationally suitable to be applied to large datasets. In

embedded methods, feature selection is strongly coupled with the classifier design. In

terms of computational complexity, this approach falls between filter and wrappers

methods.
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Irrelevant feature removal enables a more solid understanding of data, reduces

computation costs, and improves classification performance. To identify and remove

the irrelevant features, one needs a criteria to measure the relevancy of features to

the output class. Two main ranking methods that help understand the relevance of

a feature are Correlation metric and Mutual Information. The most practical and

simple metric is the Pearson Correlation Coefficient [9, 19] which is defined as:

R(i) =
cov(Fi,b)√

var(Fi)× var(b)

where Fi is the i-th feature, b is the class label, cov is the covariance and var is the

variance.

Ranking methods based on Information-theory [9, 21, 11] calculate the dependency

between features. Mutual Information (MI) between features X and Y is zero if X

and Y are independent and MI greater than zero reflects they are dependent. MI is

defined as follows:

I(Y,X) = H(Y )−H(Y |X).

Here H(Y ) represents Shannon’s definition for entropy given by:

H(Y ) = −
∑
y

p(y) log(p(y))

where p(y) is the probability of occurrence of y. Also, H(Y |X) is the conditional

entropy given as :

H(Y |X) = −
∑
x

∑
y

p(x, y) log(p(y|x))
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In [6], the author proposed a feature ranking based on conditional MI in the

application of image classification and molecular bio-activity. This metric is used to

score features using the following equation:

s[n] = min
`≤k

Î(Y ;Xn|Xv(`))

where s[n] is the score updated at each iteration, k contains the index of the last

picked feature, Xn is the current evaluated feature, Xv(l) is the set of already selected

features.

2.3 Proposed Approach

Consider a dataset D = [A | b], consisting of m samples where each sample has n+ 1

features. The class label of D is denoted by b. We consider the linear system Ax = b,

where x = [x1, . . . , xn]T is the vector of unknowns. Since the system Ax = b may not

have exact solutions, instead we find the unique solution with the smallest 2-norm

that satisfy the least squares problem

||Ax− b||2, (2.1)

over all x. This minimization problem is known as the method of least squares and

its solutions are defined via singular value decomposition (SVD) of A. Recall that

the SVD of an m × n matrix A is of the form A = USV T , where U is an m × m

orthogonal matrix, V is an n×n orthogonal matrix, and S = diag(σ1, . . . , σr, 0, . . . , 0)

is an m× n diagonal matrix. Also, recall that the Moore-Penrose inverse of A is the
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n × m matrix A† = V S−1UT , where S−1 = diag(σ−11 , . . . , σ−1r , 0, . . . , 0). It is well-

known that x = A†b is the least squares with the smallest 2-norm, see [7].

We view the solution x =

[
x1, . . . , xn

]t
to the least squares problem as a weight

vector. In other words, we can approximate the label column b as a linear combination

x1F1 + · · · + xiFi + · · · + xnFn, where Fi is the i-th column of A. Intuitively, the

larger |xi| the more impact Fi has on b. As such, we filter out those features whose

corresponding weight is less than a threshold as irrelevant features. In other words, we

shrink the wights of irrelevant features to zero. This process yields a sparse method

to reduce the size of datasets.

Our aim is to show that identifying irrelevant features using their weights actually

makes sense. We prove this for matrices that are full-row rank. So, for the rest of

this section, we assume that rank(A) = m. Let us denote by Aj the matrix obtained

from A by adding a (random) column vector c ∈ Rm to Fj. We realize that this kind

of perturbation of A can be expressed in terms of a rank-1 update of A. Consider

the column vector ej ∈ Rn as the j-th standard basis vector. It is easy to verify that

Aj = A+ cetj. To solve Ajx = b, we need to find the pseudo-inverse of A+ cetj.

Let A ∈ Rm×n be a matrix of full row-rank, c ∈ Rm and d ∈ Rn. Then it is known

(see for example [4, Theorem 3.3.2]) that

(A+ cdt)† = A† +
1

β
stktA† − β

α
(
‖ k ‖2

β
st + k)(

‖ s ‖2

β
ktA† + h),

where k = A†c,h = dtA†, s = dt(I − A†A), β = 1 + dtA†c, and α =‖ k ‖2‖ s ‖2

+ | β |2.
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We denote column j of V by vj and row j of V by vj. We partition vj as

vj =

[
vj,1 vj,2

]
, where vj,1 consists of the first m entries of vj and vj,2 is the

remaining n−m entries.

Lemma 2.3.1. The column Fj of A is independent of the rest of columns of A if and

only if vj,2 = 0.

Proof. Note that Avi = 0, for all m+1 ≤ i ≤ n. Let k be in the range m+1 ≤ k ≤ n.

Note that Avk = 0 yields a dependence relation between the columns of A. So if

Fj is independent of the rest of columns of A, we deduce that the entry in the j-

th position of vk must be zero, that is vj,k = 0. So the j-th row of V is of the

form vj = [vj,1 · · · vj,m 0 · · · 0]. Hence, vj,2 = 0. Conversely, a dependence relation

between Fj and the other columns, yields a vector z whose j-th position is non-zero

and Az = 0. So, z is in the ker(A) which is kernel of matrix A and can be expressed

in terms of vm+1, . . . ,vn. So, the j-th component of at least one of the vm+1, . . . ,vn

must be non-zero. Hence, vj,2 6= 0. 2

Lemma 2.3.2. Suppose that column Fj of A is independent of the rest of columns

of A. Then s = etj(I − A†A) = 0.

Proof. Note that, by Lemma 2.3.1, vj,2 = 0. So, we have

vj

 Im 0

0 0

 = vj.
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We have

etjA
†A = etjV S

−1U tUSV t = etjV S
−1SV t

= vj

 Im 0

0 0

V t = vjV t = etjI.

Hence, s = etj(I − A†A) = 0. 2

Theorem 2.3.3. Suppose that column Fj of A is independent of the rest of columns

of A. Let x = A†b and x̃ = (A+ cetj)
†b. Then ||x− x̃||≤ |xj |

σm
.

Proof. Note that, by Lemma 2.3.2, we have s = 0. Also, we have

khb =A†cetjA
†b

= A†cetjx = A†cxj

Hence, by [4, Theorem 3.3.2], we get

||x− x̃|| = ||A†b− (A+ cetj)
†b||

= ||khb||= ||A†cxj||≤ ||A†|| |xj|=
|xj|
σm

2

In Theorem 2.3.3, we can choose c so that ∆x =
|xj |
σm

; this way ∆x is a vector that

directly correlates with xj. To do so, we just need to choose c so that ||A†c||= ||A†||.

So, we take c that is a solution to the optimization problem:

max
||x||=1

||A†x|| (2.2)

29



It is well-known that the solution to optimization problem (2.2) is a unit eigen-

vector of (A†)tA† corresponding to eigenvalue 1/σ2
m.

We may think of b along with the features F1, · · · ,Fn as a many body problem

so that b may interact (related) with some of the Fjs and the features F1, · · · ,Fn

might interact with each other due to their correlations with each other. The least

squares solution to Ax = b determines the weight of interactions between b and the

Fis. It follows from Theorem 2.3.3 that perturbing irrelevant features will not affect

the equilibrium state of the whole system.

SLS works especially well when the number of samples is much less than the

number of features, that is m << n. Of special interest to us are genomic datasets

where there are usually tens or hundreds of samples compared to tens of thousands

of genes. The matrix A in these datasets has full row-rank because gene expression

of different samples are independent of each other. Intuitively, it makes sense to

eliminate the columns that are less important. Of course the definition of relevancy

is not quantitative and one has to set a threshold for the degree of relevancy. We

can tune the threshold parameter, however, our experiments show that even a soft

threshold is enough to reduce the computational times of feature selection algorithms

and increase the prediction power of classifier on selected features. Next, we apply

the feature selection algorithm on the reduced dataset. In other words, we augment

the existing feature selection methods with our SLS.

The complexity of our proposed method is dominated by the complexity of the
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Algorithm 1: Augmenting SLS to feature selection algorithms
Data: D = [A | b]m×(n+1)

Result: Subset of features, CA

1 x = A†b, where A† is the Moore-Penrose inverse of A ;

2 Threshold =0.1 ∗max(|x|);

3 Irrelevant ={i | |xi|< Threshold};

4 Index ={1, . . . , n]} \ Irrelevant;

5 D̂ = [AIndex | b];

6 Apply feature selection algorithm to the reduced dataset D̂;

7 Classify D based on the selected features and return CA ;

SVD, since the inverse of perturbed Ã is calculated using SVD. The complexity of

computing SVD of Am×n is O(min(mn2,m2n)).

2.4 Experimental Results

We examine three well-known feature selection algorithms, that are mRMR, SVMRFE

and ReliefF as we describe below.

mRMR This method selects features with the highest relevance to the class labels

and lowest redundancy among candidate features. Both maximum-relevance and

minimum-redundancy criteria on this method are based on mutual information.
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SVMRFE This algorithm utilizes an estimator to assign weights to features. These

weights generated by estimator are used as ranking criteria. In each step of feature

elimination, the lowest-ranked features are removed from the current subset of fea-

tures. Feature elimination is a recursive procedure and is repeated until the specified

number of features is selected.

ReliefF ReliefF assigns a score for each feature based on the identification of feature

value differences between nearest-neighbor instance pairs. The main advantage of

this algorithm is to measure feature interactions without performing a comprehensive

inspection of every pairwise interaction, consequently taking significantly less time

than a comprehensive pairwise search.

2.4.1 Datasets and Pre-processing

We select a variety of datasets, including genomic, image, and text datasets, which

are considered high-dimensional. Three genomic datasets, described in Table 2.1, are

publicly available from NCBI dataset browser 1. Genomic datasets are not cleaned

and for pre-processing the data, we develop an R code to clean and convert any full

Simple Omnibus Format in Text (SOFT) dataset in NCBI to CSV format 2. We

use GEO2R [2] to find the mapping between prob IDs and gene samples. Probe

IDs without a gene mapping were removed. Next, expression values of each gene
1https://www.ncbi.nlm.nih.gov/sites/GDSbrowser
2http://github.com/majid1292/NCBIdataPrep
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is considered as the average of expression values of all mapped prob IDs to that

gene. In the output dataset, we also refine null cells with k-Nearest Neighbors (kNN)

imputation method.

Table 2.1: Summary of genomic datasets

Dataset # Samples # Original features # Cleaned features # Classes

GDS3268 202 44,290 29,916 2

GDS1615 127 22,282 13,649 3

GDS3929 183 24,526 19,334 2

GDS2545 171 12,625 9,391 4

GDS531 173 12,625 9,392 2

GDS1962 180 54,675 29,185 4

Table 2.2 shows a summary of selected image and text dataset which are accessible

from the open-source feature selection repository at Arizona State University 3.
3http://featureselection.asu.edu/datasets.php
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Table 2.2: Summary of image and text datasets

Dataset # Samples # Features # Classes Type

pixraw10P 100 10,000 10 Image

orlraws10P 100 10,304 10 Image

warpPIE10P 210 2,420 10 Image

warpAR10P 130 2,400 10 Image

BASEHOCK 1,993 4,862 2 Text

PCMAC 1,943 3,289 2 Text

2.4.2 Hardware and Software

In all experiments, all codes are implemented with Python 3.6 and also we have used

the Python software packages of mRMR, SVMRFE and ReliefF available in scikit-

rebate machine learning library [23]. Note that the basic ReliefF requires to specify

the number of nearest neighbors to consider in the scoring algorithm, and we use

MultiSURF version implementation of ReliefF, which is an extension to the original

algorithm that automatically ascertain the ideal number of neighbors to consider for

scoring the features. In addition, all experiments have been run on an IBM®LSF

10.1.0.6 machine (Suite Edition: IBM Spectrum LSF Suite for HPC 10.2.0) with
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requested 8 nodes, 8 GB of RAM , and 4 GB swap memory using Python 3.6.5.

2.4.3 Validation and Evaluation

To evaluate how selected features can help differentiate between samples with different

labels, having a test dataset that has not been seen by the machine learning models

is essential. Thus, we use 5-fold cross-validation (CV) techniques, and to avoid the

dataset shift, which is one of the drawbacks of using cross-validation, the stratified

version was used [3]. The stratification ensures both training and testing sets contain

the same distribution of class labels as in the original dataset. Stratified CV ensures

that no value is over/under-represented in the training and test sets, leading to a

more accurate estimate of the classification performance [17].

The number of features k to be selected by a feature selection algorithm should

be given as an input parameter because the computational complexity is affected by

k. So, we set k = 50 for all algorithms.

To evaluate the performance of each feature selection method or its augmentation

with SLS, we report classification accuracy (CA) over 15 iterations (three times re-

peating stratified 5-fold CV). Similar studies [26, 8, 18] suggest considering the top

50 features for feature selection. However, those top selected features may not nec-

essarily yield the highest accuracy. Therefore, in each of the 15 iterations, we set k

= 50 to select a subset of 50 features using FS algorithms, and we take advantage

of inner iteration from t = 1 to k to feed the first t features to the Random Forest
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(RF) classier to find an optimal number of top feature where the subset of the first

t features yields the highest accuracy. Then, the average CA along with size of the

corresponding t optimal subset of features are reported. Also, we report the total

running time over 15 iterations which includes the running time of the classifier as

well. This setting is applied across all FS methods.

2.4.4 Experiments on text datasets

Fig. 2.1 represents the running time, classification accuracy, and the number of

selected features of each FS method on the text datasets. We choose a range of

threshold, starting from 0 to 0.23 or 0.24, where threshold 0 indicates the original

datasets and increasing the threshold turns the given dataset into a lower dimension.

As we can see from Fig. 2.1, SVMRFE maintains the same CA on 0 threshold

(original dataset) and 0.1 threshold while the running time of SVMRFE is reduced

by a magnitude of order on the reduced datasets.

On the other hand, mRMR and ReliefF see an increasing trend in CA as we in-

crease the threshold. The running time of mRMR on the original text datasets is

around 4 · 105 seconds and around 400 seconds at the last threshold. This perfor-

mance illustrates how selecting a soft threshold affects upon computation cost and

classification accuracy of all FS methods. Moreover, reducing the size of datasets by

increasing the threshold does not significantly change the number of selected features

and reflects the characteristics of the original datasets are preserved in the reduction
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Figure 2.1: Running time and classification accuracy of feature selection by SVMRFE,

mRMR and ReliefF, over 15 runs considering 5 different thresholds on text datasets
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process.

2.4.5 Experiments on genomic datasets

Fig. 2.2 represents the results of running time in seconds, CA, and the number of

selected features for six genomic datasets described in Table 2.1. For all datasets

excluding GDS1615, SLS decreases the running time up to 400 times for all the

three FS methods where threshold zero refers to the original dataset and increasing

threshold makes datasets smaller. For GDS1615, although we get marginal running

time reduction particularly for mRMR and SVMRFE, SLS clearly improves the CA

of all FS models. Moreover, the superiority of our proposed model is evident by

looking at the upward trends in CA across all datasets and FS methods. While we

experience improvement in CA over the increasing threshold, the number of selected

features decreases or remains relatively the same compare to the number of selected

features at threshold 0 (original dataset). Experiments over genomic datasets clearly

expose SLS removes irrelevant features by producing less noisy and smaller datasets

and feeding FS models more informative data.
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Figure 2.2: Running time and classification accuracy of feature selection by SVM-

RFE, mRMR and ReliefF, over 15 runs considering 5 different thresholds on genome

datasets
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2.4.6 Experiments on image datasets

Fig. 2.3 illustrates a significant decrease in running time for all three FS methods over

all image datasets while CA remains almost stable for SVMRF and mRMR models

across different thresholds. The ReliefF has gained a moderate increase in CA on

some of the datasets.
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Figure 2.3: Running time and classification accuracy of feature selection by SVMRFE,

mRMR and ReliefF, over 15 runs considering 5 different thresholds on image datasets

It is worthwhile to note that the CA on pixraw10P and orlraws10P are basically
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above 95% at zero thresholds (original dataset) and this high accuracy is preserved

when we filter out some features using SLS. This is a good indication that SLS

efficiently removes the irrelevant features and preserves important features.

Overall experiments on genomic, text, and image datasets exhibit that SLS ef-

ficiently removes irrelevant features and turns the datasets into a lower dimension

while preserving more informative features. Over some thresholds, we did not achieve

a significant improvement in AC, but computation cost decreased in the magnitude

of order. This comprehensive experiment also reflects the term of relevancy is not

quantitative in real and benchmark datasets, and we omit features with low relevance

to the class label based on a soft threshold.

2.5 Conclusions

In this chapter, we proposed a method (SLS) based on least squares to remove irrel-

evant features. We can think of the class label b along with the features F1, · · · ,Fn

as a many body problem so that b may interact (related) with some of the Fjs and

the features F1, · · · ,Fn might interact with each other due to their correlations with

each other. We proved that perturbing irrelevant features will not affect the equilib-

rium state of the whole system. Since in real datasets the notion of relevancy is not

quantitative, we have to decide on the relevancy based on a threshold. We showed by

experiments that SLS can optimize the performance of feature selection algorithms

both in terms of running time and classification accuracy by choosing a soft threshold.
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Chapter 3

High-Dimensional Feature Selection

for Genomic Datasets

(This chapter is based on a paper published in Knowledge-Based Systems, 2020 [2])

3.1 Introduction

Supervised learning is a central problem in machine learning and data mining [9].

In this process, a mathematical/statistical model is trained and generated based on

a pre-defined number of instances (train data) and is tested against the remaining

(test data). A subcategory of supervised learning is classification, where the model is

trained to predict class labels [28]. For instance, in tumor datasets, class labels can be

malignant or benign, the former being cancerous and the latter being non-cancerous

tumors [36]. For each instance in a classification problem, there exists a set of features
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that contribute to the output [22].

In high-dimensional datasets, there are a large number of irrelevant features that

have no correlation with the class labels. Irrelevant features act as noise in the data

that not only increase the computational costs but, in some cases, divert the learning

process toward weak model generation [23, 15]. The other important issue is the

presence of correlation between good features, which makes some features redundant.

Redundancy is known as multicollinearity in a broader context and it is known to

create overfitting and bias in regression when a model is trained on data from one

region and predicted on another region [16, 38].

The goal of feature selection (FS) methods is to select the most important and

effective features [21]. As such, FS can decrease the model complexity in the training

phase while retaining or improving the classification accuracy. Recent FS methods

[19, 45, 10] usually find the most important features through a complex model which

introduce a more complicated framework when followed by a classifier.

In this chapter, we present a linear FS method called dimension reduction based on

perturbation theory (DRPT). Let D = [A | b] be a dataset where b is the class label

and A is anm×nmatrix whose columns are features. We shall focus on datasets where

m << n and of particular interests to us are genomic datasets where gene expression

level of samples (cases and controls) are measured. So, each feature is the expression

levels of a gene measured across all samples. Biologically speaking, there is only a

limited number of genes that are associated to a disease and, as such, only expression
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levels of certain genes can differentiate between cases and controls [27, 18, 11]. So,

a majority of genes are considered irrelevant. One of the most common methods to

filter out irrelevant features in genomic datasets is using p-values. That is, one can

look at the expression levels of a gene in normal and disease cases and calculate the p-

values based on some statistical tests. It has been customary to conclude that genes

whose p-values are not significant are irrelevant and can be filtered out. However,

genes expressions are not independent events (variables) and researchers have been

warned against the misuse of statistical significance and p-values, as it is recently

pointed out in [4, 41].

We consider the system Ax = b where the rows of A are independent of each

other and Ax = b is an underdetermined linear system. This is the case for genomic

datasets because each sample has different gene expressions from the others. Since

Ax = b may not have a unique solution, instead we use the least squares method

and the pseudo-inverse of A to find the solution with the smallest 2-norm. One can

view each component xi of x as an assigned weight to the column (feature) Fi of A.

Therefore, the bigger the |xi| the more important Fi is in connection with b.

It then makes sense to filter out those features whose weights are very small

compared to the average of local maximums over |xi|’s. After removing irrelevant

features, we obtain a reduced dataset, which we still denote it by [A | b]. In the

next phase, we detect correlations between columns of A by perturbing A using a

randomly generated matrix E of small norm. Let x̃ be the solution to (A+E)x̃ = b.
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It follows from Theorem 3.3.3 that features Fi and Fj correlate if and only if |xi− x̃i|

and |xj − x̃j| are almost the same. Next, we cluster ∆x = |x− x̃| using a simplified

least-squares method called Savitsky-Golay smoothing filter [33]. This process yields

a step-wise function where each step is a cluster. We note that features in the same

cluster do not necessarily correlate and so we further break up each cluster of ∆x

into sub-clusters using entropy of features. Finally, from each sub-cluster, we pick a

feature and rank all the selected features using entropy.

The “stability” of a feature selection algorithm is recently discussed in [29]. An

algorithm is ‘unstable’ if a small change in data leads to large changes in the chosen

feature subset. In real datasets, it is possible that there are small noise or error

involved in the data. Also, the order of samples (rows) in a dataset should not

matter; the same applies to the order of features (columns). In Theorem 3.3.4 we

prove that DRPT is noise-robust and in Theorem 3.3.5 we prove that DRPT is stable

with respect to permuting rows or columns.

We compare our method with seven state-of-the-art FS methods, namely mRMR

[31], LARS [17], HSIC-Lasso [46], Fast-OSFS [42], group-SAOLA [52], CCM [12] and

BCOA [14] over ten genomic datasets ranging up from 9,117 to 267,604 features.

We use Support Vector Machines (SVM) and Random Forest (RF) to classify the

datasets based on the selected features by FS algorithms. The results show that, over

all, the classification accuracy of DRPT is favorable compared with each individual

FS algorithm. Also, we report the running time, CPU time, and memory usage and

53



demonstrate that DRPT does well compared to other FS methods.

The rest of this chapter is organized as follows. In Section 3.2, we review related

work. We present our approach and the algorithm in Section 3.3. Experimental

results and performance comparisons are shown in Section 3.4 and we conclude the

chapter in Section 3.5.

3.2 Related Work

FS methods are categorized as filter, wrapper and embedded methods [25]. Fil-

ter methods evaluate each feature regardless of the learning model. Wrapper-based

methods select features by assessing the prediction power of each feature provided

by a classifier. The quality of the selected subset using these methods is very high,

but wrapper methods are computationally inefficient. The last group consolidates

the advantages of both methods, where a given classifier selects the most important

features simultaneously with the training phase. These methods are powerful, but

the feature selection process cannot be defused from the classification process.

Providing the most informative and important features to a classifier would result

in a better prediction power and higher accuracy [49]. Selecting an optimal subset of

features is an NP-hard problem that has attracted many researchers to apply meta-

heuristic and stochastic algorithms [44, 40, 30].

Several methods exist that aim to enhance classification accuracy by assigning a

common discriminative feature set to local behavior of data in different regions of the
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feature space [37, 5]. For example, localized feature selection (LFS) is introduced by

Armanfard et al. [5], in which a set of features is selected to accommodate a subset

of samples. For an arbitrary query of the unseen sample, the similarity of the sample

to the representative sample of each region is calculated, and the class label of the

most similar region is assigned to the new sample.

On the other hand, some approaches use aggregated sample data to select and

rank the features [31, 17, 46, 39, 13]. The least absolute shrinkage and selection

operator (LASSO) is an estimation method in linear models which simultaneously

applies variable selection by setting some coefficients to zero [39].

Least angle regression (LARS) proposed by Efron et al. [17] is based on LASSO

and is a linear regression method which computes all least absolute shrinkage and

selection operator [39] estimates and selects those features which are highly correlated

to the already selected ones.

Chen et al. [13] introduced a semi-supervised FS called Rescaled Linear Square

Regression (RLSR), in which rescaling factors are incorporated to exploit the least

square regression model and rank features. They solve the minimization problem

shown in equation 3.1 to learn Θ and YU , which are a matrix of rescaling factors and

unknown labels, respectively.

(3.1)min
(
||XTΘW + 1bT −Y||2F + γ||W||2F

)
st.W,b, θ > 0,1T θ = 1,YU ≥ 0,YU1 = 1,

where W is a sparse matrix that represents the importance of features, X is the
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dataset, Y is class labels, and b = 1
n
(YT1−WTX1), where n is number of samples

in a dataset. Their proposed algorithm continuously updates W, b and YU until

convergence.

Yamada et al. [46] proposed a non-linear FS method for high-dimensional datasets

called Hilbert-Schmidt independence criterion least absolute shrinkage and selection

operator (HSIC-Lasso), in which the most informative non-redundant features are

selected using a set of kernel functions, where the solutions are found by solving a

LASSO problem. The complexity of the original Hilbert-Schmidt FS (HSFS) is O(n4).

In a recent work [47] called Least Angle Nonlinear Distributed (LAND), the authors

have improved the computational power of the HSIC-Lasso. They have demonstrated

via some experiments that LAND and HSIC-Lasso attain similar classification accu-

racies and dimension reduction. However, LAND has the advantage that it can be

deployed on parallel distributed computing. Another kernel-based feature selection

method is introduced in [12] using measures of independence and minimizing the trace

of the conditional covariance operator. It is motivated by selecting the features that

maximally account for the dependence on the covariates’ response.

In some recent real-world applications, we need to deal with sequentially added

dimensions in a feature space while the number of data instances is fixed. Yu et

al. [50] developed an open source Library of Online FS (LOFS) using state-of-the-

art algorithms. The learning module of LOFS consists of two submodules, Learning

Features added Individually (LFI) and Learning Grouped Features added sequentially
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(LGF). The LFI module includes various FS methods including Alpha-investing [53],

OSFS [43], Fast-OSFS [42], and SAOLA [51] to learn features added individually

over time, while the LGF module provides the group-SAOLA algorithm [52] to mine

grouped features added sequentially.

In [32], the authors proposed a bio-inspired optimization algorithm called Coy-

ote Optimization Algorithm (COA) simulating the behavior of coyotes. Using their

new strategy, COA makes a balance between exploration and exploitation processes

to solve continuous optimization problems. Very recently, the authors [14] upgraded

their method by proposing a binary version of COA called Binary Coyote Optimiza-

tion Algorithm (BCOA), which is a wrapper feature selection method.

There is a great interest in the applications of FS methods in disease diagnoses and

prognoses. For example, Parkinson’s disease (PD) is a critical neurological disorder

and its diagnoses in its initial stages is extremely complex and time consuming. Re-

cently, voice recordings and handwritten drawings of PD patients are used to extract

a subset of important features using FS algorithms to diagnose PD [3, 6, 34, 24, 48]

with a good success rate.

3.3 Proposed approach

Consider a dataset D consisting of m samples where each sample contains n + 1

features. Let us denote by A the first n columns of D and by b the last column. We

also denote by Fi the i-th feature (column) of A. We shall first consider eliminating
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the irrelevant features. Throughout this chapter, by the norm of a vector, we always

mean its 2-norm. Recall that

||A||= Supx 6=0

||Ax||
||x||

= Sup||x||=1||Ax||

Denote by σ1 ≥ σ2 ≥ · · · ≥ σr the singular values of A, where r = min(m,n).

The smallest non-zero singular value of A is denoted by σmin and the greatest of the

σi is also denoted by σmax. It is well-known that ||A||2= σmax. Recall that A admits

a singular value decomposition (SVD) in the form A = UΣV T , where U and V are

orthogonal matrices and Σ = diag(σ1, . . . , σr, 0, . . . , 0) is an m × n diagonal matrix.

Here, V T denotes the transpose of V .

We first normalize the columns of A so that each Fi has norm 1. Then, we solve

the linear system Ax = b by using the method of least squares (see theorem 3.3.1).

Here, x = [x1 · · ·xi · · ·xn]T . The idea is to select a small number of columns of A that

can be used to approximate b. Since Ax = b may not have a unique solution, instead

we consider a broader picture by solving the least squares problem minx||Ax − b||2

whose solution is given in terms of pseudo-inverse and SVD of A. The following result

is well-known, see [8].

Theorem 3.3.1 (All Least Squares Solutions). Let A be an m × n matrix and b ∈

Rm. Then all the solutions of minx||Ax − b||2 are of the form y = A+b + z, where

z ∈ ker(A). Furthermore, the unique solution whose 2-norm is the smallest is given

by x = A+b.
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In other words, we can approximate the label column b as a linear combination

x1F1 + · · · + xnFn. So each |xi| can be viewed as an assigned weight to Fi. Given

that each Fi has norm 1, if |xi| is small compared to others, then the vector xiFi will

have a negligible effect on b. It then makes sense to filter out those features whose

weights are very small. In other words, we shrink the weights of irrelevant features

to zero.

In this chapter, we shall mostly focus on datasets where m << n. Of special

interest to us are genomic datasets where there are usually tens or hundreds of samples

compared to tens of thousands of genes. The matrix A in these datasets has full row-

rank because gene expressions of different samples are independent of each other.

Since b ∈ Rm, it is enough to identify only m independent columns of A. Intuitively,

it makes sense to eliminate the columns that are less important.

We prove below how weight of each feature Fi is directly affected by the relevance

of Fi to b. Suppose that A is an m×n of full row-rank and consider the SVD of A as

A = UΣV T . Let U =

[
u1 · · · um

]
. Note that u1, . . . ,um form an orthonormal

basis of Rm.

Theorem 3.3.2. Let A be a full row-rank matrix and denote by x = [x1 . . . xn]T

the least squares solutions to Ax = b. Then, each component xi of x is given by

xi = 〈Fi, z〉, where z = U [〈u1,b〉/σ2
1 · · · 〈um,b〉/σ2

m]T .

Proof. Since A is full row-rank, the right inverse of A is A+ = AT (AAT )−1. Consider

the SVD of A as A = UΣV T . Then AAT = UΣΣTUT =
∑m

i=1 σ
2
i uiu

T
i . Note that
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the solution of Ax = b with the smallest norm is x = A+b = AT (AAT )−1b. Let

z = (AAT )−1b. So, b = AATz =
∑m

i=1 σ
2
i uiu

T
i z. Since the uis are orthonormal, we

get

〈uk,b〉 = σ2
k〈uk, z〉, k = 1, . . . ,m. (3.2)

Since A has full row-rank, we have σk > 0, for all k. Let b̄1, . . . , b̄m be the coordinates

of b with respect to the basis u1, . . . ,um of Rm. Similarly, let z̄1, . . . , z̄m be the coor-

dinates of z with respect to this basis. So, b = U [b̄1 . . . b̄m]T and z = U [z̄1 . . . z̄m]T .

Equation (3.2) can be written as b̄k = σ2
kūk, for each 1 ≤ k ≤ m. On the other

hand, x = A+b = AT (AAT )−1b = ATz. Since z = U [z̄1 . . . z̄m]T , we deduce that

xi = 〈Fi, z〉, for each i. 2

We note that the extent to which a feature is relevant to b also depends on

how important the other features are in determining b. This fact is reflected in

Theorem 3.3.2 by taking into account the singular values of A that encode part of

the information about A. Also, the definition of relevancy is not quantitative and

one has to set a threshold for the degree of relevancy. We set a dynamic threshold by

calculating the average of all local maxima in x and remove those features that their

corresponding value |xi| is smaller than the threshold. In a sense, the threshold is set

so that rank of the reduced matrix is still the same as of the original A. So, in the

reduced matrix, we only keep features that have a higher impact on b and yet the

reduced matrix retains the same prediction power as A in approximating b.

If A is full row-rank then, it follows from Theorem 3.3.1 that the solution xR of
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smallest 2-norm to the system Ax = b is in the row space of A. So, there is a vector

y such that xR = −ATy. Hence, xR satisfies xR + ATy = 0, AxR = b. In other

words, xR is part of the solution to the non-singular linear system I AT

A 0


 xR

y

 =

 0

b


Next, we show how we can detect correlations between features. Recall that a

perturbation of A is of the form A+E, where E is a random matrix with the normal

distribution. We choose E to be a random matrix such that ||E||2≈ 10−sσmin(A), for

some s ≥ 0. We set s = 3 where our estimates are correct up to a magnitude of 10−3.

Theorem 3.3.3. Let x and x̃ be solutions of Ax = b and (A+E)x̃ = b, where E is

a perturbation such that such that ||E||2= 10−sσmin(A). If a feature Fi is independent

of the rest of the features, then |xi − x̃i|≈ 0. Furthermore, suppose that features Fj

and Fk correlate, say Fj = cFk for some scalar c. If Fj and Fk are independent from

the rest of the features, then c = xk−x̃k
xj−x̃j .

Proof. From Ax = b and (A + E)x̃ = b, we get A(x− x̃) = Ex̃. Consider the SVD

of A + E which is of the form A + E = UΣV T . So, x̃ = V Σ−1UTb. Since U and V

are orthogonal and for orthogonal matrices we have ||Uv||2= ||v||2, we get

||x̃||2= ||V Σ−1UTb||2 = ||Σ−1b||2

≤ ||Σ−1||2||b||2=
1

σmin(A+ E)

≤ 1

−||E||2+σmin(A)
.
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Hence, ||Ex̃||2≤ ||E||||x̃||2≤ 10−s and we deduce that

(x1−x̃1)F1 + · · ·+ (xt−x̃t)Ft + · · ·+ (xn−x̃n)Fn ≈ 0.

Now, if a feature, say Fi, is independent of the rest of features, then it follows

that |xi− x̃i|≈ 0. Furthermore, since Fj and Fk are independent from the rest of the

features, we must have

(xj − x̃j)Fj + (xk − x̃k)Fk ≈ 0.

So, Fj = xk−x̃k
xj−x̃j Fk. Hence, c = xk−x̃k

xj−x̃j , as required. 2

Theorem 3.3.3 shows how we can filter out irrelevant features by looking at the

components of x−x̃ that are close to zero. Also, as we mentioned before, we normalize

the columns of A so that each Fi has norm 1. So, if in the raw dataset Fj and Fk

correlate then after normalization we must have F′j = ±F′k. Here, F′j =
Fj

||Fj || . So,

by Theorem 3.3.3, if Fj and Fk are independent from other features, we must have

|xk− x̃k|= |xj− x̃j|. We explain these notions further in a synthetic dataset. Consider

a synthetic dataset with 22 features and 100 samples and the label column b which

we set as b = 3F19 + 5F17 + 2F20. The first 20 features of this dataset are generated

randomly in the interval of -1 and 1. The correlations between remaining features are

set as follows: F21 = 2F18 + 4F19 and F22 = 3F20. First, we normalize A. Then solve

Ax = b and (A+ E)x̃ = b and calculate ∆x as shown in Table 3.1.
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Table 3.1: Perturbation of the synthetic Dataset

x x̃ ∆x = |x− x̃|

F1. . .F16 ≤3.0987e-14 ≤2.6907e-05 ≤4.7316e-05

F17 29.1715 29.1715 2.7239e-05

F18 -3.4494 -10.2466 6.7972

F19 9.9339 -3.1806 13.1145

F20 -5.3307 -6.0073 0.6766

F21 7.3630 21.8723 14.5093

F22 -5.3307 -4.6541 0.6766

Let ∆x = |x−x̃| and denote its i-th component with ∆xi. Since each of F1, . . . ,F17

are independent from the other features, as we expected, we have ∆xi ≈ 0, for all

1 ≤ i ≤ 17. However, F17 is relevant because it correlates with b. Indeed, F17 is a

very important feature because we cannot make up for its loss using other features.

Hence, we should be able to distinguish and preserve F17 from other Fi for which

∆xi = 0. This can be accomplished by noting that irrelevant features have smaller

|xi| compared to other features as can be seen from Table 3.1.

Since F22 = 3F20, these features correlate and are independent from other features.

By normalization, we get F′22 = F′20. So, we expect to have ∆x20 ≈ ∆x22 as shown in

Table 3.1. We deduce that F22 and F20 are dependent and so we should only choose

one of them.
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Finally, after normalization and rewriting the relation F21 = 2F18 + 4F19, we

obtain F′21 ≈ F′19 modulo F′18. The reason for this is because norms of F′21 and F′19

outweigh norm of F′18. This is confirmed in Tabel 3.1 as ∆x19 and ∆x21 are closest

to each other compared to the others. So, F19 and F21 fall into the same cluster of

∆x. This means that one of F19 or F21 must be removed as a redundant feature. We

shall now explain the clustering process of ∆x.

By Theorem 3.3.3, if features Fi and Fj correlate, then the differences ∆xi and

∆xj are almost the same. That is, the correlations between features are encoded in

∆x. Now, we sort ∆x and obtain a stepwise function where each step can be viewed

as a cluster consisting of features that possibly correlate with each other. To find an

optimal number of steps, it makes sense to smooth ∆x where we view ∆x as a signal

and use a simplified least-squares method called Savitsky-Golay smoothing filter [33].

Figure 3.1 exhibits how the smoothening process on ∆x preserves its whole structure

without changing the trend.

We note that the converse of Theorem 3.3.3 may not be true in general. That

is ∆xi and ∆xj being the same does not necessarily imply that Fi and Fj correlate.

Hence, in the next step, we want to further break up each cluster of ∆x into sub-

clusters. There are several ways to accomplish this step and one of the most natural

ways is to use entropy of features.

Generally, entropy is a key measure for information gain and it is capable of

quantifying the disorder or uncertainty of random variables. Also, entropy effectively
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Figure 3.1: ∆x vs. smoothed ∆x

scales the amount of information that is carried by random variables. Entropy of a

feature F is defined as follows:

H(F) = −
m∑
k=1

fk log fk (3.3)

where m is the number of samples and fk is the frequency with which F assumes the

k-th value in the observations.

Figure 3.2(a) shows clustering the set of all features based on ∆x, and then a

typical cluster splits into sub-clusters using entropy as shown in Figure 3.2(b). To

do so, we sort the features of a cluster based on their entropy which yields another

step-wise function. At this stage, we pick one candidate feature from each sub-cluster

based on the corresponding values |xi|. Finally, the selected features are ranked based

on both their entropies and the corresponding |xi|’s. The final sorting of the features

is an amalgamation of these two rankings.
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3.3.1 Noise-robustness and stability

In real datasets, it is likely that D involves some noise. For example, in genomics, it is

conceivable that through the process of preparing a genomic dataset, some error/noise

is included and as such the dataset D is noisy. We note that the label column b is

already known to us (and without noise). So instead of D = [A | b] we deal with

D = [A1 | b], where A1 = A + E1 and ||E1||2 is small (||E1||2= 10−sσmin(A)). A

perturbation of A1 is of the form Ã1 = A1 + E2, where ||E2||2= 10−sσmin(A). Our

aim is to show that if certain columns of A correlate, then so do the same columns

of A1 and vice versa.

Theorem 3.3.4. Let x̃ and ỹ be solutions of A1x̃ = b and Ã1ỹ = b, respectively.

Suppose that S ′ = {F1, . . . ,Ft} is set of columns of A such that
∑t

i=1 ciFi = 0, for

some non-zero ci. If

1. any subset of S ′ is linearly independent,

2. F1, . . . ,Ft are linearly independent from the remaining columns of A.

Then the vectors
[
c1 · · · ct

]
and

[
x̃1 − ỹ1 · · · x̃t − ỹt

]
are proportional.

Proof. From (A + E1)x̃ = b and (A + E1 + E2)ỹ = b, we get A(x̃ − ỹ) = −E1x̃1 +

(E1 +E2)ỹ. Similar arguments as in the proof of Theorem 3.3.3 can be used to show
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that

||−E1x̃ + (E1 + E2)ỹ|| ≤ ||−E1x̃1||+||(E1 + E2)ỹ||

≤ 1

10s − 1
+

2 · 10−s

−2 · 10−s + 1

≤ 1

10s − 1
+

2

10s − 2

≈ 3 · 10−s

We deduce that

(x̃1 − ỹ1)F1 + · · ·+ (x̃t − ỹt)Ft + · · ·+ (x̃n − ỹn)Fn ≈ 0. (3.4)

Since F1, . . . ,Ft are linearly independent from the rest of features in S, we get

(x̃1 − ỹ1)F1 + · · ·+ (x̃t − ỹt)Ft ≈ 0. (3.5)

Now, if
[
c1 · · · ct

]
and

[
x̃1 − ỹ1 · · · x̃t − ỹt

]
are not proportional, we can use

Equation (3.5) and our first hypothesis to get a dependence relation of a shorter

length between the elements of S ′, which would contradict our assumption that any

proper subset of S ′ is linearly independent. The proof is complete. 2

We also remark that our method is insensitive to shuffling of the dataset D. That

is, if we exchange rows (or columns), there is an insignificant change in ∆x. We have

demonstrated this fact through experiments in Tables 3.4; we offer a proof as follows.

Theorem 3.3.5. DRPT is insensitive to permuting rows or columns.

Proof. We show this for permutation of rows and a similar argument can be made for

permuting columns. Suppose thatD1 = [A1 | b1] is obtained fromD by shuffling rows.
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Note, matrix T is an elementary matrix where the identity matrix (ones on the main

diagonal and 0s for all other entries) is reached from one elementary row operation

like interchanging two rows. Hence, assume that only two rows are exchanged. Then

there exists an elementary matrix T such that TA = A1 and Tb = b1. Since T is

invertible, it follows that Ax = b if and only if A1x = b1. For the general case, we

note that every shuffling is a composition of elementary matrices.

3.3.2 Algorithm

The Flowchart and algorithm of DRPT are as follows. The MATLAB® implemen-

tation of DRPT is publicly available in GitHub 1.
1http://github.com/majid1292/DRPT
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Dataset D = [A | b]

Normalize features and set x = A†b

Set x̃ = (Ã)†b

TH =Ave(LocalMax(x))

Remove features with | xi |< TH
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Set x = A†b

Calculate and smooth

∆x =| x − x̃ |

Cluster features in two stages:

based on ∆x and then entropy

From each sub-cluster se-

lect 1 feature based on en-

tropy. Rank selected features

based on thier entropy and x

Return the top k features

Stop

Part 1

Part 2

Part 3

Figure 3.3: Flowchart of Dimension Reduction based on Perturbation Theory (DRPT)
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3.3.3 Complexity

The complexity of our proposed method is dominated by the complexity of the SVD

which is O(mn2,m2n), since the inverse of perturbed Ã is calculated using SVD.

3.4 Experimental Results

We compared our method with seven state-of-the-art FS methods, namely minimal-

redundancy-maximal-relevance criterion (mRMR) [31], least angle regression (LARS)

[17], Hilbert-Schmidt Independence Criterion Lasso (HSIC-Lasso) [46], Fast Online

Streaming FS (Fast-OSFS) and Scalable, Accurate Online FS (group-SAOLA) [50],

Conditional Covariance Minimization (CCM) [12] and Binary Coyote Optimization

Algorithm (BCOA) [14] . We used MATLAB® implementations of LARS and

LASSO by Sjöstrand [35], HSIC-Lasso and BCOA by their authors, Fast-OSFS and

group-SAOLA given in the open source library [50]. The CCMmethod is implemented

in Python by their authors and its code available at GitHub2.

To have a fair comparison among different FS methods, we read the datasets by

the same function and use a stratified partitioning of the dataset so that 70% of

each class is selected for FS. Then we use SVM and RF classifiers implemented in

MATLAB®, to evaluate the selected subsets of features on the remaining 30% of the

dataset. We have used linear kernel in SVM (default setting of SVM in MATLAB®)

and as for RF, we set 30 as the number of trees and the other parameters have default
2https://github.com/Jianbo-Lab/CCM
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Algorithm 2: Dimension reduction based on perturbation theory (DRPT)
Data: D = [A | b], k

Result: A subset of features of size k

// ***Part1: Irrelevant Feature Removal***

(1) Normalize columns of A within [0, 1];

(2) x = A+b;

(3) TH =Average(LocalMaxima of x);

(4) I = ∅;

(5) for each xi ∈ x do

(6) if xi ≥ TH then

(7) I = I ∪ i

(8) A← A[I];

// ***Part2: Detecting Correlations***

(9) s = 3;

(10) (m,n) = Size(A);

(11) minSV D = Min(singular value of A);

(12) x = A+b;

(13) t = 10−s ·minSV D;

(14) Set E be a random m× n matrix with uniform dist. in the interval (0,1);
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(15) E = t. ∗ E;

(16) Ã = A+ E ;

(17) ∆x = |(Ã)+b− x|;

(18) ∆x = Smooth(∆x);

// ***Part3: Ranking Features***

(19) while z ∈ unique(∆x) do

(20) CL = {Fi | |xi − x̃i|= z}

(21) for h ∈ unique(H(CL)) do

(22) subCL = {Fi ∈ CL | H(Fi) = h};

(23) Pick Fi in subCL with |xi|= maxxsubCL;

(24) Output← Output ∪ Fi ;

(25) Ranked Output ← Rank (Output, {H(F ) & x});

(26) Return: the top k features;
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values.

3.4.1 Datasets

We select a variety of dataset from Gene Expression Omnibus (GEO) 3 and dbGaP 4

to perform FS and classification. The specifications of all datasets are given in Table

3.2.

Table 3.2: Dataset Specifications

Dataset Samples # Original F # Cleaned F # Labels
Proportion of labels

1 2 3 4

GDS1615 127 22,282 13,649 3 33% 20.5% 46.5% –

GDS3268 202 44,290 29,916 2 36.1% 63.9% – –

GDS968 171 12,625 9,117 4 26.3% 26.3% 22.8% 24.6%

GDS531 173 12,625 9,392 2 20.8% 79.2% – –

GDS2545 171 12,625 9,391 4 10.6% 36.8% 38% 14.6%

GDS1962 180 54,675 29,185 4 12.8% 14.4% 45 27.8%

GDS3929 183 24,526 19,334 2 69.9% 30.1% – –

GDS2546 167 12,620 9,583 4 10.2% 35.3% 39.5% 15%

GDS2547 164 12,646 9,370 4 10.4% 35.4% 39% 15.2%

NeuroX 11,402 535,202 267,601 2 48.6% 51.4% – –

All the GEO datasets are publicly available. To pre-process the data, we develop
3https://www.ncbi.nlm.nih.gov/geo/
4https://www.ncbi.nlm.nih.gov/gap/
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an R code to clean and convert any NCBI dataset to CSV format 5. We use GEO2R

[7] to retrieve the mappings between prob IDs and gene samples. Probe IDs without

a gene mapping were removed. Expression values of each gene are the average of

expression values of all mapped prob IDs to that gene. We also handle missing values

with k-Nearest Neighbors (kNN) imputation method.

The dataset NeuroX holds SNP information about subjects’ Parkinson disease

status and sociodemographic (e.g., onset age/gender) data. Parkinson’s disease sta-

tus coded as 0 (control) and 1 (case), from clinic visit using modified UK Brain Bank

Criteria for diagnosis. The original NeuroX has 11402 samples, and it is only acces-

sible by authorized access via dbGaP. It has 535202 features that each two sequence

features are considered as a SNP. So after cleaning and merging features of NeuroX,

we use two subsets of 100 and 200 samples with 267601 SNPs (NX100 and NX200)

for this chapter.

3.4.2 Parameters

A FS method that selects most relevant and non-redundant features (Minimum Re-

dundancy and Maximum Relevancy) is favorable in the sense that the top k selected

features retain most of the information about the dataset. On the other hand, the top

selected genes in a genomic dataset must be further analyzed in wet labs to confirm

the biological relevance of the genes to the disease. For example, authors in [54] first
5http://github.com/majid1292/NCBIdataPrep
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identified 50 top genes of a Colon cancer dataset using their FS method. Then, they

selected the first 15 genes, because adding more genes would not result in significant

changes to the prediction accuracy. Similar studies [20, 26] suggest considering the

top 50 features. So, in Table 3.3, we set k = 50 to select a subset of 50 features using

FS algorithms. Then, for t = 1 to k, we feed the first t features to the classifier to find

an optimal t so that the subset of first t features yields the highest accuracy. This set

up is applied across all FS methods. In Figure 3.4, we expand this idea by considering

up to 90 features using each FS method. We can see that there is small, incremental

changes in classification accuracies when we increase the number of features from 50

to 90.

We report the average classification accuracies and average number of selected

features over 10 independent runs where the dataset is row shuffled in each run. We

note the top k selected features using a FS algorithm might differ over different runs

because the dataset is row shuffled and so the training set changes on every run. Also,

optimal subset size for SVM and RF might be different, in other words SVM might

attain the maximum accuracy using the first 20 features while RF might attain its

maximum using the first 25 features.

Both Fast-OSFS and group-SAOLA have a parameter α, which is a threshold on

the significance level. The authors of the LOFS [50] in their Matlab user manual

6 recommend setting α = 0.05 or α = 0.01. However, our experiments based on
6https://github.com/kuiy/LOFS/tree/master/LOFS_Matlab/manual
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these parameters showed inferior classification accuracies compared to other methods

across all datasets given in Table 3.2. We also note that the running times of both

Fast-OSFS and group-SAOLA increased as we increased α.

Experimenting with various values of α, we realized that increasing α from 0.01

to 0.5 exhibited clear improvement in classification accuracies on all datasets except

NeuroX. So, we set α = 0.5 for all datasets except NeuroX.

We also experienced that both Fast-OSFS and group-SAOLA on NeuroX may

not execute all the time when α > 0.0005; often errors were generated as part of a

statistics test function. So, for NeuroX, we set α = 10−5 for both Fast-OSFS and

group-SAOLA.

The group-SAOLA model has an extra parameter for setting the number of se-

lected groups, selectGroups. As there was no default or recommended value for this pa-

rameter, we obtained results by varying selectGroups from 2 to 10 for all the datasets,

and we chose the highest accuracy for each dataset.

3.4.3 Hardware and Software

Our proposed method DRPT and other FS methods in section 3.4 have been run on

an IBM®LSF 10.1.0.6 machine (Suite Edition: IBM Spectrum LSF Suite for HPC

10.2.0) with requested 8 nodes, 24 GB of RAM, and 10 GB swap memory using

MATLAB®R2017a (9.2.0.556344) 64-bit(glnxa64). Since CCM is implemented in

Python and uses TensorFlow[1], we requested 8 nodes, 120 GB of RAM, and 40 GB
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swap memory on the LFS machine using Python 3.6.

3.4.4 Results.

The average number of selected features and average classification accuracies over 10

independent runs using SVM and RF on the datasets described in Section 3.4.1 are

shown in Table 3.3.

The empty spaces in Table 3.3 under LARS, HSIC-Lasso, CCM and BCOA’s

columns simply mean that these methods do not run on those datasets; this is a

major shortfall of these methods and it would be interesting to find out why and

to what extent LARS, HSIC-Lasso and BCOA fail to run on a dataset. Since the

NeuroX datasets have 267,601 features, CCM method requires 1.5 TB of RAM to

execute.

In terms of accuracy using either of SVM or RF, we can see from Table 3.3 that

DRPT is at least as good as any of the other seven methods. We can further infer

that, in general, SVM has a better performance than RF on these datasets and SVM

requires more features than RF to attain the maximum possible accuracy.

In Table 3.4, we report the standard deviation (SD) of the number of selected

features and SD of the classification accuracies over 10 independent runs. Lower SDs

are clearly desirable, which is also an indication of the method’s stability with respect

to permutation of rows.

Figure 3.4 shows the average classification accuracy results of our DRPT compared

78



Table 3.3: Superscript is average number of selected features and subscript is resulting

classification accuracies (CA) based on SVM and RF using mRMR, LARS, HSIC-

Lasso, Fast-OSFS, group-SAOLA, CCM, BCOA and DRPT over 10 runs.

C
la
ss
ifi
er

Dataset
(# of selected features)classification accuracy

mRMR LARS HSIC-Lasso Fast-OSFS group-SAOLA CCM BCOA DRPT

SV
M

GDS1615 (40.20)87.37 (26.60)91.67 (18.70)91.35 (17.20)84.31 (12.40)83.13 (29.20)80.82 (33.90)84.90 (37.00)91.89

GDS3268 (38.50)85.69 (43.50)89.62 – (35.90)87.89 (16.60)84.13 (38.65)85.82 (34.50)73.55 (33.90)90.45

GDS968 (39.80)80.87 (38.70)83.73 – (19.80)72.41 (14.10)70.53 (34.14)78.82 (32.86)76.19 (38.30)81.06

GDS531 (30.90)69.78 (27.60)79.96 (4.00)67.93 (26.50)77.43 (11.60)77.70 (30.45)80.82 (32.67)74.17 (25.20)77.16

GDS2545 (34.00)75.90 (33.70)79.02 (33.8)76.40 (18.80)74.95 (12.30)75.55 (30.11)70.82 (29.85)75.40 (31.30)83.23

GDS1962 (39.50)65.12 (32.50)76.56 (31.5)76.81 (24.60)65.15 (10.50)66.593 (40.12)66.82 (35.45)66.89 (37.60)72.87

GDS3929 (41.10)73.57 (41.10)83.78 – (40.20)83.11 (21.60)76.97 (39.90)75.82 (41.20)72.12 (37.90)78.76

GDS2546 (33.10)74.13 (32.70)83.51 (27.00)77.69 (26.40)81.25 (17.70)80.88 (35.30)73.82 (32.50)72.98 (32.70)81.48

GDS2547 (39.40)67.31 (32.50)73.88 (12.3)71.16 (23.60)73.13 (24.30)76.85 (28.40)66.82 (26.60)67.35 (33.70)80.53

NX100 (2.00)100.00 – – (2.00)100.00 (11.00)100.00 – – (21.00)100.00

NX200 (2.40)100.00 – – (2.00)100.00 (2.00)100.00 – – (12.00)100.00

RF

GDS1615 (32.70)81.96 (20.20)88.24 (22.70)92.88 (15.20)82.34 (13.00)82.26 (31.20)79.55 (30.80)81.08 (31.20)85.46

GDS3268 (26.50)87.26 (41.70)86.52 – (30.20)86.40 (13.60)81.19 (34.55)82.82 (33.50)78.87 (32.60)86.15

GDS968 (44.20)79.44 (42.70)79.77 – (19.50)72.84 (18.20)71.28 (41.30)77.53 (40.73)76.42 (38.50)81.55

GDS531 (23.90)63.69 (20.70)71.44 (4.70)67.82 (14.80)75.48 (16.40)74.67 (23.60)77.36 (21.50)73.92 (14.30)75.88

GDS2545 (31.40)79.31 (33.10)75.81 (33.10)80.64 (14.80)74.16 (12.00)76.05 (34.20)74.82 (33.57)75.63 (32.60)86.78

GDS1962 (29.40)72.37 (30.80)72.41 (42.1)78.45 (21.90)69.88 (13.30)63.28 (32.20)69.17 (30.62)67.95 (29.30)74.32

GDS3929 (29.10)71.94 (28.60)73.44 – (28.10)70.49 (15.90)71.56 (28.50)67.50 (24.10)65.13 (18.90)66.60

GDS2546 (36.30)70.53 (34.30)75.86 (45.90)83.09 (25.80)77.04 (18.20)78.46 (36.30)72.90 (31.20)75.28 (33.30)80.31

GDS2547 (22.40)68.44 (24.80)71.68 (32.6)81.67 (30.00)75.85 (20.50)77.10 (25.40)69.70 (24.20)71.28 (23.20)78.95

NX100 (2.00)100.00 – – (2.00)100.00 (2.00)100.00 – – (22.00)100.00

NX200 (2.40)100.00 – – (2.00)100.00 (2.00)100.00 – – (11.00)100.00

to other FS methods using k features and the SVM classifier, where k is between 10

and 90. When a FS method returns a subset of k features, we use SVM to find an

optimal t ≤ k so that the first t features yield the best accuracy. Note that we do not
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Table 3.4: Superscript is SD of # selected features and subscript is the SD of resulting

classification accuracies (CA) based on SVM and RF using mRMR, LARS, HSIC-

Lasso, Fast-OSFS, group-SAOLA, CCM, BCOA and DRPT over 10 runs.

C
la
ss
ifi
er

Dataset
(SD of selected features)SD of CA

mRMR LARS HSIC-Lasso Fast-OSFS group-SAOLA CCM BCOA DRPT

SV
M

GDS1615 (7.87)4.29 (16.54)4.95 (8.38)4.20 (6.18)4.79 (6.50)6.60 (9.35)5.84 (13.60)7.43 (7.05)3.61

GDS3268 (9.35)3.58 (5.28)3.31 – (8.99)4.34 (3.66)3.47 (6.31)4.43 (4.72)5.64 (9.49)1.83

GDS968 (6.20)5.12 (8.12)4.96 – (4.15)4.44 (3.78)6.53 (6.60)6.76 (6.50)4.12 (7.07)4.79

GDS531 (17.46)4.39 (12.89)4.79 (1.45)5.74 (9.91)6.30 (4.77)5.71 (14.05)4.79 (14.46)3.61 (10.89)3.02

GDS2545 (13.14)3.37 (13.71)3.04 (12.13)2.66 (9.33)6.44 (6.00)6.93 (12.87)5.27 (11.08)4.97 (8.97)2.79

GDS1962 (11.03)2.91 (11.55)3.68 (15.54)4.03 (14.04)7.01 (4.40)6.00 (14.15)3.84 (11.04)3.57 (10.50)2.89

GDS3929 (10.51)4.64 (11.12)3.32 – (8.87)3.69 (5.93)5.22 (13.84)4.19 (15.53)3.13 (9.44)3.65

GDS2546 (7.96)2.12 (10.89)4.65 (13.41)3.10 (2.72)4.57 (5.81)4.02 (7.76)4.87 (5.25)6.82 (10.67)4.24

GDS2547 (9.36)4.42 (9.98)3.77 (7.86)4.61 (13.57)4.95 (8.60)4.64 (8.38)5.29 (10.23)7.53 (9.48)3.18

NX100 (00.00)00.00 – – (00.00)00.00 (00.00)00.00 – – (3.10)00.00

NX200 (00.71)00.00 – – (00.00)00.00 (00.00)00.00 – – (2.00)00.00

RF

GDS1615 (9.64)4.63 (9.27)3.44 (7.23)2.25 (5.33)3.95 (6.00)4.08 (10.60)5.19 (9.60)5.29 (9.26)3.12

GDS3268 (10.24)2.54 (6.33)2.46 – (8.27)5.40 (5.54)2.86 (7.95)5.81 (9.04)4.13 (8.37)2.95

GDS968 (4.69)4.01 (6.85)4.10 – (5.23)5.13 (5.34)4.89 (5.64)4.43 (4.22)4.03 (5.26)3.90

GDS531 (10.34)3.98 (17.76)5.36 (2.11)6.57 (7.32)9.07 (6.98)6.90 (9.60)6.72 (11.37)3.63 (7.38)2.86

GDS2545 (14.60)2.87 (12.08)3.28 (15.30)2.21 (6.86)6.63 (5.27)5.61 (10.60)3.94 (9.98)3.71 (9.37)2.74

GDS1962 (12.00)3.20 (15.46)1.82 (7.11)2.88 (7.29)3.54 (4.87)5.48 (13.52)4.82 (10.06)5.11 (11.33)4.11

GDS3929 (11.86)2.94 (16.34)3.37 – (10.84)5.31 (8.94)4.14 (12.60)3.96 (9.60)4.49 (8.83)2.48

GDS2546 (11.14)3.59 (12.64)3.80 (2.73)3.33 (9.39)2.36 (4.02)5.25 (8.73)4.17 (10.23)4.62 (8.11)3.15

GDS2547 (15.31)4.42 (10.06)3.83 (11.19)4.16 (7.63)4.58 (6.15)6.03 (10.28)5.19 (11.93)4.86 (9.33)3.25

NX100 (00.00)00.00 – – (00.00)00.00 (00.00)00.00 – – (2.20)00.00

NX200 (00.00)00.00 – – (00.00)00.00 (00.00)00.00 – – (2.30)00.00

look for the best subset and rather add the features sequentially to find the optimal t.

Then we calculate the accuracy using the first t features and take the average of these
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accuracies over 10 runs. Our evaluation metric is consistent across all FS methods.

Figure 3.4 shows the general superiority of the classification accuracy of our pro-

posed model over the other models for the 9 genomic datasets used in our study. We

can see a steady increase in classification accuracies of different FS methods as we

increase k from 10 to 50, however the curves usually flat out when k is between 50 and

90. Note that HSIC-Lasso, Fast-OSFS, and group-SAOLA models output a subset of

fewer than 60 features.

We note that the default number of selected features by LARS is almost the

number of samples in a dataset. In Table 3.5, we perform a further comparison

between LARS and DRPT where we set k to be the default number of features

suggested by LARS and we use the classifier to find an optimal subset of size at

most k. For example, the dataset GDS1615, has 127 samples in total. Since we take

approximately 70% of samples for FS, the suggested number of features by LARS is

k = 87.

If we look at the performance of LARS just based on its default number of features,

we note that CA of LARS significantly drops. This, in particular, suggests that LARS

does not select an optimal subset of features.

We also take advantage of IBM®LSF to report running time, CPU time and

memory usage of each FS method. We just remark that through parallelization, an

algorithm might achieve a better running time at the cost of having greater CPU

time.
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Figure 3.4: Classification accuracies (CA) based on SVM using mRMR, LARS, HSIC-

Lasso, Fast-OSFS, group-SAOLA, CCM, BCOA and DRPT over 10 runs for different

number of features
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Table 3.5: Superscript is average number of selected features and subscript is resulting

classification accuracies (CA) based on SVM and RF using LARS Suggestion (LS)

for 10 independent runs of DRPT and LARS.

Cl
as
sifi
er

Dataset
(# of selected features)classification accuracy

# of LS DRPT LARS

SV
M

GDS1615 87 (69.90)95.89 (62.2)93.99

GDS3268 140 (94.50)95.13 (103.30)95.15

GDS968 118 (90.50)86.93 (68.30)87.20

GDS531 120 (92.80)83.79 (51.15)81.07

GDS2545 118 (63.00)84.33 (58.70)80.28

GDS1962 124 (75.47)75.19 (44.3)77.43

GDS3929 127 (93.57)89.75 (78.70)86.77

GDS2546 115 (89.12)85.92 (61.90)84.31

GDS2547 113 (83.94)85.14 (67.30)77.67

RF

GDS1615 87 (57.76)89.83 (54.00)90.23

GDS3268 140 (84.4)89.35 (87.20)90.67

GDS968 118 (91.30)87.20 (85.30)85.14

GDS531 120 (26.50)76.23 (25.60)75.54

GDS2545 118 (73.94)89.72 (75.50)78.65

GDS1962 124 (89.75)75.00 (70.90)74.68

GDS3929 127 (52.10)70.51 (22.90)74.32

GDS2546 115 (47.80)82.49 (53.10)77.93

GDS2547 113 (53.80)78.86 (28.00)73.87
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Figure 3.5: Running Time of feature selection by DRPT, HSIC-Lasso, LARS, Fast-

OSFS, group-SAOLA, and mRMR over 10 runs using SVM

Figure 3.5 depicts running time of FS methods that includes the classification

time using SVM as well. We can see that LARS, HSIC-Lasso, and DRPT have

comparable running times. The running times of Fast-OSFS, group-SAOLA and

BCOA are higher than DRPT while the running time of mRMR is the worst among

all by order of magnitude.

Next, we compare CPU time. For a non-parallelized algorithm, the CPU time is

almost the as same as the running time. However, a parallelized algorithm takes more

CPU time as it hires multi-processes. Figure 3.6(a) shows the CPU time that is taken
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Figure 3.6: (a) CPU Time and (b) Memory taken by DRPT, HSIC-Lasso , LARS,

Fast-OSFS, group-SAOLA, and mRMR

by FS methods on six common datasets. Clearly, mRMR takes the highest CPU time

and it is also obvious that HSIC-Lasso uses more processes as it is implemented in

parallel.

We also quantify the computational performance of all methods based on the peak

memory usage over six common datasets (Figure 3.6(b)). We observe that mRMR

and HSIC-Lasso require an order of magnitude higher memory than LARS. Although

the peak memory usage by DRPT is significantly lower than mRMR and HSIC-Lasso,

DRPT takes almost the same amount of memory across all datasets. In this regard,

there is a potential for more efficient implementation of DRPT.

We had to leave the CCM method out of the comparison in Figures 3.5 and 3.6
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Table 3.6: Running time, CPU time and memory taken by CCM model

Dataset Running Time CPU Time Memory

GDS1615 850 26855 107

GDS531 3327 36193 150

GDS2545 1478 36009 74

GDS1962 3621 38730 148

GDS2546 1389 35331 73

GDS2547 985 30500 71

because it is implemented in Python and required a high volume of RAM while the

other methods implemented in Matlab. Table 3.6 shows the CCM performance in

terms of running time, CPU time, and memory usage, where running time and CPU

time are measured by second and memory usage is scaled in GB.

3.5 Conclusions

In this chapter, we presented a linear feature selection method (DRPT) for high-

dimensional genomic datasets. The novelty of our method is to remove irrelevant

features outright and then detect correlations on the reduced dataset using pertur-

bation theory. While we showed DRPT precisely detects irrelevant and redundant

features on a synthetic dataset, the extent to which DRPT is effective on real dataset

was tested on ten genomic datasets. We demonstrated that DRPT performs well on
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these datasets compared to state-of-the-art feature selection algorithms. We proved

that DRPT is robust against noise. Performance of DRPT is insensitive to permu-

tation of rows or columns of the data. Even though the running time of DRPT is

comparable to other FS methods, an efficient implementation of DRPT in Python or

C++ can help improve both memory usage and the running time.

In this chapter, we focused only on genomic datasets because inherently they are

similar. For example, they all have full-row rank. Besides, it is widely accepted

that there is no dimension reduction algorithm that performs well on all datasets

(compared to other methods). In a future work, we aim to revise our current algorithm

to offer a new FS algorithm that performs well on face and text datasets.
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Chapter 4

Dimensionality Reduction Using

Singular Vectors

(This chapter is based on a paper published in Scientific Reports-Nature, 2021 [2])

4.1 Introduction

With the extraordinary advancements in high throughput gene expression profiling

and DNA sequencing technologies, we are presented with the challenge of interpret-

ing high-dimensional datasets. Nonetheless, this presents an opportunity for dis-

covery of biological biomarkers that in turn can help for early detection of disease

[17] and identification of predictive and prognostic factors in disease management

[21]. Genome-wide association studies (GWAS) can be performed on single-nucleotide

polymorphism (SNP) arrays to identifying associations between loci and traits. Even
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though GWAS are proved to be useful [44], there are some drawbacks as well. GWAS

identifies loci so that each locus is statically significant (on its own). However, com-

plex diseases are extremely polygenic and it therefore important to identify a subset

of SNPs or genes that cumulatively explain the disease. Furthermore, most GWA

studies require thousands of samples which can pose as a significant challenge.

Feature selection (FS) is another alternative for biomarker discovery. FS involves

filtering and determining the relevant features from numerous irrelevant and redun-

dant features, so FS can decrease the learning costs and improve the classification

performance in many applications such as genomic data and remote sensing by turn-

ing the high-dimensional data into a lower dimension [30]. Features can be embedded

into a lower-dimensional subspace in which different patterns appear to be consider-

ably distinct with lower cost [33]. The importance of using FS methods on genomic

data to supplement and improve the process of disease diagnosis is gaining increasing

attention [23, 11, 19, 12]. Hikichi et al. [22] applied a correlation-centered approach

and proposed a set of 12 predictive genes to diagnose cancer metastasis; their selected

genes showed higher performance compared to the 76 genes previously reported by

Wang et al. [48]. Recently, Jiang et al. [24] applied a hybrid FS method for ana-

lyzing Endometrial Cancer data. In another study [39], the authors focused on colon

cancer and applied a hybrid FS method to obtain the optimal subset of genes using

two independent datasets. Among 17,814 genes in the original dataset, 6 top rele-

vant genes were selected in two phases. An independent dataset of colon cancer was
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used to validate the selected genes, resulting in 99.9% classification accuracy. Shukla

et al. [41] present a gene expression analysis on lymphoma cancer using several FS

methods. Their experimental results showed that the highest classification accuracy

is achieved using the top 20 selected genes. In a recent study, Sun et al. [43] worked

on high-dimensional microarray datasets and filtered data using the ReliefF method

[26] to reduce the dimensionality of gene expression data and then applied a modified

Ant Colony Optimization algorithm [53] to find the optimal subset of genes for colon,

leukemia, lung, prostate, and brain cancers.

In this chapter, we propose a new FS method based on singular vectors (SVFS).

Let D = [A | b] be a dataset, where A is an m × n matrix with m instances and

n features, and b is the class label. We define the signature matrix SA of A by

setting SA = I − A†A, where A† is the pseudo-inverse of A. We introduce a two-

step irrelevant features filtering that maps the given dataset into a lower-dimensional

subspace that includes less noisy and more informative features. Using the signature

matrix SA, features that have correlations to each other are clustered. The most

important features are then picked from each cluster. This process can be optimized

using two thresholds to make our model capable of handling a wide range of high

dimensional data types. We view the data and interactions between all features

globally in the sense that we measure the relevancy of features to b all at once and then

breakdown the original feature space into a collection of lower dimensional subspaces.

In contrast, many FS methods apply one or two discriminative concepts locally and
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at the individual feature level to obtain the most important features. Thus, they may

perform well on some types of datasets and have inferior performances on other types

of datasets. For example, as we shall see in Section 4.4, Fisher score [14] and Trace

ratio criterion [36] have good performances on biological benchmark datasets while

they produce weak results on the image benchmark datasets.

We show in Section 4.3, that SA is the same as the orthogonal projection P onto

the null space of A; hence S or P can be constructed using right singular vectors.

We define a graph G where the nodes are columns of A and there is an edge between

columns Fi and Fj if and only if Si,j 6= 0. As we shall explain, each connected

component of G corresponds to a subset of columns of A that are linearly dependent.

In other words, the correlations between columns of A are encoded in the signature

matrix SA.

We view D as a matrix and form the signature matrix SD = I−D†D. The cluster

of D containing b consists of relevant features to b and all features in the other

clusters are considered irrelevant. After removing irrelevant features, we update A

and use the graph associated to SA to find the clusters. There are many efficient

algorithms to find the clusters of a graph. We use Breadth-First Search (BFS) [6] to

find the features which are directly or indirectly connected to the other features. The

novelty of our method is to use the signature matrix SD of D to detect and remove

irrelevant features and then use the signature matrix SA of the reduced matrix A to

partition the columns of A into clusters so that columns within a cluster correlate
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only with columns within the same cluster. Finally, we rank the features in a cluster

based on the entries on the main diagonal of SA and select a small subset of top

ranked features with the highest Mutual Information (MI) with respect to b.

In order to evaluate the performance and efficiency of our method, we compare it

with the state-of-the-art FS methods, namely Conditional Infomax Feature Extrac-

tion (CIFE) [29], Joint Mutual Information (JMI) [52], Fisher score [14], Trace ratio

criterion [36], Least angle regression (LARS) [15], Hilbert-Schmidt independence cri-

terion least absolute shrinkage and selection operator (HSIC-Lasso)[50], Conditional

Covariance Minimization (CCM) [10], and Sparse Multinomial Naive Bayes (SMNB)

[3] on a series of high dimensional benchmark as well as biological datasets.

The rest of this chapter is structured as follows. An overview of the existing

FS approaches is given in section 4.2. Then, in Section 4.3, we give a theoretical

background along with some examples on synthetic data to show how our method

removes irrelevant features and finds correlations between the rest of the features

using the signature matrix S. Section 4.4 gives an account on specifications of the

datasets and reports our experiment results. Finally, we provide a summary in Section

4.5.

4.2 Related work

FS methods are categorized as filter, wrapper, and embedded methods [25]. The filter

methods use some underlying and intrinsic properties of the features measured via
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univariate statistics, while the wrapper methods measure the importance of features

based on the classifier performances. While optimizing the classifier performance is

the essential goal of FS, and the wrapper methods have their own efficient internal

classifiers, these methods are computationally more expensive in comparison with the

filter methods due to the iterated learning steps of the wrapper methods and their

cross-validation to avoid the risk of overfitting the model. The embedded methods

are similar to the wrapper methods; however, the former mainly uses an intrinsic

model building metric during the learning process.

Many FS algorithms work based on information-theoretical approaches which uti-

lize various criteria to measure and rank the importance of features. The basic idea

behind many information-theoretic methods is to maximize feature relevance and min-

imize feature redundancy [14]. Since feature correlation with class labels normally

measures the relevance of the feature, most algorithms in this group are applied in

a supervised manner. A brief introduction to basic information-theoretic concepts is

given here.

Shannon entropy, as the primary measurement in information-theoretical ap-

proaches, measures the uncertainty of a discrete random variable. The entropy of

a discrete random variable X is described as below:

H(X) = −
∑
xi∈X

P (xi)log(P (xi)),

where xi is a specific value of X and P (xi) refers to the probability of xi over all

values of X.
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Second concept is the conditional entropy of X and Y, which is another discrete

random variable, defined as follows:

H(X|Y ) = −
∑
yi∈Y

P (yi)
∑
xi∈X

P (xi|yi)log(P (xi|yi))

where P (yi) is the prior probability of yi, P (xi|yj) refers to the conditional probability

of xi and yj.

To measure the amount of information shared betweenX and Y , MI or information

gain is used, which is defined as follows:

I(X;Y ) = H(X)−H(X|Y ) =
∑
xi∈X

∑
yi∈Y

P (xi, yi)log(
P (xi, yi)

P (xi)P (yi)
)

where P (xi, yj) is the joint probability of xi and yj. MI is symmetric such that

I(X;Y ) = I(Y ;X) and in case X and Y are independent, their MI would is zero.

Since we applied the MI concept in our proposed method, two representative algo-

rithms of information-theoretical based family are selected for comparison, including

Conditional Infomax Feature Extraction (CIFE) [29], Joint Mutual Information (JMI)

[52].

Several studies including CIFE[29] and [16, 20] are based on the idea that the

conditional redundancy between unselected features and selected features given class

labels should be maximized rather than minimizing the feature redundancy. Minimum

Redundancy Maximum Relevance (MRMR) reduces feature redundancy in the feature

selection process. In contrast, JMI [52, 35] is introduced to increase the MI that is

distributed between selected features and unselected features. There have been some

improvements of JMI, see [8].
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Another category of FS methods is the similarity-based approaches that measure

the feature relevances by their ability to preserve data similarities. The two superior

similarity-based methods, i.e. the Fisher score [14] and Trace Ratio criterion [36] are

selected to provide a basis for comparison with our proposed method.

Fisher score is a supervised feature selection method that explores features with

high discriminant capacity. For sample points in different classes, Fisher score aims to

maximize distances between samples; in contrast, it minimizes the distances between

sample points in the same class. Trace Ratio criterion has the same idea of maximizing

data similarity between-class of instances, while minimizing data similarity the within-

class of instances. It computes a Trace Ratio norm by building two affinity matrices

Sw and Sb to designate within-class and between-class data similarity.

Some approaches use aggregated sample data to select and rank the features

[38, 45, 15, 50]. The least absolute shrinkage and selection operator (LASSO) is

an estimation method in linear methods that performs two main tasks: regulariza-

tion and feature selection. For the first task, it calculates the sum of the absolute

values of the model parameters, and the sum must be less than a prefixed upper

bound. Therefore, by applying a regularization (shrinking) process, it penalizes the

coefficients of the regression variables shrinking, some of them are set to zero. For the

second task, the features that still have a non-zero coefficient after the regularization

process are chosen to be part of the model. The goal of this process is to lessen the

prediction error.

104



Least angle regression (LARS) proposed by Efron et al. [15] works based on

LASSO and is a linear regression method that computes all least absolute shrink-

age and selection operator [45] estimates and selects those features which are highly

correlated to the already selected ones. Yamada et al. in [50] proposed a non-

linear FS method for high-dimensional datasets called Hilbert-Schmidt independence

criterion least absolute shrinkage and selection operator (HSIC-Lasso). By solving

a Lasso problem and using a set of kernel functions, HSIC-Lasso selects informa-

tive non-redundant features. In another work [51] called Least Angle Nonlinear

Distributed (LAND), the authors have improved the computational power of the

HSIC-Lasso. They illustrated through comprehensive examinations that LAND and

HSIC-Lasso achieve comparable classification accuracies and dimension reduction.

However, LAND has the advantage that it can be developed on parallel distributed

computing.

HSIC-Lasso and LAND are based on a convex optimization problem with a `1-

norm penalty on the regression coefficients to improve sparsity while having a signif-

icantly high computational cost, especially on high dimensional data. Very recently,

Askari et al. [3] proposed a sparse version of naive Bayes, leading to a combinatorial

maximum likelihood capable of solving the binary data and providing explicit bounds

on the duality gap for multinomial data, at a fraction of the computing cost.

We also remark that FS is applied and used in various domains including gene

selection, face recognition, handwriting identification, and remote sensing [34, 32, 40,
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28].

4.3 Proposed Approach

Let A be an m × n matrix of rank ρ and consider the singular value decomposition

(SVD) of A as A = UΣV T , where Um×m and Vn×n are orthogonal matrices and

Σ = diag(σ1, . . . , σρ, 0, . . . , 0) is an m × n diagonal matrix. We denote column j of

V by vj and row j of V by vj. Furthermore, we partition vj as vj =

[
vj,1 vj,2

]
,

where vj,1 consists of the first ρ entries of vj and vj,2 is the remaining n− ρ entries.

Note that Avj = 0, for all ρ + 1 ≤ j ≤ n, and moreover ker(A) is spanned by all

vρ+1, . . . ,vn. We denote by Fj the j-th column of A.

Let V̄ be the matrix consisting of columns ρ + 1, . . . , n of V , that is V̄ =[
vρ+1 · · · vn

]
. Let P = V̄ V̄ T . Note that Pw = w, for every w ∈ N (A),

where N (A) is the null space of A. Recall that the null space of matrix A consists

of all the vectors b such that Ab = 0 and b is not zero. Indeed, P is the orthogonal

projection onto N (A), that is range of P is N (A), P 2 = P and P T = P . We also let

S = I−A†A. By Lemma 2.1 in [47], we know that S and P are indeed the same. Nev-

ertheless, the computational complexity of computing of S and P might be different.

For to compute P we just need the right singular vectors of the symmetric matrix

ATA. On the other hand, if A is full row rank then we know A† = AT (AAT )−1. So in

case A has full row-rank, the complexity of computing S is the same as complexity

of matrix inversion.
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Let D = [A | b] be a dataset, say a binary Cancer dataset, where rows of A are

samples (patients), columns of A are features (gene expressions) and b is the class

label that each of its entries are either 0 (noncancerous) or 1 (cancerous). In large

datasets that are a large number of features that are irrelevant. For example, in

gene expression datasets, there are a large number of genes that are not expressed.

So, identifying and removing features that have negligible correlations with the class

labels is crucial. The aim of FS is to come up with a minimal subset of features

that can be used to predict the class labels as accurate as possible. There might

be redundancies (correlations) among relevant features that must be detected and

removed.

As we explain below, we use the matrix S (or P) to divide the set of all features

into clusters where features within a cluster correlate with each other and different

clusters are linearly independent from each other. So, a set of linear dependencies

defines the correlations within a cluster.

Without loss of generality, we assume that {F1, . . . ,Ft} is a cluster, that is

F1, . . . ,Ft are linearly dependent and independent of the rest of the Fk, where

k ≥ t+1. The following theorem from [47], is the first major step to identify clusters.

Theorem 4.3.1. Suppose that {F1, . . . ,Ft} is a cluster. Then Pi,j = 0, for every

1 ≤ j ≤ t and every i ≥ t+ 1.

Example 4.3.2. Consider a 100 × 80 synthetic matrix A with the only relations
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between columns of A as follows:

−F1 + 3F2 + 6F4 = 0, −F6 − 2F10 + 2F5 − 4F11 = 0, −F3 − 6F2 + 3F4 = 0,

−F7 − F10 − 3F11 = 0, −F5 + 3F11 + F10 = 0, −F8 + 3F10 + 2F11 = 0,

−F9 + 5F5 − F7 = 0.

The signature matrix SA (rounded up to two decimals) is:

0.02 −0.07 0 −0.13 0 0 0 0 0 0 0 0 · · · 0

−0.07 0.98 0.13 0 0 0 0 0 0 0 0 0 · · · 0

0 0.13 0.02 −0.07 0 0 0 0 0 0 0 0 · · · 0

−0.13 0 −0.07 0.98 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0.97 0 0.03 0 −0.16 0.01 −0.01 0 · · · 0

0 0 0 0 0 0.37 0 −0.44 0 −0.19 0.06 0 · · · 0

0 0 0 0 0.03 0 0.97 0 0.16 −0.01 0.01 0 · · · 0

0 0 0 0 0 −0.44 0 0.69 −0.03 −0.13 0.04 0 · · · 0

0 0 0 0 −0.16 0 0.16 −0.03 0.06 0.03 −0.06 0 · · · 0

0 0 0 0 0.01 −0.19 −0.01 −0.13 0.03 0.94 0.02 0 · · · 0

0 0 0 0 −0.01 0.06 0.01 0.04 −0.06 0.02 0.99 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

...
...

...
...

...
...

...
...

...
...

...
... · · · ...

0 0 0 0 0 0 0 0 0 0 0 0 · · · 0


We note that A is randomly generated and the only constrain on A is the set

of dependent relations given above. We can see that S has a block diagonal form,

where each block corresponds to a cluster. So, features F1, . . . ,F4 constitute a cluster.

Similarly, {F5, . . . ,F11} is another cluster. Note that {Fi} is a singleton cluster, for

all i ≥ 12. We provide some details about these facts in the next lemma.
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Lemma 4.3.3. Let A be the matrix in Example 4.3.2. Then, Pi,j = 0 for all 1 ≤ i ≤ 4

and 5 ≤ j ≤ n.

Proof. We note that rank of A is ρ = 73. Hence, Avk = 0, for every 74 ≤ k ≤ 80.

Since Avk = 0 yields a dependence relation between columns of A and F1, . . . ,F4

are independent from the rest of the columns, we deduce that Av̄k = 0, where v̄k

consists of the first 4 entries of vk. Then we form the matrix M =

[
v̄74 · · · v̄80

]
.

Since any linear combination of columns of M provides a dependence relation be-

tween F1, . . . ,F4, we can use elementary (column) operations to transform M into

the matrix C̄1:

C̄1 =



−1.0 0 0 0 0 0

0 −1.0 0 0 0 0

−0.5 −0.17 0 0 0 0

7.5 0.5 0 0 0 0


.

Then
[

F1 · · · F4

]
C̄1 = 0; in other words columns of C̄1 give us the minimal

relations between F1, . . . ,F4. Let k be in the range 74 ≤ k ≤ 80. Since Avk = 0, we

have v1,kF1 + v2,kF2 + v3,kF3 + v4,kF4 = 0. Substituting for F1 and F2 in terms of F3

and F4 using the matrix C̄1, we get

v1,k(−0.5F3 + 7.5F4) + v2,k(−
1

6
F3 + 0.5F4) + v3,kF3 + v4,kF4 = 0.

We deduce that

−0.5v1,k −
1

6
v2,k + v3,k = 0, 7.5v1,k + 0.5v2,k + v4,k = 0.
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Since the above equations hold for every k in the range ρ + 1 ≤ k ≤ n, we deduce

that

−0.5v1,2 − 1

6
v2,2 + v3,2 = 0, 7.5v1,2 + 0.5v2,2 + v4,2 = 0.

Let j be in the range 5 ≤ j ≤ n. Then taking the dot product with vj,2 yields

0.5P1,j −
1

6
P2,j + P3,j = 0, 7.5P1,j + 0.5P2,j + P4,j = 0. (4.1)

Let C =

 C̄1 0

0 0

 be an n × n matrix. Let c1, . . . , cn be the columns of C and

denote by pj the j-th row of P . Since Pci = ci, we deduce that pjci = ci,j = 0, since

j ≥ 5. Hence,

−P1,j − 0.5P3,j + 7.5P4,j = 0, − P2,j −
1

6
P3,j + 0.5P4,j = 0. (4.2)

Putting together the Equations (4.1) and (4.2), we deduce that

B

[
P1,j P2,j P3,j P4,j

]T
= 0,

where

B =



−1 0 −0.5 7.5

0 −1 −0.17 0.5

−0.5 −0.17 1 0

7.5 0.5 0 1


=

 −I2 ZT

Z I2

 , Z =

 −0.5 −0.17

7.5 0.5

 .

Since, by Lemma 2.4 in [47], B is invertible, we deduce that P1,j = · · · = P4,j = 0.

2
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In general it follows from Theorem 4.3.1 that after re-ordering the columns of A,

the matrix S has a block-diagonal form where each block corresponds to a cluster.

Of course, a priori, columns within the same cluster are not next to each other in

the matrix A. Furthermore, the converse of Theorem 4.3.1 is not true in general. In

other words, Pi,j could be zero even when Fi and Fj are in the same cluster as can

be seen in Example 4.3.2 where P1,3 = P5,6 = 0.

To find the clusters, we define a graph G whose vertices consists of F1, . . . ,Fn and

we define an edge between Fi and Fj if and only if Pi,j 6= 0. The graph associated to

matrix A in Example 4.3.2 is depicted in Figure 4.1.

1

23

4

5

6

7 8

9

10
11

Figure 4.1: The graph associated to matrix A demonstrating the two clusters.

Even though, there may not be an edge between two nodes of the same cluster,

it turns out there is always a path connecting every two nodes in the same cluster.

This fact which is Theorem 2.10 in [47], can be summarized as follows.

111



Theorem 4.3.4. The sub-graph of G consisting of nodes F1, . . . ,Ft and corresponding

edges is connected.

As we mentioned, in real datasets there are many irrelevant features. To identify

the irrelevants, we construct the signature matrix SD of D and identify the cluster

that includes b. The remaining clusters consist of features that have a negligible

correlation with b. So, we can remove all other clusters from A.

Example 4.3.5. Let A be the synthetic matrix as in Example 4.3.2 and b = F1 −

3F3 + 2F9 −F14. The last row of signature matrix SD (rounded up to four decimals)

is:

(
−0.0364 −0.0170 0.1093 0.0024 −0.0234 0.0006 0.0234 −0.0043 −0.1403 0.0049 −0.0094 0 0 0.0373 0 · · · 0 0.0373

)

The cluster containing b consists of features Fi such that Si,n+1 6= 0. So, we identify

the columns Fj where j = 12, 13 or 15 ≤ j ≤ 100 as irrelevant features and remove

them from A.

Alternatively, we can also identify irrelevant features by looking at the least-

squares solutions of the system Ax = b. Note that x = A†b, where A† is the

pseudo-inverse of A. Each component xi of x can be considered as an assigned weight

to the feature Fi of A. Hence, the bigger the |xi|, the more salient Fi is in correlation

with b.

Example 4.3.6. Let A be the synthetic matrix as in Example 4.3.2 and b = F1 −

3F3 + 2F9 − F14. We solve Ax = b using the least-squares method where the vector
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x (rounded up to two decimals) is:

(
0.98 0.46 −2.93 −0.07 0.63 −0.02 −0.63 0.11 3.77 −0.13 0.25 0 0 −1 0 · · · 0

)

Let x = [x1, . . . , xn], where each xi is an assigned weight to Fi. Hence, we can

approximate b as a linear combination of the form x1F1 + · · · + xnFn. Therefore,

xi = 0 implies Fi has no impact on b and that Fi is irrelevant. According to vector

x, xi = 0 for i = 12, 13 and 15 ≤ i ≤ n and we remove the corresponding Fi from A.

Since, the notion of relevancy is not quantitative and one has to be cautious in

removing features, we set a soft threshold Thirr and incorporate both the methods

explained in Examples 4.3.5 and 4.3.6. In this chapter, we first filter out features with

minimal weight, that is features with |xi| less than 1
n

∑n
i=1|xi|×Thirr where

1
n

∑n
i=1|xi|

is the average of the |xi|s. Then we set |Pi,n+1|= 0 whenever |Pi,n+1|< Thirr. Note

that the last row of SD reflects the correlations with b. We sort the last row of SD as

descending and remove the features outside the length of 1
n

∑n
i=1|Pi,n+1|×(Thirr + 1).

So, we apply a two-step process with a soft threshold at each step to remove the

irrelevant features. Note that we still denote by A the reduced matrix obtained after

removing the irrelevant features.

In the next step, we identify redundant features. To do so, we use the signature

matrix SA of A and consider the associated graph. There are many efficient algorithms

to find the clusters or connected components of a graph. One such algorithm is

Breadth-First Search (BFS) [6]. By applying the BFS starting from vertex Fi, we
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can determine its accessible vertices. In other words, different clusters can be specified

using BFS on the unvisited vertex Fi. For example, in Fig. 4.1, the first unvisited

vertex (feature) is F1, and applying BFS on F1 would visit F2,F4,F3, respectively.

Since there is no unvisited connected feature, the first cluster consists of F1 to F4.

Then, BFS should be applied to the next unvisited Fi, and add the consequently

visited features to the next cluster until all the connected vertices in the current

cluster are visited.

From each resulting cluster, a feature that carries the highest MI with b is se-

lected as the output of the SVFS method. The selected feature from each cluster is,

indeed, the one that best represents that cluster. In real datasets we might inherently

encounter minor correlations between features, that is in the matrix SA we might see

very small entries that indicate weak correlations. We use a threshold Thred to map

the weak feature correlations to zero. Also, in case we encounter a few clusters with

numerous vertices, we set a threshold α to split the clusters with more than α vertices

into sub-clusters with the maximum of α vertices. The features in each sub-cluster

are then sorted based on the last row of SD, and the top β features are selected to

find their highest MI with b. The choice of β features in each sub-cluster is with the

aim of reducing the computational cost of the MI calculations.

4.3.1 Algorithm

In this section, we present the algorithm and flowchart of SVFS in Figure 4.2.
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Dataset D = [A | b] Let x = A†b
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features based on
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Cluster
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Split cluster into subclusters of

size α and select first β features

based on SD of each subcluster

Find a feature with

the highest MI

Return the top k features

Stop

Yes

No

Figure 4.2: Flowchart of SVFS
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Algorithm 3: Singular Vectors Feature Selection
Data: D, k, Thirr, Thred, α, β

Result: Top k of features

(1) D ← [A|b];

(2) x← A+b;

(3) cuttoff← Thirr ×Mean(x);

(4) I ← ∅;

(5) for each xi ∈ x do

(6) if xi ≥ cuttoff then

(7) I ← I ∪ i;

(8) A← A[I];

(9) D ← [A|b];

(10) SD ← I− (D† ×D);

(11) S ← Sort(Last row of SD);

(12) Fcleaned ← S[1 : Si > Mean(S)× Thirr];

(13) A← A[Fcleaned];

(14) P ← I− A†A;
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(15) for each column pi of P do

(16) if Pi,j ≥ Thred ×Mean(pi) then

(17) G← Addnode(j);

(18) G← Addedge(i, j);

(19) while (node ∈ G) or (len(kTop) < k) do

(20) Cluster ← BFS(node);

(21) if len(Cluster) > α then

(22) subClusters← Split (Cluster, α);

(23) for each subClusteri ∈ subClusters do

(24) ci ← Sort subClusteri based on S;

(25) kTop ← kTop ∪ Max (MI(ci[1:β]));

(26) else

(27) kTop ← kTop ∪ Max (MI (node ∈ Cluster ));

(28) G← Removenode(G,Cluster);

(29) return kTop;
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The while loop in the algorithm essentially demonstrates finding the connected

components of the graph associated to P . The well-known BFS algorithm finds the

connected components of a graph G(V,E) with complexity O(|V |+|E|). In our case,

|E| is the number of non-zero entries in P . So, the worst case in the algorithm can

happen when |E|= n(n− 1)

2
. Hence, the complexity of the while loop is O(n2). We

also mention that parallel algorithms for BFS have been of great interest, see for

example [9].

The complexity of computing S = I − A†A is more delicate. There is extensive

research on finding efficient and reliable methods to find A†, see for example [42, 49,

46]. One of the most commonly used methods is the Singular Value Decomposition

(SVD) which is very accurate but time and memory intensive especially in the case

of large matrices. The complexity of computing SVD of Am×n is O(min(mn2,m2n)).

Pseudo-inverses are used in neural learning algorithms to solve large least square

systems. So, there is a great interest in finding the pseudo-inverse efficiently. Cour-

rieu in [13] proposed an algorithm called Geninv based on Cholesky factorization

and showed that the computation time is substantially shorter, particularly for large

systems. It is noted in [13] that the complexity of Geninv on a single-threaded pro-

cessor is O(min(m3, n3)) whereas in a multi-threaded processor, the time complexity

is O(min(m,n)). The authors in [31] investigated the effective computation of the

pseudo-inverse for neural networks and concluded that QR factorization with column

pivoting along with Geninv works well. Since our implementation is single-threaded
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and m << n, the complexity of pseudo-inverse is O(m3). We can conclude that the

complexity of our algorithm is at most O(max(m3, n2)).

4.4 Experimental Result

We compared our method with eight state-of-the-art FS methods including Condi-

tional Infomax Feature Extraction (CIFE), Joint Mutual Information (JMI), Fisher

score, Trace Ratio criterion, Least angle regression (LARS), Hilbert-Schmidt inde-

pendence criterion least absolute shrinkage and selection operator (HSIC-Lasso),

Conditional Covariance Minimization (CCM), and Sparse Multinomial Naive Bayes

(SMNB). We used the scikit-feature library, which is an open-source feature selection

repository in Python developed in the Arizona State University (ASU). It includes

the implementation of CIFE, JMI, LARS, Fisher, and Trace Ratio methods. The

reset of methods, namely, HSIC-Lasso, CCM, and SMNB are implemented in Python

by their authors. To have a fair comparison among the different FS methods, we

take advantage of 5-fold stratified cross-validation (CV) of the dataset so that 80%

of each class is selected for FS. Then we use the Random Forest (RF) classifier with

its default setting implemented in [37], to build a model based on the selected fea-

tures and evaluate the model on the remaining 20% of the dataset. We report the

average classification accuracy over 10 independent runs (twice 5-fold CV) using the

RF classifier on each dataset.
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4.4.1 Datasets

We selected a variety of publicly available datasets from two sources, i.e. Gene Ex-

pression Omnibus (GEO) which has various real genomic data, and the scikit-feature

selection repository at Arizona State University which has benchmark biological and

face image data to perform feature selection and classification. The specifications of

these datasets are given in Tables 4.1 and 4.2.

The pre-processing of GEO datasets used in this research was carried out by

cleaning and converting the NCBI datasets to the CSV format. The mapping between

the gene samples and the probe IDs has been retrieved using GEO2R [5] and the

probe IDs that did not have a gene mapping have been removed. For each gene, the

expression values are obtained by averaging the expression values of all the probe IDs

mapped to that specific gene. The k-Nearest Neighbors (kNN) imputation method

was used to handle the missing values.

4.4.2 Hardware and Software

Our proposed method SVFS and other methods described in section 4.4 have been

run on an IBM LSF 10.1.0.6 machine (Suite Edition: IBM Spectrum LSF Suite for

HPC 10.2.0) with requested 8 nodes, 16 GB of RAM, and 8 GB swap memory using

Python 3.6. Note that we only set 240 GB of RAM for the CCM model as it requires

a high volume of memory.
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Table 4.2: Genomic Datasets Specifications

Dataset Samples # Original F # Cleaned F # Labels
Proportion of labels

1 2 3 4

GDS1615 127 22,282 13,649 3 33% 20.5% 46.5% –

GDS3268 202 44,290 29,916 2 36.1% 63.9% – –

GDS968 171 12,625 9,117 4 26.3% 26.3% 22.8% 24.6%

GDS531 173 12,625 9,392 2 20.8% 79.2% – –

GDS2545 171 12,625 9,391 4 10.6% 36.8% 38% 14.6%

GDS1962 180 54,675 29,185 4 12.8% 14.4% 45 27.8%

GDS3929 183 24,526 19,334 2 69.9% 30.1% – –

GDS2546 167 12,620 9,583 4 10.2% 35.3% 39.5% 15%

GDS2547 164 12,646 9,370 4 10.4% 35.4% 39% 15.2%

4.4.3 Parameters

The input parameters of our proposed SVFS method are k, Thirr, Thred, α, β. The

parameter k denotes the number of selected features and is a common parameter in

all the methods evaluated in this study. There is no fixed procedure in the literature

for determining the optimum value of k, but in many research works [27, 18, 7, 4], it

is set to 50 which seems to be satisfactory in many cases. However, we take k in a

wider range from 10 and 90 to ensure a fairground for comparison. When a subset of

k features are returned as the output of a FS algorithm, we feed the first t features

from the subset to the classifier to find an optimal t so that the subset of first t

features yields the highest accuracy. This set up is applied across all FS methods.
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Also, we report average classification accuracy of a model over 10 independent runs

(we run stratified 5-fold CV twice).

The parameter Thirr is the threshold set to filter out the irrelevant features. We

set the value of Thirr to 3. The parameter Thred is another threshold defined to

deal with the low level of sparsity of S. In real-world large datasets, the condition

Si,j = 0 might rarely be encountered. Indeed, the threshold Thred maps the weak

feature correlations to zero. Here, we have set the value of Thred to 4 for the biological

datasets and 7 for the face image datasets. The parameter α is used when facing big

clusters to divide the clusters into subclusters with α members. The parameter β is

the number of features selected from each of the subclusters with α members. In this

work, we have set the values of α and β to 50 and 5, respectively.

4.4.4 Results

The average classification accuracies over 10 independent runs (twice 5-fold CV) us-

ing the RF classifier on the datasets described in Section 4.4.1 are presented in this

section. In Figure 4.3, we present the classification accuracy of SVFS compared to

the other FS methods on 4 benchmark face image datasets. As it can be seen, our

method attains either the best or second best accuracy compared to other FS meth-

ods. It is interesting to note that SVFS attains 100% accuracy on all of pixraw10P,

warpPIE10P, and orlraws10P with at most 90 features.
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Figure 4.3: Average classification accuracy of feature selection by CIFE, JMI, Fisher,

Trace Ratio, Lars, HSIC-Lasso, SMNB, CCM and SVFS over 10 runs on benchmark

face image datasets

Figure 4.4 shows the classification accuracy performance of SVFS compared to the

other methods on benchmark biological datasets. As we can see, SVFS has performed

consistently well and achieved the highest accuracy in 7 out of the 12 cases, while
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producing reasonably good accuracies in most of the other cases as well. JMI has

produced the highest accuracy in 3 cases, where Fisher and HSIC-Lasso have shown

their best performance in GLIOMA and ALLAML datasets, respectively. As we

mentioned, the thresholds Thirr and Thred are set for 3 and 4, respectively for all

biological datasets. However, it is possible to tune these thresholds and get better

results. For example, if we set Thirr = 1.2 and Thred = 2, we get an average accuracy

of 94.52 and 96.37 on ALLAML and Lymphoma datasets, respectively, and using at

most 50 features (α = 50, β = 15). Similarly, Thirr = 1.1 and Thred = 2, gives an

average accuracy of 87 on GLIOMA dataset (α = 50, β = 15), while Thirr = 1.2 and

Thred = 4, gives an average accuracy of 74.14 on NCI9 dataset (α = 50, β = 10).

The general superiority of SVFS can be further witnessed on genomics datasets

with large number of features as shown in Figure 4.5. Note again that Thirr = 3 and

Thred=4 for all these datasets. However, it is possible to tune the parameters Thirr

and Thred to obtain better results per dataset. This can be particularly useful when

we focus on specific datasets for disease diagnosis and biomarker discovery.

We conclude from Figures 4.3, 4.4, and 4.5 that our proposed SVFS has achieved

the highest accuracy on 12 datasets out of the total 25 datasets, while noting that no

other method has achieved the highest accuracy for more than 4 datasets. In cases

where SVFS has not produced the highest accuracy, its performance is nonetheless

among the most accurate ones.

Since IBM LSF is capable of reporting running time, CPU time, and memory
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Figure 4.4: Average classification accuracy of feature selection by CIFE, JMI, Fisher,

Trace Ratio, Lars, HSIC-Lasso, SMNB, CCM and SVFS over 10 independent runs

on benchmark biological datasets
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Figure 4.5: Average classification accuracy of feature selection by CIFE, JMI, Fisher,

Trace Ratio, Lars, HSIC-Lasso, SMNB, CCM and SVFS over 10 independent runs

on genomic datasets
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usage by each feature selection model, we depict the running time in seconds for all

feature selection methods in Figure 4.6. As there are 25 datasets for the evaluation

process, Figure 4.6(a) includes the running time on the benchmark biological and

benchmark image datasets and Figure 4.6(b) covers the running time on the genomic

datasets. Note that the reported running times include the RF classification time. It

can be seen that the running times of CIFE and JMI are worse than other methods

while the running time of CCM method on GEO datasets is high and roughly the

same as CIFE and JMI. The other methods including SVFS have comparable and

very reasonable running times in the sense that these methods can be comfortably

run on regular PCs.

Some methods because of their immense cost of computing are implemented in

parallel to perform in reasonable running time. Since HSIC-Lasso hired all available

core of CPUs, its CPU time is comparable with CIFE and JMI methods, as shown

in Figure 4.6(c). Moreover, the CCM model takes advantage of TensorFlow [1] with

an optimized CPU implementation in a parallel way, leading to a high CPU time on

most of the datasets. The rest of the methods are implemented in a non-parallelized

manner; therefore, their CPU times are relatively similar to their running times.

In terms of performance in memory usage, Figure 4.6(d) shows that CIFE, JMI,

Fisher, SMNB, and SVFS are efficient and required comparatively low memory. In

contrast, CCM, HSIC-Lasso, and Trace Ratio required a high volume of memory in

the magnitude of thousands.
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Figure 4.6: (a), (b) Running Time, (c) CPU Time and (d) Memory taken by CIFE,

JMI, Fisher, Trace Ratio, Lars, HSIC-Lasso, CCM, SMNB and SVFS over 10 runs

using RF classifier
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4.5 Conclusion

In this chapter, we have proposed a feature selection method (SVFS) based on singular

vectors of a matrix. Given a matrix A with its pseudo-inverse A†, we showed that the

signature matrix SA = I−A†A can be used to determine correlations between columns

of A. To do this, we associate a graph where the vertices are the columns of A and

columns Fi and Fj are connected if Si,j 6= 0. We show that connected components

of this graph are the clusters of columns of A so that columns in a cluster correlate

only with columns in the same cluster. We consider a dataset D = [A | b], where

rows of A are samples, columns of A are features, and b is the class label. Then we

use the signature matrix SD and its associated graph to find the cluster of columns

of D that correlate with b. This allows us to reduce the size of A by filtering out

the columns in the other clusters as irrelevant features. In the next step, we use the

signature matrix SA of A to partition columns of A into clusters and then pick the

most important features from each cluster.

A comprehensive assessment on benchmark and genomic datasets shows that the

proposed SVFS method outperforms the state-of-the-art feature selection methods.

Our algorithm includes two thresholds Thirr and Thred that are used to filter out

irrelevant and remove redundant features, respectively. The thresholds have been set

identical for the same type of datasets. However, it is possible to further tune the

parameters Thirr and Thred to obtain better results. This can be particularly useful

when we focus on specific datasets for disease diagnosis and biomarker discovery.
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Chapter 5

Conclusions

The amount of high-dimensional data has been significantly growing in the past few

years. Hence, machine learning methods face more complicated challenges in handling

and interpreting the large number of input features. To apply machine learning

methods effectively and efficiently, feature selection is needed as an essential data

pre-processing technique. This process makes data mining algorithms faster and more

reliable, increases predictive accuracy, and enhances comprehensibility. Moreover,

the proper application of feature selection methods improves the learning process, in

terms of generalization capacity, learning speed, and reducing the complexity of the

induced model, and computation costs.

Feature selection involves detecting relevant (important) features and removing

irrelevant, redundant, or noisy data. Irrelevant features provide no useful information,

and redundant features produce no more information than the selected important
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features. In microarray high-dimensional data, the quantity of samples is considerably

less than the number of features; therefore, in such a case, machine learning falls in

hassle states as the search space gets sparsely populated. Accordingly, the model will

not be able to distinguish between noise and relevant data accurately. Selecting the

most important features turns this type of data into a balanced structure; this process

is also known as dimensionality reduction.

To filter out the irrelevant features, we have proposed a method (SLS) based

on the least-square solutions. This methods was presented in Chapter 2. We only

focused on detecting irrelevant features, and examined the state-of-the-art feature

selection methods with both original features and filtered features. With less noisy

data, all examined feature selection methods achieved competitive prediction accuracy

and performed much faster. In other words, we turned the benchmark datasets into a

lower dimension by merely removing irrelevant features. We determined the relevance

of features to the class label based on a threshold because the notion of relevancy is

not quantitative, particularly in real-world datasets. We showed that SLS could be

added to any pre-processing technique as our experiments clearly reflect that SLS

optimizes the performance of feature selection algorithms over different dataset types

in terms of running time and classification accuracy by fitting a soft threshold (see

Sections 2.4.4, 2.4.5, and 2.4.6).

After successfully detecting and removing irrelevant features, the main goal of

this thesis is finding important features among redundant features. Since redundant
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features have some correlations with some other features and the class label, we can

view them as different clusters, in which each cluster includes only a few important

features that have a considerable impact on the class label compared to the rest of

the cluster members. Therefore, in Chapter 3, we proposed a noise-robust feature

selection method (DRPT) for high-dimensional genomic datasets. The novelty of

DRPT is removing the irrelevant features outright using the SLS optimizer, and then

clustering the resulting reduced dataset to detect the features correlated to the class

label in each cluster using the perturbation theory. We also took advantage of the

entropy of each feature during the clustering process and the final ranking. We showed

that DRPT perfectly distinguishes irrelevant and redundant features on a synthetic

dataset, and for proof of concept, we extended our examination over ten genomic

datasets. Moreover, DRPT is insensitive to the permutation of rows or columns

of the data, and our evaluation showed it outperformed the state-of-the-art feature

selection algorithms in classification accuracy and running time (see Section 3.4.4).

To further extend our investigations in the clustering process of the reduced

dataset for feature selection, we proposed a new feature selection method (SVFS)

based on singular vectors of a matrix in Chapter 4. We introduced a signature ma-

trix in which the correlations between features are encoded. We considered each

feature as a vertex and transfered the signature matrix to a graph representation

where a correlation between two features is exposed as an edge. Then we partitioned

the set of all features into different clusters where the features within a cluster cor-
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relate with each other, and different clusters are linearly independent of each other.

Finally, using mutual information, the most important features from each cluster

were selected. We introduced two thresholds in the process of filtering irrelevant and

redundant features. These thresholds can be adjusted to improve results for different

types of datasets. The general superiority of SVFS was further observed through a

comprehensive assessment of the genomic and face datasets (see Section 4.4.4).

This thesis aims to provide a new filter-based feature selection that transforms

the data into a lower dimension outright by removing irrelevant features and then

detecting the important features by clustering. For future work, we plan to turn

our filter-based method into a wrapper-based one. Using a solid grid search module,

we will be able to obtain the most desirable value for the adjustable parameters,

particularly for Thirr and Thred (see Section 4.4.3), with the help of a solid classifier

feedback. Incorporating a classifier will certainly increase the running time, and the

parallel implementation can resolve this problem because, the powerful FS methods

follow this path and utilize the immense potential of parallel computations. Moreover,

we can upgrade our model to an unsupervised feature selection as the signature matrix

can also represent the correlations between features of a dataset without the class

label.
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