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Abstract

Safe and reliable operation of the systems relies on the use of online condition moni-

toring and diagnostic systems that aim to take immediate actions upon the occurrence

of a fault. Machine learning techniques are widely used for designing data-driven di-

agnostic models. The training procedure of a data-driven model usually requires a

large amount of labeled data, which may not be always practical. This problem can

be untangled by resorting to semi-supervised learning approaches, which enables the

decision making procedure using only a few numbers of labeled samples coupled with

a large number of unlabeled samples. Thus, it is crucial to conduct a critical study

on the use of semi-supervised learning for the purpose of fault diagnosis.

Another issue of concern is fault diagnosis in non-stationary environments, where

data streams evolve over time, and as a result, model-based and most of the data-

driven models are impractical. In this work, this has been addressed by means of an

adaptive data-driven diagnostic model.
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Chapter 1

Introduction

Many situations naturally arise in the industry where resilient technologies and soft-

ware algorithms are required to keep a system stable. A diagnostic system is usually

required to maintain the system performance and minimize the downtime. As a result,

the development and deployment of a robust Fault Diagnosis System (FDS) are of

critical concern in applied industrial applications, and the computational intelligence

community has begun to propose solutions to this problems [3].

1.1 Motivation

The challenge of providing a robust FDS can be addressed using model-based and

data-driven techniques. Model-based approaches make use of predictive models that

are based on the prior knowledge of different system states [4, 5]. These models

are used to detect a fault and identify the type of fault that has occurred. However,

obtaining these models is typically complex and difficult in practice. To overcome this

issue, data-driven techniques have been widely used in the design of the FDS systems.

These data-driven diagnostic models usually make use of intelligent techniques to train

predictive models based on a set of samples [6]. These trained predictive models are

then used to predict the system states in online applications.

These data-driven techniques generally follow the Supervised Learning (SL) paradigm

that requires labeled data to be available from all known classes (i.e., normal oper-

ations and different types of faults) to build a model [7]. SL models typically work

well for diagnosing faults [8]; however, their effectiveness, in practice, relies on the

1



amount of available labeled data. Unfortunately, acquiring a large volume of labeled

data becomes infeasible because the labels need to come from a human expert, which

is commonly an expensive operation (both in terms of time and money). Note that

collecting data is typically easy and it is the process of obtaining the labels that is

expensive. On the other hand, the field of Semi-Supervised Learning (SSL) focuses on

techniques that leverage both labeled and unlabeled data to build a predictive model

[9]. Exploiting the unlabeled data to extract information enables the algorithm to

construct a model with much less required prior knowledge than SL [10].

1.2 Contributions

The aim of this work is to design hybrid fault diagnostic frameworks that work with

a few number of labeled samples and a large portion of unlabeled samples. To eval-

uate each of the designed frameworks, various state-of-the-art approaches have been

devised for different modules of the framework such as Feature Extraction (FE), Di-

mensionality Reduction (DR), and classification. This enables comparative studies

in which advantages and disadvantages of each technique can be perceived for the

respective application. These comparative studies are mainly focused on SSL, which

is leveraged for DR and classification. The studies reported in this work are very

informative and beneficial in the sense that SSL is seldom studies for the sake of fault

diagnosis.

Moreover, novel semi-supervised classification algorithms have been proposed in

this work that are utilized for fault classification in the designed diagnostic frame-

works. Further contributions have been made in the field of real-time classification

in non-stationary environments and addressing the occurrence of new classes in the

data stream. Data-driven FDS approaches are usually trained based on collected data

in stationary environments (i.e., data are sampled from an independent and identi-

cally distributed (i.i.d.) process). On the other hand, collecting representative data

2



is often a dynamic process of successive data acquisition campaigns. In such non-

stationary environments, data patterns become available successively, over a period

of time. Therefore, designing efficient data-driven schemes are typically preferred,

since these techniques are more robust against arbitrary data distributions and types

of faults [11]. Furthermore, they do not rely on seasonal changes in patterns (i.e., a

stationarity assumption). Our setting assumes that data arrive in a non-stationary

environment, where sensor data collection forms a data stream [12]. More details

regarding the novelties in this work are included in the following subsection.

1.3 Novelties

In addition to the vast comparative studies on the application of various state-of-

the-art SSL algorithms in FDS, novel algorithms are also proposed to maximize the

overall performance of the designed framework:

1.3.1 Semi-Supervised Smooth Alpha Layering

A novel semi-supervised classifier, called Semi-Supervised Smooth Alpha Layering

(S3AL) has be introduced in this work. S3AL aims to perform multiclass classification

by resorting to an inductive learning procedure. In this algorithm, the structure of

data is captured using α-Shape [13]. α-Shape is a strong tool, which is mostly utilized

for the surface estimation. However, to our knowledge, it is rarely exploited for SSL

and designing a FDS.

1.3.2 Drift and Novelty Class Detection and Adaptation un-

der Extreme Verification Latency

Diagnosing faults in non-stationary environments is a challenging task. On the other

hand, providing FDS with external updates is not feasible, since labeling the unlabeled
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data is an expensive and offline task. To overcome these issues, recent works have

been developed to address Extreme Verification Latency (EVL), which is when the

labeled data is merely available at the first time step. A more realistic learning setting

for the design of FDS aligns better with EVL. Although EVL learners can be used

for diagnosing faults from the data stream, they have some restricting assumptions.

EVL assumes that the labeled data is only provided at the initial time step, and the

subsequent samples are fully unlabeled, which is a more realistic learning scenario for

FDS. EVL classifiers (EVLC) are mostly limited to work with gradual drifts and the

fixed number of classes, while there is a need to work with both abrupt and gradual

changes in the data stream, and, moreover, handle new classes in the subsequent

instalments, without any external updates.

One of the primary contributions of this work is to design a diagnostic framework

based on any EVL classifier, where the restricting assumptions are addressed by re-

sorting to a detection and adaption module. This work proposes a novel framework,

which contains two main modules. These include a double-stage detector and a clas-

sification module. To work with both abrupt and gradual changes and handle new

classes without any external updates, a double-stage detector has been devised in

the proposed framework. This double-stage detector initially uses the Extended CU-

mulative SUM (E-CUSUM) technique to detect abrupt changes and, then, a novelty

detector to determine the presence of new unseen classes.

1.3.3 Affinity-based COMPOSE

Another contribution of the work is to develop a new EVLC that is a variant of the

COMPact Object Sample Extraction (COMPOSE) algorithm [14], which is named

as Affinity-based COMPOSE. The main difference between the Affinity-based COM-

POSE and other variations of COMPOSE is the sampling procedure in which a

prospective sampling procedure has been devised in order to compromise between

the accuracy and the runtime.
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1.4 Outline

The remainder of this study is organized as follows:

Chapter 2 initially describes the main challenges in designing data-driven fault

diagnostic systems. Then, two case studies used in this work, induction motor

and gearbox, are introduced. Afterwards, it presents the literature review on semi-

supervised learning algorithms and its different categories. Firstly, the nature of semi-

supervised learning is clarified. A brief review is then performed on semi-supervised

dimensionality reduction. Finally, some of the semi-supervised classifiers that are

used as comparative tools are introduced.

Chapter 3 presents the two hybrid diagnostic frameworks that are designed to

address the problem of fault diagnosis under limited supervision. The first frame-

work enables a brief study on the semi-supervised dimensionality reduction, while

the second framework has a more complex scheme and focuses on semi-supervised

classification. In addition, a novel semi-supervised classifier, called Semi-Supervised

Smooth Alpha Layering (S3AL), is proposed in this chapter, which is designed to

maximizes the performance of the second diagnostic framework. The experimental

results are also included in this chapter.

Chapter 4 introduces a hybrid diagnostic framework that is able to address

the problem of fault diagnosis with the limited supervision in a high dimensional

feature space by making use of a semi-supervised deep learning procedure. Then, a

comparative study is performed on state-of-the-art deep learning algorithms and the

results are analyzed afterwards.

Chapter 5 presents a dynamic diagnostic framework to address the problem of

fault diagnosis with the limited supervision in non-stationary environments. This

novel framework is called Drift and Novelty Class Detection and Adaptation under

Extreme Vitrification Latency (DISCOVERY), which utilizes a double stage detector

that is proposed in this work. Moreover, a novel classifier, called Affinity-based

5



COMPOSE is proposed and devised in the DISCOVERY in order to maximize the

speed for decision making and the diagnostic accuracy. Affinity-based COMPOSE

is compared and studied within the designed framework. Finally, the experimental

results are presented and analyzed in this chapter.

Chapter 6 presents the conclusion of this thesis. It first states what is the aim

of this study and the considered problems in this work. Then, accomplished works in

each chapter are reviewed and concluded providing an overview..
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Chapter 2

Data-driven Fault Diagnosis

Diagnosing a fault in a system can be achieved through a detection and classification

phase. Many solutions have been proposed for the fault diagnosis problem; how-

ever, most use either: (a) an unsupervised learning (UL) scheme for fault detection,

or (b) SL algorithm for classification, respectively. SL strategies have been widely

used in design of the data-driven diagnostic systems due to the high diagnostic accu-

racy. However, the SL strategy to design diagnostic systems is usually infeasible and

expensive due to the unavailability of labels during the training phase.

Another key factor to determine the accuracy of the data-driven diagnostic sys-

tems is the quality of the input features. Various methods can be used to extract

representative features from the raw sensory measurements; however, this may re-

sult in creation of the large pool of features including redundant ones, which further

complicates the training procedure of the diagnostic models. As a result, there is a

need to reduce the dimension of the feature space to improve the diagnostic accuracy.

This has been widely used in many research works [15]; however, this work aims to

overcome this issue by resorting to a semi-supervised deep learning network.

The input signals to the FDS are usually in the form of data stream and require fast

and immediate predictions. Although, SL strategies are quite beneficial in stationary

environments, more efficient solutions are required due to the dynamical behavior of

the systems. In non-stationary environments, the data become available incrementally

over time. The underlying distribution of data collected in subsequent installments

may change due to concept drift (CD). CD, in practice, is a result of change in

operational conditions (e.g., load variation) or state of the system (e.g., new classes

7



of faults are presented). CD includes any alternation in the collected signal brought

about by a change in fault diameters or the IM speed. The CD can be divided into

two major categories: abrupt (CDA) and gradual (CDG). Therefore, FDS require

a solution that is incrementally updated over time. However, incremental learning

procedure becomes more complicated in the presence of the unlabeled data stream

and by the appearance of abrupt changes or novel classes of faults.

In this work, the aforementioned issues are addressed by resorting to semi-supervised

learning approach. To assess the practicality of the proposed data-driven diagnostic

systems for real-life problems, electromechanical systems are considered for the sake

of this study, which are introduced in the following section.

2.1 Electromechanical Systems

Two main case studies are considered for evaluating the performance of the proposed

diagnostic frameworks.

2.1.1 Induction Motors

The undeniable importance of induction motors (IMs) in industry resulted in a large

number of research works in various domains [16, 17]. One of the greatest concerns,

is designing an efficient fault diagnosis system, in which failures and malfunctions

would be identified in order to inform the control unit or operators to make preventive

decisions before system breakdown [18, 19].

Among the various failures in induction motors, almost 41% of them are caused by

bearing defects [20]. Such defects are followed by many consequences such as costly

repairs, system breakdown, and in the worst case, workers injuries. Thus, finding a

reliable and robust fault diagnosis system is of predominant concern, to ensure the

reliable operations of the IMs.

The Case Western Reserve University (CWRU) is one of the most popular cases in
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the field of bearing fault diagnosis [21]. The CWRU data represents vibration signals

generated by different defects. These vibration signals are raw and contains noise and

high-frequency components, which complicate the diagnostic process. Thus, a pre-

processing phase is required to prepare informative sets of features for the upcoming

module.

For this case study, bearing defects are categorized into four different types namely

as normal, inner, ball, and outer race defects under different conditions such as dif-

ferent speeds (1730, 1750, 1772, 1797rpm) and defect widths (0.007, 0.014, 0.021in).

2.1.2 Gearbox

Gears are the main component of mechanical power transmission systems in various

industrial applications including aerospace, marine, railway, automobile and wind

turbine. Health assessment and preventive maintenance of the gears are crucial for

reliable, safe, optimal operations and can reduce the maintenance cost of electrome-

chanical systems efficiently. The vibration-based condition monitoring has been con-

sidered as the most common method of gear fault diagnosis, since any mechanical

imperfection modifies the response of gear’s mechanical structure to external excita-

tion and, hence, produces faulty signatures in the vibration signal [22, 23]. However,

alternative methods based on oil debris, acoustic noise and acoustic emission analysis

have been used for gear condition monitoring in electromechanical systems [24, 25].

Recently, the gear fault detection based on the electrical signature analysis has been

proposed, which is cost effective, since it needs minimum installation changes in the

system and do not need the installation of any extra sensors, since in most of in-

dustrial applications the electrical measurement is already available [26, 27]. In this

regard, both stator current space vector instantaneous amplitude (SCSVIA) and sta-

tor current space vector instantaneous phase (SCSVIF) have been utilized for parallel

shaft gear tooth fault detection [28, 29, 30].
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2.2 Literature Review

Here, the nature of SSL problem and its categories are explained. Moreover, some

of the state-of-the art algorithms that are used in this study for the purpose of fault

diagnosis are explained.

In order to extract useful knowledge from the unlabeled samples U = {x1, x2, ..., xnu},

SSL algorithms usually find relationships between samples and relate them to the in-

formation acquired by the labeled samples L = {(x1, y1), (x2, y2), ..., (xnl , ynl)} to some

extent, where the label y belongs to a class in Ω = {ϑ1, ϑ2, ..., ϑnΩ
}. Such relation-

ships are mainly extracted based on three fundamental semi-supervised assumptions

(SSA):

1. Manifold Assumption: data is representable on a low-dimensional manifold.

Graph-based schemes are widely used under this assumption [31]

2. Cluster Assumption: data samples that are clustered together are assumed

to belong to the same class, i.e., the decision boundary between the two classes

should pass through the low density regions [32]

3. Smoothness Assumption: samples in dense regions of a distribution should

share the same class [33]. SSL can be used for Feature Selection (FS), Dimen-

sionality Reduction (DR) and classification.

2.2.1 Semi-Supervised Feature Reduction

Semi-supervised learners usually require a representative set of features in order to

achieve a good classification performance. Otherwise, learning on biased or non-

informative features can result in the performance drop. In general, feature reduction

(FR) provides the learner with a smaller set of informative features. FR approaches

can be divided in two major categories:

10



1) Dimensionality reduction approaches project the samples onto a lower-dimensional

space [34, 35, 36];

2) Feature selection approaches rank and select the most informative features and

filter out the redundant features [37, 38].

However, majority of these FR approaches work in a SL or an unsupervised learn-

ing framework. The process of FR for partially labeled sets can be further improved

by resorting to a SSL framework, which makes use of both labeled and unlabeled

samples. In this study, five FR algorithms are utilized, which are explained in the

following:

Semi-Supervised Discriminant Analysis (SDA)

SDA [34] exploits unlabeled data U as well as labeled data L to gain knowledge about

the geometric structure of data in addition to the class separability. In other words,

U is used to capture the geometric structure of the data, while L is used to maximize

the between-class separability in the new feature space.

Semi-Supervised Dimensionality Reduction (SSDR)

SSDR [35] reduces the dimensionality of data by exploiting the unlabeled data and

pairwise constraints, in which pairs of observations within the same class (must-link

constraint) and in different classes (cannot-link constraint) are determined. SSDR

aims to find a projection matrix in a way that both the specified pairwise constraints

and the structure of original data are retained.

Flexible Manifold Embedding (FME)

FME [36] integrates the smoothness on the data manifold and the label fitness, in

order to achieve an optimal projection matrix. It gains knowledge about the labels

fitness using L, and the manifold structure using both L and U . The former is used

to define the label fitness, and the latter is used to apply manifold smoothness and
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the flexibility penalty. The goal is to find the optimum prediction labels, a linear

regression function for projecting new data and a regression residue, which models

the mismatch between predicted labels and the regression function.

Trace Ratio Criterion Feature Selection (TRCFS)

TRCFS [37] finds the best features through a filter-based approach. Using this ap-

proach, the within-class and the between-class scatter matrices are formed on the

soft labels estimated by the label propagation, and the best features are then selected

w.r.t. a noise insensitive trace ratio criterion.

Structural Feature Selection with Sparsity (SFSS)

SFFS [38] integrates the l2,1 regularized FS and manifold learning to attain a semi-

supervised FS scheme. By this mean, U and L are both used for selecting features

jointly, while the correlation between them is considered at the same time.

2.2.2 Semi-Supervised Classification

Semi-supervised classifiers can be categorized into graph-based and cluster-based al-

gorithms as follows:

1) Graph-based algorithms aim to capture the intrinsic structure of the data by

constructing a graph on the data samples. Successful graph-based algorithms include

label propagation [39], graph cut algorithms [40], and Low Density Separation (LDS)

[41]. Graph-based algorithms are usually transductive, where the algorithm observes

all the available samples and, then, classifies them at once. Transductive learning

is usually accurate, since it observes all the unlabeled samples prior to prediction.

However, when a new sample arrives, the procedure should be executed again, since

there is not any specific model available. More recent graph-based SSL approaches

maximize the margin, while minimizing the inconsistency on the manifold structure
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of the data. These approaches mainly include manifold regularization [31] such as

LapSVM, LapRLS [31] and Semi-supervised Extreme Learning Machines (SSELM)

[42].

2) Cluster-based algorithms form a decision boundary in the low density regions.

This can be usually done by maximizing the classification margin, as in transductive

SVM [43] and semi-supervised SVM [32]. Cluster-based approaches can also be used

in the boosting frameworks for the sake of SSL [44, 45, 33]. Most of the cluster-based

algorithms are inductive learners, that aim to construct a predictive model on the

training data, prior to prediction.

In this study, various semi-supervised classifiers have been considered, where some

of them are explained in the following:

Graph-based Label Propagation (GLP)

GLP initially constructs a graph structure on all data points, i.e., U ∪ L. Various

approaches can be used for attaining this graph structure. In this work, this has been

accomplished by means of harmonic function introduced in [46]. Once the graph

is constructed, labels start to propagate from the available labeled samples on the

graph.

Low Density Separation (LDS)

LDS initially leverages a graph-based approach to reduce the dimensionality of the

data, and, then, it aims to maximize a classification margin. Although various ad-

vanced methods are available for SSL, they are mostly designed for low-dimensional

datasets and as a result, they do not yield to their best performance for extremely

high-dimensional data. LDS is chosen as it makes use of an intrinsic dimensionality

reduction phase.
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Semi-Supervised Extreme Learning Machine (SSELM)

SSELM is an extension of the Extreme Learning Machine (ELM) [47]. It firstly,

constructs a hidden layer for a single layer feedforward network by random generation

of the feature mapping. To compute the optimal weights between the output and

the hidden layer, SSELM reformulates the ELM loss function to apply for the SSL

problem. Such a modification is performed w.r.t. manifold regularization [31], in

which an affinity matrix is utilized to penalize the inconsistency between samples so

that samples in high-density regions are expected to share the same class, i.e., known

as smoothness assumption.

Laplacian Support Vector Machine (LapSVM)

Similar to support vector machines, LapSVM aims to maximize a classification mar-

gin. LapSVM also minimizes the inconsistency on the data manifold structure simul-

taneously. In other words, LapSVM adds an smoothness penalty term to the SVM

objective function, by which label smoothness is controlled on the captured manifold.

Adaptive Semi-Supervised Ensemble (ASSEMBLE)

ASSEMBLE [44] utilizes the concept of pseudo-class to exploit unlabeled data for

maximizing a margin. Initially a supervised model is formed based on the available

labeled data, and then, a prediction is made on U . The predicted labeles are referred

as pseudolabels. Using these pseudolabels, a pseudo-margin can be maximized in

an iterative procedure, where at each iteration the mispatch between model and

prediction is penalized, and then, the pseudolabels are updated for the next iteration.

Semi-Supervised Boost (SemiBoost)

SemiBoost [45] initially creates pseudolabels based on a similarity matrix, which is

formed by means of a radial basis function. Then, through an iterative procedure,

14



the most confident samples are chosen w.r.t. a confidence that is calculated using

pairwise similarities. These confident samples are used to form a classification model

that is assigned with an ensemble weight at the end of the iteration. This ensemble

weight is computed w.r.t. the mismatch between the predictions and the expected

predictions (i.e., the computed confidence for a sample indicates how likely it is to be

in a class).

Regularized Boost (RegBoost)

RegBoost [33] uses density-based clustering and a similarity matrix to initially gen-

erate pseudolabels. After sampling the most confident samples and constructing an

initial classification model is constructed. Then, the ensemble is updated by assigning

the model with a weight and including it in the current ensemble. This weight is cal-

culated by penalizing the misclassification on labeled data applying the smoothness

assumption on the unlabeled data. The latter is performed locally in the neighbour-

hood of each unlabeled sample.

2.3 Summary

This chapter initially explains the main challenges in designing data-driven fault

diagnosis systems. Firstly the problem of fault diagnosis under limited supervision is

stated, in which the assumption is that only a few numbers of labeled samples along

with a large number of unlabeled samples are available. Then, a more complicated

case is considered where the input space is very high-dimensional. Afterwards, the

challenges of fault diagnosis in non-stationary environments with the presence of

concept drift are explained. In addition, two cases of electromechanical systems,

namely induction motors and gearbox, are introduced. Finally, a literature review on

the SSL and the utilized algorithms is presented.
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Chapter 3

Fault Diagnosis with Limited Supervision

Most of data-driven techniques utilize a Supervised Learning (SL) strategy, which

requires a large set of labeled (i.e., faulty or normal states) samples that are collected

a priori [48]. SL algorithms are usually accurate if provided with a representative

set of samples. Obtaining these sets of samples is not a difficult task as the data is

usually collected without the human interference by means of sensors. However, the

process of labeling (i.e., whether they are faulty or normal) the collected samples,

requires the human knowledge about the system states. For this reason, most of the

FDS systems designed based on the SL strategy are not useful in real applications,

where a large number of unlabeled samples are collected. It is very important then

to build a model in a more efficient manner for designing a practical FDS.

To overcome this issue, Semi-Supervised Learning (SSL) strategies have been used

in design of the FDS systems [49, 50] that facilicates the procedure of model construc-

tion with a partially labeled set of samples. Besides, only a few number of labaled

samples are used to construct the model, and, thus, the process of labeling the un-

labeled samples is no longer required. These SSL strategies usually make use of the

labeled data in order to extract useful information from the unlabeled samples to

compensate the lack of enough labeled samples. For this reason, various diagnos-

tic systems are designed based on SSL strategies to improve the efficiency and the

accuracy of the FDS [51, 52].

The aim of this chapter is to design hybrid fault diagnostic frameworks that work

with a few number of labeled samples and a large portion of unlabeled samples. The

designed frameworks consist of three main steps for feature extraction (FE) from
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the input signals, feature reduction (FR) of the extracted sets, and decision making.

Various state-of-the-art approaches are devised in each step. Comparative studies

are then performed on all approaches in order to find the best combination of the

approaches that leads to the best performance.

3.1 Problem Formulation

Here, the proposed frameworks are applied for diagnosing bearing defects in induction

motors. This study is based on the standard case study from the Case Western

Reserve University (CWRU) [21]. Bearing Data Center contains different vibration

signals for the normal and faulty conditions. Since, in reality IM conditions may vary

(e.g., the defect width or motor load may change), we have considered four different

scenarios gathered from the CWRU data center. Table 3.1 shows detailed information

for each scenario. Two different motor loads of 0 and 1 hp with two different defect

widths of 0.007 inch and 0.014 inch are considered in this study. The data collection

was performed at 12000 sample per second for drive end experiments. In addition,

four different defect conditions including Normal, Inner Race Fault (IRF), Outer

Race Fault (ORF) and Ball Fault (BF) are considered that result in a multiclass

classification problem.

In this chapter, two diagnostic frameworks are designed. One enables a brief

comparative study on semi-supervised dimensionality reduction, while the other one

is the main diagnostic framework proposed in this chapter, and it is focused on semi-

supervised classification. The latter is referred as the main experiment in this chapter.

The experimental setting for each of them is explained in the following.

3.1.1 Study on Semi-Supervised Dimensionality Reduction

In order to prepare the initial data for the DR module, signal data from CWRU

dataset is segmented into 320 samples, in which 80 samples are available for each
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class of Normal, IRF, BF, and ORF. These are representative samples from the

drive-end signals with the defect width of 0.007in and 0.021in. In total, 112 features

are extracted from the raw signals.

3.1.2 Main Experiment

The length of the vibration signal for each motor condition is 102400, which is seg-

mented later according to a fixed window of size 1024 resulting in 100 segments. Each

scenario contains representative samples of all classes (i.e., Normal, IRF, ORF and

BF). First scenario contains samples of the lowest load and the smallest width for

all defects. In the second and third scenarios, IM is only subjected to the change

in the motor load and the defect widths, respectively. The last scenario contains

representative samples of both different load and defect widths.

Table 3.1 – The data characteristics of each scenario

Scenarios
Signal Length Defect Width (in.) Motor Load (hp)

(No. of Segments) 0.007in. 0.014in. 0hp 1hp

SCN 1 102400 (100) X - X -
SCN 2 102400 (100) X - - X
SCN 3 102400 (100) - X X -
SCN 4 102400 (100) - X - X

3.2 A Brief Study on Semi-Supervised Dimension-

ality Reduction

The proposed scheme for the fault diagnosis system is illustrated in Fig. 3.1. This

module initially segments the vibration signal into various non-overlapping parti-

tions and, then, passes them through the WPT. It decomposes each segment into 16

different equal size packs with default frequency sub-bands as results of four levels
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of decomposition. Finally, seven different statistical features including Root mean

square, Skewness, Kurtosis, Maximum, Minimum, Peak to peak and Variance of each

pack are extracted (i.e., 16× 7 = 112 features).
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Motor

Normal and Faulty 
Signals

f(t)

Feature Extraction

Segmentation
Wavelet 
packet 

transform

Statistical 
features

Decision Making

SSELM
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Dimensionality 
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Figure 3.1 – The general scheme of the diagnostic system including feature extraction,
dimensionality reduction and decision making module. [1]

Then, the 112 processed features are fed to the next module, dimensionality re-

duction, which provides the proper sets of small size features for the decision making

module.

3.2.1 Results

After the dimensionality reduction, generated features by each technique are fed to

five semi-supervised algorithms: SSELM, ASSEMBLE, LDS, LapSVM, and GLP (see

Fig. 3.2). The aim is to determine the efficiency of the selected algorithms for bearing

fault diagnosis in IMs.

The pre-processed data obtained by SDA and FME are embedded into four-

dimensional feature space. Different embeddings for SSDR are examined and the

one with the best accuracy, which is transformation into three dimensional feature

space (nΩ − 1), is considered in this paper.
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Figure 3.2 – The accuracy of each classification algorithm over cross validation itera-
tions, using different dimensionality reduction techniques.

Accuracy

In Fig. 3.3, it is observable that FME outperformed the others while it is used along

with SSELM, ASSEMBLE, and LDS. This is while LapSVM and GLP are not ac-

curate enough on the FME output. The main reason behind the attained accuracy

by GLP and LapSVM is that they are both binary classifiers, and used in a one-

versus-all approach, which has degraded their performance, specially on FME output.

Conversely, SDA is providing suitable features for such classifiers utilizing the one-

versus-all approach. On the other hand, SSDR is providing classifiers with features

that result in a moderate accuracy.
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Figure 3.3 – The mean performance attained by each classifier over the cross validation
on different dimensionality reduction techniques.
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Aside from the influence of the dimensionality reduction module, we study the

performance of the classification algorithms for diagnosing bearing defects in IMs.

For instance, GLP is extremely dependent on the initialization phase, where it con-

structs a graph on the data. Providing its intrinsic harmonic function with a fully

connected yet accurate graph on the data is a delicate step since, even using opti-

mization, sometimes the constructed graph is not satisfying. Another example would

be LapSVM, which assumes that observations of different classes are distant from

each other. Regardless of its kernel type, violation of this assumption will effect the

results as the estimated manifolds through the manifold learning phase may not be

accurate. Notice that the aforementioned issues could be less critical in a binary

problem. This is while the other three fault classifiers, specially ASSEMBLE, seem

to be more flexible. ASSEMBLE is highly adaptable to more complicated decision

boundaries due to the nature of the boosting algorithm.

It is worthwhile to mention that the use of the one-vs-one approach results in a

higher accuracy than the one-vs-all approach, since the created ambiguous area would

be much smaller. Nevertheless, usually using one-vs-one is not preferable, since it is

computationally very expensive. Furthermore, one-vs-all method is more commonly

used for SVM family of classifiers, including LapSVM [53].

Stability

Considering Fig. 3.4, SSELM, ASSEMBLE, and LDS highest rate of stability is re-

sulted by FME. However, LapSVM is very stable with the SDA features. GLP, on

the other hand, has almost similar range of stability in all experiments, which reaches

its best rate on SSDR features. Thus, it can be concluded that FME is providing the

best set of features for the semi-supervised multiclass fault classifiers in this study,

and SDA is the best choice for the semi-supervised binary fault classifiers.

According to Table 3.2, the choice of the most stable classifier, should be made

among SSELM, ASSEMBLE, and LapSVM since they best match with FME, SSDR,
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Figure 3.4 – The distribution of classification accuracy achieved by each classifier
through each dimensionality reduction technique.

Table 3.2 – The standard deviations attained by fault classifiers through the cross-
validation. The winners are specified by bold font.

SSELM ASSEMBLE LDS LapSVM GLP
SDA 6.58 5.74 4.99 3.01 5.11

SSDR 4.50 1.91 7.61 7.41 4.74
FME 1.71 1.78 1.78 7.65 7.21

and SDA, receptively. However, considering their results through the entire experi-

ments, ASSEMBLE can be considered as the most stable algorithm in this study. It

has the highest stability using SSDR, and almost as stable as SSELM using FME,

with an ignorable difference. Although ASSEMBLE ranked third in SDA series of

experiments, its stability is still acceptable and comparable with the others.

Discussion

Fig. 3.5 shows the the result of each DR technique. It can be seen that SDA and

FME resulted in the best feature spaces. Considering the attained performance, the

combination of FME and ASSEMBLE is followed by high stability and accuracy for

this experiment. Although FME is the winner in this experiment, it may not be pos-

sible to conclude that it is the best DR technique. FME seems to be very compatible

with some algorithms and highly incompatible with some other algorithms. SDA, on
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Figure 3.5 – The distribution of the data observations before the dimensionality re-
duction (Original) and after dimensionality reduction using SDA, SSDR, and FME.

the other hand, is more reliable in this sense due to the fact it provides acceptable

performance for most of classifiers the classifiers. Thus, SDA may be a robuster DR

technique for a diagnostic system.

Note that in this work, FME projects the given features to a nΩ (number of classes)

dimensional feature space. Therefore, as the number of fault classes increases, the

dimensionality of the DR module increases as well. In case of employing different

fault classifiers other than those suggested in this paper, where the aforementioned

condition applies, one should make sure that the chosen fault classifier is able to work

properly on high dimensional data as well.

The choice of the base learner for ASSEMBLE in this work is k-nearest neighbor

with k = 3 as it resulted in the best performance for the target application. However,

other base learners such as decision tree are used as well and resulted in almost the

same performance with a slight difference.
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3.3 Semi-Supervised Smooth Alpha Layering

The main contribution of this chapter is to propose a novel semi-supervised algorithm,

called Semi-supervised Smooth Alpha Layering (S3AL), which aims to perform multi-

class classification by resorting to an inductive learning procedure. In this algorithm,

the structure of data is captured using α-Shape [13] instead of graph estimation in

the manifold learning. By doing so, the structural shape of the data is estimated

without the need for multiple parameters tuning. α-Shape is a strong tool, which is

mostly utilized for the surface estimation. However, to our knowledge, it is rarely

exploited for SSL and designing a FDS.

3.3.1 Overview of α-Shape

α-Shape is indeed a generalization of the convex hull. Supposing X = U ∪ L =

{x1, x2, ..., xn} is a set of all data samples, where xi is defined by a vector {xi1, xi2, ..., xid}

in Rd, the convex hull of X, Conv(X), is defined as the smallest convex set of X. To

construct the α-Shape of X, A(X), first Conv(X) should be estimated, so that the

attained structure could be shrunk further to reach the best shape. In other words,

the convex hull of the samples can be considered as a shattered crystal that its pieces

are held together. This convex hull embraces all samples. To obtain the most repre-

sentative shape, some of those shattered pieces have to be removed from the crystal

in a way that the remained pieces resemble the shape of data samples, which is in fact

A(X). In mathematics, those shattered pieces are known as simplexes. A simplex is

a geometrical shape resulted from the Conv(∆), where ∆ = {xi}d+1
i=1 . The α-Shape

construction begins with estimating Conv(X), which is basically obtained by the De-

launey triangulation of {X ∈ Rd | d ≤ 3}. In general, the Delauney tessellation, which

is an extention of the Delauny triangulation, can be used for the higher-dimensional

data d > 3. The aim of the Delaunay tessellation is to produce a set of simplexes

Λ = {∆1,∆2, ...,∆m} on the data in a way that none of the samples in X lies in the
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circumsphere of any ∆γ ⊂ Λ. Once the tessellation is performed, the total convex

hull can be obtained by: Conv(X) = {
⋃m
γ=1 Conv(∆γ) : ∆γ ⊂ Λ}.

The desirable tessellation can be obtained using different techniques such as Quick-

hull [54], which is used in this study.

Given that A(X) ⊂ Conv(X), it shrinks the achieved convex hull to reach the

desired shape. To do so, any simplex that does not fit in a sphere (assuming d = 3)

with the radius of α will be considered for removing its unshared faces. Therefore,

the level of details of an α-Shape has an inverse relationship with the parameter α.

In other words, the procedure is similar to carving the convex hull without removing

any x ∈ X, by means of a d-dimensional rounded geometrical shape (e.g., a sphere for

d = 3), with α radius. Then, the remained simplexes resemble the target α-Shape.

Although capturing the data structure using α-Shape helps to improve the classi-

fication accuracy, it has been rarely used for SSL. This might be due to the following

challenges: (a) overlapping classes can further complicate the process of α-Shape con-

struction, since it requires completely separable classes; (b) a particular value of α is

not sufficient to construct discriminant shapes for the classes with different densities.

To address these issues, this chapter proposes a novel SSL strategy.

3.3.2 Algorithm Description

S3AL consists of two major phases as detailed in Algorithm 1 and 2. The first phase

easily classifies datasets compatible with any SSA. It only classifies those samples

located in the safe zones (i.e., regions in which the data can be classified with a high

confidence) and send overlapping samples and outliers into the second phase. Each

phase is formally explained in the following:
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Phase 1

To capture the shape of classes with different densities, we firstly extract the safe

zones of each class in an iterative process. In each iteration, the α radius changes

on a spectrum Ξ, which contains all important values of α (i.e., values that change

the α-Shape). To begin the procedure, for each simplex ∆γ in the resulted Delauney

tessellation ∆γ ⊂ Λ, a different value of α is generated to form Ξ as follows:

∀∆γ ⊂ Λ :∣∣∣∣∣∣∣∣∣∣∣∣

x01 + x02 + · · ·+ x0d x01 x02 · · · x0d 1

x11 + x12 + · · ·+ x1d x11 x12 · · · x1d 1
...

...
...

...
...

...

xd′1 + xd′2 + · · ·+ xd′d xd′1 xd′2 · · · xd′d 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(3.1)

where d′ = d+ 1; {x0j}dj=1 are unknown; and {xij}d
′
i=1 are the vertices of ∆γ. For the

ease of explanation, assume that d = 3. Then, by expanding the determinant:

$(x2
01 + x2

02 + x2
03)− (D1x01 +D2x02 +D3x03) + β = 0 (3.2)

where

$ =

∣∣∣∣∣∣∣∣∣∣∣∣

x11 x12 x13 1

x21 x22 x23 1

x31 x32 x33 1

x41 x42 x43 1

∣∣∣∣∣∣∣∣∣∣∣∣
, (3.3)

β =

∣∣∣∣∣∣∣∣∣∣∣∣

x11 + x12 + x13 x11 x12 x13

x21 + x22 + x23 x21 x22 x23

x31 + x32 + x33 x31 x32 x33

x41 + x42 + x43 x41 x42 x43

∣∣∣∣∣∣∣∣∣∣∣∣
, (3.4)
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and {Dj}3
j=1 is the determinant (negative for even j values and positive for odd ones)

attained from D, in which its 1 + j column is discarded:

D =


x11 + x12 + x13 x11 x12 x13 1

x21 + x22 + x23 x21 x22 x23 1

x31 + x32 + x33 x31 x32 x33 1

x41 + x42 + x43 x41 x42 x43 1

 (3.5)

The circumsphere of ∆γ is then achieved by completing the square:

$

(
x01 −

D1

2$

)
+$

(
x02 −

D2

2$

)
+$

(
x03 −

D3

2$

)
=
D2

1 +D2
2 +D2

3

4$
−β = α2 (3.6)

The radius is then computed and added to the spectrum:

Ξ =
m⋃
i=1

αi , α =

√
D2

1 +D2
2 +D2

3 − 4$β

2|β|
(3.7)

αi values are then sorted in a descending order. To capture the densest class, an

α-Shape is constructed by means of the largest α value in Ξ, and, then, the level of

detail is iteratively increased by reconstructing through the next α value in Ξ until

the α-Shape becomes pure, i.e., all the embraced labeled samples belong to the same

class (lines 4-15 in Algorithm 1). Then, all samples in the attained α-Shape S are

stored as a separate shape in Ψ (lines 9 and 10 in Algorithm 1), which is initially

set to Ψ = ∅, and discarded from the pool Φ (line 16 in Algorithm 1). The pool is

initially set to Φ = X. This procedure is repeated until a stopping criterion has been

met (lines 1-17 in Algorithm 1). This algorithm stops whenever Card(Φ) < d + 1,

where Card(.) stands for the cardinality.

In this procedure, α-shapes with more than one region S = {ri}nri=1, in which nr

stands for the number of regions in S, might be created as the value of α decreases.

Each region ri is then stored as a separate α-Shape A(ri) (lines 9 and 10 in Algorithm
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1). Besides, some of these newly created shapes may contain only unlabeled samples,

and, thus, they left unlabeled and stored in Ψu that is initially set to Ψu = ∅.

The data is now divided into multiple α-Shapes. Samples in each of these stored

α-shapes are being labeled, called pseudolabels, by means of the labeled samples in

these shapes. Then, the high confidence samples whose pseudolabels are equal to their

affinity measure are extracted in order to form a safe zone (lines 19-23 in Algorithm

1). To compute the affinity measure qi, first the affinity matrix is computed as follows:

Wij = exp

(
−‖xi − xj‖

2
2

2σ2

)
, (3.8)

where σ is set to the standard deviation of
⋃n
i,j=1 ‖xi − xj‖. Then, assuming that

L = {l1, l2, ..., lnΩ
} and l is the set of all labeled samples with an identical y, qi is

calculated as:

∀xi ∈ U ∧ xj ∈ lκ : qi = arg max
ϑκ,1≤κ≤nΩ

nκ∑
j=1

Wij, (3.9)

where nκ is the number of elements in lκ. The rest of the data samples are kept aside

in a residual set R for further processing in the next phase (line 21 in Algorithm 1).

Phase 2

Assuming that the final α-Shape contains different regions, where each region is indeed

the α-Shape of an individual class, the predictions should be smooth over each region.

The predictions from the safe zones are most likely to be smooth over their shapes.

Here, smoothness assumption is locally applied to the residual set xi ∈ R, in an

iterative manner, that aims to generate pseudolabels layer by layer (lines 29-33 in

Algorithm 2). To do so, at each iteration, smoothness is applied on layers of samples

near the labeled safe zones, that are extracted in the first phase. Then, the smoothed

layers is added to the related safe zone. The procedure continues until the algorithm

assigns a pseudolabel ŷi to every xi ∈ R. In fact, the final α-Shapes are attained by
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Algorithm 1: S3AL (phase 1)

Input: X, base learner f
Output: Classification model h, Y
Definition:
d.e returns unique values
nc is the maximum number of classes in the α-Shape.
Initialization:
Compute affinity matrix W using (3.8)
Create the pool Φ = X
Create the shape repositories Ψ = Ψu = ∅
Create the residual set R = ∅

1 while Card(Φ) ≥ d+ 1 do
2 Form the spectrum Ξ using (3.7)
3 Set α = max(Ξ)
4 while true do
5 Estimate the α-Shape: S = A(Φ)

6 Given that Yi = {yj ∈ ri}ny(i)
j=1 , where ny(i) is the number of labels in

ri, return nc for S: ∀ri ⊂ S: nc = max Card(d{Yi}ny(i)
i=1 e)

7 if nc ≤ 1 then
8 for ∀ri ⊂ S do

9 Assign d{Yi}ny(i)
i=1 e to ri

10 Store ri: Ψ = Ψ ∪ A(ri)

11 end for
12 break

13 end if
14 α← next α in Ξ

15 end while
16 Remove the stored samples: Φ = Φ− S
17 end while
18 ∀xi ∈ U : compute the affinity measure qi by (3.9)
19 for ∀Sj ⊂ Ψ, j = 1, ...,Card(Ψ) do
20 if ∃ yi ∈ Sj then
21 ∀yi 6= qi: remove the assigned yi then R = R ∪ xi
22 Reshape the α-shape with the confident samples:

Sj ← Sj = A({∀xi | yi = qi})
23 else
24 Ψu = Ψu ∪ Sj
25 Ψ = Ψ− Sj
26 end if

27 end for
28 Add the unlabeled shapes to the residual: R = R ∪Ψu
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Algorithm 2: S3AL (phase 2)

29 while R 6= ∅ do
30 ∀xi ∈ R generate a pseudolabel ŷi using (3.10)
31 Add (xi, ŷi) to the shape with the class ŷi = ϑκ
32 Remove xi from residual: R = R− xi
33 end while
34 ∀Sj ⊂ Ψu, j = 1, ...,Card(Ψu): reassign a unique pseudolabel ŷj to all

samples of Sj by voting:

ŷj = arg max
ϑκ,1≤κ≤nΩ

Card({∀yi ∈ Sj | yi = ϑκ})

35 Find xi in the overlapping regions using (3.11) and remove their pseudolabels
and the add them to R = R ∪ xi

36 ∀xi ∈ R: xi receives ŷj of its nearest α-Shape

37 Store the fixed predictions in Ŷ

38 Form a model h = f(Ŷ )

expanding the safe zones, layer by layer. ŷi for each sample is calculated as:

∀xi ∈ R ∧ xj ∈ N(xi) : ŷi = arg max
ϑκ,1≤κ≤nΩ

n∗κ∑
j=1

Wij, (3.10)

where N(xi) is the neighbourhood of xi in which the number of labeled samples

representative of class κ is denoted by n∗κ. Thus far, a pseudolabel ŷi is assigned to

each sample by choosing the most similar class in the neighbourhood N(xi). Then,

the pseudolabels in each shape Sj ⊂ Ψu are smoothed by assigning the label of the

majority class in Sj to its samples (line 34 in Algorithm 2).

Here, the neighbourhood N is estimated by k nearest neighbours, where k is set to

15. Although the value of k can be specified by user as a free parameter, an odd value

in the range of {k = 2ε + 1 : 5 ≤ ε ≤ 9} is preferred for this case study. To cancel

the impact of selecting an improper k, the algorithm looks for any overlap between

α-Shapes of individual classes. An overlap implies that the smoothness does not hold

around the decision boundary. An overlapping region can be approximated, then, by
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finding the samples located in the circumsphere of a simplex. This can happen when

α-shapes are too close or have intersects. Assuming d = 3 and ∀xi = {xi1, xi2, xi3}, a

sample xi is in the circumsphere of a simplex if:

$

(
xi1 −

D1

2$

)
+$

(
xi2 −

D2

2$

)
+$

(
xi3 −

D3

2$

)
< α2 (3.11)

If an overlap is detected, all the samples inside that overlap are re-labeled based

on the nearest α-Shape to relax the decision boundary (lines 36 and 37 in Algorithm

2).

3.4 Design of the Diagnostic System

The proposed hybrid diagnostic framework is illustrated in Fig. 3.6. This hybrid

framework contains five steps as follows:
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Figure 3.6 – The designed hybrid framework, where the FR and decision making steps
are specified by the dashed boxes.

3.4.1 Signal Segmentation

The diagnostic procedure begins with segmentation. In Fig. 3.6 the collected vibration

signals are firstly passed through the signal segmentation step, in which the input
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signals are divided into a number of non-overlapping parts with an equal length.

This helps in transition of a signal into several segments that are fed to the next step

for feature extraction. Each segment is sent to each of the five FE approaches.

3.4.2 Feature Extraction

Time-Domain analysis reveals the statistical characteristics of the segments in the

time-domain. It extracts and returns a feature vector V including 14 statistical mea-

sures [8], i.e., V=[Maximum, Minimum , Peak to peak, Mean value, Variance, Root

mean square, Skewness, kurtosis, Crest factor, Impulse factor, Shape factor, Margin

factor, Entropy, Energy] from each segment, to construct a time-domain feature set.

Fast Fourier Transform (FFT) has been extensively used in fault diagnosis to ob-

tain the frequency characteristics of the signals. In this paper, the frequency spectrum

of each signal is achieved by applying FFT, and, then, feature vector V is calculated

over the obtained frequency-domain spectrum.

Regarding to the time-frequency analysis, three state-of-the-art approaches are

used to decompose non-stationary signals, including the Wavelet Packet Transform

(WPT) [55], the Empirical Mode Decomposition (EMD) [56] and the Local Mean

Decomposition (LMD) [57].

Moreover, a singular spectrum analysis, which makes use of singular value decom-

position (SVD) for time-series analysis is used to form a time-domain feature set[57].

Fig. 3.6 shows that as the raw vibration signal traversed from the left to the right

steps, more informative feature sets are being collected. Hence, the best way for di-

agnosing bearing defects belongs to the best possible combination of the approaches

from each step that can provide the most useful information to construct the SSL

learners.
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3.4.3 Sample Integration

Each FE approach receives signal segments, and, then, it generates a set of features for

each segment, and, consequently, calculates statistical measures for each individual

feature of the set. Given a signal segment, this results in producing only one sample

with a larger number of features. The corresponding high-dimensional samples are

being collected from all segments, and, then, integrated together to form a high-

dimensional feature set.

3.4.4 Feature Reduction

The optimal size of the resulted feature sets from the previous step, is then indi-

vidually estimated using each of the semi-supervised FS and DR approaches namely

Semi-supervised Discriminant Analysis (SDA) [34], Semi-Supervised Dimensionality

Reduction (SSDR) [35], Flexible Manifold Embedding (FME) [36], Trace Ratio Cri-

terion Feature Selection (TRCFS)[37] and Structural Feature Selection with Sparsity

(SFSS) [38]. These approaches are among the state-of-the-art semi-supervised feature

reduction algorithms and used in this step for the sake of a comprehensive comparison.

Among the selected DR approaches, SDA captures the geometric structure of the

data using U , while the between-class separability is maximized in the new feature

space using L. SSDR, on the other hand, calculates the projection matrix based on

two constraints indicating whether a pair of samples in the original input space belong

to the same class or not. FME integrates the smoothness on the data manifold and

the label fitness, in order to achieve an optimal projection matrix.

Moreover, this step makes use of two state-of-the-art semi-supervised algorithms

for FS. TRCFS finds the best features through a filter-based approach. Using this

approach, the within-class and the between-class scatter matrices are formed on the

soft labels estimated by the label propagation, and the best features are then selected

w.r.t. a noise insensitive trace ratio criterion. On the other hand, SFSS aims to select
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the features jointly, while the manifold learning is utilized to perform SSL on U .

3.4.5 Decision Making

The last step of the proposed diagnostic framework is the decison making, which

receives multiple inputs including all reduced feature sets that are obtained through

each possible combination of FE and FR approaches. This step includes multiple

state-of-the-art approaches for SSL including Adaptive Semi-Supervised Ensemble

(ASSEMBLE) [44], Semi-supervised Boosting (SemiBoost) [45], Regularized Boost-

ing (RegBoost) [33], LDS [41], LapSVM [31], SSELM [42], and the proposed semi-

supervised learner S3AL. ASSEMBLE iteratively maximizes the pseudo-margin. In

SemiBoost, the pseudomargin is maximized w.r.t. both cluster and manifold assump-

tions, where a graph-based similarity matrix is leveraged to iteratively update the

hypothesis space based on the most confident samples. RegBoost clusters the data

in order to generate initial pseudolabels. It then maximizes the margin, while the

decision boundary is regularized using SSA. LDS maximizes the margin on a low-

dimensional data attained by a graph-based DR procedure. LapSVM maximizes the

margin, while minimizing the inconsistency on the data manifold structure. SSELM

exploits manifold regularization to adapt Extreme Learning Machines for SSL.

3.5 Experimental Results

Experimental setting is firstly explained in this section. The attained results are then

analyzed and compared.

3.5.1 Experimental Setting

Initially the collected signal for each scenario is segmented and fed to the FE step.

After the sample integration step, the extracted features are then fed to the FR
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Figure 3.7 – Distribution of the achieved accuracies by each approach on all experi-
ments with different rates, where each panel (a), (b) and (c) focuses on presenting the
accuracies achieved through different approaches of FE, FR and decision making steps,
respectively.

and the decision making steps. To evaluate our experiments, a 5-fold nested cross-
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Figure 3.8 – The achieved accuracy by the combination of each SSL approach and
each pair of FE and FR approaches. The achieved accuracies by each SSL approach
are averaged over all possible experiments at each rate v; 5%, 10% and 20%.

validation scheme has been used. Using this technique, cross-validation is performed

by means of an inner and an outer loop. Firstly, the acquired data for each experiment

is equally divided into five folds. Then, the outer loop is repeated five times, where

each time one fold is kept for testing and the rest forms the training set. The training

set is split into L and U by using a random stratified selection. Then, the training set

will go through the inner loop for the parameter estimation. To do so, the training
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set goes through another cross-validation procedure, in which one fold is kept for

validation and the other three form the inner training set. In this procedure, each

iteration of the outer loop is further repeated five times, where each time different L

and U are randomly selected for a training set w.r.t. a rate ν = |L|
|U+L| . Here, three

values of 5%, 10% and 20% are considered for ν.

The proposed algorithm, S3AL, and boosting algorithms employed in this chapter

such as RegBoost, SemiBoost, and ASSEMBLE benefit from a base classifier. In

all experiments, the decision tree is employed as a base classifier. Besides, binary

algorithms, in this work, are converted to multiclass classifiers using the one-versus-

all strategy.

3.5.2 Results

Fig. 3.7 illustrates a statistical comparison of the state-of-the-art approaches at each

step in classifying bearing defects in the induction motor over all possible experi-

ments. Each panel of this figure represents the distribution of all attained accuracies

(solid circles) attained by each combination (FE approaches × FR approaches × SSL

approaches × experiments). Fig. 3.7(a) illustrates the distribution of all accuracies

achieved by each FE approach. The boxes show the distribution range of these ac-

curacies among 1st and 3rd quartiles, solid squares show the average of all attained

accuracies by each FE approach, solid lines in the boxes show the median of the

achieved accuracies by each FE approach, dash lines and small dots illustrate the

outlier range and the outliers, respectively.

It can be seen from the Fig. 3.7(a) that different choices of FE approach does not

significantly change the attained accuracies. However, extracted features by means

of Time analysis can result in the highest accuracies. Also, LMD has the lowest

standard deviation. This is while, WPT results in a wider range of accuracies, which

indicates that not every combination of FR and SSL approaches with WPT can lead

to a high accuracy.
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Fig. 3.7(b) illustrates the distribution of the archived accuracies by each semi-

supervised FR approach. The choice of the FR approach is very important as the

accuracy is highly dependant on the generated features by each FR approach. In

fact, the reason for lower sensitivity to the FE approaches is that the FR approaches

drastically transform the samples, where the effect of the original features can be

neglected. Based on Fig. 3.7(b), SDA results in the best accuracies and the lowest

standard deviation. This is while FME seems to be very sensitive to its combination

with other approaches, and yields unsatisfactory accuracies in some cases.

Fig. 3.7(c) shows the distribution of the achieved accuracies through each SSL

approach. These contain all the achieved accuracies by all FE and FR approaches.

The SSL approaches are ranked based on the averaged accuracies over all experiments

as S3AL, SSELM, SemiBoost, ASSEMBLE, LDS, RegBoost and LapSVM. S3AL

shows the minimum variation and outperforms other SSL approaches. LapSVM is

the least stable approach, which yields the largest number of outliers.

To study the accuracy of each combination, Fig. 3.8 shows the overall accuracies

of the SSL approaches along with FE and FR approaches in different rates. Different

panels of the Fig. 3.8 shows that S3AL attains the best accuracies in most of the

combinations for all rates, while SSELM stands for the second rank. From the sta-

bility point of view, S3AL, SSELM, and SemiBoost seem to be less sensitive to the

combination with FE and FR approaches, while LapSVM, LDS and RegBoost show

a higher sensitivity to the choice of FE and FR approaches for combinations.

By analyzing the behaviour of the SSL approaches, it can be seen that accuracy

improves as the value of ν increases. Combinations of LapSVM and FME are very

incompatible, since the attained accuracies through their combination are dropped

and remained unchanged over different rates.

Considering all possible rates and combinations, the maximum accuracies are

mostly achieved using SDA. However, combinations of LDS and RegBoost with SDA

do not result in best accuracies. FME and SFSS show high dependency to the ratio,
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and they are not the best choice for the lowest ratio.

There exist a slight difference among possible combinations of SDA and FE ap-

proaches in terms of accuracy. Nevertheless, EMD and WPT result in the maximum

accuracy. Top rank accuracies are mostly obtained by S3AL. Although the difference

is insignificant, WPT is ranked first among the FE approaches, since its combinations

are resulted among the top rank accuracies most often.

The most accurate combination is achieved through linking WPT, SDA and S3AL.

Although the averaged accuracies of WPT over all combinations is not among the

top FE approaches as shown in Fig. 3.7, the maximum accuracy is achieved by the

combination WPT+SDA+S3AL.

3.6 Summery

In this chapter, firstly a comparative study is performed on semi-supervised DR tech-

niques through designing a diagnostic framework. Then, a hybrid diagnostic frame-

work is introduced, which benefits from the semi-supervised learners. They enable

the hybrid framework to generate a diagnostic model, where the initial data are not

fully labeled and a large number of samples are collected with missing labels. This

framework is applied for classifying bearing defects in IMs. It has three important

steps for feature extraction, feature reduction and decision making. To improve the

diagnostic accuracy of the proposed framework, a novel SSL approach, called S3AL,

is proposed that uses the concept of α-Shape. The obtained accuracies indicate that

S3AL outperforms other state-of-the-art SSL rivals in all experiments with different

rates. In addition, the proposed framework facilitates an extensive comparison for

each step through four distinct scenarios with different settings and rates. This com-

parative study also reveals the effects of each state-of-the-art FE and FR approaches

in terms of diagnostic accuracy, and determines the best possible combination of the

approaches in the hybrid framework.
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Chapter 4

Fault Diagnosis in High-dimensional

Feature Space with Limited Supervision

The good performance of a data-driven fault classifier can be guaranteed by resorting

to a proper set of input features. Indeed, the input features may contain redundant

and non-informative features. This results in devising feature selection or reduction

components in the design of the diagnostic systems [15]. On the other hand, there

has been an increasing interest on the use of deep neural networks (DNN) in recent

years, as a result of the increased dimensionality of the data and the growing demand

for higher classification performance. Multiple hidden layers of a DNN enable feature

extraction on the data, where at each layer, more abstract features are extracted

by means of the outputs of the preceding layer. This multi-level feature extraction

procedure substitutes the feature reduction procedure, where fewer but more repre-

sentative features are created from the pool of features. Here, a semi-supervised DNN

has been adopted for fault diagnosis, which eliminates the need for devising an extra

phase of feature reduction in the FDS framework and further improves the diagnostic

efficiency.

The proposed diagnostic system in this chapter is followed by various contri-

butions. The main contribution of this work is to design a hybrid framework for

diagnosing gear faults in a very high dimensional feature space, in which only a few

number of labeled samples are collected along with a large number of unlabeled sam-

ples. The proposed FDS system has two major components. The first one contains

several advanced feature extraction methods and the other contains an advanced

semi-supervised deep learning method, so-called Semi-Supervised Deep Ladder Net-
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Figure 4.1 – a) Electromechanical system under study, b) Pinion-wheel contact at the
damage point, c) Wheel tooth damage and d) Pinion tooth damage.

work (SSDLN) [58], for decision-making. Besides, various advanced semi-supervised

and supervised networks have been devised in this hybrid framework. This facilitates

a comparative study between the advanced SSL methods and supervised DNNs in

diagnosing gear faults. On the other hand, majority of the available data-driven di-

agnostic approaches do not consider simultaneous faults in the systems. The proposed

diagnostic system is evaluated over different scenarios and settings in diagnosing si-

multaneous gear faults in electromechanical systems.

4.1 Experimental Setting

The configuration of the electromechanical system under study is illustrated in Fig.4.1.

A digital controllable brake is linked to a 250W, 50Hz, 400V, star-connected, 0.77A, 4-

pole, 1380rpm, three-phase squirrel-cage induction motor through a one-stage parallel
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shaft helical gear with a number of teeth at the input Nr1=25 and at the output

Nr2 = 75 (Fig. 4.1). fr1 and fr2 represent the rotation frequencies at the input and

the output stages of the gear, respectively. The mechanical load can be modified by

adjusting the rotation speed using a digital controllable brake at the output stage

of the gear. The system instrumentation consists of three commercial wide-band

current sensors with the same 0.1V/A sensitivity with frequency bandwidth of [1Hz,

20MHz]. Moreover, two accelerometers with the sensitivity of 500mV/g and 22kHz

frequency bandwidth are installed close to the input and output stages of the gear

to measure the mechanical transversal vibration. Also, a torque sensor with 5kHz

frequency bandwidth is implemented between the induction machine shaft and the

input stage of the gear for torsional vibration analysis. A 24-bit resolution modular

data acquisition system with built-in adjustable signal conditioning filters has been

used for data collection. The sampling frequency is fixed to Fs = 5kHz and the

acquisition time is adjusted to Tacq = 60s for all collected data. Several tests have

been carried out on the set-up in both healthy and faulty conditions at five levels of

load. For the faulty condition, three groups of tests have been performed including

the pinion, the wheel and the simultaneous pinion-wheel gear tooth damage faults in

order to make the classification of each particular fault based on the features extracted

from the vibration, the measured torque, the SCSVIF and the SCSVIA. In these tests,

each faulty pinion and wheel includes only one tooth damaged surface with depth of

about 0.3mm in comparison with the healthy gear (Fig. 4.1.b). The last test is related

to the healthy condition. In order to collect enough data from the test rig each test

has been carried out 10 times.

4.2 Design of the Diagnostic System

The designed hybrid diagnostic framework consists of two major components: (i) fea-

ture extraction and (ii) decision making. The former initially processes the captured
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Figure 4.2 – Parallel design of the multi-step feature extraction.

signals through a segmentation phase. Various methods are then utilized to construct

a representative pool of features based on the segmented data. The latter enables

diagnosing gear faults through SSL and deep learning. The components of this hybrid

framework are further explained in the following as they are required for an accurate

experimental comparison.

4.2.1 Feature Extraction

For this framework, a multi-step feature extraction is considered to process the raw

sensory measurements and extract informative features. Figure 4.2 illustrates the

parallel design of the multi-step feature extraction procedure. The raw data are actu-

ally several different measurements collected through the data acquisition procedure.

These measurements are collected from the three-phase stator currents, the torque

sensor (Torque), the vibration sensor at the input stage of gear (ACC1), the vibration

sensor at the output stage of gear (ACC2) and the microphone (MIC), that are set

into a feature vector as [SCSVIF SCSVIM Torque ACC1 ACC2 MIC]. It should be

noted that both SCSVIF and SCSVIM features are determined based on the induction
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machine stator current space vector by:

iD(t) =

√
2

3
IsA(t)− 1√

6
IsB(t)− 1√

6
IsC(t), (4.1)

iQ(t) =
1√
2
IsB(t)− 1√

2
IsC(t), (4.2)

where iD and iQ are the elements of the stator current space vector: iD + j × iQ,

j =
√
−1, and IsA, IsB and IsC are the stator phase currents. Thus, both SCAVIF

and SCSVIA are defined as:

SCSV IA =
√
iD(t)2 + iQ(t)2, (4.3)

SCSV IF =
1

2π

d

dt

(
arctan

(
iQ(t)

iD(t)

))
. (4.4)

The data are collected in healthy and faulty conditions with five different load

levels, forming five different datasets Datai, 1 ≤ i ≤ 5, as reported in Table 4.1.

Table 4.1 – Load conditions as a function of wheel rotation speed (rpm)

Data1 Data2 Data3 Data4 Data5

fr2 460 468 472 484 492

In order to process the collected data from the sensors, firstly the segmentation is

applied to each feature of the measured dataset. Considering each dataset Datai con-

tains 6 different sensory measurements (SM), so thatDatai = {SM i
1;SM i

2; . . . ;SM i
6}.

Segmentation provides n non-overlapping chunks {Ci
11, . . . , C

i
1n} for each sensory mea-

surement. Each chunk of data contains 1000 data samples. By performing each fea-

ture extraction technique, in parallel, more informative features are expected to be

achieved.

In the next step, each chunk of data that contains sensor measurements is analyzed

in three different domains; Time-domain, Frequency-domain and Time-Frequency
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domain. To this aim, the advanced methods in these domains (i.e., Fast Fourier

Transform (FFT), Singular Spectrum Analysis (SSA)[59], Wavelet Packet Transform

(WPT) [55], Empirical Mode Decomposition (EMD) [56] and Local Mean Decompo-

sition (LMD) [57]) are selected and applied on each chunk of data. Then, 10 different

statistical measurements are computed over the obtained results of each domain. The

brief explanation of each domain is provided as follows:

This helps to reveal the hidden characteristics of each chunk of sensory data. Here,

10 different fault indicators, that are widely used in many literatures are calculated

[15, 56]. These statistical measurements include peak to peak, mean value, variance,

root mean square, skewness, kurtosis, crest factor, impulse factor, margin factor,

and Energy. As it is presented in Figure 4.2, this approach creates 10 new features

(F1 to F10) from each chunk. In parallel, SSA is also applied on the chunk of data

[59, 57]. Indeed, SSA decomposes a signal into several numbers of components, while

embedding data into a Hankel matrix and applying singular value decomposition

(SVD). The highest the number of eigenvalues, the more informative components

can be obtained. Here, 10 informative components are initially extracted by SSA,

and, consequently, statistical measures of each extracted component are calculated,

forming 10 × 10 new features (F11 to F110).

In the view of frequency-domain analysis, the spectrum of each chunk is obtained

by applying FFT and, then, statistical characteristics of the frequency spectrum are

calculated (F111 to F120).

In dual-domain, each chunk is decomposed into a several number of components,

where each component provides some information in both time-domain and frequency-

domain. The dual-domain methods such as WPT, EMD and LMD could manages the

none-stationary behavior of the signal, and, thus, are extensively used in diagnostic

applications. In wavelet packet transform (WPT) [55], decomposition is applied to

both low pass results (approximations) and high pass results (details). The decom-

posed components (packs), that are obtained through the decomposition up to four
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levels, are then used to attain statistical characteristics (F121 to F280).

EMD [56] and LMD [57] are also taken into account. EMD and LMD could

decompose a non-linear signal into number of components that are called Intrinsic

Mode Functions (IMFs) and Product Functions (PFs), respectively, in a way that the

summation of the extracted components with the final residual could reconstruct the

given input signal [57, 60]. LMD often needs less iterations than EMD to complete

the decomposition task, since it uses iterative local mean calculations by means of

moving average filter, while EMD needs to recursively perform cubic spline interpo-

lations, as the core of its algorithm. Therefore, LMD has been applied as a suitable

decomposition method for real-time system in some literature [61, 57, 60].

Upon decomposition of each chunk by means of EMD and LMD, correspondingly,

10 statistical measurements are computed resulting in 30 features (F281 to F310) and

40 features (F311 to F350), respectively. Since, each raw sensory dataset contains 6

different features (i.e., SCSVIF, SCSVIM, Torque, ACC1, ACC2, MIC), the multi-

step feature extraction results in a pool of 350 × 6 = 2100 informative features.

4.2.2 Decision Making

Semi-supervised learning methods can handle the problem of classification in the

presence of a large volume of unlabeled samples, while only a few labeled samples are

available. Here, we aim to study that considering the rarity of the labeled samples in

SSL approaches, to what extent semi-supervised deep learning can be beneficial.

This component adapts a powerful algorithm for semi-supervised deep learning,

so-called Semi-Supervised Deep Ladder Network (SSDLN), for decision making and

diagnosing gear faults. In addition, several advanced supervised and semi-supervised

approaches have been devised in the decision making component of the diagnostic

system along with SSDLN. This enables a comparative study between SSDLN and

not only advanced SSL methods, but also other advanced supervised DNNs. This

also reveals the advantages of SSDLN over conventional approaches in SL and SSL.
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Figure 4.3 – The illustration of a semi-supervised ladder network with the number
of layers Γ = 6. g(ι) and J (ι) are shown by solid and dotted vertical curved lines,
respectively. Neurons with corrupted, denoised, and clean input are specified with dark
gray, light gray, and white circles, respectively.

SSDLN is briefly explained in the following.

Semi-Supervised Deep Ladder Network

The learning procedure of SSDLN [58] is accomplished through the integration of

the supervised and unsupervised learning (UL) strategies. This has been done by

modeling hierarchical latent variables {h(ι)}Γ
ι=1, where Γ is the number of layers in

the network. The procedure is generally divided into inference and learning tasks.

The former is the process of estimating the posterior probability of an unseen h,

which is undertook by computing a denoising function between the distorted data x̃

and the original source x, as illustrated in Fig. 4.3. The latter, on the other hand, is

performed by minimizing the denoising cost function J
(ι)
u between the estimated ĥ(ι)

and the clean latent variables h(ι) in the ι-th layer of the network. ĥ(ι) is calculated

through a denoising function g(ι) as follows:
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ĥ(ι) = g(h̃(ι), u(ι)) =
(
h̃(ι) − η(u(ι))

)
ϕ(u(ι)) + η(u(ι)), (4.5)

where h̃ is the noisy input, and assuming that Π(ι) is a matrix containing weights

from layer ι + 1 to ι, σ(.) is the standard deviation function, and µ(.) is the mean

function, u(ι) is the information propagated from higher layers through the backward

path:

u(ι) =
Π(ι).ĥ(ι+1) − µ(Π(ι).ĥ(ι+1))

σ(Π(ι).ĥ(ι+1))
, (4.6)

and functions η and ϕ apply expressive nonlinearities:

η(u(ι)) = a
(ι)
1 S(a

(ι)
2 u

(ι) + a
(ι)
3 ) + a

(ι)
4 u

(ι) + a
(ι)
5 , (4.7)

ϕ(u(ι)) = a
(ι)
6 S(a

(ι)
7 u

(ι) + a
(ι)
8 ) + a

(ι)
9 u

(ι) + a
(ι)
10 , (4.8)

where a1, a2, ..., a10 are unit-wise parameters of the encoder, and S stands for the

sigmoid function, S = 1
1+e−1 .

Supervised and unsupervised components of SSDLN work at the same time,

as shown in Fig. 4.3, in order to minimize an objective function, which is equal

to the sum of two cost functions. Given a training set with nl labeled samples

(x(1), y(1)), (x(2), y(2)), ..., (x(nl), y(nl)), and nu unlabeled samples x(1), x(2), ..., x(nu), the

objective function J is then reformulated as follows:

J = −
nl∑
i=1

logP (ỹ(i) = y(i)|x(i)) +

nu∑
i=1+nl

Γ∑
ι=1

λιJu(h
(ι)
(i) − ĥ

(ι)
(i)),

(4.9)

where ỹ is the noisy output (see Fig. 4.3), and λι stands for the denoising cost

multiplier, which is tuned as a hyperparameter. In Equation (4.9), the first term

stands for the cross entropy of the distorted output which resembles the supervised
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cost, while the second term penalizes the unsupervised denoising cost at each layer.

The denoising cost is computed as follows:

Ju(h
(ι), ĥ(ι)) =

∥∥∥∥ ĥ(ι) − µ(Υ(ι).υ̃(ι−1))

σ(Υ(ι).υ̃(ι−1))
− h(ι)

∥∥∥∥2

2

, (4.10)

where Υ(ι) and υ(ι−1) stand for the matrix of weights from layer ι − 1 to ι and the

post-activation at layer ι− 1, respectively.

The main feature of SSDLN is the skip connections (see curved connections in

Fig. 4.3) connecting encoders and decoders in each layer of the network [62]. This

relaxes the data representation in the higher layers as the omitted details can be

fetched by the decoder in each layer. Furthermore, in order to compute the denoising

cost function, the encoder is trained for both the clean and the noisy latent variables

in a parallel scheme.

Semi-Supervised Classifiers

Two SSL classifiers considered for comparison including graph-based algorithms namely

Semi-supervised Extreme Learning Machine (SSELM) [42], and Low Density Separa-

tion (LDS) [41], which are explained in Chapter 3.

Supervised Classifiers

To compare the performance of the SSDLN with advanced SL algorithms, two of the

most succesful deep learners such as the Convolutional Neural Network (CNN) [63]

and the Long Short-Term Memory network (LSTM) [64] are used in this study for

the sake of comparison:

1) Convolutional Neural Network: The CNN structure consists of multiple

hidden layers that can be categorized into three types: convolutional, pooling, and

fully connected layers. The first type contains filtered features, which are attained

by processing different parts of the features. The pooling layers normalize and shrink
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the output of the previous layer. The combination of these two layers can be stacked,

and, then, the output of the last layer goes through a fully connected layer, resulting

in the CNN output [63].

2) Long Short-Term Memory Network: LSTM is an advanced type of Re-

current Neural Network (RNN) [65], which benefits from an intrinsic memory (or

cell), in which predictions are memorized over time to perform a more accurate de-

cision making w.r.t. the history of its predictions in the current time-step and those

occurring in time.

4.3 Experimental Results

Here, the experimental setting is initially explained, and, then, the achieved results

are presented and compared.

To evaluate the designed diagnostic framework, five different experiments have

been considered. Each experiment is repeated ten times and the results are then

averaged. In this procedure, the processed data for each experiment is divided into

train and test subsets with a 1:4 ratio, where only 100 samples are labeled in the

former (roughly 1% of the train set), and the rest remain unlabeled. These sets

contain equal number of samples for each class.

Deep learning is performed through 500 epochs. Different values for the initial

learning rate have been tried between 0.001 and 0.02, and based on these trials, it is

set to 0.01. Parameter optimization for each method is performed by means of Adam

optimizer [66].

4.3.1 Experimental Comparison

The attained results are analyzed in terms of accuracy and standard deviation.
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Figure 4.4 – The distribution of the attained accuracies for each experiment is illus-
trated in (a-e). The averaged results over all the experiments are represented in (f).
Mean, accuracy, and outlier are shown with solid square, circle, and plus sign, respec-
tively. Upper bound, lower bound and median are specified by horizontal lines located
on top, bottom and inside of each box. The left-hand side and right-hand side of the
dotted line show the results for SSL and SL algorithms, respectively.

Accuracy

Figures. 5.3(a-e) show the achieved accuracies for each experiment. The attained

accuracies over all experiments and performed runs are also illustrated in Fig. 5.3(f).
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Table 4.2 – The averaged accuracies ± standard deviations of all runs for each exper-
iment over ten trials.

Algorithm
Accuracy (%)

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 #

LDS 79.716 ± 8.734 76.161 ± 7.770 80.311 ± 7.524 83.472 ± 2.455 80.819 ± 4.260 5
SSELM 83.734 ± 1.613 84.318 ± 1.218 83.561 ± 2.725 82.090 ± 1.148 85.798 ± 0.694 4
SSLDN 100.000 ± 0.00 99.958 ± 0.034 100.000 ± 0.00 99.695 ± 0.146 99.323 ± 0.5204 1
CNN 98.401 ± 0.541 98.131 ± 0.691 95.826 ± 0.810 97.213 ± 0.284 96.888 ± 0.166 3
LSTM 100.000 ± 0.00 99.957 ± 0.018 99.959 ± 0.031 99.904 ± 0.026 99.124 ± 0.546 2

The averaged values of different runs for each experiment are listed in Table 4.2, in

which the bold entries show the maximum accuracy achieved for each experiment.

Considering all the experiments, SSDLN, LSTM and CNN are ranked from first to

third, respectively. SSELM and LDS are ranked as fourth and fifth ranks subse-

quently. This reveals the strength of deep learning in extracting useful features from

the input data.

Generally, SSL algorithms are expected to be more efficient, but less accurate

than SL, due to the rarity of the labeled samples in SSL algorithms. This can be seen

by comparing the results of LDS and SSELM with CNN and LSTM. Nonetheless,

the superior accuracy of SSDLN shows that not only it copes with the rarity of the

labeled samples, but also outperforms SL algorithms.

Standard Deviation

The reliability of these classification algorithms is then evaluated with respect to the

standard deviation of the attained results over various runs. In Fig 5.3, the length

of the bars indicate the averaged accuracy and standard deviation of each algorithm

over five experiments and ten different runs. In addition, the standard deviations of

the attained accuracies by each algorithm over all runs for each experiment are listed

in Table 4.2.

Among the deep learners, SSDLN, LSTM, and CNN are ranked from first to
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third in terms of stability. The maximum value of the standard deviation at each

experiment for SSDLN and LSTM is about 0.5%, which indicates their stability.

Due to the rarity of the labeled samples in SSL, semi-supervised learners should

make predictions based on the available unlabeled samples in the training set. Such

predictions may not be identical to the true labels, which lower the accuracy of

the constructed classification model. However, under the utilized setting, the SSL

component of SSDLN has made it even more stable than the supervised DNNs, i.e.,

CNN and LSTM.

4.3.2 Discussion

The attained results in such a harsh learning condition show that SSDLN is the most

stable method and diagnoses gear faults with the higher accuracy compared to other

algorithms.

Fig. 4.5 shows the overall performance for each method through all the experiments

and runs. SSDLN achieves the maximum accuracy and the lowest standard deviation.

This figure shows SSDLN outperforms other classifiers. This is while LSTM as a

supervised method is ranked second. This indicates that although LSTM receives

all labels in a supervised setting, it still slightly underperforms SSDLN. Fig. 4.5

also shows that after SSDLN, all SL-based algorithms including LSTM and CNN

outperform SSL-based methods, i.e., LDS and SSELM. This is due to the fact that

these SL-based methods are implemented in a softer learning condition, where all

samples have labels during the training session, and, thus, it is expected for them to

achieve a higher classification accuracy.

Another advantage of SSDLN compared to other deep learners is its fast conver-

gence. Fig. 4.6 illustrates the error rate of the deep learners during their training

process. SSDLN rapidly converges and builds a precise model. On the other hand,

LSTM requires a lot of epochs to reach a proper classification model. CNN converges

at a slower rate compared to SSDLN; however, it is much faster than LSTM. Although
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Figure 4.5 – The averaged accuracies and standard deviations of each algorithm over
five experiments and ten runs.
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Figure 4.6 – The smoothed test error achieved through the training process of each
deep learner in the third scenario.

here the number of epochs is set to 500, such a large value has been merely set to

enable a more detailed study of the utilized algorithms. This is while SSDLN can use

smaller values for the number of epochs and still maintains a superior performance.
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4.4 Summery

In this chapter, a hybrid framework is proposed for diagnosing simultaneous gear

faults in electromechanical systems. A semi-supervised deep learning algorithm has

been adapted and devised in this hybrid framework to facilitate decision making in a

very common and realistic condition. This is a harsh learning condition of the high-

dimensional feature space and the rarity of the labeled samples along with the excess

of the unlabeled samples in the input space. The fault diagnosis has been performed

by means of feature extraction and decision making components. In the former,

several advanced approaches, in parallel, extract informative features from the raw

signals collected from the gearbox and form a representative high-dimensional feature

space. In the latter, then, the adapted semi-supervised deep learner, SSDLN, learns

from this high-dimensional feature space in the presence of rarely labeled samples,

and diagnoses the gear faults. In addition, advanced DNNs are adapted for fault

classification in order to enable a comparative study. The achieved results show the

superiority of SSDLN compared to other methods including SL-based DNNs that

are implemented in a much softer learning condition, where all samples were labeled

during the training session. This conclusion is very important, since it contradicts the

general expectation as the supervised learning usually solves a less restrictive problem

compared to the semi-supervised learning.
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Chapter 5

Fault Diagnosis with Limited Supervision

in Non-stationary Environments

Data-driven FDS approaches are usually trained based on collected data in stationary

environments (i.e., data are sampled from an independent and identically distributed

(i.i.d.) process). On the other hand, collecting representative data is often a dynamic

process of successive data acquisition campaigns. In such non-stationary environ-

ments, data patterns become available successively, over a period of time. Therefore,

designing efficient data-driven schemes are typically preferred, since these techniques

are more robust against arbitrary data distributions and types of faults [11]. Further-

more, they do not rely on seasonal changes in patterns (i.e., a stationarity assump-

tion). Our setting assumes that data arrive in a non-stationary environment, where

sensor data collection forms a data stream [12].

In case of a non-stationary data stream, the model used for the FDS must be

adaptive to adapt and react to the changes in the stream. Not incorporating an

adaptation mechanism can result in a model that becomes obsolete quite quickly

depending on the rate of change. Although several methods have been proposed to

handle concept drift using both techniques from SL and SSL [67, 68], they are still

limited in some senses. Algorithms such as Learn++.NSE [69] are limited by SL, and

passive learning used in most of SSL algorithms, such as Weight Estimation Algorithm

[67], can miss the opportunity to exploit that an oracle could be available to provide

labels based on an available budget.

Diagnosing faults in non-stationary environments is a challenging task. On the

other hand, providing FDS with external updates is not feasible, since labeling the
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unlabeled data is an expensive and offline task. To overcome these issues, recent

works have been developed to address Extreme Verification Latency (EVL), which

is when the labeled data is merely available at the first time step. A more realistic

learning setting for the design of FDS aligns better with EVL. Although EVL learners

can be used for diagnosing faults from the data stream, they have some restricting

assumptions. EVL assumes that the labeled data is only provided at the initial time

step, and the subsequent samples are fully unlabeled, which is a more realistic learning

scenario for FDS. EVL classifiers (EVLC) are mostly limited to work with gradual

drifts and the fixed number of classes, while there is a need to work with both abrupt

and gradual changes in the data stream, and, moreover, handle new classes in the

subsequent instalments, without any external updates.

In this chapter, a framework for fault detection and classification that is accom-

plished on the data stream with both gradual and abrupt drifts. The framework is

only provided with prior information about possible faults at the initial step; however,

despite this the framework can still detect novel faults without receiving any update.

Furthermore, an efficient fault classification algorithm is presented to maximize the

efficiency of the proposed framework. Finally, the proposed framework is applied

for diagnosing bearing defects in induction motors to demonstrate its feasibility for

industrial applications.

5.1 Related Work

EVL is a challenging problem that has recently received more attention in the com-

putational intelligence community. The arbitrary subpopulation tracker (APT) [70]

algorithm is one such approach for EVL. APT works by using a two-step procedure:

(1) a one-to-one assignment from unlabeled to labeled data is performed using Ex-

pectation Maximization (EM); then, (2) the classifier is updated to reflect the current

sub-population parameters. APT requires that all the sub-population parameters be
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made available at the time of initialization and the nonstationarity in the data be

structured or systematic, which may not be the situation with CDA. Unfortunately,

there is a significant computational overhead with APT.

Stream Classification Algorithm Guided by Clustering (SCARGC) [71] is another

EVL approach that focuses on computational efficiency. SCARGC performs cluster-

ing of the data that is followed by classification. Similar of this process is repeated

to use the unlabeled data to track the non-stationary environment.

COMPact Object Sample Extraction (COMPOSE) [14, 72, 73] is an EVLC that

aims to classify the unlabeled data using a SSL base learner with the labeled data

at the initial step then extract core supports from the classified samples to retrain

the SSL base classifier. Core supports could be extracted through shrinkage of an

α-Shape [14], or by fitting a Gaussian mixture model (GMM) to the data [72]. FAST

COMPOSE [73], on the other hand, uses all the classified samples instead of core

support extraction. COMPOSE was empirically shown to perform better than APT,

and Fast COMPOSE significantly improves the runtime over COMPOSE.

5.2 Design of the Diagnostic System

Despite all advantages of the EVLCs, they are not able to handle all types of drifts.

The proposed framework, called drift and novelty class detection and adaptation

under extreme verification latency (DISCOVERY), (see Fig. 5.1) provides more flex-

ibility for EVLC than traditional FDS approaches by incorporating an adaptation

mechanism upon the occurrence of an abrupt drift CDA. The proposed framework

accomplishes this by generating internal updates whenever CDA takes place. These

updates contain novel information about the presence of unknown classes and the

abrupt change of the known distribution.

Our framework consists of two major modules: (1) a two-stage detector, and (2) a

fault classifier. The former contains an abrupt drift detector and a new class detector.
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Figure 5.1 – The block diagram of the DISCOVERY diagnostic system. The proposed
scheme contains a two-stage detector including E-CUSUM and NC detector, and an
EVLC module which can be replaced by SCARGC or any variations of COMPOSE
including the novel Affinity-based COMPOSE. [2]

The latter is the proposed EVLC named as Affinity-based COMPOSE.

5.2.1 Two-stage Drift Detector

To make the framework robust against any forms of drift, the first yet most important

step is to detect the type of drift at each time step t, where t = {1, ..., T } (steps 1-12

in Algorithm 3). Here, this has been done by resorting to the E-CUSUM algorithm

[74]. The E-CUSUM module in Fig. 5.1 is explained in the following.

Abrupt Drift Detector

E-CUSUM aims to model the changes in the data sequence Q (i.e., in Fig. 5.1, Q is

the union of the previous batch and the current batch Q = Ut−2 ∪ Ut−1) by different

parametrizations (Θ0 and Θ1) of a probability density function P so that a drift can
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be detected by comparing the change ratio with a threshold τ .

By leveraging the central limit theorem, the base parameters Θ0 = {µ̂0, σ̂
2
0} are

estimated by computing the mean µ̂ and the standard deviation σ̂2 on a transformed

sequence QT :

QT =

m
n⋃
i=1

s(i) : s(i) =
ni∑

h=1+n(i−1)

xh/n (5.1)

where xh is a sample, and m is the number of samples in Q; and n stands for a

number satisfying the theorem. The alternative hypothesis H1 : Θ1 = {µ̂1, σ̂1
2}

is defined as being outside of the PΘ0 domain. Given a confidence parameter ω, an

interval of (1−ω)100% is defined on Θ0, i.e., [µ̂min, µ̂max] and [σ̂2
min, σ̂

2
max], to facilitate

the estimation of Θ1. Then, µ̂1 = [µ̂1min, µ̂1max] and σ̂1
2 = [σ̂1

2
min, σ̂1

2
max] in Θ1 are

calculated as follows:

µ̂1 = µ̂0 ± λ
√
n

m
ϕω/2σ̂0 (5.2)

σ̂
2
1max = σ̂2

0 + λ(σ̂2
max − σ̂2

0)

σ̂2
1min

= σ̂2
0 + λ(σ̂2

0 − σ̂2
min)

(5.3)

where ϕ and λ are the normal distribution and the sensitivity parameter (i.e., de-

creasing/increasing results in detecting smaller/bigger changes), respectively. The

change ratio R then can be computed as follows:

Ri =
i∑

h=1

ln
PΘ0(xh)

PΘ1(xh)
, i = 1, ...,m/n, (5.4)

and a degree of change ε can be obtained as εi = Ri−min1≤h≤i (Rh). An abrupt drift

CDA is then detected when εi > τ , where τ = max1≤i≤m/n (εi) is the threshold.

Given an input signal of unlabeled data Ut = {xt1, ..., xtnu} at time step t (see Fig.

5.1), the algorithm merges Ut with the collected data at the previous time step t− 1,

Ut−1, and forms Q = {Ut−1 ∪ Ut}, and, then, feeds it to the detector. The detector

checks all features of Q one by one and transforms them into QT , and, then, activates
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an alarm upon occurrence of an abrupt change CDA.

New Class (NC) Detector

As illustrated in Fig. 5.1, if CDA is detected (step 14 in Algorithm 3) then the adap-

tation procedure begins. The goal of this phase is to reconstruct the hypothesis space

for the EVLC so that the online monitoring can be continued without the need for

manual update. To do so, first the root cause of the drift should be specified (steps

15-18 in Algorithm 3). A CDA occurs as a result of a new class or an abrupt change

of the seen distributions. To detect the root cause of CDA, Ut is clustered using the

k-means module (see Fig. 5.1) for kt−1 and 1 + kt−1 number of clusters. Note that

the number of classes in the initial time step is known so initially k0 is equal to the

number of classes. The attained partitions for each run of k-means clustering, i.e.,

clustering outputs C
kt−1

t = {ci}kt−1

i=1 and C
1+kt−1

t = {ci}1+kt−1

i=1 are then fed to a Silhou-

ette function (ψ module in Fig. 5.1) to find out which k results in a more accurate

clustering [75]. The Silhouette function ψ measures the partition quality by indicat-

ing how well xti is assigned to the clusters, where xti is the i-th sample in the received

batch at time-step t. To do this, ψ gives a coefficient value that is computed for xti

by means of the between and within cluster dissimilarity, %b and %w as follows:

ψ(xti) =


1− %w(xti)/%b(x

t
i), %w(xti) < %b(x

t
i)

0, %w(xti) = %b(x
t
i)

%b(x
t
i)/%w(xti)− 1, %w(xti) > %b(x

t
i)

(5.5)

Our algorithm then compares the sum of ψ coefficient for all samples
∑nu

i=1 ψ(xti)

attained by each partitioning C
kt−1

t and C
1+kt−1

t , and consequently it returns the clus-

ter which resulted in the larger sum of ψ coefficients as a proper partition and assigns

the k of that partition as the true number of clusters, k∗. We consider the addition

of one new class in the designed experiments. However, the proposed framework can
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detect the presence of multiple new classes at each time step in an iterative procedure,

where the algorithm iteratively increases the number of partitions k until the sum of

coefficients ψ has been decreased. This can be done by resorting to the k-means and

ψ modules as shown in Fig. 5.1.

Once the true number of clusters k∗ has been assigned, the algorithm can assign

the label of gradually drifted classes to them (steps 19-25 in Algorithm 3). Then

the presence of a new class can be detected through the NC detector in Fig. 5.1

(steps 26-28 in Algorithm 3). To do so, the set of centroids for the current time

step θUt = {µj}k
∗
j=1 is compared with the labeled centroids of the previous time step

θLt−1 = {µi}kt−1

i=1 . A distance matrix M = {δij} is then constructed for comparison,

where δij = ‖µi−µj‖. The M module in Fig. 5.1 refers to this step. We then find the

closest pair of centroids {∀ 1 ≤ j ≤ k∗, 1 ≤ i ≤ kt−1| argmin δij}, where all samples

of cj ∈ CK∗ are assigned to the class label li of the paired cluster ci ∈ Ckt−1 and

li ∈ Ω = {li}kt−1

i=1 is a set of distinct class labels. Then we update M by replacing

all elements of the i-th row and the j-th column with a fixed value max(δij) + ζ,

where ζ is a small number. This subroutine is shown by a rectangular box at the

bottom of Fig. 5.1. This avoids assigning multiple distinct labels to the samples of

the same clusters. It then iteratively stores the newly labeled clusters in C∗, which

was initially set to ∅ (see the closed loop between the condition |C∗| < kt−2 and the

rectangular subroutine under the M module in Fig. 5.1). This iterative process stops

when |C∗| = kt−1. Thus far, samples of previously seen classes that are abruptly

drifted in the feature space are properly labeled. Otherwise, if kt−1 < k∗, it means

that CDA is caused by the presence of new unseen classes, and, thus, one or more

centroid in Ck∗ are still left unpaired to a class. Such centroids reveal the presence

of a cluster of samples ca that belongs to a new unseen class. Afterwards, it assigns

an unknown label lu to the samples of the unpaired cluster ca. The NC detector

is illustrated with a dotted box in Fig. 5.1. Pseudo-labels are then assigned to all

unlabeled samples of Ut and a set of labeled samples PLt = {xti, yti}nui=1 is formed,
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Algorithm 3: DISCOVERY (FDS framework)

Definitions: ψ is the Silhouette function, M is the distance matrix of centroids,
λ is the sensitivity parameter of E-CUSUM
Input: Ut, T #. of time steps, λ, EVLC
Initialisation: Classify the first batch (t = 1) of the unlabeled samples U1 using
the provided labeled set L1 and form: [PL1] = EVLC(U1, L1)

1 for t = 2, ..., T do
2 for each feature of Q = {Ut−1 ∪ Ut} do
3 Compute Θ0 = {µ0, σ

2
0} on QT using (5.1)

4 Compute Θ1 = {µ1, σ
2
1} using (5.2) and (5.3)

5 for ∀x ∈ {Ut−1 ∪ Ut} do
6 Calculate R and ε using (5.4)
7 Estimate τ
8 if εi > τ ∨ εi < −τ then
9 Detect CDA and activate an alarm

10 end if

11 end for

12 end for
13 Collect previously labeled samples PLt−1

14 if CDA is detected then
15 kt−1 = |Ωt−1|, where Ωt−1 = dYt−1e, Yt−1 ⊂ PLt−1. |.| stands for

cardinality, and d.e returns unique elements

16 C
kt−1

t = k-means(Ut , kt−1)

17 C
1+kt−1

t = k-means(Ut , 1 + kt−1)

18 Compare ψ(C
kt−1

t ) and ψ(C
1+kt−1

t ) using (5.5) to determine the best
number of clusters k∗

19 ∀cj ∈ Ck
∗
t : θUt = {µj}k

∗
j=1, where µj = mean(cj)

20 ∀ci ∈ Ckt−1

t−1 ← PLt−1: θLt−1 = {µi}kt−1

i=1 , where µi = mean(ci)

21 ∀µ ∈ {θUt ∪ θLt−1}: δij = ||µi − µj ||, and

M =

 δ11 · · · δ1k∗

...
. . .

...
δkt−11 · · · δkt−1k∗


22 for i = 1, ..., kt−1 do
23 Assign l of µi ∈ θLt−1 to cj ∈ Ck

∗
t corresponding to arg min1≤j≤k∗ (δij)

24 Replace i-th row and j-th column of M with max(δij) + ζ, where ζ is a
small number

25 end for

26 if kt−1 < k∗ then
27 Assign an unknown class lu to ca ∈ Ck

∗
t

28 end if

29 Form a set of pseudolabeled samples: PLt ← Ck
∗
t else

30 Call EVLC module: [PLt] = EVLC(Ut, Lt), where Lt = PLt−1

31 end if

32 end for
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where yi ∈ Y = {yi|yi ∈ Ω}nui=1. This pseudo-labeled set can be used as a prior

knowledge for the upcoming iteration t+ 1 to reconstruct the hypothesis space of the

EVLC.

5.2.2 Extreme Verification Latency Classifier Module

An EVLC module (see Fig. 5.1) is designed to address gradual concept drift CDG.

If CDG is detected then the proposed framework leverages the EVLC to classify the

unlabeled set Ut (step 31 in Algorithm 3).

An EVLC receives a small set of labeled samples Lt = {xti, yti}
nl
i=1 if t = 1, which

is the initial time step, or the set of pseudo-labeled samples is received if t > 1.

The pseudo-labels are generated in the previous step by means of EVLC (if CDG), or

resulted through the adaptation phase (if CDA) as shown in Fig. 5.1. In this study,

SCARGC and COMPOSE framework are adapted in the EVLC module. COMPOSE

has less limiting hypothesis compared to SCARGC and, thus, provides the framework

with more flexibility.

Variants of the COMPOSE have been used as EVLC in the proposed frame-

work. These variations include α-Shape, Gaussian Mixture Models (GMM), and

FAST COMPOSE. Among these variations, FAST COMPOSE can be the best choice

for online diagnostic applications due to its low computational burden. Nevertheless,

it is shown this low computational burden is resulted by sacrificing a slight amount

of accuracy as it removes the core-support extraction phase, and instead, uses all

available pseudo-labeled samples [73].

Affinity-based COMPOSE

Accuracy is a very important factor for the diagnostic system as is the runtime of

the algorithm. To compromise between the accuracy and the runtime, in this paper,

we propose Affinity-based COMPOSE, which is shown in Algorithm 4. The main
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Algorithm 4: Affinity-based COMPOSE (EVLC module)

Definitions:
L∗t is the set of sampled labeled data from Lt
ρ is the radial basis function kernel
Ŷt is the set of predicted labels at t
Input: f Semi-supervised learner, ς sampling rate, Ut, Lt

1 Collect unlabeled data Ut
2 if t = 1 then
3 Set L∗1 equal to provided labeled data: L∗1 = L1

4 else
5 if update is available by user then
6 Collect the labeled data: L∗t = Lt
7 go to step 14

8 else
9 Collect labeled samples Lt

10 end if
11 Construct the affinity matrix A between Lt and Ut:

A =

 ρ11 · · · ρ1nu
...

. . .
...

ρnl1 · · · ρnlnu

 ,
ρij = exp

(‖xi − xj‖2
2

2σ2

)
,

where the σ is set to standard deviation of all distances between xti ∈ Lt
and xtj ∈ Ut

12 ∀xti ∈ Lt, compute scores: αi =
∑nu

j=1 ρij
13 Sample {xti, yti} ∈ Lt with αi among top ς into L∗t
14 end if

15 Perform classification on Ut: [Ŷt] = f(Ut, L
∗
t )

16 Store all the labeled samples for the next time step:

PLt = {Ut, Ŷt}

17 return PLt
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difference between the Affinity-based COMPOSE and other variations of COMPOSE

is the sampling procedure (steps 4-14 in Algorithm 4). α-Shape and GMM variants

instantly extract the core supports based on the seen samples. On the other hand,

FAST COMPOSE makes use of all the labeled samples and does not seek for the

core-supports.

In contrast to a regular EVLC that updates the classification model regardless

of the next batch of data, Affinity-based COMPOSE makes use of a prospective

sampling strategy, which means that it samples the labeled data upon the emergence

of the upcoming batch. This ties the sampling procedure to the next set of samples,

and, thus, those labeled samples with high similarity to the upcoming samples are

selected to update the hypothesis space. The algorithm iteratively receives unlabeled

samples (step 1 in Algorithm 4) and, in the initial time step, a few labeled samples for

the sake of semi-supervised learning (steps 2-4 in Algorithm 4). From then on, if an

external update becomes available, the priority will be given to the external update,

these labeled samples are directly used to construct a model (steps 5-8 in Algorithm

4). This is due to the importance of the novel information provided by the user.

Otherwise, the algorithm uses the internal update that was generated in the previous

time step (steps 8-10 in Algorithm 4). To perform semi-supervised learning, an affinity

matrix is initially formed between the labeled and the unlabeled samples (step 11 in

Algorithm 4). Then, a score is computed based on the sum of the pairwise similarities

for each of the labeled samples (step 12 in Algorithm 4). Those samples with score

values among the top r percent are then selected to construct a classification model

(steps 13-15 in Algorithm 4).

Such a procedure allows to better follow the drift direction in the data stream,

when the drift is more intense. It then adapts itself more effectively to the changes.

Furthermore, the gap between the drifting samples and the extracted core-supports

in the two initial variants of COMPOSE (α-Shape and GMM) gradually increases.

However, this issue is avoided in Affinity-based and FAST COMPOSE.
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Both FAST COMPOSE and Affinity-based COMPOSE are very fast in regards

to their runtimes; however, since the FAST COMPOSE uses all the available pseudo-

labeled samples, any outlier and noise can also be included in the constructed hy-

pothesis. Furthermore, addition of the sampling phase into Affinity-based COMPOSE

makes it more robust and helps to overcome these issues to a large extent.

5.3 Experimental Results

To assess the performance of the proposed DISCOVERY framework, four different

experiments are conducted.

5.3.1 Experimental Setting

All the signals for the experiments are obtained from the CWRU data center [21].

The data contains various defects such as Inner, Outer, and Ball damage under differ-

ent conditions such as different speeds (1730, 1750, 1772, 1797rpm) and defect widths

(0.007, 0.014, 0.021in). The utilized test rig consists of a 2hp Reliance Electric Motor,

and the faults were seeded though the drive end of the electric motor. The signal

acquisition is performed at a 12kHz sampling rate. The vibrational signals are nor-

malized and, then, divided into non-overlapping segments. Then, a pool of statistical

features is extracted from each segment. This pool is further reduced in size through

a wrapper feature selection procedure [8]. According to the rank attained through

the feature selection, root mean square (RMS) and entropy are the most discriminant

features for the designed experiments, respectively. The best two features are used

in this study for the following reasons: (i) different numbers of features have been

evaluated by means of the wrapper feature selection, and the experiments show that

increasing the number of features does not significantly improve the classification ac-

curacy; (ii) while increasing the number of features poses more computational cost

and significantly increases the run time at each time step; (iii) α-Shape, which is
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Table 5.1 – The characteristics of each experiment including IM speed (rpm) and the
defect widths (in) at each time step t.

Experiments Condition t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Experiment 1

Speed 1797 1772 1730 1750 1772 1797 1730 1750 1730 1750
Outer 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
Ball 0.007 0.007 0.007 0.007 0.014 0.014 0.021 0.021 0.021 0.021
Inner N/A N/A 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

Experiment 2

Speed 1750 1772 1730 1750 1730 1797 1772 1750 1797 1730
Outer 0.007 0.007 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021
Ball N/A N/A 0.014 0.014 0.014 0.021 0.021 0.021 0.021 0.021
Inner 0.007 0.007 0.007 0.021 0.021 0.021 0.021 0.021 0.021 0.021

Experiment 3

Speed 1772 1730 1797 1750 1797 1772 1772 1750 1730 1797
Outer 0.007 0.007 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021
Ball 0.007 0.007 0.007 0.007 0.014 0.014 0.014 0.021 0.021 0.021
Inner 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.021

Experiment 4

Speed 1730 1797 1772 1797 1750 1730 1750 1772 1772 1797
Outer 0.007 0.007 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021
Ball 0.007 0.007 0.007 0.007 0.014 0.014 0.014 0.021 0.021 0.021
Inner 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.021

the key component for this comparative study, has the maximum efficiency with two

features [14, 72, 73]; (iv) entropy shows the highest sensitivity to the emergence of a

new class of fault, and, thus, reduces the detection delay.

Each experiment contains ten time steps, and each time step includes a batch of

120 samples per class of fault, where each sample contains two statistical features (i.e.,

entropy and root mean square). Drift is simulated at each time step by changing the

motor speed, the load and the defect widths as reported in Table 5.1. The first two

experiments are designed to assess the performance in the presence of an unknown

defect. In the next two experiments, concept drift CDA takes place without a novel

defect. In this study, a unique class label was assigned to all samples representative

of a specific type of defect (e.g., Outer, Ball, and Inner) with all possible widths.

However, in the initial step t = 1, only representative samples of the smallest defect

width (partially labeled set of samples) are fed into the diagnostic system.
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5.3.2 Two-stage detector

Fig. 5.2(a,b) show the results of the E-CUSUM detector (steps 1-12 in Algorithm

3) on both dimensions of the second experiment. Fig. 5.2(c) shows the result of the

NC detector in the second experiment, where a new class has been detected at t = 3.

Upon presence of a new unknown defect in the system, a CDA at t = 3 is detected after

processing 251-th sample of Q by means of the first feature, which is the 11-th sample

of U3. The second feature, however, is less sensitive to the presence of an abrupt

change in this experiment, and, thus, CDA is only detected upon processing 177-th

sample of U3. Nevertheless, this delay does not affect the diagnostic performance,

which is due to the use of a parallel detection setting, which detects, CDA on the first

feature and activates an alarm. Note that the proposed framework receives batches

of data subsequently, and all the data in Ut is processed at t. The aim of this work is

to design a fast and accurate framework. As a result, at this stage, the exact location

of the detected drift in Ut is not a major concern. Moreover, a drift may be gradual

w.r.t. one feature, and abrupt in another one. Thus, it is very usual for the detector

to detect CDA based on one feature.

After a CDA is detected, further analysis is performed (steps 15-25 in Algorithm

3) by the NC detector to determine the addition of unknown new classes to the data

stream (steps 26-28 in Algorithm 3).

5.3.3 EVLC module

In the EVLC module, SCARGC and variants of COMPOSE are used along with

Affinity-based COMPOSE for the sake of diagnostic bearing defects in IMs. The

diagnostic results are compared and ranked in terms of stability and accuracy, as

shown in Table 5.2. Each experiment is repeated 20 times. Table 5.2 represents the

average and standard deviation of the classification accuracies over 20 runs for each

technique. The most right column of Table 5.2 ranks different EVLC algorithms in
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Figure 5.2 – The detection of an abrupt drift in the second experiment. (a) and
(b) show the results of the E-CUSUM detector for the first and the second features
respectively, in the third time step, t = 3. E-CUSUM merges U2 (240 samples of two
classes) and U3 (360 samples of three classes), resulting into 600 samples (x-axis in the
first two panels). (c) The detection of the third class by NC detector at t = 3.

terms of accuracy.

Stability

Each panel of Fig. 5.3 presents the distribution of the classification performances

attained by each EVLC in each experiment. Each box in a panel contains all the
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Table 5.2 – Average accuracies and standard deviation over all time steps and runs
attained by each technique.

Experiments Algorithms Accuracy Std. Rank

FAST COMPOSE 95.24 11.27 4
Affinity-based COMPOSE 98.76 5.60 2

Experiment 1 COMPOSE (α-Shape) 99.75 0.83 1
COMPOSE (GMM) 97.93 7.62 3
SCARGC 66.66 25.81 5

FAST COMPOSE 81.66 11.64 4
Affinity-based COMPOSE 83.28 11.21 3

Experiment 2 COMPOSE (α-Shape) 84.99 9.79 2
COMPOSE (GMM) 86.99 8.02 1
SCARGC 36.3 26.07 5

FAST COMPOSE 93.32 13.25 4
Affinity-based COMPOSE 96.58 6.32 1

Experiment 3 COMPOSE (α-Shape) 87.29 16.16 5
COMPOSE (GMM) 95.55 9.78 2
SCARGC 94.54 8.29 3

FAST COMPOSE 93.70 12.99 4
Affinity-based COMPOSE 95.20 9.56 1

Experiment 4 COMPOSE (α-Shape) 87.26 17.65 5
COMPOSE (GMM) 93.71 12.60 3
SCARGC 93.86 9.90 2

attained accuracies (solid circles) by each EVLC (10 time steps × 20 runs). Fig. 5.3

shows that, in the first two experiments, α-Shape, GMM, and Affinity-based COM-

POSE are stable, where they, with a slight difference, are ranked from first to third,

respectively, based on the calculated standard deviations as listed in Table 5.2. FAST

COMPOSE, however, is not stable. This is due to the fact that the algorithm uses all

the classified samples for the next time step. This results in the lower classification

quality, and, then, the higher standard deviation. SCARGC, on the other hand, is

the most unstable technique in the first set of experiments. Such an instability is the

result of the structure of the SCARGC algorithm, where it assumes that the number

of classes are fixed, and as a result, upon occurrence of a new class of fault, it is

doomed to misclassify samples of the new class.

In the last two experiments, where the number of classes remains unchanged, the
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Figure 5.3 – The distribution of the accuracies (solid circles) attained by each EVLC in
each designed experiment. The mean values are specified by solid squares, and outliers
are shown by dotes.
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Figure 5.4 – The accuracy profile of each EVLC technique for all 20 runs of the third
experiment. The standard errors are shown by the shaded areas around the mean
curves.

Affinity-based COMPOSE is the most stable algorithm. The second and third ranks

are assigned to SCARGC and GMM, respectively. Here, the good performance of

SCARGC is due to the nature of the experiments, in which the number of classes is

fixed in the data stream. Same as the previous two experiments, FAST COMPOSE

is unstable to some extent due to the aforementioned issue. However, α-Shape turns

out to be the most unstable algorithm in the last two experiments. This is due to

the fact that the pace of drift in the last two experiments is faster and harsher than

the first two experiments, which increases the gap between the drifted samples and

the extracted core-supports. Nevertheless, the stability of GMM remains unchanged

in the last two experiments, since the data stream follows a Gaussian distribution.
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Accuracy

In the first two experiments, GMM is followed by α-Shape, and Affinity-based COM-

POSE as second and third ranks, with a slight difference, respectively. FAST COM-

POSE and SCARGC are ranked third and fifth in terms of accuracy (see Table 5.2).

In the last two experiments, the Affinity-based COMPOSE outperforms the other

competitors in terms of accuracy. This can be seen in Table 5.2, and moreover for the

third experiment, in Fig. 5.4. It is followed by GMM, SCARGC, FAST, and α-Shape

COMPOSE as subsequent ranks, respectively. These rankings are based on averaging

the accuracies for each experiment over 20 runs, as reported in Table 5.2. Fig. 5.4

shows the standard errors at each time step in shaded areas around the averaged

accuracies over 20 runs in the third experiment.

5.3.4 Discussion

This section studies the efficiency and efficacy of the EVLC algorithms for diagnosing

bearing defects in IMs. SCARGC assumes the number of classes in the data stream

remains unchanged, which limits its usage in the proposed framework. Even though,

COMPOSE implementations are quite flexible in this sense, still, each of them have

their own limitations. The employed Delauny tessellation in α-Shape complexity is

O(nb(γ+1)/2c), where n and γ are the number of samples and dimensions, that is, as

the γ increases, the efficiency falls drastically. GMM is not limited in this sense;

however, it always assumes that the data follows a Gaussian distribution. FAST

COMPOSE sacrifices accuracy and stability to some extent, which makes it the fastest

COMPOSE. The proposed Affinity-based COMPOSE increases the performance of

FAST COMPOSE by resorting to a prospective sampling strategy. Aside from its

efficiency, the results show that it is always among the top ranks.

The real-time property of the designed framework is analyzed in terms of runtime.

Table 5.3 contains the average runtimes recorded for each technique over different
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Table 5.3 – The averaged run-time of the DISCOVERY diagnostic framework over all
scenarios and runs.

Algorithms Time (s) Rank
FAST COMPOSE 0.0027 1
Affinity-based COMPOSE 0.0032 2
COMPOSE (α-Shape) 0.8533 5
COMPOSE (GMM) 0.4151 3
SCARGC 0.6591 4

runs and scenarios. FAST COMPOSE is the fastest technique, and with a slight

difference, Affinity-based COMPOSE stands in the second rank. GMM, SCARGC,

and α-Shape, on the other hand, are slower and ranked from third to fifth, respectively.

The recorded runtimes show that the framework has an acceptable speed with all

EVLC algorithms. Affinity-based COMPOSE is then the most efficient algorithm

considering both accuracy and speed into account. Thus, the proposed framework is

highly practical to be used for real-time applications. All tests have been performed

in Matlab R2017b on a computer with Intel Core i7 6700HQ CPU and 8GB of RAM.

5.4 Summery

In this chapter, we proposed a novel framework to diagnose faults in non-stationary

environments. The proposed framework is able to dynamically update the diagnostic

model and adapt it with respect to the changes in the evolving data stream. A

two-stage detector has been presented in the proposed framework to detect abrupt

and gradual concept drifts including presence of new class of defects in the data

stream. Extended Cumulative SUM (E-CUSUM) detects abrupt changes, and the

novelty detector determines the presence of new unseen classes. To track the gradual

concept drift in the data stream, which is partially labeled in the initial time step;

the proposed framework makes use of an EVLC module for fault classification.

Various EVLC algorithms are integrated with the proposed framework and their
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performances are compared in diagnosing bearing defects in IMs. This work also

proposes a novel EVLC algorithm, called Affinity-based COMPOSE, to improve the

performance. The attained results confirm that the Affinity-based COMPOSE out-

performs other competitors in terms of both accuracy and speed. Although the

diagnostic framework is only provided with prior information about possible faults at

the initial step; however, the attained results show that it still detects novel faults

without receiving any update.
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Chapter 6

Conclusion and Remarks

The main goal of this work is to design an efficient yet accurate data-driven diag-

nostic with the limited supervision, that is only a few numbers of labeled samples

along with a large number of unlabeled samples are available. This has been accom-

plished by restoring to semi-supervised learning approaches, which bring about two

main advantages to the system. Firstly, it eliminates the need for expensive human

labor that is required to prepare a large number labeled samples as a training set.

In addition, in contrast to the widely used approaches, for unsupervised and super-

vised learning, semi-supervised learning exploits both available labeled and unlabeled

samples resulting in a more precise diagnostic model.

Four different diagnostic frameworks are proposed in this thesis to address the

limited supervision problem. These frameworks generally contain three main mod-

ules. The first module is for extracting informative features from the input signals.

This is while there is no guarantee that all of the generated features are useful as

there may exist some non-informative or similar features, which result in overfitting

and performance-drop. Thus, the second module is considered for selecting the best

features or mapping them to a different feature space to attain a smaller set of infor-

mative features, which is later fed to the third module for decision making. In order

to attain the best quality features, only semi-supervised feature reduction methods

are considered. Through the design of the first diagnostic framework, a comparative

study has been performed that is focused on the impact of semi-supervised dimen-

sionality reduction techniques. Based on this study, SDA seems to be a reliable choice

for fault diagnosis in IMs.
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The second diagnostic framework, on the other hand, is a hybrid scheme that has

more feature extraction techniques and also enables a comparative study of the semi-

supervised classification algorithms. Various state-of-the-art classifiers are employed

and compared in this framework. Moreover, a novel semi-supervised classifier, called

S3AL, has been proposed to maximize the performance of this framework. S3AL

makes use of the concept of surface estimation to capture the structure of the data

to enable an SSL procedure. The results show that S3AL has a superior performance

and is a reliable choice for diagnosing bearing defects in IMs..

The third diagnostic framework is proposed to address a more challenging prob-

lem. While feature reduction techniques can be very helpful in preparing informative

sets of features for decision making, it is possible that the results are not satisfying as

expected. This may occur due to issues such as incompatibility of the feature reduc-

tion and classification algorithms, or the presence of an extremely high-dimensional

feature space. Thus, the third diagnostic framework utilizes a semi-supervised deep

learning procedure to address the problem of fault diagnosis with the limited su-

pervision in the high-dimensional feature space. In addition, various state-of-the-art

classifiers and deep learning algorithms are compared in this study. The attained

results show that Semi-supervised Deep Ladder Network has a superior performance

both in terms of accuracy and convergence rate.

The last framework is designed to address the most critical problem in this work.

Although the first three frameworks and most of the proposed diagnostic schemes in

the industry are designed for online diagnostic procedures, their diagnostic model is

trained in an offline manner. This may not cause any problem in many cases; however,

there are non-stationary conditions in the industry in which the input space is, in fact,

a data stream and it may evolve and change in time. In such a condition, a dynamic

diagnostic model is required since an offline model cannot interpret new conditions.

The proposed framework, called DISCOVERY, exploits semi-supervised classifiers

that are able to operate in a non-stationary environment. In order to maximize the
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speed and efficiency of the diagnostic framework, a novel semi-supervised classifier

has been proposed that is named Affinity-based COMPOSE. The results show that

Affinity-based COMPOSE has superior performance compared to its rivals. However,

such algorithms assume that only gradual drifts may take place in the data stream,

albeit not always being the case. Thus, a double-stage detector module is designed

and used in DISCOVERY, which is able to detect various types of drifts including the

presence of the new class in the system. DISCOVERY then generates internal updates

and adapts w.r.t. abrupt changes. The results indicate that DISCOVERY is reliable

and able to address the problem of fault diagnosis under the limited supervision in

non-stationary environments.
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