913 research outputs found

    Rational drug design using genetic algorithm: case of malaria disease

    Get PDF
    With the rapid development in the amount of molecular biological structures, computational molecular docking (CMD) approaches become one of the crucial tools in rational drug design (RDD). Currently, number of researchers are working in this filed to overcome the recent issues of docking by using genetic algorithm approach. Moreover, Genetic Algorithm facilities the researchers and scientists in molecular docking experiments. Since conducting the experiment in the laboratory considered as time consuming and costly, the scientists determined to use the computational techniques to simulate their experiments. In this paper, auto dock 4.2, well known docking simulation has been used to perform the experiment in specific disease called malaria. The genetic algorithm (GA) approach in the autodock4.2 has been used to search for the potential candidate drug in the twenty drugs. It shows the great impacts in the results obtained from the CMD simulation. In the experiment, we used falcipain-2 as our target protein (2GHU.pdb) obtained from the protein data bank and docked with twenty different available anti malaria drugs in order to find the effective and efficient drugs. Drug Diocopeltine A was found as the best lowest binding energy with the value of -8.64 Kcal/mol. Thus, it can be selected as the anti malaria drug candidate

    Optimización multi-objetivo en las ciencias de la vida.

    Get PDF
    Para conseguir este objetivo, en lugar de intentar incorporar nuevos algoritmos directamente en el código fuente de AutoDock, se utilizó un framework orientado a la resolución de problemas de optimización con metaheurísticas. Concretamente, se usó jMetal, que es una librería de código libre basada en Java. Ya que AutoDock está implementado en C++, se desarrolló una versión en C++ de jMetal (posteriormente distribuida públicamente). De esta manera, se consiguió integrar ambas herramientas (AutoDock 4.2 y jMetal) para optimizar la energía libre de unión entre compuesto químico y receptor. Después de disponer de una amplia colección de metaheurísticas implementadas en jMetalCpp, se realizó un detallado estudio en el cual se aplicaron un conjunto de metaheurísticas para optimizar un único objetivo minimizando la energía libre de unión, el cual es el resultado de la suma de todos los términos de energía de la función objetivo de energía de AutoDock 4.2. Por lo tanto, cuatro metaheurísticas tales como dos variantes de algoritmo genético gGA (Algoritmo Genético generacional) y ssGA (Algoritmo Genético de estado estacionario), DE (Evolución Diferencial) y PSO (Optimización de Enjambres de Partículas) fueron aplicadas para resolver el problema del acoplamiento molecular. Esta fase se dividió en dos subfases en las que se usaron dos conjuntos de instancias diferentes, utilizando como receptores HIV-proteasas con cadenas laterales de aminoacidos flexibles y como ligandos inhibidores HIV-proteasas flexibles. El primer conjunto de instancias se usó para un estudio de configuración de parámetros de los algoritmos y el segundo para comparar la precisión de las conformaciones ligando-receptor obtenidas por AutoDock y AutoDock+jMetalCpp. La siguiente fase implicó aplicar una formulación multi-objetivo para resolver problemas de acoplamiento molecular dados los resultados interesantes obtenidos en estudios previos existentes en los que dos objetivos como la energía intermolecular y la energía intramolecular fueron minimizados. Por lo tanto, se comparó y analizó el rendimiento de un conjunto de metaheurísticas multi-objetivo mediante la resolución de complejos flexibles de acoplamiento molecular minimizando la energía inter- e intra-molecular. Estos algoritmos fueron: NSGA-II (Algoritmo Genético de Ordenación No dominada) y su versión de estado estacionario (ssNSGA-II), SMPSO (Optimización Multi-objetivo de Enjambres de Partículas con Modulación de Velocidad), GDE3 (Tercera versión de la Evolución Diferencial Generalizada), MOEA/D (Algoritmo Evolutivo Multi-Objetivo basado en la Decomposición) y SMS-EMOA (Optimización Multi-objetivo Evolutiva con Métrica S). Después de probar enfoques multi-objetivo ya existentes, se probó uno nuevo. En concreto, el uso del RMSD como un objetivo para encontrar soluciones similares a la de la solución de referencia. Se replicó el estudio previo usando este conjunto diferente de objetivos. Por último, se analizó de forma detallada el algoritmo que obtuvo mejores resultados en los estudios previos. En concreto, se realizó un estudio de variantes del SMPSO minimizando la energía intermolecular y el RMSD. Este estudio proporcionó algunas pistas sobre cómo nuevos algoritmos basados en SMPSO pueden ser adaptados para mejorar los resultados de acoplamiento molecular para aquellas simulaciones que involucren ligandos y receptores flexibles. Esta tesis demuestra que la inclusión de técnicas metaheurísticas de jMetalCpp en la herramienta de acoplamiento molecular AutoDock incrementa las posibilidades a los usuarios de ámbito biológico cuando resuelven el problema del acoplamiento molecular. El uso de técnicas de optimización mono-objetivo diferentes aparte de aquéllas ampliamente usadas en las comunidades de acoplamiento molecular podría dar lugar a soluciones de mayor calidad. En nuestro caso de estudio mono-objetivo, el algoritmo de evolución diferencial obtuvo mejores resultados que aquellos obtenidos por AutoDock. También se propone diferentes enfoques multi-objetivo para resolver el problema del acoplamiento molecular, tales como la decomposición de los términos de la energía de unión o el uso del RMSD como un objetivo. Finalmente, se demuestra que el SMPSO, una metaheurística de optimización multi-objetivo de enjambres de partículas, es una técnica remarcable para resolver problemas de acoplamiento molecular cuando se usa un enfoque multi-objetivo, obteniendo incluso mejores soluciones que las técnicas mono-objetivo.Las herramientas de acoplamiento molecular han llegado a ser bastante eficientes en el descubrimiento de fármacos y en el desarrollo de la investigación de la industria farmacéutica. Estas herramientas se utilizan para elucidar la interacción de una pequeña molécula (ligando) y una macro-molécula (diana) a un nivel atómico para determinar cómo el ligando interactúa con el sitio de unión de la proteína diana y las implicaciones que estas interacciones tienen en un proceso bioquímico dado. En el desarrollo computacional de las herramientas de acoplamiento molecular los investigadores de este área se han centrado en mejorar los componentes que determinan la calidad del software de acoplamiento molecular: 1) la función objetivo y 2) los algoritmos de optimización. La función objetivo de energía se encarga de proporcionar una evaluación de las conformaciones entre el ligando y la proteína calculando la energía de unión, que se mide en kcal/mol. En esta tesis, se ha usado AutoDock, ya que es una de las herramientas de acoplamiento molecular más citada y usada, y cuyos resultados son muy precisos en términos de energía y valor de RMSD (desviación de la media cuadrática). Además, se ha seleccionado la función de energía de AutoDock versión 4.2, ya que permite realizar una mayor cantidad de simulaciones realistas incluyendo flexibilidad en el ligando y en las cadenas laterales de los aminoácidos del receptor que están en el sitio de unión. Se han utilizado algoritmos de optimización para mejorar los resultados de acoplamiento molecular de AutoDock 4.2, el cual minimiza la energía libre de unión final que es la suma de todos los términos de energía de la función objetivo de energía. Dado que encontrar la solución óptima en el acoplamiento molecular es un problema de gran complejidad y la mayoría de las veces imposible, se suelen utilizar algoritmos no exactos como las metaheurísticas, para así obtener soluciones lo suficientemente buenas en un tiempo razonable

    METADOCK: A parallel metaheuristic schema for virtual screening methods

    Get PDF
    Virtual screening through molecular docking can be translated into an optimization problem, which can be tackled with metaheuristic methods. The interaction between two chemical compounds (typically a protein, enzyme or receptor, and a small molecule, or ligand) is calculated by using highly computationally demanding scoring functions that are computed at several binding spots located throughout the protein surface. This paper introduces METADOCK, a novel molecular docking methodology based on parameterized and parallel metaheuristics and designed to leverage heterogeneous computers based on heterogeneous architectures. The application decides the optimization technique at running time by setting a configuration schema. Our proposed solution finds a good workload balance via dynamic assignment of jobs to heterogeneous resources which perform independent metaheuristic executions when computing different molecular interactions required by the scoring functions in use. A cooperative scheduling of jobs optimizes the quality of the solution and the overall performance of the simulation, so opening a new path for further developments of virtual screening methods on high-performance contemporary heterogeneous platforms.Ingeniería, Industria y Construcció

    Combining evolutionary algorithms with reaction rules towards focused molecular design

    Get PDF
    Designing novel small molecules with desirable properties and feasible synthesis continues to pose a significant challenge in drug discovery, particularly in the realm of natural products. Reaction-based gradient-free methods are promising approaches for designing new molecules as they ensure synthetic feasibility and provide potential synthesis paths. However, it is important to note that the novelty and diversity of the generated molecules highly depend on the availability of comprehensive reaction templates. To address this challenge, we introduce ReactEA, a new open-source evolutionary framework for computer-aided drug discovery that solely utilizes biochemical reaction rules. ReactEA optimizes molecular properties using a comprehensive set of 22,949 reaction rules, ensuring chemical validity and synthetic feasibility. ReactEA is versatile, as it can virtually optimize any objective function and track potential synthetic routes during the optimization process. To demonstrate its effectiveness, we apply ReactEA to various case studies, including the design of novel drug-like molecules and the optimization of pre-existing ligands. The results show that ReactEA consistently generates novel molecules with improved properties and reasonable synthetic routes, even for complex tasks such as improving binding affinity against the PARP1 enzyme when compared to existing inhibitors.Centre of Biological Engineering (CEB, University of Minho) for financial and equipment support. Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and through a Ph.D. scholarship awarded to João Correia (SFRH/BD/144314/2019). European Commission through the project SHIKIFACTORY100 - Modular cell factories for the production of 100 compounds from the shikimate pathway (Reference 814408).info:eu-repo/semantics/publishedVersio

    Tartarus: A Benchmarking Platform for Realistic And Practical Inverse Molecular Design

    Full text link
    The efficient exploration of chemical space to design molecules with intended properties enables the accelerated discovery of drugs, materials, and catalysts, and is one of the most important outstanding challenges in chemistry. Encouraged by the recent surge in computer power and artificial intelligence development, many algorithms have been developed to tackle this problem. However, despite the emergence of many new approaches in recent years, comparatively little progress has been made in developing realistic benchmarks that reflect the complexity of molecular design for real-world applications. In this work, we develop a set of practical benchmark tasks relying on physical simulation of molecular systems mimicking real-life molecular design problems for materials, drugs, and chemical reactions. Additionally, we demonstrate the utility and ease of use of our new benchmark set by demonstrating how to compare the performance of several well-established families of algorithms. Surprisingly, we find that model performance can strongly depend on the benchmark domain. We believe that our benchmark suite will help move the field towards more realistic molecular design benchmarks, and move the development of inverse molecular design algorithms closer to designing molecules that solve existing problems in both academia and industry alike.Comment: 29+21 pages, 6+19 figures, 6+2 table

    UNDERSTANDING CARBOHYDRATE RECOGNITION MECHANISMS IN NON-CATALYTIC PROTEINS THROUGH MOLECULAR SIMULATIONS

    Get PDF
    Non-catalytic protein-carbohydrate interactions are an essential element of various biological events. This dissertation presents the work on understanding carbohydrate recognition mechanisms and their physical significance in two groups of non-catalytic proteins, also called lectins, which play key roles in major applications such as cellulosic biofuel production and drug delivery pathways. A computational approach using molecular modeling, molecular dynamic simulations and free energy calculations was used to study molecular-level protein-carbohydrate and protein-protein interactions. Various microorganisms like bacteria and fungi secret multi-modular enzymes to deconstruct cellulosic biomass into fermentable sugars. The carbohydrate binding modules (CBM) are non-catalytic domains of such enzymes that assist the catalytic domains to recognize the target substrate and keep it in proximity. Understanding the protein-carbohydrate recognition mechanisms by which CBMs selectively bind substrate is critical to development of enhanced biomass conversion technology. We focus on CBMs that target both oligomeric and non-crystalline cellulose while exhibiting various similarities and differences in binding specificity and structural properties; such CBMs are classified as Type B CBMs. We show that all six cellulose-specific Type B CBMs studied in this dissertation can recognize the cello-oligomeric ligands in bi-directional fashion, meaning there was no preference towards reducing or non-reducing end of ligand for the cleft/groove like binding sites. Out of the two sandwich and twisted forms of binding site architectures, twisted platform turned out to facilitate tighter binding also exhibiting longer binding sites. The exterior loops of such binding sites were specifically identified by modeling the CBMs with non-crystalline cellulose showing that high- and low-affinity binding site may arise based on orientation of CBM while interacting with non-crystalline substrate. These findings provide various insights that can be used for further understanding of tandem CBMs and for various CBM based biotechnological applications. The later part of this dissertation reports the identification of a physiological ligand for a mammalian glycoprotein YKL-40 that has been only known as a biomarker in various inflammatory diseases and cancers. It has been shown to bind to oligomers of chitin, but there is no known function of YKL-40, as chitin production in the human body has never been reported. Possible alternative ligands include proteoglycans, polysaccharides, and fibers such as collagen, all of which make up the mesh comprising the extracellular matrix. It is likely that YKL-40 is interacting with these alternative polysaccharides or proteins within the body, extending its function to cell biological roles such as mediating cellular receptors and cell adhesion and migration. We considered the feasibility of polysaccharides, including cello-oligosaccharides, hyaluronan, heparan sulfate, heparin, and chondroitin sulfate, and collagen-like peptides as physiological ligands for YKL-40. Our simulation results suggest that chitohexaose and hyaluronan preferentially bind to YKL-40 over collagen, and hyaluronan is likely the preferred physiological ligand, as the negatively charged hyaluronan shows enhanced affinity for YKL-40 over neutral chitohexaose. Collagen binds in two locations at the YKL-40 surface, potentially related to a role in fibrillar formation. Finally, heparin non- specifically binds at the YKL-40 surface, as predicted from structural studies. Overall, YKL-40 likely binds many natural ligands in vivo, but its concurrence with physical maladies may be related to the associated increases in hyaluronan

    Application of computational methods for predicting protein interactions

    Full text link
    Protein interactions with other proteins or small molecules are critical to most physiological processes. These interactions may be characterized experimentally, but this can be time consuming and expensive; computational methods for predicting how two proteins interact, or which regions of a protein are most favorable for binding, are thus valuable tools for understanding how proteins of interest function, and have applications in drug discovery and identifying proteins of therapeutic interest. The ClusPro and FTMap algorithms for docking or solvent mapping, respectively, model protein-protein and protein-small molecule interactions, and can be used to identify the most likely orientations of a protein complex or the regions on a protein surface with the greatest propensity for binding. Here we describe three applications of ClusPro and FTMap. ClusPro was used to develop a method for determining whether a protein-protein interface is biologically relevant, by docking the proteins and comparing the results to the given interface; a larger number of near-native structures--which have interfaces similar to that of the given complex--was found to correspond to a greater probability that an interface is biological. In another project, ClusPro was used to predict whether a mutation in a multimeric complex would trigger the formation of a supramolecular assembly, based on how often that mutated residue appeared in the interfaces of the docking results; if a mutation caused such a residue to be present in the docked interfaces more often, in comparison to those of the wild-type structure, then it was likely to induce self-assembly. FTMap was used to detect and analyze the druggability of potential allosteric sites in kinases, with mapping performed on all available kinase structures to identify and determine the potential binding affinity of binding hot spots located outside of the active site. Discrimination of proteins as dimers or monomers was implemented as an addition to the ClusPro server, ClusPro-DC, and the results of the druggability analysis of kinases were organized into an online resource, the Kinase Atlas.2019-02-20T00:00:00

    MACHINE LEARNING AND BIOINFORMATIC INSIGHTS INTO KEY ENZYMES FOR A BIO-BASED CIRCULAR ECONOMY

    Get PDF
    The world is presently faced with a sustainability crisis; it is becoming increasingly difficult to meet the energy and material needs of a growing global population without depleting and polluting our planet. Greenhouse gases released from the continuous combustion of fossil fuels engender accelerated climate change, and plastic waste accumulates in the environment. There is need for a circular economy, where energy and materials are renewably derived from waste items, rather than by consuming limited resources. Deconstruction of the recalcitrant linkages in natural and synthetic polymers is crucial for a circular economy, as deconstructed monomers can be used to manufacture new products. In Nature, organisms utilize enzymes for the efficient depolymerization and conversion of macromolecules. Consequently, by employing enzymes industrially, biotechnology holds great promise for energy- and cost-efficient conversion of materials for a circular economy. However, there is need for enhanced molecular-level understanding of enzymes to enable economically viable technologies that can be applied on a global scale. This work is a computational study of key enzymes that catalyze important reactions that can be utilized for a bio-based circular economy. Specifically, bioinformatics and data- mining approaches were employed to study family 7 glycoside hydrolases (GH7s), which are the principal enzymes in Nature for deconstructing cellulose to simple sugars; a cytochrome P450 enzyme (GcoA) that catalyzes the demethylation of lignin subunits; and MHETase, a tannase-family enzyme utilized by the bacterium, Ideonella sakaiensis, in the degradation and assimilation of polyethylene terephthalate (PET). Since enzyme function is fundamentally dependent on the primary amino-acid sequence, we hypothesize that machine-learning algorithms can be trained on an ensemble of functionally related enzymes to reveal functional patterns in the enzyme family, and to map the primary sequence to enzyme function such that functional properties can be predicted for a new enzyme sequence with significant accuracy. We find that supervised machine learning identifies important residues for processivity and accurately predicts functional subtypes and domain architectures in GH7s. Bioinformatic analyses revealed conserved active-site residues in GcoA and informed protein engineering that enabled expanded enzyme specificity and improved activity. Similarly, bioinformatic studies and phylogenetic analysis provided evolutionary context and identified crucial residues for MHET-hydrolase activity in a tannase-family enzyme (MHETase). Lastly, we developed machine-learning models to predict enzyme thermostability, allowing for high-throughput screening of enzymes that can catalyze reactions at elevated temperatures. Altogether, this work provides a solid basis for a computational data-driven approach to understanding, identifying, and engineering enzymes for biotechnological applications towards a more sustainable world

    In Silico Phylogeny, Sequence and Structure Analyses of Fungal Thermoacidophilic GH11 Xylanases

    Get PDF
    Thermoacidophilic xylanase enzymes are mostly preferred for use as animal feed additives. In this study, we performed in silico phylogeny, sequence, structure, and enzyme-docked complex analyses of six thermoacidophilic GH11 xylanases belonging to various fungal species (Gymnopus androsaceus xylanase = GaXyl, Penicilliopsis zonata xylanase = PzXyl, Aspergillus neoniger xylanase = AnXyl, Calocera viscosa xylanase = CvXyl, Acidomyces richmondensis xylanase = ArXyl, Oidiodendron maius xylanase = OmXyl). To do this, amino acid sequences of six fungal thermoacidophilic GH11 xylanases, belonging to unreviewed protein entries in the UniProt/TrEMBL database, were investigated at molecular phylogeny and amino acid sequence levels. In addition, three-dimensional predicted enzyme models were built and then validated by using various bioinformatics programs computationally. The interactions between enzyme and the substrate were analyzed via docking program in the presence of two substrates (xylotetraose = X-4 and xylopentaose = X-5). According to molecular phylogeny analysis, three clusters of these enzymes occurred: the first group had PzXyl, AnXyl, and CvXyl, and the second group possessed GaXyl and OmXyl, and the third group included ArXyl. Multiple sequence alignment analysis demonstrated that the five xylanases (ArXyl, OmXyl, CvXyl, PzXyl, AnXyl) had longer N-terminal regions, indicating greater thermal stability, relative to the GaXyl. Homology modeling showed that all the predicted model structures were, to a great extent, conserved. Docking analysis results indicated that CvXyl, OmXyl, and AnXyl had higher binding efficiency to two substrates, compared to the GaXyl, PzXyl, and ArXyl xylanases, and CvXyl-X-4 docked complex had the highest substrate affinity with a binding energy of -9.8 kCal/mol. CvXyl, OmXyl, and AnXyl enzymes commonly had arginine in B8 beta- strand interacted with two substrates, different from the other enzymes having lower binding efficiency. As a result, it was concluded that the three thermoacidophilic xylanase enzymes might be better candidates as the animal feed additive

    MDM2 Case Study: Computational Protocol Utilizing Protein Flexibility Improves Ligand Binding Mode Predictions

    Get PDF
    Recovery of the P53 tumor suppressor pathway via small molecule inhibitors of onco-protein MDM2 highlights the critical role of computational methodologies in targeted cancer therapies. Molecular docking programs in particular, provide a quantitative ranking of predicted binding geometries based on binding free energy allowing for the screening of large chemical libraries in search of lead compounds for cancer therapeutics. This study found improved binding mode predictions of medicinal compounds to MDM2 using the popular docking programs AutoDock and AutoDock Vina, while adopting a rigid-ligand/flexible-receptor protocol. Crystal structures representing small molecule inhibitors bound to MDM2 were selected and a total of 12 rotatable bonds was supplied to each complex and distributed systematically between the ligand and binding site residues. Docking results were evaluated in terms of the top ranked binding free energy and corresponding RMSD values from the experimentally known binding site. Results show lowest RMSD values coincide with a rigid ligand, while the protein retained the majority of flexibility. This study suggests the future implementation of a rigid-ligand/flexible-receptor protocol may improve accuracy of high throughput screenings of potential cancer drugs targeting the MDM2 protein, while maintaining manageable computational costs
    corecore