Combining evolutionary algorithms with reaction rules towards focused molecular design

Abstract

Designing novel small molecules with desirable properties and feasible synthesis continues to pose a significant challenge in drug discovery, particularly in the realm of natural products. Reaction-based gradient-free methods are promising approaches for designing new molecules as they ensure synthetic feasibility and provide potential synthesis paths. However, it is important to note that the novelty and diversity of the generated molecules highly depend on the availability of comprehensive reaction templates. To address this challenge, we introduce ReactEA, a new open-source evolutionary framework for computer-aided drug discovery that solely utilizes biochemical reaction rules. ReactEA optimizes molecular properties using a comprehensive set of 22,949 reaction rules, ensuring chemical validity and synthetic feasibility. ReactEA is versatile, as it can virtually optimize any objective function and track potential synthetic routes during the optimization process. To demonstrate its effectiveness, we apply ReactEA to various case studies, including the design of novel drug-like molecules and the optimization of pre-existing ligands. The results show that ReactEA consistently generates novel molecules with improved properties and reasonable synthetic routes, even for complex tasks such as improving binding affinity against the PARP1 enzyme when compared to existing inhibitors.Centre of Biological Engineering (CEB, University of Minho) for financial and equipment support. Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and through a Ph.D. scholarship awarded to João Correia (SFRH/BD/144314/2019). European Commission through the project SHIKIFACTORY100 - Modular cell factories for the production of 100 compounds from the shikimate pathway (Reference 814408).info:eu-repo/semantics/publishedVersio

    Similar works