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ABSTRACT
Designing novel small molecules with desirable properties and fea-
sible synthesis continues to pose a significant challenge in drug
discovery, particularly in the realm of natural products. Reaction-
based gradient-free methods are promising approaches for design-
ing new molecules as they ensure synthetic feasibility and provide
potential synthesis paths. However, it is important to note that
the novelty and diversity of the generated molecules highly de-
pend on the availability of comprehensive reaction templates. To
address this challenge, we introduce ReactEA, a new open-source
evolutionary framework for computer-aided drug discovery that
solely utilizes biochemical reaction rules. ReactEA optimizes molec-
ular properties using a comprehensive set of 22,949 reaction rules,
ensuring chemical validity and synthetic feasibility. ReactEA is
versatile, as it can virtually optimize any objective function and
track potential synthetic routes during the optimization process.
To demonstrate its effectiveness, we apply ReactEA to various case
studies, including the design of novel drug-like molecules and the
optimization of pre-existing ligands. The results show that ReactEA
consistently generates novel molecules with improved properties
and reasonable synthetic routes, even for complex tasks such as im-
proving binding affinity against the PARP1 enzyme when compared
to existing inhibitors.
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• Computing methodologies → Genetic programming.
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1 INTRODUCTION
Throughout history, humans have been searching and cataloging
compounds, studying their effects on biological systems in an effort
to find products that can improve quality of life. Natural products
(NPs) which are produced by living organisms, such as bacteria,
fungi, and plants have long been a rich source of drug candidates,
with many of the most essential drugs in use today, including an-
tibiotics, anticancer agents, and anti-inflammatory drugs being NPs
or based on NPs. The unique and vast chemical diversity of NPs,
which have been optimized through the natural evolution process
to serve specific biological functions, makes them an ideal source
for drug discovery, as they are enriched with bioactive molecules
that span a broader range of the chemical space when compared to
synthetic small molecules [24].

Discovering a drug is a long and expensive process, typically
taking over 8 years and costing between 314 million to 2.8 billion
US dollars [43]. For decades, drugs have been discovered by search-
ing through libraries of biologically active natural and synthetic
chemical molecules. However, the recent adoption of computational
methods, such as computer-aided drug design (CADD) techniques,
into the drug discovery process has resulted in a reduction of both
time and cost compared to traditional trial-and-error experimenta-
tion. CADD techniques are mainly used for the rapid assessment
of chemical libraries to guide and accelerate the early stages of
developing new active compounds. These techniques include vir-
tual screening, designing virtual libraries, optimizing leads, and
designing new compounds from scratch.

CADD techniques can generally be grouped into two main types:
ligand-based drug design (LBDD) and structure-based drug design
(SBDD) [46]. LBDD involves the identification of small molecules
(ligands) that can bind and modulate the activity of a particular
target protein, such as a receptor or enzyme. LBDD relies on the
physicochemical properties of known ligands and does not consider
the three-dimensional structure of the target protein. However,
LBDD is limited by the availability of known ligands for a given
target protein, which may not always exist. In contrast, SBDD
involves using the three-dimensional structure of a protein or other
biological target to design and develop small molecule drugs that
can bind to and inhibit or activate the target.

In many CADD projects, virtual objective functions are used
to predict properties of molecules, such as their biological activity
and ADME (Absorption, Distribution, Metabolism, and Excretion)
properties. In virtual screening (VS), these objective functions are
evaluated for all molecules in a virtual library to identify the most
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promising ones. Typically, the molecules being screened are either
commercially available or have well-defined synthetic routes allow-
ing for a quick transition from in silico to in vitro studies. However,
these libraries only represent a very small and biased portion of
the drug-like chemical space leading to a lack of chemical novelty.

De novo drug design partially solves the chemical novelty prob-
lem by designing novel structures that provide a desired biological
response, while maintaining certain pharmacokinetic properties.
However, navigating and sampling the vast possible chemical space
of drug-like molecules in an efficient way is not a trivial task. CADD
techniques face the challenge of finding optimal solutions, finding
a trade-off between exploring global solutions and exploiting local
optimum, as there may be many good regions of the chemical space.

Over the last decades, gradient-based and gradient-free molecu-
lar optimization methods have received attention for de novo drug
design. In gradient-free approaches, the molecular generation is
guided towards optimal molecules by the use of population-based
stochastic optimization algorithms, such as evolutionary algorithms
(EAs) and swarm intelligence [12, 20, 22, 36, 40, 42]. On the other
hand, gradient-based molecular optimization approaches are based
on deep learning (DL) architectures, such as variational autoen-
coders, generative adversarial networks, recurrent neural networks,
and reinforcement learning [18, 23, 29, 47]. These models, once
trained on large datasets of chemical structures, are capable of
sampling the learned chemical space.

Regarding the level of specificity of molecular structure gener-
ation, gradient-free tools can be divided into three main groups:
atom-based, fragment-based, and reaction-based. Atom-based ap-
proaches act by applying simple atom/bond level operations such as
adding, removing, and replacing individual atoms or bonds from the
molecules. In theory, these types of operations are able to generate
every possible structure resulting in high novelty and diversity of
the generated molecules. However, these approaches can produce
invalid or less accessible structures, so it is essential to control these
properties during the generation process.

Fragment-based approaches use fragmentation schemes and ret-
rosynthetic disconnections to generate new molecules by adding,
replacing, or removing groups of atoms. The novelty and diversity
of the resulting molecules depend on the initial set of fragments,
and their size and number can control the level of space exploration.
However, like atom-based approaches, the validity and synthetic
accessibility of the molecules can still be problematic.

Reaction-based approaches use libraries of in silico chemical
reaction rules to generate new molecules by applying them to a set
of reactants. This approach can produce highly novel and diverse
molecules in fewer steps by making significant structural changes.
However, the effectiveness of this method can be limited by the
small number of available reaction templates, which may hinder
its ability to explore unknown parts of chemical space and reduce
the diversity of the generated molecules. Both atom, fragment, and
reaction-based gradient-free approaches have been demonstrated
to be effective in many studies (Table 1).

In this study, we introduce ReactEA, a modular and problem-
agnostic evolutionary CADD approach that utilizes biochemical
reaction rules to manipulate molecules. To optimize user-specified
objective functions, a suite of EAs from the jMetalPy framework
[4] is employed. The initial population of seed molecules is used to

generate a new population, and the fitness of these newmolecules is
calculated using the objective functions. The top-scoring molecules
then proceed to the next generation, and this process is repeated
until a stopping criterion is met. ReactEA was used to optimize
existing inhibitors and design novel molecules with various objec-
tives, such as drug-likeliness, synthetic accessibility, similarity to a
target molecule, and docking affinity against the PARP1 enzyme.

2 MATERIALS AND METHODS
2.1 Biochemical Reaction Rules
In computational chemistry, Reaction Rules are templates that
encode the conversion of reactants into products. They identify
substructures in the reactants based on a given chemical reaction
scheme, enabling researchers to evaluate potential reactions and
generate new product molecules. This process can easily be auto-
mated using several chemoinformatics tools like RDKit [26]. Figure
1 shows an example of an aromatic decarboxylation reaction rule
(Fig. 1 A) and two reactions used to create the rule (Fig. 1 B).

Although the ReactEA framework is compatible with any set of
reaction rules, in this work we focus specifically on exploring rules
encoding biochemical transformations to enable the exploitation
of sustainable cell factories for the production of natural drugs.
The used reaction rules were sourced from two primary databases:
the RetroRules database [11] and the Metabolic In Silico Network
Expansion (MINE) Databases [37]. RetroRules includes 350,224 reac-
tion rules, covering over 15,000 biochemical transformations. These
rules vary in enzyme specificity and consider the atomic environ-
ment around the reaction center at different diameters (2 to 16,
increments of 2). By predicting de novo reactions of promiscuous
enzymes, this approach expands natural chemical diversity. In this
study, only 13,035 reaction rules that can be expressed in the for-
ward direction and with a diameter of 2 (the most permissive) were
used.

The MINE databases include known and predicted metabolites
generated with a comprehensive set of 9,914 hand-curated reaction
rules. The reaction rules from MINE were combined with those
fromRetroRules to create a comprehensive set of 22,949 biochemical
reaction rules. These rules are represented in the SMARTS notation,
which can be used by open-source chemoinformatics tools. The va-
lidity of each rule was confirmed with the RDKit chemoinformatics
toolkit.

2.2 Framework Overview
The general workflow starts with the definition of the problem,
which includes defining the objective functions that are being min-
imized/ maximized, the constraints that the solutions must satisfy
(if any), and the representation of the solutions. This determines
the search space that the algorithm will explore and the criteria by
which the solutions will be evaluated.

ReactEA is designed to optimize molecular properties by explor-
ing the chemical space of NPs using biochemical reaction rules. The
framework starts by receiving the molecular properties to optimize
and an initial population of molecules that will serve as the seed
for the next generations. First, the initial population of molecules is
initialized and evaluated. At every generation, a selection operator
retrieves the mating pool from the solution list (the population)
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Table 1: Examples of the different gradient-free atom, fragment, and reaction-based methods.

Method Molecule construction method Evolutionary technique

Kawai et al. [19] Atom-based Genetic Algorithm
iSyn [28] Reaction-based Genetic Algorithm

GB-GA [17] Atom-based Genetic Algorithm
MolFinder [22] Atom-based Conformational Space Annealing
AutoGrow4 [36] Reaction-based Genetic Algorithm
EvoMol [27] Atom-based Genetic Algorithm
LEADD [20] Fragment-based Genetic Algorithm
ChemGE [44] Fragment-based (` + _) Evolutionary Strategy
MSO [42] Atom-based Particle Swarm Optimization

MOARF [14] Fragment-based Multi-objective Evolutionary Algorithm
CReM [33] Fragment-based Stochastic exploration

Figure 1: Reaction rule encoding an Aromatic Decarboxylation transformation (A) and original reactions (B), in which a
carboxylic acid group (-COOH) is removed from the compound.

for reproduction. A mutation operator is then applied to yield a
new list of solutions (the offspring). The solutions of this offspring
population are evaluated using the specified objective functions,
and a replacement strategy is applied to update the population
for the next generation. This process is repeated until a certain
stopping criterion is met (e.g. maximum number of generations or
mean fitness of all individuals). A general overview of the ReactEA
framework is presented in Figure 2.

ReactEA is highly modular and extensible, making it easy for
users to customize and extend its functionalities. It provides an
interface for molecular property optimization using single-objective
(SO) and multi-objective (MO) EAs. This allows users to quickly
and easily experiment with different configurations without having
to write complex code. Additionally, ReactEA includes a wide range
of pre-defined reaction rules that serve as mutation operators to
generate diverse molecules with optimized properties.

2.3 Initial population
The initial population serves as the starting point for the search for
optimal solutions. Its definition plays an important role in deter-
mining the diversity and novelty of the compounds generated. A
diverse initial population allows for a wider exploration of poten-
tial solutions, increasing the chances of finding multiple optimal
solutions. In ReactEA, the initial population is defined by the user.

This can be, for instance, a set of available precursors in a partic-
ular organism, a diverse set of molecular fragments for a de novo
design experiment, or known ligands for lead optimization. The
framework accepts molecules represented as SMILES strings [41],
which are then transformed into RDKit Mol objects. All molecular
operations, including the application of the Mutation operator, are
performed using RDKit.

2.4 Population Fitness
In an EA, the fitness of a solution is a measure of its ability to
solve the problem at hand, being determined by evaluating its
performance on pre-defined objective functions.

ReactEA can be used in both SO and MO problems. For that, a set
of predefined objective functions, such as octanol–water partition
coefficient (logP), drug-likeliness, molecular weight range, number
of large rings, and stereoisomer count are provided. However, its
modular design allows for the optimization of virtually any objec-
tive function, allowing those with computational background to
easily implement their own objective functions of interest.

To implement a custom objective function, the user needs to
implement a function that calculates some property of interest,
specify if it is a maximization or minimization problem, and provide
the worst possible fitness for invalid molecules. Additionally, MO
functions can be combined into a single one through the use of a
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Figure 2: General outline of the ReactEA workflow.

weighted aggregated sum. In this case, a list of weights for each
objective function must also be provided.

2.5 Selection Operator
The selection operator is used to choose which solutions will be
used to create the next generation of solutions. There are different
methods that can be used for selecting themating population in EAs.
ReactEA supports a wide range of selection operators as provided
by the jMetalPy framework including a variety of Random, Rank,
Roulette, and Tournament selection strategies. The best selection
method to use depends on the specific problem being solved, while
the different algorithms also work better with different selection
schemes.

2.6 Mutation Operator
The Mutation Operator in ReactEA introduces variations into the
population by creating novel compounds from the existing ones,
by utilizing in silico biochemical reactions, executed using RDKit.
Given a parent molecule, the process starts by randomly selecting a

reaction rule from a predefined set of rules and attempting to apply
it to the parent. This step is repeated until a successful reaction
occurs or until a maximum number of attempts is reached. The
resulting product molecules (offspring) are evaluated, and one of the
most similar ones, within a specified range, is selected. This strategy
avoids selecting byproducts or undesirable reaction outcomes, such
as water or carbon dioxide molecules.

An illustration of the mutation operation is presented in Figure
3, where three different reaction rules are applied to a glycerol
molecule, resulting in different product molecules. This approach
ensures the validity and higher synthetic feasibility of the generated
molecules, while also providing the ability to track the lineage of
any mutant molecule to identify its origin and propose potential
synthetic routes.

2.7 Replacement of solutions
In an EA, the replacement of solutions refers to the process of up-
dating the current population with new solutions. The replacement
strategy used can vary based on the specific problem being solved
and the desired outcome of the algorithm. ReactEA offers a range of
replacement strategies for its various EAs. Some algorithms replace
the entire population with a new set of solutions generated from the
current population, which helps to maintain diversity and avoid be-
ing trapped in a local optimum. On the other hand, some strategies
only replace a portion of the population, striking a balance between
exploring new solutions and exploiting the best solutions found so
far. More complex algorithms may involve complex variations of
these strategies. In addition to these strategies, some EAs utilize
the concept of elitism, preserving the best-performing solutions
from one generation to the next. This helps to ensure that the best
solutions are not lost.

2.8 Termination Criterion
The termination criterion determines when the algorithm comes to
a halt. The criterion ensures that the EA produces results within
a reasonable time frame. The specific criterion used will vary de-
pending on the optimization problem and the requirements of the
application. When choosing a termination criterion, it is crucial to
balance exploration of the search space and finding good solutions
within a reasonable time. The criterion should be well-defined and
easily evaluated during the course of the algorithm. ReactEA imple-
ments several criteria, including a maximum number of generations,
a maximum run time, reaching a predetermined quality indicator,
and a mean value of fitness of all objectives. The termination mod-
ule can be easily extended to implement other termination criteria
as needed.

2.9 Evolutionary Algorithms
Choosing the right EA to tackle a specific problem is not straightfor-
ward and requires careful consideration. The algorithm’s effective-
ness depends on various factors such as the problem’s complexity,
the size of the search space, and the design of the objective functions.
Whether the problem requires SO or MO optimization or if the ob-
jective functions are continuous or discrete, different algorithms
may perform better. Therefore, it is advisable to try out multiple
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Figure 3: This is an example of how the mutation operator works: three different reaction rules are applied to create three
distinct products (mutants) from a single reactant (parent). It is possible that different rules apply to the same compound, and
one rule can also generate multiple different products.

algorithms and determine the most suitable one for a particular
case.

ReactEA offers a comprehensive collection of EAs and some
stochastic optimization algorithms for molecular property opti-
mization: simulated annealing (SA) [1], genetic algorithm (GA)
[35], evolution strategy (ES) [3], and local search (LS) [38] for SO
optimization, and Non-dominated Sorting Genetic Algorithm III
(NSGAIII)) [9], Non-dominated Sorting Genetic Algorithm II (NS-
GAII) [8], Indicator-based Evolutionary Algorithm (IBEA) [49], and
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [2] for MO opti-
mization. Although designed for many objectives, MO EAs can also
benefit SO optimization by improving convergence and exploration
of the search space [31]. This approach is especially advantageous
for complex problems that require a diverse set of solutions to cover
different regions of the search space.

2.10 Development Environment
ReactEA was developed using Python version 3.8. Molecular op-
erations like SMILES validity, standardization, reaction SMARTS
validity, and reaction product generation were done using RDKit
version 2022.03.1. EAs were implemented with jMetalPy version
1.5.5. Source code, small data files, and usage examples are available
at https://github.com/BioSystemsUM/ReactEA. For reproducibility,
all data and code used to generate the presented results are also
available at https://zenodo.org/record/7630352.

3 RESULTS AND DISCUSSION
3.1 Optimization of Drug-Likeness, Solubility,

and Synthetic Accessibility
Evaluating the performance of de novo design methods often in-
volves testing them on simplified tasks, such as maximizing quanti-
tative estimate of drug-likeness (QED) or logP. These objectives are
straightforward to calculate and demonstrate the ability to generate
molecules that meet specific goals. While they do not reflect the
complexity of real-world drug discovery experiments, they can still
serve as good indicators to identify compounds that are more likely
to be successful drugs.

In this study, we compared the performance of ReactEA in opti-
mizing simple tasks such as the QED, the penalized octanol–water
partition coefficient (pLogP), the synthetic accessibility score (SAS),
and the ChEMBL-Likeness Score (CLScore) with some state-of-the-
art methods. The QED score, calculated using RDKit and ranging be-
tween 0 and 1, indicates how closely a compound resembles known
drugs in terms of physical and chemical properties. A higher score
suggests better drug-like properties, including oral bioavailability,
low toxicity, and the ability to pass through the blood-brain barrier.

The logP value measures the solubility of a molecule in water
versus lipids, with positive values indicating lipophilicity and neg-
ative values indicating hydrophilicity. In drug discovery, logP is
crucial for determining the absorption, transportation, and distri-
bution of drugs. Lipinski’s Rule of 5 states that for optimal oral and
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intestinal absorption, drugs must have a logP value below 5, with
a preferable range of 1.35 to 1.8. In drug design studies, pLogP is
often optimized instead, which is a penalized version of logP that
accounts for large rings and synthetic accessibility (Equation 1).
The pLogP score was calculated using RDKit and normalized across
the ZINC dataset.

𝑝𝐿𝑜𝑔𝑃 (𝑚) = 𝑙𝑜𝑔𝑃 (𝑚) − 𝑆𝐴(𝑚) − 𝑅𝑖𝑛𝑔𝑃𝑒𝑛𝑎𝑙𝑡𝑦 (𝑚) (1)

Synthetic complexity is an estimate of how difficult it would
be to synthesize a molecule. We used the SAS metric proposed by
Ertl and Schuffenhauer [13] to predict synthetic accessibility. SAS
takes into account the molecule’s similarity to reference drug-like
compounds and the presence of synthetically complex features such
as unusual rings and many stereo centers. SAS ranges from 1 to
10, with higher values indicating synthetic complexity. We also
calculated a normalized SAS score, ranging from 0 to 1. RDKit was
used to calculate the SAS scores.

The CLScore [5] is another metric that predicts synthetic acces-
sibility. It compares a molecule to a subset of biologically active
compounds in ChEMBL [30] using circular substructures called
molecular shingles. Each shingle is assigned a weight based on its
frequency of occurrence in the ChEMBL subset, and the sum of
these weights is divided by the total number of shingles in the mol-
ecule to calculate a score. Higher scores indicate greater similarity
to ChEMBL molecules. RDKit was used to calculate the CLScore
scores.

The initial population consisted of a set of precursors from the
Escherichia coli iJO1366 metabolic model [32], retrieved from the
RetroPathRL GitHub repository [21]. Only molecules with valid
InChI [16] were considered, resulting in a set of 648 precursors.
The validity and conversion to SMILES notation were performed
using RDKit.

We run GA, ES, NSGAIII, NSGAII, SPEA2, and IBEA with default
parameters for 100 generations or until no improvements were
observed for 5 generations, using the Ecoli Sink Set as the initial
population. The results showed similar performance to state-of-
the-art methods under comparable conditions. Direct comparisons
are difficult due to differences in the conditions used by different
methods (e.g. number of generations, restrictions on molecular
size), thus results were compared to a limited set of studies reported
in [27]. Fair comparisons were made by limiting the maximum
number of heavy atoms to 38 in the pLogP optimization.

In the QED optimization, the ReactEA achieved a score of 0.948,
comparable to other best-performing methods [27, 42, 45, 48], ex-
cept for the method proposed by Zhang et al. [47] with a score of
0.954. The regular and normalized pLogP optimization resulted in
maximum scores of 13.88 and 11.19, respectively, which were out-
performed only by EvolMol [27]. The SAS optimization resulted in
the best possible score of 1.0, outperforming scores of 0.95 reported
in [27] and [7]. In the CLScore optimization, a top score of 6.78 was
achieved, outperforming the score of 6.552 reported in [27]. The
complete set of results is available in Supplementary Table 1.

It is important to note that optimizing these metrics does not
reflect the complexity of real-world drug discovery experiments.
For instance, the best molecule obtained in the pLogP optimiza-
tion was a non-drug-like compound consisting of 38 carbon atoms.
While the best-scoring molecules in the QED optimization display

desirable drug-like properties, optimizing this metric alone may
result in unrealistic molecules as it does not consider synthetic
accessibility, pharmacokinetics, and target activity. The generated
molecules from the SAS and CLScore optimizations are quite simple,
mostly consisting of small alkanes and cycloalkanes. In the case of
CLScore, it may be more meaningful to optimize values between 3
and 5, as they correspond to the peak in the ChEMBL distribution.
These limitations suggest that objective functions must be carefully
designed and that MO optimization should be integrated into drug
discovery studies, along with additional targeted objectives.

3.2 Similarity to Aspartame
Designing novel molecules based on existing bioactive ones, or
incorporating specific core structures and scaffolds is a common
strategy in molecular design. This approach allows for the preserva-
tion of desirable properties while exploring new areas of chemical
space, simplifies synthesis by using the core structure or scaffold
as a template, and increases the likelihood of obtaining bioactive
molecules due to their pre-determined structural features.

In order to assess the ability of ReactEA in finding paths to
target molecules, we evaluated its performance in optimizing for
the similarity to the Aspartamemolecule. The similaritywas defined
as the Tanimoto Similarity [34] between Morgan fingerprints with
radius 2 and 1024 bits. Additionally, to understand the impact of the
initial population on the performance of ReactEA, we conducted
experiments using the GA. We tested 8 different initial populations,
each consisting of 100 molecules, including NP-based approved
drugs from ChEMBL and scaffolds from known NPs.

The molecules from ChEMBL were selected by choosing NP-
based approved small molecule drugs with molecular weights be-
tween 100 and 399, resulting in 184 valid molecules. We created 4
different initial populations from this set. For the first set, called
"Representative ChEMBL", we selected the 100 most representative
molecules by computing the Morgan fingerprints of each molecule,
then reducing the dimensionality to two components using t-SNE.
Next, using KMeans clustering with 100 clusters, we selected the
molecule closest to the centroid of each cluster. For the second
set, called "Similar ChEMBL", we selected 100 molecules from the
same cluster by following a similar approach as for the Representa-
tive ChEMBL set, except that only 2 clusters were computed. The
remaining two sets, "ChEMBL Top100" and "ChEMBL Worst100",
consist of the 100 molecules with the best and worst similarity to
Aspartame, respectively.

The set of 368 NP scaffolds was retrieved from the study by
Lai et al. [25]. We also created 4 different initial populations of
100 molecules each using the same approach as for the ChEMBL
data, and these sets are referred to as "Scaffolds Representative",
"Scaffolds Similar", "Scaffolds Top100", and "Scaffolds Worst100".

For each initial population, the algorithm was run over 100 gen-
erations and repeated 10 times. The selection operator was Binary
Tournament Selection, and the replacement of solutions was done
by selecting the 100 fittest unique solutions among the previous
solutions and offspring.

It is usually advantageous to start with a diverse initial popula-
tion as this can increase the chances of exploring a wider search
space. Despite this, ReactEA has demonstrated the ability to quickly
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improve solutions even with a non-diverse initial population. In
our experiments, we found no significant differences in the av-
erage score of generated molecules when using different initial
populations (Table 2, Supplementary Figure 1). This can be asso-
ciated with the fact that applying reaction rules to molecules can
drastically change their score. The similarity to Aspartame scores
ranged between 0.598 and 0.653. Interestingly, the initial population
with the lowest average score was the Representative ChEMBL,
which suggests that the diversity of the initial population does not
significantly impact the final solutions. With the exception of the
Representative ChEMBL, Representative Scaffolds, and Scaffolds
Top100 sets, ReactEA was able to reach the Aspartame molecule or
one of its stereoisomers (Supplementary Figure 2).

In addition to evaluating the similarity of the generatedmolecules
to Aspartame, we also assessed their novelty, diversity, QED, and
SAS. We found that all generated molecules were unique and dis-
tinct from the starting population. As expected, the internal similar-
ity was high, with the generated molecules sharing many substruc-
tures. The average QED and SAS values of the generated molecules
were comparable to those of Aspartame.

3.3 Docking to PARP1
The Poly [ADP-ribose] polymerase 1 (PARP1) enzyme plays a cru-
cial role in DNA repair, cell signaling, and gene regulation. It was
the first member of the PARP family of enzymes, which add ADP-
ribose groups to target proteins, to be identified. PARP1 primarily
mediates multiple DNA damage repair pathways, which repair
DNA damage caused by various internal and external factors. If left
unrepaired, this damage could lead to the development of several
diseases, including cancer. Therefore, the inhibition of PARP1 is
being explored as a treatment option for various cancers, such as
ovarian, breast, and prostate cancer.

To show how ReactEA can be used for lead optimization, we used
a library of 94 seed molecules, including 11 known PARP inhibitors
(retrieved from http://www.clinicaltrials.gov) and 83molecular frag-
ments derived from them using Breaking of Retrosynthetically In-
teresting Chemical Substructures (BRICS) decomposition [10] by
the authors of AutoGrow4.

Our objective function uses the DOCKSTRING package [15] for
optimizing the binding affinity against the PARP1 enzyme. DOCK-
STRING is a user-friendly Python wrapper of the AutoDock Vina
package [39]. AutoDock Vina produces high-quality docking poses

and reasonable binding free energy predictions while having a
relatively low computational cost.

To ensure the generated molecules had desirable physical and
chemical properties, we applied a set of molecular filters before
docking. If a compound did not pass all the filters, it was assigned
the worst fitness. These filters ensured that the molecules had a
logP value between -0.4 and 5.6, a molecular weight between 160
and 500, a molar refractivity between 40 and 130, and between 20
and 70 heavy atoms.

The best-scoring molecule, along with the reaction rules used
to generate it, is displayed in Figure 4. It has a predicted binding
affinity of -14.5 kcal/mol, considerably better than the best-known
inhibitor in the initial population (Olaparib with -12.3 kcal/mol).
The molecule was generated with the GA. Other EAs also had
comparable performance with the best binding affinities ranging
from -12.5 kcal/mol to -14.5 kcal/mol (Table 3). The binding affinity
of the best molecule of each EA at each generation and the best
molecules generated by each EA can be consulted in Supplementary
Figures 3 and 4.

The predicted binding affinities could easily be improved by sim-
ply raising the number of generations. However, doing so would
come with a number of drawbacks. For one, AutoDock Vina and
other docking tools tend to favor larger molecules [6]. Additionally,
longer runs may lead to the emergence of unwanted functional
groups that have the potential to be mutagenic or have unfavorable
pharmacokinetic properties. Similarly, the synthesizability of com-
pounds tends to decline in later generations as the accumulation
of mutations causes the population to significantly deviate from
the original molecules. Therefore, in general, a lower number of
generations is preferred when optimizing molecular docking. How-
ever, these challenges can be addressed by using a MO optimization
approach, such as the one offered by ReactEA, that can consider
multiple objectives, such as binding affinity to the target, molecular
weight, synthetic accessibility, and other relevant factors.

4 CONCLUSIONS
We have introduced ReactEA, a new open-source reaction-based
EA framework for molecule generation. ReactEA can be used in
SO and MO problems, optimizing any (set of) measurable objective
functions with its large set of biochemical reaction rules. This al-
lows for the generation of valid structures and assures chemical
feasibility, with potential synthesis paths provided for the generated
molecules.

Table 2: Impact of different initial populations on the performance of ReactEA. The percentage of unique and novel molecules,
the similarity between the molecules, the mean and best similarity to the aspartame, and the QED and SAS are showcased.

Set Unique/Novel Internal Sim. Mean Sim. to Aspartame Best Sim. to Aspartame QED SAS

ChEMBL Representative 100% 0.457 0.598 0.803 0.436 3.030
ChEMBL Similar 100% 0.500 0.642 1.000 0.452 2.953
ChEMBL Top100 100% 0.510 0.653 1.000 0.447 2.971
ChEMBL Worst100 100% 0.506 0.639 1.000 0.447 2.971

Scaffolds Representative 100% 0.487 0.623 0.828 0.445 3.004
Scaffolds Similar 100% 0.508 0.645 1.000 0.428 2.973
Scaffolds Top100 100% 0.476 0.630 0.869 0.450 2.991
Scaffolds Worst100 100% 0.519 0.649 1.000 0.447 3.015
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Figure 4: The molecule with the highest binding affinity and the reaction templates that were applied to transform the starting
compound (Olaparib Fragment 652934) into the final molecule are presented, along with the intermediate molecules and the
corresponding EC numbers for the original reactions.

Table 3: Results of the Docking to PARP1 optimization. The
binding affinities of the initial population and the perfor-
mance of the different EAs are shown.

EA Worst Best Mean Std. Dev.

Init. Pop. 50.0000 -12.1000 35.277660 25.8735
NSGAIII -11.1000 -14.4000 -11.769149 0.5998
NSGAII -10.6000 -12.5000 -11.198936 0.4759
SPEA2 -10.7000 -12.7000 -11.427660 0.5284
IBEA -10.9000 -13.5000 -11.547872 0.5303
GA -10.7000 -14.5000 -11.378723 0.6341
ES -11.5000 -13.1000 -11.954255 0.3935

Compared to previous reaction-based EAs, such as Autogrow4
and iSyn, which use a limited set of click chemistry rules, ReactEA
utilizes a more comprehensive set of reaction rules to enumerate
possible biosynthetic routes connecting target molecules to precur-
sors. This represents a step forward towards a more sustainable,
economically viable, and environmentally responsible approach to
chemical production. Our results demonstrate ReactEA’s high con-
figurability and versatility, achieving excellent results in optimizing
simple objectives like QED or SAS, as well as more complex tasks
like similarity to a target molecule and docking to proteins.

One of the limitations of ReactEA and other reaction-based ap-
proaches is their dependence on the available reaction rules and
their coverage of the chemical space. While ReactEA uses a compre-
hensive set of biochemical reaction rules, their number still limits
the chemical space that can be explored, potentially reducing the
novelty and diversity of the generated molecules. Additionally, the
reaction rules are limited to human knowledge, which may limit
the exploration of new areas of the chemical space. Despite its rela-
tively low computational demands, evaluating the results provided
by ReactEA requires chemical expertise as the quality of generated
molecules is currently either subjective or measured imperfectly.
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