MDM2 Case Study: Computational Protocol Utilizing Protein Flexibility Improves Ligand Binding Mode Predictions

Anthony Thomas Ascone

As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar's work has been judged to have academic value by the student's thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees.

Follow this and additional works at: https://bearworks.missouristate.edu/theses
Part of the Materials Science and Engineering Commons

Recommended Citation

Ascone, Anthony Thomas, "MDM2 Case Study: Computational Protocol Utilizing Protein Flexibility Improves Ligand Binding Mode Predictions" (2016). MSU Graduate Theses. 2948.
https://bearworks.missouristate.edu/theses/2948

This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution.
For more information, please contact BearWorks@library.missouristate.edu.

A Masters Thesis
Presented to
The Graduate College of
Missouri State University

In Partial Fulfillment

Of the Requirements for the Degree
Master of Science, Materials Science

By
Anthony Ascone
July 2016

MDM2 CASE STUDY: COMPUTATIONAL PROTOCOL UTILIZING PROTEIN

 FLEXIBILITY IMPROVES LIGAND BINDING MODE PREDICTIONSPhysics, Astronomy and Materials Science
Missouri State University, July 2016
Master of Science
Anthony Ascone

Abstract

Recovery of the P53 tumor suppressor pathway via small molecule inhibitors of oncoprotein MDM2 highlights the critical role of computational methodologies in targeted cancer therapies. Molecular docking programs in particular, provide a quantitative ranking of predicted binding geometries based on binding free energy allowing for the screening of large chemical libraries in search of lead compounds for cancer therapeutics. This study found improved binding mode predictions of medicinal compounds to MDM2 using the popular docking programs AutoDock and AutoDock Vina, while adopting a rigid-ligand/flexible-receptor protocol. Crystal structures representing small molecule inhibitors bound to MDM2 were selected and a total of 12 rotatable bonds was supplied to each complex and distributed systematically between the ligand and binding site residues. Docking results were evaluated in terms of the top ranked binding free energy and corresponding RMSD values from the experimentally known binding site. Results show lowest RMSD values coincide with a rigid ligand, while the protein retained the majority of flexibility. This study suggests the future implementation of a rigid-ligand/flexible-receptor protocol may improve accuracy of high throughput screenings of potential cancer drugs targeting the MDM2 protein, while maintaining manageable computational costs.

KEYWORDS: molecular docking, MDM2, autodock, autodock vina, drug discovery
This abstract is approved as to form and content

Dr. Ridwan Sakidja
Chairperson, Advisory Committee
Missouri State University

MDM2 CASE STUDY: COMPUTATIONAL PROTOCOL UTILIZING PROTEIN FLEXIBILITY IMPROVES LIGAND BINDING MODE PREDICTIONS

By
Anthony Ascone
A Masters Thesis
Submitted to the Graduate College
Of Missouri State University
In Partial Fulfillment of the Requirements
For the Degree of Master of Science, Materials Science

July 2016

Approved:

Ridwan Sakidja, PhD

Robert Mayanovic, PhD

Fei Wang, PhD

Julie Masterson, PhD: Dean, Graduate College

TABLE OF CONTENTS

Introduction 1
Molecular Docking: A Computational Methodology Aiding Drug Discovery 1
Overview of AutoDock and AutoDock Vina 2
Improving Binding Mode Predictions 4
Targeted Medicine and Cancer 7
The Cost of Cancer 7
Targeted Medicine. 8
Computer-Aided Structure-Based Drug Design 10
The Role of P53 and MDM2 in Cancer Therapeutics 14
Introduction 14
The P53/MDM2 Binding Structure 16
Small Molecule Inhibitors of MDM2 17
Computational Methodologies Aiding Structure Based Drug Design 20
Molecular Docking 20
AutoDock 29
AutoDock Vina. 38
Molecular Dynamics 43
MDM2 Case Study: Computational Protocol Utilizing Protein Flexibility Improves Ligand Binding Mode Predictions 48
Introduction 48
Methods and Materials 53
Results and Discussion 59
Conclusion 84
References 86
Appendices 95
Appendix A. Sample of Input Files for Docking Experiments 95
Appendix B. NAMD Configuration File: 4ipf. 131
Appendix C. Rama Plot 3lbk $(0,12)$ 135
Appendix D. Rama Plot 4jrg $(6,6)$ 136
Appendix E. Rama Plot 4zyi $(0,12)$ 137

LIST OF TABLES

Table 1. Ligand and receptor parameters of structures tested 54
Table 2. AutoDock results from rigid ligand-flexible residue configuration. 61
Table 3. Structure 3lbk bond toggle 79

LIST OF FIGURES

Figure 1. Molecular docking predicts. 2
Figure 2. Percentage of the 190 test complexes 5
Figure 3. Drug companies spend billions of dollars 7
Figure 4. Use of computer-aided drug design 12
Figure 5. P53 activates the production of MDM2 15
Figure 6. Small molecule inhibitors 18
Figure 7. The two main facets of a molecular docking program 21
Figure 8. Scoring functions 25
Figure 9. The force field used by AutoDock 30
Figure 10. Interatomic forces 33
Figure 11. AutoDock uses the same method to model flexibility 36
Figure 12. Example of AutoDock's flexible residue file. 37
Figure 13. Contrast between single and multi-threaded computer architecture. 42
Figure 14. Vina has achieved a drastic reduction 42
Figure 15. MD calculations are iterative 45
Figure 16. Snapshot of PDB structure 4JRG 51
Figure 17. Ligand TTG (yellow) is shown intercalated 52
Figure 18. Conformational search grid box 56
Figure 19. Grid box for two docking runs of structure 1RRJ 57
Figure 20. RMSD values. 63
Figure 21. The standard protocol docking pose for 3LBK 64
Figure 22. 3LBK rigid ligand configuration $(0,12)$ 64
Figure 23. The standard protocol $(12,0)$ configuration. 65
Figure 24. Snapshot of prepared ligand for structure 4JRG 66
Figure 25. A fully flexible ligand 68
Figure 26. The flexible ligand configuration $(9,3)$ 69
Figure 27. Binding free energy results from 4IPF 72
Figure 28. Vina's prediction of rigid ligand docking of 4JRG 73
Figure 29. AutoDock's prediction of rigid ligand docking of 4JRG 73
Figure 30. The MDM2 protein as represented by crystal structure 4IPF 75
Figure 31. A Molecular dynamics simulation was performed using NAMD 76
Figure 32. Final positions of flexible binding site residues 77
Figure 33. Structure 3lbk with protein and ligand labels 80
Figure 34. AutoDock standard protocol. 82
Figure 35. AutoDock utilizing protein flexibility 82
Figure 36. Vina's top ranked pose for $(9,0)$ 83
Figure 37. Vina utilizing protein flexibility. 83

INTRODUCTION

Molecular Docking: A Computational Methodology Aiding Drug Discovery

Our increasing understanding of bio-molecular binding processes has been aided by computational docking programs, which utilize physics-based free energy functions and search algorithms to predict the likely covalent and non-covalent binding sites of small molecules to macromolecules, such as proteins, DNA and RNA, based on the quantitative ranking of the binding free energy [1]. This methodology has become especially relevant in the field of structure-based drug design (SBDD), which uses the known 3D structure of target molecules to design small medicinal compounds as therapeutics [2]. This small molecule referred to as a ligand, is often an inhibitor to some function of the target molecule and must be designed to firmly bind at a specific location on the selected target macromolecule (figure 1) [3]. Consequently, docking programs have become an essential tool in the research and design of cancer therapeutics as they allow the quick and accurate screening of drug candidates early in the drug discovery pipeline, thereby precluding a large investment in time and money [4]. The virtual screening of small molecules from chemical libraries attempts to manage the vast chemical space of all possible compounds available to be optimized as future cancer drugs [5]. These large high throughput screenings (HTS) are able to exclude or include available compounds in silico, as drug leads based on desired binding geometry; often referred to as "binding pose" or "binding mode", and binding affinity, which is determined by the binding free energy [6]. Due to the complexity inherent in simulating the dynamics of the molecular binding process, docking programs introduced a time-
independent strategy based on chemical potentials rather than the force calculations associated with classical molecular dynamics (MD), which use time dependent Newtonian physics [7][8]. Docking programs use energy evaluations based on assumptions, estimates and empirical knowledge while estimating, rather than calculating, binding free energy [9]. Cancer therapeutic research such as targeting oncoproteins relies on a critical understanding of ligand-protein binding and is subject to the effectiveness of computational techniques such as molecular docking [10]. Therefore, Particular attention to understanding the limitations and efficacy of these programs will ensure proper use and enable further modifications.

Figure 1. Molecular docking predicts the preferred location and binding affinity of small molecules to proteins, DNA and RNA from an unbound configuration. Taken from [103].

Overview of AutoDock and AutoDock Vina

Currently, there are over 50 docking programs in use worldwide [11]. AutoDock,
introduced in 1990, is an often cited, freely available program maintained by the Scripps Research Institute [12]. Its widespread use can be attributed to its free availability to academic users as well as its versatility and accuracy. AutoDock was the first program to model ligand flexibility, and with the release of AutoDock 4, has incorporated protein side-chain flexibility [13][14]. Although significant advances in this and other programs have been made in the last 25 years, AutoDock suffers from many of the same limitations as other docking programs. In fact, the number of programs reflects these limitations, as it signifies an inability to converge on one scoring function and one search method that would be applicable for a variety of ligand-protein, protein-protein, ligand-DNA or protein-DNA interactions [1][15][16]. Due to its wide use in commercial and academic environments, AutoDock has been the focus of validation studies, which have highlighted efficiencies and certain limitations. For example, AutoDock has been shown to be accurate for ligands with 6 or less rotatable bonds within 2 angstroms of the experimentally known 3D structure, but as the ligands' rotatable bonds increase, performance decreases, and is not reliable after 10 [17][10]. This problem arises from the exponential increase in conformational space that must be evaluated for every additional rotatable bond. This restriction has been the most notable difficulty pertaining to proteinligand docking and has led to a rigid receptor as the standard methodology because of the computational challenges posed by the numerous degrees of freedom involved in incorporating protein residue flexibility [18]. This lack of allowed flexibility fails to address the proteins' conformational changes during binding. The accurate, computational simulation of protein conformational changes is critical to improved docking studies because it accounts for changes affecting the final binding geometry [19].

It has been shown that, when only a rigid receptor conformation is considered, docking studies predict incorrect binding poses for about 50-70\% of all ligands [20]. In response, AutoDock introduced a feature that allowed the incorporation of protein flexibility, which is intended to account for a portion of the conformational changes of the protein upon binding. However, the flexibility of the protein and more importantly, the binding site residues are still subject to the limits imposed by the number of rotatable bonds; therefore, this feature is limited to the ligand and protein having a total of about 10 rotatable bonds.

AutoDock Vina, a faster, more accurate alternative, was released in 2010. (henceforth referred to as Vina). This program was able to improve accuracy, while drastically reducing computation time through effective computer architecture and adopting a "machine learning" approach for the scoring function [21]. Vina was tested using the same complexes evaluated during the development of AutoDock 4 and results show a marked improvement in terms of ligand binding mode accuracy and computational time as compared to AutoDock 4 (figure 2). Vina's combination of speed and accuracy has made it an ideal program for HTS and has been used in several research studies and novel docking approaches [22][23]. Although AutoDock 4 and Vina share similarities in the use of an empirically weighted scoring function and global search optimization algorithm, they differ in their local search strategy and global and scoring function parameters [21].

Improving Binding Mode Predictions

As aforementioned, the two most significant results from a docking experiment

Figure 2. Percentage of the 190 test complexes AutoDock and AutoDock Vina were able to predict within $2 \AA$ of the experimentally known binding site. Taken from [21].
include the binding free energy of a particular bound complex and the ligand binding mode prediction. The focus of this research is improving the ligand binding mode predictions of AutoDock and Vina through selective flexibility of the ligand and receptor by invoking AutoDock's feature of protein residue flexibility, while utilizing the speed and accuracy of Vina to reduce computational time. Few studies have highlighted AutoDock's protein flexibility feature, and no study has been found regarding results from adjusting ligand flexibility, which is another feature available to users. For this study, four structures, all representing small medicinal compounds in complex with the onco-protein MDM2 (murine double minute 2), were selected from the Protein Data Bank (PDB). Docking experiments were performed using all structures with AutoDock and Vina employing the standard protocol. This was followed by docking runs applying a
systematic transfer of flexibility from the ligand to protein for determining the optimal configuration of flexibility to produce the best binding mode prediction. Analysis of these results was supplemented by classical MD simulations performed by the Nanoscale Molecular Dynamics program (NAMD) [24]. MD simulation programs, such as NAMD, utilize classical Newtonian physics to study the time dependent structure, dynamics, and thermodynamics of biological molecules. The microscopic properties of atomic positions and velocities can be translated into macroscopic quantities such as temperature, pressure and volume using statistical mechanics. This enables the determination of the movement associated with the flexible binding site residues of the target protein most associated with the binding interactions [8].

TARGETED MEDICINE AND CANCER

The Cost of Cancer

Cancer is among the leading causes of death worldwide. In 2012, there were 14 million new cases and a reported 8.2 million cancer-related deaths. In 2015, an estimated $1,658,370$ new cases of cancer will be diagnosed in the United States and 589,430 people will die from the disease [25]. Pharmaceutical companies are estimated to spend an average of 2.5 billion dollars per every new drug that comes to market because nearly 95% of new drugs tested on humans fail to be effective and safe (figure 3) [26]. A 2012 article in Nature Reviews Drug Discovery reports the number of drugs invented per

Figure 3. Drug companies spend billions of dollars on developing new drugs, and as this amount rises each year, the cost of Cancer therapeutics and other drugs will continue to rise to offset their investment. Drug companies must spend billions of dollars for each new drug developed that will most likely fail. Taken from [104].
billion dollars of research and development invested has been cut in half every nine years over the past 50 years. In many cases, drug companies spend millions of dollars over the course of several years before the drugs are proven to be ineffective. This enormous investment and large failure rate drives drug costs higher as companies try to recoup their investment when a small amount of medications are successful [27][26]. Drug companies have initiated strategies to lower costs such as abandoning projects earlier that show low probable success rate, partnering with other companies to reduce costs, and targeting rare diseases because they can be more lucrative as the cost per patient is higher [28]. Also, the U.S government has taken steps to help reduce costs by eliminating red tape attempting to fast track drugs to market. In 2014, the Food and Drug Administration (FDA) approved 41 drugs that had not been approved previously for any indication, the most in nearly 20 years. Of these 41 novel drugs, 9 were approved for the treatment of cancer or cancer-related conditions [29].

Targeted Medicine

Over the past ten years, the development of targeted cancer therapies has overtaken standard chemotherapy treatments. Targeted cancer therapies are drugs or other substances that block the growth and spread of cancer by interfering with specific molecules that aide or promote the growth and spread of cancer cells [30]. This strategy reduces toxicity, because unlike chemotherapies, which are chosen for their ability to kill cells, both cancerous and healthy, targeted drugs are designed only to act upon relevant cancerous molecules. These targeted therapies have proved successful as two thirds of cancer patients, most of whom are recipients of such therapies, survive 5
years after diagnosis [31]. However, despite the recent successes and improved diagnosis for cancer patients, targeted therapeutics are more expensive and suffer from certain sideeffects and limitations. For example, these drugs mostly target proteins in the cancer cell whose biological function is not reserved for just one activity, and often the function targeted by the small molecule inhibitor is modulated by other proteins. Often the cell will create a new pathway, bypassing the protein the inhibitor was affecting, In other words, the cell acquires a resistance and unfortunately, it can happen quickly [32]. Improved understanding of these molecular pathways has led to the identification of the mechanisms of acquired resistance, which can be mitigated with novel inhibitors. Improving targeted cancer treatments in the future will require expanding our knowledge of resistance mechanisms toward the development of new rationally designed novel inhibitors and translating this information to the clinic to select patients for appropriate therapy [33].

In addition to resistance, another complication associated with targeted drug therapies is off-site binding. This occurs when inhibitors bind to proteins other than the intended target resulting in the unintended disruption of molecular pathways leading to detrimental side-effects. This has become the norm rather than the exception [34].

Research into the extent of drug promiscuity has shown on average each drug binds to 6.3 protein receptors. In fact, the complexity and resiliency of biological systems has led to the failure of most single target, single drug approaches [35]. The problem of off-site binding contributes to the 95% fail rate, as this many times is only discovered in phase 1 or 2 clinical trials [36]. The interactions associated with off-site binding is now being used as a strategy known as polypharmacology, which focuses on searching for drugs that
bind to multiple targets to modify disease associated pathways instead of targeting one protein using a single ligand [34]. This addresses the cells ability to circumvent the modification of certain proteins targeted by small inhibitors, which leads to resistance and continued cancer growth. In 2012, a drug called regorafenib was approved to treat colorectal cancer by blocking six different cancer pathways [37]. Despite this recent success, employing this strategy is a daunting challenge because the effects of binding for the entire biological system must be realized, as well as determining the proper structure of the small molecule to induce high infinity binding. The binding affinity of a ligand to a protein is based on the chemical structure of the ligand and the ligand binding propensity of the protein, and even a weak binding to multiple targets can affect the biological system [38].

Computer-Aided Structure-Based Drug Design

SBDD utilizes the known 3D structure of a target molecule realized through nuclear magnetic resonance spectroscopy, homology modeling or the most common technique, X-ray crystallography, to elucidate the structural components of proteins and ligand-protein complexes [9]. The high resolution associated with these techniques allows for the determination of atomic interactions within the target protein and within small compounds that may be used to bind to the target protein. This allows researchers to locate and focus on a particular area of medicinal interest on the target molecule, while invoking computational methodologies such as docking and MD [39]. This computeraided approach of SBDD is essential for accurate determination of lead compounds through the virtual screening of chemical libraries early in the drug discovery pipeline as
there are now over one million small molecules in data bases available as possible drug candidates (figure 4) [40].

The structure-based virtual screening procedure performed by docking programs have been used since the early 1980's, tasked with exploring the possible binding modes and binding affinity of a ligand within a known target area. The target area is a specific location on the protein surface active in the modulation or functionality of that protein [41]. Most often, the introduction of a small medicinal compound is used to disrupt oncogenic protein function, rather than attempting to restore a cancerous cell to a healthy one [42]. For example, in healthy cells, the MDM2 protein binds to the tumor suppressor protein P53, marking it for degradation when it has become obsolete after its brief sixminute lifetime. This binding initiates a signaling pathway, alerting other proteins, called ubiquitin, to disassemble P53. In cancerous cells, MDM2 is over expressed, leading to reduced levels of P53. The P53 binding pocket of MDM2 is a medicinal target because it provides an opportunity to block this interaction, which is critical to the levels of these tumor suppression proteins found in cancerous cells [43]. In addition, docking programs perform virtual screenings targeting DNA with small molecule intercalates and minor groove binders designed to disrupt cancerous cell replication leading to cell death [42].

Virtual screenings begin with foreknowledge of a binding target area based on a crystallized structure already developed. The docking results of the tested ligands can then be compared to the experimentally known structure based on position and binding affinity. Location and position, along with binding free energy, are the two key factors in determining a successful docking [3]. The binding affinity is a measure of the estimated energy evaluations based on different molecular interactions. This prediction reflects the

Figure 4. Use of computer-aided drug design in the search for a candidate drug is a time consuming, costly endeavor utilizing numerous methodologies and techniques. Taken from [105].
strength of the non-covalent physical binding between the two molecules [9]. Due to the reliance on estimates and assumptions inherent in the free energy calculations, the binding free energies are generally viewed as un-reliable as a true measure of the free energy. Even when a particular binding mode can be determined, the binding affinity is in doubt due to the complex interactions estimated by the semi-empirical scoring functions often employed by docking programs using simplified free energy models. The problem arises when the experimentally determined binding free energies determined from dissociation constants are quantitatively different from the estimates used for docking
experiments [44]. However, docking methodologies in SBDD are still widely used as they provide a complimentary technique for the discovery and optimization of lead compounds for future cancer drugs. The most common applications of computer methodologies in the drug discovery process are as follows:

1. Due to the large number of small molecules that need to be evaluated, virtual high throughput screenings (VHTS) can include or exclude possible candidates based on the desired binding criteria. This process saves time and money compared to traditionally screenings. The most likely candidates can then be optimized and evaluated more precisely using more expensive methods such as MD simulations [6].
2. When lead compounds are identified, further optimization can be guided by the structure based knowledge from the crystallized complex. MD simulations can be applied to measuring binding free energy and elucidating pharmacological effects, such as absorption, distribution, metabolism, excretion, and the potential for toxicity (ADMET). In addition, quantitative structure-activity relationships (QSAR) analysis is used to reveal the relationship between structure and activity and the relevant molecular parameters [6] [45].
3. Computer techniques allow researchers to build molecules from the ground up, in a process called de novo design, by piecing together functional groups or fragments to design novel compounds. Pharmacophore modeling, a technique that defines the critical features of small compounds that initiate bioactivity with a larger macromolecule, is used to develop different designs that produce the same medicinal outcome [6].

Due to the concurrent emergence of targeted medicine, structure based screening and computer technology, the role of computer aided drug design (CADD) has become an intense focus of medicinal chemistry. In particular, molecular docking programs and classical MD have been used extensively as a preliminary tool for the detection and optimization of small molecules purposed as cancer drugs [46]. Future breakthroughs in cancer treatments will almost certainly rely on improvements related to these methodologies.

THE ROLE OF P53 AND MDM2 IN CANCER THERAPEUTICS

Introduction

P53 is a tumor suppressor protein found in the nucleus of cells, which functions to respond to cellular stress by mediating cell-cycle arrest, senescence or apoptosis in response to DNA damage, oncogene activation, and hypoxia [47]. P53 is one of the most important proteins found in eukaryotic cells because the proper functioning of p 53 is critical to tumor suppression. This protein is called "guardian of the genome", because it responds to cell damage by blocking cell division and inducing cell death, thereby stopping malignant cancerous cell division. Inactivation of the p53 pathway is found in the majority of human cancers. In almost 50% of cancers, the TP53 gene that encodes p53 is inactivated through mutation or deletion [48]. In much of the other 50%, functionality of p53 is lost or compromised due to cellular regulatory mechanisms that have been damaged due to cellular stress. In healthy cells, p53 levels are kept low and have a half-life of 6 to 20 minutes, but this half-life doubles as p53 levels increase to promote cell repair through its transcription activity [49]. In 7\% of cancers, p53 levels are degraded due to the over expression of the regulatory protein MDM2, which functions as an E3 ubiquitin ligase responsible for the ubiquitination and degradation of p53 (figure5) [50]. This 7\% represents a sample of 28 different types of human cancers from almost 4,000 human tumor samples [51]. The over expression of MDM2 is the result of gene amplification mediated by p53. In this way, p53 and MDM2 form an auto-regulatory feedback loop [52]. When this pathway is disabled due to cell damage, the DNA damaged cells may proliferate resulting in the formation of tumors [52][50]. Since
(a)

(b) Unphosphorylated p53

(c) Phosphorylated p53

(d)

DNA damage \rightarrow ATM kinase activated \longrightarrow No p53/Mdm2 complex
$\longrightarrow \mathrm{p} 53$ increases \longrightarrow Mdm2 increases

DNA repaired \longrightarrow ATM kinase inactivated \longrightarrow Mdm2 binds p53
\longrightarrow p53 decreases

Figure 5. a) P53 activates the production of MDM2. b) MDM2 binding to P53 initiates the degradation of P53 via the ubiquitin system. c) Phosphorylation of P53 at Ser15, Thr 18 or Ser20 will interrupt binding with MDM2. These three residues are not phosphorylated in normal cells keeping P53 at low levels by MDM2. d) DNA damage may facilitate the activation of protein kinase to phosphorylate P53 at one of the three residues causing an increase in P53 levels. Due to MDM2 expression being activated by P53, the increase of P53 also increases MDM2, but this has no effect when P53 is phosphorylated. When the DNA damage is repaired, the kinase is no longer active and P53 will quickly be dephosphorylated and have levels reduced by the accumulated MDM2. Taken from [106].

MDM2 affects other cellular processes not associated with p53, and various cellular molecules contribute to regulate the pathway, the full oncogenic role of MDM2 is not fully understood. Studies have shown increased levels of MDM2 may contribute to cancer formation independent of its role as a regulator of p53 [53]. However, there is considerable evidence that increased levels of MDM2 lead to accelerated tumor growth in many types of cancers and in particular those cancers coinciding with low levels of p53 in damaged cells, which has led the p53/MDM2 pathway to become a focus point for cancer therapeutics [54]. In particular, the targeting of the post translational nature of the p53/MDM2 interaction, which can initiate an immediate response towards lowering MDM2 levels [53].

The P53/MDM2 Binding Structure

The binding of MDM2 to p53 is well understood and the biochemical structure of this complex has been established by examining the crystallographic data resulting from the resolved crystal structure. MDM2 binds to a 15 amino acid amphipathic peptide at the NH2 terminus of p53, while the MDM2 binding domain is found in a small hydrophobic pocket located at its NH2 terminus containing residues 25-109 [55]. This binding mediates gene transactivation of p53 through a non-covalent physical binding which blocks the p53 transactional domain. A second and more salient result for our discussion is this binding also marks the protein for degradation by the proteasome, which is a protein designed to break the peptide bonds holding proteins together [56][57][58]. This the mechanism by which p53 levels are lowered and tumor growth is allowed to progress. Chemotherapies attempt to recover the tumor suppression activity of p53 by introducing
small non-peptide molecules into cancerous cells that mimic the critical residues, Phe 19, Trp23 and Leu26, associated with the p53 binding pocket of MDM2. Levels of p53 should increase given that small molecules can be designed to bind to MDM2 in these critical domains before the ubiquitination process occurs [55]. The fortuitous nature of the structure of MDM2 has been exploited in the development of such small molecules. Human MDM2 is a 491- amino acid long phosphoprotein, whose p53 binding domain is found in a well-defined hydrophobic surface pocket encompassing a relatively small area of the protein. The binding pocket measures only $18 \AA$ along the long edge; the size of a typical small molecule [59]. The MDM2 cleft is formed by amino acids 26-108, and consists of two structurally similar portions that fold up into a deep groove lined by 14 hydrophobic and aromatic residues [55][60].

Small Molecule Inhibitors of MDM2

The physical and chemical structure of MDM2 has enabled many small molecule inhibitors, such as nutlins, spiroxindoles and isolindones, and chalcone derivatives, to be designed from lead compounds discovered via the experimental and computational screening of large chemical libraries (figure 6) [60]. Pharmacological optimization can then be carried out to produce the desired physicochemical properties, such as essential high binding affinities and high specificity over other proteins. The nutlins were the first group of optimized small molecule inhibitors discovered at Hoffmann-La Roche in 2004 and advanced to phase 1 clinical trials in 2012, and a second generation of inhibitors has been designed with greater potency and improved selectivity, which are currently in phase 1 clinical trials [61]. Results from the first trial, using an optimized nutlin

Figure 6. Small molecule inhibitors must be designed to firmly attach to the P53 binding site of MDM2 in order to block binding and subsequent degradation of tumor suppressor P53 in damaged cells. Knowledge and simulation of binding site residues shown in green, enable accurate predictions by docking programs and lead to a more efficient drug discovery pipeline. The efficient utilization and future optimization of these programs are essential for hastening drug discovery and reducing costs of therapeutic development. This illustration was produced using Chimera software during this research.
compound administered to 20 patients, have been mixed. The drug known as RG7112,
was administered to patients with lipsarcoma, a form of malignancy of fat cells. The post
clinical data showed while some tumors were kept from growing; only one was reduced and several patients showed toxicity in the form of thrombocytopenia, a condition in which your immune system attacks your own platelets. However, although most of the focus has been to develop drugs targeting the p53/MDM2 pathway, a new class of MDM2 inhibitors has been developed for cancers that have no functional p53, including pancreatic, prostate, and advanced breast cancer. These drugs bind directly to MDM2 promoting self-degradation and inhibiting transcription in a p53 independent and MDM2 dependent manner [62][63].

COMPUTATIONAL METHODOLOGIES AIDING STRUCTURE BASED DRUG DESIGN

Molecular Docking

The computational evaluation of bio-molecular interactions is a challenging task, responsible for the development of over 50 programs dedicated to predicting the likely location and binding affinity of small molecules to macro-molecule receptors, such as DNA, RNA and proteins. The two principle components of these programs include conformational search methods and binding free energy evaluations. In practice, a balance must be struck between computational cost and accuracy, for medicinal chemistry, this trade-off becomes increasingly important, as thousands of compounds can be tested focusing on one macromolecule target [3]. Considering the receptor and ligand each possess six degrees of translational and rotational freedom as well as conformational degrees of freedom, there exists a tremendous number of possible binding modes. In an attempt to manage this complexity, molecular docking programs utilize various conformational search strategies and scoring functions (figure 7) [64].

Conformational Search Strategies. The first docking programs developed in the early 1980's used a simplified model of ligand-protein interaction called "lock and key" theory, which held both the ligand and receptor rigid. Later, the "induced fit" theory stated that the active site of the protein is continually reshaped by interactions with the ligand, and accounting for this movement would increase the accuracy of binding mode predictions [65]. However, as stated earlier, this is a daunting computational challenge and has led to the use of a flexible ligand-rigid receptor protocol, which still remains the

Figure 7. The two main facets of a molecular docking program are the search method and scoring function. Different methods are used for both and have been adopted by 50 different docking programs throughout the world. This chart reflects the flow of the most important aspects of these programs culminating in evaluation of the RMSD from the either known experimental site or targeted location. Molecular docking represents an early evaluation and precedes more expensive time consuming evaluations and trials. Taken from [107].
most popular method in use [20]. Using this protocol reduces the amount of possible binding orientations thereby reducing computational time and cost. Contemporary docking programs have adopted various sampling algorithms to survey the user defined conformational binding space.

The two methods most commonly used can be classified as systematic and
stochastic [66]. Both apply an incremental change to the structural parameters of the ligand, including the torsional, translational and rotational degrees of freedom. The systematic approach methodically changes the structural orientation of the ligand, thereby inducing different conformational states and binding modes [67]. The binding energies are calculated for each docking during numerous evaluation cycles in search of the ligand-protein orientation producing the lowest binding free energy and therefore, the most likely binding mode [68]. This structural manipulation attempts to simulate the changes to the ligand facilitated by its interaction with the protein [69][67]. This method is conducive to a thorough exploration of the search space, but is subject to settling on a local, rather than global energy minimum. It also encounters a combinatorial explosion due to all the possible ligand orientations [66]. To counter this, an incremental algorithm is employed to evaluate fragments of the ligand separately as they are placed within the either desired, or suspected protein binding site. A fragment is selected and evaluated until the binding mode corresponding to the minimum energy is realized, than another fragment is added, and the process is repeated until the entire ligand is constructed and evaluated ending in a final binding orientation with minimum binding energy [66][9].

The Conformational space can also be surveyed through Stochastic methods by randomly modifying a ligand conformation or a population of ligands. Monte Carlo (MC) and genetic algorithms (GA) are typical algorithms representing this technique. The basic MC search has the ligand perform a random sampling of different locations around the protein. At each location, the ligand orientation is randomly altered and then evaluated in terms of acceptance criteria. If the energy is lower than the previous step, it proceeds from that orientation. If the energy is higher or the same, a probabilistic approach is used
to dictate the most advantageous adjustment. This will continue until a user defined number of conformations is gathered in search of the global minimum energy. A modification of this technique is simulated annealing MC. After a defined number of steps, the system temperature is lowered, producing conformations less likely to have increased energy, thereby moving the system toward energy minima [70] [9].

Similar to MC, the GA also adopts a randomness approach, which is based on Darwin's theory of evolution and natural selection [71][72]. First, the structural parameters of the ligand are translated or encoded into a chromosome. From this chromosome, which actually represents the pose of the ligand, the search algorithm randomly produces a population of chromosomes representing a substantial portion of the energy landscape. This population's fitness is evaluated and the most adapted chromosomes, or those with the lowest energy values, are selected as templates to parturitate the next population. Then, mutation makes random alterations to the genes, such as crossover exchanging of genes between two chromosomes, producing a new ligand pose with new structural parameters. This cyclic process reduces the average energy of the chromosome ensemble by transferring an optimal set of values describing the translational, orientation, and conformation of the ligand as it binds to the protein, thereby reducing the conformational space to be explored [73][72]. The search performed by the GA is iterative, and after a large, yet manageable number of cycles, converges on a conformation corresponding to the global energy minimum [66]. The main advantage of the GA and MC strategies is their ability to sample a large amount, rather than all of the possible binding orientations in a reasonable amount of time, while still locating the minimum binding energy. In contrast, the systematic approach aided by
incremental procedures searches all possible conformational space, making it less practical for larger ligands.

Energy Evaluations. Although scoring functions used in molecular docking for determining the binding free energy are still considered inaccurate, docking programs provide a guide to the realization of pharmaceuticals based on the cost effective evaluation of drug candidates [16][2]. This can be accomplished without an exact determination of the binding free energy by establishing binding location and orientation before more expensive, time consuming techniques are utilized such as linear activation energy (LAE) and free-energy perturbation methods (FEP) [74]. Given current computing speeds, a more robust, accurate scoring function would be impractical due to the computational time necessitated by each small molecule being screened. Again, this is due to the combinatorial explosion of conformational states accompanied by degrees of freedom issued to the ligand or protein. In addition, properly accounting for surrounding water molecules and ions would further add to the computational costs. This would eliminate the cost and time benefit allotted by in silico techniques. Hence, the scoring functions adopted by docking programs provide a trade-off between time and accuracy via best estimates and assumptions of binding interactions using implicit solvent and fixed entropic contributions [15]. The most basic assumption is molecules will seek the most stable binding orientation characterized by a deep potential energy well indicated by the amount of energy released upon binding. The energy functions attempt to estimate this energy and therefore, the most likely binding mode. The scoring functions most commonly used to estimate binding affinity are classified into force-field based, empirical based and knowledge-based scoring functions (figure 8) [1][6].

Figure 8. Scoring functions are divided into three main categories although many, such as AutoDock, may incorporate different features of each. AutoDock uses force-field based calculations and empirical quantities during energy evaluations.

Force-field based scoring methods utilize chemical potentials to calculate binding energy by summing the non-bonded, distant-dependent, atomic pairwise van der Waals and electrostatic interactions. The van der Waals terms are calculated from a LennardJones potential function. This distance-dependent function can be adjusted by setting different parameters for the Lennard-Jones potential such as controlling how close a contact between protein and ligand atoms will be accepted as contributing to the total energy. Therefore, reducing this distance will lead to diminished accuracy of long-range effects contributing to binding. Additional terms are often added to these scoring
functions considering hydrogen bonding, solvation and entropy contributions as well [9][66][7]. The particular scoring function employed by a docking program varies by the terms used and the values adopted by empirical testing when installing the hydrogen, solvation, and entropy terms. Therefore, the values attributed to these terms will depend on the test set selected for calibration. A large set of diverse ligand-receptor complexes including ligand-protein, ligand-DNA, protein-protein and ligand-RNA will be more applicable, but less accurate, while only selecting for instance, ligand-protein complexes will be accurate, but less adaptable [75]. The advantage of force-field based scoring functions is that they provide the most realistic model of binding interactions with acceptable computational costs. The problem is their inaccuracy in estimating entropic contributions. This limitation is due to the lack of a reasonable physical model to describe this phenomenon. Furthermore, the solvent is not explicitly considered, hindering the estimation of desolvation energies [66].

A popular form of the force-field based potentials is currently used with the AMBER molecular dynamics software package and has been adopted for use in docking programs. The AMBER force fields are represented by:

$$
\begin{equation*}
E_{\text {amber }}=E_{\text {angle }}+E_{\text {bond }}+E_{\text {dihedral }}+E_{\text {non-bonded }} \tag{1}
\end{equation*}
$$

$\mathrm{E}_{\text {angle }}$ and $\mathrm{E}_{\text {bond }}$ are harmonic approximations of the bond angle and strain energies, respectively, and $\mathrm{E}_{\text {dihedral }}$ is an energy term associated with the dihedral angles of linearly-bonded sets of four atoms. The term $\mathrm{E}_{\text {non-bonded }}$ aggregates the non-bonded interactions: a Lennard-Jones 6-12 potential which approximates the van der Waals
attraction, and Pauli repulsion, and an electrostatic potential term. The ff94 force field, which uses the AMBER functional form, has been very popular for simulating proteins. Also, subsequent versions including AMBER 99SB force field and the general AMBER force field (GAFF) contain parameters suitable for modeling the interactions of small organic molecules associated with drug design [15].

Empirical scoring functions use a simplified calculation that allows for high-speed computation for virtual database screening. Empirical functions provide efficient performance for groups of proteins or compounds that are similar to complexes within the training set, but performance decreases when applied to different protein families [66]. The foundation of empirical scoring functions is based on structural features and is often guided by physical interactions. However, these functions are not derived from first principles, but are directly calibrated with a set of protein-ligand complexes with experimentally determined structures and binding affinities based on multiple linear regression analysis or machine learning methods in an attempt to measure the favorability of an interaction rather than fully elucidate the underlying physics of the event. It is a simplified approach, attempting to save computational time, while accurately predicting binding interactions [76]. The terms in the master equation represent a particular physical process involved in the formation of a ligand-receptor complex. The functions combine features such as hydrophobic contacts, hydrophilic contacts, number of rotatable bonds or number of hydrogen bonds, and parameterize these features using a diverse training set of ligand-receptor complexes. This establishes the coefficients of the scoring function which is multiplied by each component and summed to produce a final score [77].

Knowledge-based scoring functions use pairwise energy potentials taken from
known ligand-receptor complexes to create a general function. These potentials are developed by accounting for the frequency two distinct atoms are found within a given distance in the structural dataset based on the assumption that more favorable interactions occur with greater frequency. The frequency distributions are then converted into pairwise atom-type potentials. The different types of interactions observed in the dataset are classified and weighted according to their frequency of occurrence and the sum of these individual interactions is given by the final docking score [66][78]. The inverseBoltzmann equation provides the relationship between the frequency of features and the energy that is assigned to those features. For protein-ligand interactions, the energy assigned to the interaction between ligand atom type i and protein atom type j, at a distance of r_{k} (the distance of the $\mathrm{k}^{\text {th }}$ bin), can be computed as follows:

$$
\begin{equation*}
U_{\rho m f, i j}\left(r_{k}\right)=-k_{B} T \ln \left[\frac{\rho_{i j}\left(r_{k}\right)}{\rho_{i j, r e f}}\right] \tag{2}
\end{equation*}
$$

The quantity $(\rho i j(r k)) / \rho i j, r e f)$ is the relative radial density for atom pair type ij within the training set and is a function of the bond distance r_{k}. The density $\rho_{i j, r e f}$ associated with the reference state may be computed using an ideal gas approximation or other approaches. Since knowledge-based functions are not reliant on the calculation of binding affinities as with force-field methods, nor do they attempt to reproduce binding affinities, as with empirical functions, they offer a good balance between accuracy and speed. They also perform well with ligand-receptor complexes outside their structural dataset [15].

Abstract

AutoDock

Scoring Function. AutoDock 4 employs a semi-empirical free energy force field based on a linear regression analysis and the amber force field described in the previous section. The force field parameters were chosen from using a large number of proteininhibitor complexes for which both structure and inhibition constants, or K_{i}, are known. Improvements installed in this newest version allows for the incorporation of protein side chain flexibility due to the calculation of bound and unbound inter and intra-molecular energies (figure 9) [14]. The total binding free energy is the difference between the unbound states of the ligand and protein and the total bound energy of the complex. Most simply, the energy of the ligand and protein separately is always greater than the bound complex, the difference is the binding free energy, it is always negative, and determines the depth of the energy well and the amount of energy needed to break apart the complex [7]. These calculations are augmented by a second program called Autogrid, which performs pre-calculations of binding affinity's and stores this information for the actual docking run. Autogrid works with AutoDock and must be implemented before all docking runs. The force field evaluates binding in two steps, while the protein and ligand begin in an unbound conformation. First, the intramolecular energetics are estimated for the transition from these unbound states to the conformation of the ligand and protein in the bound state. Then, the free energy function evaluates intermolecular energetics of combining the ligand and protein in their bound conformation:

Figure 9. The force field used by AutoDock evaluates binding in two steps. The first step evaluates the energetics of the ligand and protein separately by determining the intramolecular energies, which is the energy within the ligand or protein rather than between the two, associated with the transition from the unbound state to the bound state they will adopt when they form the complex. Then, the second step evaluates the intermolecular energies, or the energy between the ligand and protein associated with the binding. The difference between the unbound and bound energies represents the binding free energy. It is the energy released during the formation of the complex in an attempt by the ligand and protein to reach the lowest energy possible. Molecules will settle in a location and geometry with the lowest possible negative binding energy to ensure a secure conformation. Docking programs use this tendency to evaluate this energy and determine likely binding geometries. Taken from [7].

$$
\begin{equation*}
G=\left(V_{\text {bou }}^{L-L}-V_{\text {und }}^{L-L}-L\right. \tag{3}
\end{equation*}
$$

The force field includes six pair-wise evaluations (V) and includes a term for the conformational entropy lost upon binding, $\Delta \mathrm{S}_{\text {conf. }}$. Where 'L' and ' P ' refer to the ligand and protein. The terms included in the first two parentheses calculate the intramolecular energies for the bound and unbound states of the protein and ligand separately. The third parentheses estimates the intermolecular energy from the bound and unbound state. The total conformational entropy lost upon binding is calculated by multiplying a constant (W) by the total number of rotatable bonds (N). The default constant used for AutoDock 4 is $.314 \mathrm{Kcal} / \mathrm{mol}$.

$$
\begin{equation*}
\Delta s_{\text {conf }}=W_{\text {conf }} N_{\text {tor }} \tag{4}
\end{equation*}
$$

Each pair-wise energy evaluation includes terms for dispersion/repulsion, hydrogen bonding, electrostatics and desolvation (figure 10):

$$
\begin{align*}
\Delta \mathrm{G}=W_{v d w} & \sum_{i j}\left(\frac{A_{i j}}{r_{i j}^{12}}-\frac{B_{i j}}{r_{i j}^{6}}\right)+W_{\text {hbond }} \sum_{i j} E(t)\left(\frac{C_{i j}}{r_{i j}^{12}}-\frac{D_{i j}}{r_{i j}^{10}}\right)+W_{\text {elec }} \sum_{i j} \frac{q_{i} q_{j}}{\varepsilon\left(r_{i j}\right) r_{i j}} \\
& +W_{\text {sol }} \sum_{i j}\left(S_{i} V_{j}+S_{j} V_{i} \exp \left(\frac{-r_{i j}^{2}}{2 \sigma^{2}}\right)\right) \tag{5}
\end{align*}
$$

All terms are preceded by a weighting constant (W) determined by a set of empirically determined binding constants. The summations are calculated for all pairs of ligand
atoms, i, and protein atoms, j , as well as all pairs of atoms comprising the ligand separated by three or more bonds. The first term is a $6 / 12$ potential representing dispersion/repulsion interactions. The second, is a directional H-bond term based on a $10 / 12$ potential. The parameters C and D provide a well depth of $5 \mathrm{kcal} / \mathrm{mol}$ at $1.9 \AA$ for hydrogen bonds with oxygen and nitrogen, and a well depth of $1 \mathrm{kcal} / \mathrm{mol}$ at $2.5 \AA$ for hydrogen bonds with sulfur. The function E (t) provides directionality based on the angle from ideal H-bonding geometry. The third term is a screened Coulomb potential for electrostatics. The desolvation potential is based on the volume of atoms (V) that surround a given atom weighted by a solvation parameter (S) and an exponential term with distance-weighting factor $\sigma=3.5 \AA$. AutoDock4 introduced an improved desolvation model that includes terms for more atom types. The atomic solvation parameter $\left(\mathrm{S}_{\mathrm{i}}\right)$ is a function of the atomic charge $\left(q_{i}\right)$:

$$
\begin{equation*}
S_{i}=\left(A S P_{i}+Q A S P \times\left|q_{i}\right|\right) \tag{6}
\end{equation*}
$$

Where $\mathrm{ASP}_{\mathrm{i}}$ is the atomic solvation parameter of atom i and QASP is the charged-based atomic solvation parameter $(\mathrm{QASP}=0.01097$, stderror $=0.0063)$ [7][79].

Autogrid. AutoGrid is a program responsible for the pre-calculation of grid maps reflecting the interaction energies for various atom types, such as aliphatic carbons, aromatic carbons, hydrogen bonding oxygens, and so on, with a macromolecule such as a protein, DNA or RNA. Autogrid also produces an electrostatics potential map and a desolvation map [79]. A probe atom from each atom type of the ligand is placed at different points on a grid designated by the user as for the size and spacing. The energy of

AutoDock 4.1 Forcefield

Figure 10. Interatomic forces used for the AutoDock force field. These terms are used together with weighting constants which are optimized based on experimentally characterized complexes. This reduces computation time, but also reduces accuracy of the binding free energy calculation. Taken from [7].
interaction of this single atom with the protein is assigned to the grid point. The default spacing for AutoDock is $.375 \AA$ Á, which is about a quarter of the length of a carbon-carbon bond [79]. The maximum grid box size is 126 points in each direction. The distance between each point correlates to one grid spacing which can be increased up to $1 \AA$ Á when creating the grid box. These grid maps are then used by AutoDock to determine the total interaction energy for a ligand when docked with a macromolecule. This pre-calculation
of the atomic affinity potentials for each atom type performed by Autogrid saves time during the docking because the non-bonded interactions are stored and used during the calculation. Also, what was a calculation with order N -squared complexity, is reduced to one that is order N , where N is the number of atoms interacting [13].

Protein Side-Chain Flexibility. AutoDock 4 allows for flexibility of protein residue rotamers to reflect, at least to a small extent, conformational changes of the protein when binding with a ligand (figure 11). Accounting for protein conformational changes has long been a goal of molecular docking programs for accurate binding predictions [80][81]. There have long been reported examples of differences in the proteins bound and un-bound state ranging from local side-chain rearrangements, to large-scale conformational changes, such as domain motions, hinge bending motions, or un-folding of entire segments [82]. Although different strategies have been designed to reflect protein flexibility including soft docking, selective docking, ensemble docking, four dimensional docking, on-the-fly docking, hybrid docking, and composite structure docking, AutoDock side-chain flexibility is treated explicitly to simulate the induced fit mechanism of the side-chain residues as the ligand enters the binding site. This technique is suitable for side-chain residues and is not applicable for reflecting substantial protein changes associated with protein domain movements [83]. Due to the exponential increase in search space for each rotatable bond granted to the ligand or protein, only a small number of bonds can be selected in addition to the ligands rotatable bonds before the added search space prevents convergence on a local minima. Those residues most related with binding interactions and that are not embedded within the protein are ideal for flexibility (figure 12). Binding site residue information is usually available from the
crystallographic data associated with the complex. Visualization software, such as Chimera, visual molecular dynamics (VMD) or AutoDock tools (ADT), just to mention a few, can provide further insight into the binding site interface.

Conformational Search Method. AutoDock provides a choice of search methods including simulated annealing and a genetic algorithm without a local search, but for most applications, the Lamarckian Genetic Algorithm (LGA) produces the best results. An initial population of conformations is established and then mutated during the course of successive generations. Future generations inherent conformational parameters, and those "individuals" possessing local minima binding free energy, pass these "traits" to the next generation, mimicking evolutionary natural selection. The LGA search method involves several steps. Initially, all the variables and evaluations are defined. The binding geometry of a ligand and a protein is defined by values representing the translation, orientation, and conformation of the ligand with respect to the protein. These values are the ligands state variables and each corresponds to a gene. The ligand's state corresponds to the genotype and its atomic coordinates correspond to the phenotype. A genotype is described by one chromosome. The chromosome is composed of a string of real valued genes: three Cartesian coordinates for the ligand translation; four variables defining a quaternion specifying the ligand orientation; and one real-value for each ligand torsion. In evolutionary terms, the fitness of an individual determines which traits are advanced to the next generation. The fitness variable in the LGA is the total interaction energy of the ligand with the protein, and is evaluated using the free energy function. Random individuals are mated using a process of crossover, where each new individual inherits genes from either parent. Also, some offspring mutate randomly when

Figure 11. AutoDock uses the same method to model flexibility in both the ligand and side-chain residue. A root atom for the ligand can either be chosen by the user or the AutoDock tools module when preparing the ligand for docking. The atom linking the amino acid to the protein, which will remain in a fixed position during the simulation, is included as the root for protein flexibility and is selected by AutoDock tools automatically when preparing the flexible residue file. Flexibility in the case of the ligand and protein only refers to rotation, the bond angles and bond lengths remain fixed. Taken from [79].
one gene changes by a random amount [71].
After each generation, a local search is performed using a defined portion of the population with an algorithm developed by Solis and Wets, which surveys the genotypic space rather than the phenotypic space. This explicit local search allows

```
BEGIN RES ARG A 364
REMARK 4 active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 1 A between atoms: CA and CB
REMARK 2 A between atoms: CB and CG
REMARK 3 A between atoms: CG and CD
REMARK 4 A between atoms: CD and NE
REMARK I between atoms: NE and CZ
REMARK I between atoms: CZ and NH1
REMARK I between atoms: CZ and NH2
ROOT
ATOM 1 CA ARG A 364 15.543 -3.599 11.058 1.00 20.66 0.176 C
ENDROOT
BRANCH 1 2
ATOM 2 CB ARG A 364 14.218 -2.825 10.902 1.00 23.02 0.036 C
BRANCH 2 3
ATOM 3 CG ARG A 364 13.215 -3.537 9.968 1.00 25.74 0.023 C
BRANCH 3 4
ATOM 4 CD ARG A 364 11.968 -2.720 9.626 1.00 29.66 0.138 C
BRANCH 4 5
ATOM 5 NE ARG A 364 10.929 -2.819 10.645 1.00 32.22 -0.227 N
ATOM 6 HE ARG A 364 11.111 -2.383 11.537 1.00 0.00 0.177 HD
ATOM 7 CZ ARG A 364 9.757 -3.440 10.493 1.00 31.86 0.665 C
ATOM 8 NH1 ARG A 364 9.435 -4.047 9.353 1.00 31.44 -0.235 N
ATOM 9 NH2 ARG A 364 8.886 -3.427 11.490 1.00 29.11 -0.235 N
ATOM 10 1HH1 ARG A 364 8.538 -4.501 9.259 1.00 0.00
ATOM 11 2HH1 ARG A 364 10.088
ATOM 12 2HH2 ARG A 364 9.116 -2.960 12.356 1.00 0.00
ATOM 13 1HH2 ARG A 364 7.991 -3.884 11.385 1.00 0.00 0.174 HD
ENDBRANCH 4 5
END_RES ARG A 364
```

Figure 12. Example of AutoDock's flexible residue file describing parameters for flexible protein residues. This file is separate from both the ligand and rigid portion of the protein so that each residue can be modeled explicitly. The user decides the bonds made active (A). All other bonds within the selected residue will remain rigid (I). The maximum number of rotatable bonds is 32 , but results begin to decline after 10 depending on the structure. Vina has reported success with up to 20 rotatable bonds in terms of RMSD values. The Root Atom labeled 'CA' is a carbon atom connecting the amino acid to the residue ARG364.
for the inclusion of small, refined changes without the need for switching from the genotypic space to the phenotypic space as is the case for most algorithms. This local search method enables individual conformations to search their local conformational space, finding local minima, and then pass these parameters to later generations. The individual's fitness determined by the binding free energy will determine survival to the next generation [71]. As with all computational methodologies, a balance must be struck between an exhaustive calculation and computational cost. Although a rigorous searching algorithm would go through all possible binding modes between the two molecules, this search would be impractical due to the size of the search space and amount of time it might take to complete. As a consequence, only a small amount of the total conformational space can be sampled. Theoretically, given enough computational power and time, every possible rotational and translational orientation of the ligand relative to the protein could be explored.

AutoDock Vina

Scoring Function. The developers of Vina adopted a machine learning approach instead of using a traditional physics-based scoring function. The general functional form of the conformation-dependent part of the scoring function Vina is designed to work with is:

$$
\begin{equation*}
c=\sum_{i<j} f t_{i} t_{j}\left(r_{i j}\right) \tag{7}
\end{equation*}
$$

where the summation is over all of the pairs of atoms that can move relative to each other, normally excluding atoms separated by 3 consecutive covalent bonds. Here, each
atom i is assigned a type t_{j} and a symmetric set of interaction functions $f t_{i} f t_{j}$ of the interatomic distance $r_{i j}$ should be defined. This value can be seen as a sum of intermolecular and intramolecular contributions:

$$
\begin{equation*}
c=c_{\text {inter }}+c_{\text {intra }} \tag{8}
\end{equation*}
$$

The optimization algorithm is tasked with finding and ranking the global minimum of c and additional low-scoring conformations. The predicted binding free energy is calculated from the intermolecular portion of the lowest-scoring conformation, designated as 1 :

$$
\begin{equation*}
s_{1}=g\left(c_{1}-c_{\text {intra } 1}\right)=g\left(c_{\text {inter } 1}\right) \tag{9}
\end{equation*}
$$

where the function g can be an arbitrary strictly increasing smooth possibly nonlinear function. In the output, other low-scoring conformations are also formally given s values, but, to preserve the ranking, using $c_{\text {intra }}$ of the best binding mode:

$$
\begin{equation*}
s_{i}=g\left(c_{i n t r a 1}\right) \tag{10}
\end{equation*}
$$

For modularity reasons, much of the program does not rely on any particular functional form of $f t_{i} t_{j}$ interactions or g. Basically, these functions are passed as a parameter for the rest of the code. Also, this program is designed so that alternative atom typing schemes could be used, such as the AutoDock 4 atom typing. The AutoDock Vina scoring
function is a combination of knowledge-based potentials and empirical scoring functions, which uses information from both the conformational preferences of the receptor-ligand complexes and known affinity measurements. The interaction functions $f t_{i} t_{j}$ are defined relative to the surface distance,

$$
\begin{equation*}
d_{i j}=r_{i j}-R t_{i}-R t_{j} \tag{11}
\end{equation*}
$$

Where R_{t} is the van der Waals radius of atom type t and $\mathrm{h} t_{i} t_{j}$ is a weighted sum of

$$
\begin{equation*}
f_{t_{i} t_{j}}\left(r_{i j}\right) \equiv h_{t_{i} t_{j}}\left(d_{i j}\right) \tag{12}
\end{equation*}
$$

steric interactions identical for all atom pairs, hydrophobic interaction between hydrophobic atoms, and, where applicable, hydrogen bonding. The hydrophobic term equals 1 , when $d<0.5 \AA$; and 0 , when $d>1.5 \AA$, and is linearly interpolated between these values. The hydrogen bonding term equals 1 , when $d<-0.7 \AA$; and 0 , when $d>0$, and is similarly linearly interpolated in between. In this implementation, all interaction functions $f t_{i} t_{j}$ are cut off at $r_{i j}=8 \AA$. The conformation-independent function g was chosen to be:

$$
\begin{equation*}
g\left(c_{\text {inter }}\right)=\frac{c_{\text {inter }}}{1+w N_{r o t}} \tag{13}
\end{equation*}
$$

where $\mathrm{N}_{\text {rot }}$ is the number of active rotatable bonds between heavy atoms in the ligand, and w is the associated weight. The speed and accuracy of Vina was tested using the
same 190 receptor-ligand training set sampled by AutoDock 4. Results showed a two orders of magnitude improvement in speed and significant improvement of binding mode predictions. Vina can achieve near-ideal speed-up by utilizing multiple CPU cores through multithreading (figures 13 and 14). Most computer code is serialized, resulting in tasks performed by the program to be carried out in a sequential manner, one after another. The multithreaded architecture divides tasks and runs them concurrently, leading to a substantial decrease in computation time [21].

Conformational Search Method. The search method used by Vina is an iterated local search global optimizer. In this algorithm, a succession of steps consisting of a mutation and a local optimization are taken, with each step being accepted according to the Metropolis criterion. Local optimization is carried out using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, which is a quasi-Newton method. BFGS uses the value of the scoring function, in addition to its gradient, by taking the derivatives of the value of the scoring function with respect to its arguments. These arguments are the position and orientation of the ligand, in addition to the values of the torsions for the active rotatable bonds in the ligand and flexible residues, if any. These derivatives would have a simple mechanical interpretation, if the scoring function were an energy. The derivatives with respect to the position, orientation and torsions would be the negative total force acting on the ligand, the negative total torque and the negative torque projections, respectively, where the projections refer to the torque applied to the branch "moved" by the torsion, projected on its rotation axis. While it may take longer to evaluate the gradient in addition to the value of the scoring function, using the gradient can speed up the optimization significantly. Several runs starting from random

Figure 13. Contrast between single and multi-threaded computer architecture. Taken from [108].

Figure 14. Vina has achieved a drastic reduction in computation time along with improved accuracy. Taken from [21].
conformations are performed. These runs can be performed concurrently using the multithreading computer strategy built into Vina resulting in substantially reduced
computational time. The optimization algorithm maintains a set of diverse significant minima found that are then combined from the separate runs and used during the structure refinement and clustering stage [21].

Molecular Dynamics

In addition to molecular docking, MD simulations have become an essential computational tool used in the drug design process. In contrast to docking experiments, MD simulations are time dependent. This allows for understanding the dynamic behavior of proteins at different timescales, from fast internal motions to slow conformational changes or even protein folding processes. It is also possible to study the effect of explicit solvent molecules on protein structure and stability to obtain time-averaged properties of the biomolecular system, such as density, conductivity, and dipolar moment, as well as different thermodynamic parameters, including interactions energies and entropies [46]. Although MD is often used as an umbrella term, there are two related forms of this technique. In the classical mechanics approach to MD simulations, molecules are treated as classical objects, resembling very much the 'ball and stick' model. Atoms correspond to soft balls and elastic sticks correspond to bonds. The dynamics of the system using this technique is governed by classical mechanics and Newtonian physics. The quantum or 'first-principles' MD simulations, take explicitly into account the quantum nature of the chemical bond. The electron density function for the valence electrons that determine bonding in the system is computed using quantum equations, whereas the dynamics of ions (nuclei with their inner electrons) is followed classically. This strategy provides a detailed, quantum mechanical insight toward a number of biological systems, but is
impractical for systems with thousands of atoms with timescales of processes as long as a nano-second [84]. The precise calculations of quantum methods are applicable to smaller more defined systems.

MD simulations use the iterative numerical calculation of instantaneous forces present in a system and the subsequent movements in that system (figure 15). The system consists of a set of particles that move in response to their interactions according to the equations of motion defined in classical Newtonian mechanics. As with molecular docking, classical MD is much more efficient than might be expected from full consideration of the physics of biomolecular systems due to the number of substantial approximations. Most notably, each atom is treated as a point mass. This approximation is justified in terms of the Born-Oppenheimer approximation, which states only the nuclear displacements need to be considered while ignoring the electronic configuration [8] . With this assumption, Newton's second law can be used and the calculation becomes deterministic in nature. Knowing the starting positions and velocities of the atoms allows us to apply Newton's second law and determine the future or past state of the system. The mathematical description of this method is as follows:

$$
\begin{equation*}
F_{i}=m_{i} a_{i} \tag{14}
\end{equation*}
$$

where F_{i} is the force exerted on particle i, m_{i} is the mass of particle i, and a_{i} is the acceleration of particle i. The net force, F_{i}, exerted on the atom i by the remainder of the system is given by the negative gradient of the potential-energy function with respect to the position of atom i,

$$
\begin{equation*}
F_{i}=-\frac{d V}{d r_{i}} \tag{15}
\end{equation*}
$$

Figure 15. MD calculations are iterative. Form initial positions and velocities future and past positions can be calculated. Taken from Wikimedia-Knordlun.

The Newtonian equation of motion for atom i is,

$$
\begin{equation*}
\frac{d p_{i}}{d t}=F_{i} \tag{16}
\end{equation*}
$$

Given the position with respect to a single component of vector r_{i}, at a specific time, t, then the position after a short and finite interval, denoted Δt, is given by a standard Taylor series:

$$
\begin{equation*}
x(t+\Delta t)=x(t)+\frac{d x(t)}{d t} \Delta t+\frac{d^{2} x(t)}{d t^{2}} \frac{\Delta t^{2}}{2}+\ldots \tag{17}
\end{equation*}
$$

The position $x(t)$, the velocity $\mathrm{d} x(t) / \mathrm{d} t$, and the acceleration $\mathrm{d}^{2} x(t) / \mathrm{d} t^{2}$ are sufficient for numerical solution to the equations of motion if some approximation to account for higher order terms in the Taylor series can be made. For this single dimension, Newton's second law describes the acceleration,

$$
\begin{equation*}
\frac{d^{2} x(t)}{d t^{2}}=\frac{F_{x}}{m} \tag{18}
\end{equation*}
$$

where F_{x} is the component of the net force acting on the atom parallel to the direction of x. Determination of future acceleration, velocity and positions are calculated by integration of the equations of motion using integration algorithms. The Verlet algorithm uses the atomic positions and accelerations at time t and the positions from the prior step, $x(t-\Delta t)$, to determine the new positions at $t+\Delta t$.

$$
\begin{equation*}
x(t+\Delta t)=2 x(t)-x(t-\Delta t)+\frac{d^{2} x(t)}{d t^{2}} \Delta t^{2} \tag{19}
\end{equation*}
$$

A slight modification of this, known as the leapfrog algorithm, is popular. The leapfrogalgorithm uses the positions at time t and the velocities at time $t-(\Delta t / 2)$ for the update of both positions and velocities via the calculated forces, $F(t)$, acting on the atoms at time t ,

$$
\begin{gather*}
x(t+\Delta)=x(t)+\frac{d x(t)}{d t}\left(t+\frac{\Delta t}{2}\right) \Delta t \tag{20}\\
\frac{d x(t)}{d t}\left(t+\frac{\Delta t}{2}\right)=\frac{d x(t)}{d t}\left(t-\frac{\Delta t}{2}\right)+\frac{d^{2} x(t)}{d t^{2}} \Delta t \tag{21}
\end{gather*}
$$

These iterative calculations are performed every one to two femto-seconds for a set period determined usually by computational time and expense. Other parameters are determining factors during MD simulations, including temperature control, constraints, periodic boundary conditions, using implicit or explicit solvent, and pressure control [8].

Trajectory Analysis. A basic MD simulation is a minimization and equilibration run designed to collect data of a system in equilibrium. Information on thermodynamic variables is provided by the NAMD log file including temperature, bond energy, total energy, pressure, volume and kinetic energy. These variables give insight into the thermodynamic state of the entire system, but we also want to know if the system is conformationally stable. For this, we can calculate the RMSD of the protein backbone as a measure of the stability of the protein. If the RMSD is still increasing at the end of the run, the protein is still searching for a lower energy state, and indicates the system is not equilibrated. The RMSD is a numerical difference between two structures. It is defined as:

$$
\begin{equation*}
R M S D(t)=\sqrt{\frac{\sum_{i=0}^{N}\left|\vec{r}_{i}(t)-r_{i}^{-0}\right|^{2}}{N}} \tag{22}
\end{equation*}
$$

Where N is the set of atoms at time t , with respect to the reference conformation. $\left|\vec{r}_{i}(t)-r_{i}^{-0}\right|^{2}$ is the displacement of the $\mathrm{i}^{\text {th }}$ atom at time t from the reference position r_{i}^{0}. After the run, the RMSD values are plotted over time and although the protein and RMSD values will always fluctuate, we expect the data line to flatten out before the end of the simulation [85][86].

MDM2 CASE STUDY: COMPUTATIONAL PROTOCOL UTILIZING PROTEIN FLEXIBILITY IMPROVES LIGAND BINDING MODE PREDICTIONS

Introduction

P53 is a tumor suppressor protein found in the nucleus of cells, which functions to respond to cellular stress by mediating cell-cycle arrest, senescence, or apoptosis in response to DNA damage, oncogene activation, and hypoxia [48][87]. Inactivation of the P53 pathway is found in the majority of human cancers and is facilitated by mutation or deletion of the TP53 gene or damage to cellular regulatory mechanisms [88][89]. The primary regulator of P53 is MDM2, an E3 ubiquitan ligase protein, which binds to P53 marking it for degradation. In damaged cells, over-expression of MDM2 results in reduced levels of P53, initiating the onset of oncogenesis [62][90]. Chemotherapies attempt to block this interaction and recover the tumor suppression activity of P53 by introducing small non-peptide molecules designed to target and bind to the P53 binding domain of MDM2 [59]. Several small molecule inhibitors have been designed from lead compounds discovered via the structure-based virtual screening of chemical libraries performed by docking programs and many have entered and completed Phase 1 cancer drug clinical trials [47][60]. HTS evaluate thousands of small molecules and are a cost effective approach designed to rely on fast, accurate predictions, intended to isolate a small number of molecules as possible cancer therapeutics [15].

Molecular docking programs represent a critical tool in the early stages of structure-based drug design while providing important insights into molecular binding processes [91]. The focus on MDM2 as a target for cancer therapeutics and subsequent
literature underscores the importance of docking programs such as AutoDock and the more efficient, reliable alternative, Vina, for the quick and accurate screening of cancer drug candidates [92]. Many scientific articles have cited these programs and the programs themselves have been the focus of validation studies highlighting efficiencies and certain limitations. AutoDock has been shown to be reliable within 2 angstroms of the experimentally known binding site for smaller ligands targeting DNA and proteins, but struggles with larger ligands having 10 or more rotatable bonds due to the increased conformational search space [69][16][93]. This restriction has led to the use of a rigid receptor/flexible ligand protocol as standard methodology due to the computational challenges posed by incorporating protein flexibility [81][80]. This methodology fails to account for side-chain residue movement at binding site interfaces, resulting in a less reliable prediction of the ligands' docked binding mode [94][9]. Invoking AutoDock's side-chain flexibility feature accounts for some protein movement, but this adds to the conformational search space associated with a flexible ligand, which can reduce accuracy and increase computational costs [95].

Many parameters can be adjusted by the user for any particular experiment using AutoDock. This analysis focuses on improving ligand binding mode predictions through selective flexibility of the ligand and receptor utilizing AutoDock's feature of protein side-chain flexibility, while employing the speed and accuracy of Vina to reduce computational time. However, it's important to realize, AutoDock and Vina are two very different programs as they use a different scoring function and search method [21]. The results must be compared separately and it is for the user to determine the program best suited for their needs. Using Vina will determine if accuracy of the results is shared by
both, therefore, the user can take advantage of Vina's computational speed and accuracy or AutoDock's flexibility and large data output if desired.

The protocol followed for this study transfers flexibility from the ligand to the protein binding site residues resulting in improved ligand binding mode predictions of small medicinal compounds to the P53 binding site of MDM2, based on RMSD from the experimentally determined binding site (figure 16). Lowest RMSD values coincide with a majority of the rotatable bond flexibility transferred to the protein. This determination resulted from data collected from 90 docking runs using AutoDock and Vina. Further, a MD simulation revealed the minimized and equilibrated MDM2 protein shows considerable movement of binding site residues made flexible during docking calculations. The docking and MD results from this study highlights the importance of modeling protein flexibility for the determination of accurate binding mode predictions of small molecules to MDM2 in contrast to traditionally rigid docking approaches. This protocol could be especially useful for HTS of potential cancer drugs and other therapeutics targeting proteins and DNA.

An additional brief docking study of a cancer drug target suggests this protocol may be applicable to other structures. The study evaluated a cancer drug complexed with a protein enzyme and DNA (figure 17). Camptothecin is a substance, poison to human cells, it is produced by a tree native to China as a natural defense mechanism. In humans, it binds to topoisomerase, a critical enzyme responsible for binding to DNA in order to relax the helical structure during replication [96]. Camptothecin binds to the covalent topoisomerase -DNA complex and stabilizes the helical structure leading to DNA strand breaks that lead to the apoptosis of drug-treated cells. This drug is used to treat colorectal

Figure 16. Snapshot of PDB structure 4JRG. The small molecule inhibitor shown in yellow is bound to the P53 binding domain of MDM2. The mesh surrounding the molecule is the surface rendering designed to highlight the full extent of the interactions with the protein. The re-docking experiments performed during this study uses the known binding site pictured here against AutoDock and Vina's best predictions.
cancer, ovarian and small cell lung cancers. While effective for about 30% of patients, the effects are temporary, due to topoisomerase resistance mutations [97]. Research has

Figure 17. Ligand TTG (yellow) is shown intercalated between DNA base pairs (blue) while bound to the topoisomerase enzyme (ribbon). This forms a ternary complex designed to stabilize the DNA in cancerous cells and disrupt replication during cell division. Research is now focused on topoisomerase mutations undermining the drug effectiveness possibly due to overaccumulation of the drug in tumor cells or adoptive responses to DNA disruption.
focused on not only understanding the mutations, but modifying the chemical structure of camptothecin to improve efficacy [98]. CADD utilizing docking methods can aide this
effort by modifying and testing possible changes to the drug in silico, saving time and money during development.

Methods and Materials

Standard docking experiments employ a rigid receptor/flexible ligand protocol while exploring conformational space within a specified grid box designated by the user. Results are assessed according to the binding free energy, which represents a measure of how securely the small molecule is attached to the desired area of a target molecule. The binding mode is then analyzed to ensure the small molecule's correct location and geometry accompanies the top ranked binding energy. A successful re-docking will be within 2 angstroms of the experimentally known binding site and correspond to one of the top ranked binding energies [99][100]. In short, the sum of the energy of ligand and receptor separately is greater than the total energy when bound together. The difference is the binding free energy. A higher negative energy indicates a deeper potential energy well, a more stable complex, and more likely binding mode [7]. For this study, only the top ranked binding energy and corresponding RMSD from the known binding site was considered as a data point.

Experimental details. A set of four structures, representing small molecule inhibitors in complex with MDM2 was retrieved from the PDB (table 1). PDB codes: 4JRG, 3LBK, 4IPF and 4ZYI. For each complex, the implemented protocol systematically distributed a total of 12 rotatable bonds between the ligand and receptor until all combinations were tested beginning with 0 flexible bonds for the ligand and 12 for the receptor, and then 1 flexible bond for the ligand and 11 for the receptor and so on,

Table 1. Ligand and receptor parameters of structures tested.

PDB Structure	Ligand		Receptor		
	Ligand Identifier	\# of Rotatable Bonds	Binding Site Residues		
4JRG	109	12	ILE57	ILE95	TYR
			HIS69	PHE	LEU
			HIS92	MET	VAL
				LYS	
4IPF	1F0	10	HIS69	HIS92	GLY
			LEU50	LEU53	MET
			VAL	ILE57	GLN
4ZYI	4TH	9	PHE55	PHE86	LEU
			GLN24	GLN72	HIS
			TYR67	TYR100	0 MET
3LBK	K23	5	ILE61	LEU	PHE
			ILE99	GLY	HIS
			VAL M	MET T	YR100

using the notation $(0,12)$ and $(1,11)$ respectively. When the maximum number of rotatable bonds was reached inherent in each ligand, the remainder was transferred to the protein. Docking parameters for all calculations using AutoDock version 4.2 were adjusted to 100 runs with 2×10^{7} energy evaluations and a grid box size of $60 \AA 2$ Á 62 Á centered on the ligand with $.375 \AA$ grid spacing (figure 18). The grid box for Vina version 1.1.2 was set to 27 Á 27 Á 27 Á centered on the ligand with a $1 \AA$ grid spacing and the exhaustiveness was set to 12 . The grid box created for AutoDock and Vina runs are the same size, but the spacing is different. This accounts for the apparent smaller grid box of Vina whose spacing is $1 \AA$. The LGA was designated as the AutoDock search method, while all other settings for both programs were kept at default parameters.

The structure representing camptothecin in complex with topoisomerase and DNA was retrieved from the PDB, (PDB code: 1RRJ). The ligand (camptothecin) identifier used for this study is TTG, which is the hydrolyzed version (1 extra Oxygen and 2 extra Hydrogen) of another form of the drug TTC. The ligand has 9 inherent rotatable bonds instead of the 5 found with TTC. All settings were kept consistent with those used for MDM2 docking runs apart from the search grid box. The grid box used for this docking was $60 \AA \AA 72 \AA 860$ Á (figure 19). The 72 Á reflects the unique geometry associated with a protein bound to DNA. This translates to a Vina grid box of $22.5 \AA 27$ \AA A2 $22.5 \AA$. Instead of a systematic evaluation of each configuration of ligand and protein flexibility, the docking study for 1RRJ only contained two configurations. One, using the standard protocol of a flexible ligand and rigid protein, and the second, using the rigid ligand protocol transferring 12 rotatable bonds to the binding site residues of the protein. The notation is $(9,0)$ and $(0,12)$ respectively. This is sufficient to evaluate the merits of a
rigid ligand protocol in contrast to the rigid protein protocol currently employed by HTS without exploring all combinations of flexibility because it explores the only other pragmatic option for large virtual screenings. When evaluating thousands of small molecules, it becomes impractical to select the optimal number of rotatable bonds for each ligand. Alternatively, a target protein could be prepared with selected flexible

Figure 18. Conformational search grid box for all MDM2 docking runs as rendered by AutoDock tools. The protein residues are labeled by color.

Figure 19. Grid box for two docking runs of structure 1RRJ. The box must be large enough to encompass the binding site flexible residues of the protein and the experimentally known ligand binding site. Failure to make the box large enough will result in positive binding energy.
binding site residues, while keeping all ligands rigid without disruption of the screening.
This would allow for the modeling, at least to a small extent, of binding site flexibility.
The residues and number of rotatable bonds for the $(0,12)$ configuration of 1 RRJ include:
Arg364 (4), Asp533 (2), Lys532 (5) and Glu356 (1).

Ligand/Protein Preparation. All structures were retrieved from the PDB and initially prepared for docking using Chimera software [101]. The ligand was separated from the protein and a short energy minimization was applied to each structure for a duration of 10 steps. Hydrogen atoms were added, water molecules removed, and Gasteiger charges were automatically added to the ligand and protein. The necessary files for docking were prepared in AutoDock tools (ADT). When files are imported into ADT, they are checked for polar hydrogens, water molecules and proper charges. The rotatable bonds of the ligand were altered using the 'choose torsions' option. Here, the initially flexible bonds of the ligand can be adjusted for docking and saved. A flexible residue file was created for the rotatable bonds of the selected protein binding site residues in addition to a separate rigid protein file. The identical grid box was created for all structures tested using AutoDock. The grid box values for Vina dockings are placed directly into the Vina configuration file (See appendix A for example input files).

AutoDock/Vina Docking Output. AutoDock results are ranked according to the highest negative binding free energies and corresponding RMSD values from the experimentally determined binding site. Each of the configurations tested produced 100 predicted binding sites that were clustered and ranked. A cluster refers to dockings within $2 \AA$ Af oach other and they are also ranked according to the binding free energy. The number of runs parameter set by AutoDock users instructs the program to conduct, in this case 100 separate searches beginning from a random location inside the designated grid box. Each run ends when the set number of energy evaluations have been reached in an attempt to find the global minimum energy. Vina's results also rank dockings according to the binding free energy. However, Vina's top ranked binding energy always
corresponds to a 0 RMSD regardless if the predicted binding mode matches the experimental structure. The subsequent RMSD values are in relation to this top ranked pose. Determining if Vina and AutoDock can converge on a similar binding mode can be accomplished utilizing visualization software, which can directly compare the experimentally known structure to both programs best prediction. AutoDock and Vina share functional commonalities including the global optimization of the scoring function, pre-calculation of grid maps, and the pre-calculation of distant dependent pair-wise energetics between each atom type. However, they employ a different scoring function and algorithms to obtain binding free energies. Conveniently, both programs utilize the same ligand, receptor, and flexible residue files. This allows for a seamless transition between the two programs when the input files are prepared.

Results and Discussion

The MDM2 oncoprotein is a current target for cancer drug development in the form of small molecule inhibitors designed to firmly attach to its P53 binding domain, thus blocking P53/MDM2 interaction. The physical and chemical structure of MDM2 has been widely studied and a variety of crystallized structures have been developed. Many small molecule inhibitors have been crystallized complexed with the protein including many cancer drugs. This has enabled a thorough understanding of the binding site domain of MDM2 inhibitors. This domain contains 9 or 10 binding site residues depending on the crystal structure, each with between 1 and 4 rotatable bonds. This research sought to improve binding mode predictions using the popular docking programs AutoDock and Vina through the selective flexibility of both ligand and binding site residues using four
crystallized structures obtained from the PDB.
The docking results indicate best binding mode predictions correspond to ligand rigidity and protein flexibility for all structures tested using either program (table 2). Further, configurations of complete ligand rigidity $(0,12)$, produced smaller RMSD values compared to the standard protocol for all structures. Surprisingly, supplying additional rotatable bonds well past AutoDock's usual accuracy threshold improves binding site predictions when this additional flexibility is transferred to the protein. This was not expected, since AutoDock usually experiences reduced accuracy as the number of rotatable bonds approach and exceed 10 . The PDB structure 3 LBK represents a small molecule in complex with MDM2 containing only 5 inherent rotatable bonds, but AutoDock's most likely docked pose has it 2.20 Á from the experimentally known site using the standard protocol. This improves to $.51 \AA$ £hen 12 rotatable bonds are supplied to selected binding site residues (figure 20). A snapshot of each of these two binding modes highlights the contrast between AutoDock's best prediction and the experimentally known binding geometry. From figures 21 and 22, we can see the juxtaposition of predicted and experimental geometries of configuration $(5,0)$ representing the standard protocol and $(0,12)$, the rigid ligand docking. The geometry and proximity of the standard protocol docking is not nearly as precise as $(0,12)$, shown by the $2.20 \AA$ RMSD as compared to $.51 \AA$. from the experimentally known site using the standard protocol. This improves to $.51 \AA$ Á when 12 rotatable bonds are supplied to selected binding site residues (figure 20). A snapshot of each of these two binding modes highlights the contrast between AutoDock's best prediction and the experimentally known binding geometry. From figures 21 and 22, we can see the juxtaposition of

Table 2. AutoDock results from rigid ligand-flexible residue configuration (green) contrasted with the standard protocol methodology (red).

PDB Structure	RMSD(Á)	Binding Free Energies (Kcal/mol)	Binding Site Flexible Residues (\# of rotatable bonds)			
4JRG	.66	3.84	-10.25	-9.63	LEU(2)	ILE57(2)

predicted and experimental geometries of configuration $(5,0)$ representing the standard protocol and $(0,12)$, the rigid ligand docking. The geometry and proximity of the standard protocol docking is not nearly as precise as $(0,12)$, shown by the $2.20 \AA$ RMSD as compared to $.51 \AA$.

The ligand bound to MDM2 in structure 4JRG contains 12 rotatable bonds, which is well above AutoDock's validated limit for a successful docking. Using the standard protocol (12,0), AutoDock's best prediction is $2.83 \AA$ from the experimentally determined binding mode, while a rigid ligand protocol $(0,12)$, yields a prediction within $.58 \AA$ Á (figure 23). The trendline shown is indicative of all MDM2 structures tested. As The ligand takes on more flexibility, the RMSD values rise until, most notably in this example, spikes at $2.83 \AA$ with a rigid protein. The RMSD values of configurations between the two extremes fluctuate, but it is difficult to infer from these results the reason for the anamolies of certain configurations showing smaller RMSD values as with $(7,5)$, next to an almost doubling of RMSD $(6,6)$. Due to the randomness componet of the search method, we do expect slight differences in results to accompany identical docking trials. The same input files run on the same system using the same version of the program is not likely to produce identical results. This does not account for the consistent patern of increased RMSD values found in these docking calculations. The pattern we see of increased fluctuation, especially of those configurations with almost equal number of rotatable bonds attributed to the ligand and protein, is probably due to the selection of rotatable bonds (figure 24). When a ligand with 12 inherent rotatable bonds has 6 held rigid as with $(6,6)$, and is docked to a protein with 6 rotatable bonds within the binding site residues, we can anticipate how the result may change when we simply reverse the
rigid and flexible bonds of the ligand. Due to the randomness of the search and the enourmous amount of possible combinations, we can only infer from the pattern we see here a likely strategy for success. In the case of MDM2 at least, the diversity associtated

Figure 20. RMSD values corresponding to the top ranked binding energies for all configurations indicate a total rigid ligand $(0,12)$ has the lowest RMSD value of .51 \AA As As the number of rotatable bonds become more evenly distributed, binding mode accuracy declines.

Figure 21. The standard protocol docking pose for 3LBK $(5,0)$ using AutoDock with an RMSD of $2.20 \AA \AA$ (green). In contrast with the experimentally determined structure (yellow).

Figure 22. 3LBK rigid ligand configuration $(0,12)$ using AutoDock with RMSD of $.51 \AA$ Á (green). In contrast to the experimentally known structure (yellow).

Figure 23. The standard protocol $(12,0)$ configuration shows an RMSD of $2.83 \AA$ with the ligand having 12 rotatable bonds in contrast to a rigid ligand and all 12 rotatable bonds transferred to the MDM2 protein represented by configuration $(0,12)$ with an RMSD of . 58 Á.
with equal flexibility of ligand and protein reduces accuracy. We would expect $(6,6)$ to have the lowest RMSD values if just modeling flexibilty was essential for improved binding mode predictions.

Another notable result from this study is the large RMSD values for those

Figure 24. Snapshot of prepared ligand for structure 4JRG, configuration $(2,10)$. The red lines indicate the fixed portions of the small molecule. The magenta lines indicate bonds that could be selected as rotatable, while the green lines are selected rotatable bonds. The selection of rotatable bonds for all ligands was based on allowing the outer-most bonds to become flexible first and then move inward as flexibility increased. If two entirely different bonds were chosen, we can see how the docking calculation may have changed. This is also true for protein flexibility where the same general approach was used to select flexibility.
configurations representing a completely flexible ligand with limited protein binding site flexibility. For 3LBK, this is docking run $(5,7)$. Although this would seem the ideal distribution of flexibility as it incorporates the inherent flexibility of the ligand and binding protein residues, the RMSD value is $3.81 \AA$, far above the rigid ligand docking of $.51 \AA$. The same is true of 4JRG, with the $(10,2)$ configuration showing an RMSD of 1.46
\AA compared to $.58 \AA$. This is important because the $(5,7)$ and $(10,2)$ configuration of 3LBK and 4JRG respectively would be applicable to HTS as it does not require ligand modification or a change in protein flexibility once the screening starts, and would simulate in part, both protein and ligand binding dynamics more accurately than the standard protocol. This study finds a fully flexible ligand in combination with selective protein binding site flexibility fails to optimize the binding mode predictions. Docking results for structures 4IPF and 4ZYI, also show higher RMSD values for this distribution, with values of $1.64 \AA$ And $3.75 \AA$ Á respectively (figure 25 and 26). An explanation for the poor docking results could be the consequence of re-docking a rigid ligand, and the builtin bias of the small molecule to assume the same binding mode associated with the experimentally known structure. However, the same bias is present using a rigid protein protocol, as the protein's binding site residues are essentially frozen in the optimal binding mode as is the rigid ligand. When the ligand and protein both have flexibility, this bias is partially removed and predicting binding modes close to the experimental structure becomes more difficult. In fact, all structures excluding 4JRG, produced higher RMSD values compared to both the standard and rigid ligand protocols when a fully flexible ligand was in combination with selected binding site flexibility.

A more exhaustive examination of possible combinations of ligand and protein flexibility may, for any particular complex, improve the ligand binding mode prediction and improve RMSD values. The results from this study only indicates applying a rigid ligand protocol will produce lower RMSD values compared to the standard protocol for MDM2. This is of some importance considering the focus of medicinal interest on MDM2 and considering the amount of MDM2 targeted inhibitors developed as cancer

Figure 25. A fully flexible ligand with 2 flexible binding site rotatable bonds $(10,2)$ yields a larger RMSD value of $1.64 \AA$ compared to both the standard $(10,0)$ and rigid ligand protocol $(0,12)$.
therapeutics. For HTS, an exhaustive examination of all possible flexibility is not a practical strategy as thousands of drug candidates are screened and evaluated. A large assortment of small molecules is evaluated with varying chemical and physical properties, including flexibility. There is little doubt more robust scoring functions

Figure 26. The flexible ligand configuration $(9,3)$ produces an RMSD value much larger than all other combinations. This docking result is the exception as the rigid ligand $(0,12)$ does not produce the lowest RMSD value, but is still well within the successful docking range of $2 \AA$.
and search methods, along with increased computational speed from advancing computer architecture, will improve docking results.

The new scoring function and search method employed by Vina has improved
speed and binding mode predictions and is probably more suited for HTS then AutoDock. However, AutoDock does hold some advantages over Vina in terms of changing docking parameters and output. Vina's docking results are not nearly as extensive as AutoDock. Vina supplies the top ten binding energies but does not associate a RMSD value to the top ranked binding free energy (figure 27). Consequently, Vina results are not charted for this study in terms of RMSD as with AutoDock. Confirmation of a successful docking and comparison to AutoDock must be accomplished using renderings of the binding mode in direct contrast to the experimentally determined structure. Comparing binding free energies is not applicable for two reasons. As discussed previously, AutoDock and Vina use different methods to determine binding free energy with both using many assumptions and estimates. This becomes especially problematic when adding flexibility as the loss of entropy is merely a weighted constant and not calculated. If this constant is in error by just $.20 \mathrm{kcal} / \mathrm{mol}$ for structure 3LBK, a configuration such as $(0,12)$ will have a widely different free energy than configuration $(5,0)$. It would not be valid to compare the two binding energies or to compare the binding energies between the two programs. The ranking of the free energy is only truly reliable within the same docking run. Secondly, the AutoDock lowest binding energy does not always correspond to the binding mode most closely associated with the experimental structure. A higher binding energy may correspond to a slightly better RMSD value close to the top ranked energy possessing a higher RMSD, but with an almost equally accurate prediction.

An important advantage of using Vina along with a rigid ligand protocol for MDM2 is that it mitigates concerns of additional computational time and costs while allowing for a flexible protein and more accurate binding prediction. Vina's
multithreaded configuration can drastically reduce computational time while providing accurate results when docking ligands, as in this study, with 12 rotatable bonds. Vina's binding prediction for structure 4JRG mirrors AutoDock's best result of $.58 \AA$ as shown in figures 28 and 29. However, Vina's calculation took less than 2 minutes, while the AutoDock calculation lasted 15 hours. The increased speed is not surprising, as this has been shown previously, but while transferring all flexibility to the protein, Vina also produced a noticeable improvement of binding mode predictions as compared to the standard protocol with no increase in computational time [102]. Applying a rigid ligand protocol when using Vina for HTS concerning MDM2 affords the consideration of larger ligands without reduced accuracy or increased computational costs.

The improved determination of binding geometries using a rigid ligand protocol is probably best explained by the physical structure of the P53 binding domain of MDM2. The binding domain as seen clearly in figure 16 sits inside a pocket flanked by residues not embedded within the protein. These residues can fluctuate during the binding process, allowing a rigid ligand to enter while the protein conforms to the small molecule according to the energy landscape determined by its chemical structure as evidenced by the before and after snapshots of figure 32. The modeling of movement of critical residues in the same way a flexible ligand would be modeled may explain how the rigid ligand can enter the binding site and settle in the preferred binding mode. It is important to remember the program moves both the ligand's and protein's bonds randomly, while searching for the local energy minima. Modeling the protein movement may be more essential in finding the global minimum and facilitating changes to ligand geometry to more accurately match the true binding orientation.

Figure 27. Binding free energy results from 4IPF using Vina shows a similar pattern to AutoDock. The rigid ligand docking has a much higher negative free energy compared to the standard protocol indicating a more likely binding mode. Also, the combinations with a more equal distribution of rotatable bonds show a higher fluctuation in binding energies. This is important because both programs reach this result using different scoring and search methods.

Molecular Dynamics Analysis. A time dependent evaluation of binding site
residue movement can be conducted with a classical MD simulation of the MDM2
protein. Using the crystallized protein structure of the 4IPF complex, a simulation

Figure 28. Vina's prediction of rigid ligand docking of 4JRG $(0,12)$. This binding mode prediction (green) is slightly closer to the experimentally known pose found by AutoDock in figure 29.

Figure 29. AutoDock's prediction of rigid ligand docking of 4JRG $(0,12)$ shown in green. This docked pose is $.58 \AA$ from the experimentally known docked ligand (yellow).
was performed using NAMD. The protein is prepared and necessary files created using VMD (visual molecular dynamics), the graphical user interface (GUI) designed to work with NAMD for the preparation, evaluation and visualization of MD simulations (appendix B). A minimization and equilibration simulation allows for the determination of residue mobility before interaction with the ligand from average RMSD values calculated during equilibration. The data provides valuble insights toward understanding the protein residue dynamics the ligand encounters as it enters the MDM2 binding site and searches for the preferred binding mode. The simulation lasted .5 ns with a 1 fs time step at a constant temperature of 310 K in an explicit solvent (figure 30). The long run time ensures the protein will be able to reach equilibrium providing reliable data for the residue RMSD calculation. The use of an explicit solvent accounts for the aqueous enviroment and the desolvation energy associated with removing water molecules from binding site interfaces. Results show the residues made flexible for docking run $(0,12)$ fluctuate between 1.4 and $3.2 \AA$, with binding site residues HIS 69, HIS 92 and TYR 96 all moving an average of $3 \AA$ (figure 31). The RMSD values serve to quantify movement of the protein in equilibrium while affirming the importance of modeling residue flexibility during docking calculations (figure 31). Although flexibility modeled by docking is just the limited rotation of bonds, with bond lengths and angles kept constant, the change observed from the binding site residues can be pronounced. The before and after snapshot of binding site residues from figure 32 highlights the change in orientation necessary to accommodate a successful docking within $.49 \AA$ of the known structures ligand binding mode. This suggests ligand flexibility may not be as essential as modeling protein conformation changes that accommodate a small molecule during the binding
process. Analysis using Ramachandran plots confirm the protein residues settle
in allowed regions according to possible φ and ψ dihedral angles. A selection of these

RMSD of Minimization and Equilibration of MDM2
(PDB: 4IPF)

Figure 30. The MDM2 protein as represented by crystal structure 4IPF was used to evaluate fluctuation of specific binding site residues. The equilibration simulation should run long enough as to let the system stabilize according to RMSD fluctuation. Any data collected before that will be artificially altered by the heat energy placed into the system. The graph above shows flattening out, indicating the system is in equilibrium. This allows data to be collected for individual residues in terms of RMSD from their equilibrium position providing a better understanding of the binding site dynamics.

Figure 31. A Molecular dynamics simulation was performed using NAMD to establish residue fluctuation at equilibrium. The red markers indicate binding site residues made flexible for the $\operatorname{4IPF}(0,12)$ docking run. The missing data results from the loss of the first and last twenty residues while crystallizing MDM2, which is typical for this structure.
plots can be found in appendices C through E. The Ramachandran plots ensure the conformation changes predicted by the programs are theorhetically possible and therefore a valid representation of the biological system.

Data Mining Analysis. Given the large number of potential rotatable bond combinations between the ligand and protein, a 'a priori' knowledge of the optimal
distribution of ligand/protein flexibility would be ideal considering testing all possible considerations would be impractical. For example, 3lbk configuration $(5,7)$ contains 792 possible combinations. As a guide, we can employ a data mining approach where each of the potential bonds is assigned as one of the parameters to be turned off or turned on (0 or 1). We can then seek the weight factor of each of these parameters by supposing the total

Figure 32. Final positions of flexible binding site residues (green) for $4 \operatorname{IPF}(0,12)$ indicates residues LEU, TYR, VAL and HIS have shifted considerable from the experimentally determined geometry (yellow). Due to the time independent nature of docking, we can only capture before and after states of the complex. The protein and ligand have been removed for clarity.
cohesive energy as well as RMSD can be quantitatively linked to a linear regression as a superposition of all the parameters:

$$
\begin{gather*}
E=\sum_{i=1}^{N} W_{L i} L_{i}+\sum_{i=1}^{M} W_{p i} P_{i} \tag{23}\\
\mathrm{RMSD}=\sum_{i=1}^{N} W_{s i} S_{i}+\sum_{i=1}^{M} W_{T i} T_{i} \tag{24}
\end{gather*}
$$

Where:
$\mathrm{L}_{\mathrm{i}}=0$ or 1 (a binary for each rotatable bond in the ligand) for energy

$$
\mathrm{W}_{\mathrm{Li}}=\text { weight factors of each } \mathrm{L}_{\mathrm{i}} \text { for energy }
$$

$\mathrm{Pi}=0$ or 1 (a binary for each rotatable bond in the residues) for energy

$$
\mathrm{W}_{\mathrm{Pi}}=\text { weight factors of each } \mathrm{P}_{\mathrm{i}} \text { for energy }
$$

$\mathrm{S}_{\mathrm{i}}=0$ or 1 (a binary for each rotatable bond in the ligand) for RMSD

$$
\mathrm{W}_{\mathrm{Si}}=\text { weight factors of each } \mathrm{L}_{\mathrm{i}} \text { for RMSD }
$$

$\mathrm{T}_{\mathrm{i}}=0$ or 1 (a binary for each rotatable bond in the residues) for RMSD
$\mathrm{W}_{\mathrm{Ti}}=$ weight factors of each T_{i} for RMSD

The number of parameters will depend on the total number of rotatable bonds between the ligand and protein. Each parameter can be toggled on or off corresponding to a flexible or rigid bond. Data mining calculations using the energy, RMSD and distribution of flexibility data as shown in table 3 yielded promising results as particular ligand and protein rotatable bonds showed strong weighted constants which match closely with low RMSD values and high negative binding energies. This simplified method certainly may not generate fully recoverable linear superposition for a complex docking process, but at

Table 3. Structure 3lbk bond toggle displays the activation status of each bond for each configuration in addition to the correspond energy and RMSD values.

(L,P)	L1	L2	L3	L4	L5	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	Energy	RMSD
$(0,12)$	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	-10.03	. 51
$(1,11)$	0	0	1	0	0	1	1	0	1	1	1	1	1	1	1	1	1	-11.50	1.15
$(2,10)$	0	0	1	0	1	0	1	1	1	1	1	1	1	1	1	0	1	-11.39	. 89
$(3,9)$	1	0	1	0	1	1	0	1	1	1	0	1	0	1	1	1	1	-13.05	. 93
$(4,8)$	1	0	1	1	1	0	1	1	1	1	0	1	0	1	1	1	0	-14.77	3.43
$(5,7)$	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	0	0	-8.36	1.20
$(5,0)$	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	-10.32	3.52
$(5,7)$	1	1	1	1	1	0	1	1	0	1	0	0	0	1	1	1	1	-13.69	3.81
$(5,7)$	1	1	1	1	1	0	0	0	0	1	1	1	1	0	1	1	1	-8.41	2.19
$(4,8)$	1	1	1	1	0	1	1	0	0	0	0	1	1	1	1	1	1	-8.55	2.30
$(4,8)$	1	1	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	-7.95	3.14
$(4,8)$	0	1	1	1	1	1	1	1	1	0	0	1	1	0	0	1	1	-8.97	2.04

least it does provide a guidance, based on a given number of allotted rotatable bonds, as to which rotatable bonds that are preferred to be "activated". The weight functions may also indicate the relative level of importance quantitatively on activating a specific set of rotatable bonds. Further, we can probably identify if there is a potential negative effect in
activating certain rotatable bonds toward the total energy and/or RMSD through the formation of negative weight factors. Using this technique, we can locate particular bonds within binding site residues to activate that will most likely lead to a successful docking. The linear regression analysis of structure 3lbk indicated activation of bonds P4 and P9 play a significant role in energy optimization while P8 improves RMSD values. Bonds L4 and L8 play a significant role, both negative and positive, for RMSD. Figure 33 shows a small nutlin derivative and MDM2 with each ligand and protein labeled for a clear representation of the 3D structure.

Figure 33. Structure 3lbk with protein and ligand labels together with data mining analysis allows for a clear 3D assessment of the residues and rotatable bonds most critical for a successful docking.

Analysis of Cancer Drug Camptothecin. A brief study of a rigid ligand protocol in contrast to the standard protocol was conducted testing AutoDock and Vina's
binding mode predictions of a small molecule complexed with DNA and a protein enzyme. This forms a ternary binding since the ligand is bound to the protein while the protein is bound to DNA. This complex is distinct from MDM2 and provides a suitable test case in order to evaluate if the successful rigid ligand docking regarding MDM2 was a special case or could be applicable to other systems. The standard protocol was applied using both programs for the initial docking allowing all 9 of the ligands' rotatable bonds to be flexible $(9,0)$, followed by a rigid ligand docking, with 12 rotatable bonds being assigned to selected protein residues.

The top ranked binding mode for $(9,0)$ using AutoDock was $1.14 \AA$ from the experimentally determined binding site, while the rigid ligand docking was within $.74 \AA$. In this case, both re-docking calculations would be considered successful as they are both within $2 \AA$ of the known binding area, but as with MDM2, the rigid ligand docking produces a noticeable improvement (figures 33 and 34). Vina results also show a more precise orientation utilizing protein flexibility evident from the comparison of figures 35 and 36. The noticeable exception of this study is the fact AutoDock's best binding mode prediction is actually closer in orientation to the known structure as compared to Vina in contrast to all MDM2 calculations. This is surprising because Vina, as mentioned previously, out performs AutoDock in both speed and accuracy. As the parameters for both programs were not changed, the difference in scoring and search method in addition to the chemical and physical structure of the complex may explain AutoDock's superior prediction. Given this result, along with the more comprehensive findings from this research, it further serves to illustrate the importance of testing and validating these programs for optimum performance and results.

Figure 34. AutoDock standard protocol using a flexible ligand shows the contrast between the experimental orientation (yellow) and predicted binding mode (green).

Figure 35. AutoDock utilizing protein flexibility improves binding mode accuracy. Protein flexible residues are shown in green.

Figure 36. Vina's top ranked pose for $(9,0)$ appears to be well within $2 \AA$ of known structure, but struggles to match orientation at the far left end.

Figure 37. Vina utilizing protein flexibility improves orientation of ligand due to ligand rigidity within the binding domain.

CONCLUSION

Recovery of the P53 tumor suppressor pathway via small molecule inhibitors of onco-protein MDM2 highlights the critical role of computational methodologies in targeted cancer therapies. Improved binding mode predictions of small molecule inhibitors targeting the MDM2 protein was achieved with AutoDock and Vina using a systematic distribution of 12 rotatable bonds between the ligand and protein. This study found a rigid ligand in combination with flexible binding site residues produced lower RMSD values from the known binding site when compared to standard rigid receptor docking. Further analysis of the flexible binding site residues found considerable movement illustrated by a MD simulation and examination of the predicted final positions and experimentally determined positions of the selected residues. An additional evaluation of a DNA targeted cancer drug also produced improved ligand binding mode results incorporating the rigid ligand protocol. The modeling of residues located within the binding site were found to be more determinate than modeling ligand flexibility. Docking runs simulating a fully flexible ligand, in addition to 7,3 and 2 rotatable bonds transferred to MDM2, failed to come as close as a rigid ligand to the experimentally known structure. Adopting a rigid ligand-flexible protein docking protocol for future medicinal studies of MDM2 using Vina in particular, will enable accurate, fast predictions of MDM2 binding modes of small molecules with 12 and possibly more rotatable bonds.

Future studies will determine if this protocol may be applied to other proteins or DNA targets of medicinal interest. The emergence of molecular docking as an essential
tool for SBDD has fostered many clinical studies as well as exhaustive validation studies. The continued evaluation and optimization of these programs complimented by advanced computer architecture will aide in reducing the cost of cancer drug development, as well as foster new insights into bio-molecular binding processes.

REFERENCES

[1] S.-Y. Huang and X. Zou, "Advances and challenges in protein-ligand docking.," Int. J. Mol. Sci., vol. 11, no. 8, pp. 3016-34, Jan. 2010.
[2] L. Chen, J. K. Morrow, H. T. Tran, S. S. Phatak, L. Du-Cuny, and S. Zhang, "From laptop to benchtop to bedside: structure-based drug design on protein targets.," Curr. Pharm. Des., vol. 18, no. 9, pp. 1217-39, Jan. 2012.
[3] S. Cosconati, S. Forli, A. L. Perryman, R. Harris, D. S. Goodsell, and A. J. Olson, "Virtual Screening with AutoDock: Theory and Practice.," Expert Opin. Drug Discov., vol. 5, no. 6, pp. 597-607, Jun. 2010.
[4] P. Szymański, M. Markowicz, and E. Mikiciuk-Olasik, "Adaptation of highthroughput screening in drug discovery-toxicological screening tests.," Int. J. Mol. Sci., vol. 13, no. 1, pp. 427-52, Jan. 2012.
[5] J. L. Medina-Franco, K. Martínez-Mayorga, M. A. Giulianotti, R. A. Houghten, and C. Pinilla, "Visualization of the Chemical Space in Drug Discovery," Curr. Comput. Aided. Drug Des., vol. 4, pp. 322-333, 2008.
[6] G. Sliwoski, S. Kothiwale, J. Meiler, and E. W. Lowe, "Computational methods in drug discovery.," Pharmacol. Rev., vol. 66, no. 1, pp. 334-95, Jan. 2014.
[7] R. Huey, G. M. Morris, A. J. Olson, and D. S. Goodsell, "A semiempirical free energy force field with charge-based desolvation.," J. Comput. Chem., vol. 28, no. 6, pp. 1145-52, Apr. 2007.
[8] S. A. Adcock and J. A. McCammon, "Molecular dynamics: survey of methods for simulating the activity of proteins.," Chem. Rev., vol. 106, no. 5, pp. 1589-615, May 2006.
[9] X.-Y. Meng, H.-X. Zhang, M. Mezei, and M. Cui, "Molecular docking: a powerful approach for structure-based drug discovery.," Curr. Comput. Aided. Drug Des., vol. 7, no. 2, pp. 146-57, Jun. 2011.
[10] A. Dhanik, J. S. McMurray, and L. E. Kavraki, "DINC: A new AutoDock-based protocol for docking large ligands," BMC Struct. Biol., vol. 13, no. Suppl 1, p. S11, 2013.
[11] "Directory of computer-aided Drug Design tools," Swiss Inst. Bioinforma., 2014.
[12] A. P. Norgan, P. K. Coffman, J.-P. A. Kocher, D. J. Katzmann, and C. P. Sosa, "Multilevel Parallelization of AutoDock 4.2.," J. Cheminform., vol. 3, no. 1, p. 12,

Jan. 2011.
[13] G. M. MORRIS, "AutoDock-Resources," Scripps Inst., 2007.
[14] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson, "AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.," J. Comput. Chem., vol. 30, no. 16, pp. 2785-91, Dec. 2009.
[15] S. Z. Grinter and X. Zou, "Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design.," Molecules, vol. 19, no. 7, pp. 10150-76, Jan. 2014.
[16] D. Plewczynski, M. Łaźniewski, R. Augustyniak, and K. Ginalski, "Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database.," J. Comput. Chem., vol. 32, no. 4, pp. 742-55, Mar. 2011.
[17] C. Deligkaris, A. T. Ascone, K. J. Sweeney, and A. J. Q. Greene, "Validation of a computational docking methodology to identify the non-covalent binding site of ligands to DNA.," Mol. Biosyst., vol. 10, no. 8, pp. 2106-25, Aug. 2014.
[18] M. L. Teodoro, G. N. Phillips, and L. E. Kavraki, "Molecular docking: a problem with thousands of degrees of freedom," in Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), 2002, vol. 1, pp. 960-965.
[19] N. Plattner and F. Noé, "Protein conformational plasticity and complex ligandbinding kinetics explored by atomistic simulations and Markov models.," Nat. Coттип., vol. 6, p. 7653, Jan. 2015.
[20] M. Totrov and R. Abagyan, "Flexible ligand docking to multiple receptor conformations: a practical alternative.," Curr. Opin. Struct. Biol., vol. 18, no. 2, pp. 178-84, Apr. 2008.
[21] O. Trott and A. J. Olson, "AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.," J. Comput. Chem., vol. 31, no. 2, pp. 455-61, Jan. 2010.
[22] S. R. Ellingson, J. C. Smith, and J. Baudry, "VinaMPI: facilitating multiple receptor high-throughput virtual docking on high-performance computers.," J. Comput. Chem., vol. 34, no. 25, pp. 2212-21, Sep. 2013.
[23] H. I. Januar, A. S. Dewi, E. Marraskuranto, and T. Wikanta, "In silico study of fucoxanthin as a tumor cytotoxic agent.," J. Pharm. Bioallied Sci., vol. 4, no. 1, pp. 56-9, Jan. 2012.
[24] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, "Scalable molecular dynamics with NAMD.," J. Comput. Chem., vol. 26, no. 16, pp. 1781-802, Dec. 2005.
[25] "Cancer Statistics - National Cancer Institute." [Online]. Available: http://www.cancer.gov/about-cancer/what-is-cancer/statistics. [Accessed: 03-Apr2016].
[26] S. Desmond-Hellmann, "The Cost Of Creating A New Drug Now $\$ 5$ Billion, Pushing Big Pharma To Change Title," newdrugapprovals.org. [Online]. Available: https://newdrugapprovals.org/2013/09/01/the-cost-of-creating-a-new-drug-now-5-billion-pushing-big-pharma-to-change/.
[27] M. Siddiqui and S. V. Rajkumar, "The high cost of cancer drugs and what we can do about it.," Mayo Clin. Proc., vol. 87, no. 10, pp. 935-43, Oct. 2012.
[28] C. for D. E. and Research, "Information for Consumers (Drugs) - The FDA's Drug Review Process: Ensuring Drugs Are Safe and Effective." Center for Drug Evaluation and Research.
[29] "Novel New Drugs 2014 Summary," U.S. Food Drug Adm. Cent. Drug Eval. Res., 2014.
[30] "Targeted Cancer Therapies Fact Sheet - National Cancer Institute." [Online]. Available: http://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet. [Accessed: 03-Apr-2016].
[31] "Costs mount for targeted cancer therapies | Science Life on WordPress.com." [Online]. Available: http://sciencelife.uchospitals.edu/2015/05/19/costs-mount-for-targeted-cancer-therapies/. [Accessed: 03-Apr-2016].
[32] M. M. Gottesman, "Mechanisms of cancer drug resistance.," Annu. Rev. Med., vol. 53, pp. 615-27, Jan. 2002.
[33] L. M. Ellis and D. J. Hicklin, "Resistance to Targeted Therapies: Refining Anticancer Therapy in the Era of Molecular Oncology.," Clin. Cancer Res., vol. 15, no. 24, pp. 7471-7478, Dec. 2009.
[34] L. Xie, L. Xie, and P. E. Bourne, "Structure-based systems biology for analyzing off-target binding.," Curr. Opin. Struct. Biol., vol. 21, no. 2, pp. 189-99, Apr. 2011.
[35] J. Mestres, E. Gregori-Puigjané, S. Valverde, and R. V Solé, "Data completeness-the Achilles heel of drug-target networks.," Nat. Biotechnol., vol. 26, no. 9, pp. 983-4, Sep. 2008.
[36] K. A. O'Connor and B. L. Roth, "Finding new tricks for old drugs: an efficient
route for public-sector drug discovery.," Nat. Rev. Drug Discov., vol. 4, no. 12, pp. 1005-14, Dec. 2005.
[37] "HOW FAR WE'VE COME: A DECADE IN REVIEW," cancerprogress.net, 2016. [Online]. Available: http://www.cancerprogress.net/cca/how-far-weve-come-decade-review.
[38] V. Ágoston, P. Csermeyl, and S. Pongor, "Multiple, weak hits confuse complex systems: A transcriptional regulatory network as an example," Phys. Rev, vol. 71, 2005.
[39] U. Debnath, "Structure-Based Drug Design (SBDD) : Positive Approach For Drug Discovery," Netaji Subhas Chandra Bose Institute of Pharmacy, 2012. [Online]. Available: http://www.nscbip.org/?p=459.
[40] M. K. Gilson, T. Liu, M. Baitaluk, G. Nicola, L. Hwang, and J. Chong, "BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology.," Nucleic Acids Res., vol. 44, no. D1, pp. D1045-53, Jan. 2016.
[41] E. Krovat, T. Steindl, and T. Langer, "Recent Advances in Docking and Scoring," Curr. Comput. Aided-Drug Des., vol. 1, no. 1, pp. 93-102, Jan. 2005.
[42] P. A. Holt, J. B. Chaires, and J. O. Trent, "Molecular docking of intercalators and groove-binders to nucleic acids using Autodock and Surflex.," J. Chem. Inf.
Model., vol. 48, no. 8, pp. 1602-15, Aug. 2008.
[43] S. Nag, J. Qin, K. S. Srivenugopal, M. Wang, and R. Zhang, "The MDM2-p53 pathway revisited.," J. Biomed. Res., vol. 27, no. 4, pp. 254-71, Jul. 2013.
[44] V. Lounnas, T. Ritschel, J. Kelder, R. McGuire, R. P. Bywater, and N. Foloppe, "Current progress in Structure-Based Rational Drug Design marks a new mindset in drug discovery.," Comput. Struct. Biotechnol. J., vol. 5, no. 6, p. e201302011, Jan. 2013.
[45] A. Cherkasov, E. N. Muratov, D. Fourches, A. Varnek, I. I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y. C. Martin, R. Todeschini, V. Consonni, V. E. Kuz'min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, and A. Tropsha, "QSAR modeling: where have you been? Where are you going to?," J. Med. Chem., vol. 57, no. 12, pp. 4977-5010, Jun. 2014.
[46] H. Alonso, A. A. Bliznyuk, and J. E. Gready, "Combining Docking and Molecular Dynamic Simulations in Drug Design," Wiley Intersci., vol. 26, no. 5, pp. 531568, 2006.
[47] N. Bharatham, K. Bharatham, A. A. Shelat, and D. Bashford, "Ligand binding mode prediction by docking: $\mathrm{mdm} 2 / \mathrm{mdmx}$ inhibitors as a case study.," J. Chem.

Inf. Model., vol. 54, no. 2, pp. 648-59, Feb. 2014.
[48] K. H. Vousden and C. Prives, "Blinded by the Light: The Growing Complexity of p53.," Cell, vol. 137, no. 3, pp. 413-31, May 2009.
[49] Zhang and H. Wang, "MDM2 oncogene as a novel target for human cancer therapy.," Curr. Pharm. Des., vol. 6, no. 4, pp. 393-416, Mar. 2000.
[50] J. Momand, D. Jung, S. Wilczynski, and J. Niland, "The MDM2 gene amplification database.," Nucleic Acids Res., vol. 26, no. 15, pp. 3453-9, Aug. 1998.
[51] S. Wang, Y. Zhao, D. Bernard, and A. Aguilar, "Protein-Protein Interactions," vol. 8, pp. 57-80, 2012.
[52] X. Wu, J. H. Bayle, D. Olson, and A. J. Levine, "The p53-mdm-2 autoregulatory feedback loop.," Genes Dev., vol. 7, no. 7A, pp. 1126-32, Jul. 1993.
[53] M. Wade, Y.-C. Li, and G. M. Wahl, "MDM2, MDMX and p53 in oncogenesis and cancer therapy.," Nat. Rev. Cancer, vol. 13, no. 2, pp. 83-96, Feb. 2013.
[54] K. Onel and C. Cordon-Cardo, "MDM2 and prognosis.," Mol. Cancer Res., vol. 2, no. 1, pp. 1-8, Jan. 2004.
[55] U. M. Moll and O. Petrenko, "The MDM2-p53 Interaction," Mol. Cancer Res., vol. 1, no. 14, pp. 1001-1008, Dec. 2003.
[56] J. D. Oliner, J. A. Pietenpol, S. Thiagalingam, J. Gyuris, K. W. Kinzler, and B. Vogelstein, "Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53.," Nature, vol. 362, no. 6423, pp. 857-60, Apr. 1993.
[57] A. J. Levine and M. Oren, "The first 30 years of p53: growing ever more complex," Nat. Rev. Cancer, vol. 9, no. 10, pp. 749-758, Oct. 2009.
[58] P. H. Kussie, S. Gorina, V. Marechal, B. Elenbaas, J. Moreau, A. J. Levine, and N. P. Pavletich, "Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain.," Science, vol. 274, no. 5289, pp. 948-53, Nov. 1996.
[59] K. Khoury and A. Dömling, "P53 mdm2 inhibitors.," Curr. Pharm. Des., vol. 18, no. 30, pp. 4668-78, Jan. 2012.
[60] S. Wang, Y. Zhao, D. Bernard, A. Aguilar, and S. Kumar, Protein-Protein Interactions, vol. 8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
[61] L. T. Vassilev, B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic, N.

Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi, and E. A. Liu, "In vivo activation of the p53 pathway by small-molecule antagonists of MDM2.," Science, vol. 303, no. 5659, pp. 844-8, Feb. 2004.
[62] H. Wang, D. Yu, S. Agrawal, and R. Zhang, "Experimental therapy of human prostate cancer by inhibiting MDM2 expression with novel mixed-backbone antisense oligonucleotides: In vitro and in vivo activities and mechanisms," Prostate, vol. 54, no. 3, pp. 194-205, Feb. 2003.
[63] J.-J. Qin, W. Wang, S. Voruganti, H. Wang, W.-D. Zhang, and R. Zhang, "Identification of a new class of natural product MDM2 inhibitor: In vitro and in vivo anti-breast cancer activities and target validation.," Oncotarget, vol. 6, no. 5, pp. 2623-40, Feb. 2015.
[64] H. Li, H. Zhang, M. Zheng, J. Luo, L. Kang, X. Liu, X. Wang, and H. Jiang, "An effective docking strategy for virtual screening based on multi-objective optimization algorithm.," BMC Bioinformatics, vol. 10, no. 1, p. 58, Jan. 2009.
[65] G. M. Whitesides and V. M. Krishnamurthy, "Designing ligands to bind proteins.," Q. Rev. Biophys., vol. 38, no. 4, pp. 385-95, Nov. 2005.
[66] L. Ferreira, R. dos Santos, G. Oliva, and A. Andricopulo, "Molecular Docking and Structure-Based Drug Design Strategies," Molecules, vol. 20, no. 7, pp. 1338413421, Jul. 2015.
[67] V. Tran, M. M. Delage, and A. Bul on, "A systematic docking approach. Application to the ?-cyclodextrin/phenyl-ethanol complex," J. Incl. Phenom. Mol. Recognit. Chem., vol. 14, no. 3-4, pp. 271-284, 1992.
[68] R. T. Kroemer, "Structure-Based Drug Design: Docking and Scoring," Curr. Protein Pept. Sci., vol. 8, pp. 312-328, 2007.
[69] In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications. CRC Press, 2015.
[70] B. Qian, S. Raman, R. Das, P. Bradley, A. J. McCoy, R. J. Read, and D. Baker, "High-resolution structure prediction and the crystallographic phase problem.," Nature, vol. 450, no. 7167, pp. 259-64, Nov. 2007.
[71] G. M. M. D. S. G. R. S. H. R. H. W. E. H. R. K. B. A. J. O. A. J. Autodock, "Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function."
[72] E. Atilgan and J. Hu, "Improving Protein Docking Using Sustainable Genetic Algorithms," Int. J. Comput. Inf. Syst. Ind. Manag. Appl., vol. 3, pp. 248-255, 2011.
[73] C. S. de Magalhães, H. J. C. Barbosa, and L. E. Dardenne, "A genetic algorithm for the ligand-protein docking problem," Genet. Mol. Biol., vol. 27, no. 4, pp. 605610, 2004.
[74] J. Wang, Y. Deng, and B. Roux, "Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials.," Biophys. J., vol. 91, no. 8, pp. 2798-814, Oct. 2006.
[75] S. F. Sousa, A. J. M. Ribeiro, J. T. S. Coimbra, R. P. P. Neves, S. A. Martins, N. S. H. N. Moorthy, P. A. Fernandes, and M. J. Ramos, "Protein-Ligand Docking in the New Millennium - A Retrospective of 10 Years in the Field," Curr. Med. Chem., vol. 20, pp. 2296-2234, 2013.
[76] R. Wang, L. Lai, and S. Wang, "Further development and validation of empirical scoring functions for structure-based binding affinity prediction," J. Comput. Aided. Mol. Des., vol. 16, pp. 11-26, 2002.
[77] C. SOTRIFFER and G. KLEBE, Docking and Scoring Functions Virtual Screening. 2003.
[78] H. Gohlke, M. Hendlich, and G. Klebe, "Knowledge-based Scoring Function to Predict Protein-Ligand Interactions," J. Mol. Biol, no. 295, pp. 337-356, 2000.
[79] G. M. Morris, D. S. Goodsell, M. E. Pique, W. "Lindy" Lindstrom, R. Huey, Stefano, and Forli, "AutoDock 4.2 User Guide." pp. 1-66, 2009.
[80] F. Spyrakis, A. BidonChanal, X. Barril, and F. J. Luque, "Protein flexibility and ligand recognition: challenges for molecular modeling.," Curr. Top. Med. Chem., vol. 11, no. 2, pp. 192-210, Jan. 2011.
[81] R. M. V. Abreu, H. J. C. Froufe, M.-J. R. P. Queiroz, and I. C. F. R. Ferreira, "Selective Flexibility of Side-Chain Residues Improves VEGFR-2 Docking Score using AutoDock Vina," Chem. Biol. Drug Des., vol. 79, no. 4, pp. 530-534, Apr. 2012.
[82] B. Ma, M. Shatsky, H. J. Wolfson, and R. Nussinov, "Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations.," Protein Sci., vol. 11, no. 2, pp. 184-97, Feb. 2002.
[83] D. A. Antunes, D. Devaurs, and L. E. Kavraki, "Understanding the Challenges of Protein Flexibility in Drug Design," Expert Opin. Drug Discov., vol. 10, no. 12, pp. 1-17, 2015.
[84] J. Meller, "Molecular Dynamics," Encycl. LIFE Sci., 2001.
[85] T. Isgro, J. Phillips, M. Sotomayor, and E. Villa, "NAMD TUTORIAL." Beckman Institute Computational Biophysics Workshop, pp. 31-37, 2007.
[86] F. E. Herrera, "Computational approaches to the investigation of proteins involved in Parkinson's Disease," 2008.
[87] Y. Zhao, D. Bernard, and S. Wang, "Small Molecule Inhibitors of MDM2-p53 and MDMX-p53 Interactions as New Cancer Therapeutics," Biodiscovery, no. 8, p. 4, 2013.
[88] C. Klein and L. T. Vassilev, "Targeting the p53-MDM2 interaction to treat cancer.," Br. J. Cancer, vol. 91, no. 8, pp. 1415-9, Oct. 2004.
[89] A. C. Joerger and A. R. Fersht, "The Tumor Suppressor p53: From Structures to Drug Discovery," Cold Spring Harb. Perspect. Biol., vol. 2, no. 6, pp. a000919a000919, Feb. 2010.
[90] H. Wang, L. Nan, D. Yu, S. Agrawal, and R. Zhang, "Antisense anti-MDM2 oligonucleotides as a novel therapeutic approach to human breast cancer: in vitro and in vivo activities and mechanisms.," Clin. Cancer Res., vol. 7, no. 11, pp. 3613-24, Nov. 2001.
[91] W. A. Warner, R. Sanchez, A. Dawoodian, E. Li, and J. Momand, "Identification of FDA-approved Drugs that Computationally Bind to MDM2," Chem. Biol. Drug Des., vol. 80, no. 4, pp. 631-637, Oct. 2012.
[92] D. R. Houston, L.-H. Yen, S. Pettit, and M. D. Walkinshaw, "Structure- and ligand-based virtual screening identifies new scaffolds for inhibitors of the oncoprotein MDM2.," PLoS One, vol. 10, no. 4, p. e0121424, Jan. 2015.
[93] Z. Huang, Drug Discovery Research: New Frontiers in the Post-Genomic Era. John Wiley \& Sons, 2007.
[94] C. A. Sotriffer, "Accounting for induced-fit effects in docking: what is possible and what is not?," Curr. Top. Med. Chem., vol. 11, no. 2, pp. 179-91, Jan. 2011.
[95] E. Perola, W. P. Walters, and P. S. Charifson, "A Detailed Comparison of Current Docking and Scoring Methods on Systems of Pharmaceutical Relevance," PROTEINS Struct. Funct. Bioinforma., vol. 56, pp. 235-249, 2004.
[96] Y. Arakawa, K. Ozaki, Y. Okawa, and H. Yamada, "Three missense mutations of DNA topoisomerase I in highly camptothecin-resistant colon cancer cell sublines.," Oncol. Rep., vol. 30, no. 3, pp. 1053-8, Sep. 2013.
[97] S. Sirikantaramas, M. Yamazaki, and K. Saito, "Mutations in topoisomerase I as a self-resistance mechanism coevolved with the production of the anticancer alkaloid camptothecin in plants.," Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 18, pp. 6782-6, May 2008.
[98] S. Singh, T. Das, M. Awasthi, V. P. Pandey, B. Pandey, and U. N. Dwivedi, "DNA topoisomerase-directed anticancerous alkaloids: ADMET-based screening, molecular docking, and dynamics simulation.," Biotechnol. Appl. Biochem., vol. 63, no. 1, pp. 125-37, Feb. 2016.
[99] S.-Y. Huang and X. Zou, "Efficient molecular docking of NMR structures: Application to HIV-1 protease," Protein Sci., vol. 16, no. 1, pp. 43-51, Nov. 2006.
[100] Z. Bikadi and E. Hazai, "Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock.," J. Cheminform., vol. 1, no. 1, p. 15, Jan. 2009.
[101] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, "UCSF Chimera--a visualization system for exploratory research and analysis.," J. Comput. Chem., vol. 25, no. 13, pp. 1605-12, Oct. 2004.
[102] M. W. Chang, C. Ayeni, S. Breuer, and B. E. Torbett, "Virtual Screening for HIV Protease Inhibitors: A Comparison of AutoDock 4 and Vina," PLoS One, vol. 5, no. 8, p. e11955, Aug. 2010.
[103] "Docking (molecular)," Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Docking_(molecular).
[104] "Innovation Opening New Fronts in the War on Cancer," Capital Group. [Online]. Available: https://www.thecapitalgroup.com/us/insights/investment-insights/war-on-cancer.html.
[105] G. Robb, "Computer-aided drug design - an integral part of the discovery process," AstraZeneca, 2013. [Online]. Available:
http://www.labtalk.astrazeneca.com/oncology/computer-aided-drug-design-an-integral-part-of-the-discovery-process/.
[106] "Primary information of p53 gene," bioinformatics.org. [Online]. Available: http://www.bioinformatics.org/p53/introduction.html.
[107] A. Y. T.-B. V. A. H. V.-C. and C. M.-B. Alejandra Hernández-Santoyo, Protein Engineering - Technology and Application. InTech, 2013.
[108] "Operating System - Multi-Threading," tutorialspoint.com. [Online]. Available: http://www.tutorialspoint.com/operating_system/os_multi_threading.htm.

APPENDICES

Appendix A

Sample of Input Files For Docking Experiments

Ligand File

| REMARK | 0 active torsions: |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| REMARK | | status: ('A' for Active; 'I' for Inactive)

0.00	0.041 A					
ATOM	14 CL5 1F0	A	14.895	11.887	30.337	0.00
0.00	-0.084 Cl					
ATOM	15 C53 1F0	A	12.635	10.815	31.385	0.00
0.00	0.021 A					
ATOM	16 C52 1F0	A	11.910	10.159	32.380	0.00
0.00	0.007 A					
ATOM	$17 \mathrm{C} 42 \mathrm{1F0}$	A	9.556	11.785	34.315	0.00
0.00	0.008 A					
ATOM	$18 \mathrm{C} 43 \mathrm{1F0}$	A	9.354	12.981	33.629	0.00
0.00	0.021 A					
ATOM	$19 \mathrm{C44} 1 \mathrm{~F} 0$	A	10.379	13.922	33.552	0.00
0.00	0.041 A					
ATOM	20 CL4 1F0	A	10.137	15.393	32.673	0.00
0.00	-0.084 Cl					
ATOM	21 C45 1F0	A	11.600	13.672	34.172	0.00
0.00	0.021 A					
ATOM	22 C 46 1F0	A	11.794	12.482	34.871	0.00
0.00	0.008 A					
ATOM	23 C10 1F0	A	12.978	7.059	35.425	0.00
0.00	0.310 C					
ATOM	24010 1F0	A	13.183	6.667	34.294	0.00
0.00	-0.253 OA					
ATOM	25 N10 1F0	A	13.169	6.220	36.487	0.00
0.00	-0.275 N					
ATOM	26 C14 1F0	A	13.880	4.941	36.289	0.00
0.00	0.160 C					
ATOM	27 C13 1F0	A	14.711	4.566	37.526	0.00
0.00	0.148 C					
ATOM	28 N12 1F0	A	13.928	4.572	38.814	0.00
0.00	0.249 N					
ATOM	29 C 12 1F0	A	13.249	5.917	38.965	0.00
0.00	0.148 C					
ATOM	30 C11 1F0	A	12.377	6.267	37.741	0.00
0.00	0.160 C					
ATOM	$31 \mathrm{C} 22 \mathrm{1F0}$	A	13.559	9.415	39.098	0.00
0.00	0.015 A					
ATOM	32 C 23 1F0	A	14.477	9.252	40.134	0.00
0.00	0.005 A					
ATOM	$33 \mathrm{C} 24 \mathrm{1FO}$	A	15.758	8.750	39.887	0.00
0.00	-0.040 A					
ATOM	34 C30 1F0	A	16.797	8.569	41.017	0.00
0.00	-0.013 C					
ATOM	35 C33 1F0	A	17.792	9.754	40.991	0.00
0.00	0.016 C					
ATOM	$36 \mathrm{C} 31 \mathrm{1F0}$	A	17.589	7.246	40.846	0.00
0.00	0.016 C					
ATOM	37 C 251 F 0	A	16.098	8.462	38.559	0.00
0.00	0.038 A					
ATOM	38 C26 1F0	A	15.172	8.596	37.515	0.00
0.00	0.086 A					
ATOM	39027 1F0	A	15.527	8.251	36.223	0.00

0.00	-0.346 OA					
ATOM	40 C28 1F0	A	16.855	7.848	35.817	0.00
0.00	0.164 C					
ATOM	41 C 29 1F0	A	16.837	7.543	34.313	0.00
0.00	0.035 C					
ATOM	$42 \mathrm{C} 32 \mathrm{1F0}$	A	16.163	8.516	42.435	0.00
0.00	0.016 C					
ATOM	43 C 161 F 0	A	14.280	4.213	41.357	0.00
0.00	0.176 C					
ATOM	44 C 17 1F0	A	15.260	3.679	42.435	0.00
0.00	0.530 C					
ATOM	45 S17 1F0	A	14.568	4.133	43.989	0.00
0.00	-0.280 S					
ATOM	46 C19 1F0	A	15.491	3.473	45.350	0.00
0.00	0.666 C					
ATOM	47 O17 1F0	A	13.278	3.527	44.023	0.00
0.00	-0.525 OA					
ATOM	48018 1F0	A	14.693	5.552	44.050	0.00
0.00	-0.525 OA					
ATOM	49 C 15 1F0	A	14.886	4.237	39.941	0.00
0.00	0.141 C					
ATOM	50 2HN1 1F0	A	13.190	3.846	38.764	0.00
0.00	0.200 HD					
Endroot						
TORSDOF	10					

Flexible Residue File

```
BEGIN_RES LEU A 50
REMARK 2 active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 1 A between atoms: CA and CB
REMARK 2 A between atoms: CB and CG
ROOT
ATOM 1 CA LEU A 50 9.533 9.929 29.079 1.00
10.27 0.177 C
ENDROOT
BRANCH 1 2
ATOM 2 CB LEU A 50 8.870 10.875 30.081 1.00
10.02 0.038 C
BRANCH 2 3
ATOM 3 CG LEU A 50 8.727 12.295 29.523 1.00
13.36 -0.020 C
ATOM 4 CD2 LEU A 50 10.076 12.999 29.587 1.00
11.01 0.009 C
ATOM 5 CD1 LEU A 50 7.673 13.063 30.296 1.00
11.28 0.009 C
ENDBRANCH 2 3
ENDBRANCH 1 2
END_RES LEU A 50
BEGIN_RES LEU A 53
```

```
REMARK 1 active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 3 A between atoms: CA and CB
REMARK I between atoms: CB and CG
ROOT
ATOM 6 CA LEU A 53 13.763 7.673 27.601 1.00
10.12 0.177 C
ENDROOT
BRANCH 6 7
ATOM 7 CB LEU A 53 13.561 9.190 27.484 1.00
10.09 0.038 C
ATOM 8 CG LEU A 53 14.846 10.013 27.342 1.00
14.17 -0.020 C
ATOM 9 CD2 LEU A 53 14.500 11.493 27.234 1.00
15.42 0.009 C
ATOM 10 CD1 LEU A 53 15.623 9.551 26.114 1.00
13.92 0.009 C
ENDBRANCH 6 7
END_RES LEU A 53
BEGIN_RES ILE A 57
REMAR\overline{K} 1 active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK I between atoms: CA and CB
REMARK 4 A between atoms: CB and CG1
ROOT
ATOM 11 CB ILE A 57 18.694 7.357 31.036 1.00
8.44 0.013 C
ENDROOT
BRANCH 11 12
ATOM 12 CG1 ILE A 57 18.441 8.505 30.053 1.00
10.51 0.002 C 
10.63 0.005 C
ENDBRANCH 11 12
END RES ILE A 57
BEGİN RES HIS A 69
REMARK 2 active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 5 A between atoms: CA and CB
REMARK 6 A between atoms: CB and CG
ROOT
ATOM 14 CA HIS A 69 19.751 12.132 39.250 1.00
10.97 0.182 C
ENDROOT
BRANCH 14 15
ATOM 15 CB HIS A 69 19.087 13.136 40.206 1.00
13.11 0.093 C
BRANCH 15 16
ATOM 16 CG HIS A 69 20.025 14.161 40.764 1.00
13.45 
17.53 0.143 A
```



```
13.21 0.116 A
ENDBRANCH 27 28
ENDBRANCH 26 27
END_RES HIS A 92
BEGIN_RES TYR A 96
REMARK 3 active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 10 A between atoms: CA and CB
REMARK 11 A between atoms: CB and CG
REMARK 12 A between atoms: CZ and OH
ROOT
ATOM 34 CA TYR A 96 9.955 18.557 28.206 1.00
9.98 0.180 C
ENDROOT
BRANCH 34 35
ATOM 35 CB TYR A 96 8.759 19.165 28.947 1.00
10.95 0.073 C
BRANCH 35 36
ATOM 36 CG TYR A 96 7.758 18.146 29.436 1.00
10.20 -0.056 A
ATOM 37 CD2 TYR A 96 6.561 17.944 28.758 1.00
12.34 0.010 A
ATOM 38 CE2 TYR A 96 5.646 16.998 29.188 1.00
10.72 0.037 A
ATOM 39 CZ TYR A 96 5.924 16.244 30.307 1.00
12.51 0.065 A
ATOM 40 CE1 TYR A 96 7.105 16.426 31.000 1.00
12.43 0.037 A
ATOM 41 CD1 TYR A 96 8.014 17.373 30.562 1.00
10.18 0.010 A
BRANCH 39 42
ATOM 42 OH TYR A 96 5.018 15.302 30.733 1.00
14.86 -0.361 OA
ATOM 43 HH TYR A 96 4.184 15.730 30.939 1.00
0.00 0.217 HD
ENDBRANCH 39 42
ENDBRANCH 35 36
ENDBRANCH 34 35
END RES TYR A 96
```


Grid Parameter File

```
npts 60 62 62
gridfld 4ipf_rigid.maps.fld
spacing 0.375
receptor_types A C NA OA N SA HD
ligand_types A C Cl NA OA N S HD
receptor 4ipf_rigid.pdbqt
gridcenter 13.988 9.562 35.855
smooth 0.5
rad(A)
```

```
# num.grid points in xyz
# grid_data_file
# spacing(A)
# receptor atom types
# ligand atom types
# macromolecule
# xyz-coordinates or auto
# store minimum energy w/in
```

```
map 4ipf_rigid.A.map
map 4ipf_rigid.C.map
map 4ipf_rigid.cl.map
map 4ipf_rigid.NA.map
map 4ipf_rigid.OA.map
map 4ipf_rigid.N.map
map 4ipf_rigid.S.map
map 4ipf_rigid.HD.map
elecmap 4ipf_rigid.e.map
map
dsolvmap 4ipf_rigid.d.map
map
dielectric -0.1465
dep.diel;>0, constant
```


Docking Parameter File

```
autodock_parameter_version 4.2
validate parameter set
outlev 1
intelec
electrostatics
seed pid time
ligand_types A C Cl NA OA N S HD
fld 4ipf_rigid.maps.fld
map 4ipf_rigid.A.map
map 4ipf rigid.c.map
map 4ipf rigid.cl.map
map 4ipf rigid.NA.map
map 4ipf_rigid.OA.map
map 4ipf rigid.N.map
map 4ipf_rigid.S.map
map 4ipf_rigid.HD.map
elecmap 4ipf_rigid.e.map
desolvmap 4ipf_rigid.d.map
move 4ipf lig.pdbqt
flexres 4ipf_flex.pdbqt
flexible residues
about 13.5638 8.4251 37.0794
tran0 random
random
quaternion0 random
dihe0 random
(relative) or random
torsdof 10
freedom
rmstol 2.0
extnrg 1000.0
e0max 0.0 10000
number of retries
ga_pop_size 150
```

```
# atom-specific affinity map
# electrostatic potential
    # desolvation potential
# <0, AD4 distance-
```

```
# used by autodock to
# diagnostic output level
# calculate internal
# seeds for random generator
# atoms types in ligand
# grid_data_file
# atom-specific affinity map
# electrostatics map
# desolvation map
# small molecule
    # file containing
# small molecule center
# initial coordinates/A or
# initial orientation
# initial dihedrals
    # torsional degrees of
# cluster_tolerance/A
# external grid energy
# max initial energy; max
# number of individuals in
```

```
population
ga_num_evals 20000000
evaluations
ga_num_generations 27000
generations
ga_elitism 1
to survive to next generation
ga_mutation_rate 0.02
ga_crossover_rate 0.8
ga_window_size 10
ga_cauchy_alpha 0.0
distribution
ga_cauchy_beta 1.0
distribution
set_ga
for GA or LGA
sw_max_its 300
local search
sw_max_succ 4
before changing rho
sw_max_fail 4
before changing rho
sw_rho 1.0
to sample
sw_lb_rho 0.01
ls_search_freq 0.06
local search on individual
set_psw1
& Wets parameters
unbound_model bound
ga_run \overline{100}
runs
analysis
analysis
```


Vina Configuration File

```
receptor = 4ipf_rigid.pdbqt
flex = 4ipf_flex.pdbqt
ligand = 4ipf_lig.pdbqt
out = out.4ipf.pdbqt
center_x = 13.988
center_y = 9.562
center_z = 35.855
size_x = 27
size_y = 27
size_z = 27
```

exhaustiveness = 12

Ligand Input File

0.00	0.200 HD					
Endroot						
BRANCH 717						
ATOM	17 C 21 1F0	A	13.874	9.070	37.782	0.00
0.00	0.045 A					
ATOM	$18 \mathrm{C} 22 \mathrm{1F0}$	A	13.559	9.415	39.098	0.00
0.00	0.015 A					
ATOM	19 C 23 1F0	A	14.477	9.252	40.134	0.00
0.00	0.005 A					
ATOM	$20 \mathrm{C} 24 \mathrm{1F0}$	A	15.758	8.750	39.887	0.00
0.00	-0.040 A					
ATOM	21 C 25 1F0	A	16.098	8.462	38.559	0.00
0.00	0.038 A					
ATOM	22 C 26 1F0	A	15.172	8.596	37.515	0.00
0.00	0.086 A					
BRANCH	2023					
ATOM	23 C30 1F0	A	16.797	8.569	41.017	0.00
0.00	-0.013 C					
ATOM	24 C33 1F0	A	17.792	9.754	40.991	0.00
0.00	0.016 C					
ATOM	25 C31 1F0	A	17.589	7.246	40.846	0.00
0.00	0.016 C					
ATOM	26 C32 1F0	A	16.163	8.516	42.435	0.00
0.00	0.016 C					
EndBRANCH 2023						
BRANCH	2227					
ATOM	27 O27 1F0	A	15.527	8.251	36.223	0.00
0.00	-0.346 OA					
BRANCH	2728					
ATOM	28 C 28 1F0	A	16.855	7.848	35.817	0.00
0.00	0.164 C					
ATOM	29 C 29 1F0	A	16.837	7.543	34.313	0.00
0.00	0.035 C					
ENDBRANCH 2728						
ENDBRANCH 2227						
EndBRANCH 717						
BRANCH 230						
ATOM	30 C51 1F0	A	12.522	9.750	33.579	0.00
0.00	-0.021 A					
ATOM	31 C56 1F0	A	13.883	10.041	33.743	0.00
0.00	0.007 A					
ATOM	32 C 551 F 0	A	14.610	10.691	32.750	0.00
0.00	0.021 A					
ATOM	33 C54 1F0	A	13.989	11.076	31.567	0.00
0.00	0.041 A					
ATOM	34 CL5 1F0	A	14.895	11.887	30.337	0.00
0.00	-0.084 Cl					
ATOM	35 C53 1F0	A	12.635	10.815	31.385	0.00
0.00	0.021 A					
ATOM	36 C52 1F0	A	11.910	10.159	32.380	0.00
0.00	0.007 A					
ENDBRANCH 230						

Grid Parameter File

```
npts 60 62 62
gridfld 4ipf_rigid.maps.fld
spacing 0.375
receptor_types A C HD N NA OA SA
ligand_types A C Cl NA OA N S HD
receptor 4ipf_rigid.pdbqt
gridcenter 13.988 9.562 35.855
smooth 0.5
rad(A)
```

```
map 4ipf_rigid.A.map
map 4ipf_rigid.C.map
map 4ipf_rigid.cl.map
map 4ipf_rigid.NA.map
map 4ipf_rigid.OA.map
map 4ipf_rigid.N.map
map 4ipf_rigid.S.map
map 4ipf_rigid.HD.map
elecmap 4ipf_rigid.e.map
map
dsolvmap 4ipf_rigid.d.map
map
dielectric -0.1465
dep.diel;>0, constant
```


Docking Parameter File

```
autodock_parameter_version 4.2
validate parameter set
outlev 1
intelec
electrostatics
seed pid time
ligand_types A C Cl NA OA N S HD
fld 4ipf_rigid.maps.fld
map 4ipf_rigid.A.map
map 4ipf rigid.c.map
map 4ipf rigid.cl.map
map 4ipf rigid.NA.map
map 4ipf_rigid.OA.map
map 4ipf_rigid.N.map
map 4ipf rigid.S.map
map 4ipf_rigid.HD.map
elecmap 4ipf_rigid.e.map
desolvmap 4ipf_rigid.d.map
move 4ipf lig.pdbqt
about 13.5638 8.4251 37.0794
tran0 random
random
quaternion0 random
dihe0 random
(relative) or random
torsdof 10
freedom
rmstol 2.0
extnrg 1000.0
e0max 0.0 10000
number of retries
ga_pop_size 150
population
ga_num_evals 20000000
```

```
# atom-specific affinity map
# electrostatic potential
    # desolvation potential
# <0, AD4 distance-
```

```
# used by autodock to
# diagnostic output level
# calculate internal
# seeds for random generator
# atoms types in ligand
# grid_data_file
# atom-specific affinity map
# electrostatics map
# desolvation map
# small molecule
# small molecule center
# initial coordinates/A or
# initial orientation
# initial dihedrals
    # torsional degrees of
# cluster_tolerance/A
# external grid energy
# max initial energy; max
# number of individuals in
    # maximum number of energy
```

```
evaluations
ga num generations 27000
generations
ga_elitism 1
to survive to next generation
ga_mutation_rate 0.02
ga_crossover_rate 0.8
ga_window_size 10
ga_cauchy_alpha 0.0
distribution
ga_cauchy_beta 1.0
distributíon
set_ga
for GA or LGA
sw max its 300
local search
sw_max_succ 4
before changing rho
sw_max_fail 4
before changing rho
sw_rho 1.0
to sample
sw_lb_rho 0.01
ls_search_freq 0.06
local search on individual
set_psw1
& Wets parameters
unbound_model bound
ga_run \overline{100}
runs
analysis
analysis
```


Vina Configuration File

```
receptor = 4ipf.rec.pdbqt
ligand = 4ipf.lig.pdbqt
out = out.4ipf.pdbqt
center_x = 13.988
center_y = 9.562
center_z = 35.855
size_x = 27
size_y = 27
size_z = 27
exhaustiveness = 12
```


Ligand Input File

REMARK	6 active torsions:						
REMARK	status:	('A' for Active; 'I' for Inactive)					
REMARK	I	between atoms: N1_1 and C10_23					
REMARK	1 A	between atoms:		C5-2	d C51-4		
REMARK	2 A	between between	ween atoms:	C4_5	and C41		
REMARK	3 A			C2-9	d $\mathrm{C} 21^{-} 10$		
REMARK	I	between atoms: between atoms:		C10]23	and N	10 25	
REMARK	I	between atoms:		N12_28	and C	15_49	
REMARK	4 A	between atoms:		C24-33	and C	30-34	
REMARK	I	between atoms:		C26-38	and 0	27-39	
REMARK	I	between atoms:		O27_39	and C	28_40	
REMARK	5 A	between atoms:		C16_43	and C	$17-44$	
REMARK	I	between atoms:		: C16_43	and C	15_49	
REMARK	6 A	between atoms:		: C17_44	and S	17_45	
ROOT							
ATOM	1 N 1	1 F 0	A	12.593	8.448	35.680	0.00
0.00	-0.226 N						
ATOM	2 C 5	1 F 0	A	11.693	9.088	34.737	0.00
0.00	0.096 C						
ATOM	3 C 57	1 F 0	A	10.648	8.109	34.173	0.00
0.00	0.041 C						
ATOM	4 C4	1F0	A	11.040	10.162	35.660	0.00
0.00	0.111 C						
ATOM	5 C 47	1F0	A	9.715	9.646	36.222	0.00
0.00	0.045 C						
ATOM	6 N3	1 FO	A	11.997	10.317	36.772	0.00
0.00	-0.255 NA						
ATOM	7 C 2	1 F 0	A	12.817	9.323	36.800	0.00
0.00	0.134 C						
ATOM	8 C 10	1F0	A	13.066	7.097	35.478	0.00
0.00	0.310 C						
ATOM	9010	1F0 A	A	13.331	6.708	34.334	0.00
0.00	-0.253 OA						
ATOM	10 N 10	1F0	A	13.241	6.247	36.580	0.00
0.00	-0.275 N						
ATOM	11 C14	1F0	A	13.894	4.961	36.360	0.00
0.00	0.160 C						
ATOM	12 C 13	1F0	A	14.773	4.636	37.554	0.00
0.00	0.148 C						
ATOM	13 N12	1F0	A	13.986	4.650	38.811	0.00
0.00	0.249 N						
ATOM	14 C12	1F0 A		13.338	5.980	39.031	0.00
0.00	0.148 C						
ATOM	15 C 11	1 FO		12.468	6.395	37.819	0.00
0.00	0.160 C						
ATOM	16 C16	1 F 0		14.105	4.266	41.285	0.00
0.00	0.176 C						
ATOM	17 C15	1 FO A		14.837	4.223	39.942	0.00
0.00	0.141 C						

ATOM	18 2HN1 1FO	A	13.248	3.967	38.713	0.00
0.00	0.200 HD					
Endroot						
BRANCH	219					
ATOM	$19 \mathrm{C} 51 \mathrm{1F0}$	A	12.519	9.725	33.633	0.00
0.00	-0.021 A					
ATOM	20 C56 1F0	A	13.895	9.911	33.814	0.00
0.00	0.007 A					
ATOM	21 C55 1F0	A	14.651	10.585	32.847	0.00
0.00	0.021 A					
ATOM	$22 \mathrm{C} 54 \mathrm{1F0}$	A	14.023	11.069	31.699	0.00
0.00	0.041 A					
ATOM	23 CL5 1F0	A	14.949	12.020	30.533	0.00
0.00	-0.084 Cl					
ATOM	24 C53 1F0	A	12.664	10.823	31.476	0.00
0.00	0.021 A					
ATOM	25 C52 1F0	A	11.913	10.151	32.443	0.00
0.00	0.007 A					
ENDBRANCH 219						
BRANCH 726						
ATOM	26 C21 1F0	A	13.848	9.094	37.832	0.00
0.00	0.045 A					
ATOM	27 C22 1F0	A	13.564	9.406	39.163	0.00
0.00 0.015 A						
ATOM	28 C 23 1F0	A	14.532	9.237	40.156	0.00
$0.00 \quad 0.005 \mathrm{~A}$						
ATOM	$29 \mathrm{C} 24 \mathrm{1F0}$	A	15.800	8.743	39.831	0.00
$0.00-0.040 \mathrm{~A}$						
ATOM	30 C 251 FO	A	16.109	8.427	38.504	0.00
0.00 0.038 A						
ATOM	$31 \mathrm{C} 26 \mathrm{1F0}$	A	15.127	8.612	37.519	0.00
0.00 0.086 A						
ATOM	32 O 27 1F0	A	15.422	8.340	36.211	0.00
$0.00-0.346 \mathrm{OA}$						
ATOM	33 C 28 1F0	A	16.739	7.881	35.949	0.00
0.00	0.164 C					
ATOM	34 C 29 1F0	A	16.882	7.542	34.459	0.00
$0.00 \quad 0.035 \mathrm{C}$						
BRANCH 2935						
ATOM	35 C30 1F0	A	16.824	8.563	40.922	0.00
0.00	-0.013 C					
ATOM	36 C33 1F0	A	17.797	9.747	40.911	0.00
0.00	0.016 C					
ATOM	37 C31 1F0	A	17.604	7.264	40.697	0.00
0.00	0.016 C					
ATOM	38 C32 1F0	A	16.117	8.501	42.279	0.00
$0.00 \quad 0.016 \mathrm{C}$						
ENDBRANCH 2935						
ENDBRANCH 726						
BRANCH	439					
ATOM	39 C41 1F0	A	10.803	11.463	34.943	0.00
0.00	-0.018 A					

ATOM	$40 \mathrm{C42} 1 \mathrm{FO}$		9.543	11.722	34.394	0.00
0.00	0.008 A					
ATOM	41 C 431 F 0	A	9.314	12.907	33.701	0.00
0.00	0.021 A					
ATOM	42 C 441 F 0	A	10.353	13.825	33.559	0.00
0.00	0.041 A					
ATOM	43 CL4 1F0	A	10.088	15.305	32.647	0.00
0.00	-0.084 Cl					
ATOM	44 C 451 F 0	A	11.608	13.583	34.122	0.00
0.00	0.021 A					
ATOM	45 C46 1F0	A	11.828	12.400	34.819	0.00
0.00	0.008 A					
ENDBRANCH 439						
BRANCH	1646					
ATOM	46 C17 1F0	A	15.068	3.786	42.382	0.00
0.00	0.530 C					
BRANCH	4647					
ATOM	47 S17 1F0	A	14.470	4.217	43.996	0.00
0.00	-0.280 S					
ATOM	$48 \mathrm{C19} 1 \mathrm{F0}$	A	15.569	3.418	45.143	0.00
0.00	0.666 C					
ATOM	49017 1F0	A	13.138	3.656	44.163	0.00
0.00	-0.525 OA					
ATOM	50 O18 1F0	A	14.594	5.666	44.158	0.00
$0.00-0.525$ OA						
ENDBRANCH 4647						
ENDBRANCH 1646						
TORSDOF 10						

Flexible Residue File

```
BEGIN_RES LEU A 50
REMARK 2 active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 1 A between atoms: CA and CB
REMARK 2 A between atoms: CB and CG
ROOT
ATOM 1 CA LEU A 50 9.533 9.929 29.079 1.00
10.27 0.186 C
ENDROOT
BRANCH 1 2
ATOM 2 CB LEU A 50 8.870 10.875 30.081 1.00
10.02 0.034 C
BRANCH 2 3
ATOM 3 CG LEU A 50 8.727 12.295 29.523 1.00
13.36 0.002 C
ATOM 4 CD1 LEU A 50 7.673 13.063 30.296 1.00
11.28 0.000 C
ATOM 5 CD2 LEU A 50 10.076 12.999 29.587 1.00
11.01 0.000 C
ENDBRANCH 2 3
```

```
ENDBRANCH 1 2
END_RES LEU A 50
BEGIN_RES LEU A 53
REMARK 2 active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 3 A between atoms: CA and CB
REMARK 4 A between atoms: CB and CG
ROOT
ATOM 6 CA LEU A 53 13.763 7.673 27.601 1.00
10.12 0.186 C
ENDROOT
BRANCH 6 7
ATOM 7 CB LEU A 53 13.561 9.190 27.484 1.00
10.09 0.034 C
BRANCH 7 8
ATOM 8 CG LEU A 53 14.846 10.013 27.342 1.00
14.17 0.002 C
ATOM 9 CD2 LEU A 53 14.500 11.493 27.234 1.00
15.42 0.000 C
ATOM 10 CD1 LEU A 53 15.623 9.551 26.114 1.00
13.92 0.000 C
ENDBRANCH 7 8
ENDBRANCH 6 7
END_RES LEU A 53
BEGIN_RES HIS A 69
REMAR\overline{K}}2\mathrm{ active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 5 A between atoms: CA and CB
REMARK 6 A between atoms: CB and CG
ROOT
ATOM 11 CA HIS A 69 19.751 12.132 39.250 1.00
10.97 0.192 C
ENDROOT
BRANCH 11 12
ATOM 12 CB HIS A 69 19.087 13.136 40.206 1.00
13.11 0.082 C
BRANCH 12 13
ATOM 13 CG HIS A 69 20.025 14.161 40.764 1.00
13.45 0.082 A
ATOM 14 ND1 HIS A 69 20.296 15.350 40.123 1.00
16.07 -0.227 NA
ATOM 15 CE1 HIS A 69 21.155 16.050 40.842 1.00
18.20 0.199 A
ATOM 16 NE2 HIS A 69 21.452 15.357 41.926 1.00
17.19 -0.221 NA
ATOM 17 CD2 HIS A 69 20.759 14.170 41.902 1.00
17.53 0.116 A
ENDBRANCH 12 13
ENDBRANCH 11 12
END RES HIS A 69
```


Grid Parameter File

```
npts 60 62 62
gridfld 4ipf_rigid.maps.fld
spacing 0.375
receptor_types A C N NA OA SA HD
ligand_types A C Cl NA OA N S HD
receptor 4ipf_rigid.pdbqt
gridcenter 13.988 9.562 35.855
smooth 0.5
rad(A)
map 4ipf_rigid.A.map
map 4ipf_rigid.C.map
map 4ipf_rigid.cl.map
map 4ipf_rigid.NA.map
map 4ipf_rigid.OA.map
map 4ipf_rigid.N.map
map 4ipf_rigid.S.map
map 4ipf_rigid.HD.map
elecmap 4ipf_rigid.e.map
map
dsolvmap 4ipf_rigid.d.map
map
dielectric -0.1465
dep.diel;>0, constant
```


Docking Parameter File

```
autodock_parameter_version 4.2
validate parameter set
outlev 1
intelec
electrostatics
seed pid time
ligand_types A C Cl NA OA N S HD
fld 4ipf_rigid.maps.fld
map 4ipf_rigid.A.map
map 4ipf_rigid.C.map
map 4ipf_rigid.cl.map
map 4ipf_rigid.NA.map
map 4ipf_rigid.OA.map
map 4ipf_rigid.N.map
map 4ipf_rigid.S.map
map 4ipf_rigid.HD.map
elecmap 4ipf_rigid.e.map
desolvmap 4ipf_rigid.d.map
move 4ipf_lig.pdbqt
flexres 4ípf_flex.pdbqt
flexible resíidues
about 13.5629 8.4362 37.0971
tran0 random
```

```
# num.grid points in xyz
# grid_data_file
# spacing(A)
    # receptor atom types
# ligand atom types
# macromolecule
# xyz-coordinates or auto
# store minimum energy w/in
# atom-specific affinity map
# electrostatic potential
    # desolvation potential
# <0, AD4 distance-
```

\# used by autodock to
\# diagnostic output level
\# calculate internal
\# seeds for random generator
\# atoms types in ligand
\# grid_data file
\# atom-specīfic affinity map
\# atom-specific affinity map
\# electrostatics map
\# desolvation map
\# small molecule
\# file containing
\# small molecule center
\# initial coordinates/A or

```
random
quaternion0 random
dihe0 random
    (relative) or random
torsdof 10
freedom
rmstol 2.0
extnrg 1000.0
e0max 0.0 10000
number of retries
ga_pop_size 150
population
ga_num_evals 20000000
evaluations
ga_num_generations 27000
generations
ga_elitism 1
to survive to next generation
ga_mutation_rate 0.02
ga_crossover_rate 0.8
ga_window_size 10
ga_cauchy_alpha 0.0
distribution
ga_cauchy_beta 1.0
distribution
set_ga
for GA or LGA
sw_max_its 300
local search
sw_max_succ 4
before changing rho
sw max fail 4
bef
sw_rho 1.0
to sample
sw_lb_rho 0.01
ls_search_freq 0.06
local search on individual
set_psw1
& Wets parameters
unbound_model bound
ga_run \overline{100}
runs
analysis
analysis
```


Vina Configuration File

```
receptor = 4ipf_rigid.pdbqt
flex = 4ipf_flex.pdbqt
ligand = 4ipf_lig.pdbqt
```

```
out = out.4ipf.pdbqt
center_x = 13.988
center_y = 9.562
center_z = 35.855
size_x = 27
size_y = 27
size_z = 27
exhaustiveness = 12
```


Ligand Input File

| ATOM | 37 2 HN1 I09 A | 9.731 | 10.688 | -1.385 | 0.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.00 | 0.278 HD | | | | |
| ATOM | 38 3HN1 I09 A | 10.141 | 11.378 | 0.059 | 0.00 |
| 0.00 | 0.278 HD | | | | |
| ATOM | 39 4HO1 I09 A | 10.882 | 17.281 | 0.483 | 0.00 |
| 0.00 | 0.210 HD | | | | |
| ATOM | 40 5HO1 I09 A | 13.053 | 18.425 | -1.937 | 0.00 |
| 0.00 | 0.209 HD | | | | |
| ENDROOT | | | | | |
| TORSDOF 11 | | | | | |

Flexible Residue File


```
32.69 0.002 C
ATOM 10 CD1 ILE A 57 9.258 5.022 3.961 1.00
30.75 0.005 C
ENDBRANCH 7 9
ENDBRANCH 6 7
END_RES ILE A 57
BEGIN_RES VAL A 89
REMARK 1 active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 5 A between atoms: CA and CB
ROOT
ATOM 11 CA VAL A 89 13.479 10.288 4.280 1.00
30.94 0.180 C
ENDROOT
BRANCH 11 12
ATOM 12 CB VAL A 89 12.045 10.614 3.779 1.00
27.73 0.009 C
ATOM 13 CG1 VAL A 89 11.030 9.813 4.563 1.00
28.65 0.012 C
ATOM 14 CG2 VAL A 89 11.769 12.096 3.902 1.00
29.10 0.012 C
ENDBRANCH 11 12
END_RES VAL A 89
BEGİN_RES ILE A 95
REMAR\overline{K}}2\mathrm{ active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 6 A between atoms: CA and CB
REMARK 7 A between atoms: CB and CG1
ROOT
ATOM 15 CA ILE A 95 18.516 4.625 3.211 1.00
26.56 0.180 C
ENDROOT
BRANCH 15 16
ATOM 16 CB ILE A 95 17.419 5.493 2.567 1.00
27.98 0.013 C
ATOM 17 CG2 ILE A 95 16.365 4.619 1.878 1.00
24.30 0.012 C
BRANCH 16 18
ATOM 18 CG1 ILE A 95 16.779 6.376 3.646 1.00
27.40 0.002 C
ATOM 19 CD1 ILE A 95 15.909 7.506 3.097 1.00
29.20 0.005 C
ENDBRANCH 16 18
ENDBRANCH 15 16
END RES ILE A 95
BEG\overline{IN RES LYS A }90
REMAR\overline{K}}5\mathrm{ active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 8 A between atoms: CA and CB
REMARK 9 A between atoms: CB and CG
REMARK 10 A between atoms: CG and CD
REMARK 11 A between atoms: CD and CE
```

REMARKROOT	12 A					CE	and NZ		1.00
ATOM	20	CA	LYS	A	90	16.135	12.789	3.183	
34.59		176	C						
ENDROOT									
BRANCH 20	20	21							
ATOM	21	CB	LYS	A	90	16.176	14.231	3.703	1.00
37.01		035	C						
BRANCH 2	21	22							
ATOM	22	CG	LYS	A	90	15.016	15.094	3.270	1.00
38.28		004	C						
BRANCH 2	22	23							
ATOM	23	CD	LYS	A	90	15.117	16.472	3.909	1.00
44.74		027	C						
BRANCH 23	23	24							
ATOM	24	CE	LYS	A	90	14.329	17.506	3.125	1.00
48.47		229	C						
BRANCH 24	24	25							
ATOM	25	NZ	LYS	A	90	14.085	18.742	3.928	1.00
52.71	-0.	079	N						
ATOM		Hz2	2 LYS	A	90	13.124	19.031	3.817	1.00
0.00	0.2	74							
ATOM	27	HZ3	3 LYS	A	90	14.268	18.552	4.903	1.00
0.00	0.2	74							
ATOM		HZ1	1 LYS	A	90	14.697	19.479	3.608	1.00
0.00	0.2	74	HD						
ENDBRANCH	H 2	4	25						
EndBRANCH	H 2	3	24						
ENDBRANCH	H 2	2	23						
EndBRANCH	H 2	1	22						
EndBRANCH	H 2	0	21						
END_RES LYS A			90						

Grid Parameter File

```
npts 60 62 62
gridfld 4jrg_rigid.maps.fld
spacing 0.37\overline{5}
receptor_types A C HD N NA OA SA
ligand_types A C Cl NA OA N HD
receptor 4jrg_rigid.pdbqt
gridcenter 11.493 10.5 2.759
smooth 0.5
rad(A)
map 4jrg_rigid.A.map
map 4jrg_rigid.C.map
map 4jrg_rigid.cl.map
map 4jrg_rigid.NA.map
map 4jrg_rigid.OA.map
map 4jrg_rigid.N.map
map 4jrg_rigid.HD.map
```

```
elecmap 4jrg_rigid.e.map
map
dsolvmap 4jrg_rigid.d.map
map
dielectric -0.1465
dep.diel;>0, constant
# electrostatic potential
    # desolvation potential
# <0, AD4 distance-
```


Docking Parameter File

```
autodock_parameter_version 4.2
validate parameter set
outlev 1
intelec
electrostatics
seed pid time
ligand_types A C Cl NA OA N HD
fld 4jrgg_rigid.maps.fld
map 4jrg_rigid.A.map
map 4jrg_rigid.C.map
map 4jrg_rigid.cl.map
map 4jrg_rigid.NA.map
map 4jrg_rigid.OA.map
map 4jrg_rigid.N.map
map 4jrg_rigid.HD.map
elecmap 4jrg_rigid.e.map
desolvmap 4jrg_rigid.d.map
move 4jrg_lig.pdbqt
flexres 4j̄rg_flex.pdbqt
residues
about 11.8028 10.3609 -0.2311
tran0 random
random
quaternion0 random
dihe0 random
(relative) or random
torsdof 11
freedom
rmstol 2.0
extnrg 1000.0
e0max 0.0 10000
number of retries
ga_pop_size 150
population
ga_num_evals 20000000
evāluations
ga_num_generations 27000
geñerations
ga_elitism 1
to survive to next generation
ga_mutation_rate 0.02
# used by autodock to
# diagnostic output level
# calculate internal
# seeds for random generator
# atoms types in ligand
# grid_data_file
# atom-specīfic affinity map
# atom-specific affinity map
# electrostatics map
# desolvation map
# small molecule
# file containing flexible
# small molecule center
# initial coordinates/A or
# initial orientation
# initial dihedrals
    # torsional degrees of
# cluster_tolerance/A
# externa\overline{l grid energy}
# max initial energy; max
# number of individuals in
# maximum number of energy
# maximum number of
# number of top individuals
# rate of gene mutation
```

```
ga_crossover_rate 0.8
ga_window_size 10
ga_cauchy_alpha 0.0
distribution
ga_cauchy_beta 1.0 # Beta parameter Cauchy
distribution
set_ga # set the above parameters
for GA or LGA
sw_max_its 300 # iterations of Solis & Wets
local search
sw_max_succ 4 # consecutive successes
be\overline{fore changing rho}
sw_max_fail 4 # consecutive failures
before changing rho
sw_rho 1.0 # size of local search space
to sample
sw_lb_rho 0.01 # lower bound on rho
ls_search_freq 0.06 # probability of performing
local search on individual
set_psw1 # set the above pseudo-Solis
& Wets parameters
unbound_model bound # state of unbound ligand
ga_run \overline{1}00 # do this many hybrid GA-LS
runs
analysis # perform a ranked cluster
analysis
```


Vina Configuration File

```
receptor = 4jrg_rigid.pdbqt
flex = 4jrg_flex.pdbqt
ligand = 4jrg_lig.pdbqt
out = out.4jrg.pdbqt
center_x = 11.493
center_y = 10.5
center_z = 2.759
size_x = 27
size_y = 27
size_z = 27
exhaustiveness = 12
```


Ligand Input File

```
REMARK 12 active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 1 A between atoms: C1_1 and C10_2
```


0.00	-0.033 A					
ATOM	18 C32 I09	A	12.218	7.516	1.745	0.00
0.00	0.011 A					
ATOM	19 C33 I09	A	12.538	6.429	2.561	0.00
0.00	0.024 A					
ATOM	20 C34 I09	A	12.299	5.122	2.104	0.00
0.00	0.034 A					
ATOM	21 C35 I09	A	11.742	4.901	0.841	0.00
0.00	0.024 A					
ATOM	22 CL3 I09	A	12.718	3.745	3.119	0.00
0.00	-0.084 Cl					
ATOM	23 C36 I09	A	11.426	5.988	0.024	0.00
0.00	0.011 A					
ENDBRAN	$\begin{array}{lll}\text { H } & 8 & 17\end{array}$					
BRANCH	924					
ATOM	24 C21 I09	A	13.595	9.007	-1.435	0.00
0.00	-0.048 A					
ATOM	25 C26 I09	A	13.601	9.292	-2.802	0.00
0.00	0.007 A					
ATOM	26 C25 I09	A	14.641	8.817	-3.613	0.00
0.00	0.002 A					
ATOM	27 C24 I09	A	15.678	8.063	-3.063	0.00
0.00	0.024 A					
ATOM	28 C23 I09	A	15.669	7.801	-1.685	0.00
0.00	0.034 A					
ATOM	29 C22 I09	A	14.630	8.269	-0.877	0.00
0.00	0.031 A					
ATOM	30 CL2 I09	A	16.985	6.894	-0.955	0.00
0.00	-0.084 Cl					
ENDBRAN	CH 924					
ENDBRAN	H 1					
BRANCH	131					
ATOM	31 N11 I09	A	11.556	12.817	0.220	0.00
0.00	-0.359 N					
ATOM	32 H11 I09	A	10.568	12.607	0.234	0.00
0.00	0.162 HD					
BRANCH	3133					
ATOM	33 C12 I09	A	12.033	14.023	0.890	0.00
0.00	0.125 C					
BRANCH	$33 \quad 34$					
ATOM	34 C13 I09	A	12.241	15.149	-0.123	0.00
0.00	0.053 C					
BRANCH	3435					
ATOM	35 C14 I09	A	12.646	16.423	0.616	0.00
0.00	0.143 C					
BRANCH	3536					
ATOM	36014109	A	11.500	17.054	1.182	0.00
0.00	-0.393 OA					
ATOM	37 4HO1 I09	A	10.882	17.281	0.483	0.00
0.00	0.210 HD					
ENDBRANCH 3536						

```
ATOM 38 C15 I09 A 13.403 17.385 -0.310 0.00
0.00 0.195 C
BRANCH 38 39
ATOM 39 O15 I09 A 12.564 17.825 -1.369 0.00
0.00 -0.398 OA
ATOM 40 5HO1 I09 A 13.053 18.425 -1.937 0.00
0.00 0.209 HD
ENDBRANCH 38 39
ENDBRANCH 35 38
ENDBRANCH 34 35
ENDBRANCH 33 34
ENDBRANCH 31 33
ENDBRANCH 1 31
TORSDOF 11
```


Grid Parameter File

```
npts 60 62 62
gridfld 4jrg_rigid.maps.fld
spacing 0.37\overline{5}
receptor_types A C H HD N NA OA SA
ligand types A C Cl NA OA N HD
receptor 4jrg_rigid.pdbqt
gridcenter 11.493 10.5 2.759
smooth 0.5
rad(A)
map 4jrg rigid.A.map
map 4jrg_rigid.C.map
map 4jrg_rigid.Cl.map
map 4jrg_rigid.NA.map
map 4jrg_rigid.OA.map
map 4jrg_rigid.N.map
map 4jrg_rigid.HD.map
elecmap 4jrg_rigid.e.map
map
dsolvmap 4jrg_rigid.d.map
map
dielectric -0.1465 # <0, AD4 distance-
dep.diel;>0, constant
```

```
# num.grid points in xyz
```


num.grid points in xyz

grid_data_file

grid_data_file

spacing(A)

spacing(A)

receptor atom types

receptor atom types

ligand atom types

ligand atom types

macromolecule

macromolecule

xyz-coordinates or auto

xyz-coordinates or auto

store minimum energy w/in

store minimum energy w/in

atom-specific affinity map

electrostatic potential

electrostatic potential

 # desolvation potential
    ```
    # desolvation potential
```


Docking Parameter File

```
autodock_parameter_version 4.2
validate parameter set
outlev 1
intelec
electrostatics
seed pid time
ligand_types A C Cl NA OA N HD
fld 4jrg_rigid.maps.fld
map 4jrg_rigid.A.map
# used by autodock to
# diagnostic output level
# calculate internal
# seeds for random generator
# atoms types in ligand
# grid_data_file
# atom-specific affinity map
```

```
map 4jrg_rigid.C.map
map 4jrg_rigid.cl.map
map 4jrg_rigid.NA.map
map 4jrg_rigid.OA.map
map 4jrg_rigid.N.map
map 4jrg_rigid.HD.map
elecmap 4jrg_rigid.e.map
desolvmap 4jrg_rigid.d.map
move 4jrg_lig.pdbqt
about 11.8028 10.3609 -0.2311
tran0 random
random
quaternion0 random
dihe0 random
(relative) or random
torsdof 12
freedom
rmstol 2.0
extnrg 1000.0
e0max 0.0 10000
number of retries
ga_pop_size 150
population
ga_num_evals 20000000
evaluations
ga_num_generations 27000
generations
ga_elitism 1
to survive to next generation
ga_mutation_rate 0.02
ga_crossover_rate 0.8
ga_window_size 10
ga_cauchy_alpha 0.0
distribution
ga_cauchy_beta 1.0
distribution
set_ga
for GA or LGA
sw_max_its 300
local search
sw_max_succ 4
before changing rho
sw_max_fail 4
before changing rho
sw_rho 1.0
to sample
sw_lb_rho 0.01
ls_search_freq 0.06
local search on individual
set_psw1
& Wets parameters
unbound_model bound
```

```
ga_run 100
    # do this many hybrid GA-LS
runs
analysis # perform a ranked cluster
analysis
```


Vina Configuration File

```
receptor = 4jrg_rec.pdbqt
ligand = 4jrg_lig.pdbqt
out = out.4jrg.pdbqt
center_x = 11.493
center_y = 10.5
center_z = 2.759
size_x = 27
size_y = 27
size_z = 27
exhaustiveness = 12
```


Ligand Input File

| REMARK | 6 active torsions: | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| REMARK | status: ('A' for Active; 'I' for Inactive) | | | | | | | |
| REMARK | betwe | | | atoms: | C1 1 | and C10 | | |
| REMARK | I | between atoms: | | | C10 2 | and N 1 | 1 3 | |
| REMARK | I | between atoms: | | | N11-3 | and C1 | 2-4 | |
| REMARK | I | between | | atoms: | C12 4 | and C1 | 35 | |
| REMARK | I | between | | atoms: | C13 ${ }^{-}$ | and C1 | 4-6 | |
| REMARK | 1 A | between | | atoms: | C14_6 | and 01 | 4-37 | |
| REMARK | 2 A | between | | atoms: | C14 6 | and C1 | 57 | |
| REMARK | 3 A | between | | atoms: | C15-7 | and 01 | 5-39 | |
| REMARK | 4 A | between | | atoms: | C2_10 | and C2 | 1_19 | |
| REMARK | 5 A | between | | atoms: | C3_11 | and C31 | $1 _26$ | |
| REMARK | I | between | | atoms: | C4-14 | and C4 | $1{ }^{-15}$ | |
| REMARK | 6 A | between atoms: | | | C41_15 | and | 42 _33 | |
| ROOT | | | | | | | | |
| ATOM | 1 C 1 | I09 A | | | 11.781 | 10.738 | -1.043 | 0.00 |
| 0.00 | 0.159 C | | | | | | | |
| ATOM | 2 C 10 | I09 A | | | 12.414 | 11.957 | -0.431 | 0.00 |
| 0.00 | 0.260 C | | | | | | | |
| ATOM | 3 N11 | I09 A | | | 11.556 | 12.817 | 0.220 | 0.00 |
| 0.00 | -0.311 N | | | | | | | |
| ATOM | 4 C 12 | I09 A | A | | 12.033 | 14.023 | 0.890 | 0.00 |
| 0.00 | 0.107 C | | | | | | | |
| ATOM | 5 C 13 | I09 A | | | 12.241 | 15.149 | -0.123 | 0.00 |
| 0.00 | 0.053 C | | | | | | | |
| ATOM | 6 C14 | I09 A | | | 12.646 | 16.423 | 0.616 | 0.00 |
| 0.00 | 0.141 C | | | | | | | |

| ATOM | 7010 | I09 | A | 13.634 | 12.192 | -0.479 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | -0.271 OA | | | | | | |
| ATOM | N1 | 109 | A | 10.350 | 10.632 | -0.589 | 0.00 |
| 0.00 | 0.252 N | | | | | | |
| ATOM | 9 C 2 | 109 | A | 12.467 | 9.466 | -0.549 | 0.00 |
| 0.00 | 0.107 C | | | | | | |
| ATOM | 10 C3 | 109 | A | 11.330 | 8.456 | -0.438 | 0.00 |
| 0.00 | 0.136 C | | | | | | |
| ATOM | 11 C37 | 109 | A | 10.965 | 7.977 | -1.780 | 0.00 |
| 0.00 | 0.081 C | | | | | | |
| ATOM | 12 N37 | 109 | A | 10.689 | 7.604 | -2.820 | 0.00 |
| 0.00 | -0.197 NA | | | | | | |
| ATOM | 13 C4 | 109 | A | 10.187 | 9.303 | 0.095 | 0.00 |
| 0.00 | 0.087 C | | | | | | |
| ATOM | 14 C41 | I09 | A | 8.816 | 8.670 | -0.208 | 0.00 |
| 0.00 | 0.062 C | | | | | | |
| ATOM | 15 H11 | | A | 10.568 | 12.607 | 0.234 | 0.00 |
| 0.00 | 0.150 HD | | | | | | |
| ATOM | 16 2HN1 | | A | 10.137 | 11.380 | 0.056 | 0.00 |
| 0.00 | 0.199 HD | | | | | | |
| ATOM | 17 3HN1 | 109 | A | 9.733 | 10.684 | -1.387 | 0.00 |
| 0.00 | 0.199 HD | | | | | | |
| ENDROOT | | | | | | | |
| BRANCH | 918 | | | | | | |
| ATOM | 18 C21 | 109 | A | 13.595 | 9.007 | -1.435 | 0.00 |
| 0.00 | -0.035 A | | | | | | |
| ATOM | 19 C22 | 109 | A | 14.630 | 8.269 | -0.877 | 0.00 |
| 0.00 | 0.024 A | | | | | | |
| ATOM | 20 C23 | 109 | A | 15.669 | 7.801 | -1.685 | 0.00 |
| 0.00 | 0.041 A | | | | | | |
| ATOM | 21 CL2 | 109 | A | 16.985 | 6.894 | -0.955 | 0.00 |
| 0.00 | -0.084 Cl | | | | | | |
| ATOM | 22 C24 | 109 | A | 15.678 | 8.063 | -3.063 | 0.00 |
| 0.00 | 0.020 A | | | | | | |
| ATOM | 23 C25 | I09 | A | 14.641 | 8.817 | -3.613 | 0.00 |
| 0.00 | 0.002 A | | | | | | |
| ATOM | 24 C26 | I09 | A | 13.601 | 9.292 | -2.802 | 0.00 |
| 0.00 | 0.004 A | | | | | | |
| ENDBRANCH 918 | | | | | | | |
| BRANCH | 1025 | | | | | | |
| ATOM | 25 C31 | 109 | A | 11.662 | 7.293 | 0.469 | 0.00 |
| 0.00 | -0.021 A | | | | | | |
| ATOM | 26 C36 | 109 | A | 11.426 | 5.988 | 0.024 | 0.00 |
| 0.00 | 0.007 A | | | | | | |
| ATOM | 27 C35 | I09 | A | 11.742 | 4.901 | 0.841 | 0.00 |
| 0.00 | 0.021 A | | | | | | |
| ATOM | 28 C34 | 109 | A | 12.299 | 5.122 | 2.104 | 0.00 |
| 0.00 | 0.041 A | | | | | | |
| ATOM | 29 C33 | I09 | A | 12.538 | 6.429 | 2.561 | 0.00 |
| 0.00 | 0.021 A | | | | | | |
| ATOM | 30 CL3 | 109 | A | 12.718 | 3.745 | 3.119 | 0.00 |
| 0.00 | $-0.084 \mathrm{Cl}$ | | | | | | |

```
ATOM 31 C32 I09 A 12.218 7.516 1.745 0.00
0.00 0.007 A
ENDBRANCH 10 25
BRANCH 14 32
ATOM 32 C42 I09 A 7.720 9.186 0.758 0.00
0.00 -0.033 C
ATOM 33 C43 I09 A 6.336 8.796 0.210 0.00
0.00 0.011 C
ATOM 34 C44 I09 A 7.901 8.544 2.142 0.00
0.00 0.011 C
ATOM 35 C45 I09 A 7.803 10.724 0.897 0.00
0.00 0.011 C
ENDBRANCH 14 32
BRANCH 6 36
ATOM 36 O14 I09 A 11.500 17.054 1.182 0.00
0.00 -0.391 OA
ATOM 37 14HO I09 A 10.882 17.281 0.483 0.00
0.00 0.211 HD
ENDBRANCH 6 36
BRANCH 6 38
ATOM 38 C15 I09 A 13.403 17.385 -0.310 0.00
0.00 0.187 C
BRANCH 38 39
ATOM 39 015 I09 A 12.564 17.825 -1.369 0.00
0.00 -0.394 OA
ATOM 40 15HO I09 A 13.053 18.425 -1.937 0.00
0.00 0.210 HD
ENDBRANCH 38 39
ENDBRANCH 6 38
TORSDOF }1
```

Flexible Residue File

```
BEGIN_RES HIS A 69
REMARK 2 active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 1 A between atoms: CA and CB
REMARK 2 A between atoms: CB and CG
ROOT
ATOM 1 CA HIS A 69 10.614 13.888 7.010 0.70
35.51 0.182 C
ENDROOT
BRANCH 1 2
ATOM 2 CB HIS A 69 11.813 14.799 6.727 0.70
36.82 0.095 C
BRANCH 2 3
ATOM 3 CG HIS A 69 12.379 15.449 7.950 0.70
38.82 0.053 A
ATOM 4 ND1 HIS A 69 13.531 15.004 8.564 0.70
39.45 -0.247 NA
ATOM 5 CE1 HIS A 69 13.801 15.779 9.601 0.70
```


ENDBRANCH 1415
END RES LEU A 50

Grid Parameter File

```
npts 60 62 62
gridfld 4jrg rigid.maps.fld
spacing 0.37\overline{5}
receptor_types A C NA OA N SA HD
ligand types A C Cl NA OA N HD
receptor 4jrg_rigid.pdbqt
gridcenter 11.493 10.5 2.759
smooth 0.5
rad(A)
map 4jrg_rigid.A.map
map 4jrg_rigid.C.map
map 4jrg_rigid.cl.map
map 4jrg_rigid.NA.map
map 4jrg_rigid.OA.map
map 4jrg_rigid.N.map
map 4jrg_rigid.HD.map
elecmap 4jrg_rigid.e.map
map
dsolvmap 4jrg_rigid.d.map
map
dielectric -0.1465
dep.diel;>0, constant
```


Docking Parameter File

```
autodock_parameter_version 4.2
validate parameter set
outlev 1
intelec
electrostatics
seed pid time
ligand_types A C Cl NA OA N HD
fld 4jrg_rigid.maps.fld
map 4jrg_rigid.A.map
map 4jrg_rigid.C.map
map 4jrg_rigid.Cl.map
map 4jrg_rigid.NA.map
map 4jrg_rigid.OA.map
map 4jrg_rigid.N.map
map 4jrg_rigid.HD.map
elecmap 4jrg_rigid.e.map
desolvmap 4jrg_rigid.d.map
move 4jrg_lig.pdbqt
flexres 4jrg_flex.pdbqt
    # used by autodock to
    # diagnostic output level
    # calculate internal
    # seeds for random generator
    # atoms types in ligand
    # grid_data_file
    # atom-specific affinity map
    # # atom-specific affinity map
    # atom-specific affinity map
    # electrostatics map
    # desolvation map
    # small molecule
            # file containing
```

flexible residues

```
# num.grid points in xyz
        # grid_data_file
    # spacīng(A)
    # receptor atom types
    # ligand atom types
    # macromolecule
    # xyz-coordinates or auto
        # store minimum energy w/in
    # atom-specific affinity map
    # electrostatic potential
        # desolvation potential
    # <0, AD4 distance-
```

```
about 11.8028 10.3609 -0.2312
tran0 random
random
quaternion0 random
dihe0 random
(relative) or random
torsdof 11
freedom
rmstol 2.0
extnrg 1000.0
e0max 0.0 10000
number of retries
ga_pop_size 150
population
ga_num evals 20000000
evaluations
ga_num_generations 27000
generations
ga_elitism 1
to survive to next generation
ga_mutation_rate 0.02
ga_crossover_rate 0.8
ga_window_size 10
ga_cauchy_alpha 0.0
distribution
ga_cauchy_beta 1.0
distribution
set_ga
for GA or LGA
sw_max_its 300
local search
sw_max_succ 4
before changing rho
sw max fail 4
before changing rho
sw_rho 1.0
to sample
sw_lb_rho 0.01
ls_search_freq 0.06
local search on individual
set_psw1
& Wets parameters
unbound model bound
ga_run \overline{100}
analysis
analysis
```

```
    # small molecule center
```

 # small molecule center
 # initial coordinates/A or
 # initial coordinates/A or
 # initial orientation
 # initial orientation
 # initial dihedrals
 # initial dihedrals
 # torsional degrees of
 # torsional degrees of
 # cluster tolerance/A
 # cluster tolerance/A

external grid energy

external grid energy

max initial energy; max

max initial energy; max

number of individuals in

number of individuals in

 # maximum number of energy
 # maximum number of energy

maximum number of

maximum number of

number of top individuals

number of top individuals

rate of gene mutation

rate of gene mutation

rate of crossover

rate of crossover

Alpha parameter of Cauchy

Alpha parameter of Cauchy

Beta parameter Cauchy

Beta parameter Cauchy

set the above parameters

set the above parameters

iterations of Solis \& Wets

iterations of Solis \& Wets

consecutive successes

consecutive successes

consecutive failures

consecutive failures

size of local search space

size of local search space

lower bound on rho

lower bound on rho

probability of performing

probability of performing

set the above pseudo-Solis

set the above pseudo-Solis

state of unbound ligand

state of unbound ligand

do this many hybrid GA-LS runs

do this many hybrid GA-LS runs

perform a ranked cluster

```
# perform a ranked cluster
```


Vina Configuration File

```
receptor = 4jrg_rigid.pdbqt
flex = 4jrg_flex.pdbqt
```

```
ligand = 4jrg_lig.pdbqt
out = out.4jrg.pdbqt
center_x = 11.493
center_y = 10.5
center_z = 2.759
size_x = 27
size_y = 27
size_z = 27
exhaustiveness = 12
```


Appendix B

NAMD Configuration File: 4ipf

```
#############################################################
## JOB DESCRIPTION ##
#############################################################
# Minimization and Equilibration of
# MDM2 in a Water Sphere
#############################################################
## ADJUSTABLE PARAMETERS ##
#############################################################
structure 4ipf_ws.psf
coordinates 4ipf_ws.pdb
set temperature 310
set outputname 4ipf_ws_eq
firsttimestep 0
#############################################################
## SIMULATION PARAMETERS ##
#############################################################
# Input
paraTypeCharmm on
parameters
    par_all27_prot_lipid.inp
temperature $temperature
```

```
# Force-Field Parameters
exclude scaled1-4
1-4scaling 1.0
cutoff 12.0
switching on
switchdist 10.0
pairlistdist 14.0
# Integrator Parameters
timestep 1.0 ;# 1fs/step
rigidBonds all ;# needed for 2fs steps
nonbondedFreq 1
fullElectFrequency 2
stepspercycle 10
# Constant Temperature Control
langevin on ;# do langevin dynamics
langevinDamping 1 ;# damping coefficient (gamma) of 1/ps
langevinTemp $temperature
langevinHydrogen off ;# don't couple langevin bath to
hydrogens
# Output
outputName $outputname
restartfreq 500 ;# 500steps = every 1ps
dcdfreq 250
outputEnergies 100
outputPressure 100
#############################################################
## EXTRA PARAMETERS ##
#############################################################
# Spherical boundary conditions
sphericalBC on
sphericalBCcenter 30.3081743413, 28.8049907121, 15.353994423
sphericalBCr1 26.0
sphericalBCk1 10
sphericalBCexp1 2
#############################################################
## EXECUTION SCRIPT ##
#############################################################
# Minimization
minimize
    100
```

```
reinitvels $temperature
run 5000000 ; # . 5 ns
```


NAMD PGN File

```
package require psfgen
topology top_all27_prot_lipid.inp
pdbalias residue HIS HSE
segment U {pdb 4ipfp.pdb}
coordpdb 4ipfp.pdb U
guesscoord
writepdb 4ipf.pdb
writepsf 4ipf.psf
```


NAMD Script for Water Sphere

\#\#\# Script to immerse MDM2 in a sphere of water just large enough \#\#\# to cover it
set molname 4ipf
mol new $\$\{$ molname. .psf
mol addfile \$\{molname\}.pdb
\#\#\# Determine the center of mass of the molecule and store the
coordinates
set cen [measure center [atomselect top all] weight mass]
set x1 [lindex \$cen 0]
set y1 [lindex \$cen 1]
set z1 [lindex \$cen 2]
set max 0
\#\#\# Determine the distance of the farthest atom from the center
of mass
foreach atom [[atomselect top all] get index] \{
set pos [lindex [[atomselect top "index \$atom"] get \{x y z\}] 0]
set x2 [lindex \$pos 0]
set y2 [lindex \$pos 1]
set z2 [lindex \$pos 2]
set dist [expr pow ((\$x2-\$x1)*(\$x2-\$x1) + (\$y2-\$y1)*(\$y2-\$y1) +
(\$z2-\$z1)* (\$z2-\$z1), 0.5)]
if $\{\$ d i s t ~>~ \$ m a x\} ~\{s e t ~ m a x ~ \$ d i s t\} ~$
\}
mol delete top
\#\#\# Solvate the molecule in a water box with enough padding (15
A).

```
### One could alternatively align the molecule such that the
vector
### from the center of mass to the farthest atom is aligned with
an axis,
### and then use no padding
package require solvate
solvate ${molname}.psf ${molname}.pdb -t 20 -o del_water
resetpsf
package require psfgen
mol new del_water.psf
mol addfile del_water.pdb
readpsf del_water.psf
coordpdb de\overline{l_water.pdb}
### Determine which water molecules need to be deleted and use a
for loop
### to delete them
set wat [atomselect top "same residue as {water and ((x-$x1)*(x-
$x1) + (y-$y1)*(y-$y1) + (z-$z1)*(z-$z1))<($max*$max)}"]
set del [atomselect top "water and not same residue as {water and
((x-$x1)* (x-$x1) + (y-$y1)*(y-$y1) + (z-$z1)*(z-
$z1))<($max* $max)}"]
set seg [$del get segid]
set res [$del get resid]
set name [$del get name]
for {set i 0} {$i < [llength $seg]} {incr i} {
    delatom [lindex $seg $i] [lindex $res $i] [lindex $name $i]
    }
writepsf ${molname}_ws.psf
writepdb ${molname}_ws.pdb
mol delete top
mol new ${molname}_ws.psf
mol addfile ${molnāme}_ws.pdb
puts "CENTER OF MASS OF SPHERE IS: [measure center [atomselect
top all] weight mass]"
puts "RADIUS OF SPHERE IS: $max"
mol delete top
```


Appendix C

Rama Plot 3lbk $(0,12)$

Evaluation of residues

Residue [A 72 :GLN] (56.75, -30.86) in Allowed region
Number of residues in favored region ($\sim 98.0 \%$ expected) : 69 (98.6%)
Number of residues in allowed region ($\sim 2.0 \%$ expected) : 1 (1.4%)
Number of residues in outlier region : $0(0.0 \%)$

Appendix D

Rama Plot 4jrg $(6,6)$

Evaluation of residues

Residue [A 73 :CYS] ($-142.26,20.56$) in Allowed region
Number of residues in favoured region ($\sim 98.0 \%$ expected) : 72 (98.6%)
Number of residues in allowed region ($\sim 2.0 \%$ expected) : 1 (1.4%)
Number of residues in outlier region

$$
\text { : } 0 \text { (0.0\%) }
$$

Appendix E

Rama Plot 4zyi $(0,12)$

Evaluation of residues

Number of residues in favoured region ($\sim 98.0 \%$ expected) : 77 (100.0\%)
Number of residues in allowed region ($\sim 2.0 \%$ expected) : 0 (0.0%)
Number of residues in outlier region : 0 (0.0%)

