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ABSTRACT OF DISSERTATION 

 
 
 

MACHINE LEARNING AND BIOINFORMATIC INSIGHTS INTO KEY ENZYMES 

FOR A BIO-BASED CIRCULAR ECONOMY 

  

The world is presently faced with a sustainability crisis; it is becoming increasingly 

difficult to meet the energy and material needs of a growing global population without 

depleting and polluting our planet. Greenhouse gases released from the continuous 

combustion of fossil fuels engender accelerated climate change, and plastic waste 

accumulates in the environment. There is need for a circular economy, where energy and 

materials are renewably derived from waste items, rather than by consuming limited 

resources. Deconstruction of the recalcitrant linkages in natural and synthetic polymers is 

crucial for a circular economy, as deconstructed monomers can be used to manufacture 

new products. In Nature, organisms utilize enzymes for the efficient depolymerization and 

conversion of macromolecules. Consequently, by employing enzymes industrially, 

biotechnology holds great promise for energy- and cost-efficient conversion of materials 

for a circular economy. However, there is need for enhanced molecular-level understanding 

of enzymes to enable economically viable technologies that can be applied on a global 

scale. This work is a computational study of key enzymes that catalyze important reactions 

that can be utilized for a bio-based circular economy. Specifically, bioinformatics and data-

mining approaches were employed to study family 7 glycoside hydrolases (GH7s), which 

are the principal enzymes in Nature for deconstructing cellulose to simple sugars; a 

cytochrome P450 enzyme (GcoA) that catalyzes the demethylation of lignin subunits; and 

MHETase, a tannase-family enzyme utilized by the bacterium, Ideonella sakaiensis, in the 

degradation and assimilation of polyethylene terephthalate (PET). Since enzyme function 

is fundamentally dependent on the primary amino-acid sequence, we hypothesize that 

machine-learning algorithms can be trained on an ensemble of functionally related 

enzymes to reveal functional patterns in the enzyme family, and to map the primary 

sequence to enzyme function such that functional properties can be predicted for a new 

enzyme sequence with significant accuracy. We find that supervised machine learning 

identifies important residues for processivity and accurately predicts functional subtypes 

and domain architectures in GH7s. Bioinformatic analyses revealed conserved active-site 

residues in GcoA and informed protein engineering that enabled expanded enzyme 

specificity and improved activity. Similarly, bioinformatic studies and phylogenetic 

analysis provided evolutionary context and identified crucial residues for MHET-hydrolase 

activity in a tannase-family enzyme (MHETase). Lastly, we developed machine-learning 

models to predict enzyme thermostability, allowing for high-throughput screening of 

enzymes that can catalyze reactions at elevated temperatures. Altogether, this work 



     

 

provides a solid basis for a computational data-driven approach to understanding, 

identifying, and engineering enzymes for biotechnological applications towards a more 

sustainable world. 

 

KEYWORDS: Machine learning, bioinformatics, enzymes, cellulase, protein 

thermostability, protein engineering 
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CHAPTER 1.  Introduction 

1.1 Motivation 

 The global human population is continuously increasing, and is expected to surpass 

11 billion by the year 2100.1, 2 As steady population growth leads to a subsequent increase 

in demand for energy and materials, which will be accelerated by rapid urbanization in the 

developing world,3 there is a critical need for technologies that meet the growing demand 

for resources without eroding Earth’s life-support system. Regardless of future population 

growth and the increase in the demand for energy and materials, current technologies for 

meeting the needs of today’s human population are markedly depleting limited natural 

resources and increasingly polluting the environment.4-6 

Currently, more than 80% of the global energy demand is met by the combustion 

of fossil fuels, and carbon dioxide released from burning fossil fuels accounts for over 70% 

of total greenhouse gas emissions.7 As the increase of greenhouse gases in the atmosphere 

is linked to global warming, drastically cutting back on fossil fuel consumption is of critical 

importance to limit anthropogenic climate change.8 In addition to climate change, fossil 

fuels are limited and are not uniformly distributed among countries. As a result, energy 

dependence on fossil fuels is unsustainable and is associated with negative economic 

implications.5 Moreover, petroleum is the leading source of majority of organic chemicals, 

which are utilized for their intrinsic value or as feedstock for producing diverse 

pharmaceuticals and synthetic materials. Dwindling petroleum reserves and pollution due 

to poor management of chemical waste are two key problems associated with dependence 
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on petroleum for chemicals and materials. In the United States alone, it is estimated that 

chemical industries release nearly 1.5 billion pounds of hazardous waste annually.6 

The need for sustainable and environmentally friendly solutions to the growing 

demand for energy and materials necessitates a circular economy, in which energy and 

materials are continuously derived from renewable resources and waste items in a circular 

manner. In a circular economy, waste is virtually eliminated as industrial value is recouped 

from waste items by utilizing them as feedstock for the production of new resources. One 

of the most promising sustainable alternatives to petroleum is plant-derived material, 

commonly termed biomass. Biomass consists mostly of carbohydrates, such as starch and 

cellulose, and lignin, and these provide potential for the renewable production of nearly all 

primary chemicals derived from petroleum.9 However, a major limitation to fully 

exploiting this potential is the marked resistance of biomass to chemical deconstruction.10  

In Nature, microorganisms have evolved enzymatic machinery to efficiently 

deconstruct biomass. As such, enzymatic strategies for deconstructing biomass in an 

industrial context holds great promise for a circular economy. Moreover, many synthetic 

polymers, such as polyethylene terephthalate (PET) and polyurethane (PU), consist of 

similar chemical linkages as in several natural polymers that are efficiently deconstructed 

by microbial enzymes.11 Thus, enzymes provide a cost- and energy-efficient way to 

deconstruct biopolymers and synthetic polymers into constituent monomers, which can be 

used to manufacture biofuels and new products. Consequently, gaining deeper mechanistic 

understanding of enzyme function will enable the engineering of high-yield enzymes and 

facilitate the journey towards a bio-based circular economy and a sustainable world. 
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The focus of this dissertation is to investigate relationships between the amino-acid 

sequence and catalytic function for key enzymes that are utilized in conversion of cellulose, 

lignin, and polyethylene terephthalate. Across the tree of life, evolutionary changes in 

protein sequence through mutation have given rise to a wide spectrum of homologous 

enzymes with varying functional properties. By a data-driven study of an ensemble of 

functionally related proteins, the deterministic relationships between amino-acid sequence 

and enzyme function can be elucidated, providing a more enhanced molecular-level 

knowledge of key enzymes that can be applied towards a bio-based circular economy. 

Herein, we apply bioinformatics and data mining techniques to large protein sequence 

datasets to map the variation in sequence to enzyme function, and to derive statistical 

relationships that can facilitate improving catalytic performance via protein engineering. 

 

1.2 Research background 

1.2.1 Cellulose and cellulases 

Plant cell walls consist mostly of lignin, an aromatic polymer; and the 

polysaccharides, cellulose and hemicellulose, which constitute between 10-30%, 15-30%, 

and 20-50% of the dry weight plant cell walls, respectively.12, 13 Cellulose is a 

homopolymer consisting of β-1,4-linked β-D-glucose units in a linear chain with a reducing 

and a non-reducing end. Due to the abundance of hydroxyl groups, cellulose forms 

numerous hydrogen bonds between oxygen atoms on the same chain or an adjoining chain 

(Figure 1.1). The network of hydrogen bonds, as well as van der Waals interactions, results 

in the organization of cellulose as crystalline microfibrils with great tensile strength. Unlike 
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cellulose, hemicellulose is a heteropolymer with random amorphous structure. The 

mechanical toughness of cellulose makes it an excellent biomaterial for conferring strength 

in plant cell walls. The rigidity of plant stems and tree wood results from the intricate 

organization of cellulose fibers with lignin to form a lignocellulosic complex.14 In addition 

to plant cell walls, cellulose is utilized as a structural component in many algae, oomycetes, 

and bacteria. Consequently, cellulose is the most abundant biopolymer on earth.15 

 

Figure 1.1 Chemical structure of cellulose, showing the organization of glucose units into 

a linear chain with a reducing and non-reducing end (above), and hydrogen bond linkages 

between two cellulose chains. This figure has been adapted with permission from Pinkert 

et al.,16 copyright 2009, American Chemical Society. 
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The crystalline structure of cellulose may exist in different forms, known as 

polymorphs. Cellulose produced by natural systems, such as plants, bacteria, and algae, are 

of type cellulose I, which consists of parallel-oriented chains with intralayer and interlayer 

hydrogen bonds but no intersheet hydrogen bonds.17 Hence, van der Waals forces between 

sheets are inferred to contribute significantly to the overall stability of cellulose I 

structures.12 There are two types of cellulose I: cellulose Iα and Iβ. The major difference 

between Iα and Iβ is the pattern of intralayer hydrogen bonding and the nature of interlayer 

chain stacking. Whereas Iα packs to form a unit cell with a single chain, Iβ forms two layers 

(Figure 1.2).18, 19 Plant cellulose has been shown to be a mixture of both Iα and Iβ.20, 21 

Cellulose II and III are derived from chemical treatment of cellulose I, and are, thus, 

synthetic polymorphs. Unlike cellulose I, cellulose II and III form antiparallel or staggered 

layers with interlayer hydrogen bonds, and are more susceptible to enzymatic 

degradation.22, 23 

Cellulose is a remarkably recalcitrant polymer. On the molecular level, strong 

covalent glycosidic linkages, hydrogen bonds between chains, and hydrophobic 

interactions between sheets make cellulose profoundly resistant to chemical hydrolysis. 

Furthermore, the unique organization of the lignocellulosic complex in plant tissues limits 

liquid penetration and enzyme accessibility.10 However, across the tree of life, organisms 

have evolved mechanisms for the reorganization and conversion of cellulose to soluble 

constituents as energy source. Numerous cellulolytic microbes produce enzymes that act 

synergistically to deconstruct lignocellulosic material in plant cell wall. Broadly, three 

types of enzymes are employed to hydrolyze cell wall matter: cellulases, hemicellulases, 

and accessory enzymes.10, 12 Upon overcoming the hemicellulose barrier in cell-wall 
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microfibrils, cellulases and accessory enzymes are employed to deconstruct the cellulose 

core of cell-wall matter.  

 

 

Figure 1.2 Structure of cellulose polymorphs. Naturally occurring polymorphs (Iα and Iβ) 

exhibit only interlayer hydrogen bonding. Synthetic polymorphs, II and IIII, which are 
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derived from chemically treatment of cellulose I, exhibit hydrogen bonding between layers. 

Hydrogen bonding is shown in yellow.  This figure was reprinted with permission from 

Payne et al.,12 copyright 2015, American Chemical Society. 

Microbial cellulose deconstruction is achieved via free enzymes or cellulosomes, 

in which large complexes of hundreds of enzymes held by noncovalent interactions operate 

in close proximity.24 Free cellulases include cellobiohydrolases, endoglucanases, and β-

glucosidases. Cellobiohydrolases attach to free cellulose chain ends and processively 

cleave multiple cellobiose units as they thread along the chain from the reducing end 

towards the non-reducing end, or vice versa. Cellobiohydrolases were once thought to be 

purely exo-acting and were previously called exoglucanases, but studies have shown that 

they are capable of endo-initiation as well.25, 26 Endoglucanases attack internal bonds in 

amorphous regions of cellulose, which is helpful to make open chain ends accessible to 

cellobiohydrolases. β-glucosidases are accessory enzymes that hydrolyze the cellobiose 

products of cellobiohydrolases to single glucose units and facilitate the reaction process by 

reducing product-inhibition. The prevailing paradigm of cellulose degradation, in Nature 

and industrially, involves the use of a synergistic cocktail of cellobiohydrolases, 

endoglucanases, and accessory enzymes such as β-glucosidases and lytic polysaccharide 

monooxygenases (LPMOs). LPMOs utilize a metal-dependent oxidative mechanism to 

cleave glycosidic bonds and are capable of creating chain breaks in difficult crystalline 

regions of cellulose that are inaccessible to endoglucanases.27 

Among cellulolytic organisms, fungi are responsible for the bulk of cellulose 

degradation in nature, and many filamentous fungi are capable of secreting markedly large 

amounts of cellulolytic free enzymes. Cellobiohydrolases, being capable of successively 
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cleaving multiple cellobiose units before dissociating form the substrate, are responsible 

for the majority of hydrolytic bond cleavages. Consequently, fungal cellobiohydrolases are 

the most promising targets for scientific studies and protein engineering towards 

developing more efficient and cost-effective industrial technologies for biomass 

conversion. 

 

 

Figure 1.3 Synergistic action of free enzymes for deconstruction of cellulose polymer. 

Endoglucanases (EG) hydrolyze amorphous regions within the chain and lytic 

polysaccharide monooxygenases (LPMO) oxidize crystalline regions within the chain. 

Cellobiohydrolases (CBH I and CBH II) processively cleave off cellobiose units as they 

attach to open chain ends made available by EGs and LPMOs and thread through the 
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cellulose chain. β-glucosidases (BGL) hydrolyze cellobiose to glucose units. This figure 

was reprinted with permission from Singh et al,28 copyright 2017, Biofuel Research 

Journal. 

 

 

Figure 1.4 A schematic description of conversion of cellulose to high-value products. 

 

With natural global production of cellulose exceeding 180 billion tons annually,29 

employing high-yield cellulases industrially provides a sustainable means to tap into the 

massive wealth available in lignocellulosic biomass and markedly offset dependence on 

petroleum. Sugars derived from cellulose deconstruction can be converted to ethanolic 

biofuels and a wide variety of high-value chemicals through intermediate platforms such 

as ethylene and hydroxymethylfurfural (Figure1.4).30  
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1.2.2 Family 7 glycoside hydrolases 

Glycoside hydrolases (GH) are enzymes that catalyze the hydrolysis of glycosidic 

bonds and include enzymes such as cellulases, chitinases, amylases, galactosidases, 

mannosidases, etc. The Carbohydrate-Active enZYmes  database (CAZY) classifies GHs 

into families according to amino-acid sequence similarities.31 Currently, there are 168 

families and several catalytic activities may be present in each family. For example, family 

1 glycoside hydrolases (GH1) demonstrate β-glucosidase (EC 3.2.1.21), β-D-fucosidase 

(3.2.1.38), lactase (EC 3.2.1.108), vicianin hydrolase (EC 3.2.1.119), and several other 

enzyme activities. Furthermore, the same enzyme activity may appear in several families. 

Endoglucanase activity (EC 3.2.1.4) is found in more than 15 families. 

Glycoside hydrolysis mechanism can be generally described as either retaining or 

inverting.32 While inverting mechanism is a one-step reaction, retaining mechanism is a 

two-step reaction. The single catalytic step in inverting mechanism involves a nucleophilic 

attack at the anomeric carbon of the saccharide by a water molecule in which a proton is 

transferred from the water molecule to the catalytic base and the glycosidic bond is broken 

due to the transfer of a proton from the catalytic acid.12 The first step in retaining 

mechanism, the glycosylation step, is an attack at the anomeric carbon by the nucleophile 

following a proton transfer from the catalytic acid. This step results in the formation of a 

glycosyl-enzyme intermediate and the inversion in the stereochemistry of the sugar. The 

second step is the deglycosylation step in which the anomeric carbon is attacked by a 

nucleophilic water molecule breaking the glycosyl-enzyme intermediate bond followed by 

a transfer of a proton to the catalytic base which inverts the stereochemistry back to its 

original state.12 GHs typically follow either one of retaining or inverting mechanisms, 
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although several GH families have been shown to deviate from this paradigm.32, 33 The 

catalytic acid, the catalytic base (in inverting mechanism), and the nucleophilic residue (in 

retaining mechanism) have carboxylate groups.  

 

 

Figure 1.5 Two possible mechanisms for glycosidic hydrolysis. (A) Inverting mechanism 

showing the nucleophilic attack by a water molecule on the anomeric carbon and the 

transfer of a proton from the acid to the glycosidic oxygen. (B) Retaining mechanism 

occurring in two steps: the glycosylation step, in which a glycosyl-enzyme intermediate is 

formed by a proton transfer from the acid to the glycosidic oxygen, and the deglycosylation 

step, in which water attacks the anomeric carbon, a proton is transferred to base, and the 

enzyme is restored to its initial state. This figure was reprinted with permission from Payne 

et al.,12 copyright 2015, American Chemical Society. 
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Among GHs that cleave β-1,4-glycosidic bonds in cellulose (cellulases), family 7 

glycoside hydrolases (GH7) are the chief enzymes for cellulose degradation, both in nature 

and in industrial processes. All known cellulolytic fungi utilize GH7s, and GH7s are often 

the predominant enzymes by mass in their secretomes (up to 50%).34, 35 As fungi are the 

powerhouses of cellulose degradation in nature, GH7s play a critical role in the carbon 

cycle. Although GH7s are found majorly in fungi, they have been identified in several non-

fungal species like Crustacea, Porifera, Parabasalia, Alveolata, and Amoebozoa. To date, 

GH7s have not been found in bacteria. 

 

 

Figure 1.6 Example structures of a (A) GH7 CBH (TreCel7A) and (B) a GH7 EG 

(TreCel7B) from Trichoderma reesei with a 9-member cellulose chain in the active site. 

The eight active-site loops are named A1 to A4 and B1 to B4, some of which are markedly 

truncated in the EG, resulting in a more open active site. This figure was reprinted with 

permission from Payne et al.,12 copyright 2015, American Chemical Society. 

 

GH7 enzymes are either CBHs or EGs and adopt a retaining mechanism with a 

strongly conserved catalytic triad of Glu and Asp residues in an EXDXXE motif. GH7 
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CBHs and EGs share a similar β-jelly roll fold with a two antiparallel β-sheets packing into 

a curved β-sandwich. The major differences in their structures lies in the active-site region, 

which is more open or cleft-like in GH7 EGs due to truncation in loops that protrude over 

the active site, and more closed or tunnel-like in GH7 CBHs due to longer active-site loops 

(Figure 1.6). GH7 CBHs processively cleave cellulose chains from the reducing end 

towards the non-reducing end of the chain while GH7 EGs are endo-acting and are mostly 

non-processive. The processivity of GH7 CBHs, in addition to being secreted by 

cellulolytic fungi in large amounts, make them a focus of scientific studies and in industrial 

applications.36 However, there are still gaps in understanding how GH7 sequence relate to 

functional attributes, such as processivity and activity. About a third of GH7 enzymes are 

attached to a carbohydrate binding module (CBM) as an auxiliary domain. It is now 

generally accepted that the CBM does not directly affect hydrolysis directly, but functions 

majorly to improve the binding affinity of the catalytic domain for the cellulose substrate.37, 

38 

Despite the wealth of diverse sequence and structural data available, most studies 

of GH7s have involved experimentation and comparative analysis of only a few GH7s.39-

44 As a result, the wealth of information available through studies of a large ensemble of 

proteins—which uncover patterns in the evolutionary design of GH7 diversity across the 

eukaryotic tree of life—remains untapped. The need for improved cellulases with lower 

product inhibition,45 higher catalytic efficiency,46 and elevated thermostability,47, 48 for 

accelerated industrial processes, call for integrating a data-driven, family-wide approach 

to studying GH7s, in addition to traditional rational-design approaches. 
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1.2.3 Enzymatic demethylation of lignin subunits 

Lignin is a complex heteropolymer of aromatic subunits. In many plants, the cell 

walls contain a matrix formed from polysaccharides and lignin that provides enhanced 

rigidity and strength. Additionally, the abundance of aromatic groups in lignin enhances 

the hydrophobic nature of the cell wall, making the cell water impermeable and resistant 

to microbial and chemical attack. Trees utilize vast amounts of lignin for structural support, 

with up to 36% of the dry weight of wood comprising of lignin.49 As a result, lignin is one 

of the world’s most abundant natural polymers and provides the largest renewable source 

of aromatic carbon in nature. Despite the abundance of lignin in the environment and its 

potential to replace non-renewable petroleum as the main source of aromatic chemicals and 

materials in a bio-based economy, lignin has received little industrial attention for deriving 

economic value and valorization.50, 51 In paper production, lignin is removed from 

lignocellulose before papermaking. Although over 50 million tons of lignin is extracted 

yearly by the paper industry, less than 2% of it is used commercially as low-value 

chemicals and the rest is burned as low-value fuel.50, 52 There is therefore need to develop 

industry-scale technology for the conversion of lignin to high-value products. 

Despite the recalcitrance of lignin, many fungi and bacteria have evolved powerful 

enzymatic systems that deconstruct lignin into smaller chemical fragments.53-55 Lignin is 

broken down in Nature by enzymes, such as peroxidases, laccases and additional oxidative 

enzymes, that produce aromatic radicals which attack the various linkages in lignin via 

non-enzymatic reactions.51 These reactions result in a wide variety of smaller aromatic 

fragments which are further cleaved and assimilated by the microorganisms as carbon and 

energy source via several aromatic-catabolic pathways.56, 57 The enzymatic strategies 
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employed by microbes for the deconstruction and assimilation of lignin offer a potential 

for the valorization of lignin to high-value chemicals.51 

Lignin is primarily composed of three aromatic monomeric units (or monolignols) 

that differ in the substitution patterns of the aromatic ring and the degree of methoxylation: 

p-coumaryl alcohol (H), coniferyl alcohol (G), and sinapyl alcohol (S).58 The relative 

abundance of these monolignols varies from species to species. In some species, additional 

subunits form a relatively significant amount of monolignols, including hydroxycinnamic 

acids, caffeoyl alcohol, tricine, resveratrol, isorhapontigenin, and hydroxystilbene 

glucosides.59-63 In the microbial deconstruction and metabolism of lignin, a crucial 

chemical step is the demethylation of lignin-derived compounds to diols before they are 

cleaved to ring-opened compounds.  

Due to the wide diversity of methoxylated lignin products, there is need for 

discovery of demethylase enzymes in nature that can be adapted and engineered for 

industrial applications. In recent years, a few microbial enzymes have been discovered and 

studied that are capable of demethylating the methoxy group in a number of lignin 

substrates such as vanillate, 3-O-methylgallate, syringate, guaiacol, and guaethol.64-69 A 

notable development was the discovery of the cytochrome P450-reductase gene pair 

(gcoAB) from Amycolatopsis sp. ATCC 39116 that showed demethylase activity on several 

lignin-derived products, including guaiacol, guaethol, 3-methyl-catechol, anisole, and 2-

methyl anisole.70 The promiscuity of the GcoAB enzyme system provides a particular 

advantage for biotechnological applications, as the same enzyme system can be used to 

catalyze the demethylation of a heterogenous stream of lignin-derived products from an 

upstream process. However, GcoAB did not show detectable activity on vanillate, ferulate 
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and veratrole. The promiscuous demethylase activity of GcoAB on several substrates 

suggests a notably flexible active site that can be expanded to accommodate other lignin-

substrate specificities via protein engineering. A data-driven approach that examines the 

amino-acid variation at active-site positions across the family of homologs (family CYP 

255A) is a promising way to discover key positions that can be mutated to expand the 

substrate specificity of GcoAB. 

 

 

Figure 1.7 Lignin as a major component of biomass, existing in a matrix with cellulose. 

The three major monomeric components of lignin (monolignols) and the respective lignin 

products derived from them are also shown. This figure was reprinted from Mandlekar et 

al,71 copyright 2018. 
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1.2.4 Enzymatic degradation of polyethylene terephthalate 

Polyethylene terephthalate (PET) is a synthetic polymer derived from terephthalic 

acid and ethylene glycol.  PET is a polyester desired for its unique properties, such as light 

weight, mechanical strength, durability, cheapness, and non-degradability. As a result, PET 

is the most common thermoplastic polyester plastic on earth today, being widely used in 

packaging food and drinks and in fabric fibers. It is estimated that about 56 million tons of 

PET is produced annually worldwide.72 Due to the large aromatic composition of PET 

(from the terephthalate group), PET is notably chemically inert and resistant to chemical 

and microbial degradation.73 Efforts at managing PET waste are focused on mechanical 

recycling processes. However, the contamination of plastic waste streams and the huge 

energy requirements severely limit the successful application of mechanical recycling on 

the bulk of plastic waste generated. Due to the systematic difficulties associated with 

recycling, less than 10% of all plastics produced are recycled and nearly 80% ends up 

accumulating in landfills or the natural environment.11, 74 Moreover, recycling results in 

lower quality products that ultimately end up being disposed or incenerated.75, 76 Hence, 

there is a critical need for sustainable strategies that restart the plastic lifecycle and recoup 

value from plastic waste in a circular economy. 

Similar to industry-scale microbial degradation of lignocellulose, researchers have 

long been interested in enzymatic strategies for deconstructing plastic polymers. Since 

synthetic polymers have similar chemical bonds as natural polymers, employing microbial 

enzymes in industrial processes to deconstruct plastic waste is a promising approach. 

Indeed, several microbial enzymes have been discovered that are capable of cleaving the 

ester bond in PET.72, 77-79 These enzymes are typically cutinases or lipases from the ab-
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hydrolase superfamily. Yoshida et al isolated a bacterium (Ideonella sakaiensis 201-F6) 

from soil samples around a PET recycling factory and observed that the bacterium is able 

to utilize PET as its major energy and carbon source and achieve complete degradation of 

amorphous PET.72 Ideonella sakaiensis degrades PET by secreting two main enzymes. The 

first enzyme is a cutinase-like enzyme, named PETase, which attacks PET to produce 

bis(2-hydroxylethyl) terephthalate (BHET), mono(2-hydroxylethyl) terephthalate (MHET) 

and terephthalic acid (TPA). PETase also cleaves BHET to MHET but shows virtually no 

activity on MHET. The second enzyme, a tannase-family protein called MHETase, 

hydrolyzes MHET to produce TPA and ethylene glycol (EG). Thus, by a synergistic action 

of PETase and MHETase, Ideonella sakaiensis deconstructs PET to TPA and EG. 

Subsequently, TPA and EG are assimilated via catabolic pathways. TPA is transported by 

TPA transporter protein (TPATP) and catabolized to protacatechuic acid (PCA) by TPA 

12,-dioxygenase (TPADO), both of which are notably upregulated when Ideonella 

sakaiensis was cultured on TPA-Na, BHET, or PET films.72 As TPA and EG are derived 

from petroleum in the chemical industry, PETase and MHETase provide a promising 

biotechnological approach to offset petroleum dependence and manage plastic pollution by 

the efficient deconstruction of PET waste to the chemical building blocks (TPA and EG), 

which can be used to produce new PET material without a compromise of mechanical 

quality (as is experienced in mechanical recycling). 

Several studies have focused on structural and biochemical characterization of 

PETase and other PET-hydrolase homologs, and on protein engineering to expand the 

specificity, improve catalytic efficiency, or enhance thermal stability.80-84 However, fewer 

studies have been done on MHETase.85, 86 As PETase does not hydrolyze MHET, it is likely 
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that PETase acts synergistically with MHETase to convert PET to TPA and EG. Thus, 

there is need to gain mechanistic understanding of MHETase and how MHET-hydrolase 

activity evolved in the tannase family of enzymes to facilitate engineering higher PET-

degradation yields. For much greater yields, thermostable PETase variants that are capable 

of PET breakdown at elevated temperatures near the glass transition temperature of PET 

are desired. Machine learning provides an effective way for the high-throughput screening 

of PETase homologs to identify prospective thermostable PETases. 

 

 

Figure 1.8 Combined action of the enzymes, PETase and MHETase, in Ideonella 

sakaiensis 201-F6 to deconstruct PET into TPA and EG. PETase adheres to PET and 

cleaves it to liberate BHET, MHET and TPA. PETase also cleaves BHET to yield MHET. 

MHETase hydrolyzes MHET to TPA and EG. This figure was reprinted with permission 

from Austin et al,81 copyright 2018, National Academy of Sciences. 
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1.3 Outline of dissertation 

The overall theme of this dissertation is to understand develop a fundamental 

understanding from a data-driven perspective of the relationships between the amino-acid 

sequence and functional variation of enzymes that catalyze the degradation of cellulose 

(family 7 glycoside hydrolases), lignin products (GcoA), and polyethylene terephthalate 

(PET). We hypothesize that statistical tools, such as machine learning, can be applied to an 

ensemble of homologous proteins to discover unique sequence and structural trends in the 

enzyme family of that can be exploited to manipulate the catalytic activity and 

thermostability. 

The first part of this dissertation (Chapters 3 and 4) focuses on enzymes that are 

applicable for the degradation lignocellulosic biomass. In Chapter 3, machine learning is 

applied to discriminate between GH7 functional subtypes (i.e., CBH and EG) and to 

identify residue positions features that strongly correlate with subtype and that are, 

consequently, promising engineering targets. Machine learning is also implemented to 

predict the presence of a CBM domain in GH7s from residues in the catalytic domain. Key 

residues in the CD domain that correlate with the presence of a CBM were identified by 

determining positions that yielded highest feature importance in the random forest model. 

In Chapter 4, bioinformatic (conservation) analysis was applied to an ensemble of GcoA 

homologs to investigate the variability of active-site residues across the cytochrome P450 

255A (CYP255A) family. The bioinformatic insights derived from the conservation 

analysis provided a basis for protein engineering efforts (by collaborators) to expand the 

substrate specificity and catalytic activity of the promiscuous GcoA enzyme to other lignin 

products. 
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The second part of this dissertation (Chapter 5) describes a large collaborative work 

on the characterization and engineering of a novel two-enzyme system for PET 

depolymerization. Bioinformatic and phylogenetic analyses of selected MHETase 

homologs were conducted to gain insight into the evolution of MHET-hydrolase activity 

in the tannase family. Conservation analysis of the residues within the coordination sphere 

of the MHET-substrate in the active site highlighted key residues in MHETase that notably 

differ from other tannase family sequences, and that play major roles in MHET-hydrolase 

activity. Biochemical studies, protein engineering, and molecular dynamics simulations 

(conducted by collaborators) provided insight into the reaction mechanism of MHETase 

and confirmed the functional roles of key residues identified by conservation analysis in 

MHETase and close homologs. 

The final part of this dissertation (Chapters 6 and 7) focuses on machine learning 

for predicting protein thermostability. The goal was to develop machine learning models 

that can identify thermophilic enzymes that are active at high temperatures. We 

hypothesized that, since protein folding and structure is a deterministic function of the 

amino-acid sequence, machine learning models can be trained on the protein sequence 

alone to predict protein thermostability with significant accuracy. In Chapter 6, we present 

a support vector machine (ThermoProt) trained on a set of 32,000 diverse proteins to 

discriminate between psychrophilic, mesophilic, thermophilic, and hyperthermophilic 

proteins. In Chapter 7, we markedly improve on a machine learning method (TOME) for 

directly predicting the enzyme catalytic optimum temperature directly from the amino-acid 

sequence. By incorporating resampling strategies and ensemble learning to mitigate the 
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effects of data imbalance due to the skewed distribution of the training data, our new 

method (TOMER) achieves superior performance, particularly on high-temperature values. 
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CHAPTER 2.  Computational Methodology 

2.1 Introduction 

We implemented supervised machine learning to predict enzyme functional 

attributes including activity subtype, domain architecture (i.e., the presence of a 

carbohydrate binding module attached to the catalytic domain), and optimal catalytic 

temperature. Analysis of the machine learning results further revealed key residues in the 

enzyme family that appear be related to function. Conservation analysis was implemented 

to investigate amino-acid variability in active-site positions and to gain insights for 

expanding substrate specificity through protein engineering. Phylogenetic analysis was 

performed to understand the evolution of MHET-hydrolase activity in the tannase family 

and to identify key positions in MHETase that relate the MHET substrate specificity and 

activity relative to other tannase-family sequences. Descriptions of the methods used are 

provided below. 

2.2 Machine learning 

Machine learning is the study and application of computer algorithms that are 

capable of learning to optimize their performance on a task from data or past experience.87, 

88 The unique characteristic of machine learning algorithms is that they are not explicitly 

programmed to solve a particular task. Rather than hard coding specific rules to solve a 

problem, machine learning algorithms solve problems by learning directly from the data. 

Machine learning algorithms discover existing relationships in the data by tuning a set of 

parameters to optimize a defined criterion. The central hypothesis of machine learning is 
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that if there is sufficient data, computer algorithms can learn the structure in the data, which 

can be exploited to solve a wide variety of problems. For example, in spam filtering, one 

could explicitly program an algorithm to identify spam emails by identifying key words in 

spam emails. But this approach would be rather cumbersome and inefficient. However, 

with sufficient examples of legitimate and spam emails, a machine learning algorithm can 

be trained on the data to implicitly learn the patterns that constitute a spam mail.89 Although 

what constitutes spam mail may change with time, a machine learning algorithm can adapt 

to these changes when retrained on newly available data, without having to modify the 

algorithm. 

Over the last few decades, machine learning has gained accelerated popularity in 

many fields, and has been employed to provide cutting-edge solutions to a wide variety of 

problems. Using machine learning, numerous artificial intelligence (AI) technologies that 

enable computers to make intelligent human-like decisions or recommendations have 

emerged. Notable examples include image recognition,90 machine language translation,91 

medical diagnosis,92 traffic prediction,93 targeted advertising (i.e., predict which customers 

are most likely to respond to an ad),94 and pattern recognition in scientific research.95 In 

biology, particular in molecular biology, with the increasing growth of sequence and 

structure data, the practicality of machine learning is evident, and is demonstrated by 

numerous studies.96-101 Machine learning algorithms can be applied to learn the complex, 

non-linear relationships between the functional attributes of biomolecules (DNA, proteins, 

etc.) and their sequence or structural components, allowing for predictive models of 

function or to gain deeper mechanistic knowledge. Deep learning is a special group of 

machine learning methods based on neural networks (connected computational graphs that 
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mimic neurons in the human brain), with many layers in the network. Compared to other 

traditional machine learning methods, deep learning allows representations to be learned 

directly from the data without the need for feature engineering or feature selection, and is 

capable of learning much deeper, less biased representations of the data, providing 

significant improvement in performance.102 Deep learning has been the basis of the most 

recent breakthroughs in artificial intelligence.103 However, the scarcity of labeled data in 

bioinformatics often limits the improvement in performance of deep learning models over 

traditional machine learning models.102, 104, 105  

 

2.2.1 Common terminology in machine learning 

A feature is an individual, measurable property of a data sample being analyzed 

that describes the sample and serves as input to the machine learning algorithm. A target 

or label is the final output variable of the sample that is being predicted. In supervised 

learning, data samples have both features and labels, and the goal is to learn a function that 

maps the features to the target/label such that the unknown target of a sample can be 

predicted from its known features. In unsupervised learning, however, data samples are 

not labeled, and the goal is to deconstruct hidden patterns and algorithmic relationships 

that are inherent in the data. If the targets are discrete classes, the supervised learning task 

is a classification problem. Otherwise, if the targets are continuous variables, the task is a 

regression problem.  

Let 𝑋𝑚 represent the mth sample in a dataset described by n features such that 𝑋𝑚 =

[𝑥𝑚
1 , 𝑥𝑚

2 , 𝑥𝑚
3 , … , 𝑥𝑚

𝑛 ], and let 𝑦𝑚 represent the target label of the sample. The goal of a 

supervised machine learning algorithm, in mathematical terms, is to learn a function, H, 
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that maps the features of the data, X, to the labels, y, as accurately as possible. Generally, 

the process of learning H involves tuning a set of configuration values of the model, called 

parameters, such that the model function minimizes the error, 휀. 

𝑦 =  𝐻(𝑋) +  휀 = �̂� +  휀 (2.1) 

A model may overfit the data it is trained on so that although it shows high 

performance in training, when applied to new data that were not seen in training, it fails to 

generalize. Such a model is said to have high variance, as it learns noise in the data and is 

overly sensitive to any perturbances in the data. On the contrary, a model may not be 

complex enough to learn patterns in the data so that it performs poorly both in training and 

on new data. Such a model is said to have high bias. The data used in machine learning are 

customarily divided into two or more sets. The training set is used to tune the parameters 

of the model in the learning process, and the testing set is used to derive an unbiased 

estimate of the model’s performance. There may be certain values or options that the user 

must specify which are not learned be model from the data. These values are called 

hyperparameters. It is bad practice to use the testing set to optimize the choice of 

hyperparameters, as this may lead to overfitting the hyperparameters to the testing set and 

a consequent overestimation of the model performance. In such a case, it is advisable to 

split the data into three sets, including a validation set, which is used to select optimal 

hyperparameters so that the testing set is not touched until a final estimate is to be 

obtained.106  

A more common approach is to first split the data into a training and testing, leave 

the testing set untouched until the end of the learning process, split the training set into 

several (k) folds, and repeatedly use one fold for validation and k – 1 folds for training until 
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all folds have been used in training and validation. The validation performance is 

determined as an average over all k-folds. This technique is called k-fold cross-validation. 

To minimize the variance due to the randomness of splitting the training set into folds, a 

random split may be performed r times, and the validation performance is determined as 

an average over all r × k folds. This technique is called repeated k-fold cross-validation.107 

 

2.2.2 Feature scaling 

Machine learning algorithms may be adversely affected by varying magnitudes of 

the features and target labels. Hence, it is often essential to perform feature scaling to 

monotonically transform each feature in the data so that they have a similar range or 

distribution. This is particularly important when using algorithms that depend on distances 

between the features. Widely varying magnitudes may cause some features to have a 

greater undesired impact on the outcome than others. Furthermore, several machine 

algorithms converge to a solution much faster with scaled features than with unscaled 

features. The following are popular feature scaling techniques:108 

2.2.2.1 Min-max scaling (normalization) 

This scales the feature to a desired range bound between minimum and maximum 

values, (a and b, respectively). Common boundary ranges are [0,1] and [-1,1]. Min-max 

scaling is sensitive to outliers in the data. In equation 2.2 below, 𝑥𝑚𝑎𝑥
𝑖  and 𝑥𝑚𝑖𝑛

𝑖  are the 

maximum and minimum values of feature i in the dataset. 

𝑥𝑛𝑒𝑤
𝑖 =  

𝑥𝑚 
𝑖 − 𝑥𝑚𝑖𝑛 

𝑖

𝑥𝑚𝑎𝑥
𝑖 − 𝑥𝑚𝑖𝑛 

𝑖
× (𝑏 − 𝑎) + 𝑎 

(2.2) 

2.2.2.2 Standard scaling (standardization) 
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This centers the feature distribution around a mean of 0 and standard deviation of 

1. Given the mean and standard deviation of feature i, respectively, standard scaling is 

performed according to equation 2.3. 

𝑥𝑛𝑒𝑤
𝑖 =  

𝑥𝑚 
𝑖 − 𝜇𝑖

𝜎𝑖
 (2.3) 

2.2.2.3 Unit vector scaling 

This scales the feature by dividing each value by the L2 norm so that the whole 

feature vector is of unit length. 

𝑥𝑛𝑒𝑤
𝑖 =  

𝑥𝑚 
𝑖

‖𝑥𝑖‖
 (2.4) 

2.2.2.4 Robust scaling 

The disadvantage of all three above-mentioned scaling techniques is that these 

scaling methods are consequently significantly affected by severe outliers, since the range, 

mean, standard deviation, and L2 norm are skewed by outliers. A more robust method is 

to scale the feature to the interquartile range, which is less impacted by outliers. Equation 

2.5 describes the scaling of the ith feature to the range, [a,b] using the 1st quartile (Q1) and 

third quartile (Q3). 

𝑥𝑛𝑒𝑤
𝑖 =  

𝑥𝑚 
𝑖 − 𝑄1(𝑥𝑖)

𝑄3(𝑥𝑖) − 𝑄1(𝑥𝑖)
× (𝑏 − 𝑎) + 𝑎 (2.5) 

2.2.3 Performance metrics 

In supervised learning, it is important to define a single metric for evaluating the 

predictive performance of a learning algorithm. This allows different algorithms and 

hyperparameters to be methodically compared and the best option selected. In binary 
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classification with a negative and positive class (0 and 1, respectively), four predictive 

outcomes are possible: true positives (TP), false positives (FP), true negative (TN), and 

false negatives (FN). These outcomes are often represented in a tabular form, called the 

confusion matrix.106 

 

Table 2.1 Confusion matrix of a binary classification problem 

 Predicted positive Predicted negative 

Actual positive True positive (TP) False negative (FN) 

Actual negative False positive (FP) True negative (TN) 

 

The following performance metrics may be calculated from the classification outcomes: 

1. Accuracy: The fraction of total correctly predicted outcomes 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 +  𝐹𝑃
 (2.6) 

2. Sensitivity: The fraction of positives correctly predicted. Also known as recall or true 

positive rate. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.7) 

3. Specificity: The fraction of negatives correctly predicted. Also known as selectivity or 

true negative rate. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (2.8) 

4. Precision: The fraction of predicted positives that are actual positives. Also known as 

positive predictive value 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.9) 
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5. Negative predictive value (NPV): The fraction of predicted negatives that are actual 

negatives. 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (2.10) 

6. F1 score: The harmonic mean of recall and precision. The F1 score combines both 

recall and precision into a single metric so that classifiers with a high F1 score have a 

high recall, i.e., correctly predict a high fraction of positives, and a high precision, i.e., 

do not predict many negatives as positives. 

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (2.11) 

7. F-beta score: a beta parameter allows one to assign more weight to either the precision 

or recall in the F1 score. If beta is 1, the F-beta score is equivalent to the F1 score and 

precision and recall have equal weights. Smaller beta-values give more weight to 

precision, and larger values give more weight to recall. 

𝐹𝑏𝑒𝑡𝑎 =
(1 + 𝛽2) × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
 (2.12) 

8. Matthew’s correlation coefficient (MCC):  All the above metrics suffer from a 

common problem. If the dataset is unbalanced, or if the classifier is strongly biased and 

tends to place most values in positive or negative class, these metrics may fail to capture 

that something is wrong with the classification. MCC values range from -1 through 0 

to +1. A value of zero indicates that the classifier does not perform better than random 

guessing, whereas +1 indicates a perfectly accurate classifier, and -1 a perfectly inverse 

classifier. The MCC is a much-preferred metric for evaluating the overall performance 

of the classifier, since it considers all elements of confusion matrix.106, 109  
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𝑀𝐶𝐶 =  
(𝑇𝑁×𝑇𝑃)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)×(𝑇𝑃×𝐹𝑃)+(𝑇𝑁×𝐹𝑁)
  (2.13) 

Alternatively, some researchers use the receiver operating curve (ROC) for an 

unbiased overall estimate of classifier performance. The ROC is a plot of the true positive 

rate (sensitivity) on the y-axis against the false positive rate (i.e., 1 – specificity). A straight 

line at 45 degrees to the horizontal axis indicates random guessing and a curve above this 

line indicates a performance better than random. The area under the curve (AUC) is used 

to summarize the performance, and takes values ranging from 0.5 (random guess) to 1.0 

(perfect prediction). Some studies have raised concerns about the use of ROC AUC for 

evaluating model performance. These concerns include the large differences between true 

and estimated metrics for small datasets,110 the fact that the AUC estimation is derived 

from ROC space in which one would rarely operate,111 and the fact the AUC implies 

different misclassification cost distributions for different classifiers.112 In this work, we 

consistently use the MCC for evaluating binary classifiers. 

Regression performance metrics basically compare the continuous predicted and 

target variables. Popular metrics include the mean squared error (MSE), the root mean 

squared error (RMSE), the mean absolute error (MAE), cosine similarity, Pearson’s 

correlation coefficient (R), coefficient of determination (R2), and mean percentage error 

(MAPE). In this work, we use the MSE and R2 to evaluate regression performance. 

 

2.2.4 Dealing with data imbalance 

The distribution of the dataset used in machine learning can significantly 

compromise the performance. Machine learning algorithms are based on the inherent 

assumption that the data are balanced or uniformly distributed. When the data are 
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imbalanced or skewed, it causes the algorithm to favor the prediction of the more abundant 

target values in the data at the expense of the sparse data.113 Hence, it is imperative that the 

distribution of the data be altered and balanced before feeding it to a machine learning 

algorithm. There are broadly two types of resampling techniques in classification to abate 

an imbalanced distribution: undersampling and oversampling. In undersampling, the 

majority class is randomly reduced to achieve a balanced ratio with the minority class. In 

oversampling, random samples from the minority class are duplicated to achieve a balanced 

ratio with the minority class.114 There are many other resampling methods that are an 

extension of random oversampling and random undersampling, and that often yield much 

better performance,115 but the most widely used method is the synthetic minority 

oversampling technique (SMOTE).116, 117 SMOTE performs both undersampling of the 

majority class and oversampling of the minority class. However, rather than duplication 

samples in the oversampling step, synthetic samples are generated by randomly 

interpolating between existing samples. 

Data imbalance in regression problems occurs as a non-uniform distribution of the 

continuous target variable.118 Compared with classification, fewer strategies have been 

proposed for dealing with imbalance in regression.114, 115 It is surprising that many studies 

do not deal with the non-uniform distribution in supervised-learning regression problems, 

resulting in a sub-optimal performance at regions with sparse data.118 In supervised-

learning regression problems in this work, we implement resampling strategies that 

mitigate the non-uniform distribution of the target values, such as SMOTER, SMOGN, 

WERCS, and REBAGG.115, 118-122 A detailed description of these methods is presented in 

Chapter 7. 
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2.2.5 Supervised learning methods 

2.2.5.1 Logistic regression 

The logistic regression algorithm is a linear model for categorical target values that 

aims to estimate the likelihood that a combination of independent variables (features) result 

in a certain class.123 This estimation is achieved by using a logistic function on top of a 

linear combination of the independent variables.  Where X represents a feature vector of an 

instance of the data to be classified, with n features, 𝑥1, 𝑥2,… 𝑥𝑛, and 𝑤1, 𝑤2,… 𝑤𝑛 

represent corresponding weights of the linear function with the bias term, 𝑤0, the simplest 

case of the logistic regression model is described by equations 2.14 and 2.15 below.96 

𝑧 = 𝑤0 + ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 (2.14) 

�̂� = 𝑝(𝐶 = 1|𝑋) =
1

1 + 𝑒−𝑧
 (2.15) 

The logistic regression model is fitted to the training dataset by an iterative 

technique, such as Newton-Raphson, to derive optimal values for the n+1 weights. To 

prevent overfitting and improve regularization, a penalty term is often added to equation 

2.12 (such as the L1 or L2 norm of the weight vector, W). 

2.2.5.2 K-nearest neighbor 

The KNN algorithm is a simple, yet powerful classification and regression 

technique. The algorithm is based on the idea that the target of an instance depends on the 

labels of the nearest neighbors in the feature space.124 The nearest neighbors may be 

determined using several distance methods, such as Euclidean distance, Manhattan 

distance, cosine distance etc. Consequently, the predicted target is the mode of the target 
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values of the nearest k-neighbors, in a classification problem, or the mean of the target 

values, in a regression problem. 

2.2.5.3 Support vector machine 

The SVM algorithm seeks to identify a hyperplane in a projected non-linear 

mapping of the feature space that optimally separates the data into categories 

corresponding to the target labels.125 The margin is the positive distance between the 

decision hyperplane and the instances closest to it. The goal of the SVM is to find a 

hyperplane that maximizes the margin, as it is expected that the larger the margin the better 

the generalization of the classifier.96, 126 

2.2.5.4 Decision trees 

Decision trees classify through a series of questions, beginning from a root node at 

the top, in which the next question is dependent on the answer to the last question, and each 

step in the series results in purer dataset as you progress through other nodes down the tree 

until you reach terminal or leaf nodes.96, 127, 128 The quality of the split at each node is 

measured by an impurity score, and a purer split results if the proportion of a class increases 

in a branch after the split. At a given node, m, the probability that an instance is in a class 

𝐶𝑖 of K classes is given by the ratio of the number of instances in 𝐶𝑖 to the total number of 

instances at node m, as described by equation 2.16. Impurity is popular measured via 

entropy (equation  2.17) or the Gini index (equation 2.18).127, 129 

𝑝𝑚
𝑖 (𝐶𝑖|𝑥, 𝑚) =

𝑁𝑚
𝑖

𝑁𝑚
 (2.16) 
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𝐼𝑚 = − ∑ 𝑝𝑚
𝑖

𝑘

𝑖=1

𝑙𝑜𝑔(𝑝𝑚
𝑖 ) (2.17) 

𝐼𝑚 = 1 − ∑(𝑝𝑚
𝑖 )2

𝑘

𝑖=1

 (2.18) 

The decision tree may recursively split each node until perfectly pure leaf nodes are 

obtained, but this may lead to overfitting, so a stopping criterion may be defined. The result 

of each split of the decision tree is the partitioning of the feature space into distinct 

rectangular regions which allows for a non-linear and non-parametric function mapping 

the features to target values. 

2.2.5.5 Random forest 

A random forest, as the term suggest, comprises of many trees combined to form 

an bootstrap aggregate ensemble, or a bagging ensemble.130, 131 While decision trees may 

be unstable and tend to overfit, a combination of many trees on bootstrap samples of the 

dataset, such that the final outcome is the aggregate of the outcomes of individual trees 

(mode for classification, mean for regression), results in a stable model with markedly 

improved generalization due to reduced variance.132 Random forest has achieved an 

overwhelming level of success in biological machine learning problems particularly for the 

following reasons:132-136 

1. It is nonparametric and makes no assumptions on the distribution of the data, allowing 

for complex data structures. 

2. It is computationally efficient. 

3. It robustly tolerant to noise in the dataset. 
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4. It can handle a small sample size and high-dimensional feature space as it implements 

an implicit feature selection in the learning process. 

5. It is an interpretable model that allows the user to gain deeper insight into the data via 

feature importance measures. 

The importance of a feature in the random forest model can be evaluated by a 

quantitative measure, such as the Gini importance, to provide knowledge on the relative 

relevance of each feature in the predictive process. The Gini importance of a feature is 

calculated as the average as the average decrease in the Gini impurity (equation 2.18) at 

every split in the in the forest where the feature was used as the splitting variable. Feature 

importance provides an efficient and highly practical quantitative basis for develop 

hypotheses that relate biological features to a specific attribute. For example, important 

residues for enzyme catalytic activity and potential targets for protein engineering may be 

identified by determining what residues yield the highest feature importance in a random 

forest prediction of activity. 

2.3 Protein conservation analysis 

A central paradigm in protein science is that protein sequences sharing common 

evolutionary history can be aligned such that similar positions that are a result of functional, 

structural, and evolutionary relationships can be identified.137 Several algorithms exist for 

aligning multiple homologous protein sequences such that all sequences in the multiple 

sequence alignment (MSA) have the same length. Generally, MSA algorithms seek to 

optimize a scoring (objective) function, such as PAM or BLOSUM substitution matrix, 

that defines the cost of substituting one amino acid for another in the alignment. A gap 
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penalty is used to estimate the cost of introducing indels in the alignment. By heuristically 

minimizing the total cost, usually using a pre-computed guide tree, the MSA algorithm 

achieves a resulting alignment that is a decent trade-off between structural accuracy and 

computational efficiency.138 Widely used MSA algorithms include ClustalW,139 Clustal 

Omega,140 T-Coffee,141 ProbCons,142 MUSCLE,143 and MAFFT.144 

From an MSA, a set of homologous protein sequences (rows in the alignment) with 

aligned amino-acid residues (columns) can be examined to gain insight to the conservation 

patterns of evolutionarily similar residue positions. The fundamental basis of conservation 

analysis is the idea that positions in the MSA that are under significant evolutionary 

pressure for functional or structural roles have different amino-acid distributions and are 

more conserved than other less relevant positions.145 Consequently, determining what 

positions are conserved can provide an evolutionary basis for determining sites in proteins 

that play key roles in functional variation. Despite its statistical simplicity, conservation 

analysis is considered to be the single most powerful predictor of functionally relevant sites 

in proteins,145, 146 and has been notably successful in identifying residues that play key roles 

in ligand binding,147, 148 protein-protein interaction,149-151 functional specificity,152-154 and 

structural stability.155-157 It follows that conservation analysis is a powerful tool for 

identifying promising sites for protein engineering. 

There are diverse metrics for evaluating the conservation of a position in an MSA, 

and each metric has unique advantages and disadvantages.158 Given that 𝑝𝑖
𝑥 is the 

probability (or frequency) that amino acid, x, occurs at site, i, in the MSA, and 𝑝𝑀𝑆𝐴
𝑥  is the 

probability that amino acid, x, occurs in the MSA, below are some popular conservation 

evaluation metrics: 
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1. Shannon entropy: the simplest conservation measure, but does not take into 

consideration the background distribution of amino-acids in the MSA or the similarity 

between amino acids. 

𝑆𝐸𝑖 =  ∑ −𝑝𝑖
𝑥log (𝑝𝑖

𝑥)

𝑥

 (2.19) 

2. Relative entropy (Kullback-Leibler divergence): an improvement over Shannon 

entropy as it considers the background distribution, but does not consider the similarity 

between amino acids. 

𝑅𝐸𝑖 =  ∑ 𝑝𝑖
𝑥log (

𝑝𝑖
𝑥

𝑝𝑖
𝑀𝑆𝐴)

𝑥

 (2.20) 

3. Lockless evolutionary conservation parameter: a conservation metric similar to the 

relative entropy put forward by Lockless and Ranganathan.159 

Δ𝐺𝑖 = √∑ (𝑙𝑛
𝑝𝑖

𝑥

𝑝𝑀𝑆𝐴
𝑥 )

2

𝑥

 (2.21) 

Other metrics include the Jensen-Shannon divergence score,160 Rate4Site,161 

Schneider score,162 Kabat score,163 Landgraf metric,164 and Real Evolutionary Trace 

(RET).165  In this work, we use the relative entropy score because of its simplicity and 

because frequency-based conservation scores have been observed to outperform others.158 

While there are available web-servers and command-line software for performing 

conservation analysis, such as Consurf,166 Scop3D,167 and BALCONY,168 we prepared an 

open-source Python package for conservation analysis, PyCanal, that allows conservation 

analysis to be implemented within the Python framework, taking advantage of the valuable 

BioPython library.169 PyCanal is available at https://github.com/jafetgado/PyCanal. 

https://github.com/jafetgado/PyCanal
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2.4 Phylogenetic analysis 

Phylogenetics is the study of the evolutionary relationships among organisms or 

biological products, such as genes and proteins. Phylogenetics plays a major role in the 

scientific understanding and systematic classification of species.170-172 Phylogenetic 

analysis of proteins seeks to reconstruct the evolutionary history, which provides insight 

into functional and structural diversity of related proteins. The output of phylogenetic 

analysis is a phylogenetic tree, which shows a hypothesis of the evolutionary history and 

has a unique branching pattern (the topology). Taxa that are closed together in the tree are 

more closely related and share a common ancestor. The length of the tree branches 

represents the evolutionary time between nodes and is in unit of number of substitutions 

per sequence site. 

For m taxa (or products), the number of possible rooted bifurcating tree topologies 

is 
(2𝑚−3)!

2𝑚−2(𝑚−2)!
, so that there are over 34 million possible topologies for only 10 products.172, 

173 As a result, heuristics and optimization techniques are employed in inference methods 

to find the best topology that fits the sequence data.174 There are generally three types of 

phylogenetic tree-building methods: parsimony, likelihood, and distance methods. 

Likelihood methods seek to find the tree topology that achieves the highest probability of 

observing the sequence data for a specific substitution model. Parsimony methods seek to 

find the topology that requires the fewest substitutions or changes. They are based on the 

idea that the best tree is the simplest tree with minimal assumptions.175 Distance methods 

use evolutionary models to evaluate the pairwise distance between the sequences, i.e. the 

number of substitutions between sequences, and then infer the topology from the computed 

distances.176 
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The evolutionary distance between protein sequences may be estimated from the 

MSA by mathematical models such as the gamma function,177 or the Grishin distance,178 

or by a substitution matrix such as the Dayhoff matrix,179 or the Jones et al (JTT) matrix.180 

Substitution matrices present the probability an amino acid in the ith row will change to the 

amino acid in the jth column during a defined evolutionary time unit. Having selected a 

model for computing pairwise evolutionary distances, the phylogenetic tree can be inferred 

by a number of distance methods such as the unweighted pair-group method with 

arithmetic means method (UPGMA), the least squares method (LS), and minimum 

evolution method. Minimum evolution method is widely used due its simplicity and a high 

accuracy that is comparable to other more computationally expensive methods.181 The 

minimum evolution method selects the topology with the minimum sum of all branch 

lengths (distances) as the optimal topology. The computational cost of the minimum 

evolution method is significantly reduced by using the close-neighbor interchange 

algorithm (CNI).182 CNI searches for the optimal tree by quickly computing a neighbor-

joining tree and then iteratively searching for topologies that are a few permutations from 

the neighbor-joining tree and which yield a smaller total distance value than the neighbor-

joining tree. 

Confidence values for each node in the phylogenetic tree may be estimated using a 

bootstrap test.183 In the bootstrap test, n sites are randomly chosen with replacement to be 

reshuffled, and a new phylogenetic tree is inferred from the reshuffled alignment. The 

topology of the new tree is compared to the original tree and interior branches that yield 

the same partition of sequences in both the original and reshuffled tree are given a score of 

1, and, otherwise, a score of 0. This process is repeated numerous times (usually about 500 
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to 1000 times), and the percent of times each branch receives a value of 1 is computed as 

a percent. This value is the bootstrap confidence value and is a measure of the confidence 

or accuracy of the inferred topology.172, 184 
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CHAPTER 3. Machine Learning Reveals Sequence-Function Relationships in 

Family 7 Glycoside Hydrolases 

In this chapter, we applied supervised learning and bioinformatic analysis to investigate 

the relationships between amino-acid sequence and functional variation in family 7 

glycoside hydrolases. The author of this dissertation performed all computational 

experiments in this chapter. The director of this dissertation (Christina M. Payne) and a 

collaborator at Department of Computer Science (Brent Harrison) helped with the 

experiment design. Collaborators at Swedish University of Agricultural Sciences (Mats 

Sandgren and Jerry Ståhlberg) provided assistance in the manual curation of sequence 

alignments. 

3.1 Abstract 

Family 7 glycoside hydrolases (GH7) are among the principal enzymes for 

cellulose degradation in nature and industrially. These important enzymes are often 

bimodular, comprised of a catalytic domain attached to a carbohydrate binding module 

(CBM) via a flexible linker, and exhibit a long active site that binds cello-oligomers of up 

to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases 

(CBH) and endoglucanases (EG). Despite the critical biological and industrial importance 

of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and 

structure relate to function. Here, we employed machine learning to gain insights into 

relationships between sequence, structure, and function across the GH7 family. Machine-

learning models, using the number of residues in the active-site loops as features, were able 
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discriminate GH7 CBHs and EGs with up to 99% accuracy. The lengths of the A4, B2, B3, 

and B4 loops were strongly correlated with functional subtype across the GH7 family. 

Position-specific classification rules were derived such that specific amino acids at 42 

different sequence positions predicted the functional subtype with accuracies greater than 

87%. A random forest model trained on residues of 19 positions in the catalytic domain 

predicted the presence of a CBM with 89.5% accuracy. We propose these positions play 

vital roles in the functional variation of GH7 cellulases. Taken together, our results 

complement numerous experimental findings and present functional relationships that can 

be applied when prospecting GH7 cellulases from nature, for sequence annotation, and to 

understand or manipulate function. 

3.2 Introduction 

Cellulose is the most abundant renewable biopolymer on Earth and, thus, holds 

tremendous potential in transitioning energy production from fossil fuels to a renewable 

carbon feedstock — a key need to limit anthropogenic climate change. Sugars derived from 

the deconstruction of cellulose can be converted to biofuels and numerous chemicals via 

myriad biological or catalytic conversion routes. However, the efficient depolymerization 

of cellulose in a cost-effective manner such that biofuels can economically compete with 

fossil fuels remains a major challenge to enabling a lignocellulosic economy.10 In industry, 

biochemical methods of cellulose deconstruction employing enzymes are promising due to 

high selectivity, low energy consumption, and low amounts of by-product generation.10, 

185, 186 As a result, improving the yield of enzymatic hydrolysis of cellulose by enhancing 

cellulase activity is a major research focus. 
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In nature, microbial cellulose degradation is primarily achieved via a synergistic 

cocktail of enzymes consisting of processive cellobiohydrolases (CBHs), endoglucanases 

(EGs), and accessory enzymes such as β-glucosidases and lytic polysaccharide 

monooxygenases (LPMOs).185 Organisms can employ these enzymes as free single- or 

multi-modular constructs, or as cellulosomes. Industry tends to employ free enzyme 

systems, as filamentous fungal hosts are proficient secretors of these types of cellulose-

degrading enzymes. EGs act by attacking internal bonds in cellulose, thus, creating free 

chain ends. CBHs attach to free chain ends via exo-initiation, or internal regions in the 

chain via endo-initiation, and processively cleave off cellobiose units as they process along 

the chain. Cellobiose products are consequently hydrolyzed by β-glucosidases to yield 

glucose.185 
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Figure 3.1 Structures of typical GH7 CBH and EG with a cellononaose ligand in complex. 

(A) The CBH (left), Trichoderma reesei Cel7A (TreCel7A, PDB code: 4C4C),187 and the 

EG (right), Trichoderma reesei Cel7B (TreCel7B, PDB code: 1EG1).188 The eight active-

site loops (A1 to A4 and B1 to B4) are shown in red. In the CBH, the active site is tunnel-

like, but is more open and groove-like in the EG. (B) Glycosyl binding sites are numbered 

from the non-reducing end at the active-site tunnel entrance (-7) to the reducing end (+2) 
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where the cellobiose product exits the active site. Bond cleavage occurs between -1 and +1 

subsites. 

 

Whereas CBHs are known to be processive and to carry out several cellulolytic cuts 

before detaching from the cellulose substrate, EGs are mostly nonprocessive or may show 

little processivity.41, 189-192 Optimum cellulolytic efficiency is achieved by the synergistic 

action of CBHs and EGs.  CBHs, EGs, and β-glucosidases, as well as other glycoside 

hydrolases (GHs) are currently classified into 168 families in the CAZy database.31, 193 

Family 7 glycoside hydrolases (GH7s) are the powerhouses of cellulose degradation in 

nature. They traditionally are found mostly in fungi, although sequences have been 

identified in several non-fungal groups such as Crustacea, Porifera, Alveolata, and 

Amoeba.42 Because GH7s offer significant cellulolytic potential, they are often the 

predominant enzymes by mass in the secretomes of many filamentous cellulolytic fungi 

and constitute the major components of enzyme cocktails in industrial cellulolytic 

processes.185, 194, 195 

GH7s consist of two main subtypes, CBHs and EGs. Although over 5,000 GH7 

sequences are known, structural information is presently available for only 21 GH7s (16 

CBHs, 5 EGs).35, 36, 39, 42, 46, 187, 188, 196-207. GH7 CBH and EG structures share a similar β-

jelly roll fold with two antiparallel β-sheets that pack into a curved β-sandwich.36 Loops 

protrude from the β-sandwich and extend over a tunnel-like active site that spans 40–50 Å 

across the ends of the catalytic domain (CD). The active site contains at least nine glycosyl 

subsites for binding cello-oligomers, which are numbered -7 to +2 from the non-reducing 

end of the cellulose chain (Figure 3.1). The cellulose chain is cleaved between the -1 and 

+1 subsites.185 Despite the overall similarity in fold, structures of GH7 CBHs and EGs are 
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strikingly different in their active-site configuration. Whereas GH7 CBHs exhibit a closed 

tunnel-like active site, GH7 EGs possess a more open, groove-like active site. These 

differences arise due to the variation in the residue lengths of the loops that protrude over 

the active-site groove, labeled A1 to A4 and B1 to B4 (Figure 3.1).35 Several structural and 

mechanistic studies of GH7s have proposed that the differences in functional properties of 

GH7 CBHs and EGs, such as processivity, endo-initiation, and product inhibition, arise 

mainly due to the differences in the active-site architecture in the loops.35, 39, 197, 200, 201, 203, 

204, 206 Moreover, GH7 CBHs with a more exposed active-site tend to exhibit functional 

characteristics intermediate between typical CBH and EG behavior.40, 41, 200, 208 Besides the 

differences in the configuration of active-site loops, studies have also indicated that there 

are key residues in the active site of GH7s that contribute to the variation in GH7 CBH and 

EG behavior. Several aromatic and charged residues in the active site that interact with the 

cellulose substrate have been suggested to be crucial for the processive activity of GH7 

CBHs.45, 202, 209-211 Moreover, mutation of these residues notably diminishes the processive 

activity of GH7 CBHs on crystalline cellulose.212, 213 

Like many other cellulases, GH7s can be bimodular, having their CD attached to a 

carbohydrate binding module (CBM) by an intrinsically disordered glycosylated linker 

peptide.37, 214-217 There are currently 87 families of CBMs in the CAZy database.193, 218 but 

GH7s mainly utilize family 1 CBMs.185, 219 It is now generally accepted that family 1 CBMs 

function to increase the affinity of cellulases for crystalline cellulose and, thereby, increase 

the surface concentration of the enzyme for catalysis. Thus, by facilitating two-dimensional 

diffusion of the CD on the cellulose surface, the CBM improves the catalytic efficiency.37 

Furthermore, several studies have revealed that deletion of the CBM-linker domain 
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dramatically reduces CBH activity on crystalline cellulose, especially at low enzyme 

concentration, but not on soluble substrates.38, 219-223 Takashima et al. carried out several 

mutations in the CBM of a Humicola grisea CBH (HgrCel7A) and observed high positive 

correlation between the efficiency of the enzyme on crystalline cellulose and the binding 

affinity of the CBM.224 Similarly, Srisodsuk et al. observed that replacing the CBM of 

Trichoderma reesei Cel7A (TreCel7A) with the CBM of TreCel7B, which has a higher 

cellulose-binding affinity, improved the activity of TreCel7A on crystalline cellulose.38 

Altogether, these results indicate that CBMs affect GH7 catalytic activity primarily by 

promoting binding to the cellulose surface.  

Despite the tremendous growth in scientific knowledge of GH7s over the last few 

decades, our understanding of how sequence and structure affect function is far from 

complete. Although it is known that the exposure of the active site due to truncation in the 

active-site loops can substantially affect function, little work has been done to elucidate the 

unique roles that each of the active site loops play and how the effects of truncation vary 

with function for the different loops. Recently, Schiano-di-Cola et al. studied the effects of 

deletions in the B2, B3, and B4 loops on the activity and kinetics of TreCel7A.225 They 

found that deletions in the B2 loop, compared to the B3 and B4 loop, most significantly 

affect CBH behavior of TreCel7A. Beyond TreCel7A, there is a need to investigate how 

variation of active-site loop lengths relate to function across other members of the GH7 

family.  

In this work, we employ machine learning (ML) to derive relationships between 

sequence, structure, and function of GH7s using a dataset of 1,748 selected protein 

sequences. The sequences are aligned via multiple sequence alignment (MSA) to identify 
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regions of structural similarity and evolutionary importance. Although manual inspection 

of the MSA may reveal several functional patterns, such as highly conserved positions, 

many important but complex relationships may be missed. ML is an especially useful 

statistical tool when data are abundant and relationships in the data are complex.226 Thus, 

ML can be employed to discover complex functional and evolutionary relationships in 

proteins. In this work, we apply ML to the MSA of GH7 sequences, mapping variation in 

lengths of the active-site loops to functional subtypes such that the subtype can be 

accurately predicted from loop length. We also derive position-specific classification rules 

to highlight positions that play important roles in CBH/EG function. Lastly, we investigate 

relationships between the CBM and the CD by utilizing ML to predict the presence of 

CBMs in GH7s using residues in the CD. It is important to note that, as the current 

understanding of GH7 function is based on investigation of a few representatives, this 

present study of 1,748 GH7 sequences seeks to identify general sequence-function 

relationships for the entirety of the GH7 family and the degree to which variation exists. 

3.3 Results 

3.3.1 Datasets 

Three datasets were used in this study. The first dataset contained 1,748 full-length 

GH7 protein sequences retrieved from the National Center for Biotechnology Information 

(NCBI) non-redundant database. Using a strict keyword search, we queried the NCBI 

database for the subtype annotation (i.e. CBH or EG) of these 1,748 sequences. 427 

sequences were clearly annotated as CBH or EG in the database (291 CBHs and 136 EGs), 

and these 427 sequences comprised the second dataset. For the third dataset, we retrieved 
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44 GH7 sequences from the manually curated UniProtKB/Swiss-Prot database.227 

Accordingly, the subtype annotations of the 44 GH7s (30 CBHs, 14 EGs) are less likely to 

contain errors than the annotations of the 427 sequences from the NCBI non-redundant 

database. 

 

3.3.2 Discrimination of GH7 subtypes with hidden Markov models 

In the annotation of a protein sequence, several computational prediction methods 

may be applied. Sequence similarity methods compare an unclassified protein with well-

studied proteins and assign the unclassified protein to the same class as the most similar 

classified proteins.228 Hidden Markov model (HMM),229, 230 which describes the protein 

sequence as a probabilistic model, is one of the most sensitive and most accurate methods 

for discriminating protein functional families with sequence data alone, provided they are 

built with correct alignments.228 Within a given protein family, HMM can also be applied 

to discriminate functional subtypes, although the  discrimination accuracy varies across 

different families.152  

We applied HMM to discriminate GH7 CBHs and EGs. The performance of HMM 

was evaluated by a five-fold cross-validation technique using the datasets of 427 (NCBI) 

and 44 (UniProtKB/Swiss-Prot) GH7 sequences. First, each dataset was aligned and 

separated into CBH and EG subalignments based on the database annotations. Then, each 

subalignment was randomly split into five folds (Figure 3.2A). Subtype HMMs (i.e., CBH 

HMM and EG HMM) were repeatedly built on four out of five folds of the CBH and EG 

subalignment, and the sequences in each left-out fold were used as a test set. To predict the 

subtype of a sequence, the sequence was aligned separately to both the CBH and EG 

HMMs, and then the alignment scores were compared. If the CBH HMM alignment score 
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was greater than the EG HMM alignment score, the sequence was predicted to be a CBH; 

otherwise, it was predicted to be an EG.152 The process was repeated so that all five folds 

were used in training and testing the HMMs. 

Figures 3.2B and 3.2C show the performance of the HMM method on the 

UniProtKB/Swiss-Prot dataset (44 sequences) and on the NCBI dataset (427 sequences), 

respectively. The HMM method achieved perfect accuracy on the UniProtKB-Swiss-Prot 

dataset. All sequences were correctly predicted, and there was a substantial difference, of 

at least 120.0, between the CBH alignment score and the EG alignment score. On the NCBI 

dataset of 427 sequences, which may contain erroneous subtype annotations, the HMM 

achieved an accuracy of 99.53% and only misclassified two sequences (accession codes: 

AGY80096.1 and AGY80097.1), which are annotated as EGs. These two sequences may 

have been erroneously annotated as EGs since they are much more similar to CBHs in 

overall sequence and loop lengths. Furthermore, the value of the alignment score difference 

for some sequences in the NCBI dataset is as low as 2.0. 

 

 

Figure 3.2 Discrimination of GH7 CBHs and EGs with hidden Markov model (HMM).(A) 

Five-fold cross-validation technique for evaluating the performance of HMM. The MSA is 

split into CBH and EG subalignments and each subalignment into five folds. HMMs are 
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repeatedly trained on four folds and then tested on the left-out fold. The predicted class 

(CBH or EG) of a sequence is the class that yields the highest HMM alignment score.  (B) 

Performance of HMM on the dataset of 44 GH7s from the manually curated 

UniProtKB/SwissProt database.  (C) Performance of HMM on the dataset of 427 GH7s 

from NCBI non-redundant database. Only two EG sequences (GenBank accession codes: 

AGY80096.1 and AGY80097.1) were misclassified in the NCBI dataset. Note that in B 

and C, the assigned sequence numbers (x-axes) are arbitrary. 

 

3.3.3 Discrimination of GH7 subtypes with machine learning: relationships between 

active-site loops and CBH/EG function 

In this part of the study, our goal was to use ML to map the variation in amino acid 

sequence to GH7 CBH and EG activity and to, consequently, determine which aspects of 

the sequence and structure predominantly affect CBH/EG function. If a particular feature 

is important for the difference in CBH and EG behavior, we should be able to train ML 

models on that feature to discriminate GH7 CBHs and EGs with significant accuracy. 

Otherwise, a feature that has no correlation with activity, but only varies due to 

phylogenetic diversity, would perform poorly when applied to predict GH7 subtypes with 

ML. 

We used the dataset of 1,748 GH7s to test ML algorithms in predicting GH7 

subtypes. Since only 427 of the 1,748 GH7s are classified as CBH or EG in the databases, 

we applied the HMM method described previously to derive the functional classes of the 

unclassified GH7 sequences. Our cross-validation tests showed that the HMM method can 

correctly classify GH7 subtypes with an accuracy of almost 100% (i.e. consistent with the 
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database annotations). This result is similar to the performance of the HMM method 

applied to other protein families.152 Moreover, when we trained separate HMMs on the 

manually-annotated dataset of 44 sequences (UniProtKB/Swiss-Prot) and on the “less 

perfect” dataset of 427 sequences (NCBI), and then applied the HMMs to determine the 

subtype of the 1,748 GH7s, the separate HMMs assigned the same subtype in all but five 

instances (99.71%). Regardless, misclassification errors of about 1% are not large enough 

to alter the relationships that we derived from ML on the dataset of 1,748 GH7 

sequences.231, 232 

In choosing features for the ML models, we capitalized on the observation that 

crystal structures of GH7 CBHs and EGs differ in their active-site architecture, due to the 

degree of truncation in the eight active-site loops (Figure 3.1). Hence, we used the number 

of residues in the active-site loops as features for ML to discriminate between GH7 CBHs 

and EGs. First, a structure-based MSA of all 1,748 sequences was carried out (See 

Materials and Methods for details). For each sequence in the MSA, we counted the number 

of amino acid residues in the eight active-site loops and derived a vector of the eight loop 

lengths as features (Figure 3.3). 
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Figure 3.3 Generating features for discriminating GH7 CBHs and EGs with machine 

learning. (A) Segments of a selection of six well-studied GH7s from the structure-based 

sequence alignment of 1,748 sequences showing the active-site loops. The sequences 

include the CBHs: Trichoderma reesei Cel7A (TreCel7A),187 Penicillium funiculosum 

Cel7A (PfuCel7A),46 and Phanerochaete chrysosporium Cel7D (PchCel7D);200 and the 

EGs: Trichoderma reesei Cel7B (TreCel7B),188 Fusarium oxysporum Cel7B 

(FoxCel7B),203 and Humicola insolens Cel7B (HinCel7B).204 (B) The number of residues 

in the eight active-site loops as determined from the structure-based alignment. (C) 

Procedure for generating features for 1,748 GH7s. First, the sequences are aligned as in 

(A). Then, a count of the number of residues in each loop is obtained. Residue counts are 

scaled to Z-scores before ML is applied. 

 

Four ML methods were applied: decision trees, logistic regression, k-nearest 

neighbors (KNN), and support vector machines (SVM). For each ML method, nine models 

with different combinations of features were tested. One model involved training the ML 

algorithms on the lengths of all eight loops, and the remaining 8 models involved using 



 

 

55 

each loop length as the sole feature for the training (single-feature models). The 

performance of the ML models was measured using four metrics: sensitivity (or true 

positive rate), specificity (or true negative rate), overall accuracy, and Matthew’s 

correlation coefficient (MCC). Here, the sensitivity is the percent of CBHs (the true class) 

correctly predicted, the specificity is the percent of EGs (the false class) correctly predicted, 

and the overall accuracy is the percent of both CBHs and EGs correctly predicted. The 

MCC ranges from -1 to +1 and measures the correlation between the predicted and true 

classifications. An MCC value of +1 indicates perfect prediction, 0 indicates no 

concordance between predicted and actual classes, and -1 indicates perfect disagreement. 

MCC has been recommended as the most informative performance metric in evaluating 

binary classification performance, especially when the dataset is imbalanced since other 

metrics such as overall accuracy and F1 score can be hugely misleading.106, 233-235 Hence, 

we use MCC as the primary metric in evaluating the performance of the ML models.  

Moreover, we are faced with the problem of an imbalanced dataset: 1,306 (75%) of 

the 1,748 sequences in the dataset are CBHs. Ordinarily, imbalanced data will skew the 

results by causing the ML classifiers to place most of the data in the majority class (CBH). 

To deal with the imbalance problem, we applied random undersampling to the majority 

class so that the distribution of CBH and EGs was balanced.236, 237 We evaluated the 

performance of the ML models on the redistributed data with 100 repetitions of five-fold 

cross validation, with the dataset undersampled and reshuffled in each repetition (Figure 

3.4). Repeating the five-fold cross validation numerous times is a highly effective way to 

mitigate the effects of variability in the train-test splits and to ensure that the data space is 

thoroughly explored despite loss of data in the undersampling step.107 
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Our results show that ML is able to accurately discriminate between GH7 CBHs 

and EGs using only information about the length of the active-site loops (Table 3.1). 

However, the performance varied significantly for the different single-feature models 

(Figure 3.5A). The models trained on the A2 and A3 loops exhibited the worst performance 

with MCC values close to zero, indicating that they did not perform better than a random 

classification. The models trained on A1 and B1 loops showed intermediate performance 

with MCC values widely varying from -0.08 to 0.79 for the A1 models, and -0.03 to 0.63 

for the B1 models. Interestingly, the A4, B2, B3, and B4 models showed very high 

predictive performance, with MCC values ranging from 0.94 to 0.98 and with much lower 

variation among the different ML methods. The models trained on these five loops (A4, 

B2, B3, B4) achieved nearly the same high performance as the models trained on all eight 

loops (Table 3.1) . 
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Table 3.1 Performance of machine learning algorithms in discriminating GH7 CBHs and EGs.The first eight rows show the performance 

of the models trained on each loop as the single, independent feature. The last row shows the performance of the models trained with 

all eight loops as features. 

 Decision tree Logistic regression K-nearest neighbor Support vector machine 

Features Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy 

A1 98.6 ± 1.2 45.9 ± 5.0 72.3 ± 3.2 42.0 ± 16.5 52.8 ± 7.3 46.9 ± 6.4 86.5 ± 15.1 88.7 ± 5.4 87.6 ± 5.6 97.0 ± 1.8 85.5 ± 3.4 91.2 ± 2.0 

A2 65.9 ± 43.5 37.4 ± 42.2 50.7 ± 3.7 49.3 ± 46.7 50.3 ± 45.3 47.4 ± 2.8 4.6 ± 2.3 97.0 ± 1.9 50.8 ± 3.8 89.2 ± 27.3 18.4 ± 26.0 53.0 ± 3.5 

A3 89.0 ± 26.3 16.9 ± 24.8 52.5 ± 3.7 50.8 ± 47.9 49.4 ± 45.4 47.6 ± 3.2 3.0 ± 2.0 97.8 ± 1.6 50.4 ± 3.7 96.7 ± 11.2 11.4 ± 10.9 53.9 ± 3.4 

A4 95.7 ± 2.1 99.5 ± 0.7 97.6 ± 1.1 95.8 ± 2.0 99.5 ± 0.6 97.7 ± 1.1 95.8 ± 2.1 99.7 ± 0.5 97.8 ± 1.1 95.6 ± 2.2 99.6 ± 0.6 97.6 ± 1.1 

B1 96.8 ± 1.8 44.1 ± 5.5 70.5 ± 3.3 79.3 ± 35.6 34.5 ± 12.2 55.9 ± 13.4 1.3 ± 1.8 98.7 ± 1.6 50.0 ± 3.7 95.1 ± 2.6 72.3 ± 4.4 83.7 ± 2.6 

B2 94.6 ± 2.4 99.1 ± 1.2 96.9 ± 1.3 94.7 ± 2.4 98.4 ± 1.2 96.6 ± 1.3 95.3 ± 2.3 97.4 ± 1.8 96.4 ± 1.3 94.8 ± 2.4 98.4 ± 1.6 96.6 ± 1.4 

B3 92.4 ± 2.7 99.8 ± 0.5 96.1 ± 1.4 89.9 ± 3.3 99.8 ± 0.5 94.8 ± 1.7 96.3 ± 2.2 98.6 ± 1.1 97.5 ± 1.2 89.7 ± 3.3 99.8 ± 0.4 94.8 ± 1.7 

B4 97.9 ± 1.8 98.2 ± 1.3 98.0 ± 1.0 98.2 ± 1.4 98.2 ± 1.2 98.2 ± 0.9 97.6 ± 2.0 98.3 ± 1.3 98.0 ± 1.1 97.8 ± 1.6 98.2 ± 1.3 98.0 ± 1.0 

All 8 loops 98.8 ± 1.2 99.1 ± 1.1 98.9 ± 0.8 98.3 ± 1.4 99.2 ± 0.9 98.8 ± 0.8 97.1 ± 2.0 99.4 ± 0.7 98.2 ± 1.1 99.0 ± 1.1 98.9 ± 1.1 98.9 ± 0.7 
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Figure 3.4 Procedure for evaluating the performance of ML models using 100 repetitions 

of five-fold cross validation with undersampling.The dataset is reshuffled and resampled 

in each repetition. 

 

Furthermore, we observed that the variation in the lengths of the loops correlates 

with the discriminative performance of the loops (Figure 3.5A-C). The loops with very 

poor discriminatory performance (A2 and A3) show the lowest relative variation in lengths 

across the 1,748 GH7s, and nearly identical distributions between CBHs and EGs (Figure 

A1.1 of Appendix A1). In contrast, loops with intermediate discriminatory performance 

(A1 and B1) show a greater level of variation in lengths than A2 and A3 loops and 

noticeably different distributions for CBHs and EGs, although there is a considerable 

amount of overlap. The loops with near-perfect predictive performance (A4, B2, B3, B4) 

show the highest variation in lengths. 
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Figure 3.5 Predictive performance and variation of active-site loops in GH7s.(A) 

Matthews’ correlation coefficient (MCC) values of four ML algorithms trained separately 

on the length of each active-site loop and on all eight loops together. The A4, B2, B3, and 

B4 loops achieve near-perfect performance in discriminating 1,748 GH7 CBHs and EGs.  

(B) The relative standard deviation of the length of the eight active site loops. Generally, 

variation in the length of a loop correlates with predictive performance of the loop as a ML 

feature. (C) The mean length of active-site loops in 1,306 GH7 CBHs and 442 GH7 EGs. 

Error bars are  1 standard deviation. (D) Rules derived from the single-node decision trees 

trained on the A4, B2, B3, and B4 loops. The accuracy of the rules in discriminating GH7 

CBHs and EGs, i.e. the sensitivity and specificity, respectively, are shown in brackets. 
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Figure 3.6 Pearson’s correlation coefficient between the lengths of the eight active-site 

loops in 1,748 GH7s. The matrix of correlation coefficients is clustered so that loops with 

a similar pattern of correlation are grouped together. There is a high degree of positive 

correlation (darker red) between the lengths of the A4, B2, B3, and B4 loops. 

 

One major advantage of the tree-based methods over other ML algorithms is the 

possibility of deriving and visualizing interpretable classification rules.238, 239 In many 

applications of ML to biological problems, it is desirable to gain knowledge of biological 

relationships rather than merely apply ML as a predictive tool. Figure 3.5D shows rules 

derived from the single-node decision-tree classifiers trained on the A4, B2, B3, and B4 

loops. A classification accuracy of 96.9% was achieved by the simple rule: if a GH7 has 

more than four residues in the B2 loop, then it is a CBH, else it is an EG. Overall, the 
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decision trees reveal that GH7 EGs tend to possess three or less residues in the B3 and B4 

loops, four or less residues in the B2 loop, and five or less residues in the A4 loop. 

Since the lengths of the A4, B2, B3, and B4 loops can independently discriminate 

between GH7 CBHs and EGs with accuracies greater than 94%, it is expected that there is 

a substantial degree of correlation between them. We conducted correlation analysis by 

computing the Pearson’s correlation coefficient between the lengths of the eight loops of 

1,748 GH7s (Figure 3.6). As expected, there is significant positive correlation between the 

lengths of the A4, B2, B3, and B4 loops (r ≥ +0.76, p < 0.0001). The highest correlations 

are observed between the A4 and B2 loops (+0.84) and between the A4 and B4 loops 

(+0.83). 

 

3.3.4 Discrimination of GH7 subtypes with position-specific classification rules: 

important residues for CBH/EG function 

In discriminating GH7 CBHs and EGs with ML, we have used only the lengths of 

the active-site loops as features without considering the contributions of specific amino 

acids in the proteins. However, the interactions of specific residues are known to affect 

GH7 CBH/EG function, and mutagenesis studies have confirmed that certain positions play 

essential roles in GH7 activity.41, 212, 213, 240 In this section, we investigate the relationships 

between specific residues in the proteins and the functional subtype. 

It is common knowledge that although a protein’s function arises from the 

combined effects of multi-level interactions between all residues in the protein, some 

residues contribute to function more significantly than others. Consequently, it is likely 

that in GH7s, if a position is considerably conserved in CBHs such that CBHs tend to 
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utilize a particular amino acid at that position, and EGs tend to not utilize the same amino 

acid at that position, or vice versa, then that position plays a vital role in the difference in 

CBH/EG function or structural stability. A typical example is position 40 (i.e. Trp40 in 

TreCel7A). From analysis of the structure-based MSA, we observe that this position is 

strongly conserved in CBHs with 92.5% exhibiting a Trp at this position, whereas it is 

notably variable in EGs with only 28.5% exhibiting a Trp at this position (Figure 3.7A). 

Considering only this clear difference in the amino acid distribution at position 40, we can 

infer that Trp40 likely contributes to CBH function. Mutation of Trp40 to Ala has, in fact, 

been shown to considerably decrease the activity of TreCel7A on crystalline cellulose but 

not on amorphous cellulose,212 indicating that Trp40 is critical for processivity.213 

Consequently, we propose that applying a statistical method to mine for positions in GH7s 

that are conserved but have remarkably different amino acid distributions between CBHs 

and EGs can identify positions that play critical roles in CBH/EG function and processivity. 

From the amino acid distribution at position 40, we obtain a single-node decision 

tree with the rule: Trp at position 40 implies CBH, else EG. This simple rule classifies 

1,748 GH7 CBHs and EGs with an accuracy of 87.2%. Thus, a rational strategy for 

identifying positions likely associated with CBH/EG function is to derive similar rules for 

all positions in the MSA and select positions which yield high-performing rules. First, we 

split the MSA of 1,748 GH7 sequences into CBH and EG subalignments and then identified 

the consensus amino acid and the consensus amino acid type (i.e. aliphatic, aromatic, polar, 

positive, or negative) for each position in the subalignments. For each position, if X and Z 

are the consensus amino acids (or type) in the CBH and EG subalignment, respectively, we 

derived the following classification rules: X=>CBH and Z=>EG, X=>CBH and not 
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X=>EG, and not Z=>CBH and Z=>EG. Applying this strategy to 434 positions in the MSA 

(TreCel7A numbering), we derived 1,799 classification rules. For each rule, we measured 

the classification accuracy, sensitivity, specificity, and MCC, and tested the statistical 

significance by conducting chi-square test of independence. The 1,799 rules fairly have 

normally distributed MCC scores (Figure 3.7B), and the top five percent of rules (90 rules) 

have MCC scores of at least +0.73, and classification accuracies of at least 87% (Table 3.2 

and Table A1.1 of Appendix A1, Figure 3.7 and Figure A1.2 of Appendix A1). These 90 

rules are derived from 42 positions which are generally in close proximity to the 

cellodextrin ligand in the crystal structure. More than half of the top 90 rules are from 

positions within 5 Å of the cellononaose ligand bound in TreCel7A structure (PDB code: 

4C4C). Moreover, most of the positions are closer to the tunnel entrance where cellulose 

chains are recruited by the enzyme for processive hydrolysis (Figure 3.7D and 3.7E). 

 

 

Figure 3.7 Top-performing position-specific classification rules for discriminating GH7 

CBHs and EGs. (A) Amino acid distribution of GH7 CBHs and EGs at position 40 

(TreCel7A numbering). Position 40 is strongly conserved as Trp in GH7 CBHs but not in 
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EGs. (B) MCC scores of 1,799 position-specific classification rules derived from the MSA. 

The top 90 rules have MCC scores of 0.73 or greater. (C) Histogram of minimum distance 

between the cellononaose ligand in TreCel7A (PDB code: 4C4C)187 and positions from 

which the top 90 classification rules are derived. More than half of top 90 rules are derived 

from positions within 5 Å of the substrate. (D) Alpha carbons of 42 positions from which 

the top 90 classification rules are derived shown on the structure of TreCel7A. Most of 

these positions are near the substrate sites towards to the nonreducing end (NRE). (E) 

Posterior view of crystal structure. 

 

Table 3.2 Top-performing position-specific classification rules relating amino acid 

residues and GH7 subtype (CBH/EG).All rules discriminate GH7 CBHs and EGs with 

accuracies of at least 87.0% and MCC scores of at least 0.73.  Nearest distance to the 

nearest glycosyl residues was measured from the TreCel7A structure (PDB code: 4C4C). 

Statistical significance was tested by a chi-square test of independence. All rules are 

significant at p<0.0001. See Table A1.1 of Appendix A1 for rules between amino acid type 

and GH7 subtype. Positions from which the rules have been derived are shown on the 

crystal structure of TreCel7A in Figure 3.7. 
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TreCel7A 

position 
Rule 

Closest 

subsite 

Distance 

to 

closest 

subsite 

(Å) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 
MCC 

16 not Thr=>CBH, Thr=>EG -2 19.0 97.7 82.6 93.9 0.83 

37 Asn=>CBH, not Asn=>EG -4 3.1 92.8 86.0 91.1 0.77 

38 Trp=>CBH, not Trp=>EG -4 3.2 93.2 96.2 93.9 0.85 

39 Arg=>CBH, not Arg=>EG -5 3.6 96.4 79.9 92.2 0.79 

39 Arg=>CBH, His=>EG -5 3.6 98.2 70.1 91.1 0.76 

49 Asn=>CBH, not Asn=>EG -7 2.7 90.9 85.3 89.5 0.73 

51 Tyr=>CBH, not Tyr=>EG -5 3.6 88.4 99.1 91.1 0.80 

53 Gly=>CBH, not Gly=>EG -5 4.9 90.6 90.7 90.6 0.77 

56 Trp=>CBH, not Trp=>EG -5 8.9 93.2 99.3 94.7 0.88 

81 Thr=>CBH, not Thr=>EG -5 4.1 88.1 91.2 88.9 0.74 

82 Tyr=>CBH, not Tyr=>EG -5 3.8 91.6 86.2 90.2 0.75 

95 Phe=>CBH, not Phe=>EG -4 7.0 84.0 97.5 87.4 0.74 

97 Thr=>CBH, not Thr=>EG -5 6.7 89.2 93.4 90.3 0.77 

103 Asn=>CBH, not Asn=>EG -5 2.7 92.1 87.8 91.0 0.77 

105 Gly=>CBH, not Gly=>EG -4 4.8 94.8 86.0 92.6 0.80 

105 not Ser=>CBH, Ser=>EG -4 4.8 99.7 74.9 93.4 0.82 

105 Gly=>CBH, Ser=>EG -4 4.8 97.2 80.4 93.0 0.81 

106 Ser=>CBH, not Ser=>EG -2 4.8 89.9 88.7 89.6 0.75 

106 not Pro=>CBH, Pro=>EG -2 4.8 99.2 86.9 96.1 0.89 

106 Ser=>CBH, Pro=>EG -2 4.8 94.5 87.8 92.8 0.81 

120 Phe=>CBH, not Phe=>EG -1 15.7 93.0 83.3 90.6 0.75 

140 Leu=>CBH, not Leu=>EG -1 8.5 83.2 98.2 87.0 0.73 

146 Phe=>CBH, not Phe=>EG -1 7.9 91.8 93.9 92.3 0.81 

146 not Leu=>CBH, Leu=>EG -1 7.9 94.3 79.4 90.6 0.75 

146 Phe=>CBH, Leu=>EG -1 7.9 93.1 86.7 91.4 0.78 

179 Asp=>CBH, not Asp=>EG -3 2.6 92.9 99.1 94.5 0.87 

181 Lys=>CBH, not Lys=>EG -5 2.8 92.0 99.3 93.8 0.86 

192 Trp=>CBH, not Trp=>EG -4 7.0 93.8 100.0 95.4 0.89 

200 Asn=>CBH, not Asn=>EG -4 3.5 85.5 99.3 89.0 0.77 

202 Gly=>CBH, not Gly=>EG -4 6.5 94.0 100.0 95.5 0.89 

204 Gly=>CBH, not Gly=>EG -4 10.7 95.0 99.5 96.2 0.91 

251 Arg=>CBH, not Arg=>EG 2 3.4 86.9 99.8 90.2 0.79 

262 Asp=>CBH, not Asp=>EG 2 4.1 95.1 97.3 95.7 0.89 

262 not Gly=>CBH, Gly=>EG 2 4.1 98.7 69.0 91.2 0.76 

262 Asp=>CBH, Gly=>EG 2 4.1 96.9 83.1 93.4 0.82 

338 Phe=>CBH, not Phe=>EG 2 7.7 91.8 99.8 93.8 0.86 

340 Asp=>CBH, not Asp=>EG 2 9.1 83.1 99.3 87.2 0.74 

381 Tyr=>CBH, not Tyr=>EG 2 3.5 83.7 99.8 87.8 0.75 

382 Pro=>CBH, not Pro=>EG 2 5.0 93.3 98.4 94.6 0.87 

391 Gly=>CBH, not Gly=>EG 2 6.9 94.6 91.0 93.7 0.84 

394 Arg=>CBH, not Arg=>EG 2 3.1 95.1 96.4 95.4 0.89 

394 Arg=>CBH, Ala=>EG 2 3.1 97.4 72.6 91.1 0.76 

396 not Pro=>CBH, Pro=>EG 2 12.9 85.5 96.6 88.3 0.75 

401 not Glu=>CBH, Glu=>EG -3 13.5 98.8 72.9 92.2 0.79 

423 not Trp=>CBH, Trp=>EG -1 18.1 97.4 72.6 91.1 0.76 
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3.3.5 Conserved aromatic residues in the active site of GH7s 

GH7s possess several aromatic residues lining the active-site tunnel which have 

been suggested to play key roles in cellulolytic bond cleavage and processive action.211 We 

have conducted bioinformatic analysis of conserved aromatic residues in the active site of 

GH7s. From the MSA of 1,748 GH7s, we selected positions that are located within 6 Å of 

the cellononaose substrate in the structure of TreCel7A (PDB code: 4C4C), and that have 

aromatic residues (Phe, Trp, Tyr, or His) at that position in the consensus sequence of 

CBHs or EGs (Figure A1.3 of Appendix A1). There are 17 of such aromatic positions in 

the MSA, and on the protein structure, these positions are distributed across the nine 

glycosyl subsites. 

Furthermore, these 17 positions can be classified into three groups based on the 

conservation of aromatic amino acids (Table 3). The first group consists of positions that 

are conserved in both CBHs and EGs such that more than two-thirds of CBHs and EGs 

utilize aromatic residues at these positions. Positions 145, 171, 216, 228, 367, and 376 

(TreCel7A numbering) fall in the first group. The second group consists of positions that 

are conserved as aromatic residues (>66%) in CBHs but not in EGs. Positions 38, 40, 51, 

82, 252, 370, and 381 fall in the second group. The third group contains positions that are 

neither conserved (<66%) as aromatic residues in CBHs and EGs although the consensus 

amino acids are aromatic. Positions 39, 47, 53, and 247 fall in the third group. 

When these positions are viewed on the crystal structure (Table 3.3, Figure 3.8), an 

interesting pattern is observed. Whereas positions that are strongly conserved in both CBHs 

and EGs (first group) are located near the catalytic center of the active site, positions that 
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are conserved in CBHs but not in EGs flank the catalytic center nearer to the “substrate-

binding” sites (-7 to -1) or the “product-binding” sites (+1 to +2). 

 

 

Figure 3.8 Conserved aromatic residues in the active site of TreCel7A (PDB code: 4C4C) 

within 6 Å of the cellononaose ligand. Residues in magenta are conserved (>66% 

frequency) in both GH7 CBHs and EGs and are found close to the catalytic center between 

-1 and +1 glycosyl subsites. Residues in blue are conserved in GH7 CBHs but not in EGs 

and flank the catalytic center. 
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Table 3.3 Positions within 6 Å of the cellononaose ligand in TreCel7A (PDB code: 4C4C) containing aromatic residues in consensus 

CBH or EG sequences. The positions are listed in order of proximity to the glycosyl subsites. Aromatic positions conserved in both 

CBHs and EGs are near the catalytic center, whereas aromatic positions conserved in only CBHs flank the catalytic center. All conserved 

positions are shown on the crystal structure of TreCel7A in Figure 3.8. 

TreCel7A 

position 

TreCel7A 

residue 

CBH 

consensus 

residue 

EG 

consensus 

residue 

Frequency of 

aromatic residues 

in CBHs (%) 

Frequency of 

aromatic 

residues 

in EGs (%) 

Closest 

subsite 

Distance 

to closest 

subsite (Å) 

Aromatic residues 

conserved (>66%) in 

47 S Y - 46.8 13.8 -7 3.9 None 

40 W W W 93.3 36.0 -6 3.4 CBH 

39 R R H 0.0 60.4 -5 3.6 None 

53 G G W 0.3 29.4 -5 4.9 None 

51 Y Y G 92.6 2.0 -5 3.6 CBH 

82 Y Y Y 94.9 31.7 -5 3.8 CBH 

38 W W A 94.2 29.4 -4 3.2 CBH 

370 Y H E 87.3 1.8 -3 5.3 CBH 

247 Y Y - 46.9 0.0 -2 2.7 None 

145 Y Y Y 97.9 98.9 -2 2.7 CBH and EG 

367 W W W 94.3 98.6 -1 3.0 CBH and EG 

171 Y Y Y 98.0 97.3 -1 3.8 CBH and EG 

216 W W W 97.9 68.1 -1 5.6 CBH and EG 

228 H H H 96.6 97.5 1 2.8 CBH and EG 

376 W W W 96.8 99.1 2 3.5 CBH and EG 

252 Y Y - 85.0 17.2 2 5.8 CBH 

381 Y Y - 92.8 0.2 2 3.5 CBH 
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3.3.6 Predicting the presence of CBMs with machine learning: relationships 

between the CD and the CBM 

The CD of GH7 proteins may be attached to a second domain (the CBM) via a 

flexible linker. The CBM function is mostly attributed to enhancing the binding of the 

enzyme to the cellulose substrate, and thus, facilitating turnover by increasing enzyme 

concentration on the cellulose surface.185 

We studied the distribution of family 1 CBMs in our dataset of 1,748 GH7s. First, 

a database of the 1,748 sequences was created and then a BLAST search of TreCel7A CBM 

was performed against the database. From a careful manual inspection of the BLAST 

alignment output, we selected an alignment score of 30 as the threshold so that GH7 

sequences which yielded BLAST alignment scores of 30 or greater were determined to 

possess a family 1 CBM.  We compared the distribution of CBMs among GH7 CBHs and 

EGs in our dataset and determined that 27% of GH7s contain a CBM, with 31% and 15% 

of GH7 CBHs and EGs exhibiting CBMs, respectively (Table 3.4). Thus, GH7 CBHs 

appear to be roughly two times more likely than EGs to contain a CBM. Moreover, a chi-

square test of independence indicated that the relationship between CBM utilization and 

GH7 subtype (CBH/EG) is significant (p < 0.001).  

To investigate relationships between the CD and the CBM, we applied ML to predict 

the presence of CBMs using the specific amino acid residues in the CD as features. Positions 

flanking the CD in the MSA were removed and one-hot encoding was applied to transform 

the amino acids in the MSA to binary variables.241 Therefore, the MSA was transformed to a 

matrix such that the rows indicate the sequences, and columns denote the amino acid at 

positions in the MSA (features). Columns are labeled as “residue-position” and can take 
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values of 0 or 1. For example, a value of 1 at columns Q1 and S2 for TreCel7A indicate that 

Gln and Ser are present at positions 1 and 2 in the MSA, respectively (Figure 3.9B). 

Subsequently, one-hot encoding resulted in a high-dimensional matrix with 1,748 rows and 

5,933 columns. We implemented the random forest algorithm131 with 500 trees to predict the 

presence of a CBM using the 5,933 one-hot encoded features. The random forest algorithm is 

especially suitable for this classification problem because it is capable of robustly dealing with 

high dimensional data by performing implicit feature selection in the learning process,135 is 

more tolerant to noise and overfitting,131, 134 and can be used to evaluate the relative 

importance of the features.136 

The performance of the random forest classifier was evaluated with 100 repetitions of 

five-fold cross validation with random undersampling, as described previously (Figure 3.4). 

Only 90% of the dataset was used for the cross validation; 10% of the dataset (174 sequences) 

was randomly selected and set aside for a separate final test. The random selection of the test 

dataset was implemented in such a way that a similar distribution (27% CBM, 73% no CBM) 

was maintained. In the validation routine, an accuracy of 90.8% was achieved by the 500-

trees random forest trained on all 5,933 features (Table 3.6). A plot of the relative (Gini) 

importances136 of the features shows that most of the 5,933 features contribute little or no 

information to the performance of the random forest classifier (Figure 3.9A). We reapplied 

the random forest algorithm using only the top 50 and the top 20 features with the highest 

Gini importances. The classifiers trained on only the top 20 and top 50 features showed fairly 

similar validation performance to the classifier trained on all 5,933 features (Table 3.6).  
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Table 3.4 Distribution of CBMs in GH7s showing the relationship between subtype 

(CBH/EG) and the presence of a CBM.GH7 CBHs are roughly two times more likely to 

possess a CBM than GH7 EGs (p<0.0001, chi-square test) 

 CBH EG Total 

Has CBM 407 66 473 

No CBM 899 376 1275 

Total 1306 442 1748 

CBM frequency (%) 31.2 14.9 27.1 

 

 

Table 3.5 Distribution of CBMs in GH7s showing the relationship between the presence 

of the rare disulfide bond (C4-C72 in TreCel7A) and the presence of a CBM. GH7s 

possessing this disulfide bond are roughly three times more likely to possess a CBM than 

GH7s lacking the disulfide bond (p<0.0001, chi-square test) 

 Has disulfide bond Lacks disulfide bond Total 

Has CBM 105 368 473 

No CBM 54 1221 1275 

Total 159 1589 1748 

CBM frequency (%) 66.0 23.2 27.1 
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Table 3.6 Performance (%) of random forest classifiers in predicting presence of 

CBM.Validation and testing are performed on a 90%:10% split of the dataset, respectively. 

Validation performance is reported as mean  standard deviation over 100 repetitions of 

five-fold cross validation. 

 Validation Testing 

 
All 5,933 

features 

Top 50 

features 

44 features  

(no C-terminus)  

Top 20 

features 

Top 20 

features 

Accuracy 90.8  2.1 90.9  2.1 88.2  2.5 89.3  2.4 89.7 

Sensitivity 93.7  2.8 92.2  2.9 89.6  3.4 90.0  3.2 95.7 

Specificity 87.9  3.5 89.7  3.3 86.9  3.7 88.5  3.6 87.4 

MCC 0.80  0.05 0.81  0.05 0.76  0.05 0.78  0.05 0.68 

 

 

Figure 3.9 Top-performing features of the random forest classifier in predicting the 

presence of CBMs in GH7s. (A)  Relative Gini importance of all 5,933 features derived 

from one-hot encoding of the MSA. Most features provide little information to the model 

(B) Relative (Gini) importance of top 20 features in the random forest classifier retrained 

on only top 20 features. Error bars indicate standard deviation measured over 100 

repetitions of five-fold cross validation. (C) Residues of top 20 features (green sticks) 
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shown on the structure of TreCel7A (tan cartoon) on cellulose (gray sticks). The structure 

is derived from a snapshot (t = 0.73 μs) of MD simulations conducted in a previous work.242 

 

Some residues at the C-terminus of the CD (where the CD connects with the CBM-

linker domain) were identified to be among the most important positions in predicting the 

presence of CBMs (Figure 3.9B, Table A1.2 of Appendix A1). To confirm that the random 

forest algorithm was not predicting the presence of a CBM mainly by looking at these inter-

domain connecting residues (S431, G432, S433, G433, T433, L434), we repeated the 

validation procedure with the top 50 features but excluded features derived from positions 

near the C-terminus (6 features removed, 44 features remaining). The results show that the 

performance of the new classifier trained on 44 features was only slightly lower, with the 

accuracy dropping by less than three percent. Moreover, on the separate test set, the 

classifier trained on the top 20 features achieved an accuracy of 89.7%, confirming that the 

presence of a CBM can be predicted from a few residues in the catalytic domain with 

considerable accuracy. In addition, we derived position-specific classification rules with 

each of the top 50 features, as described previously (i.e. X=>CBM, else, no CBM). As 

expected, all 50 rules independently performed worse, compared to the random forest 

classifier trained on all the 50 features (MCC <0.60, vs 0.81, see Table A1.2 of Appendix 

A1). Among these 50 rules, the top six rules are derived from L434, G433, T433, G432 

(C-terminus residues), and C4 and C72, which are the Cys residues in TreCel7A that form 

a rare disulfide bridge (Table 3.5 and Figure A1.7 of Appendix A1).46 
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3.4 Discussion 

In this study, we apply data mining techniques to investigate relationships between 

sequence and function of GH7s. We are able to accurately discriminate 1,748 GH7 CBHs 

and EGs with ML using only the number of residues in the active-site loops as features. 

However, whereas the ML models trained on the lengths of A4, B2, B3, and B4 loops 

achieved high predictive performance (>94% accuracy), the models trained on the other 

loops demonstrated mediocre or poor performance (Table 3.1, Figure 3.5A). These results 

indicate that the lengths of the A4, B2, B3, and B4 loops are primarily important for the 

difference in GH7 CBH and EG behavior. Greater exposure of the active site is generally 

accepted as a hallmark of nonprocessive cellulases (EGs). In addition, the ML results 

indicate that exposure of the active site in GH7 EGs occurs primarily at the product-binding 

region (+1 and +2 glycosyl subsites) due to deletions in the A4 and B4 loops, at the region 

below the catalytic center due to deletions in the B3 loop, and at the region to the lower 

left of the catalytic center due to deletions in the B2 loop (Figure 3.1 and 3.5C). 

Earlier works have indicated that GH processivity correlates with ligand binding 

affinity, ligand solvation, and the flexibility of catalytic residues.208, 243, 244 In TreCel7A, 

binding affinity is stronger at product-binding sites (+1, +2) than at the substrate-binding 

sites (-7 to -1), and this binding affinity difference has been proposed to be the driving 

force for the forward processive motion of the cellulase chain.192, 208, 211, 245 Consequently, 

a logical explanation for why the lengths of the A4 and B4 loops strongly correlate with 

GH7 CBH/EG function is as follows: deletions in the A4 and B4 loops increase ligand 

solvation, disrupt protein-substrate hydrogen bonds, and lower binding affinity at the 

product binding sites, leading to a decrease in processivity. Similarly, the strong 
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relationship between the lengths of the B2 and B3 loops and GH7 CBH/EG function can 

be explained by the rationale that deletions in the B2 and B3 loops lead to an increase in 

solvation and a decrease in protein-ligand interactions in the substrate-binding sites, and 

an increase in solvation and flexibility of catalytic residues. It is interesting that although 

the A2 and A3 loops also overlay the catalytic center of the active site, their lengths show 

practically no correlation with GH7 CBH/EG function (Figure 3.5A and Figure A1.1 of 

Appendix A1), and exposure of the catalytic center in GH7s is achieved primarily by 

deletions in the B2 and B3 loops instead.  

Moreover, the level of variation in lengths of the loops, as measured by the relative 

standard deviation, positively correlates with the predictive performance of the loops in 

discriminating GH7 CBHs and EGs (Figure 3.5A and 3.5B). This suggests that variation 

in the lengths of active-site loops was a major strategy in the evolutionary design of 

processivity in GH7s so that variation was allowed in the loops that significantly affect 

processivity and limited in other loops that have little impact on processivity (A2 and A3). 

Furthermore, there is a strong positive correlation between the lengths of the A4, 

B2, B3, and B4 loops (Figure 3.6). Hence, in wild type GH7s, the shortening of any one of 

these four loops is highly associated with truncation of the other three loops. On our dataset 

of 1,748 sequences, we observed that if the B4 loop of a sequence is shortened, as is typical 

of GH7 EGs (i.e. possessing three residues or less), the probability that the A4, B2, and B3 

loops are all shortened to typical GH7 EG lengths (i.e. five, four, and three residues or less, 

respectively) is 0.97 (Figure 3.5D). In other words, the pronounced concurrent shortening 

of the A4, B2, B3, and B4 loops observed in all crystal structures of GH7 EGs is remarkably 

conserved in EGs across the GH7 family.188, 206, 246 This distinct bimodal distribution 
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(Figure A1.1 of Appendix A1) and strong correlation between loop lengths and GH7 

subtype may serve as a valuable tool for correct gene annotation. Moreover, the strong 

conservation of loop lengths also indicate that there are coupled interactions between the 

A4, B2, B3, and B4 loops.247 This might explain why in the recent work of Schiano-di-

Cola et al., independent deletions in the B3 and B4 loops did not lead to significant 

improvements in the activity of TreCel7A on amorphous cellulose, and deletions in the A4 

loop rendered the enzyme inactive.225 Cooperative synergy of deletions in other loops, as 

well as point mutations at key positions, may be required to fully exploit the effects of 

deletions in the B3, B4, and A4 loops. 

Beyond the active-site loops, we have derived 90 position-specific classification 

rules from 42 positions in the MSA, such that the specific amino acid, or amino acid type, 

at any of these positions can independently predict the subtype of GH7s, with accuracies 

ranging from 87% to 97%. The high accuracy of these classification rules implies that there 

are strong constraints on the specific amino acids, or amino acid types, utilized by GH7 

CBHs and EGs at these 42 positions. Such differential constraints likely signify that these 

positions play imperative roles in the difference between GH7 CBH and EG behavior. 

More than half of these positions are within 5 Å of the cellononaose substrate bound in the 

TreCel7A structure, and many of these positions cluster around the B2 loop (Figure 3.1, 

3.9D and 3.9E). This finding provides a possible explanation for the observation that 

deletions in the B2 loop led to much greater changes in the CBH-behavior of TreCel7A 

than deletions in the B3 and B4 loops, relative to TreCel7B.225 Since more of the important 

residues that yield high-accuracy position-specific classification rules cluster around the 
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B2 loop than other loops, deletions in the B2 loop likely leads to a disruption of a greater 

number of interactions necessary for CBH activity than deletions in the B3 and B4 loops. 

Many of the 42 positions from which we derived classification rules have been 

identified and studied in previous works, and mutations at these positions have led to 

significant increase in catalytic efficiency.43, 248, 249 Trp38, Tyr51, Asn103, Lys181, 

Asn200, Asp179, Arg251, Asp262, and Arg394 were identified in a docking study as 

residues that directly interact with and stabilize the cellulose substrate in the active site of 

TreCel7A.250 Several of these positions have been further shown to form important 

stabilizing interactions with the substrate. Arg394 forms hydrogen bonds with the +2 

glycosyl residue,210, 211 Arg251 forms a salt bridge with Asp259 and hydrogen bonds with 

the +1 and +2 glycosyl residues,41, 45, 211 and Asn103 and Lys181 form hydrogen bonds 

with the -5 glycosyl residue.199, 251 Sørensen et al. studied mutants of Rasamsonia 

emersonii Cel7A in which two Asn residues on the B2 loop, Asn194 and Asn197 (Asn197 

and Asn200 in TreCel7A, respectively) were replaced with Ala.43 They observed that the 

mutations led to a decrease in substrate affinity and processivity, thus, enabling faster 

enzyme-substrate dissociation and a corresponding increase in activity on crystalline 

cellulose. In this present work, the Asn200 position yields the following classification rule: 

Asn implies CBH, and not Asn implies EG, which discriminates GH7 CBHs and EGs with 

an accuracy of 89%. Similarly, Bu et al. conducted computational studies of several 

TreCel7A residues including Arg251, Asp262, and Tyr381.45 These residues were 

identified to substantially interact with the cellobiose substrate and mutation to Ala resulted 

in considerably weaker binding of cellobiose in the product-binding site. It was suggested 

that these mutants would demonstrate improved biomass conversion efficiency due to 
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accelerated expulsion of the cellobiose product. In this present study, these positions (251, 

262, and 381) also yield high-accuracy classification rules with accuracies of at least 88%. 

Additionally, Mitsuzawa et al. determined that mutation of Asn63 and Lys203 to Ala in 

Talaromyces cellulolyticus Cel7A (Asn37 and Lys181 in TreCel7A, with classification 

accuracies of 91% and 94%, respectively) led to a remarkable increase in activity on 

cellulose.248 

Some positions farther away from the active site also yielded high-accuracy 

classification rules. For example, position 401 – conserved as Ser in CBHs but as Glu in 

EGs and more than 13 Å away from the cellodextrin ligand in the TreCel7A structure – 

generates a CBH/EG classification rule with an accuracy of 92%. Although residues at 

positions such as 401 may not directly interact with the cellulose substrate in the active 

site, they may participate in long-range interactions that affect GH7 CBH and EG behavior. 

Further studies are required to determine the specific roles these conserved positions play 

in function and structural stability. Altogether, we surmise that the positions that yield high-

accuracy classification rules play key roles in GH7 CBH/EG function and, as such, should 

be carefully considered when engineering the protein at or around these sites. 

Bioinformatic analysis of the MSA revealed conserved aromatic positions in the 

active site that are within 6 Å of the cellulose substrate in TreCel7A (Table 3.3, Figure 

3.8). The results indicate that whereas conserved aromatic residues in the active site of 

GH7 CBHs span the entire active-site tunnel, conserved aromatic residues in the active site 

of GH7 EGs are clustered around the catalytic center. Moreover, aromatic positions near 

the catalytic center are conserved in both GH7 CBHs and EGs. This arrangement of 

conserved aromatic residues in the active site suggests that while aromatic residues near 
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the catalytic center (Y145, W216, H228, W367, and W376) play major roles in catalytic 

bond cleavage, conserved aromatic residues that flank the catalytic center (W38, W40, 

Y51, Y82, Y252, Y370, and Y381) are utilized mainly by CBHs for processive motion. 

Several experimental and computational studies support this hypothesis.45, 213, 252, 253 

Taylor et al. assayed chimeras derived from interchanged subdomains of PfuCel7A 

and TreCel7A. Although the CD of PfuCel7A exhibited greater efficiency on biomass than 

the CD of TreCel7A, interchanging CBM and linker regions did not yield a uniform trend 

in catalytic efficiency. As a result, it was concluded that there are complex interactions that 

are not yet well-understood between the domains.46 In this work, we have applied ML to 

predict the presence of CBMs from amino acid positions in the CD to map relationships 

between the CBM and CD of GH7s. First, our data indicate that GH7 CBHs are roughly 

two times more likely to utilize CBMs than GH7 EGs, which is as expected since CBMs 

likely enable CBHs stay longer on the cellulose substrate to facilitate consecutive 

hydrolysis. Furthermore, ML results show that the presence of a CBM in GH7s can be 

accurately predicted (89.3%) using only 20 features derived from 19 positions in the 

catalytic domain (Table 3.6). This high predictive accuracy largely suggests that there are 

constraints and key functional relationships between residue positions in the CD and the 

presence of a CBM in the gene. Interestingly, on the protein structure, these 19 positions 

are mostly located on loops or at turns all over the protein structure (Figure 3.9C). 

Moreover, the amino acid residues constituting the 20 features are mostly small amino 

acids (such as Gly, Ser, Thr, Asp, and Asn) that are known to affect the conformational 

flexibility of proteins.254, 255 Taken together, our ML results, while preliminary, suggest 

that the presence of CBMs in GH7s correlates with the overall conformational flexibility 
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of the CD, and that CBMs may exist, in part, to compensate for highly flexible CDs that 

are more likely to detach from the cellulose surface. Moreover, the position-specific rules 

we derived from the top 50 random-forest features in predicting CBMs indicate that GH7s 

possessing a rare disulfide bond (C4-C72 in TreCel7A) are about three times more likely 

to possess a CBM than GH7s that lack this disulfide (Table 3.6, Table A1.2 and Figure 

A1.7 of Appendix A1). In a previous work, mutation of C4 and C72 in TreCel7A was 

shown to increase cellulolytic efficiency and  flexibility of the tunnel entrance.46 Since an 

extra disulfide bridge would generally decrease the flexibility of the CD, the correlation of 

C4 and C72 with the presence of a CBM is contrary to our hypothesis that CBMs 

compensate for the flexibility of the CD. This paradoxical correlation, thus, warrants 

further experiments to investigate such relationships. 

In conclusion, we have used ML to uncover key positions in GH7 sequences that 

appear to be related to function and statistical relationships between GH7 sequence and 

functional diversity. While these relationships are statistically significant, we stress that 

they may be influenced by sampling and phylogenetic biases inherent to the dataset. 

Nonetheless, as the ML strategies we have applied to GH7s may be extended to other 

protein families, particularly where multiple functional classes exist in the family (such as 

CBH/EG or CBM/no-CBM), this work provides a solid basis for the statistical 

investigation of sequence-function relationships in protein families. We also anticipate that 

the findings in this work will inform further propitious studies for the design of more 

efficient cellulases. 
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3.5 Materials and methods 

3.5.1 Sequence datasets 

Sequences were retrieved by protein-protein BLAST searches against the NCBI 

non-redundant database by using TreCel7A (P62694.1) and FoxCel7B (AAA65586.1) as 

query sequences. BLAST search was implemented with the NCBI web server 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) using default settings. Only sequences with E-

values of 1e-20 or better and query cover of 60% or more were retained. The query cover 

threshold of 60% was applied to exclude the large number of fragment sequences returned 

by the BLAST search. A total of 2,024 sequences were retrieved. A sequence identity 

threshold of 99% was applied to remove redundant sequences so that only 1,748 sequences 

were left in the dataset. From manual inspection of the BLAST output, 60 of these 

sequences consisted of multiple domains other than GH7. Other domains were deleted in 

these sequences leaving only one GH7 domain for each sequence. The SwissProt/UniProt 

dataset of 44 sequences was obtained by a similar BLAST search against the 

SwissProt/UniProt database. All datasets and Python scripts used in this study are available 

at https://github.com/jafetgado/Cel7ML.  

 

3.5.2 Sequence alignments 

Sequence alignments of the SwissProt/UniProt dataset (44 sequences) and the 

annotated NCBI dataset (427 sequences) were conducted with MAFFT  version 7256 using 

BioPython169 with default settings. Due to the greater diversity of the larger dataset (1,748 

sequences), in order to avoid generating erroneous alignments, a structure-based sequence 

alignment was implemented for the larger dataset. First, structural alignment of 20 GH7 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://github.com/jafetgado/Cel7ML
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structures (16 CBHs, 4 EGs) was conducted with the Promals3D web server.257 The 

structural alignment was manually edited in UGENE258 following standard manual 

adjustment methods.259 Then, an MSA of the 1,748 sequences was generated with the 

MAFFT add-sequences option256 by adding the sequences to the structural alignment. 

Sequence alignments  were viewed with ESPript (http://espript.ibcp.fr),260 and sequence 

logos (Figure A1.4 of Appendix A1) were generated with WebLogo 

(https://weblogo.berkeley.edu/logo.cgi).261 

 

3.5.3 Machine learning and performance evaluation 

Profile hidden Markov models were constructed from the MSAs with  a local 

version of the HMMER software (version 3.1b2).229, 262 All ML methods were 

implemented using the Scikit-learn Python package (version 0.20.3).108 The K-nearest 

neighbor (KNN) classifier was trained with the “n_estimators” parameter (k) set to an 

optimal value of 10 (best of 5, 10, and 15). A radial basis function (RBF) kernel was applied 

in the support vector machine (SVM) classifiers, and default settings were used for the 

logistic regression classifiers. To avoid overfitting with the decision trees, the depth of the 

trees was limited to the number of features. Hence, single-feature decision trees had a 

“max-depth” of one, and the decision tree trained on all eight features had a “max-depth” 

of eight. 

There were severe outliers in the lengths of active-site loops that would have 

skewed the ML results. For example, from the MSA, a sequence (GenBank accession: 

CRK24563.1) had 140 residues in the B2 loop. These extremities may have resulted from 

sequencing or splicing errors. Before the ML procedure, outliers were capped to an 

http://espript.ibcp.fr/
https://weblogo.berkeley.edu/logo.cgi


 

 

 

83 

arbitrarily selected maximum limit (Figure A1.5 of Appendix A1).106 All non-binary 

features applied in ML were standardized by converting them to Z-scores according to 

equation 2.3. 

The ML algorithms were applied to discriminate between a positive class (CBH or 

CBM) and a negative class (EG or no CBM), resulting in four classification outcomes: true 

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). The 

performance of the ML algorithms was evaluated by computing the sensitivity, specificity, 

accuracy, and MCC according to the equations 2.7, 2.8, 2.6, and 2.13, respectively. 
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CHAPTER 4. Enabling Microbial Syringol Conversion through Structure-guided 

Protein Engineering. 

This chapter has been reprinted with permission from Machovina et al., Copyright 2019,55 

National Academy of Sciences USA. The findings presented in this chapter are a large 

collaborative work comprising computational, structural, and experimental studies of a 

cytochrome P450 demethylase (GcoA) for conversion of lignin subunits enabled the 

engineering of GcoA for expanded specificity and activity. The author of this dissertation 

performed the conservation analyses, which provided helpful insight for mutagenesis and 

other parts of the study. Expression and biochemical characterization were performed by 

collaborators (Melodie M. Machovina, April Oliver, Christopher Johnson) at Montana 

State University and the National Renewable Energy Laboratory (NREL). Crystallization 

and structural studies were performed by collaborators at University of Portsmouth (Sam 

J.B. Mallinson and Daniel J. Hinchen). Other computational calculations were performed 

by collaborators at NREL and University of California, Los Angeles (Brandon C. Knott, 

Lintao Bu, Michael F. Crowley, Alexander W. Meyers, Graham Schmidt, Marc Garcia-

Borras, and Kendall N. Houk).  

4.1 Abstract  

Microbial conversion of aromatic compounds is an emerging and promising 

strategy for valorization of the plant biopolymer lignin. A critical and often rate-limiting 

reaction in aromatic catabolism is O-aryl-demethylation of the abundant aromatic methoxy 

groups in lignin to form diols, which enables subsequent oxidative aromatic ring-opening. 
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Recently, a cytochrome P450 system, GcoAB, was discovered to demethylate guaiacol (2-

methoxyphenol), which can be produced from coniferyl alcohol-derived lignin, to form 

catechol. However, the native GcoAB has minimal ability to demethylate syringol (2,6-

dimethoxyphenol), the analogous compound which can be produced from sinapyl alcohol-

derived lignin. Despite the abundance of sinapyl alcohol-based lignin in plants, no pathway 

for syringol catabolism has been reported. Here, we employed structure-guided protein 

engineering to enable microbial syringol utilization with GcoAB.  Specifically, a 

phenylalanine residue (GcoA-F169) interferes with the binding of syringol in the active 

site, and upon mutation to smaller amino acids, efficient syringol O-demethylation is 

achieved. Crystallography indicates that syringol adopts a productive binding pose in the 

variant, which molecular dynamics simulations trace to the elimination of steric clash 

between the highly flexible side chain of GcoA-F169 and the additional methoxy group of 

syringol. Lastly, we demonstrate in vivo syringol turnover in Pseudomonas putida KT2440 

with the GcoA-F169A variant. Taken together, this study highlights the significant 

potential and plasticity of cytochrome P450 aromatic O-demethylases in the biological 

conversion of lignin-derived aromatic compounds. 

4.2 Significance 

Lignin is an abundant but underutilized heterogeneous polymer found in terrestrial 

plants. In current lignocellulosic biorefinery paradigms, lignin is primarily slated for 

incineration, but for a non-food plant-based bioeconomy to be successful, lignin 

valorization is critical. An emerging concept to valorize lignin employs aromatic-catabolic 

pathways and microbes to funnel heterogeneous lignin-derived aromatic compounds to 
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single high-value products. For this approach to be viable, the discovery and engineering 

of enzymes to conduct key reactions is critical. In this work, we have engineered a two-

component cytochrome P450 enzyme system to conduct one of the most important 

reactions in biological lignin conversion, namely aromatic O-demethylation of syringol, 

the base aromatic unit of S-lignin, which is highly abundant in hardwoods and grasses. 

4.3 Introduction 

Lignin is a heterogeneous, recalcitrant biopolymer that is prevalent in plant cell 

walls, where it provides structure, defense against pathogens, and water and nutrient 

transport through plant tissue.263 Lignin is synthesized primarily from three aromatic 

building blocks,56, 263 making it the only abundant and renewable aromatic carbon 

feedstock available. Due to its recalcitrance, rot fungi and some bacteria have evolved 

powerful, oxidative enzymes that deconstruct lignin to smaller fragments.53, 54 Once broken 

down, the lignin oligomers can be assimilated as a carbon and energy source through at 

least four known aromatic-catabolic pathways.56, 57 

A critical reaction in the aerobic catabolism of lignin-derived compounds is O-aryl-

demethylation, which occurs on methoxylated lignin-derived compounds to produce 

aromatic diols such as catechol (1,2-dihydroxybenzene), protocatechuate (3,4-

dihydroxybenzoate), and gallate (3,4,5-trihydroxybenzoate). Next, the aromatic rings are 

cleaved by intradiol or extradiol dioxygenases, and the products are funneled into central 

metabolism.51, 264 Harnessing this catabolic capability for transforming heterogeneous 

lignin streams into valuable chemicals is of keen interest,51, 265-269 and essential for 

economical lignocellulose conversion 268, 270, 271. 
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In most plants, lignin comprises primarily coniferyl (G) and sinapyl (S) alcohol 

monomers, which have either one or two methoxy groups on the aryl ring, respectively. 

Nearly all lignin-derived aromatics require O-demethylation of these methoxy groups as 

an essential step in their conversion to central intermediates. Significant effort has been 

dedicated to the discovery of enzymes that can demethylate the methoxy substituents of 

diverse aromatic compounds.68, 69, 272-281 Ornston et al. characterized the O-demethylation 

of vanillin (4-hydroxy-3-methoxybenzaldehyde) and vanillate (4-hydroxy-3-

methoxybenzoate) analogs by the VanAB monooxygenase from Acinetobacter baylyi 

ADP1, which contains a Rieske nonheme iron center 274, 275. The three-component LigX 

monooxygenase system from Sphingobium sp. SYK-6, described by Masai et al., also 

contains a Rieske nonheme iron component,277 that is responsible for O-aryl-demethylation 

of a model biphenyl compound that mimics those in lignin. Masai et al. additionally 

described two tetrahydrofolate-dependent enzymes, LigM and DesA, responsible for O-

aryl-demethylation of vanillate and syringate (4-hydroxy-3,5-dimethoxybenzoate), 

respectively.68, 276 Cytochrome P450 systems have also been reported to demethylate 

aromatic compounds such as guaiacol, 4-methoxybenzoate, and guaethol (2-

ethoxyphenol).69, 273, 280, 281 However, the full gene sequences were either unreported or 

only recently identified,69, 273, 282 or the substrate was not of direct interest to lignin 

conversion.280, 281 

Our recent characterization of a two-component P450 enzyme system, consisting 

of a reductase, GcoB, and P450 oxidase, GcoA, demonstrated that it demethylates diverse 

aromatic compounds including guaiacol (which can be derived from coniferyl alcohol and 

represents the aromatic functionality of G-lignin that must undergo demethylation), 
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guaethol, anisole (methoxybenzene), 2-methylanisole, and 3-methoxycatechol (3MC),70 

with similar or greater efficiency than other O-aryl-demethylases described in the 

literature.277, 279, 283 However, GcoAB showed poor reactivity towards syringol, which can 

be derived from sinapyl alcohol via high-temperature reactions and represents the aromatic 

functionality of S-lignin that must undergo O-demethylation for further catabolism via 

ring-opening dioxygenases. Together, G- and S-lignin are the major components of lignin 

in hardwoods and grasses.263 Due to their abundance, it is important to find enzymes that 

can act on the methoxy groups of both G- and S-lignin subunits. To date, there are no 

reports describing syringol O-demethylation or more broadly, even its catabolism by 

microbes. Rather, the best-studied biological reaction of syringol is its 4-4 dimerization to 

form cerulignone.284-287 

Though our prior work showed that GcoA was not effective for syringol O-

demethylation, crystallographic studies and molecular dynamics (MD) simulations 

indicated that a triad of active site phenylalanine residues is both highly mobile and 

important for positioning the substrate in its catalytically competent pose. In this study, we 

hypothesized that substitution of GcoA-F169, which has the closest interaction with the 

bound substrate, may relax the specificity of the enzyme sufficiently to permit the O-

demethylation of S-lignin type substrates. We tested that hypothesis using biochemical, 

structural, computational, and in vivo approaches. We demonstrate highly efficient in vitro 

and in vivo syringol turnover through structure-guided protein engineering, where the 

enzyme also retains highly efficient activity toward guaiacol. 
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4.4 Results 

4.4.1 The syringol binding mode can be modulated by active site engineering. 

Guaiacol assumes a productive orientation in the active site of GcoA, resulting in a 

shift in the spin state of the heme iron from low (S=1/2) to high (S=5/2), due to the action 

of amino acid side chains that create a tight-fitting hydrophobic pocket. The closest contact 

is with GcoA-F169, which forms a hydrophobic interaction with the C6 carbon on the 

aromatic ring of guaiacol. Prior MD simulations suggested that this residue is highly 

mobile, predicting that the productive complex forms dynamically.70 Superposition of the 

co-crystal structures of GcoA with guaiacol and syringol reveals a shift in the positions of 

GcoA-F169 and the reactive syringol methoxy group relative to the heme (see below). 

Functionally, these shifts in the GcoA-F169 position permit binding of syringol, though 

binding in the productive conformation as measured by the shift in Fe(III) spin state is 

substantially diminished relative to binding of guaiacol (Table 4.1).70 We hypothesized that 

mutation of GcoA-F169 to a smaller residue (alanine) may relieve the apparent steric clash 

between it and the bound ligand in the active site, allowing syringol to adopt a productive 

conformation. The GcoA-F169A variant was therefore prepared and its guaiacol and 

syringol binding properties measured (Figure A2.1 of Appendix A2). Both ligands were 

able to stimulate the Fe(III) spin state conversion at levels close to wild-type (WT) (Table 

4.1), with KD values in the low micromolar range. Notably, 3MC also bound and induced 

a spin state change in Fe(III), though with less affinity than guaiacol or syringol. We 

concluded that active site engineering could indeed lead to productive syringol binding and 

potentially turnover by GcoA-F169 variants, and therefore subsequently studied their 

reactivity with guaiacol, syringol and 3MC. 
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4.4.2 GcoA-F169A efficiently demethylates both guaiacol and syringol with only 

limited uncoupling. 

Substrate analogs are known to stimulate the P450 reaction with NADH/O2 without 

concomitant oxygenation of the organic substrate. This leads to uncoupling of the NADH 

and substrate oxidation reactions, and reduction of O2 either to H2O2 or to H2O (34). Prior 

work showed that syringol led to stimulation of NADH consumption by WT GcoA (28), 

though without substantial syringol turnover. To address whether guaiacol and/or syringol 

would serve as substrates of GcoA-F169A, we monitored the disappearance of NADH 

(UV/vis) and aromatic substrate (HPLC) over time (Scheme 4.1). The rates of organic 

substrate and NADH consumption were robust and the same within error, regardless of 

whether guaiacol or syringol was used (Table A2.1 of Appendix A2). This suggests that 

both guaiacol and syringol serve as substrates for GcoA-F169A. 

 

Scheme 4.1 O-demethylation of (A) guaiacol to form catechol and formaldehyde or (B) 

syringol to form pyrogallol and two formaldehydes.The singly demethylated species, 3-

methoxycatechol (3MC), is expected to form as an intermediate in reaction B). See Figure 

4.1. 
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Table 4.1 Efficacy of GcoA-F169A relative to WT GcoA in binding and demethylating 

guaiacol and syringol. 

 WT GcoA GcoA-F169A 

 guaiacol syringol 3MC guaiacol syringol 3MC 

KD (μM)a 0.0065 ± 0.002 2.8 ± 0.5 3.7 ± 0.1 7.1 ± 0.1 1.7 ± 0.07 9.5 ± 0.2 

%Fe(III) spin 

state conversiona 
87 ± 1 56 ± 2 62 ± 0.01 72 ± 0.3 76 ± 0.7 65 ± 0.6 

kcat (sec-1)b 6.8 ± 0.02 - n/ad 11 ± 0.03 5.9 ± 0.01 n/a 

KM (mM)b 60 ± 10 - n/a 40 ± 6 10 ± 1 n/a 

kcat/KM
 

(mM-1sec-1)b 
110 ± 20 - n/a 290 ± 40 600 ± 90 n/a 

aKD was measured by titrating in 0-60 µM of substrate into a solution containing 2-6 µM 

WT or F169A GcoA in air saturated buffer (25 mM HEPES, 50 mM NaCl, pH 7.5, 25 °C) 

and recording the ferric spin state change from the low spin (417 nm) to high spin (388 

nm) species. The % spin state conversion was calculated by dividing the final high spin 

species (max absorbance at 388 nm) by the starting low spin species (max absorbance at 

417 nm).  

bThe Michaelis constants are apparent as the dioxygen and GcoB concentrations are not 

known to be saturating. The conditions used were: 0.2 µM GcoAB, 100 µg/mL catalase, 

300 µM NADH, 210 µM O2, and 0-300 µM substrate, 25 °C, 25 mM HEPES, 50 mM 

NaCl, pH 7.5.  

Cn/a and dashes: Michaelis constants for 3MC could not be directly measured because of a 

high level of NADH uncoupling, indicated by “n/a”. See text. A substantial amount of 

syringol turnover was not observed for WT GcoA, again making it impossible to measured 

Michaelis parameters. This is indicated by dashes. 
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The oxidative O-demethylation of guaiacol moreover appeared to be largely 

coupled to NADH consumption. When NADH and O2 were present in excess of guaiacol, 

the measured stoichiometry of the GcoA-F169A-catalyzed reaction was very close to one 

molecule each of guaiacol and NADH consumed to one formaldehyde and one catechol 

produced (Figure 4.1), without overconsumption of NADH (103 ± 7% coupling efficiency, 

Table A2.1 of Appendix A2). 

Since both methoxy groups of syringol can potentially serve as substrates, we 

examined syringol turnover in a number of ways. Syringol (100 μM) was first incubated 

with NADH (200 μM) and excess dissolved O2 (210 μM), and the reaction with the GcoA-

F169A mutant allowed to go to completion. As with the guaiacol reaction, all of the NADH 

and syringol were consumed (Figure 4.1), implying that syringol undergoes two O-

demethylations, producing 3MC and then pyrogallol. However, less formaldehyde (170 ± 

10 μM) was produced than expected, suggesting some uncoupling of NADH/O2 

consumption from the oxidative O-demethylation. Consistent with that hypothesis, 50 ± 4 

μM of the singly demethylated intermediate 3MC was observed at the end of the reaction, 

even though sufficient NADH/O2 were present to enable its complete conversion to 

pyrogallol. Notably, pyrogallol was not detected under any of the conditions used here, 

possibly due to its well-known instability in the presence of O2 (35). 

The stoichiometric analysis was next repeated with NADH and syringol present in 

equal concentrations (~200 μM each; 210 μM O2), conditions expected to permit at most 

half of the available methoxy groups to react. All of the NADH and 150 ± 6 μM of syringol 

were consumed; 200 ± 3 μM formaldehyde and 120 ± 2 μM 3MC were generated (Figure 

5.1, Table A2.2 of Appendix A2). The accumulation of roughly half an equivalent of 3MC 
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(relative to NADH) under these conditions suggested that the first O-demethylation of 

syringol must be faster than the second, and that the uncoupling reaction was likely 

stimulated by 3MC rather than by syringol. Consistent with those expectations, the rate of 

3MC disappearance measured by HPLC was significantly slower than the disappearance 

of either guaiacol or syringol (2.6 ± 0.3 μM 3MC s-1 µmol GcoA-F169A-1 versus 5.1 ± 0.8 

μM syringol s-1 μmol GcoA-F169A-1, Table A2.1 of Appendix A2); moreover, the faster 

consumption of NADH relative to 3MC suggested diminished reaction coupling (64 ± 10% 

coupling, Table A2.1 and A2.2 of Appendix A2). In reactions containing 100 µM of 3MC 

and 200 µM NADH, the majority of the initially available NADH was consumed, and 

approximately 100 µM of formaldehyde was produced (Figure 4.1). We hypothesized that 

the observed overconsumption of NADH was due to the uncoupled reaction, leading to 

H2O2 production. The production of H2O2 in the presence of excess NADH/O2 and limiting 

3MC was confirmed using Amplex Red and horseradish peroxidase (Table A2.3 of 

Appendix A2).  As a consequence, accurate values for kcat and KM could not be measured 

using 3MC as a substrate (Table 4.1). 

A broader survey of variants at the GcoA-F169 position (amino acids S, H, V, I, 

and L in addition to A) confirmed that GcoA-F169A exhibits the best catalytic performance 

both in terms of specific activity and reaction coupling, although other small side chains 

(S, V) also permitted reactivity with syringol, suggesting these may permit syringol to 

assume a reactive conformation at the heme. Apparent steady state kinetic parameters 

measured in air and at potentially sub-saturating concentrations of GcoB (Table 4.1, Figure 

A2.2 and Table A2.2 of Appendix A2) suggest that GcoA-F169A is a more effective 

catalyst toward the first methoxy group of syringol relative to guaiacol, with 



 

 

 

94 

kcat/KM[syringol] nearly double kcat/KM[guaiacol]. Moreover, GcoA-F169A has a slightly 

improved performance with guaiacol as a substrate relative to the WT enzyme. 

 

4.4.3 Structural analysis reveals productive syringol reorientation in GcoA-F169 

variants. 

Superposition of the structures of GcoA-ligand complexes indicated a significant 

rotation and translation of bound syringol relative to guaiacol (Figure 4.2A), and we 

hypothesized that this could form the basis for the unproductive syringol uncoupling in the 

native enzyme. The comparative distances between the heme and the proximal methoxy 

carbon of guaiacol vs syringol are within 0.4 Å, and even closer between the heme and 

methoxy oxygens (within 0.1 Å). In addition, there is no significant deviation from the 

plane of the aromatic rings between these ligands. In contrast, the angle of presentation of 

the methoxy to the heme diverges significantly in these complexes. Using the angle 

between the methoxy oxygen, heme iron, and terminal methoxy carbon atoms (O-Fe(III)-

C) as a convenient readout of relative orientation, there is a 55% increase in angle from the 

guaiacol-bound structure (8.3˚) compared with the syringol-bound structure (12.9˚). 
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Figure 4.1 Quantitative analyses of substrate consumption and product generation indicate 

nearly complete coupling of NADH/O2 consumption to substrate O-demethylation for 

guaiacol, and progressively more uncoupling for syringol and 3MC. NADH (200 µM) and 

guaiacol, syringol, or 3MC (100 or 200 µM) were incubated in air with 0.2 μM GcoA-

F169A and GcoB (each) (25 mM HEPES, 50 mM NaCl, pH 7.5, 25°C, 210 µM O2). 

Reactants and products were quantified when the UV/vis spectrum ceased changing and 

the reaction was deemed complete. The total NADH consumed is compared above to the 

amounts of formaldehyde and de-methylated aromatic compound produced. Pyrogallol, the 

O-demethylated product of 3MC,is unstable in air under the conditions used in the assay 

and was not detected. Error bars represent ± 1 standard deviation from three or more 

independent measurements. P-values comparing NADH consumption and formaldehyde 

production were 0.035, 0.20, 0.41, and 0.0035 for guaiacol, 100 µM syringol, 200 µM 

syringol, and 3MC, respectively. For NADH consumption and aromatic product 

production, these values were 0.011, 0.00031, and 0.0084 for guaiacol, 100 µM syringol, 

200 µM syringol, respectively. 
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Figure 4.2 Superpositions of WT and GcoA-F169A ligand-bound structures of GcoA, the 

P450 monooxygenase component of GcoAB are shown. The heme is colored in bronze 

stick. (A) The guaiacol (green, PDB ID 5NCB) and syringol (pink, PDB ID 5OMU) 

complexes with WT GcoA are shown with the position of the GcoA-F169 residue 

highlighted. The translation and rotation of syringol compared to guaiacol results in a shift 

of the target methoxy carbon away from the heme; Fe(III) to guaiacol methoxy carbon 

distance is 3.9 Å;  Fe(III) to proximal syringol methoxy carbon distance is 4.3 Å . (B) The 

engineered GcoA-F169A-syringol complex (blue) enables positioning of the reactive 

methoxy group relative to the heme in a mode consistent with productive guaiacol binding. 

GcoA-F169 from the guaiacol-bound WT structure is shown in green lines. (C) 

Superposition of the WT (green) and GcoA-F169A (yellow) guaiacol-bound complexes 

reveals that guaiacol sits in an identical position in both crystal structures. GcoA-F169 from 

the guaiacol bound WT structure is shown in green lines. 

 

To investigate this further, we generated multiple high-resolution GcoA-F169 

variant co-crystal structures. A set of syringol-bound structures (Table A2.4 and Figure 

A2.4 of Appendix A2) provided direct insight into the minimal reduction in side-chain bulk 

required to achieve the productive binding mode equivalent to that of guaiacol. A step-wise 

trajectory of the bound syringol towards this optimum orientation with decreasing side-
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chain bulk was observed in the superposition of four co-crystal structures (Figure A2.3A 

of Appendix A2). Specifically, GcoA-F169H creates an improved substrate orientation, 

further improved by GcoA-F169V, and essentially optimized in both the GcoA-F169S and 

F169A proteins (Figure A2.3A of Appendix A2). Indeed, a comparison of the GcoA-

F169A-syringol structure with the WT guaiacol structure revealed an almost perfect 

alignment relative to the aromatic rings of each substrate and a methoxy O-Fe-C angle of 

8.6˚, within 0.3° of that observed for guaiacol (Figure 4.2B). 

Each protein variant also crystallized successfully with guaiacol (Table A2.5 and 

Figure A2.5 of Appendix A2) and the structures showed that the orientation of the bound 

ligand remained consistent with that of the WT enzyme (Figure A2.3B of Appendix A2). 

Even the largest reduction in side-chain bulk, represented by the GcoA-F169A variant, 

retained the ideal reactive geometry for the natural substrate (Figure 4.1C). Furthermore, 

comparison of the surrounding active site architecture confirmed no significant deviation 

from the WT. The resolution of these structures (1.66-2.17 Å) also provides sufficient 

electron density quality to explore changes in the hydration of the pocket (Figure A2.6 of 

Appendix A2). While the native enzyme excluded water from the active site pocket, we 

were interested to see if this was maintained when a new cavity in the pocket was 

introduced. The syringol-bound mutants, A, S, and V, contain an additional ordered water 

in the active site (Figure A2.6 of Appendix A2) which may help to maintain the substrate 

in a productive binding pose for catalysis. As expected, the bulkier GcoA-F169H mutant 

excludes water from the active site, as with the WT structure. 
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4.4.4 Syringol clashes with both GcoA-F169 and the substrate access lid in 

simulations of WT GcoA. 

In the WT enzyme with syringol bound, active site crowding can be relieved in 

several ways. First, as already noted, syringol can shift towards the heme (Figure 4.2A); 

this effect is seen in MD simulations (80 ns) carried out on WT GcoA with either bound 

guaiacol or syringol, although the effect is much subtler than in the crystal structures 

(Figure A2.7 of Appendix A2). A second effect is more pronounced in MD simulations, 

which show that GcoA-F169 is significantly more flexible and perturbed from the crystal 

structure position when syringol is bound at the WT active site rather than guaiacol (Figure 

4.3A, C, E, and Figure A2.8 of Appendix A2). This effect is complemented by the static 

picture given by the crystal structures (Figure 4.2A), which show GcoA-F169 is “pushed 

away” from the substrate by a distance commensurate with the observed shift of the 

substrate. 

Opening of the substrate access loop, a larger scale phenomenon that is closely 

related to the movement of GcoA-F169, can also relieve active site crowding. All GcoA 

crystal structures to date present a closed active site “lid,” but previous MD simulations 

demonstrated the ability of the F/G helices (and their connecting loop) to move away from 

the active site, thus exposing the active site to solution, particularly in the apo form.70 

Crystal packing may hinder lid opening in the GcoA-F169A structure; thus, the first two 

effects (shifting of substrate and GcoA-F169) are more pronounced in crystal structures. 

In MD of GcoA in solution, however, the active site loop is unconstrained, and the effect 

of the GcoA-F169 clash with syringol is observed less at the substrate and more on the 

enzyme. This includes the positioning and flexibility of GcoA-F169 (as mentioned above) 
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and the substrate access lid (Figure 4.3B, D, F, and Figure A2.9 of Appendix A2), which 

is significantly more prone to open with syringol bound in WT GcoA than with guaiacol, 

as well as either substrate bound in MD simulations on the GcoA-F169A mutant. Open and 

closed access loops have been observed in P450 enzymes P450cam288 and BM3289, 290 

crystal structures. The open GcoA configurations we observe in MD simulations are about 

half as open than the aforementioned open crystal structures and possibly not sufficiently 

open to allow substrate ingress and egress. However, this principle observed over 80 ns is 

likely to be more pronounced over the course of the full catalytic cycle. We note as well 

that, to date, efforts to crystallize GcoA in the apo state have proven unsuccessful; when 

achieved, these may reveal a more open configuration of the substrate access lid. 

The above conclusions from 80-ns MD simulations are also supported by a deeper 

analysis of three independent 1-µs MD trajectories of WT GcoA with syringol and guaiacol 

bound at the active site, which were originally presented in our previous study (Figure 

A2.21 of Appendix A2).70 GcoA-F169 is significantly perturbed from its crystal structure 

position and more mobile; this coincides with an increased propensity to open the substrate 

access lid, which is the only region of significant difference in flexibility (Figure A2.10 of 

Appendix A2). 

We also performed density functional theory (DFT) calculations on a truncated 

active site model, demonstrating that the O-demethylation of syringol proceeds via a 

similar pathway as previously described for guaiacol (Figure A2.11 and Table A2.6 of 

Appendix A2,).70 Optimized transition state (TS) geometries and free energy barriers for 

the rate-limiting hydrogen atom transfer (HAT) are likewise very similar in the two cases. 

In addition, replica exchange thermodynamic integration (RETI) simulations were also 
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conducted to examine relative free energies associated with substrate binding and mutating 

GcoA-F169 in the closed state of the enzyme (Figure A2.12 and A2.13 of Appendix A2). 

The RETI simulations reveal additional substrate binding modes, made possible by the 

“softer” interactions between the substrate and enzyme, as TI simulations gradually “turn 

on” and “turn off” electrostatic and van der Waals components of intermolecular 

interactions, and quantify the effect of this binding flexibility on binding thermodynamics. 
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Figure 4.3 GcoA-F169 in WT GcoA and the substrate access loop are significantly 

displaced with bound syringol. MD simulations with bound guaiacol indicate that (A) 

GcoA-F169 and the (B) substrate access lid are relatively stable. Introducing syringol 

results in increased flexibility of (C) GcoA-F169 and (D) the substrate access loop. In A-



 

 

 

102 

D, the position of each of the labeled Phe side chains (or alternatively the substrate access 

loop) is shown every 4 ns over the course of the 80 ns MD simulation. Substrate, the Phe 

side chains, and heme are shown in “sticks”; the Fe atom and the O atom of a reactive 

heme-oxo intermediate are shown as spheres. Probability distributions are shown for (E) 

the RMSD of the six ring carbons of GcoA-F169 from their crystal structure positions and 

(F) the reaction coordinate for opening/closing of the substrate access loop (as defined in 

Appendix A2; lower values indicate more open configurations). 

 

4.4.5 Sequence position 169 in CYP255A enzymes is highly variable. 

GcoA belongs to the CYP255A family of cytochrome P450 enzymes.282 

Conservation analyses of GcoA homologs revealed a notably variable 169 position among 

active site residues. Moreover, not only is GcoA-F169 the least conserved of the triad of 

phenylalanine residues in the active site, it is also among the least conserved positions in 

the entire protein (Figure 4.4, Figure A2.14 and Table A2.7 of Appendix A2). From a 

multiple sequence alignment, we determined that alanine and phenylalanine are the most 

frequent residues utilized by CYP255A enzymes at position 169 with alanine present in 

the majority of sequences. Hence, the GcoA-F169A mutant which showed enhanced 

turnover on guaiacol and syringol is closer to the CYP255A consensus protein than the 

WT. It is interesting that although none of the GcoA homologs in our analyses exhibits a 

histidine at position 169, the GcoA-F169H mutant was stable and showed the highest 

specific activity on guaiacol. Next to GcoA-F169, A295 and T296 respectively show the 

highest variability of residues in the active site. Besides these, other residues within 6 Å of 

the center of mass of the guaiacol substrate generally show high conservation. 
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Figure 4.4 Bioinformatic analysis of CYP255A sequences indicates variability in the 169th 

sequence position.Conservation of residues within 6 Å of guaiacol in GcoA (PDB ID 

5NCB), determined via an analysis of protein sequences from 482GcoA homologs. (See 

Appendix A2 for details.) Conservation scores are reported as percentiles. F169 is less 

conserved than 73% of positions in GcoA. 

 

4.4.6 F169A enables in vivo syringol conversion by GcoA. 

Finally, we aimed to demonstrate in vivo conversion of syringol to pyrogallol using 

Pseudomonas putida KT2440 because it possesses many native aromatic-catabolic 

pathways relevant to lignin conversion.265, 284, 291, 292 To accomplish this, we transformed 

plasmids expressing WT GcoA or the GcoA-F169A variant and GcoB into a strain that 

constitutively overexpresses PcaHG, (Tables A2.8 and A2.9 of Appendix A2) a native 3,4-

protocatechuate dioxygenase from P. putida that converts pyrogallol into 2-pyrone-6-

carboxylate, a more stable product (Figure 4.5A).293 When cultured with 20 mM glucose 

and 1 mM syringol, 1H NMR analysis of the culture media revealed that peaks 
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corresponding to syringol completely disappeared in cells expressing GcoA-F169A 

(AM157) after 6 hours, which coincided with the appearance of 3MC, pyrogallol, and 2-

pyrone 6-carboxylate (Figure 4.5B, Figure A2.15 of Appendix A2). A standard for 2-

pyrone 6-carboxylate was not available; however, we did verify the presence of 2-pyrone 

6-carboxylate using LC-MS-MS (Figure A2.15 of Appendix A2). While small amounts of 

pyrogallol, 3MC, and 2-pyrone 6-carboxylate were also observed with the WT GcoAB 

(AM156), nearly 60% of the original syringol remained after 6 hours. Pyrogallol or 3MC 

were not observed in the strain lacking GcoAB (AM155). These data indicate that the 

F169A variation enhances in vivo O-demethylation of syringol to 3MC and pyrogallol by 

GcoA. 

 

Figure 4.5 GcoA-F169A converts syringol in vivo.(A) A pathway for in vivo syringol O-

demethylation to pyrogallol and cleavage to 2-pyrone 6-carboxylate is proposed. (B) After 
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6 hours, strains were analyzed for their ability to turn over syringol via 1H NMR 

spectroscopy. Syringol (green) is completely converted to pyrogallol (pink), 3MC (blue), 

or 2-pyrone 6-carboxylate (purple) in AM157. The WT GcoA enzyme in AM156 showed 

only small amounts of conversion. AM155, which does not express GcoA, showed no 

conversion. 

4.5 Discussion and conclusion 

The creation of enzymes that overcome the challenge of lignin heterogeneity 

through increased substrate promiscuity is an attractive goal, but this might come at the 

cost of reduced activity towards the natural substrate. Unexpectedly, not only does GcoA-

F169A bind both guaiacol and syringol in a productive orientation analogous to guaiacol 

in WT (Figure 4.2), but GcoA-F169A is also more catalytically efficient for O-

demethylation of both guaiacol and syringol relative to WT, where O-demethylation is 

well-coupled to NADPH oxidation (Table 4.1, Figure 4.1). Alongside this biochemical 

observation, the bioinformatics analysis shows that alanine is the most prevalent residue in 

the 169th sequence position in the CYP255A family. Taken together, it is surprising that 

the WT GcoA does not possess an alanine at position 169 if guaiacol is the primary 

substrate, as assumed in the original reports of GcoAB.70, 273, 282 Given that the GcoA-

F169A mutation results in improved turnover of guaiacol, we speculate that either guaiacol 

is not the primary substrate or there has been little evolutionary pressure in Amycolatopsis 

sp. ATCC 39116 for improved turnover of guaiacol. Another potential explanation could 

be that syringol O-demethylation and subsequent ring cleavage leads to dead-end products 
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that cannot be catabolized and may be toxic to the microbe; thus, GcoA-F169 could 

function to prevent natural syringol catabolism. 

As a first step towards enabling syringol catabolism, in vivo experiments validated 

the in vitro studies by illustrating efficient O-demethylation of syringol and 3MC by the 

GcoA-F169 mutant. While 2-pyrone 6-carboxylate was detected, pyrogallol is a poor 

substrate of PcaHG, as most of the intermediate is lost to oxidation (Figure A2.15 of 

Appendix A2), and it is unclear whether 2-pyrone-6-carboxylate can be catabolized further. 

Future work could focus on identifying or developing a dioxygenase capable of cleaving 

pyrogallol to a product that could be further metabolized. Coupled with GcoAB, the meta-

cleavage pathway of P. putida mt-2 might enable complete assimilation of syringol if 

pyrogallol can be efficiently cleaved to 2-hydroxymuconate. 

Cytochrome P450 systems are one of the most versatile classes of enzymes, making 

them an ideal target for engineering enhanced activity and substrate promiscuity. Our 

system is a prime example. The mutation of a single residue resulted in efficient turnover 

of an S-lignin substrate, syringol, in addition to the native G-subunit substrate, guaiacol, 

which is not efficiently achieved in the WT enzyme. The plasticity of the GcoA active site 

may be amenable to yet more modifications, allowing us to encompass other lignin 

monomers as substrates, such as 4-substituted compounds (e.g., vanillin, syringaldehyde). 

Indeed, in previous work we showed that T296 sterically clashes with the C4 position of 

vanillin, preventing O-demethylation.70 Interestingly, the 296 position is also quite variable 

according to the bioinformatics analysis (Figure 4.4). The results described here suggest 

that we may employ a similar structure-guided approach to investigate the activity of 

several T296 variants on 4-substituted compounds. As a large number of lignin degradation 
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products contain para-substituted R-groups that are bulkier than hydrogen, creating an 

engineered bacterium where a minimal number of genetic insertions leads to maximal 

lignin bioconversion is of keen interest for future work. More broadly, the evolutionary 

trajectory, substrate specificity, and catalytic efficiency of the CYP255A family of 

aromatic O-demethylases will be the subject of future work to elucidate the relevance of 

this cytochrome P450 family for microbial lignin conversion. 

 

4.6 Methods 

4.6.1 Protein expression and purification.  

Mutagenesis was performed using primers listed in Appendix A2, with the Q5 

polymerase and KLD enzyme mix (NEB) according to the manufacturer’s protocol. 

Proteins were expressed as previously described.70 

4.6.2 Crystallization and structure determination.  

Crystallization, diffraction experiments, and structure solution were carried out as 

previously described.70 

4.6.3 Biochemical characterization 

Heme quantification of GcoA-F169 mutants. Catalytically active heme bound to 

each GcoA mutant was determined as previously described.70, 294 Detailed methods are 

provided in Appendix A2. 
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Determination of [FAD] and non-heme [Fe] in GcoB. The FAD and 2Fe-2S content 

of GcoB was measured as previously described.70, 295 Detailed methods are given in 

Appendix A2. 

Steady state kinetics of GcoA-F169A. The O-demethylation reactions of guaiacol, 

syringol, and 3MC were continuously monitored using the NADH consumption assay as 

previously described.70 Detailed methods are provided in Appendix A2. 

Determination of substrate dissociation constants (KD) with GcoA-F169A. The 

equilibrium binding constant, KD, for GcoA-F169A and guaiacol, syringol, and 3MC was 

determined as previously described.70 See Appendix A2 for detailed methods. 

Fomaldehyde Determination. The [formaldehyde] produced upon reaction with 

GcoA-F169A and substrates was determined using a colorimetric assay with tryptophan.70, 

296 See Appendix A2 for detailed information. 

HPLC for product identification and specific activity measurement. HPLC was 

used to verify the O-demethylated product of GcoA-F169A GcoA/GcoB with guaiacol, 

syringol, or 3MC. In addition, discontinuous HPLC was used to determine the specific 

activity of aromatic product disappearance. For detailed methods, see Appendix A2. 

Detection of H2O2 via HRP and Amplex Red assay. A colorimetric assay involving 

horseradish peroxidase (HRP) and Amplex Red was used to quantify H2O2 in the reaction 

between GcoA-F169A GcoA/GcoB, NADH and guaiacol, syringol, or 3MC.  Detailed 

methods are given in Appendix A2. 

4.6.4 Molecular dynamics, density functional theory, and bioinformatics.  

MD simulations and DFT calculations were performed with similar methodology 

as in our previous work.70 Full details of the computational methods and references can be 
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found in Appendix A2. 482 homologous CYP255A sequences were retrieved from a 

BLASTP search against GcoA. After multiple sequence alignment (MSA), conservation 

was analyzed from relative entropy calculations for each site. Further details can be found 

in Appendix A2. 

4.6.5 In vivo syringol utilization.  

Strains used for shake flask experiments were grown overnight in LB media and 

resuspended the following day in M9 minimal media with 20 mM glucose as described in 

the Appendix A2. Cells were grown until they reached an OD600 of ~1, at which point 

syringol was added at a final concentration of 1 mM. 1H NMR spectroscopy was used to 

analyze syringol consumption. 
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CHAPTER 5. Characterization of a Two-Enzyme System for Plastics 

Depolymerization 

This chapter has been reprinted with permission from Knott et al.,297 Copyright 2020, 

National Academy of Sciences USA. The author of this dissertation performed the 

phylogenetic analysis and bioinformatic analysis of MHETase active site and key residues, 

which provided a groundwork for further structural, biochemical, and computational 

studies of MHETase. Collaborators at the National Renewable Energy Laboratory 

(Brandon C. Knott, Erika Ericson, Isabel Pardo, Jared J. Anderson, Graham Dominick, 

Christopher W. Johnson, Nicholas A. Rorrer, Caralyn J Szostkiewicz, and Bryon S. 

Donohoe), University of Portsmouth (Mark D. Allen, Rosie Graham, and Harry P. Austin), 

University of Florida (Fiona L. Kearns and H. Lee Woodcock), and Montana State 

University (Ece Topuzlu and Valérie Copié) performed other parts of the study. 

5.1 Abstract 

Plastics pollution represents a global environmental crisis. In response, microbes 

are evolving the capacity to utilize synthetic polymers as carbon and energy sources. 

Recently, Ideonella sakaiensis was reported to secrete a two-enzyme system to deconstruct 

polyethylene terephthalate (PET) to its constituent monomers. Specifically, the I. 

sakaiensis PETase depolymerizes PET, liberating soluble products including mono-(2-

hydroxyethyl) terephthalate (MHET), which is cleaved to terephthalic acid and ethylene 

glycol by MHETase. Here, we report a 1.6 Å resolution MHETase structure, illustrating 

that the MHETase core domain is similar to PETase, capped by a lid domain. Simulations 
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of the catalytic itinerary predict that MHETase follows the canonical two-step serine 

hydrolase mechanism. Bioinformatics analysis suggests that MHETase evolved from 

ferulic acid esterases, and two homologous enzymes are shown to exhibit MHET turnover. 

Analysis of the two homologous enzymes and the MHETase S131G mutant demonstrates 

the importance of this residue for accommodation of MHET in the active site. We also 

demonstrate that the MHETase lid is crucial for hydrolysis of MHET and, furthermore, 

that MHETase does not turnover mono-(2-hydroxyethyl)-furanoate or mono-(2-

hydroxyethyl)-isophthalate. A highly synergistic relationship between PETase and 

MHETase was observed for the conversion of amorphous PET film to monomers across 

all non-zero MHETase concentrations tested. Lastly, we compare the performance of 

MHETase:PETase chimeric proteins of varying linker lengths, which all exhibit improved 

PET and MHET turnover relative to the free enzymes. Together, these results offer insights 

into the two-enzyme PET depolymerization system and will inform future efforts in the 

biological deconstruction and upcycling of mixed plastics. 

5.2 Significance 

Deconstruction of recalcitrant polymers such as cellulose or chitin is accomplished 

in nature by synergistic enzyme cocktails that evolved over millions of years. In these 

systems, soluble dimeric or oligomeric intermediates are typically released via interfacial 

biocatalysis, and additional enzymes often process the soluble intermediates into 

monomers for microbial uptake. The recent discovery of a two-enzyme system for PET 

deconstruction, which employs one enzyme to convert the polymer into soluble 

intermediates (PETase) and another enzyme to produce the constituent PET monomers 
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(MHETase), suggests that nature may be evolving similar deconstruction strategies for 

synthetic plastics. The current study on the characterization of the MHETase enzyme and 

synergy of the two-enzyme PET depolymerization system may inform enzyme cocktail-

based strategies for plastics upcycling. 

5.3 Introduction 

Synthetic polymers pervade all aspects of modern life, due to their low cost, high 

durability, and impressive range of tunability. Originally developed to avoid the use of 

animal-based products, plastics have now become so widespread that their leakage into the 

biosphere and accumulation in landfills is creating a global-scale environmental crisis. 

Indeed, plastics have been found widespread in the world’s oceans,298-301 in the soil,302 and 

more recently, microplastics have been observed entrained in the air.303 The leakage of 

plastics into the environment on a planetary scale has led to the subsequent discovery of 

multiple biological systems able to convert man-made polymers for use as a carbon and 

energy source.72, 304-308 These plastic-degrading systems offer a starting point for 

biotechnology applications towards a circular materials economy.78, 308-311 

Among synthetic polymers manufactured today, polyethylene terephthalate (PET) 

is the most abundant polyester, which is made from petroleum-derived terephthalic acid 

(TPA) and ethylene glycol (EG). Given the prevalence of esterase enzymes in nature, PET 

biodegradation has been studied for nearly two decades, with multiple cutinase enzymes 

reported to perform depolymerization.79, 312-320 In 2016, Yoshida et al. reported the 

discovery and characterization of the soil bacterium, Ideonella sakaiensis 201-F6, which 

employs a two-enzyme system to depolymerize PET to TPA and EG, which are further 
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catabolized as a carbon and energy source.72 Characterization of I. sakaiensis revealed the 

PETase enzyme, which is a cutinase-like serine hydrolase that attacks the PET polymer, 

liberating bis-(hydroxyethyl) terephthalate (BHET), mono-(2-hydroxyethyl) terephthalate 

(MHET), and TPA. PETase cleaves BHET to MHET and EG, and the soluble MHET 

product is further hydrolyzed by MHETase to produce TPA and EG. Multiple crystal 

structures and biochemical studies of I. sakaiensis PETase revealed an open active site 

architecture that is able to bind to PET oligomers.81, 82, 321-325 The PETase enzyme likely 

follows the canonical serine hydrolase catalytic mechanism,326 but open questions remain 

regarding the mobility of certain residues during the catalytic cycle.321 

Conversely, the structure and function of the MHETase enzyme is far less 

characterized, with only two published studies focused on MHETase structure and 

engineering to date.85, 86 These studies report structures at 2.1-2.2 Å resolution, wherein the 

similarity to ferulic acid esterase (FAE) is noted.327, 328 Informed by these structures, 

engineering efforts aimed to improve turnover of BHET by MHETase, which is a non-

native substrate of the wild-type. Beyond these studies and the original report of MHETase 

from Yoshida et al.,72 several questions remain regarding the MHETase mechanism and 

PETase-MHETase synergy. To that end, here we combine structural, computational, 

biochemical, and bioinformatics approaches to reveal molecular insights into the 

MHETase structure, mechanism of hydrolysis, the evolution of MHETase activity from 

FAEs, and engineering of the two-enzyme system for PET depolymerization. 
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5.4 Results 

5.4.1 Structural characterization of MHETase reveals a core domain similar to that 

of PETase.  

Four crystal structures of MHETase were obtained with the highest resolution data 

(6QZ3) extending to 1.6 Å with a benzoate molecule in the active site (Figure 5.1, Table 

A3.1 of Appendix A3). These data reveal a catalytic domain that adopts the α/β-hydrolase 

fold typical of a serine hydrolase, with an extensive lid domain (Figure 5.1A), that partially 

covers the active site and hosts a well-coordinated Ca2+ cation. A similar Ca2+ binding site 

was characterized for Aspergillus oryzae FaeB (AoFaeB), wherein it was hypothesized to 

have a role in stabilizing the lid domain.328 Overall, the structure of MHETase is most 

similar to that of FAEs, as discussed previously.85, 86 The structural conservation between 

the hydrolase domains of MHETase and PETase is striking (Figure 5.1D and Figure A3.1 

of Appendix A3), and despite the large insertion of ~240 residues representing the lid 

domain, residues Ser225, Asp492, and His528 effectively reconstitute the catalytic triad 

(Figure 5.1B). In fact, the terminal residues of the lid domain converge to within hydrogen-

bonding distance of each other (Tyr252-Ala469, 2.9 Å), creating a compact linkage to the 

hydrolase domain. The lid domain of MHETase is exceptionally large, as average  lid 

domains in α/β-hydrolases tend to be ~100 residues,326 and is more typical of a lid from 

tannase family members (vide infra). The equivalent connection site in PETase is occupied 

by a seven-residue loop. 

In addition, we determined two apo structures with alternative packing (6QZ2 and 

6QZ4), one structure with a fully occupied benzoic acid ligand (6QZ3), and one with 

partially occupied benzoic acid (6QZ1). We observed that residue Phe415 adopts a ‘closed’ 
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orientation on substrate binding consistent with prior substrate bound structures (PDB IDs 

6QGA and 6QGB),85 and the partially occupied site results in an intermediate dual 

‘open/closed’ conformation (Figure A3.2A-C of Appendix A3).85 The only other amino 

acid with side chain positioning correlated with ligand binding is Gln410. When Phe415 is 

in the open position, the side chain of Gln410 pivots toward the active site to a position 

wherein the heavy atoms would be as close as 1.8 Å to those of Phe415 if it were in the 

closed conformation (Figure A3.2D of Appendix A3).  

 

Figure 5.1 MHETase structural analysis.(A) MHETase structure (1.6 Å resolution, PDB 

code 6QZ3) highlighting the catalytic triad, five disulfides (in yellow and gray stick 

representation), benzoate (purple sticks), and calcium ion (green sphere). The lid domain 

is dark gray, whereas the hydrolase domain is light gray. Main chain atoms of the linkage 
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residues Tyr252 and Ala469 are colored lime green (also in panel B). (B) Closeup of the 

MHETase active site with benzoate bound; catalytic triad, active site disulfide, Ser416, and 

Arg411 shown as sticks. (C) The concerted movement of residues Gln410 and Phe415 on 

ligand binding is illustrated with purple arrows in a superposition of the apo enzyme 

(yellow) with the ligand bound state (gray). The relative position of benzoic acid is depicted 

in purple. (D) Structural comparison between MHETase (gray) and PETase (PDB code 

6EQE, in blue), highlighting regions of alignment in the hydrolase domain. A PET tetramer 

from a prior docking study is shown in yellow sticks (also in panel E).81  (E) Electrostatic 

potential distribution mapped to the solvent-accessible surface of PETase 81 and MHETase 

as a colored gradient from red (acidic) at -7 kT/e to blue (basic) at 7 kT/e (where k is the 

Boltzmann’s constant, T is temperature, and e is the charge of an electron). PETase is 

shown with a bound PET tetramer, and MHETase with benzoate bound from the 6QZ3 

structure (yellow). The models are drawn to scale and aligned via their catalytic triad 

demonstrating their relative size difference. 

 

Given the difference in overall isoelectric point (pI) between PETase (9.65) and 

MHETase (5.11), we generated electrostatic surface profiles for comparison (Figure 5.1E). 

As previously reported, PETase has a highly polarized surface charge,81 whereas MHETase 

exhibits a more heterogeneous and acidic surface charge distribution. MHETase contains 

five disulfide bonds (Figure 5.1A). One of the MHETase disulfides is located at the active 

site, connecting cysteines (Cys224 and Cys529) adjacent to the catalytic residues (Ser225 

and His528, respectively), which is conserved in tannase family members 328. PETase lacks 

a structurally equivalent disulfide, and the aligning residues in PETase (Trp159 and 
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Ser238) are the same two residues mutated by Austin et al. to yield a PETase substrate 

binding groove similar to that of cutinases, resulting in improved activity on a crystalline 

PET substrate.81 

 

5.4.2 Molecular simulations of the MHETase reaction predict deacylation is rate-

limiting.  

The MHETase structure suggests a serine hydrolase mechanism for MHET 

hydrolysis.326 To elucidate the detailed reaction mechanism, we first constructed a 

Michaelis complex in silico utilizing the CHARMM molecular simulation package (details 

in Appendix A3).329 To examine MHETase dynamics and ligand stability, classical 

molecular dynamics (MD) simulations were conducted with NAMD330 (all simulations 

totaling 2.25 µs) utilizing the CHARMM forcefield.331 Given the observed dual occupancy 

for Phe415 positioning in the crystal structures, we simulated in triplicate (each simulation 

150 ns in length) the four combinations of Phe415 position (“open” and “closed”) and 

active site occupancy (empty active site and MHET-bound). In each case wherein Phe415 

begins in the closed state (starting configurations from 6QZ3 structure, with coordinates 

for residues 56-61 from 6QZ4), Phe415 opens in the first 10 ns and rarely returns to the 

closed state; simulations that begin with Phe415 open (built from 6QZ4 structure) all 

remain open. To examine the effect of calcium binding, a fifth scenario absent of either 

MHET or Ca2+ was modeled in triplicate 150 ns simulations (the prior four scenarios each 

include bound Ca2+). These trajectories show evidence for lid stabilization upon Ca2+ 

binding mainly in the immediate vicinity of the calcium binding site (Figure A3.3 of 

Appendix A3). When bound at the active site, the carboxylate motif of MHET exhibits 
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stable hydrogen bonds with Arg411 and Ser416, while the carbonyl is stabilized via 

hydrogen bonds to the oxyanion hole residues, Glu226 and Gly132 (Figure A3.4 and A3.5 

of Appendix A3). In all three simulations with MHET bound and Phe415 open, MHET 

maintains these interactions and remains bound at the active site throughout the duration 

of the 150 ns simulation and primed for hydrolysis (hydrogen bond distance between 

Ser225 and His528=2.0±0.2 Å; nucleophilic attack distance between Ser225 and 

MHET=3.1±0.3 Å; hydrogen bond distance between Asp492 and His528=1.8±0.1 Å). 

Further analysis of the MD simulations, including time traces for these important 

interactions, is available in the Appendix A3.  

Serine hydrolases catalyze a two-step reaction involving formation of an acyl-

enzyme intermediate (acylation) that is released hydrolytically in the second step 

(deacylation).326 We utilized the Amber software package332 to perform hybrid quantum 

mechanics/molecular mechanics (QM/MM) two-dimensional umbrella sampling with  

semi-empirical force field  SCC-DFTB333 to study the catalytic steps. Judicious selection 

of a reaction coordinate is critical for kinetically meaningful barrier calculations. We chose 

the forming and breaking C-O bonds to map the free energy landscape for both reaction 

steps, informed by transition path sampling studies of other hydrolase enzymes.334, 335 

In acylation, the catalytic serine (Ser225) is deprotonated by His528, activating it 

for nucleophilic attack upon the carbonyl C of MHET, liberating EG and forming the acyl-

enzyme intermediate (AEI, Figure 5.2A-C). The minimum free energy path (MFEP) 

computed from QM/MM 2D-umbrella sampling (along the forming C-O bond between the 

MHET carbonyl C and Ser225 and the breaking MHET C-O ester bond) predicts an 

acylation free energy barrier (∆G‡) of 13.9 ± 0.17 kcal/mol with an overall reaction free 
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energy (∆Greaction) of -5.2 ± 0.04 kcal/mol (Figure 5.2G, Figure A3.6A of Appendix A3). 

Although serine hydrolases have at times been considered to proceed through metastable 

tetrahedral intermediates along the reaction pathway for acylation and deacylation,336-338 

the acylation MFEP calculated from 2D umbrella sampling does not indicate intermediate 

configurations with metastability.  

Following cleavage of EG from MHET, classical MD simulation reveals that EG 

leaves the active site in the presence of the AEI (Figure 5.2H). In one simulation, EG 

initially maintains a hydrogen bond with His528 for ~100 ps, then dislodges from the active 

site, and is free in solution within 1 ns. Three identical simulations were initiated, and EG 

exits the active site within 4 ns in each. An important implication of this observation is that 

the deacylation reaction proceeds without EG in the active site. This allows greater access 

for water molecules to approach the charged nitrogen of His528 for deacylation (Figure 

A3.7 of Appendix A3). 

Deacylation involves nucleophilic attack by a water molecule on the AEI, liberating 

TPA (Figure 5.2D-F). His528 plays a similar role as in acylation, deprotonating the 

catalytic water and transferring this proton to the catalytic serine, regenerating Ser225 for 

another catalytic cycle. The MFEP computed from QM/MM 2D-umbrella sampling (along 

the forming C-O bond between MHET and water and the breaking AEI C-O bond) reveals 

a deacylation free energy barrier (∆G‡) of 19.8 ± 0.10 kcal/mol and an overall reaction free 

energy (∆Greaction) of 2.6 ± 0.07 kcal/mol (Figure 5.2I, Figure A3.6B of Appendix A3). 

Together, the two catalytic steps are exergonic by -2.6 ± 0.08 kcal/mol. Deacylation is 

predicted to be the rate-limiting step, with a rate of 7.1 ± 1.1 ×10-2 s-1 (from transition state 

theory, at 30°C, and assuming a transmission coefficient of 1), more than four orders of 
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magnitude slower than acylation (1.02 ± 0.28 ×103 s-1). As in acylation, metastable 

configurations along the MFEP are not observed. 

 

 

Figure 5.2 The MHETase catalytic mechanism. (A) reactant, (B) transition state, and (C) 

product of acylation in which His528 transfers a proton from Ser225 to the ethylene glycol 

(EG) leaving group. In deacylation (panels D-F), His528 plays a similar role and restores 

the catalytic serine, transferring a proton from a water molecule to Ser225 and generating 

a free terephthalic acid (TPA) molecule. (G) The free energy surface for acylation 

computed along a reaction coordinate described by the breaking and forming C-O bonds. 

The minimum free energy path is shown in black dashes. H) Following acylation, EG 

leaves the active site within 1 ns of a classical MD simulation. (I) The free energy surface 
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for deacylation, exhibiting a predicted higher barrier than acylation. The minimum free 

energy path is shown in black dashes. 

 

5.4.3 Bioinformatics analysis suggests that MHETase evolved from a ferulic acid 

esterase.  

Beyond structural and mechanistic investigations, we were also interested in 

understanding potential MHETase evolutionary ancestry and identifying other MHET-

active enzymes from natural diversity. MHETase belongs to the tannase family (PFAM 

ID: PF07519), which consists of fungal and bacterial FAEs, fungal and bacterial tannases, 

and several bacterial homologs of unknown function.339 To elucidate sequence 

relationships between MHETase and tannase family enzymes, we performed bioinformatic 

analyses of 6,671 tannase family sequences retrieved from NCBI via PSI-BLAST.340 

MHETase shares low sequence similarity (<53%) with most sequences in the family, with 

the exception of homologs from Comamonas thiooxydans strains DS1, DF1 and DF2 

(strain: NCBI:txid363952, protein:Genbank WP_080747404.1)341 and Hydrogenophaga 

sp. PML113 (strain: NCBI:txid1899350, protein:Genbank WP_083293388.1), which 

exhibit 81% and 73% identity to MHETase, respectively (Figure 5.3A). Since initial 

identification of the homologous C. thiooxydans sequence (WP_080747404.1), this entry 

was removed from Genbank, as discussed in Appendix A3. 
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Figure 5.3 Characterization of MHETase, homologs, and mutants. (A) Sequence identity 

of 6,671 tannase family sequences retrieved by PSI-BLAST compared to MHETase. 

Sequences (x-axis) are in the same order returned by PSI-BLAST. Panels B-C show 

conservation analysis of residue positions 131 (panel B) and 415 (panel C) (using 

MHETase numbering). Frequency of each amino acid is based on a multiple sequence 

alignment of the 6,671 tannase family sequences. The residue found in MHETase at each 

position is indicated in orange. (D) Homology model of the MHET-bound active site within 

6 Å of the bound substrate comparing MHETase to homology models of the C. thiooxydans 

and Hydrogenophaga sp. PML113 homologs (generated by SWISS-MODEL),342 showing 

sequence variation at residue positions corresponding to Ser131 and Phe415 in MHETase. 

Panels E-F show the rate of enzymatic turnover of MHET determined for MHETase, both 
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homologous enzymes, and the indicated MHETase mutants, all of which are active on 

MHET save the catalytic mutant (S225A)(panel E), and enzymatic turnover rates for 

PETase, MHETase, and selected mutants on MHET (panel F), using 5 nM purified enzyme 

and 250 µM substrate at 30°C. Panels G-J show the initial enzyme reaction velocity as a 

function of substrate concentration for MHETase, C. thiooxydans, Hydrogenophaga sp. 

PML113, and the MHETase S131G mutant, respectively. Dashed blue lines represent the 

Michaelis-Menten kinetic model fit with substrate inhibition (panels F-H) or fit with the 

simple Michaelis-Menten model (panel I). Key kinetic parameters are provided in the inset. 

Additional parameters and confidence intervals on the listed parameters are provided in 

Table A3.3 of Appendix A3. 

 

Using the multiple sequence alignment of 6,671 tannase family sequences, we 

performed conservation analysis with MHETase sequence positions as a reference (Figure 

A3.8 and A3.9 of Appendix A3), which shows that most positions in the active site are 

highly conserved. Notable exceptions are positions 257, 411, 415, and 416, which exhibit 

low conservation scores and are less conserved than 80% of MHETase positions overall 

(Figure A3.8B-C of Appendix A3). It is noteworthy (vide infra) that position 131 is a well-

conserved glycine in 91% of tannase family sequences but serine appears at position 131 

in MHETase (Figure 6.3B). Furthermore, the ten cysteine positions in MHETase that form 

five disulfide bonds are highly conserved in the tannase family (Figure A3.10A of 

Appendix A3). Although a sixth disulfide bond exists in AoFaeB,328 less than 8% of tannase 

family sequences exhibit this sixth disulfide bond, and the sixth disulfide bond positions 

are variable among this set (Figure A3.10B of Appendix A3). One cysteine of the sixth 



 

 

 

124 

disulfide bond in AoFaeB is a single residue variation found in MHETase,328 whereas the 

other sits on a loop where a 15-residue deletion is found in MHETase. 

With this large dataset, we further conducted phylogenetic analysis of 120 

sequences selected from tannase family sequences that were clearly annotated as tannases 

or FAEs in GenBank, including MHETase (Table A3.2 of Appendix A3). In the 

phylogenetic tree (Figure A3.11 of Appendix A3), bacterial and fungal enzymes form 

paraphyletic groups, and within these groups, there are separate FAE and tannase sub-

groups. MHETase and the C. thiooxydans and Hydrogenophaga sp. PML113 homologs 

are found within a group of proteobacterial FAEs (bootstrap value>95%). In addition, when 

separate profile hidden Markov models (pHMM) are constructed with the annotated 

tannase family FAE and tannase sequences,229 and then aligned with MHETase, a higher 

alignment score is achieved with the FAE pHMM than with the tannase pHMM (456.8 vs. 

396.8), suggesting that MHETase is more similar to FAEs than tannases. 

 

5.4.4 Biochemical characterization of active-site MHETase mutants and homologs 

reveals important residues for MHET hydrolytic activity.  

From the bioinformatics analyses, we selected the MHETase homologs from C. 

thiooxydans and Hydrogenophaga sp. PML113 (Figure 5.3A) to test for MHET hydrolysis 

activity, which, along with the I. sakaiensis MHETase, were produced in Escherichia coli 

and purified. Activity assays were performed for each enzyme to determine MHET 

turnover rates (Figure 5.3E). The turnover rate (kcat) for MHETase is 27.6±2.6 s-1, as 

compared to 9.5±0.8 s-1 and 3.8±2.5 s-1 for the C. thiooxydans and Hydrogenophaga sp. 

PML113 enzymes, respectively. The enzymes were also evaluated over a range of substrate 
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concentrations to determine the Michaelis-Menten kinetic parameters (Figure 5.3G-J, 

Table A3.3 of Appendix A3). FAEs have been shown to exhibit concentration-dependent 

substrate inhibition,343 in addition to the likely product inhibition of the enzyme.85 

MHETase and both homologs also display this behavior. Using a substrate inhibition model 

(details in Appendix A3), evaluation of the substrate-dependent reaction kinetics shows 

that MHETase more efficiently accepts MHET as a substrate than the C. thiooxydans and 

Hydrogenophaga sp. PML113 homologs, demonstrated by a Km value of 23.17±1.65 µM 

as compared to values of 174.70±4.75 µM and 41.09±3.38 µM, respectively (Figure 5.3G-

I, Table A3.3 of Appendix A3). However, MHETase is also the most susceptible to 

substrate inhibition with a Kk value of 307.30±20.65 µM. Despite the difference in affinity 

for MHET, MHETase and the C. thiooxydans enzyme exhibit similar maximal reaction 

rates, while the enzyme from Hydrogenophaga sp. PML113 is slower. The MHETase 

reaction efficiency, reported as kcat/Km,is ~10-fold higher than for the C. thiooxydans 

enzyme and ~20-fold higher than the Hydrogenophaga sp. PML113 enzyme. 

Homology models of both the C. thiooxydans and Hydrogenophaga sp. PML113 

enzymes were constructed with SWISS-MODEL342 using the MHETase structure as a 

template (PDB ID 6QZ3), and the active site aligned with a modeled MHET-bound 

MHETase structure (Figure 5.3D). As noted, position 131 is a serine in MHETase, but a 

glycine in the two homologs (C. thiooxydans, Gly179 and Hydrogenophaga sp. PML113, 

Gly121) (Figure 5.3B). The C. thiooxydans enzyme is otherwise identical within 6 Å of 

the docked MHET ligand, whereas the Hydrogenophaga sp. PML113 enzyme also exhibits 

a serine in the equivalent position to the MHETase residue Phe415 (Figure 5.3C). An 

S131G mutant of MHETase was constructed to examine the role of this residue in MHET 
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hydrolytic activity, and steady-state enzyme kinetics were evaluated. The MHETase 

S131G mutant does not demonstrate concentration-dependent substrate inhibition as is 

observed for the wild-type enzyme, which is likely due to the poor affinity for MHET. The 

S131G mutant has a Km value ~8-fold higher than that of wild-type MHETase and the 

reaction efficiency is reduced to ~3% that of the wild-type (Figure 5.3J, Table A3.3 of 

Appendix A3), illustrating the importance of this residue in MHET turnover. 

Focusing on residues within the coordination sphere of the docked MHET ligand, 

amino acids and their frequencies across the tannase family were compared to MHETase 

(Figure. A3.8 and A3.9 of Appendix A3). In position 495, MHETase features a 

phenylalanine, while isoleucine is also a common residue in this position across the tannase 

family. Palm et al. demonstrated that Phe495 has a modest effect on activity by mutation 

to alanine.85 We constructed and evaluated an MHETase mutant with isoleucine in this 

position (F495I), which dramatically impairs activity, lowering the turnover rate from 

27.6±2.6 s-1 to 1.3±0.7 s-1 (Figure 5.3E). In position 226, which is part of the conserved 

“lipase box” motif in serine hydrolases,344 MHETase exhibits a glutamate, while threonine 

and asparagine are more common amongst tannase family members. Mutation of this lipase 

box residue to threonine (E226T) yielded a ~50% reduction in MHET activity relative to 

the wild-type MHETase (Figure 5.3E). Mutation of the catalytic serine (S225A), as 

expected, produced an inactive enzyme. 

5.4.5 Unique structural features between MHETase and PETase determine 

substrate specificity and stability.  

Given the structural similarities of the MHETase and PETase core domains (Figure 

5.1C-D), we were interested in understanding the role of unique MHETase features, 
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namely the lid domain and the active site disulfide bond between Cys224 and Cys529, on 

substrate specificity and MHET hydrolytic activity. Accordingly, the lid was both added 

to PETase (“lidded PETase”) and removed from MHETase (“lidless MHETase”). Given 

the natural substrate specificities of wild-type PETase and MHETase, we hypothesized that 

the former could confer MHET activity, but abolish PET hydrolytic potential, whereas the 

latter was expected to have the opposite effect. The lidded PETase was created by replacing 

the seven-residue loop of PETase (Trp185:Phe191, PETase numbering) with 

Gly251:Thr472 from MHETase. In control experiments, wild-type PETase exhibited no 

detectable activity on MHET, and the lidded PETase is not able to degrade amorphous PET 

film. However, meager activity of lidded PETase was detected on MHET (kcat=0.11±0.02 

s-1) (Figure 5.3F). The lidless MHETase was created by replacing the MHETase lid 

(Gly251:Thr472) with the seven-residue loop of PETase (Trp185:Phe191, PETase 

numbering). This construction results in an exposed MHETase active site, possibly 

allowing for acquired PET hydrolytic activity. The resulting enzyme has a kcat value on 

MHET of 0.05 ± 0.03 s-1, 1,000-fold lower than the rate for wild-type MHETase, 

demonstrating that the lid domain is crucial for MHET hydrolytic activity (Figure 5.3F). 

The lidless MHETase enzyme was also unable to degrade amorphous PET film over 96 h, 

despite the more accessible active site. 

Similarly, variants of lidless MHETase were generated to remove the active site 

disulfide and replace the two sites with tryptophan and serine (lidless MHETase 

C224W/C529S, see Figure A3.1B of Appendix A3) to reconstitute the PETase active site, 

or with histidine and phenylalanine (lidless MHETase C224H/C529F), matching the active 

site of the double-mutant PETase variant previously shown to exhibit improved PET 



 

 

 

128 

hydrolytic activity on crystalline PET.81 The lidless MHETase C224W/C529S mutant, 

which reconstitutes the wild-type active site motif of PETase, displays the same turnover 

rate (within error) as the lidded PETase mutant on MHET (kcat=0.10±0.06 s-1), while the 

lidless MHETase C224H/C529F mutant is even less active on MHET (kcat=0.06±0.03 s-1) 

(Figure 5.3F).  We also generated a PETase variant to recreate the active site disulfide 

found in MHETase (PETase W159C/S238C). The PETase mutant exhibited very low 

MHET hydrolytic activity (kcat=0.03±0.3 s-1), and similarly had no activity on BHET or 

amorphous PET film. 

To delineate the effects of engineering the lid and removing the active site disulfide 

bond, we also generated three MHETase mutants altering only the active site disulfide 

motif (C224A/C529A, C224W/C529S, and C224H/C529F). We hypothesized that 

removal of this disulfide bond may diminish the thermal stability of MHETase. However, 

each of these variants either expressed in inclusion bodies or did not express at all. Attempts 

were also made to introduce disulfide motifs into MHETase that are found in PETase 

(G489C/S530C) or in AoFaeB. To recapitulate the AoFaeB disulfide, the mutations include 

both a point mutation (S136C) as well as the insertion of a 15-residue loop from AoFaeB 

that harbors the partnering cysteine residue. As with the active site disulfide mutants, these 

mutants either expressed in inclusion bodies or did not express at all. A variant was also 

created that included both the PETase-like disulfide (G489C/S530C) and the AoFaeB 

modification (S136C with 15-residue loop from AoFaeB). This last variant, with seven 

total disulfides, was successfully expressed and had very low activity on MHET 

(kcat=0.16±0.14 s-1) (Figure 5.3F). 
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5.4.6 MHETase is catalytically inactive on MHE-isophthalate and MHE-furanoate.  

We evaluated the substrate specificity of MHETase using the mono-hydroxyethyl 

monomer unit of two additional compounds. Specifically, assays were performed with 

mono-(2-hydroxyethyl)-isophthalate (MHEI) (Figure A3.12 of Appendix A3) and mono-

(2-hydroxyethyl)-furanoate (MHEF) (Figure A3.13 of Appendix A3). Isophthalate is a 

common co-monomer in industrial PET formulations used to modify crystallinity, such 

that MHEI could be released from polyester depolymerization. PETase has been 

demonstrated to deconstruct other aromatic polyesters,81 including polyethylene furanoate 

(PEF), yielding MHEF as a product of the enzymatic hydrolysis reaction. Over the course 

of 24 h at 30°C, no MHETase activity was detected for either substrate using substrate 

concentrations from 25-250 μM, in contrast with complete hydrolysis of MHET (Figure 

A3.14 of Appendix A3) in the same time using identical reaction conditions. 

To explain the inability of MHETase to act on MHEI and MHEF, we conducted 

flexible ligand/flexible receptor docking simulations and predicted ten binding orientations 

for each molecule (MHET, MHEI, and MHEF) in MHETase. These docking simulations 

indicate that MHET binds to MHETase with a binding free energy of -7.13 kcal/mol and 

in a catalytically primed configuration. This binding mode features the carbonyl C of 

MHET within 3.2 Å of Ser225-O, which itself is within 2.90 Å of His528-N(e) and His528-

N(d) is 3.93 Å from Asp492-O (Figure A3.15 of Appendix A3). For MHEI and MHEF, no 

binding modes were predicted that exhibit similarly favorable binding free energies, feature 

the MHET carbonyl C within range for attack by Ser225, and stabilize the carbonyl of the 

ester in the oxyanion hole, suggesting that MHETase will not readily act on these 

molecules. 
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5.4.7 PETase and MHETase act synergistically during PET depolymerization.  

While MHET is susceptible to hydrolysis by a number of PET-degrading cutinases, 

I. sakaiensis requires the action of two enzymes for PET degradation to liberate TPA and 

EG.72 Given the turnover rates for MHETase reported here, depolymerization by PETase 

is likely the rate limiting step when the enzymes are employed together. To investigate the 

action of the two-enzyme system, we thus measured the extent of hydrolysis of a 

commercial amorphous PET substrate over 96 h at 30°C using PETase and MHETase at 

varying concentrations (Figure 5.4A, Table A3.4 of Appendix A3). As expected, MHETase 

alone has no activity on PET film. Over the range of enzyme loadings tested (0-2.0 mg 

enzyme/g PET), degradation by PETase alone, as determined by concentration of product 

released (the sum of BHET, MHET, and TPA), scales with enzyme loading. Upon addition 

of MHETase in the reaction, at any loading tested (0.1 – 1.0 mg MHETase/g PET), product 

release still scales with PETase loading, but at a markedly higher level than with PETase 

alone (Figure 5.4A). The overall trend of degradation within the range of enzyme loadings 

tested, which shows increasing levels of constituent monomers released as concentration 

of both enzymes increases, is indicative that these reactions are enzyme-limited under these 

conditions, rather than substrate-limited. The synergy study does not strongly indicate that 

any particular ratio of PETase to MHETase results in optimal degradation over the enzyme 

loadings tested, but rather that degradation scales with PETase loading and the presence of 

MHETase, even at low concentrations relative to PETase, improves total degradation. 
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Figure 5.4 PETase-MHETase synergy and chimeric enzymes. (A) Heatmap of synergistic 

degradation by PETase and MHETase on amorphous PET film over 96 hours at 30°C. 

Total product release in mM (sum of BHET, MHET, and TPA), x-axis: PETase loading 

(mg/g PET), y-axis: MHETase loading (mg/g PET). (B) Illustrations of three chimeric 

enzymes. Linkers composed of glycine (orange) and serine (yellow) residues connecting 

the C-terminus of MHETase to the N-terminus of PETase. (C, D) Comparison of 

depolymerization performance of PETase alone, MHETase alone, PETase and MHETase 

at equimolar loading, and the three chimeric enzymes on amorphous PET film after 96 h 

at 30°C. Product release in mM resulting from hydrolysis by (C) 0.08 mg PETase/g PET 

or 0.16 mg MHETase/g PET and (D) 0.25 mg PETase/g PET or 0.5 mg MHETase/g PET. 

All comparisons are statistically significant with p-values ≤ 0.0001 based on 2way 

ANOVA analysis and Tukey’s multiple comparisons test. (E) MHET turnover rate by each 

chimeric enzyme compared to MHETase alone using 250 µM MHET and 5 nM enzyme. 
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Asterisks indicate statistically significant comparisons between MHETase and each 

chimera enzyme with p-values ≤ 0.01 (*), 0.001 (**), and 0.0005 (***). 

 

5.4.8 Chimeric proteins of MHETase and PETase improves PET degradation and 

MHET hydrolysis rates.  

In light of the highly synergistic relationship between PETase and MHETase on 

amorphous PET, where increasing loading of each enzyme results in more constituent 

monomer release, we next examined how proximity of the two enzymes influences 

hydrolytic activity. Chimeric proteins covalently linking the C-terminus of MHETase to 

the N-terminus of PETase using flexible glycine-serine linkers of 8, 12, and 20 total glycine 

and serine residues were generated and assayed for degradation of amorphous PET (Figure 

5.4B). Varying linker lengths were explored to understand the effect of increased mobility 

between the two domains.345 Furthermore, two enzyme loadings were compared – the 

lower loading corresponding to approximately 0.08 mg PETase/g PET and 0.16 mg 

MHETase/g PET, and the higher enzyme loading corresponding to 0.25 mg PETase/g PET 

and 0.5 mg MHETase/g PET (Figure 5.4C-D). At both loadings, when comparing the 

extent of degradation achieved by PETase alone, MHETase alone, and an equimolar mix 

of PETase and MHETase, the chimeric proteins outperform PETase, as well as the mixed 

reaction containing both PETase and MHETase unlinked in solution. Furthermore, the 

chimeras demonstrate a higher catalytic activity on MHET (Figure 5.4E). Chimeric 

constructs linking the C-terminus of PETase to the N-terminus of MHETase did not 

successfully express protein (Figure 5.4B). SEM analysis of digested amorphous PET film 

confirms degradation (Figure A3.16 of Appendix A3). 
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5.5 Discussion 

The ability to degrade polymers to their monomeric units is important for 

subsequent reuse in new products, which is a critical technical advance needed to enable a 

global circular materials economy. In biological systems, complete depolymerization to 

monomers can be necessary for microbial uptake and growth, as in I. sakaiensis wherein 

MHETase is the enzymatic partner to PETase, together allowing for the complete 

degradation of PET to TPA and EG for catabolism.72 Prior studies presenting MHETase 

crystal structures focused upon understanding and tuning substrate specificity, particularly 

the rational engineering of MHETase to impart BHET hydrolysis activity.85, 86 Drawing 

inspiration from our structural analyses, this complementary study offers further insights 

into the two-enzyme PETase-MHETase system. 

The recent structural report from Palm et al. highlighted several important amino 

acid contributions to substrate specificity in MHETase,85 specifically focusing on active 

site residues. Of note, they pointed out the importance of Phe415 for substrate binding via 

an “induced fit” mechanism and highlighted Arg411 with respect to hydrogen bonding of 

the MHET carboxylate group, both of which are proposed to be drivers of substrate 

specificity. In addition, beyond engineering a starting point for BHET activity in MHETase 

for further optimization, the potential for MHEF turnover was suggested, given the 

proposed utility of PEF as a bio-based PET replacement.346 In our previous work,81 we 

demonstrated that PETase effectively depolymerizes PEF, but the results here do not 

indicate the same for MHETase on MHEF, and docking simulations agree with the 

observed patterns in MHETase selectivity. Despite success with predicting a low energy 

catalytically competent binding mode for MHET to MHETase, we were only able to 
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predict one binding mode of MHEF to MHETase with the MHEF nucleophilic carbonyl in 

the oxyanion hole, but in this pose, the MHEF carboxylate moiety is not in range to interact 

with Arg411, suggesting that further active site engineering will be necessary to enable 

MHEF turnover. Similarly, only one binding mode for MHEI was predicted wherein the 

catalytic triad was oriented for catalysis, but, akin to MHEF, the non-linearity of the 

molecule prevents simultaneous interaction with the oxyanion hole and R411. 

 The enzyme kinetics studies presented here reveal a substantial reduction in 

activity for the S131G, E226T, and F495I MHETase mutants, indicating that these 

positions play important roles in substrate specificity and catalytic efficiency. A previous 

study also demonstrated greatly reduced hydrolytic activity by a F415S variant.86 

Additionally, two homologs identified via bioinformatics analysis from Comamonas 

thiooxydans and Hydrogenophaga sp. PML113 exhibit extremely similar active site 

environments (Figure 5.3D), with the only exceptions being variations at positions 131 and 

415 (MHETase numbering), and these homologs display reaction efficiencies (kcat/Km) 

reduced by an order of magnitude (Table A3.3 of Appendix A3). Furthermore, as the amino 

acids at these positions in wild-type MHETase are less common in tannase family 

sequences (Figure A3.9 of Appendix A3), and mutation to the more common amino acids 

led to a reduction in activity, this suggests that these two sequence positions were 

specifically evolved in MHETase to accommodate MHET.  

Two-enzyme systems for complete PET degradation have been examined 

previously, either derived from a single microorganism (e.g. Thermobifida fusca),347 or 

screened from multiple sources for optimal activity.320, 348 The enzyme synergy results for 

the I. sakaiensis PETase -MHETase system on amorphous PET display a clear performance 
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improvement when MHETase is included in the reaction. Namely, overall degradation 

scales with PETase loading within the tested range (0 – 2.0 mg PETase/g PET), but the 

inclusion of MHETase in the degradation reaction markedly improves depolymerization 

and this synergistic enhancement also scales with MHETase loading. 

The presence of confirmed MHETase homologs in C. thiooxydans and 

Hydrogenophaga sp. PML113 suggests that these bacteria may harbor abilities for TPA 

catabolism (Figure A3.17 of Appendix A3). Bioinformatics analysis was thus conducted 

to query the genomes of the strains compared to known TPA catabolic genes from I. 

sakaiensis,72 Comamonas sp. E6,349, 350 Delftia tsuruhatensis,351 Paraburkholderia 

xenovorans,352 Rhodococcus jostii RHA1,353 and Rhodococcus sp. DK17,354 including 

putative PETases, terephthalate transporter genes, two-component terephthalate 

dioxygenases, the 1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase, 

and the three types of protocatechuate (PCA) dioxygenases (PCA-2,3, PCA-3,4, and PCA-

4,5-dioxygenases) (Table A3.5 of Appendix A3). This analysis revealed that neither C. 

thiooxydans nor Hydrogenophaga sp. PML113 harbor putative PETase genes. 

Interestingly, both strains exhibit genes encoding for TPA catabolic enzymes and 

transporters highly homologous to those of I. sakaiensis, Comamonas sp. E6, and Delftia 

tsuruhatensis (in all cases above 60% identity (Figures A3.18 and A19 of Appendix A3), 

suggesting that they are highly likely able to turnover TPA to PCA, a common central 

intermediate in aerobic aromatic catabolic pathways.355 Each strain also contains annotated 

PCA-4,5-dioxygenases (Table A3.5 of Appendix A3). Further experimental work will be 

required to understand if either of these bacteria exhibit the ability to depolymerize PET, 

perhaps through another type of mechanism than via ester hydrolases, or perhaps like 
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Comamonas sp. E6, they are primarily able to consume soluble, xenobiotic intermediates. 

Perhaps these strains could serve as useful sources of TPA catabolic genes for synthetic 

biology efforts associated with biological plastics recycling and upcycling.356 

The enzymatic deconstruction of recalcitrant natural polymers such as cellulose, 

hemicellulose, and chitin is accomplished in nature by the action of cocktails of synergistic 

enzymes secreted from microbes.12, 357 For example, as observed in fungal cellulase 

systems for cellulose depolymerization, these cocktails typically contain a subset of 

enzymes to act directly on solid polymeric substrates via interfacial enzyme mechanisms, 

and complementary enzymes (e.g., β-glucosidases) that further process solubilized 

intermediates to monomeric constituents (e.g., cellobiose hydrolysis to glucose). Given that 

natural microbial systems evolved over millions of years to optimally degrade recalcitrant 

polymers, perhaps it is thus not surprising, in hindsight, that a soil bacterium such as I. 

sakaiensis evolved the ability to utilize a crystalline polyester substrate with, to our 

collective knowledge, a two-enzyme system.72, 78 Extending the analogy of cellulase 

enzymes and plant cell wall deconstruction for breaking down diverse polysaccharides 

simultaneously, the concept of deconstructing synthetic polymers in the form of mixed 

plastics waste with advanced enzyme cocktails is an exciting research direction beyond 

PET to other polyesters, natural fibers (e.g., cellulose from cotton, proteins from wool),358 

polyamides, polyurethanes,359 and other polymers susceptible to enzymatic 

depolymerization. Going forward, the design of multi-enzyme systems for 

depolymerization of mixed polymer wastes is a promising and fruitful area for continued 

investigation. 
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5.6 Methods 

5.6.1 Plasmid construction.  

pET21b(+)-based expression plasmids for I. sakaiensis genes, homologous genes, 

and mutants were generated as further described in Appendix A3. 

5.6.2 Protein expression and purification.  

E. coli-based protein expression and chromatographic purification is described in 

Appendix A3. 

5.6.3 Crystallization and structure determination.  

MHETase was crystallized in four conditions including a seleno-methionine-

labeled version for single-wavelength anomalous diffraction phasing. All X-ray data 

collections were performed at Beamline I03 at the Diamond Light Source. Detailed 

methods and statistics are provided in Appendix A3. 

5.6.4 Molecular simulations.  

MD simulations were performed for solvated MHETase both in the free state and 

with MHET bound at the active site. All systems were built in CHARMM,329 and 

simulations utilized the CHARMM forcefield.331 Classical MD simulations were run with 

NAMD;330 QM/MM simulations, including two-dimensional umbrella sampling free 

energy calculations, were run in Amber.332, 360 Additional simulation details are in 

Appendix A3. 
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5.6.5 Bioinformatics.  

A total of 6,671 tannase family sequences were retrieved via PSI-BLAST against 

the NCBI non-redundant database.340 Phylogenetic analyses were conducted with 

MEGA7.361 Additional details are in Appendix A3. 

5.6.6 MHETase kinetics and turnover experiments.  

MHETase and mutant enzymes were incubated with MHET, MHEI, or MHEF and 

reactions quenched with methanol and a heat treatment at 85˚C for 10 min. Hydrolysis 

extent was measured by HPLC as described in Appendix A3. 

5.6.7 Molecular docking.  

MHET, MHEI, and MHEF docking into MHETase were modeled and prepared 

using tools in Schrödinger. Substrate docking simulations were conducted using Induced 

Fit Docking simulations in Schrodinger as described in Appendix A3. 

5.6.8 Ligand synthesis.  

MHET, MHEI, and MHEF were prepared via the coupling and subsequent 

deprotection of a mono-tBoc-protected ethylene glycol with the respective acyl chlorides 

as further described in Appendix A3. 

 

5.6.9 MHETase synergy with PETase.  

The effect of MHETase loading and PETase loading on amorphous PET film after 

96 hours was measured as total product release (MHET, BHET and TPA) via HPLC, as 

described in Appendix A3. 
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5.6.10 MHETase-PETase chimeras.  

Chimeric constructs covalently linking MHETase to PETase were generated and 

incubated with either MHET or amorphous PET film as described in Appendix A3. 
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CHAPTER 6. Predicting Protein Thermostability with Machine Learning. 

This chapter presents a machine learning method, ThermoProt, for discriminating 

psychrophilic, mesophilic, thermophilic, and hyperthermophilic proteins. The author of 

this dissertation performed all computational experiments and analyses. 

6.1 Abstract 

In silico prediction of protein thermostability is of vital relevance in biotechnology 

design and implementation, as exhaustive experimental determination of thermostability is 

not feasible for the extremely large number of proteins in publicly available databases. In 

silico prediction methods, conversely, can be applied to large protein sets to select a smaller 

library with desired thermal properties. Hence, computational tools that enable high-

throughput prediction of thermostability would immensely facilitate the process of protein 

engineering. In this study, we present a machine-learning method, ThermoProt, that uses a 

support vector machine (SVM) algorithm for predicting the thermostability of proteins. 

Predictive accuracies of 74.0%, 85.5%, 83.3%, and 86.6% were obtained in discriminating 

psychrophilic from mesophilic, mesophilic from thermophilic, thermophilic from 

hyperthermophilic, and mesophilic from thermophilic and hyperthermophilic proteins, 

respectively. Compared to other previous methods, ThermoProt shows competitive 

performance. We also conducted statistical studies of amino acid correlations to investigate 

relationships between the mutual constraints of amino acids and thermostability. We 

determined that the pairwise correlations of 63 amino acid pairs were significantly different 

(p < 0.01) between psychrophilic, mesophilic, thermophilic, and hyperthermophilic 
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proteins. ThermoProt is available as a free Python package at 

https://github.com/jafetgado/ThermoProt and can be downloaded from the Python Package 

Index at https://pypi.org/project/ThermoProt. 

6.2 Introduction 

Proteins with high thermal stability are especially desirable for industrial 

applications in biocatalysis. Enzymes with higher thermal stability allow biochemical 

processes to be conducted at elevated temperatures, leading to faster reaction rates. As a 

result, the discovery and engineering of proteins with robust, high-temperature behavior is 

a major research area. For example, thermostable amylases have been successfully 

employed in the production of glucose from starch at temperatures as high as 100C.362-364 

Based on their optimum growth temperatures, organisms are classified as 

psychrophilic, mesophilic, thermophilic, or hyperthermophilic, which roughly correspond 

to the temperatures 20°C or less, 20°C to 45°C, 45°C to 80°C, and 80 °C or more, 

respectively.365, 366 For proteins isolated from natural systems, there is a fairly linear 

relationship between the protein’s thermal stability and the environmental temperature of 

the native organism. Gromiha et al. initially observed the linear relationship, Tm = 24.4°C+ 

0.93Tenv (correlation coefficient = 0.91), between the melting temperature (Tm) of 56 

proteins and the organisms’ average environmental temperature (Tenv).
367 From an analysis 

of 127 proteins, Dehouck et al. (2008) observed a similar linear relationship but with a 

much lower correlation of 0.59.368 Since Tm data for proteins is scarce, the significant linear 

relationship between Tm and Tenv can be practically exploited in a computational 

framework to identify proteins that are very likely to be thermostable.  

https://github.com/jafetgado/ThermoProt
https://pypi.org/project/ThermoProt
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The mechanistic strategies employed by organisms in their proteomes to adapt to 

extreme temperatures have been long examined. From these studies, many features have 

been suggested as hallmarks of protein thermostability, such as an increase in helical 

content and polar surface composition.369, 370 However, different protein families appear to 

adopt unique strategies, such that a singular paradigm may not be universally applicable to 

all protein families.371 Kumar et al.  studied several factors thought to contribute to 

thermostability in mesophilic and thermophilic representatives of 18 protein families, 

including increased proline occurrence in loops, shortening and deletion of loops, and 

hydrogen bonding.372 They found that, although there were strong trends between some of 

these factors and thermostability, no single factor was consistent in all 18 families. 

Therefore, regardless of overall trends, separate studies may be required for specific protein 

families to identify unique features adopted by the thermostable members of the family.  

While there appears to be no one universal rule for delineating thermal stability 

consistently across all protein families, research indicates there are many general 

relationships between protein features and thermostability. An increase in salt bridges, 

ionic interactions, and hydrogen bonds have been commonly observed to favor 

thermostability, and thermophilic proteins improve these interactions by utilizing a higher 

proportion of charged residues at the expense of uncharged polar residues.371-374. Similarly, 

thermophilic proteins employ a higher concentration of hydrophobic residues to increase 

hydrophobic interactions and rigidity.375, 376 Furthermore, an increase in Gibbs free energy 

change of hydration (-GhN), shape factor(s), disulfide bridges, cation-π interactions, and 

aromatic clusters have been correlated with protein thermostability.367, 376, 377 From 

combinatorial studies, Farias et al. discovered that the composition ratio, (Glu + Lys)/(Gln 
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+ His), over the proteomes of 28 organisms strongly correlated with the growth 

temperatures.378 Similarly, Zeldovich et al. determined that the sum of the compositions of 

Ile, Val, Tyr, Trp, Arg, Glu, and Leu in proteomes had a near-perfect correlation (0.93) 

with the growth temperatures of 204 organisms.379 

In recent years, researchers have sought to develop statistical tools to predict protein 

thermostability. Several machine-learning methods have been employed, including 

decision trees, random forests, support vector machines (SVMs), k-nearest neighbor 

(KNN), and neural networks.380-390 Validation tests of these methods have shown 

percentage accuracies ranging from the low 70s to the mid-90s. However, direct 

comparison of the predictive performance of these methods can be misleading since widely 

differing datasets and evaluation procedures were applied. In each of these studies, the 

amino acid composition has been the most powerful predictors of thermostability. 

Algorithms built on dipeptide composition alone have underperformed methods based on 

the amino acid composition.385 Other features such as evolutionary information, secondary 

and tertiary structure characteristics, and physiochemical properties have been applied for 

machine learning in addition to amino acid composition. In isolation, these alternate 

features did not increase prediction accuracy over the amino acid composition feature but, 

when applied in combination with amino acid composition, have led to an modest 

improvement in performance.384, 385, 390 Since protein structure is a deterministic function 

of the amino acid sequence, it is no surprise that robust machine-learning methods have 

been reasonably successful in predicting thermostability using only sequence information. 

In this work, we apply machine learning to predict protein thermostability using a 

unique combination of carefully selected features on a larger and more diverse dataset than 



 

 

 

144 

has been previously used. We combine top features that have previously been determined 

to correlate with thermostability, with top features from a feature selection technique. Our 

algorithm is made available to the public as a Python module (ThermoProt) via the 

permanent, open-access database GitHub and on the Python package repository (PyPI). We 

also investigate statistically significant correlations between amino acid composition and 

thermostability on our dataset to provide insight into the constraints of amino acid 

occurrence in thermostable proteins. 

6.3 Materials and methods 

6.3.1 Sequence dataset 

We retrieved sequence data for three psychrophilic, three mesophilic, six 

thermophilic, and eight hyperthermophilic organisms from the National Center for 

Biotechnology Information (NCBI) database, totaling 234,171 sequences (Table 6.1). A 

40% sequence-identity threshold was applied using the CD-HIT algorithm.391 40,000 

sequences were selected from the CD-HIT output such that there were 10,000 sequences 

in each class (P: psychrophilic, M: mesophilic, T: thermophilic, H: hyperthermophilic). 

8,000 of these sequences (2,000 in each class) were set aside for hyperparameter 

optimization and feature selection, while the remaining 32,000 sequences were used for 

training, validation, and analysis. Protein sequences of Rhodonelium psychrophilium (P), 

Methylobacillus flagellates (M), Ardenticatena maritima (T), and Thermotoga petrophila 

(H) were retrieved from NCBI to constitute a separate dataset of 22,299 proteins for an 

independent test of the final algorithm (Table 6.2). 
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Table 6.1 Organisms and protein sequences for feature selection and validation dataset. 

Optimum temperatures were retrieved from NCBI Bioproject database 

(https://www.ncbi.nlm.nih.gov/bioproject/) and BacDive (https://bacdive.dsmz.de/ )  

S/No Organism Group 

Growth/Optimum 

Temp (°C) 

Number 

of 

Proteins 

Class 

NCBI BacDive 

1. Psychroflexus torquis Bacteria 0-15 4 9,953 

Psychrophilic 2. Moritella sp. Bacteria 5-8 5 31,433 

3. Colwellia psychrerythraea Bacteria 8 10 31,845 

4. Vibrio mediterranei Bacteria 26 25-28 48,521 

Mesophilic 5. Parvimonas micra Bacteria 37 37 12,460 

6. Aeromonas enteropelogenes Bacteria 36 30 27,934 

7. 
Thermogemmatispora 

onikobensis 
Bacteria 60-65 60-65 4,255 

Thermophilic 

8. 
Thermovenabulum 

gondwanense 
Bacteria 65 65 4,424 

9. Acidianus brierleyi Archaea 70 70 10,479 

10. Metallosphaera sedula Archaea 70 65 18,352 

11. Thermomicrobium roseum Bacteria 70 70 5,641 

12. Thermobifida fusca Bacteria 50-55 45-60 19,415 

13. 
Methanocaldococcus 

vulcanius 
Archaea 80 80 3,446 

Hyperthermophilic 

14. Thermococcus sp. Archaea 85 80 39,447 

15. Vulcanisaeta distributa Archaea 85-90 90 4,921 

16. Geoglobus ahangari Archaea 88 85 3,958 

17. 
Thermococcus 

guaymasensis 
Archaea 88 88 4,121 

18. Aeropyrum pernix Archaea 90-95 90-95 18,861 

19. Pyrococcus kukulkanii Archaea 105 105 4,061 

20. Pyrolobus fumarii Archaea 106 103 3,875 

  

https://www.ncbi.nlm.nih.gov/bioproject/
https://bacdive.dsmz.de/
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Table 6.2 Organisms and protein sequences for separate testing set. 

 

S/No Organism Group 

Growth/Optimum 

Temp (oC) 

Number 

of 

Proteins 

Class 

NCBI BacDive 

1 Rhodonellum psychrophilum Bacteria 5 5 - 28 5,035 Psychrophilic 

2 Methylobacillus flagellatus Bacteria 30 - 42 30 5,743 Mesophilic 

3 Ardenticatena maritima Bacteria 60 62 - 65 8,881 Thermophilic 

4 Thermotoga petrophila  Bacteria 80 80 2,640 Hyperthermophilic 

 

 

6.3.2 Feature selection 

Since our goal was to develop efficient and versatile predictive algorithms, we 

focused on features derived from the amino acid sequence alone and avoided structure-

based features. This ensures that our algorithms can be readily applied in the absence of a 

crystal structure. Moreover, in several previous works, the addition of structure-based 

features did not lead to very significant improvements in performance.384, 392, 393 We applied 

three categories of features: 

1. Amino acid composition (AAC) features:  the fractional amounts of 20 canonical 

amino acids in the proteins. 

2. g-gap dipeptide composition (DPC) features: the relative amounts of a(x)gb, where a 

and b are specific amino acids and (x)g represents g amino acids of any type, sandwiched 

between a and b.394 In this work, we tested 1,200 g-gap dipeptides (i.e., g = 0, 1, and 2). 

3. Residue type and physiochemical (RTP) features: we selected 20 residue-type and 

physicochemical features that have been previously determined to significantly correlate 

with thermal stability, namely, the composition of acidic, basic, non-polar, acyclic, 

aliphatic, aromatic, charged, and Glu + Phe + Met + Arg residues; the ratio of basic to 
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acidic, non-polar to polar, acyclic to cyclic, and charged to non-charged residues;383 the 

composition of tiny (Ala, Gly, Pro, Ser) and small (Thr, Asp) residues, the average 

maximum solvent accessible area (ASA),392 the ratio of (Glu + Lys) to (Gln + His),378  

charged vs. polar composition,395 IVYWREL (Ile, Val, Tyr, Trp, Arg, Glu, Leu) 

composition,379 molecular weight, and heat capacity.133 

 

6.3.3 Learning and evaluation 

We applied six machine-learning methods: random forests, logistic regression, 

Gaussian naïve Bayes, K-nearest neighbor (KNN), support vector machines with linear 

kernel (SVM), and support vector machines with radial basis function kernel (RBF SVM). 

These methods were implemented using the Scikit-learn Python package.396 A multi-label 

random forest classifier was trained on the separate optimization dataset (8,000 sequences) 

using only the 1,200 g-gap DPC features. The top 10 features with the highest Gini feature 

importances were selected,136 and the rest were discarded. Optimum hyperparameters for 

the KNN, RBF SVM, and random forest classifiers were determined by 5-fold cross 

validation on the dataset of 8,000 sequences. For each of the six machine-learning methods, 

four types of binary classifiers were trained and tested: psychrophilic vs. mesophilic (PM), 

mesophilic vs. thermophilic (MT), thermophilic vs. hyperthermophilic (TH), and 

mesophilic vs. thermophilic and hyperthermophilic (MTH). Five-Fold cross validation on 

the dataset of 32,000 proteins was used to evaluate the performance of the classifiers.The 

predictive performance of the classifiers was measured using accuracy, sensitivity, 

specificity, and Matthew’s correlation coefficient (MCC), as defined by equations 2.6, 2.7, 

2.8, and 2.13 respectively.  
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Table 6.3 Amino-acid sequence features used in this study and the Spearman’s correlation 

between each feature and the thermostability class (P=1, M=2, T=3, H=4). 

S/No Features Short Name Description 

Correlation 

Coefficient 

(r) 

1 A composition A comp 
𝑛𝐴

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  0.013 

2 C composition C comp 
𝑛𝐶

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  -0.081 

3 D composition D comp 
𝑛𝐷

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  -0.158 

4 E composition E comp 
𝑛𝐸

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  0.216 

5 F composition F comp 
𝑛𝐹

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  -0.137 

6 G composition G comp 
𝑛𝐺

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  0.201 

7 H composition H comp 
𝑛𝐻

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  -0.162 

8 I composition I comp 
𝑛𝐼

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  0.010 

9 K composition K comp 
𝑛𝐾

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  -0.085 

10 L composition L comp 
𝑛𝐿

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  0.071 

11 M composition M comp 
𝑛𝑀

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  -0.039 

12 N composition N comp 
𝑛𝑁

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  -0.318 

13 P composition P comp 
𝑛𝑃

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  0.196 

14 Q composition Q comp 
𝑛𝑄

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  -0.427 

15 R composition R comp 
𝑛𝑅

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  0.358 

16 S composition S comp 
𝑛𝑆

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  -0.258 

17 T composition T comp 
𝑛𝑇

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  -0.182 

18 V composition V comp 
𝑛𝑉

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  0.316 

19 W composition W comp 
𝑛𝑊

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  0.024 

20 Y composition Y comp 
𝑛𝑌

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  0.088 

21 
AA 0-gap dipeptide 

composition 
AA 0-gap 

𝑛𝐴𝐴
(𝑛𝑡𝑜𝑡𝑎𝑙 − 1)⁄  -0.033 

22 
RE 0-gap dipeptide 

composition 
RE 0-gap 

𝑛𝑅𝐸
(𝑛𝑡𝑜𝑡𝑎𝑙 − 1)⁄  0.274 

23 
RR 0-gap dipeptide 

composition 
RR 0-gap 

𝑛𝑅𝑅
(𝑛𝑡𝑜𝑡𝑎𝑙 − 1)⁄  0.272 

24 
EQ 0-gap dipeptide 

composition 
EQ 0-gap 

𝑛𝐸𝑄

(𝑛𝑡𝑜𝑡𝑎𝑙 − 1)⁄  -0.230 

25 
QA 0-gap dipeptide 

composition 
QA 0-gap 

𝑛𝑄𝐴

(𝑛𝑡𝑜𝑡𝑎𝑙 − 1)⁄  -0.198 
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Table 6.3 (continued) 

S/No Features Short Name Description 

Correlation 

Coefficient 

(r) 

26 
KQ 0-gap dipeptide 

composition 
KQ 0-gap 

𝑛𝐾𝑄

(𝑛𝑡𝑜𝑡𝑎𝑙 − 1)⁄  -0.240 

27 
R*R 1-gap dipeptide 

composition 
R*R 1-gap 

𝑛𝑅∗𝑅
(𝑛𝑡𝑜𝑡𝑎𝑙 − 2)⁄  0.187 

28 
A**R 2-gap dipeptide 

composition 
A**R 2-gap 

𝑛𝐴∗∗𝑅
(𝑛𝑡𝑜𝑡𝑎𝑙 − 3)⁄  0.095 

29 
L**Q 2-gap dipeptide 

composition 
L**Q 2-gap 

𝑛𝐿∗∗𝑄

(𝑛𝑡𝑜𝑡𝑎𝑙 − 3)⁄  -0.302 

30 
R**R 2-gap dipeptide 

composition 
R**R 2-gap 

𝑛𝑅∗∗𝑅
(𝑛𝑡𝑜𝑡𝑎𝑙 − 3)⁄  0.259 

31 
Acidic residue 

composition 
Acidic 

∑
𝑛𝑥

𝑛𝑡𝑜𝑡𝑎𝑙
⁄   

for x in [D,E] 
0.081 

32 Basic residue composition Basic 
∑

𝑛𝑥
𝑛𝑡𝑜𝑡𝑎𝑙

⁄   

for x in [K,R,H] 
0.141 

33 
Non-polar residue 

composition 
Non-polar 

∑
𝑛𝑥

𝑛𝑡𝑜𝑡𝑎𝑙
⁄   

for x in 

[A,G,I,L,M,F,P,W,V] 

0.231 

34 
Cyclic residue 

composition 
Cyclic 

∑
𝑛𝑥

𝑛𝑡𝑜𝑡𝑎𝑙
⁄   

 for x in [F,Y,W,P,H] 
0.021 

35 
Aliphatic residue 

composition 
Aliphatic 

∑
𝑛𝑥

𝑛𝑡𝑜𝑡𝑎𝑙
⁄   

for x in [A,G,I,L,V] 
0.248 

36 
Aromatic residue 

composition 
Aromatic 

∑
𝑛𝑥

𝑛𝑡𝑜𝑡𝑎𝑙
⁄   

for x in [H,F,W,Y] 
-0.094 

37 
Charged residue 

composition 
Charged 

∑
𝑛𝑥

𝑛𝑡𝑜𝑡𝑎𝑙
⁄   

for x in [D,E,K,R,H] 
0.131 

38 Basic/acidic ratio Basic/acidic 𝐵𝑎𝑠𝑖𝑐
𝐴𝑐𝑖𝑑𝑖𝑐⁄  0.019 

39 Non-polar/polar ratio Non-pol/pol 
𝑁𝑜𝑛−𝑝𝑜𝑙𝑎𝑟

(1 − 𝑁𝑜𝑛−𝑝𝑜𝑙𝑎𝑟)⁄  0.192 

40 Cyclic/acyclic ratio Cyc/acyc 
𝐶𝑦𝑐𝑙𝑖𝑐

(1 − 𝐶𝑦𝑐𝑙𝑖𝑐)⁄  0.023 

41 
Charged/non-charged 

ratio 
Charged/non 

𝐶ℎ𝑎𝑟𝑔𝑒𝑑
(1 − 𝐶ℎ𝑎𝑟𝑔𝑒𝑑)⁄  0.152 

42 EFMR composition EFMR comp 
∑

𝑛𝑥
𝑛𝑡𝑜𝑡𝑎𝑙

⁄   

for x in [E, F, M, R] 
0.310 

43 
(E+K)/(Q+H)  

 

(E+K)/(Q+H) 

 

𝑛𝐸 + 𝑛𝐾

𝑛𝑄 + 𝑛𝐻

 0.290 

44 CvP CvP 

∑
𝑛𝑥

𝑛𝑡𝑜𝑡𝑎𝑙
⁄

− ∑
𝑛𝑦

𝑛𝑡𝑜𝑡𝑎𝑙
⁄  

for x in [D,E,K,R], for y 

in [N,Q,S,T] 

0.396 
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Table 6.3 (continued) 

S/No Features Short Name Description 
Correlation 

Coefficient (r) 

45 IVYWREL composition IVYWREL 

∑
𝑛𝑥

𝑛𝑡𝑜𝑡𝑎𝑙
⁄   

for x in 

[I,V,Y,W,R,E,L] 

0.525 

46 Tiny residues composition Tiny res 
∑

𝑛𝑥
𝑛𝑡𝑜𝑡𝑎𝑙

⁄   

for x in [A,G,P,S] 
0.062 

47 
Small residues (TD) 

composition 
Small res 

∑
𝑛𝑥

𝑛𝑡𝑜𝑡𝑎𝑙
⁄   

for x in [T,D] 
-0.246 

48 Average maximum ASA ASA 

∑(
𝑛𝑥

𝑛𝑡𝑜𝑡𝑎𝑙
⁄ × 𝐴𝑥) 

for x in all 20 amino 

acids, Ax is the 

maximum solvent 

accessible surface 

area of amino acid, x. 

 

0.023 

49 Molecular weight (kDa) Mol weight 

∑(𝑛𝑥 × 𝑊𝑥) 

for x in all 20 amino 

acids, Wx is the 

molecular weight of 

amino acid, x. 

 

-0.063 

50 Heat capacity Heat cap 

∑(
𝑛𝑥

𝑛𝑡𝑜𝑡𝑎𝑙
⁄ × 𝑐𝑥) 

for x in all 20 amino 

acids, cx is heat 

capacity of amino 

acid, x. 

-0.178 

 

6.4 Results 

6.4.1 Evaluation of performance 

The top 10 DPC features were selected from the 1,200 0-gap, 1-gap, and 2-gap DPC 

features using the relative Gini importances of the random forest features.136 The top 10 

DPC features were the AA, RE, RR, EQ, QA, KQ, R*R, A**R, L**Q, and R**R 

compositions (* represents intervening residues). Hence, a total of 50 features were applied 

in the algorithms (20 AAC, 20 RTP, 10 selected DPC). From a grid search evaluated with 
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5-fold cross validation, we determined the optimum hyperparameters for the KNN, random 

forests, and RBF SVM classifiers on a separate dataset of 8,000 sequences (Table 6.4). 

 

Table 6.4 Optimum hyperparameters for machine learning classifiers determined using the 

feature selection dataset of 8,000 sequences. 

Method Hyperparameter PM MT TH MTH 

KNN 
Number of 

neighbors (k) 
20 20 20 20 

Random Forests 
Number of 

trees (n) 
200 200 200 200 

RBF SVM 
Regularization 

parameter (C) 
3.0 3.5 3.0 3.0 

RBF SVM 
Kernel 

coefficient () 
0.0125 0.0125 0.0100 0.0125 

 

On the validation dataset of 32,000 sequences, 5-fold cross validation was used to 

evaluate the performance of the classifiers. For each classification instance, there were 

8,000 proteins in each class (P, M, T, H). To avoid class imbalance, random undersampling 

was applied for the MTH datasets, i.e. discrimination was carried out between 8,000 

mesophilic (M) proteins and 8,000 thermophilic and hyperthermophilic proteins that were 

randomly selected from the initial set of 16,000 thermophilic and hyperthermophilic 

proteins.397 We found that the RBF SVM outperformed all other methods with overall 

accuracies of 74.0%, 85.5%, 83.3%, and 86.6% for the PM, MT, TH, and MTH 

classification, respectively (Tables 6.5 and 6.6).  Thus, we selected the RBF SVM as the 

preferred classifier. In previous studies, SVMs have outperformed most classifiers and tend 

to be the preferred method in predicting thermostability.381, 382, 385, 386, 390 Moreover, in every 

method we tested, the MTH classifier showed the highest accuracy, followed by the MT, 

TH, and PM classifiers, respectively.  



 

 

 

152 

Table 6.5 Overall accuracies of classifiers in discriminating psychrophilic from mesophilic 

proteins (PM), mesophilic from thermophilic proteins (MT), thermophilic from 

hyperthermophilic proteins (TH), and mesophilic from thermophilic and 

hyperthermophilic proteins. Accuracies are reported as mean ± the standard deviation over 

a 5-fold cross validation on the validation set (32,000 proteins). 

 PM MT TH MTH 

Logistic regression 71.0 ± 0.9 80.5 ± 0.9 76.6 ± 0.2 82.4 ± 0.8 

KNN 69.6 ± 0.8 83.3 ± 0.4 81.0 ± 0.9 83.6 ± 0.3 

Naïve Bayes 68.0 ± 0.9 73.9 ± 0.7 70.8 ± 0.6 77.0 ± 1.2 

Random forests 73.0 ± 0.6 84.5 ± 0.5 82.9 ± 0.5 85.2 ± 0.5 

Linear SVM 71.3 ± 1.0 80.5 ± 0.2 76.7 ± 0.4 82.3 ± 0.8 

RBF SVM 74.0 ± 0.5 85.5 ± 0.4 83.3 ± 0.6 86.6 ± 0.8 

 

 

Table 6.6 Validation performance of RBF SVM (ThermoProt) measured over a 5-fold 

cross validation on the validation datasets of 32,000 proteins. 

 PM MT TH MTH 

Accuracy 74.0 ± 0.5 85.5 ± 0.4 83.3 ± 0.6 86.6 ± 0.8 

Sensitivity 76.2 ± 0.7 86.1 ± 0.5 80.5 ± 0.5 87.0 ± 1.2 

Specificity 72.1 ± 0.5 85.0 ± 0.5 86.6 ± 1.5 86.3 ± 0.9 

MCC 0.48 ± 0.01 0.71 ± 0.01 0.67 ± 0.01 0.73 ± 0.02 

 

6.4.2 Comparison with other methods 

Previous studies have employed machine learning to discriminate proteins 

according to their thermal stability and have reported classifiers with relatively high 

predictive accuracies. For instance, Wang et al. reported an accuracy of 95.93% for an 

SVM classifier in discriminating thermophilic from mesophilic proteins;386 however, the 

size of the sequence dataset that was used in evaluating the performance of the SVM was 
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notably small (418 proteins). We compared the performance of our RBF SVM method 

(ThermoProt) with other methods by training and validating other methods on our dataset 

of 32,000 proteins (8,000 per class) with 5-fold cross validation. We observed that, 

compared to the original reported performance, there was a significant drop in the 

performance of other methods, by as much as 15%, when applied to our larger and more 

diverse dataset (Table 6.7). These results demonstrate the necessity of using sufficiently 

large and diverse datasets in machine-learning problems, since the use of small datasets 

may lead to overfitting and an overestimation of performance. Compared to all the other 

methods we tested, our method performs best when applied to the larger dataset of 32,000 

proteins. 

 

Table 6.7 Comparison of ThermoProt with other methods on the MT, MTH, and PM 

datasets defined in this study.The MT dataset is comprised of 8,000 mesophilic and 8,000 

thermophilic proteins. The MTH dataset is comprised of 8,000 mesophilic, and 8,000 

thermophilic and hyperthermophilic proteins (4,000 each). Accuracy was measured over a 

5-fold cross validation. 

 Method 
Dataset 

Size 

Reported 

accuracy 

Accuracy on our datasets 

MT MTH PM 

Gromiha and 

Suresh, 2008 
SVM 4,684 89.2 79.9 81.9 - 

Wu et al., 2009 
Decision 

trees 
1,810 85.0 69.3 70.1 - 

Lin and Chen, 2011 SVM 1,708 93.3 85.0 85.8 - 

Nath et al., 2012 
Random 

forests 
12,000 69.3 - - 72.6 

ThermoProt (this 

study) 
SVM 16,000 - 85.5 86.6 74.0 
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ThermoProt also shows better performance when compared on another dataset. 

Gromiha and Suresh prepared a dataset of 4,684 mesophilic and thermophilic proteins by 

applying a 40% sequence identity threshold to the dataset used by Zhang and Fang.381, 382 

This dataset of 4,684 proteins has been used by several researchers in developing and 

testing algorithms for predicting protein thermostability. Fan et al. applied SVMs using 

460 features on the Gromiha and Suresh dataset and reported an accuracy of 93.53%.390 

They compared their method with other existing methods and observed that their method 

outperformed all others, including the methods of Zuo et al and Lin and Chen.385, 387 We 

applied ThermoProt to the Gromiha and Suresh dataset and compared the performance with 

the other methods using the data presented by Fan et al.390 On the Gromiha and Suresh 

dataset, our method outperforms every other method except Fan et al. (Table 6.7). 

Unfortunately, while the Fan et al. SVM classifier is reported to have slightly higher 

accuracy on the Gromiha and Suresh data set than ThermoProt (93.5% vs. 91.9%, 

respectively), the method of Fan et al. is not publicly available. Moreover, ThermoProt will 

likely be much more computationally efficient to implement, since we use only 50 features 

compared to 460 features used by Fan et al. 

 

Table 6.8 Comparison of methods on Gromiha and Suresh dataset. Performance data are 

derived from Fan et al, 2016.390 

 Method Accuracy Sensitivity Specificity 

Gromiha and Suresh, 

2008 
Neural network 89.0 83.3 92.0 

Wu et al., 2009 Decision tree 83.9 81.5 85.2 

Lin and Chen, 2011 SVM 90.8 85.4 93.6 

Zuo et al., 2013 KNN-ID 91.0 84.3 94.5 

Fan et al., 2016 SVM 93.5 89.5 95.6 

ThermoProt SVM 91.9 ± 0.8 89.3 ± 2.4 93.1 ± 3.9 
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6.4.3 Performance on an independent test set 

To further test the performance of our method, we applied the PM, MT, TH, and 

MTH classifiers which were trained on the validation dataset (32,000 proteins) to a separate 

test dataset of 22,299 proteins completely withheld from the validation process. The 

performance of the classifiers on this separate dataset is comparable to the results obtained 

from the 5-fold cross validation (Table 6.9). For example, in discriminating psychrophilic 

from mesophilic proteins (PM), ThermoProt shows similar accuracies of 74% and 75% on 

the validation and independent test datasets, respectively. 

 

Table 6.9 Accuracy of classifiers on separate test set. 

Organism Size 
Accuracy 

PM MT TH MTH 

R. psychrophilum (P) 5035 75.0 - - - 

M. flagellatus (M) 5743 87.1 80.1 - 82.5 

A. maritima (T) 8881 - 80.2 85.8 77.2 

T. petrophila (H) 2640 - - 86.1 86.9 

 

To investigate the effects of protein sequence length on the predictive accuracy 

classifiers, we separated the independent dataset into bins according to the number of 

residues in the proteins and evaluated the performance in each bin. Our results suggest that 

the predictive accuracy generally increases as protein size increases but may start to 

decrease as the sequence length exceeds 800 residues (Figures 6.1 and 6.2). A similar trend 

was observed by Zuo et al.387 
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Figure 6.1 Protein size distribution of separate test set of 22,299 proteins. Sequences are 

of Rhodonelium psychrophilium (psychrophilic), Methylobacillus flagellates (mesophilic), 

Ardenticatena maritima (thermophilic), and Thermotoga petrophila (hyperthermophilic). 

 

 

Figure 6.2 Predictive accuracy of RBF SVM classifier (ThermoProt) on independent test 

set of 22,299 proteins as a function of protein size.Sequences were separated into bins and 

the classification accuracy was measured over each bin: (A) Psychrophilic proteins (B) 

Mesophilic proteins (C) Thermophilic proteins (D) Hyperthermophilic proteins. 

 

A B C D
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6.4.4 Amino acid correlations in psychrophilic, mesophilic, thermophilic and 

hyperthermophilic proteins 

Let 𝑟𝑥,𝑦
𝑆  be the Pearson’s correlation coefficient between the frequencies of amino 

acids, x and y, in S, the set of psychrophilic, mesophilic, thermophilic, or 

hyperthermophilic proteins, and let 𝑆 represent the complement of S. The correlation 

coefficients, 𝑟𝑥,𝑦
𝑆 , for all pairs of amino acids were calculated from the validation dataset 

(32,000 proteins). The results are shown in Figures 6.3 to 6.6 below. High positive 

correlation between amino acids, x and y, in the protein set, S, implies that there is a 

positive constraint in the mutual occurrence of amino acids, x and y, so that an increase in 

the composition of x is associated with an increase in the composition of y. Similarly, high 

negative correlation between x and y indicates that x and y are inversely constrained in the 

set of proteins, such that an increase in x is associated with a decrease in y. 
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Figure 6.3 Pearson correlation coefficient between amino acid frequencies in 

psychrophilic proteins. 
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Figure 6.4 Pearson correlation coefficient between amino acid frequencies in mesophilic 

proteins. 
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Figure 6.5 Pearson correlation coefficient between amino acid frequencies in thermophilic 

proteins.  
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Figure 6.6 Pearson correlation coefficient between amino acid frequencies in 

hyperthermophilic proteins. 
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6.4.5 Differences in amino acid correlation 

Having determined the inter-correlation of amino acid occurrence in proteins, we 

tested the hypothesis: 

𝐻𝑜: 𝑟𝑥,𝑦
𝑆 =  𝑟𝑥,𝑦

𝑆  

𝐻𝑎: 𝑟𝑥,𝑦
𝑆 ≠  𝑟𝑥,𝑦

𝑆  

First, the correlation coefficients were transformed to a normal distribution using 

Fisher transforms and p-values were determined from the calculated Z-scores. We rejected 

the null hypothesis for p < 0.01. From the results, 63 amino acid pairs have significantly 

different correlation coefficients (Table 6.10). A positive difference in the correlations of 

amino acids, x and y, between the set, S, and 𝑆 implies that x and y are much more 

positively constrained in S than they are in 𝑆. For example, Pro and Thr (P,T) are more 

positively constrained in thermophilic and hyperthermophilic proteins than they are in 

other proteins, and this constraint is higher in thermophilic proteins than in 

hyperthermophilic proteins.  
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Table 6.10 Differences in correlation coefficient of amino acid frequencies for 

psychrophilic, mesophilic, thermophilic and hyperthermophilic proteins. P - MTH is the 

difference between the correlation coefficient of amino acids in psychrophilic proteins and 

the correlation coefficient in other proteins (M, T, and H).  P-MTH, M-PTH, T-PMH, and 

H-PMT are significant (p<0.01) for all 63 amino acid pairs. 

S/No. Amino acid pair P-MTH M-PTH T-PMH H-PMT 

1 R, N 0.349 0.174 -0.198 0.169 

2 Q, K 0.156 -0.174 -0.198 0.233 

3 A, R -0.310 -0.144 0.376 -0.285 

4 M, A 0.184 0.159 -0.343 0.148 

5 A, K 0.235 0.088 -0.253 0.157 

6 K, H 0.197 -0.114 -0.209 0.140 

7 K, M -0.111 -0.152 0.323 -0.189 

8 R, F 0.185 0.092 -0.168 0.093 

9 Q, I 0.100 -0.194 -0.090 0.296 

10 I, L 0.199 -0.097 -0.113 0.103 

11 H, N 0.092 -0.144 -0.223 0.105 

12 I, F -0.140 0.083 0.227 -0.243 

13 W, N 0.096 -0.087 -0.107 0.137 

14 P, T -0.091 -0.089 0.163 0.095 

15 N, M -0.222 -0.132 0.296 -0.089 

16 K, R 0.424 0.077 -0.324 0.221 

17 W, L -0.108 0.133 0.082 -0.153 

18 Q, N 0.083 -0.333 -0.295 0.193 

19 N, K -0.358 0.067 0.345 -0.284 

20 I, R 0.297 0.077 -0.298 0.066 

21 M, Y -0.106 -0.090 0.216 -0.080 

22 K, W 0.157 -0.069 -0.140 0.116 

23 H, R -0.066 0.131 0.235 -0.069 

24 Q, T -0.131 -0.145 -0.067 0.116 

25 P, R -0.254 -0.063 0.141 -0.330 

26 E, I -0.089 0.065 0.117 -0.159 

27 R, E -0.058 -0.151 -0.142 0.134 

28 W, F 0.097 -0.059 -0.091 0.106 

29 W, T -0.065 -0.062 0.059 0.073 

30 P, W -0.098 0.064 0.055 -0.073 

31 M, I -0.121 -0.084 0.203 -0.057 

32 R, V -0.137 -0.325 -0.091 0.057 

33 P, M 0.173 0.105 -0.178 0.056 

34 M, R 0.139 0.056 -0.155 0.104 
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Table 6.10 (continued) 

S/No. Amino acid pair P-MTH M-PTH T-PMH H-PMT 

 35 Q, A -0.119 0.107 0.053 -0.213 

36 W, E 0.057 -0.062 -0.078 0.053 

37 Y, P 0.154 -0.053 -0.202 0.220 

38 T, S -0.073 -0.054 -0.086 0.063 

39 F, H 0.052 -0.064 -0.131 0.076 

40 S, K -0.054 0.052 0.165 -0.330 

41 W, R -0.101 0.051 0.127 -0.163 

42 I, V 0.050 0.159 -0.103 -0.133 

43 Y, K -0.189 0.047 0.301 -0.314 

44 E, N 0.047 0.224 0.135 -0.159 

45 W, I 0.177 -0.045 -0.131 0.079 

46 Y, L 0.050 -0.084 -0.046 0.091 

47 L, T -0.079 -0.050 0.046 0.100 

48 Y, R 0.241 0.084 -0.319 0.043 

49 H, P -0.088 0.051 0.168 -0.045 

50 Q, F -0.042 -0.201 -0.094 0.109 

51 E, S 0.099 0.143 0.040 -0.119 

52 Q, V 0.123 0.104 0.140 0.041 

53 G, A -0.071 0.063 0.037 -0.106 

54 L, Q 0.040 0.115 0.053 -0.178 

55 V, A 0.081 -0.074 0.099 -0.037 

56 A, D 0.064 -0.036 0.040 -0.092 

57 W, Y 0.137 -0.037 -0.153 0.112 

58 K, I -0.388 -0.032 0.398 -0.256 

59 N, Y -0.205 0.032 0.315 -0.112 

60 N, C -0.035 -0.081 -0.058 0.069 

61 D, V -0.033 -0.041 0.115 0.107 

62 T, F -0.060 -0.033 -0.059 0.064 

63 M, L 0.033 0.045 -0.149 0.100 
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6.5 Discussion  

We have tested machine-learning algorithms in predicting the thermostability of 

32,000 diverse proteins with less than 40% sequence identity. In our 5-fold cross validation 

tests, the RBF SVM method demonstrates higher predictive accuracy than other methods 

in discriminating psychrophilic, mesophilic, thermophilic, and hyperthermophilic proteins. 

So that researchers are able to access these tools, we make the RBF SVM classifiers 

available as a Python module (ThermoProt) at https://github.com/jafetgado/ThermoProt. 

In all methods we tested, the lowest accuracy was achieved in the discrimination of 

psychrophilic from mesophilic proteins (PM), with differences in accuracy of as much as 

11.4% compared with the discrimination of other protein classes (Table 6.5). This suggests 

that in amino acid composition and, consequently, structural features arising from the 

amino acid distribution (such as hydrophobicity), mesophilic proteins are more similar to 

psychrophilic proteins than thermophilic proteins. Hence, fewer and less drastic 

modifications may be required to adapt a mesophilic protein to low temperature 

environments than to higher temperature environments. 

In this work, 50 features were employed in our machine-learning models. From the 

random forest classifiers, we compared the Gini importances of these features (Figure 6.7). 

From the Gini importance, we observed that dipeptide composition (DPC) features are the 

least important features. Only four DPC features are among the top 25 features (EQ 0-gap, 

RR 0-gap, KQ 0-gap, and L**Q 2-gap). This indicates that there is more discriminatory 

information in the amino acid composition than in dipeptide composition. The heat 

capacity is the most important feature for the MT classifier and is among the top four 

features for the MTH and TH classifiers. Interestingly, although heat capacity correlates 

https://github.com/jafetgado/ThermoProt
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weakly with thermostability (Table 7.3) and no significant trend was observed in the 

distribution of heat capacity for the different thermostability classes (Figure 6.8), the heat 

capacity is a powerful feature when used in combination with other features. 

 

 

Figure 6.7 Relative (Gini) importance of top 25 features in random forest discrimination 

of (A) Psychrophilic vs. mesophilic (PM) proteins (B) Mesophilic vs. thermophilic (MT) 

proteins (C) Thermophilic vs. hyperthermophilic (TH) proteins (D) Mesophilic vs. 

thermophilic and hyperthermophilic (MTH) proteins. See Table 6.3 for full description of 

features along the y-axis. 

 

A B C D
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Figure 6.8 Distribution of heat capacities for 32,000 psychrophilic (P), mesophilic (M), 

thermophilic (T), and hyperthermophilic (H) proteins. The heat capacity of each protein 

sequence was obtained by a mole-weighted sum of the heat capacities of the constituent 

amino acids. 

 

The relationships between amino acid composition and protein thermostability 

have been discussed in previous research.369, 370, 372-374 However, many of such studies have 

used relatively small datasets so that the trends observed may not represent the wide variety 

of proteins in the databases. In this work, we investigated the relationships between amino 

acid composition and thermostability by measuring the Spearman’s rank correlation 

coefficients between amino acid composition and the thermostability class (i.e. P=1, M=2, 

T=3, H=4) of 32,000 proteins (Figure 6.9). Spearman’s rank correlation was chosen as the 

preferred correlation measure since it is non-parametric and is more appropriate for ordinal 

data. Higher positive values of the Spearman’s coefficient indicate that the amino acid is 

preferred by thermostable proteins and likely plays an important role in enhancing thermal 

stability. 
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Figure 6.9 Relationship between thermal stability and amino acid composition for 32,000 

proteins used in validation tests.(A) Average amino acid composition of psychrophilic, 

mesophilic, thermophilic, and hyperthermophilic proteins. (B) Spearman’s correlation 

coefficient between amino acid composition and thermostability class (i.e. P=1, M=2, T=3, 

H=4). Correlation (rs) is significant (p < 0.01) for all |rs| > 0.015. 

 

It has been observed that higher amounts of charged amino acids are employed by 

thermophilic proteins to form stabilizing salt bridges and hydrogen bonds, and 

thermophilic proteins have a preference of Arg and Glu over Asp and Lys.367, 373, 374, 398 Our 

results indicate that, whereas there is a strong positive correlation between thermostability 

and the compositions of Arg and Glu, there is a negative correlation with Lys and Asp. 

Moreover, Asp is known to be unstable at high temperatures and tends to be avoided in 

thermophilic proteins.374, 399 We also observed that all uncharged polar amino acids 

negatively correlate with thermostability, with Gln having the strongest negative 

correlation. Gln, as well as Asn, Met, and Cys are known to be less frequent in thermophilic 

proteins since they are thermolabile.400, 401 Although disulfide bridges improve 

A

B
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thermostability, the negative contribution due to the thermolability of Cys may outweigh 

the positive contribution due to disulfide bridges, such that Cys correlates inversely with 

thermostability. Furthermore, the uncharged polar amino acids (Ser, Thr) tend to be 

replaced with charged amino acids in thermophilic proteins to maximize the formation of 

hydrogen bonds and salt bridges. 

Tyr is the preferred aromatic amino acid in thermophilic proteins; this may be due, 

in part, to the hydroxyl group which allows for hydrogen bonding,372 and Tyr tends to form 

more amino-aromatic contacts, resulting in better packing in the core of the protein.402 We 

observed that Tyr correlates positively with thermostability, Trp concentration is similar 

across all proteins, and Phe and His correlate inversely with thermostability. Thermophilic 

proteins tend utilize a higher composition of hydrophobic residues to enhance rigidity due 

to hydrophobic interactions.375, 376 Thus, we observe that Val, Leu, Gly, and Pro correlate 

positively with thermostability, although Ala and Ile show no significant trend. Moreover, 

Gly and Pro composition is lower in hyperthermophiles compared to thermophiles. It has 

been suggested that psychrophilic proteins have an increased concentration of Gly to 

provide for improved conformational mobility.403-405 On the contrary, our results suggest 

that this is not the case. Rather, psychrophilic proteins have the lowest Gly content. 

Perhaps, the stabilizing effects of an increase in hydrophobicity outweigh the increase in 

flexibility derived from a larger Gly content. To circumvent this, Gly in psychrophilic 

proteins is more likely to be located in strategic regions that maximize the flexibility.404 

We also examined pairwise correlations of amino acids in psychrophilic, 

mesophilic, thermophilic, and hyperthermophilic proteins. Strong correlation coefficients 

between amino acids indicate a mutual constraint in their occurrence imposed by structural 
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and, consequently, functional properties. Correlations between amino acids differ 

significantly in α, β, α/β, and α+β proteins and have been successfully applied to predict 

the structural class of proteins.406 Here, we tested the hypothesis that the pairwise 

correlations between amino acids are significantly different in psychrophilic, mesophilic, 

thermophilic, and hyperthermophilic proteins. Our results indicate that the correlation 

between 63 amino acid pairs (out of the 190 possible combinations) are significantly 

different (p < 0.01) (Figures 6.6 to 6.9, Table 6.10). For example, there is a significant 

positive difference of 0.376 (p < 0.0001) in the correlation of Arg and Ala in thermophilic 

proteins compared to psychrophilic, mesophilic and hyperthermophilic proteins. Hence, 

Arg and Ala are more constrained in thermophilic proteins than they are in the other protein 

classes, and larger amounts of Arg imply larger amounts of Ala in thermophilic proteins. 

This is probably to ensure a balance between increased hydrophobicity due to higher 

amounts of Ala in the protein core, and increased polar surface composition due to higher 

amounts of Arg. 

6.6 Conclusions 

We have applied machine learning to predict the thermal stability of proteins. Our 

method employs a unique combination of features on a larger and more diverse set of 

proteins than used in previous studies and performs competitively. We have also distributed 

our machine-learning models as an easy-to-use Python package (ThermoProt) for efficient 

prediction of protein thermostability. ThermoProt will find useful applications in high-

throughput screening for thermostable proteins particularly when structure data and 

metadata are unavailable. 
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CHAPTER 7. Improving Enzyme Optimum Temperature Prediction with 

Resampling Strategies and Ensemble learning. 

This chapter has been reprinted with permission from Gado et al,407 copyright 2020, 

American Chemical Society.  The author of this dissertation performed all computational 

calculations and analyses in this chapter. 

7.1 Abstract 

Accurate prediction of the optimal catalytic temperature (Topt) of enzymes is vital 

in biotechnology, as enzymes with high Topt values are desired for enhanced reaction rates. 

Recently, a machine-learning method (TOME) for predicting Topt was developed. TOME 

was trained on a normally-distributed dataset with a median Topt of 37˚C and less than five 

percent of Topt values above 85˚C, limiting the method's predictive capabilities for 

thermostable enzymes. Due to the distribution of the training data, the mean squared error 

on Topt values greater than 85°C is nearly an order of magnitude higher than the error on 

values between 30 and 50°C. In this study, we apply ensemble learning and resampling 

strategies that tackle the data imbalance to significantly decrease the error on high Topt 

values (>85˚C) by 60% and increase the overall R2 value from 0.527 to 0.632. The revised 

method, TOMER, and the resampling strategies applied in this work are freely available to 

other researchers as Python packages on GitHub. 
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7.2 Introduction 

Enzymes that are stable and active at high temperatures are especially desirable for 

industrial applications, as they enable biochemical processes to be conducted at higher 

temperatures yielding faster reaction rates. Hence, researchers have long sought to develop 

tools for accurate in silico prediction of enzyme thermostability. Accordingly, many tools 

have been developed over the past two decades to predict the enzyme melting temperature 

(Tm),408-410 the change in thermodynamic stability (∆∆G) upon point mutations,411-419 or the 

optimal growth temperature (OGT) of the source organism.381, 387, 388, 420-425 Unfortunately, 

for prediction purposes, higher OGT or thermal stability do not necessarily indicate 

substantial catalytic activity at high temperatures.368, 426 Hence, a tool that directly predicts 

the optimal catalytic temperature (Topt) of enzymes is desirable. 

Recently, Li et al. developed a machine-learning tool, TOME (Temperature Optima 

for Microorganisms and Enzymes), for predicting the OGT of microorganisms and the Topt 

of enzymes.426 TOME uses a support vector regressor to predict OGT from the dipeptide 

composition of the proteome, and a random forest regressor to predict Topt from the OGT 

and the amino acid composition. In predicting OGT, TOME achieved an R2 value of 0.88 

in cross validation tests, which is superior to other published models.427, 428 However, the 

R2 value of Topt prediction was only 0.51, providing impetus for further improvement. More 

recently,429 Li et al. incorporated feature engineering to improve the accuracy of Topt 

prediction. They extracted 5,494 and 5,700 sequence features, using the packages, iFeature 

and UniRep, respectively.430, 431  However, these features did not provide a significant 

improvement in performance compared to using only the amino acid composition and 

OGT, even when deep learning was applied. As a result, the authors concluded that more 
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informative features, such as features from the three-dimensional structure, may be 

necessary to markedly improve Topt prediction performance. Yet, a tool that accurately 

predicts Topt from sequence-data alone remains valuable to the biotechnology community, 

since it can be readily applied to the vast number of proteins in the databases that lack 

structural characterizations. 

In this work, we sought to improve the accuracy of Topt prediction, not by customary 

feature engineering, but by mitigating the adverse impact of the non-uniform distribution 

of the training data used in the machine learning model. It is recognized that an imbalanced 

data distribution is highly unfavorable in machine learning problems, as it biases the 

learning algorithms towards the abundant data regions at the expense of the poorly sampled 

regions, and, thus, leads to higher error on the rare values and overall sub-optimal model 

performance.113, 114, 432 In classification problems, data imbalance has been extensively 

studied, and numerous techniques for dealing with imbalance problems have been 

proposed.115, 433 These methods are generally classified into three groups: algorithm-level 

methods, which specifically modify the learning algorithm to address the bias; data-level 

methods, which resample the data in a preprocessing step to decrease the unevenness of 

the data; and hybrid methods, which combine both algorithm- and data-level methods.114, 

434 Data-level methods modify the data distribution primarily by either undersampling the 

majority class, oversampling the minority class, or a combination of both.434 Researchers 

have developed multiple resampling methods for classification problems such as 

neighborhood cleaning rule (NCL),435 synthetic minority oversampling technique 

(SMOTE),116 selective preprocessing of imbalanced data (SPIDER),436 and majority 

undersampling technique (MUTE).437 The combination of resampling strategies with 
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ensemble learning (the integration of the outcomes of multiple base models) has proven 

remarkably successful in dealing with class imbalance.434, 438, 439 

On the contrary, less attention has been paid to imbalance in regression 

problems.114, 115 Few methods have been proposed for working with imbalanced 

distributions in regression domains including: SMOTE for regression (SMOTER),122 

SMOGN,120 meta learning for utility maximization (MetaUtil),440 resampled bagging 

(REBAGG),121 and weighted relevance-based combination strategy (WERCS).118 In many 

bioinformatic and cheminformatic supervised-learning regression problems, the data often 

follows a normal distribution, and the rare extreme values may be more important to the 

user than the abundant values centered about the median of the distribution. For example, 

in predicting Topt for practical applications, higher Topt values are generally more relevant 

since thermostable enzymes are desired for enhanced biochemical reaction rates. Still, a 

majority of studies do not address the issue of data imbalance,417, 418, 441, 442 resulting in 

models with reduced predictive accuracy at tails of the normal distribution.115, 118 

Additionally, standard metrics used in assessing regression model performance, such as 

mean squared error (MSE) and mean absolute deviation (MAD), are heavily biased towards 

the abundant values centered about the median so that the reported performance fails to 

capture the poorer performance on rare values at the tails of the distribution.443 

Consequently, a model could demonstrate excellent performance on non-uniform datasets 

and, yet, have little ability to accurately predict extreme values. 

In this study, we apply resampling and ensemble methods to enzyme Topt 

prediction. Our results show that without resampling (i.e., TOME), the error (MSE) in 

predicting high temperature values (>65°C) was about 500% higher than the error in 
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predicting Topt values centered about the median (30-50°C). By applying resampling 

strategies alone, without the introduction of new features, we were able to reduce the error 

on high temperature values (>65°C) by more than 50% and, consequently, increase the 

overall performance (R2) by 20%. We make available the machine-learning tool for 

improved Topt prediction, TOMER (Temperature Optima for Enzymes with Resampling), 

through GitHub. We anticipate TOMER will prove valuable in accurately predicting Topt 

values of industrially-relevant, thermostable enzymes. To facilitate minimizing the impact 

of data imbalance in other regression applications, we have also provided the resampling 

strategies employed here as a Python package, resreg (Resampling for Regression). 

7.3 Methods 

7.3.1 Dataset and machine learning implementation 

The dataset used in training TOMER was obtained from Li et al., consisting of 

2,917 enzymes with experimental Topt measurements and OGT data from the BRENDA 

database.429, 444 Throughout this work, all machine learning regressors were trained on the 

same 21 features used in TOME, which include the frequencies of the 20 amino acids and 

the OGT. The features were normalized by subtracting the mean and dividing by the 

standard deviation before fitting the regressors. Machine learning was implemented with 

the scikit-learn package (v0.21.2)445 in Python (v3.6.6).  

 

7.3.2 Evaluation of performance 

In evaluating the performance of the regressors, we did not use the conventional k-

fold cross validation technique. Since the data are normally distributed, randomly splitting 
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the data into folds will result in similarly imbalanced folds and, as a result, the performance 

metrics (R2, MSE) will overly weight the frequent data and will not sufficiently capture the 

performance at the distribution tails. Hence, we evaluated performance of the regressors 

on a testing set that was nearly uniformly distributed. A uniform testing set was formed by 

splitting the entire dataset into five bins based on the target values (Topt). Then, 70 samples 

were randomly selected from each bin to constitute the testing set, with the remaining data 

forming the training set (Table 7.1, Figure 7.1A). We selected only 70 samples from each 

bin so that at least half of the data in the smallest bin (85-120°C) was used in training. This 

way, 88% of the entire dataset was used in training (2,567 samples) and 12% in testing 

(350 samples). The dataset was repeatedly split into training and testing sets 50 times, and 

each time, resampling strategies were applied to the training set before fitting the 

regressors. The performance on the testing set was measured as an average over the 50 

iterations, i.e., Monte Carlo cross validation (MCCV).446 

 

Table 7.1 Formation of a uniform testing set by selecting equal samples from five bins. 

Bins Range (°C) 
Samples  

in bin 

Percent of  

total dataset 

Testing 

size 

Training 

 size 

0-30 0 ≤ y < 30 461 15.8% 70 391 

30-50 30 ≤ y < 50 1427 48.9% 70 1357 

50-65 50 ≤ y < 65 519 17.8% 70 449 

65-85 65 ≤ y < 85 361 12.4% 70 291 

85-120 85 ≤ y ≤ 120 149 5.1% 70 79 

 Total 2,917 100% 
350  

(12%) 

2,567  

(88%) 
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Figure 7.1 Distribution of Topt values in the dataset of 2,917 proteins. The density plots 

were derived using a Gaussian kernel density estimation (KDE). (A) Distribution of testing 

set in 50 iterations of Monte Carlo cross validation. A normally-distributed testing set 

formed by random selection of 350 samples is shown in blue, and the nearly uniform testing 

set formed by selecting 70 samples from five bins is shown in red. (B) A one-sided sigmoid 

relevance function that maps Topt values to relevance values between 0 and 1 (left-hand y-

A

B

C
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axis). By setting the value of c in the relevance function (Equation 7.5) to the 90th percentile 

(72.2), Topt values greater than 72.2°C form the rare domain (shaded region) and all other 

values form the normal domain. The Topt distribution density is shown on the right-hand -

axis. (C) A two-sided relevance function mapping Topt values to relevance values between 

0 and 1. By setting the values of cL and cH in the relevance function (Equation 7.6) to be 

the 10th and 90th percentile (25 and 72.2, respectively), Topt values less than 25°C and 

greater than 72.2°C form the rare domain, and the complement of the rare domain forms 

the normal domain. The Topt distribution density is shown on the right-hand y-axis. 

 

Four metrics were used to assess the predictive performance. The coefficient of 

determination (R2) on a uniformly-distributed test set was used to assess the overall 

performance, and was the primary metric for selecting the best resampling strategy. Both 

real and predicted Topt values were converted to categorical values (0-30 is 1, 30-50 is 2, 

50-65 is 3, etc., see Table 7.1), and the Matthew’s correlation coefficient (MCC)447 was 

determined as for a multiclass classification problem.448 The mean squared error (MSE) 

was calculated for each bin to evaluate the variation in the performance across the range of 

Topt values and to examine the error on rare high values relative to the error on abundant 

values . Finally, we measured the F1 score as a way to assess the predictive performance 

on high Topt values at the distribution’s tail (≥ 65°C). The F1 score, which is the weighted 

harmonic mean of precision and recall, is typically a classification performance metric, but 

has been adapted for regression problems.122, 443 For regression, recall and precision has 

been defined as:443 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ (𝛼(𝑦𝑖, �̂�𝑖) × 𝜙(�̂�𝑖))𝜙(�̂�𝑖)≥𝑡𝑅

∑ 𝜙(�̂�𝑖)𝜙(�̂�𝑖)≥𝑡𝑅

 (7.1) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
∑ (𝛼(𝑦𝑖, �̂�𝑖) × 𝜙(𝑦𝑖))𝜙(𝑦𝑖)≥𝑡𝑅

∑ 𝜙(𝑦𝑖)𝜙(𝑦𝑖)≥𝑡𝑅

 (7.2) 

where 𝑦𝑖 and �̂�𝑖 are the true and predicted Topt values, respectively; 𝜙(�̂�𝑖) is the relevance 

function which maps the target values to a relevance scale from 0 to 1 (discussed below); 

𝑡𝑅 is the relevance threshold that forms the subdomain of relevant rare values, and 𝛼(𝑦𝑖, �̂�𝑖) 

is a function that defines the accuracy of a prediction. Hence, the precision and recall are 

measures of the predictive accuracy on rare values, weighted by the relevance function. 

The accuracy function was defined as:443  

𝛼(𝑦𝑖, �̂�𝑖) = 𝐼(𝐿(𝑦𝑖, �̂�𝑖) ≤  𝑡𝐿) × (1 − 𝑒𝑥𝑝 (
−𝑘(𝐿(𝑦𝑖, �̂�𝑖) − 𝑡𝐿)2

𝑡𝐿
2 ))  (7.3) 

where 𝐿(𝑦𝑖, �̂�𝑖) is the loss function and is equal to the absolute error of the prediction; 𝐼 is 

the indicator function, which returns 1 if the absolute error is less than a threshold loss, 𝑡𝐿, 

but zero otherwise; and 𝑘 is an integer that defines the steepness of the accuracy curve. We 

set 𝑘 to be 104 and 𝑡𝐿 to be 5 so that predictions within error limits of 5°C are regarded as 

accurate. A right-sided relevance function was used, with 𝑡𝑅 ≥ 0.5 for all 𝑦 ≥ 65 (see 

Equations 7.5 and 7.6), and the F1 score was calculated from precision and recall as: 

𝐹1 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (7.4) 

 

7.3.3 The relevance function 

In classification problems, resampling strategies can be readily applied since the 

target values are clearly divided into discrete classes. Resampling is not as straightforward 
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in regression problems, however, since the target variable is continuous. The concept of a 

relevance function was introduced in previous works to simplify resampling in regression 

problems.122, 443, 449 The relevance function is a user-defined function that maps the domain 

of target values to a scale from 0 to 1, where 1 indicates maximum relevance. By specifying 

a relevance function, 𝜙(𝑦), and a relevance threshold, 𝑡𝑅, the domain of target values, 𝐷, 

can be split into two sub-domains: a domain of rare values, 𝐷𝑅, which is of greater 

importance to the user, and the domain of normal values, 𝐷𝑁 (Figure 7.1B and C). 

Consequently, 𝐷𝑅 and 𝐷𝑁 can be resampled accordingly. 

In this work, we use a sigmoid relevance function defined as:443  

𝜙(𝑦) =  
1

1 +  𝑒𝑥𝑝(−𝑠(𝑦 −  𝑐))
 (7.5) 

where y is the target variable, and s and c are constants that determine the shape and center 

of the sigmoid, respectively. By defining 𝑠 as ±
log(104−1)

|𝑐|
, it follows that 𝑠 > 0 implies 

that 𝜙(𝑦) ≥ 0.5  for all  𝑦 ≥ 𝑐, and 𝑠 < 0 implies that 𝜙(𝑦) ≥ 0.5 for all 𝑦 ≤ 𝑐.443 Hence, 

𝑐 can be specified so that extreme target values beyond 𝑐 have relevance values above a 

threshold (𝑡𝑅) of 0.5 and, thus, form the domain of rare values, 𝐷𝑅. Otherwise stated,  𝐷𝑅 =

 {𝑦:   𝜙(𝑦) ≥  𝑡𝑅} and 𝐷𝑁 =  {𝑦:   𝜙( 𝑦) <  𝑡𝑅}. Equation 7.5 is used to determine 𝜙(𝑦) in 

the case that the rare domain is formed from extreme values at the left or right of the normal 

distribution (one-sided). For a two-sided rare domain formed from both left and right 

extremes, we define the relevance function as: 

𝜙(𝑦) =  
1

1 + 𝑒𝑥𝑝(−|𝑠𝐿|(𝑦 −  𝑐𝐿))
+  

1

1 +  𝑒𝑥𝑝(|𝑠𝐻|(𝑦 −  𝑐𝐻))
 (7.6) 

where the subscripts, L and H, indicate low and high extreme values, respectively (Figure 

7.1B and C).  
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7.3.4 Resampling strategies 

Having defined a relevance function to split the dataset into a rare and normal 

domain, we tested several resampling methods that alter the lopsidedness of the rare 

domain, relative to the normal domain. The resampling methods were applied to the 

training set to mitigate the adverse effects of the data imbalance, and then a random forest 

regressor with default settings was fitted to the resampled training set. We adapted and 

implemented the following resampling strategies in this work: random oversampling (RO), 

introduction of Gaussian noise (GN), synthetic minority oversampling technique for 

regression (SMOTER), weighted relevance-based combination strategy (WERCS), and 

WERCS with Gaussian noise (WERCS-GN).118, 122 We give a brief description of these 

methods below. The pseudocode of these methods is presented at the end of this chapter. 

 

7.3.4.1 Random oversampling (RO) 

With the random oversampling strategy,118, 119 the rare values are oversampled by 

duplicating randomly selected data points, while the normal values are left unchanged. The 

amount of oversampling is to be specified by the user and can significantly affect the 

results. Branco et al. suggested two automatic methods of oversampling: balance and 

extreme.118 The balance option oversamples the rare domain so that it is equal in size to 

the normal domain. The extreme option oversamples the rare domain so that the proportion 

of the size of the rare domain to the size of the normal domain is reversed. For example, if 

the normal domain is five times larger than the rare domain, the extreme option 

oversamples the rare domain so that it is five times larger than the normal domain. Here, 

we introduced a new automatic oversampling method that is intermediate between balance 
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and extreme, which we dub “average”. According to the method selected, the size of the 

rare domain after oversampling, |𝐷𝑅
𝑛𝑒𝑤|, is determined from the size of the rare and normal 

domain before resampling (|𝐷𝑅| and |𝐷𝑁|, respectively) as follows: 

balance: |𝐷𝑅
𝑛𝑒𝑤| =  |𝐷𝑁| (7.7) 

extreme: |𝐷𝑅
𝑛𝑒𝑤| =  

|𝐷𝑁|2

|𝐷𝑅|
 (7.8) 

average: |𝐷𝑅
𝑛𝑒𝑤| =  

1

2
(|𝐷𝑁| +  

|𝐷𝑁|2

|𝐷𝑅|
) (7.9) 

Additionally, the values of 𝑐𝐿 and 𝑐𝐻, which determine the points at which the target 

value is split to normal and rare values, can have significant effects on the performance. 

Hence, we implemented a grid search to determine the optimal combination of 

hyperparameters for the resampling strategies. We defined the hyperparameter space as 

𝑐𝐿 ∈ (25, 30, 𝑁𝑜𝑛𝑒), 𝑐𝐻 ∈ (72.2, 60), and 𝑚𝑒𝑡ℎ𝑜𝑑 ∈ (𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒, 𝑒𝑥𝑡𝑟𝑒𝑚𝑒) 

(Table 7.2). The values for 𝑐𝐿 correspond to the 10th and 20th percentile of Topt, and the 

values of 𝑐𝐻 correspond to the 90th and 80th percentile, respectively. A right-sided rare 

domain is indicated by 𝑐𝐿 = 𝑁𝑜𝑛𝑒 (Figure 7.1B and C).  
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Table 7 2 Hyperparameters of resampling strategies tested with a grid search. 

Strategy Hyperparameter range 

Random oversampling (RO)118, 119 
cL = (25, 30, None), cH = (72.2, 60), method = (balance, average, 

extreme) 

Synthetic minority oversampling 

technique for regression 

(SMOTER)119, 120, 122 

cL = (25, 30, None), cH = (72.2, 60), method = (balance, average, 

extreme), k = (5, 10, 15) 

Introduction of Gaussian noise 

(GN)118-120 

cL = (25, 30, None), cH = (72.2, 60), method = (balance, average, 

extreme), 𝛿 = (0.1, 0.5, 1.0) 

Weighted relevance-based 

combination strategy (WERCS)118 

cL = (25, 30, None), cH = (72.2, 60), over = (0.5, 0.75), under = 

(0.5, 0.75) 

Weighted relevance-based 

combination strategy with 

introduction of Gaussian noise 

(WERCS-GN)118-120 

cL = (25, 30, None), cH = (72.2, 60), over = (0.5, 0.75), under = 

(0.5, 0.75), 𝛿 = (0.1, 0.5, 1.0) 

Resampled bagging with random 

oversampling (BAGG-RO)119, 121 

cL = (25, 30, None), cH = (72.2, 60), method = (balance, 

variation), s = (300, 600) 

Resampled bagging with SMOTER 

(BAGG-SMT)119, 121, 122 

cL = (25, 30, None), cH = (72.2, 60), method = (balance, 

variation), 

k = (5, 10, 15), s = (300, 600) 

Resampled bagging with 

introduction of Gaussian noise 

(BAGG-GN)119, 121 

cL = (25, 30, None), cH = (72.2, 60), method = (balance, 

variation), 

𝛿 = (0.1, 0.5, 1.0), s = (300, 600) 

Resampled bagging with WERCS 

(BAGG-WR)118, 121 

cL = (25, 30, None), cH = (72.2, 60), over = (0.5, 0.75), under = 

(0.5, 0.75), s = (300, 600) 

Resampled bagging with WERCS-

GN (BAGG-WRGN)118, 119, 121 

cL = (25, 30, None), cH = (72.2, 60), over = (0.5, 0.75), under = 

(0.5, 0.75), 𝛿 = (0.1, 0.5, 1.0), s = (300, 600) 

 

7.3.4.2 Synthetic minority oversampling technique for regression (SMOTER) 

Applying the SMOTER strategy undersamples the normal values and oversamples 

the rare values by generating synthetic data points through interpolation between each rare 

value and a random selection of one of its k-nearest neighbors.119, 120, 122 The feature vector 

and target value of a synthetic instance, 𝑋2 and 𝑦2, respectively, are determined as 

follows:122 
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𝑋2 =  𝑋1 + 𝑟(𝑋𝑛𝑛 −  𝑋1) (7.10) 

𝑦2 =  
𝑦1. 𝑑𝑛𝑛 +  𝑦𝑛𝑛. 𝑑1

𝑑𝑛𝑛 +  𝑑1
 (7.11) 

where 𝑋1 is the feature vector of an instance in 𝐷𝑅, 𝑋𝑛𝑛 is one of k-nearest neighbors of 

𝑋1, 𝑟 ∈ [0, 1] is a random number, 𝑦1 and 𝑦𝑛𝑛 are the target values of 𝑋1 and 𝑋𝑛𝑛, 

respectively, and 𝑑1 and 𝑑𝑛𝑛 are the Euclidean distances between 𝑋2 and 𝑋1, and between 

𝑋2 and 𝑋𝑛𝑛, respectively. The amount of undersampling and oversampling was 

automatically determined according to the following options: 

balance: |𝐷𝑁
𝑛𝑒𝑤| =  |𝐷𝑅

𝑛𝑒𝑤| =
|𝐷𝑁| +  |𝐷𝑅|

2
 (7.12) 

extreme: 

|𝐷𝑁
𝑛𝑒𝑤| =  |𝐷𝑅| (7.13) 

|𝐷𝑅
𝑛𝑒𝑤| =  |𝐷𝑁| (7.14) 

average: 

|𝐷𝑁
𝑛𝑒𝑤| =

1

2
(

|𝐷𝑁| +  |𝐷𝑅|

2
+ |𝐷𝑅|) (7.15) 

|𝐷𝑅
𝑛𝑒𝑤| =

1

2
(

|𝐷𝑁| +  |𝐷𝑅|

2
+ |𝐷𝑁|) (7.16) 

Optimal hyperparameters were similarly determined by a grid search (Table 7.2). 

 

7.3.4.3 Introduction of Gaussian noise (GN) 

The GN strategy is identical to SMOTER in every way except that synthetic points 

are generated by addition of Gaussian noise rather than interpolation.118-120 Noise based in 

𝑁(0, 𝛿 × 𝑠𝑡𝑑(𝑎)) is separately added to each feature and to the target value of a rare 

instance, where 𝑠𝑡𝑑(𝑎) is the standard deviation of the attribute (i.e., feature or target 

value), and 𝛿 is a user-defined parameter that determines the amplitude of the noise.  
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7.3.4.4 Weighted relevance-based combination strategy (WERCS) 

Rather than using a relevance threshold to split the data into rare and normal 

domains as with the previous strategies, the WERCS strategy uses the relevance values as 

weights to select data points for undersampling and oversampling.118 The data are 

oversampled and then undersampled by selecting instances to be duplicated and instances 

to be removed, respectively. Selection for oversampling and undersampling is performed 

using probabilities determined from the relevance function. For each target value in the 

dataset, 𝑦𝑖, we defined the probability that the value is selected for oversampling or 

undersampling (𝑝𝑖
𝑜𝑣𝑒𝑟 and 𝑝𝑖

𝑢𝑛𝑑𝑒𝑟, respectively) by Equations 7.17 and 7.18. 

𝑝𝑖
𝑜𝑣𝑒𝑟 =

𝜙(𝑦𝑖)

∑ 𝜙(𝑦𝑖)
𝑁
𝑖=1

 (7.17) 

𝑝𝑖
𝑢𝑛𝑑𝑒𝑟 =

1 − 𝜙(𝑦𝑖)

∑ (1 − 𝜙(𝑦𝑖))𝑁
𝑖=1

 (7.18) 

Hence, rare values with higher relevance are more likely to be selected for oversampling 

and less likely to be selected for undersampling. The amount of oversampling and 

undersampling are hyperparameters to be specified by the user in percent (over and under, 

respectively). 

 

7.3.4.5 WERCS with Gaussian noise (WERCS-GN) 

We modified the WERCS strategy by adding Gaussian noise to the values selected 

for oversampling by the WERCS strategy. Hence, with WERCS-GN, oversampling is done 

with synthetic data, instead of by duplicating data points. 
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7.3.4.6 Combination of resampling strategies with ensemble learning 

Ensemble learning involves training different learners and combining their output 

to generate a final prediction that is more accurate than the individual learners. Branco et 

al. developed the resampled bagging algorithm (REBAGG) for implementing resampling 

and bagging in imbalanced regression problems.121, 130 In this work, we applied an 

adaptation of the REBAGG algorithm to the prediction of Topt values, by implementing the 

resampling methods described previously in the REBAGG algorithm (pseudocode is at the 

end of this chapter). 

First, the dataset is split into rare and normal domains, 𝐷𝑅 and 𝐷𝑁, using the 

relevance function, as described previously. Then 𝑚 models are trained on separately 

resampled bootstrap samples of 𝑠 items from the training dataset. Two modes of the 

REBAGG method are applied: balance or variation mode. In balance mode, an equal 

number of samples, 𝑠
2⁄ , is randomly drawn from 𝐷𝑅 and 𝐷𝑁. In the variation mode, 

however, 𝑝 × 𝑠 samples are drawn from 𝐷𝑅, and (1 –  𝑝)  × 𝑠 samples are drawn from 𝐷𝑁, 

where p is a randomly selected number from the set, (1/3, 2/5, 1/2, 3/5, 2/3). Hence, in the 

variation mode, the 𝑚 models are trained on data that may contain either fewer, equal, or 

more rare samples than normal samples. If the number of samples to be drawn from 𝐷𝑅 is 

greater than |𝐷𝑅|, then the extra samples are derived by oversampling the rare domain using 

RO, SMOTER, or GN, resampling methods as described previously. We refer to the 

REBAGG method in combination with these resampling methods as BAGG-RO, BAGG-

SMT, and BAGG-GN, respectively. A similar combination of REBAGG with WERCS and 

WERCS-GN (referred to as BAGG-WERCS and BAGG-WRGN) was also implemented. 
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With BAGG-WERCS and BAGG-WRGN, the data are resampled without splitting into 

rare and normal domains, as in the WERCS and WERCS-GN methods. Then, s samples 

are drawn from the resampled data for training a model in the ensemble. With these 

resampled bagging strategies, the resampling step is independently repeated for all 𝑚 

models with replacement. Finally, each model is applied to the testing set, and the final 

prediction is determined by averaging the predictions of all 𝑚 models. We used a decision 

tree regressor with default settings as the base regressor and set 𝑚 to be 100. Other 

hyperparameters were optimized based on the values shown in Table 7.2. 

7.4 Results and Discussion 

7.4.1 Resampling strategies significantly improve predictive performance 

In this work, we applied machine learning to predict the Topt of 2,917 enzymes.426 

The target values follow a normal distribution that creates a problem of data imbalance. 

Although the Topt values range from 0 to 120°C, about half of the values fall within 30 to 

50°C, and high temperature data are scarce (Table 7.1). To deal with this data imbalance, 

we implemented ten strategies that abate the imbalance by resampling the training data. 

For each strategy, we tested several hyperparameters with a grid search (Table 7.2) and 

selected the hyperparameter combination that yielded the highest average R2 value on a 

uniformly-distributed testing set (Table 7.3). Without resampling the training data (i.e., 

TOME), the average R2 value over 50 MCCV iterations was 0.527. However, the best 

performance of the resampling strategies ranged from 0.567 (RO) to 0.632 (BAGG-RO). 

Similarly, all resampling strategies yielded significantly higher F1 scores (>0.178) and 

MCC values (>0.235) compared to TOME, which had an F1 score of 0.137 and an MCC 
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score of 0.212 (Figure 7.2). These results demonstrate that the resampling strategies 

improve the predictive performance on high Topt values (> 65°C), as illustrated by the 

higher F1 scores, and lead to superior overall performance, as illustrated by the higher R2 

and MCC values. It is important to note that some hyperparameter combinations of the 

resampling strategies led to a reduction in the predictive performance compared to the 

model that was trained on non-resampled data (TOME) (Figure 7.3). Hence, it is imperative 

that one test a sufficiently wide range of hyperparameters to determine the optimal 

hyperparameter combination. 

 

Table 7.3 Best hyperparameter combination for each resampling strategy yielding the 

highest R2 values as determined by a grid search. 

Strategy Hyperparameter 

RO cL =None, cH=60.0, method=balance 

SMOTER cL=None, cH=60.0, method=average, k=10 

GN cL=None, cH=72.2, method=balance, 𝛿=0.5 

WERCS cL=None, cH=72.2, over=0.5, under=0.5 

WERCS-GN cL=None, cH=72.2, over=0.5, under=0.5, 𝛿=0.1 

BAGG-RO cL=None, cH=72.2, method=variation, s=600 

BAGG-SMT cL=None, cH=72.2, method=variation, k=5, s=600 

BAGG-GN cL=None, cH=72.2, method=variation, 𝛿=1.0, s=600 

BAGG-WERCS cL=25.0, cH=72.2, over=0.5, under=0.75, s=600 

BAGG-WRGN cL=25.0, cH=72.2, over=0.75, under=0.75, 𝛿=0.1, s=600 
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Figure 7.2 Performance of the resampling strategies. The resampling strategies were 

applied to the training dataset, regressors were fitted on the resampled data, and the 

performance was evaluated on a uniformly distributed test set with 50 iterations of Monte 

Carlo cross validation. Error bars indicate 95% confidence interval of the mean over 50 

iterations. (A) Highest R2 value of the resampling strategies determined from a grid search 

of hyperparameter combinations. Combining bagging with the resampling strategies via 

the REBAGG algorithm outperforms the resampling strategies alone. See Figure 7.3 for 

A B C

E F

D
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the performance of all hyperparameter combinations. (B) MCC and (C) F1 scores of the 

best hyperparameter combinations of the resampling strategies, i.e., combinations that 

yielded the highest R2 value. (D) Mean squared error on different ranges of the target 

values. Without resampling (TOME), the error is highest in the 85-120°C range, but all the 

resampling strategies significantly reduce this error. The lowest overall error is achieved 

by the BAGG-RO strategy. (E) Distribution (KDE) of the dataset after applying the 

resampling methods with optimal hyperparameters. (F) Mean squared error when 

regressors trained on resampled data are applied to the training set and the testing set. The 

integration of resampling strategies with bagging decreases the variance as shown by an 

increase in training error and decrease in testing error. 
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Figure 7.3 Performance (R2) of resampling strategies for all hyperparameter 

combinations. The x-axes indicate different hyperparameter combinations in a grid search. 

Error bars indicate 95% confidence interval of the mean determined from averaging results 

over 50 Monte Carlo cross validation repetitions. The red line represents the baseline 

performance obtained when a random forest regressor is applied to the dataset without 

resampling (TOME) and the shaded region around the red line indicate the 95% confidence 

interval. From the figure, it is apparent that some hyperparameter combinations lead to 
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inferior performance relative to TOME. The BAGG-RO strategy with hyperparameters: 

CL=None, CH=72.2, s=600, and method=variation, yielded the highest R2 value of 0.632. 

 

From the results shown in Figure 7.2A-C, we observed that resampling by simple 

duplication of rare values, as is done in the random oversampling strategy (RO), led to 

lower R2, F1, and MCC values than the strategies that oversample rare values by using the 

relevance as weights (WERCS, WERCS-GN), or by generating synthetic data through 

interpolation (SMOTER) or addition of noise (GN, WERCS-GN). However, this trend was 

not observed when the resampling methods were combined with bagging (BAGG-RO, 

BAGG-SMT, BAGG-GN, BAGG-WERCS, BAGG-WRGN). We anticipate that 

duplication performs worse than generating synthetic values because duplication causes 

the learning algorithms to overfit to the replicated values. Introducing synthetic values, on 

the other hand, would cause the algorithms to be more general in the rare data region.115, 

116, 450 Our results indicate that generating synthetic values does not outperform duplication 

techniques when combined with bagging in the REBAGG strategy, likely because 

aggregating multiple learners overcomes the overfitting that arises due to replicated values.  

Analysis of the MSE as a function of the true Topt values indicates that there is 

significant variation in the MSE across the range of target values (Figure 7.2D). Without 

resampling (TOME), the error inversely correlates with the frequency of the data, with 

lower error in regions of abundant data (30-50°C) and higher error in regions of rare data 

(0-30°C, 65-120°C). Moreover, error in the 65-85°C and 85-120°C ranges was 3.7 and 9.7 

times higher, respectively, than the error in the 30-50°C range. Hence, without resampling, 

the regressor (TOME) overfits to abundant values and demonstrates inferior performance 
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on high temperature values. In applications that rely on TOME for identifying high Topt 

enzymes, the large error on high temperature values may lead to misleading results. By 

applying resampling strategies to the training set, we altered the distribution of the training 

dataset to prevent the learning algorithm from overfitting to abundant values and to 

improve performance on rare high temperature values (Figure 7.2E). As Figure 7.2D 

shows, all the resampling strategies led to a reduction of the error in the high temperature 

ranges (65-120°C) and an increase of the error in the abundant data range (30-50°C), which 

indicates a decrease in the overfitting of abundant values. Moreover, the error in the 

abundant data range is the lowest error for TOME as well as for all the resampling 

strategies. This suggests that there is an upper limit to the performance gain from 

resampling rare data, and more experimental data which sample unexplored regions of the 

rare data space may be necessary for further improvement in performance. 

Furthermore, the combination of resampling methods with bagging, such that each 

base regressor was trained on independently resampled datasets, yielded significantly 

higher overall performance scores (R2 and MCC) than resampling methods alone (Figure 

7.2A and B). Other researchers have similarly observed that ensemble learning methods, 

such as bagging and boosting, considerably enhance the effect of resampling techniques.434, 

438, 451-453 In this work, the resampling methods without bagging (i.e., RO, SMOTER, GN, 

WERCS, and WERCS-GN) simply increased the proportion of rare values (Figure 7.2E), 

which decreased the overfitting of the regressors to abundant data, and, consequently, led 

to a reduction of both training error and testing error (Figure 7.2F). However, the difference 

between the testing and training error was substantial, indicating that the regressors were 

overfitting to the resampled training data (high variance). On the other hand, when the 



 

 

 

194 

resampling methods were repeatedly applied with multiple decision trees in an ensemble 

(i.e., the REBAGG strategies) such that each base tree was trained on differently sampled 

datasets, a much lower testing error and a higher training error was observed. This outcome 

indicates that the integration of bagging with the resampling methods (i.e., BAGG-RO, 

BAGG-SMT, BAGG-WERCS, and BAGG-WRGN) reduces the variance of individual 

regressors and prevents overfitting to the resampled training data, leading to improved 

generalization.454 Moreover, all REBAGG strategies yielded similar overall performance 

(R2 and MCC), which suggests that the specific resampling method applied in the 

REBAGG strategy had little effect on the overall performance. The BAGG-RO strategy 

led to the highest R2 value of 0.632 and the lowest MSE of 218.6. 

 

7.4.2 Effect of base learners on ensemble performance 

We examined the influence of different base learners in the BAGG-RO ensemble 

to assess whether further performance enhancement could be attained. Using the optimal 

resampling hyperparameters determined with decision trees (Table 7.3), we applied four 

additional base regressors in the BAGG-RO ensemble: support vector regressor (SVR), k-

neighbor regressor (KNR), elastic net (ENET) regressor, and Bayesian ridge regressor 

(BAYR). For each of these regressors, we used a grid search to determine optimal 

hyperparameters that yielded the best R2 value (Table 7.4), and the performance was 

measured as an average over 50 MCCV iterations. The results indicate that, although each 

alternative regressor outperformed TOME, the decision tree base regressor yielded the 

highest R2 value and lowest overall MSE. Interestingly, the decision tree regressor showed 

the lowest F1 score (Figure 7.4). These results suggest that, while other regressors possibly 
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perform better on high temperature values, tree-based regressors exhibit the best overall 

performance in predicting Topt values from amino acid composition and OGT.426, 429 

 

Figure 7.4 Performance of BAGG-RO ensemble with different base learners. The optimal 

hyperparameters for the base learners were determined by a grid search. Error bars indicate 

95% confidence interval of the mean over 50 Monte Carlo cross validation repetitions. (A) 

Highest R2 value achieved for different base learners in the BAGG-RO ensemble. (B) 

Matthew’s correlation coefficient and (C) F1 scores of BAGG-RO strategy with different 

base learners using the optimal hyperparameters, i.e., hyperparameters that yielded the 

highest R2 value. 

 

Table 7.4 Hyperparameters for base learners in BAGG-RO ensemble. 

Base learner Hyperparameter range Optimal hyperparameters 

Support vector regressor 

(SVR) 

C = [10-3, 10-2, 10-1, 100, 101, 102],  

gamma=[10-3, 10-2, 10-1, 100, 101, 102] 
C=102, gamma=10-2 

k-neighbor regressor 

(KNR) 
k=[3, 5, 7, 10, 15, 20, 30] k=3 

Elastic net regressor 

(ENET) 
alpha=[10-3, 10-2, 10-1, 100, 101, 102] alpha=10-2 

Bayesian ridge regressor 

(BAYR) 
None (default) None (default) 

 

A B C
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7.4.3 Final model, data and code availability 

We identified the BAGG-RO strategy with decision tree base learners as the 

optimal resampling strategy for predicting enzyme optimum temperatures across the entire 

range of experimental Topt values because it led to the highest R2 value and lowest overall 

MSE. A final model was prepared by applying the BAGG-RO resampling strategy with 

optimal hyperparameters (Table 7.3) to the entire dataset of 2,917 proteins. The final model 

is available to researchers as a Python package, TOMER (Temperature Optima for 

Enzymes with Resampling), on the Python package index, http://pypi.org/project/tomer/ 

with the source code publicly available at http://github.com/jafetgado/tomer/. Compared to 

TOME, TOMER provides a 20% improvement in the overall predictive performance (R2), 

and a 25% and 60% decrease in MSE on Topt values in the 65-85°C and 85-120°C ranges, 

respectively. All data and code used and produced in this study are available at 

https://github.com/jafetgado/tomerdesign/. We have also prepared a Python package, 

resreg (resampling for regression), for applying the resampling strategies discussed in this 

work to other regression problems. It is available on the Python repository, 

http://pypi.org/project/resreg, with the source code at http://github.com/jafetgado/resreg. 

  

http://pypi.org/project/tomer/
http://github.com/jafetgado/tomer/
https://github.com/jafetgado/tomerdesign/
http://pypi.org/project/resreg
http://github.com/jafetgado/resreg
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7.4.4 Pseudocode for resampling strategies as applied in this work 

Algorithm 1: Random oversampling algorithm (RO)118, 119 

 Input:  

  D (X, y) – dataset with features, X, and continuous target value, y 

  R – relevance values for corresponding target values 

  tR – relevance threshold 

  over – oversampling percent 

 

 Output: newD – resampled dataset 

 

 rareD ← instances in D with relevance ≥ tR 

normD ← instances in D with relevance < tR 

addSize ← over × |rareD|    //or determine addSize by balance, extreme, or 

average methods 

newRareD ← rareD ∪ randomly selected addSize instances from rareD 

newD ← normD ∪ newRareD 

 

return newD 
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Algorithm 2: SMOTER algorithm119, 120, 122 

 Input:  

  D (X, y) – dataset with features, X, and continuous target value, y 

  R – relevance values for corresponding target values 

  tR – relevance threshold 

  over – oversampling percent 

  under – undersampling percent 

  k – number of nearest neighbors 

 

 Output: newD – resampled dataset 

 

 normD ← instances in D with relevance < tR 

rareD ← instances in D with relevance ≥ tR 

lessSize ← under × |normD| 

addSize ← over × |rareD|  //or determine addSize and lessSize by balance, extreme, or 

average methods 

rareDL ← instances in rareD with y < median(y) 

rareDH  ← instances in rareD with y ≥ median(y) 

addSizeL ← addSize × 
|rareDL|

|rareD|
 

addSizeH ← addSize × 
|rareDH|

|rareD|
 

nns ← get k-nearest neighbors of all instances in rareD 

newRareDL ← generate addSizeL instances by interpolating between points in rareDL and a 

random selection of one of the k-nearest neighbors 

newRareDH ← generate addSizeH instances by interpolating between points in rareDH and 

a random selection of one of k-nearest neighbors 

newRareD ← newRareDL ∪ newRareDH ∪ rareD 

newNormD ← normD ∖ random selection of lessSize instances from normD //undersampling  

newD ← newNormD ∪ newRareD 

 

return newD 
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Algorithm 3: Introduction of Gaussian noise algorithm (GN)118-120 

 Input:  

  D (X, y) – dataset with features, X, and continuous target value, y 

  R – relevance values for corresponding target values 

  tR – relevance threshold 

  over – oversampling percent 

  under – undersampling percent 

  𝛿 – magnitude of Gaussian noise 

 

 Output: newD – resampled dataset 

 

 normD ← instances in D with relevance < tR 

rareD ← instances in D with relevance ≥ tR 

lessSize ← under × |normD| 

addSize ← over × |rareD|   //or determine addSize and lessSize by balance, extreme, or 

average methods 

newRareD ← random selection of addsize instances from rareD 

 

foreach case in newRareD do //add Gaussian noise to each case 

  foreach a in X ∪ y do 

   case[a] = case[a] + N(0, δ×std(a)) 

  end  

 end   

 newNormD ← normD ∖ random selection of lessSize instances from normD    

//undersampling 

newD ← newNormD ∪ newRareD 

 

return newD  
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Algorithm 4: Weighted relevance combination strategy (WERCS and WERCS-GN) algorithm118 

 Input:  

  D (X, y) – dataset with features, X, and continuous target value, y 

  R – relevance values for corresponding target values 

  over – oversampling percent 

  under – undersampling percent 

  𝛿 – magnitude of Gaussian noise 

 

 Output: newD – resampled dataset 

 

 underSize ← under × |D| 

overSize ← over × |D| 

pOver ← {
𝑟𝑖

∑ 𝑟𝑖
 | 𝑟𝑖 ∈ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒} 

pUnder ← {
1−𝑟𝑖

∑ 1−𝑟𝑖
 | 𝑟𝑖 ∈ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒} 

underD ← sample underSize instances from D with pUnder weights 

newD ←D ∖ underD    //undersample 

overD ← sample overSize instances from D with pOver weights 

 

if method is WERCS-GN do   //add Gaussian noise 

  foreach case in overD do 

   foreach a in X ∪ y do 

    case[a] = case[a] + N(0, δ×std(a)) 

   end 

  end  

 end   

 newD ←newD ∪ overD 

 

return newD  

 

7.5 Conclusions 

In this study, we applied resampling strategies to improve the performance of 

predicting enzyme optimum temperatures with machine learning. The resampling 

strategies were implemented to modify the imbalanced distribution of the training set and 

improve performance on regions with sparse data. Compared with TOME, which at the 

time of this study is the only available machine-learning tool for predicting enzyme 

optimum temperatures, our method (TOMER) yields a significant improvement in 
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predictive accuracy, particularly in the thermophilic regimes. We expect that TOMER will 

find useful application in high-throughput prospecting of enzymes that are both stable and 

active at high temperatures. TOMER requires the user to provide the amino acid sequence 

of the enzyme and the OGT of the source organism. If the OGT is unknown, it may be 

predicted using TOME.426 For future considerations, the incorporation of higher-level 

features or the addition of more experimental data may prove useful strategies for further 

improving the performance of TOMER. Ultimately, this study highlights the critical need 

to consider data imbalance in regression problems, especially when the rare, extreme data 

range is of greater scientific interest than the abundant data region. We anticipate that our 

Python tool for readily implementing resampling strategies in regression problems (resreg) 

will be a valuable resource for other researchers in dealing with the challenges of data 

imbalance. 

 



 

 

 

202 

CHAPTER 8. Conclusions and Future Directions 

8.1 Overview 

This dissertation investigated the application of data mining and statistical sequence 

analysis tools to gain functional insight into family 7 glycoside hydrolases, GcoA, 

MHETase, and to develop predictive models of enzyme thermostability.  

Experimental studies by collaborators were done to test the hypotheses generated 

by the data-driven studies of GcoA and MHETase. In GcoA, conservation analysis 

revealed the notably variable F169 position within 6Å of the bound guaiacol substrate in 

the active site. This highlighted F169 as a viable position for protein engineering to expand 

the substrate specificity of GcoA. Moreover, MD simulations by performed by 

collaborators observed a stearic clash between the F169 residue and the methoxy group of 

the non-native substrate, syringol.  Mutagenesis and biochemical characterization show 

that the F169A, unlike the wild type, is markedly active on syringol. This work (Chapter 

4) demonstrates the value of data-driven insights into amino-acid variation in an enzyme 

family for understanding and manipulating function. 

In Chapter 5, conservation analysis was combined with phylogenetic analysis to 

gain insight to key positions in MHETase active site that are crucial for MHET-hydrolase 

activity. From bioinformatic and phylogenetic analysis, two close homologs were 

identified, which along with MHETase are strikingly dissimilar from other tannase-family 

sequences. The results from this study highlight F415 and S131 as positions that 

specifically evolved in MHETase to accommodate MHET.  Experimental studies from 

collaborators confirm that the F415S and S131G mutants, as well as the two close 
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homologs, which both lack Phe and Ser at positions 415 and 131, respectively, demonstrate 

a substantial reduction in MHET-hydrolase activity, relative to MHETase wild type. 

Machine learning identified four active-site loops (A4, B2, B3, B4) that strongly 

relate to functional subtype across the family 7 glycoside hydrolase family. Although 

previous studies by other researchers have highlighted some of these loops and the striking 

differences in the structural architecture between cellobiohydrolases and endoglucanases 

due to their differing lengths, this work is the first attempt investigate the relationships 

between loop length and functional subtype with a statistical approach and on a large set 

of sequences. Data mining on the sequence dataset also identified positions that generate 

classification rules which discriminate GH7 cellobiohydrolases and endoglucanases with 

high accuracy. Many of these positions have been experimentally studied by other 

researchers in Trichoderma reesei Cel7A and confirmed to play key roles in processive 

action and substrate binding. Similarly, positions in the catalytic domain that correlate with 

the presence of a carbohydrate binding module were identified. Altogether, this study 

provides a practical demonstration of the use of machine learning and data mining 

techniques to map amino-acid sequence to functional variation in an enzyme family, and, 

consequently, identify residues that play crucial roles in function. 

 In addition to enzyme catalytic activity, this work (Chapter 6 and 7) investigated 

the use of machine learning algorithms to predict protein thermostability. It is particularly 

interesting that machine learning algorithms can discriminate thermophilic proteins from 

non-thermophilic proteins with reasonable accuracy by only considering global features 

derived from the amino-acid sequence (Chapter 6). In Chapter 7, a regression model was 

built to predict the optimal catalytic temperature, which is much more definite than 
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classifying enzymes according to their organism growth temperature. By specifically 

considering the non-uniform distribution of the training data, and implementing resampling 

strategies to abate the uneven distribution, a strikingly higher predictive performance was 

achieved, mainly due to improvement at the tail ends of the normally distributed target 

values. This work demonstrates critical need to deal with data imbalance in regression 

problems, the ability of machine learning to predict enzyme biochemical kinetic, or 

thermodynamic properties, and the potential in high-throughput application of machine 

learning for enzyme discover. 

 

8.2 Future directions 

This work focused on mapping protein sequence and structural features to 

functional properties with supervised learning. Labeled biochemical data is expensive and 

difficult to generate. Future work will consider unsupervised learning, where the functional 

labels are scarce or absent. Clustering algorithms will be used to learn the inherent structure 

and deconstruct the hidden patterns in the sequence data. Representative sequences from 

each of clusters will be selected, and homology modeling and molecular dynamics 

simulations will be implemented to gain insight into the structural, dynamic, and possibly, 

functional meanings of each cluster. 

The strategies for dealing with data imbalance in this dissertation were all data-

level methods, which resample the data to change the non-uniform distribution. In future 

studies, algorithm-level methods, which modify the machine learning algorithm to address 

the non-uniformity in the data, will be considered. Monte Carlo simulations on various 
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benchmark datasets will be implemented to examine which of these methods yield superior 

performance and whether a method is more favorable for particular data structures. 

Finally, the use of deep learning algorithms to directly predict protein 

thermostability from the primary structure without feature engineering will be considered. 

Transfer learning will be used to overcome the challenge of a small training dataset. I 

hypothesize that pretraining a deep neural network on organism growth temperature data, 

which is abundantly available, and transferring the trained model to other protein 

thermostability problems with scarce data will yield superior performance compared to the 

traditional machine learning approaches applied in this work. 
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Appendices 

 A1 Supporting Information for Machine Learning Reveals Sequence-Function 

Relationships in Family 7 Glycoside Hydrolases 

 

 

Figure A1.1. Density plots showing the distribution of the lengths of active-site loops in 

1,306 GH7 CBHs and 442 EGs. The A2 and A3 loops show nearly identical distributions 

among CBHs and EGs; the A1 and B1 loops show fairly different distributions; and the 

A4, B2, B3, and B4 show clearly distinct distributions, with CBHs being notably longer in 

these four loops.  
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Figure A1.2. Amino acid distribution at 42 positions from which top-performing position-

specific classification rules were derived. The frequency of amino acids was determined 

from structure-based multiple sequence alignments (MSA) of 1,306 CBHs and 442 EGs. 

Positions in the MSA are referred to using TreCel7A numbering. Gaps are not included in 

the analysis, hence the total frequency may not equal 100%. 
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Figure A1.3. Multiple sequence alignment (MSA) of a typical GH7 CBH (TreCel7A), a 

typical GH7 EG (TreCel7B), and the consensus GH7 CBH and EG sequences. The 

consensus sequences were determined from MSAs of 1,306 GH7 CBHs and 442 GH7 EGs 

described in the Materials and Methods section of the main text. The eight active-site loop 
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regions are shown in black boxes. Positions are labelled with TreCel7A numbering and 

only positions corresponding to TreCel7A residues are shown. The alignment was viewed 

with ESPript (http://espript.ibcp.fr/).  

  

http://espript.ibcp.fr/
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Figure A1.4. Sequence logos of GH7 CBH (left) and EG (right). The logos were derived 

from the structure-based multiple sequence alignments (1,306 and 442 sequences, 

respectively). Only positions corresponding to residues in TreCel7A CD are shown, and 

they are numbered in the sequence logo as such (i.e., residues 1 to 434). 
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Figure A1.5. Dealing with outliers in active-site loop lengths before machine learning. 

Each plot shows, in ascending order, the lengths (number of residues) of the active-site 

loops of 1,748 sequences. Extreme values (points in red) are arbitrarily determined to be 

outliers. All outliers in the dataset (red points) are capped to a maximum limit (i.e. the 

maximum length of blue points) before machine learning is applied to the dataset. 
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Figure A1.6. Pairwise distribution of the residue lengths of GH7 active-site loops. Each 

cell in the matrix indicates the number of sequences in the dataset of 1,748 sequences that 

possess the corresponding number of residues in each loop. For example, there are 490 

sequences with six residues in the A1 loop and 13 residues in the A2 loop. 
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Figure A1.7. Frequency of Cys at positions forming disulfide bonds in GH7 sequences. 

Cys positions (x-axis) are labeled using TreCel7A numbering and the frequencies were 

determined from the structure-based multiple sequence alignment of 1,748 sequences. GH7 

sequences may have up to ten disulfide bonds, nine of which are present in roughly at least 

80% of the sequences. A rare disulfide bond, formed by C4 and C72 in TreCel7A, is present 

in less than 10% of GH7 sequences. 
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Table A1.1. Top-performing position-specific classification rules between amino acid type 

and GH7 subtype (CBH/EG). Amino acids are grouped into the following types: ALI – 

aliphatic (Ala, Gly, Val, Leu, Ile, Met, Cys, and Pro), ARO – aromatic (Phe, Trp, Tyr, His), 

POS – positive (Arg, Lys),  NEG – negative (Asp, Glu), and POL – polar (Asp, Gln, Ser, Thr). 

Positions are represented with TreCel7A numbering. All rules discriminate GH7 CBHs and 

EGs with accuracies of at least 87.0% and MCC scores of at least 0.73. Statistical significance 

was evaluated by a chi-squared test of independence. All rules are significant at p < 0.0001. 

TreCel7A 

position 
Rule 

Closest 

subsite 

Distance 

to 

closest 

subsite 

(Å) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 
MCC 

16 not POL=>CBH, POL=>EG -2 19.0 93.7 84.6 91.4 0.78 

17 not ARO=>CBH, ARO=>EG -1 21.6 97.7 74.4 91.8 0.78 

39 POS=>CBH, not POS=>EG -5 3.6 96.5 75.6 91.2 0.76 

39 POS=>CBH, ARO=>EG -5 3.6 98.2 68.0 90.6 0.74 

51 ARO=>CBH, not ARO=>EG -5 3.6 92.6 98.0 94.0 0.86 

56 ARO=>CBH, not ARO=>EG -5 8.9 95.9 95.7 95.8 0.89 

56 not ALI=>CBH, ALI=>EG -5 8.9 100.0 69.7 92.3 0.79 

56 ARO=>CBH, ALI=>EG -5 8.9 97.9 82.7 94.1 0.84 

105 ALI=>CBH, not ALI=>EG -4 4.8 95.0 84.4 92.3 0.80 

105 not POL=>CBH, POL=>EG -4 4.8 98.4 81.2 94.1 0.84 

105 ALI=>CBH, POL=>EG -4 4.8 96.7 82.8 93.2 0.82 

106 POL=>CBH, not POL=>EG -2 4.8 91.7 88.5 90.9 0.77 

106 not ALI=>CBH, ALI=>EG -2 4.8 94.3 88.0 92.7 0.81 

106 POL=>CBH, ALI=>EG -2 4.8 93.0 88.2 91.8 0.79 

120 ARO=>CBH, not ARO=>EG -1 15.7 95.6 83.0 92.4 0.80 

120 not ALI=>CBH, ALI=>EG -1 15.7 97.2 81.9 93.3 0.82 

120 ARO=>CBH, ALI=>EG -1 15.7 96.4 82.5 92.9 0.81 

146 ARO=>CBH, not ARO=>EG -1 7.9 92.0 93.7 92.4 0.81 

146 not ALI=>CBH, ALI=>EG -1 7.9 93.0 81.0 90.0 0.74 

146 ARO=>CBH, ALI=>EG -1 7.9 92.5 87.3 91.2 0.78 

179 NEG=>CBH, not NEG=>EG -3 2.6 93.0 99.1 94.6 0.87 

180 ALI=>CBH, not ALI=>EG -3 4.1 96.5 82.6 93.0 0.81 

181 POS=>CBH, not POS=>EG -5 2.8 95.9 99.1 96.7 0.92 

181 POS=>CBH, ALI=>EG -5 2.8 97.6 75.1 91.9 0.78 
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Table A1.1 (continued) 

TreCel7A 

position 
Rule 

Closest 

subsite 

Distance 

to 

closest 

subsite 

(Å) 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 
MCC 

192 ARO=>CBH, not ARO=>EG -4 7.0 94.3 100.0 95.7 0.90 

194 ALI=>CBH, not ALI=>EG -4 11.0 85.7 100.0 89.3 0.78 

195 POL=>CBH, not POL=>EG -3 8.1 83.7 100.0 87.8 0.75 

200 POL=>CBH, not POL=>EG -4 3.5 89.7 99.3 92.2 0.82 

202 ALI=>CBH, not ALI=>EG -4 6.5 94.6 100.0 95.9 0.90 

204 ALI=>CBH, not ALI=>EG -4 10.7 95.2 99.5 96.3 0.91 

251 POS=>CBH, not POS=>EG 2 3.4 86.9 99.8 90.2 0.79 

262 NEG=>CBH, not NEG=>EG 2 4.1 95.9 97.3 96.3 0.91 

262 not ALI=>CBH, ALI=>EG 2 4.1 98.2 82.4 94.2 0.84 

262 NEG=>CBH, ALI=>EG 2 4.1 97.1 89.8 95.2 0.87 

337 ALI=>CBH, not ALI=>EG 2 11.6 86.2 99.5 89.6 0.78 

338 ARO=>CBH, not ARO=>EG 2 7.7 92.0 99.8 94.0 0.86 

340 NEG=>CBH, not NEG=>EG 2 9.1 90.6 99.3 92.8 0.84 

370 ARO=>CBH, not ARO=>EG -3 5.3 87.3 98.2 90.0 0.78 

381 ARO=>CBH, not ARO=>EG 2 3.5 92.8 99.8 94.6 0.87 

382 ALI=>CBH, not ALI=>EG 2 5.0 93.5 98.4 94.7 0.87 

390 ALI=>CBH, not ALI=>EG 2 8.8 92.1 91.0 91.8 0.80 

391 ALI=>CBH, not ALI=>EG 2 6.9 94.9 90.7 93.9 0.84 

394 POS=>CBH, not POS=>EG 2 3.1 95.1 95.9 95.3 0.88 

394 POS=>CBH, ALI=>EG 2 3.1 97.3 72.5 91.0 0.75 

401 not NEG=>CBH, NEG=>EG -3 13.5 97.5 74.9 91.8 0.77 
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Table A1.2. Top-performing position-specific classification rules for predicting the presence 

of CBMs in GH7s. The rules were derived from the validation dataset (1,574 sequences). The 

sensitivity and specificity indicate the percent of GH7s with CBMs and the percent of GH7s 

without CBMs correctly classified by each rule, respectively. The top 5 rules (ranked by MCC 

scores) are shown in bold, and are derived from residues at the C-terminus, or residues 

consisting the tenth rare disulfide bond found in TreCel7A. Statistical significance was 

evaluated by a chi-squared test of independence. All rules are significant at p < 0.0001. 

Position Rule Sensitivity (%) Specificity (%) Accuracy (%) MCC 

2 Q2=>CBM 83.3 44.9 55.3 0.17 

4 C4=>CBM 22.5 95.6 75.8 0.47 

22 S22=>CBM 43.4 79.7 69.9 0.23 

37 N37=>CBM 90.8 34.1 49.4 0.15 

40 W40=>CBM 95.8 31.2 48.7 0.17 

42 H42=>CBM 96.9 25.1 44.5 0.14 

44 T44=>CBM 52.3 73.3 67.6 0.22 

48 T48=>CBM 81.2 49.3 57.9 0.19 

66 T66=>CBM 74.6 50.6 57.1 0.16 

72 C72=>CBM 23.0 94.7 75.3 0.43 

76 A76=>CBM 88.0 40.1 53.0 0.17 

87 S87=>CBM 88.3 43.5 55.6 0.19 

94 N94=>CBM 30.8 90.1 74.0 0.34 

103 N103=>CBM 91.5 36.1 51.1 0.17 

123 L123=>CBM 75.8 53.1 59.3 0.18 

135 N135=>CBM 53.8 72.7 67.6 0.22 

135 not K135=>CBM 94.1 28.1 46.0 0.14 

140 not M140=>CBM 98.6 21.3 42.2 0.14 

174 S174=>CBM 57.5 74.3 69.8 0.26 

177 P177=>CBM 92.5 39.9 54.1 0.19 

183 not V183=>CBM 99.8 17.2 39.6 0.13 

221 I221=>CBM 54.2 72.2 67.3 0.22 

226 T226=>CBM 98.8 21.0 42.1 0.14 

229 P229=>CBM 83.8 42.8 53.9 0.16 

258 not K258=>CBM 80.0 43.3 53.2 0.14 

268 Q268=>CBM 32.2 88.9 73.6 0.32 
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Table A1.2 (continued) 

Position Rule Sensitivity (%) Specificity (%) Accuracy (%) MCC 

272 not D272=>CBM 93.4 26.6 44.7 0.13 

296 T296=>CBM 81.2 48.3 57.2 0.18 

296 not G296=>CBM 100.0 10.3 34.6 0.09 

307 N307=>CBM 79.1 60.5 65.5 0.26 

336 T336=>CBM 45.8 80.6 71.2 0.27 

341 T341=>CBM 44.4 78.8 69.5 0.23 

364 L364=>CBM 38.7 80.8 69.4 0.21 

371 A371=>CBM 49.3 79.3 71.2 0.27 

375 L375=>CBM 81.5 47.3 56.5 0.17 

379 S379=>CBM 95.8 33.3 50.2 0.18 

396 not P396=>CBM 83.1 41.9 53.0 0.15 

398 S398=>CBM 38.0 85.3 72.5 0.29 

409 A409=>CBM 53.8 73.1 67.9 0.22 

410 N410=>CBM 41.1 87.6 75.0 0.37 

413 not D413=>CBM 88.0 36.0 50.1 0.14 

413 N413=>CBM 61.5 69.9 67.7 0.24 

414 S414=>CBM 36.9 87.2 73.6 0.32 

421 I421=>CBM 98.4 20.2 41.4 0.13 

431 S431=>CBM 39.2 84.3 72.1 0.28 

432 G432=>CBM 35.0 93.2 77.4 0.49 

433 S433=>CBM 24.4 91.5 73.3 0.31 

433 G433=>CBM 32.6 95.4 78.4 0.57 

433 T433=>CBM 17.8 96.8 75.4 0.49 

434 L434=>CBM 28.4 96.6 78.1 0.60 
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A2 Supporting Information for Enabling Microbial Syringol Conversion Through 

Structure-Guided Protein Engineering 

Appendix section A2 has been adapted with permission from Machovina et al.,55 Copyright 

© 2019, Proceedings of the National Academy of Sciences of the United States of America. 

 

A2.1 Supplementary Materials and Methods 

A2.1.1 Protein expression and purification 

Expression constructs were expressed in E. coli Rosetta™ 2 (DE3) cells (Novagen). 

Cells were transformed with plasmids for expression of the GcoA mutants (pGcoA-F196A, 

pGcoA-F196H, pGcoA-F196I, pGcoA-F196L, pGcoA-F196S, or pGcoA-F196V) and 

plated out lysogeny broth (LB) agar containing chloramphenicol (34 mg/L) and 

carbenicillin (50 mg/L). A single colony was selected and used to inoculate a 20 mL starter 

culture of LB. After overnight growth at 37 ºC, 250 rpm, the starter culture was inoculated 

into 2.5 L flasks containing 1 L of terrific broth (TB) with antibiotics. At an OD600 of 1.0, 

0.2 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to induce protein 

expression. 100 mg/L 5-aminolevulinic acid (GcoA) was added to support productive 

cofactor incorporation. Induction of protein expression was performed for 16-18 hr at 20 

ºC with shaking at 250 rpm. Affinity purification was carried out using glutathione-

sepharose 4B media (GE Lifesciences) followed by GST-tag cleavage with PreScission 

protease (GE Lifesciences). Anion exchange chromatography was performed with Source 

30Q media (GE Lifesciences) packed into a (GE HR 16/100 Column) with a 10-40% 

gradient of buffers A (50 mM HEPES pH 7.5, 100 mM NaCl, 1 mM DTT) and B (50 mM 

HEPES pH 7.5, 1 M NaCl, 1 mM DTT) respectively. For each protein, a final gel filtration 
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step was performed using a HiLoad S200 16/60 pg column (GE Lifesciences) in a buffer 

containing 25 mM HEPES pH 7.5 and 50 mM NaCl. 

 

A2.1.2 Cofactor Analyses.  

Heme Quantification. To determine the amount of catalytically active heme, CO 

gas was bubbled into a cuvette containing 1.0-2.5 μM (Pierce BCA assay) F169 GcoA 

mutants (A,H,S,V,I,L), made up in buffer (25 mM HEPES, 50 mM NaCl, pH 7.5) 

containing 1.0 mM EDTA, 20% glycerol, 0.5% sodium cholate, and 0.4% non-ionic 

detergent. Excess sodium dithionite (~1 mg) was added to reduce the heme iron and the 

peak attributed to the catalytically competent, ferrous CO-bound heme (~450 nm) 

gradually appeared. Several scans were taken to ensure complete binding of CO to heme. 

A spectrum for a control containing only dithionite-reduced GcoA was measured, and a 

difference spectrum computed. Absorbances at 420, 450, and 490 nm were recorded to 

calculate the amount of active GcoA (P450) or inactive GcoA (P420 nm) (see Equations 

A2.1 to A2.3). Reported values are the average of three or more measurements. 

 

(ΔA450 - ΔA490)/0.091 = nmol of P450 per mL (A2.1) 

[(ΔA420 - A490)observed - (A450 - A490)theoretical]/0.110 = nmol of 

cytochrome P420 per mL 

(A2.2) 

nmol of P450 per mL x (-0.041) = (ΔA420 - A490)theoretical (A2.3) 

 

Here ΔA450 and ΔA420 are the differences between the reference and sample spectra at 

absorbances 450 and 420 nm, respectively. 
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Determination of [FAD] and non-heme [Fe] in GcoB. FAD was released from 

GcoB by denaturing 200 μL of a protein (0.024 µM) solution with 5 μL saturated 

ammonium sulfate, pH 1.4 (7% v/v H2SO4). Precipitated protein was pelleted by 

centrifugation and the UV/vis spectrum of the FAD-containing supernatant was measured. 

The absorbance at 454 nm, εFAD = 11.3 mM-1 cm-1, and total protein concentration 

determined by the BCA assay (Pierce) were used to determine [FAD] bound to GcoB. An 

extinction coefficient for GcoB-bound FAD was estimated via the slope of a line relating 

absorbance at 454 nm to [GcoB-FAD].  

To determine the Fe-S content of GcoB, the protein was first denatured as described 

above. 50 μL of supernatant was added to 25 μL of 5% w/v sodium ascorbate to reduce the 

iron. 100 μL of bathophenanthroline disulfonate (0.1% w/v in ddH2O) was added and the 

sample was incubated for 1h. The resulting Fe(II) complex was quantified via its 

absorbance at 535 nm (ε535 = 22.14 mM-1 cm-1, determined using FeSO4 standards). An 

extinction coefficient for GcoB-bound 2Fe-2S cluster was estimated via the slope of a line 

relating absorbance at 423 nm to [GcoB-2Fe-2S]. 

 

A2.1.3 Steady state kinetics and substrate dissociation constants. 

Steady state kinetics of F169A. 0.2 µM each of F169A GcoA and GcoB were 

dissolved in air-saturated buffer (25 mM HEPES, 50 mM NaCl) in a cuvette at pH 7.5, 25 

°C. 100 µg/mL catalase was added to each reaction to capture any H2O2 formed during the 

uncoupled reaction. A saturating amount of NADH (≥ 5KM, 300 µM) was added and a 

background rate of NADH oxidation in air (~210 µM O2) recorded via continuous scanning 
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of the UV/vis spectrum (Varian Cary 50). 20-300 µM guaiacol or syringol 2-20 mM stock 

dissolved in DMSO was added and the reaction was monitored via measurement of UV/vis 

spectra for several minutes. The initial velocity was determined by disappearance of the 

characteristic NADH absorbance at 340 nm (ε344 = 6.22 mM-1 cm-1). A plot of vi versus 

[guaiacol] was fit to Equation A2.4 to obtain kcat, KM, and kcat/KM.  For specific activity 

determination, the above method was used but with saturating (300 µM) guaiacol, syringol, 

or 3-methoxycatechol (3MC), and in the presence of all F169 GcoA mutants (A,H,S,V,I,L). 

The linear portion of [NADH] vs time was fit and referenced to the amount of GcoA used 

(0.2 µM). Reported values are the average of ≥3 measurements and reported errors are 

standard deviations. 

vi = Vmax[S]/(KM + [S]) (A2.4) 

 

Determination of substrate dissociation constants (KD) with F169A. 0-60 µM of 

guaiacol, syringol, or 3MC in 0.5 or 1 µM aliquots, were titrated into a cuvette containing 

3 µM F169A GcoA in 25 mM HEPES, 50 mM NaCl, pH 7.5. The spectrum after each 

substrate addition was recorded, beginning with no substrate bound. The solution reached 

equilibrium before the next addition. A difference spectrum was made to illustrate the shift 

from a low-spin aquo-heme complex to the high-spin substrate-bound complex (spectral 

shift from 417 nm to 388 nm). The resulting difference spectra showed a peak at 388 nm, 

and a trough at 417 nm. The absorbance at 388 nm (Abs388-417 nm) was plotted as a function 

of [substrate], yielding a quadratic curve that was fit to Equation A2.5 to determine the KD. 
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Δ 𝐴𝑏𝑠𝑜𝑏𝑠 =
Δ 𝐴𝑏𝑠𝑚𝑎𝑥

2𝐸𝑡
(𝐿0  +  𝐸𝑡  +  𝐾𝐷

− √(𝐿0  + 𝐸𝑡  +  𝐾𝑑)2 − 4𝐸𝑡 ∗ 𝐿0) 

(A2.5) 

Where L0, Et, KD, and ΔAbsmax are the ligand concentrations, total protein (subunit) 

concentration, the equilibrium dissociation constant, and the maximum Abs388-417 nm, 

respectively. Reported values are the average of 2 or more measurements. 

 

A2.1.4 Product analysis. 

Formaldehyde determination. A colorimetric assay using tryptophan can be used 

to quantify the amount of formaldehyde produced in F169 GcoA/B reactions with guaiacol, 

syringol, or 3MC. 0.2 µM each of F169 GcoA mutants and GcoB were dissolved in air-

saturated buffer (25 mM HEPES, 50 mM NaCl) in a cuvette at pH 7.5, 25 °C. 100 µg/mL 

catalase was added to each reaction to capture any H2O2 formed during the uncoupled 

reaction. 200 μM NADH was added and the background rate recorded. 100 (guaiacol, 

syringol, or 3MC) or 200 (syringol) μM of substrate was then added and the reaction 

monitored until there was no more change, due to either substrate, NADH or O2 depletion, 

whichever occurred first. 200 µL of the reaction was then quenched by adding 200 µL of 

a 0.1% tryptophan solution in 50% ethanol and 200 µL of 90% sulfuric acid. Upon 

thorough mixing, 40 µL of 1% FeCl3 was added. The solution was then incubated in a 

heating block for 90 min at 70 °C. After cooling, the absorbance was read at 575 nm and 

the [formaldehyde] calculated by using ε575 nm = 4.2 mM-1 cm-1, obtained with 

formaldehyde as a standard.70 A negative control included everything but the substrate and 

was used as a baseline.  
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HPLC for product identification and specific activity measurement. Analyte 

analysis of the above end-point reactions (100 μM guaiacol, syringol, or 3MC, or 200 μM 

syringol) was performed on an Agilent 1100 LC system (Agilent Technologies) equipped 

with a G1315B diode array detector (DAD). Each sample and standard was injected at a 

volume of 10 μL onto a Symmetry C18 column 5 μm, 4.6 x 150 mm column (Waters). The 

column temperature was maintained at 30 °C and the buffers used to separate the analytes 

of interest was 0.01% TFA in water (A)/ acetonitrile (B). The separation was carried out 

using a gradient program of: (A) = 99% and (B) = 1% at time t = 0 min; (A) = 99% and 

(B) = 1% at time t = 2 min, (A) = 50% and (B) = 50% at t = 8 min; (A) = 1% and (B) = 

99% at t = 8.01 min; (A) = 99% and (B) = 1% at t = 10.01 min; (A) = 99% and (B) = 1% 

at t = 11 min. The flow rate was held constant at 1.5 mL min-1, resulting in a run time of 

11 minutes. DAD wavelengths of 210 and 325 nm were used for analysis of the analytes 

of interest. Standard curves were generated using 0-500 μM of guaiacol, syringol, 3MC, 

catechol, and pyrogallol. Integrated intensities vs [standards] were plotted and the resulting 

standard curves used to quantify the reactants and products. 

For specific activity determination, 300 μM guaiacol, syringol, or 3MC were added 

from 0.1 M DMSO stocks to air saturated buffer (25 mM HEPES, 50 mM NaCl, pH 7.5), 

with a final volume of 1 mL. The [analyte] was measured via the above HPLC method. 

Then, 0.2 μM F169A/ GcoB and 100 μg/mL catalase were added. Upon addition of 300 

μM NADH, the timer was started and 50 μL removed every 10 (guaiacol and syringol) or 

30 (3MC) seconds. The reaction of each aliquot was immediately quenched with 12.5 μL 

saturated ammonium sulfate, 7% v/v H2SO4 (pH 2.0) prior to loading onto the HPLC 
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column. [Substrate] disappearance was referenced to GcoA (0.2 µM) and fit to a linear line 

to determine specific activity.  

Data analysis. The consumption of NADH and subsequent production of 

formaldehyde and aromatic product were measured in triplicate and the error reported as 

±1 standard deviation. To determine the statistical significance between NADH 

consumption and the products produced, the p-value was determined for all runs containing 

guaiacol, syringol, and 3MC. These values were calculated using two degrees of freedom, 

a tail value of two, and assuming a t-statistical value for unequal variances.  

 

A2.1.5 Uncoupling reactions. 

Detection of H2O2 via horseradish peroxidase (HRP) and Amplex Red assay. The 

reaction between 100 μM guaiacol or 3MC with 0.2 μM F169A/GcoB and 100 μM NADH 

in air-saturated buffer (25 mM HEPES, 50 mM NaCl, pH 7.5) was monitored continuously 

in a quartz cuvette, using the NADH consumption assay described above. The same thing 

was done for syringol, but with either 100 or 200 μM NADH. When there was no longer 

any change in the spectra, e.g., the reaction was completed, 100 μL was removed from the 

cuvette and pipetted into a 96-well microplate. A 5 mL solution containing 50 μL of 10 

mM Amplex Red (prepared in DMSO and stored at -20 °C) and 100 μL of 10 U/mL HRP 

was made up in the above buffer. 100 μL of this was added to each of the wells with each 

reaction sample. The plate was incubated in the dark at room temperature for 30 min, at 

which point the absorbance at 572 nm was recorded by a Varioskan Lux microplate reader 

(Thermo Scientific). The absorbance was compared to a standard curve with 0-100 μM 

H2O2 to quantify the amount of peroxide produced in the reactions.  
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A2.1.6 Crystallography 

Purified protein was buffer exchanged into 10 mM HEPES pH 7.5 and concentrated 

to an A280 value of 12, as measured on a NanoDrop 2000 spectrophotometer (Thermo 

Fisher). Crystals of GcoA were grown with 2.4 M sodium malonate and 200 mM substrate, 

dissolved in 40% DMSO where necessary. Crystals were cryocooled directly in liquid N2 

without further addition of cryoprotectants. All data were collected at Diamond Light 

Source (Harwell, UK). For each crystal, 1800 images were taken at 0.1o increments using 

the default wavelength of 0.9795Å on beamline i04. Data was captured on a Pilatus 6M-F 

detector. All phases were solved by molecular replacement from the original WT GcoA 

structure in complex with guaiacol with all non-polypeptide components removed. Data 

were processed, phased, and models were built and refined using Xia2455-459 and the Phenix 

suite.460-463 

 

A2.1.7 Strain construction  

For genomic manipulations in P. putida KT2440, an antibiotic-sacB counter and 

counterselection method was utilized as described in Blomfield at al.,464 and modified for 

P. putida KT2440.465 Diagnostic PCR was utilized to confirm correct integrations or 

deletions using the 2X myTaqTM system (Bioline). Specific strain construction details are 

included in Table A2.8, plasmid construction details are included in Table A2.9, and oligo 

sequences are included in Table A2.10. 

To transform cells for episomal expression in P. putida, cells were initially grown 

shaking at 225 rpm, 30 °C, overnight in Luria-Bertani (LB) medium containing 10 g/L 
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tryptone, 5 g/L yeast extract, and 5 g/L NaCl, and used to inoculate LB the following day 

to an OD600 of ~0.1 and grown until they reached an OD600 of 0.6. Cells were then washed 

three times using 300 mM sucrose and resuspended in a volume 1/50 of the original 

culture.466 Plasmid DNA was added, and this mixture was then transferred to 1 mm 

electroporation cuvettes and electroporated at 1.6 kV, 25 F, 200 Ω. Following the addition 

of 950 uL of SOC media (NEB), cells were shaken for an additional 45 minutes at 30°C, 

220 rpm, and plated on solid media containing appropriate antibiotics.  

 

A2.1.8 Shake flask experiments and in vivo product analyses 

Strains evaluated in shake flask experiments were initially grown overnight in LB 

media with appropriate antibiotics from glycerol stocks and resuspended the following day 

in M9 minimal media (6.78 g/L Na2HPO4, 3 g/L KH2PO4, 0.5 g/L NaCl, 1 g/L NH4Cl, 2 

mM MgSO4, 100 µM CaCl2, and 40 µM FeSO4 . 7H2O) supplemented with 20 mM glucose 

(Sigma-Aldrich) and 50 mg/mL kanamycin. Cells were grown until they reached an OD600 

of 1, at which point syringol (Sigma-Aldrich) was added to a final concentration of 1 mM. 

Syringol concentrations were quantified using any 1H NMR, and spectra were collected 

using a Bruker Avance III HD 400 MHz Spectrometer and analyzed using Bruker 

TopSpin3.7 software. For identification of unknown compounds, samples were analyzed 

via LC-MS-MS using the Acquity UPLC system (Waters Inc.). Compounds were separated 

using a C18 (evo) column (Kinetex) with the mobile phase comprised of a water, 

acetonitrile, and .1% formate. Flow was directly analyzed by SYNAPT HD-MS using 

electron spray ionization (ESI) in negative ion mode.  
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A2.1.9 Bioinformatics Analysis 

CYP255A sequences were retrieved by a blastp search against the non-redundant 

protein sequence database,467 using GcoA as the query sequence. From the blast results, 

only sequences with a query cover of at least 66% and sharing a sequence identity of greater 

than 28% but less than 97% with the query sequence were retained. In total, 482 homologs 

of GcoA were retrieved. A multiple sequence alignment (MSA) was carried out using 

MAFFT144 with Biopython.468 Conservation analysis was implemented by computing the 

relative entropy for each site in the MSA.145 The relative entropy is given by Equation 

A2.6: 

R. E =  ∑(pi log
pi

 pi
MSA

)

20

𝑖=1

 (A2.6) 

where pi is the frequency of amino acid i in the given site and pi
MSA is the frequency of 

amino acid i in the MSA.  

 

A2.1.10 Molecular dynamics (MD) simulations 

Unrestrained MD simulations. Unrestrained MD simulations were performed on 

both WT GcoA and F169A mutant with either guaiacol or syringol bound at the active site.  

The previous constructed model of WT GcoA with guaiacol bound at the active site was 

used as the initial conformation to generate these structures.70 The heme group was kept in 

a hexacoordinate state (Compound I). Similar to previous work, five histidine residues, 

including His131, His221, His224, His255, and His343 were doubly protonated (+1 

charge), while the remaining histidine residues were kept neutral (singly protonated). Na+ 

cations were added to each system to achieve charge neutrality, resulting in ~74,000 atoms 

for each system. 
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The ff14SB Amber force field469 parameters were used for the enzyme and 

Generalized Amber Force Field (GAFF) parameters470, 471 were used for the various 

substrates, as reported previously.70 Force field parameters for the heme group were taken 

from ref 472. Particle mesh Ewald (PME)473 was used for long-range interactions and the 

cutoff distance for nonbonded interactions was 9 Å. All the simulations were conducted 

using NAMD program474 with a time-step of 2.0 fs. SHAKE algorithm475 was used to keep 

bonds to hydrogen atoms fixed. Langevin thermostat with a collision frequency of 1.0 ps-1 

was used to keep the temperature at 300 K. Each system was relaxed in NPT ensemble for 

500 ps first, followed by 80 ns of production was performed in the NVT ensemble. For the 

initial NPT dynamics, the pressure was held at 1 atm using a Nosé− Hoover barostat 

coupled to a Langevin piston, 476, 477 with a damping time of 100 fs and a period of 200 fs. 

As in our previous work,70 we employed the following reaction coordinate to 

describe the opening/closing motion of GcoA: ξ = RMSDopen - RMSDclosed, where 

RMSDopen is the RMSD relative to the most open structure of WT GcoA/apo obtained via 

microsecond MD trajectory, and RMSDclosed is relative to the closed crystal structure. The 

Cα atoms of residues 5:35 and 154:210 were chosen to calculate the RMSD.  

Replica exchange thermodynamic integration (RETI) simulations. In order to assess 

relative free energies of binding in the active site of GcoA, RETI simulations were 

performed,478, 479 using NAMD 2.12.480 Simulations were performed in the NPT ensemble 

with simulation parameters identical to those of the MD simulations described above, 

unless noted otherwise. Initial configurations for RETI were produced from the crystal 

structure appropriate for each system along with modified AMBER prmtop files to 

accommodate the dual-topology paradigm employed by NAMD for alchemical 
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simulations. Each TI replica was simulated for between 150 -250 ns until convergence was 

achieved. The temperature was maintained at 308 K through Langevin dynamics using a 

collision frequency of 1.0 ps−1. The cutoff distance for nonbonded interactions was 12.0 Å.  

Two separate types of alchemical transitions were performed, with transformations 

targeting either the substrate or the enzyme. In each case, the transition parameter  

describes the progress of alchemical transformation. In the first kind, a syringol molecule 

at  = 0 undergoes an alchemical transition to a guaiacol molecule at  = 1. This simulation 

was performed with the substrate molecule in three different contexts: in a periodic water 

box, in the active site of solvated WT GcoA, and in the active site of solvated GcoA F169A 

mutant. In the second group of transformations, residue 169 of the GcoA is transformed 

from Phe at  = 0 to Ala at  = 1. This transformation was also performed in three separate 

contexts: with guaiacol at the active site, with syringol at the active site, and with empty 

active site (apo). Although these alchemical transitions were made between the entire 

substrate molecule (in the first set) or protein residue (in the second set), in both cases many 

atoms are shared in common, so zero-length 10 kcal/mol/Å2 “bonds” were applied between 

equivalent heavy atoms, “pinning” them together. These additional restraints eliminate 

sampling of unphysical conformations that can slow the convergence of the 

calculations.481-483  

The RETI simulations were performed with 20 windows at  ∈ [0.00, 0.03, 0.06, 

0.10, 0.15, 0.22, 0.29, 0.36, 0.43, 0.5, 0.56, 0.62, 0.68, 0.74, 0.80, 0.86, 0.90, 0.94, 0.97, 

1.00}. Smaller increments in  were used near the end points to avoid “end-point 

catastrophes”.484 The van der Waals contributions of both disappearing and appearing 

residues were simultaneously varied with the reaction coordinate . Electrostatic 
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contributions of disappearing residues were turned off over the first half of the reaction 

coordinate, while those of the appearing residues were turned on over the second half of 

the reaction coordinate, such that both appearing and disappearing atoms were uncharged 

at  = 0.5. Exchanges between adjacent replicas were attempted every 2 ps between 

alternating replica pairs, yielding an overall exchange attempt rate of once per 4 ps, 

consistent with literature guidelines.485 The combination of these parameters yielded an 

acceptance ratio for exchanges of approximately 50%. In each case, the final 100 ns were 

used to compute each ΔG reported in Figure A2.11. Third order spline interpolation was 

used to integrate the average dU /dλ obtained from simulations at each window over the 

final 100 ns. Error estimates were obtained using the methodology detailed in Steinbrecher 

et al.486 To avoid underestimating noise error due to autocorrelations of the dU /dλ 

timeseries, means and standard errors were computed by sampling all of the dU /dλ data at 

a rate higher than the output rate. For each simulation, this rate was set by finding the 

longest triple e-folding time of the dU /dλ autocorrelation, as determined by an exponential 

fit. Typical values of this time were 3-4 ps. 

 

A2.1.11 DFT calculations 

Density Functional Theory (DFT) calculations were performed using Gaussian 

09.487 A truncated model containing the porphyrin pyrrole core, Fe center and a 

methanethiol to mimic cysteine as Fe-axial ligand was used. Geometry optimizations and 

frequency calculations were performed using unrestricted B3LYP (UB3LYP)488-490 with 

the LANL2DZ basis set for iron and 6-31G(d) on all other atoms. Transition states had one 

negative force constant corresponding to the desired transformation. Enthalpies and 
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entropies were calculated for 1 atm and 298.15 K. A correction to the harmonic oscillator 

approximation, as discussed by Truhlar and co-workers, was also applied to the entropy 

calculations by raising all frequencies below 100 cm–1 to 100 cm–1.491, 492 Single point 

energy calculations were performed using the dispersion-corrected functional (U)B3LYP-

D3(BJ),493, 494 with the LANL2DZ basis set on iron and 6-311+G(d,p) on all other atoms, 

within the CPCM polarizable conductor model (diethyl ether, ε = 4) to have an estimation 

of the dielectric permittivity in the enzyme active site.495, 496 The use of a dielectric constant 

ε=4 has been proved to be a good and general model to account for electronic polarization 

and small backbone fluctuations in enzyme active sites.497, 498 All stationary points were 

verified as minima or first-order saddle points by a vibrational frequency analysis. 

Computed structures are illustrated with CYLView.499 DFT optimized geometries and DFT 

Cartesian coordinates of optimized structures are present at the end of this document. 
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A2.2 Supplementary Figures 

 

Figure A2.1. Binding of both guaiacol and syringol shows a spin state change in GcoA-

F169A and comparable KDs. Guaiacol (A), syringol (B), and 3MC (C) caused the Soret 

peak (λ = 417 nm) of GcoA-F169A to shift to 387 nm, indicating the conversion of a low-

spin (red trace) to a high-spin (black trace) species. 0-60 μM substrate was titrated into a 

solution containing 3 μM GcoA-F169A and air-saturated buffer (25 mM HEPES, 50 mM 

NaCl, pH 7.5, 25 °C) and the spectra monitored until there was no more change, indicating 

saturation. The solution reached equilibrium prior to each substrate addition. Abs388-417 nm 

was plotted against [substrate] and fit to the quadratic equation for weakly binding ligands 

(see SI Appendix, Methods) to obtain values for KD: guaiacol = 7.1 ± 0.1 µM, syringol = 

1.7 ± 0.07 µM, and 3MC = 9.5 ± 0.02 µM. Error bars represent ±1 standard deviation of 

three or more runs.  



 

 

 

240 

 

 

Figure A2.2. GcoA-F169A demethylation of both guaiacol and syringol occurs as or more 

efficiently than with WT GcoA. Initial rate of NADH consumption is plotted with either 

GcoA-F169A or WT GcoA as catalyst (0.2 μM) and either guaiacol or syringol as the 

substrate (300 μM NADH, 100 μg catalase, 210 μM O2, 25 mM HEPES, 50 mM NaCl, pH 

7.5, 25 °C). The data were fit to the Michaelis Menton equation. Error bars represent ±1 

standard deviation of three or more runs. WT GcoA is unable to demethylate syringol; 

hence, only guaiacol data are shown. 
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Figure A2.3. Crystallographic analysis for optimal orientation of syringol and guaiacol in 

multiple complex structures. Superposition of ten ligand-bound mutant structures with the 

previously characterized WT provided a basis for the determination of the minimum amino 

acid change required at position 169 for the optimum orientation of syringol, while 

maintaining a stable environment for guaiacol. The WT position of residue GcoA-F169 is 

shown in gray in both figures for reference. (A) The syringol molecules in each of the five 

structures shown are colored on a scale from the unproductive position of the WT in red, 

improved (orange and yellow), through to the optimum orientation (green) as judged by 

specific activity (Table A2.4). (B) A superimposition of a total of six alternative mutant 

structures (GcoA-F169H, A, S, V, L, or I) with the WT indicated that there is no significant 

change from optimum guaiacol orientation induced by modification at this position.  
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Figure A2.4. Electron density of the active site of GcoA-F169 mutants bound to syringol. 

Panels (A) – (D) show the structures of syringol bound to GcoA-F169A, H, S and V, 

respectively. 
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Figure A2.5. Electron density of the active site of GcoA-F169 mutants bound to guaiacol. 

Panels (A) – (F) show the structures of guaiacol bound to GcoA-F169A, H, I, L, S and V, 

respectively.  
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Figure A2.6. Positioning of waters in the active sites of GcoA mutants with syringol. The 

active sites of three of the syringol bound mutants (GcoA-F169A, S, and V – panels a, c, 

and d respectively) contain an extra ordered water molecule in the active site. GcoA-F169H 

does not (panel b). GcoA-F169A bound to syringol additionally contains another water 

molecule, but it has weak electron density, indicating low occupancy and/or a degree of 

disorder (not shown). We hypothesize that these ordered water molecules occupy space in 

the active site that helps to maintain the substrate in a productive binding pose. 
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GcoA variant guaiacol syringol 

WT 2.44 ± 0.003 Å 2.50 ± 0.003 Å 

F169A 2.46 ± 0.003 Å 2.45 ± 0.003 Å 

 

Figure A2.7. MD simulations indicate that WT GcoA bound with syringol lengthens the 

key distance for the rate-limiting step for demethylation, namely the distance between the 

methyl hydrogen and the oxygen atom bound by Compound I heme. The GcoA-F169A 

mutation brings this distance back to that seen with guaiacol, promoting demethylation. It 

should be noted that this shift as displayed in MD simulations is significantly subtler than 

the substrate shift seen in crystal structures (Figure 5.1). Error bars quoted in the table 

represent the standard error of the mean.  
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Figure A2.8. MD simulations indicate that introducing syringol into the active site of WT 

GcoA (rather than guaiacol) results in the displacement of GcoA-F169. Shown is the 

RMSD of the six ring carbons of GcoA-F169 from their crystal structure positions over the 

course of 80 ns MD simulation.  
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 WT/guaiacol F169A/guaiacol WT/syringol F169A/syringol 

F169 / A169 (Cα) 0.33 0.37 0.67 0.36 

F169 (sidechain) 0.41 n/a 0.98 n/a 

F75, F169 / A169, F395 

(Cα) 

0.39 0.37 0.53 0.37 

Ligand 0.44 0.43 0.57 0.47 

Heme 0.39 0.43 0.45 0.41 

Loop/helix F/G 

(154:210) (Cα) 

0.62 0.66 0.89 0.62 

 

Figure A2.9. MD simulations indicate that the substrate access loop is displaced and more 

flexible when syringol is bound in the WT enzyme. A) WT GcoA with guaiacol bound, B) 

GcoA-F169A GcoA with guaiacol bound, C) WT GcoA with syringol, and D) GcoA-

F169A GcoA with syringol bound. Shown in “sticks” are the substrate and heme; heme Fe 

and Fe-bound oxygen are shown as spheres. The substrate access loop (residues 154:210) 

is shown in “cartoon” representation every 2 ns over the course of the 80 ns MD simulation. 

E) RMSD of all heavy atoms of the substrate access loop, as compared to the crystal 

structure position and F) probability distribution of the same. G) Time trace of the reaction 
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coordinate for opening and closing of the substrate access loop (negative values indicate a 

more open architecture) and H) probability distribution of the same. I) RMSF (root mean 

square fluctuation) of GcoA (alpha carbons only) over the course of each 80 ns MS 

simulation. The greatest area of difference is seen in the substrate access loop region, with 

the fluctuations in WT GcoA with syringol bound are seen to be the greatest. The table 

highlights the RMSF (Å) of selected residues and regions of GcoA, as well as ligands. In 

this table, the RMSF calculation for “Ligand” and “Heme” is performed on all heavy atoms 

of those molecules (i.e. no hydrogen atoms). For the entries related to the GcoA enzyme, 

the RMSF calculation is performed on the alpha carbons only, with one exception: the line 

for “F169 (sidechain)”, the RMSF calculation is for all heavy sidechain atoms.  
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 WT/guaiacol WT/syringol 

 MD1 MD2 MD3 MD1 MD2 MD3 

F169 (sidechain) 0.84 0.54 1.18 0.91 1.83 0.78 

F75, F169, F395 (Cα) 0.54 0.44 0.71 0.62 1.12 0.58 

Ligand 0.56 0.53 1.60 0.64 1.79 0.58 

Heme 0.53 0.50 0.56 0.58 0.69 0.53 

Loop/helix F/G (154:210) (Cα) 0.99 0.77 1.21 1.37 1.66 1.05 

 

Figure A2.10. Microsecond MD simulations indicate the increased flexibility and 

displacement of F169 in WT GcoA when syringol is bound rather than guaiacol. These 

analyses are performed on three simulations (each) of WT GcoA with guaiacol and with 

syringol. These simulations were performed in our original study of GcoA;70 however our 

previous publication focused on the utilization of guaiacol and presented the results with 

syringol only very briefly (the fifth entry of Figure A2.21). Time traces of the reaction 



 

 

 

250 

coordinate (RC) for opening and closing as well as the RMSD of the three active site Phe 

residues were presented in the supplementary section of the prior publication. A) Time 

traces of the RMSD of residue F169 and B) probability distributions of the same indicate 

that F169 deviates substantially from its crystal structure position when syringol is bound. 

The movement of F169 is somewhat correlated with the motion of the substrate access 

loop. The probability distribution shows that each guaiacol simulation spends significant 

time with F169 very near the crystal structure position (first peak) whereas none of the 

syringol simulations display this peak. C) RMSF averaged over three simulations each for 

WT GcoA with either guaiacol or syringol. The significant area of deviation is in the 

substrate access loop (which includes F169), indicating greater dynamic flexibility when 

syringol is bound. Table presents RMSF (Å) of selected residues and regions of GcoA, as 

well as ligands. In this table, the RMSF calculation for “Ligand” and “Heme” is performed 

on all heavy atoms of those molecules (i.e. no hydrogen atoms). For the entries related to 

the GcoA enzyme, the RMSF calculation is performed on the alpha carbons only, with one 

exception: the line for “F169 (sidechain)”, the RMSF calculation is for all heavy sidechain 

atoms. 

P450cam has been captured in both open (e.g. PDB codes 3L61, 3L62) and closed 

(e.g. 3L63) states.288 Lee et al. note that the RMSD between the closed and open 

conformation is approximately 4-5 Å for the F helix and G helix and peaked around 8.5 Å 

at the F/G loop (Figure 2 in that publication). In our 80 ns MD simulations, the RMSD of 

the combined F and G helices, as well as the adjoining loop fluctuate around an RMSD 

value of 3 Å, whereas the adjoining loop alone fluctuates around 5 Å, as shown in the 
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graphs here. Thus, the degree of opening by this metric is on the same order, but lower by 

about 50% from that observed in P450cam crystal structures. 

 

In addition to P450cam, we also note P450 BM3, which also displays 

crystallographic evidence of open (e.g. PDB codes 1BVY289) and closed (e.g. 1JPZ290 and 

1FAG500) structures. Dubey et al. presented MD simulations of BM3 in which the 

opening/closing of access loops was shown to be regulated by substrate binding.501 Below, 

we show an aligned structural comparison of GcoA, P450cam, and BM3 in their closed 

states.  
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Dubey et al. utilize a single distance from alpha carbons to describe the opening motion of BM3 in 

their simulations (this distance involves a loop that is opposite of the F/G loop). Follmer et al. also present 

residue-residue distance as a metric for channel opening in P450cam.502 In order to compare our degree of 

openness for GcoA with those seen in the crystal structures of open/closed forms of P450cam and BM3, we 

have chosen a metric for each case that stretches from the F/G loop to a loop that is across the substrate access 

channel. For BM3, this metric is the distance from the alpha carbon of Pro45 to that of Pro196, which ranges 

from 19.5 Å in the closed (1JPZ) to 26.9 Å in the open state (1BVY), giving a difference of 7.4 Å. For 

P450cam, an analogous distance is from the alpha carbon of Asn59 to that of Ser190, which ranges from 17.3 

Å in the closed structure (3L63) to 25.5 Å in the open structure (3L61), giving a difference of 8.2 Å. For 

GcoA, a similar metric is the distance between alpha carbons of Gly44 and Gly178, which is 6.35 Å in the 

closed state (5NCB). In our simulations of WT GcoA, the difference between the simulation with syringol 

bound and that with guaiacol bound is slightly more than 3 Å. As shown in the graph below, the average 

distance over the final 40 ns of the simulation is 8.0 Å (guaiacol) and 11.1 Å (syringol).  

 

We note that, to date, efforts to crystallize GcoA in the apo state have proven unsuccessful. As a 

result, all existing crystal structures demonstrate GcoA in the closed state. Thus, the range of motion of the 
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substrate access lid for GcoA is currently unverified experimentally. The range of motion that we observe in 

our 80 ns simulations is not necessarily the full range of motion in the catalytic cycle of GcoA (and very 

likely is not). Additionally, it is possible that the primary effect of the increased flexibility and propensity for 

the substrate access lid to open when syringol is bound could be upon substrate binding/egress or on the 

catalytic demethylation step.  

In our 80 ns MD simulations, we find that the substrate access loop displays opening (whether by 

an RMSD metric or cross-channel distance) within the first 10 ns and remains open for the remaining 70 ns, 

with only one very brief excursion to the closed state around 30 ns. Focusing on the F/G loop backbone atoms 

and taking RMSD=3.0 Å as the cutoff between the open and closed states, the simulation with syringol is in 

the open state for 81% of the simulation, whereas the guaiacol-bound simulation is open for less than 1% of 

the simulation time. (We note again, that this definition of “open” does not signify that this is the most open 

state of GcoA). 
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C) 

 

Figure A2.11. DFT calculations for possible reaction pathways for syringol degradation 

catalyzed by Compound I (CpI). A) Target pathway for syringol demethylation to 3MC 

catalyzed by P450 CpI. Our calculations indicate syringol demethylation follows a similar 

pathway to that previously described for guaiacol.70 Free energy barriers for the rate-

limiting initial hydrogen atom transfer (HAT) from the methoxy group to the heme-bound 

oxygen atom are very similar for guaiacol and syringol (ΔG‡ = 18.6 and 18.9 kcal·mol-1, 

respectively), and also are the optimized transition state (TS) geometries. Consequently, 

the demethylation reaction likely proceeds similarly for both substrates when they can bind 

productively with the CpI reactive species in the enzyme active site. Unproductive 

pathways b (B) and c (C) lead to undesired products (and possibly uncoupling) and are 
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intrinsically lower in energy than pathway a. This is indicating that enzymatic environment 

that forces a specific substrate binding pose, as demonstrated by X-ray structures and MD 

simulations, is preventing pathways b and c to take place and promotes desired pathway a. 

Gibbs energies, obtained at  

B3LYP-D3BJ/6-311+G(d,p)+Fe(LanL2DZ)(PCM=Diethylether)//B3LYP/6-

31G(d)+Fe(LanL2DZ),  

are given in kcal/mol. Distances and angles in DFT optimized key TSs are given in Å and 

degrees, respectively. 
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Figure A2.12. Replica exchange thermodynamic integration (RETI) simulations indicate 

the change in free energy for different alchemical transformations. Each solid arrow 

indicates a RETI calculation that was performed and has the associated free energy change 

for the process in the direction of the arrow. Dashed arrows represent transformations that 

were not performed. A full four-step thermodynamic cycle was completed, represented by 

the four boxes in the lower right. The closure in performing these four steps theoretically 

is equal to zero. We calculate a closure of -1.6 kcal/mol, which is on the order of the 

expected cumulative error one would expect given the errors in the individual steps 

(approximately 0.2 kcal/mol).  
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The most surprising of these thermodynamic results is the relatively low free energy 

difference between syringol and guaiacol bound at the active site of WT GcoA. This can 

explained by the fact that these simulations indicate that binding syringol in the WT can 

produce binding complexes in which the substrate is flipped “upside down” from the 

configuration seen in crystal structures (see Figure. A2.12). This may help explain the 

experimental result that while WT demethylation activity is greatly reduced when 

exchanging syringol for guaiacol, the binding preference is less dramatic. Substrate 

flipping could reduce the crowding penalty in WT GcoA. The analogous set of simulations 

in the GcoA-F169A mutant (as well as mutation transformations with either syringol or 

guaiacol bound) showed comparatively few flips (for substrate transformation in WT, the 

substrate was flipped ~90% of the time, compared to ~10% in the other three cases). 

Experimentally, syringol binding affinity is not much changed from the WT to GcoA-

F169A (KD values indicate a difference in binding free energy of 0.3 kcal·mol-1), even as 

the activity is improved markedly. The RETI results indicate the possibility that this may 

be because KD measurements detect all binding at the active site capable of displacing a 

Fe-coordinating water molecule whereas catalytic turnover will only result from productive 

binding with catalytically relevant positioning of substrate relative to CpI heme. RETI 

results present the possibility that this is because the GcoA-F169A mutant is able to keep 

both substrates oriented correctly whereas WT GcoA is not. 
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Figure A2.13. Alternate substrate binding configurations seen in RETI simulations.  These 

results indicate a flip of substrate that is unique to the ΔGsub,WT calculation, which involves 

an alchemical transformation between guaiacol and syringol in the active site of WT GcoA. 

Given the differences in KD, activity, and crystal structures, the expected result for this 

transformation would be that guaiacol would be significantly favored at the WT active site. 

It is therefore surprising that this transformation results in a free energy change that slightly 

favors syringol (by 0.83 ± 0.069 kcal/mol); this is explained by the fact that the substrate 

adopts a unique binding pose not seen in crystal structures or any other MD simulations. 

A) Exemplified by syringol, in all 20 windows (in which syringol is gradually “turned off” 

and guaiacol is gradually “turned on”) of the ΔGsub,WT transformation, this “upside down” 
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configuration dominates, spending only about 10-15% of the simulation time in a 

configuration similar to that seen in crystal structures. By contrast, in the other 

transformations (ΔGmutate,gua, ΔGsub,F169A, and ΔGmutate,syr) the “upright” substrate 

configuration is displayed in upwards of 90% of the simulation time. This is represented in 

panel B by a representative frame from the ΔGsub,F169A simulation. Heme, substrate, and 

sidechain of residue 169 (Phe in panel A and Ala in panel B) are shown in sticks; heme Fe 

and Fe-bound oxygen are shown as spheres.  
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Figure A2.14. Frequency of amino acids occurring at position 169 among GcoA homologs. 

Ala is more frequent than Phe, and none of the 482 homologs utilizes His at the 169th 

position. 
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Figure A2.15. In vivo syringol consumption. (A) Expanded figure including standards of 

syringol, 3MC, and pyrogallol. (B) Extracted ion chromatograph of 139 m/z verifying 

presence of 2-pyrone 6-carboxylate in AM157. (C) Time course analysis of syringol 

depletion and product formation. Absolute analyte concentrations were measured via 

integration of 1H NMR peaks, by comparison to an integrated standard peak (TMSP). 

Plasmid-based expression of GcoABF169A (AM157) allows for complete turnover of 

syringol after 6 hours, while syringol still remains after 24 hours in cells expressing WT 

GcoAB (AM156). Data points represent averages of three replicates, and error bars indicate 

the standard deviations of the measurements.  
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A2.3 Supplementary Tables 

Table A2.1. Rate of substrate disappearance or product appearance (specific activity) for 

F169A. 

Substrate 
NADH disappearance 

(μM s-1 μmol F169A-1) 

aromatic substrate 

disappearance 

(μM s-1 μmol F169A-1) 

KD (µM) 

WT F169A 

guaiacol 5.8 ± 0.8 5.6 ± 0.3 0.0060 ± 0.002 7.1 ± 0.1 

syringol 5.1 ± 0.8 4.1 ± 0.3 2.8 ± 0.4 1.7 ± 0.07 

3MC 5.6 ± 0.8 2.6 ± 0.3 3.7 ± 0.1 9.5 ± 0.02 

 

Table A2.2. Rates of substrate disappearance and coupling efficiencies for reactions 

catalyzed by the GcoA-F169 variants. 

aNADH consumption was monitored continuously over time via UV/vis and quantifying 

with ε340 = 6.22 mM-1 cm-1 at 25°C, 25 mM HEPES, 50 mM NaCl, pH 7.5 and saturating 

(200 µM) concentrations of all substrates (syringol, guaiacol, and 3MC). 

bCalculated as the molar ratio of formaldehyde produced per NADH consumed in a fixed-

time assay. Assay conditions: 0.2 µM GcoA variant, 0.2 µM GcoB, 200 µM NADH, 100 

µg/mL catalase, 200 µM aromatic substrate in 25 mM HEPES, 50 mM NaCl, pH 7.5, 25°C, 

210 µM O2. 

 syringol guaiacol 3MC 

GcoA 

variant 

Specific activity 

(μmol sec-1 

μmol-1 GcoA)a 

Coupling 

efficiency 

(%)b 

Specific activity 

(μmol sec-1 

μmol-1 GcoA)a 

Coupling 

efficiency 

(%)b 

Specific activity 

(μmol sec-1 μmol-

1 GcoA)a 

Coupling 

efficiency 

(%)b 

WT n/a 7.1 ± 0.8 5.0 ± 0.1 110 ± 10 3.2 ± 0.2 78 ± 3 

F169A 5.1 ± 0.8 104 ± 6 5.8 ± 0.8 103 ± 7 5.6 ± 0.8 64 ± 10 

F169S 5.1 ± 0.9 85 ± 5 5.7 ± 0.8 67 ± 8 6.0 ± 0.8 67 ± 8 

F169V 4.1 ± 0.8 100 ± 10 5.3 ± 0.2 105 ± 2 5.7 ± 0.3 40 ± 3 

F169H 3.9 ± 0.2 56 ± 7 7.9 ± 3 103 ± 10 4.3 ± 0.4 28 ± 20 

F169I 0.56 ± 0.2 14 ± 2 1.4 ± 0.2 41 ± 10 1.1 ± 0.7 10 ± 9 

F169L 0.54 ± 0.1 7.8 ± 2 4.5 ± 0.3 73 ± 3 0.57 ± 0.2 5.0 ± 4 
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Table A2.3. Uncoupling reactions with GcoA-F169A and guaiacol, syringol, or 3MC. 

a0.2 µM GcoA-F169A and GcoB were reacted with 100 µg catalase, 100 or 200 µM 

NADH, and 100 µM substrate in 25 mM HEPES, 50 mM NaCl, pH 7.5, 25 °C, 210 µM 

O2. Endpoint analyses were done to quantify formaldehyde produced (see Methods), which 

was then referenced to NADH consumed. 

bThe same reaction done above was repeated to quantify H2O2 produced using the Amplex 

Red/HRP assay (see SI Appendix, Methods). The amount of hydrogen peroxide was then 

referenced to NADH consumed. 

Substrate % Formaldehyde produceda % H2O2 producedb 

guaiacol + 100 µM NADH 100 ± 10 3.7 ± 0.6 

syringol + 100 µM NADH 125 ± 6 7.4 ± 0.03 

syringol + 200 µM NADH 91 ± 8 7.9 ± 0.5 

3-MC + 100 µM NADH 52 ± 7 17 ± 0.2 
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Table A2.4. X-ray tables for GcoA syringol-bound structures 

PROTEIN 
F169A WITH 

SYRINGOL 

F169H 

WITH 

SYRINGOL 

F169S WITH 

SYRINGOL 

F169V WITH 

SYRINGOL 

PDB CODE 6HQQ 6HQR 6HQS 6HQT 

DATA COLLECTION     

SPACE GROUP P43212 P43212 P43212 P43212 

WAVELENGTH (Å) 0.9795 0.9795 0.9795 0.9795 

CELL DIMENSION     

A, B, C (Å) 

104.07, 

104.07, 

116.10 

102.15, 

102.15, 

109.98 

104.25, 104.25, 

114.03 

103.90, 

103.90, 115.58 

Α, Β, Γ (˚) 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 

RESOLUTION RANGE (Å) 
77.49-1.66 

(1.70-1.66) 

72.23-1.79 

(1.84-1.79) 

61.91-2.17 

(2.23-2.17) 

62.00-1.85 

(1.90-1.85) 

RMERGE 0.066 (1.244) 0.081 (0.938) 0.066 (0.816) 0.070 (0.813) 

RMEAS 0.071 (1.351) 0.087 (1.018) 0.072 (0.888) 0.075 (0.917) 

RPIM 0.027 (0.525) 0.034 (0.393) 0.028 (0.347) 0.029 (0.415) 

I/ΣI 19.0 (2.0) 15.8 (2.2) 20.9 (3.0) 22.5 (2.3) 

COMPLETENESS (%) 100 (100) 100.0 (100.0) 100.0 (100.0) 99.9 (99.9) 

MULTIPLICITY 12.9 (12.7) 12.5 (12.7) 12.7 (12.3) 12.7 (8.9) 

CC 1/2 1.00 (0.794) 0.999 (0.878) 0.999 (0.865) 1.000 (0.809) 

REFINEMENT     

RESOLUTION RANGE (Å) 
73.59-1.66 

(1.69-1.66) 

51.05-1.79 

(1.82-1.79) 

52.15-2.17 

(2.23-2.17) 

50.50-1.85 

(1.88-1.85) 

NO. OF REFLECTIONS 75469 53703 33716 54478 

RWORK 
0.1676 

(0.3303) 

0.1692 

(0.2999) 
0.1608 (0.2507) 

0.1563 

(0.2428) 

RFREE 
0.1909 

(0.3748) 

0.1991 

(0.3939) 
0.1858 (0.2932) 

0.1788 

(0.2987) 

NO. OF ATOMS 3752 3629 3411 3601 

PROTEIN 3151 3157 3122 3154 

LIGAND/ION 54 54 54 54 

WATER 547 418 235 393 

B-FACTORS 21.9 21.97 37.01 27.66 

PROTEIN 27.19 24.89 41.15 29.53 

LIGAND/ION 18.06 15.15 28.99 21.89 

WATER 41.41 37.93 45.92 41.32 

RMSD     

BOND LENGTHS (Å) 0.008 0.016 0.008 0.007 

BOND ANGLES (˚) 1.012 1.353 0.938 0.9 
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Table A2.5. X-ray tables for GcoA guaiacol-bound structures 

PROTEIN 

F169A 

WITH 

GUAIACOL 

F169H WITH 

GUAIACOL 

F169I WITH 

GUAIACOL 

F169L 

WITH 

GUAIACOL 

F169S 

WITH 

GUAIACOL 

F169V 

WITH 

GUAIACOL 

PDB CODE 6HQK 6HQL 6HQM 6HQN 6HQO 6HQP 

DATA 

COLLECTION 
      

SPACE GROUP P43212 P43212 P43212 P43212 P43212 P43212 

WAVELENGTH 

(Å) 
0.9795 0.9795 0.9795 0.9795 0.9795 0.9795 

CELL 

DIMENSION 
      

A, B, C (Å) 

103.67, 

103.67, 

114.88 

102.00, 

102.00, 

109.83 

105.20, 105.20, 

112.52 

104.00, 

104.00, 

111.58 

103.85, 

103.85. 

115.10 

103.80, 

103.80, 

115,78 

Α, Β, Γ (˚) 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 

RESOLUTION 

RANGE (Å) 

76.97-1.57 

(1.61-1.57) 

60.29-1.49 

(1.53-1.49) 

56.25-1.85 (1.90-

1.85) 

76.08-1.87 

(1.92-1.87) 

73.43-1.70 

(1.74-1.70) 

73.40-1.62 

(1.66-1.62) 

RMERGE 
0.071 

(0.964) 
0.077 (1.040) 0.064 (1.002) 

0.080 

(0.991) 

0.064 

(1.309) 

0.069 

(0.985) 

RMEAS 
0.077 

(1.068) 
0.080 (1.040) 0.069 (1.085) 

0.087 

(1.076) 

0.069 

(1.420) 

0.075 

(1.096) 

RPIM 
0.029 

(0.457) 
0.032 (0.449) 0.027 (0.415) 

0.034 

(0.417) 

0.026 

(0.547) 

0.029 

(0.343) 

I/ΣI 18.3 (2.2) 14.9 (2.3) 10.4 (2.6) 17.0 (2.4) 24.0 (2.0) 17.4 (2.1) 

COMPLETENESS 

(%) 
100 (100) 100.0 (100.0) 100.0 (100.0) 

100.0 

(100.0) 

100.0 

(100.0) 

100.0 

(100.0) 

MULTIPLICITY 12.5 (10.5) 12.6 (12.2) 12.7 (13.1) 12.7 (12.7) 13.1 (12.9) 12.4 (10.2) 

CC 1/2 
0.999 

(0.802) 
0.999 (100.0) 1.000 (0.849) 

0.999 

(0.808) 

1.000 

(0.786) 

0.999 

(0.828) 

REFINEMENT       

RESOLUTION 

RANGE (Å) 

76.98-1.57 

(1.59-1.57) 

60.00-1.49 

(1.51-1.49) 

52.61-1.85 (1.88-

1.85) 

73.54-1.87 

(1.91-1.87) 

73.43-1.70 

(1.72-1.70) 

73.40-1.62 

(1.64-1.62) 

NO. OF 

REFLECTIONS 
87452 93998 54123 51138 69625 80413 

RWORK 
0.1581 

(0.2897) 

0.1744 

(0.3340) 
0.1610 (0.3039) 

0.1455 

(0.2439) 

0.1517 

(0.2641) 

0.1661 

(0.3377) 

RFREE 
0.1812 

(0.3208) 

0.1984 

(0.3800) 
0.1799 (0.3934) 

0.1697 

(0.2627) 

0.1811 

(0.3150) 

0.1874 

(0.3602) 

NO. OF ATOMS 3744 3655 3578 3650 3684 3697 

PROTEIN 3161 3157 3087 3158 3144 3154 

LIGAND/ION 52 52 52 52 52 52 

WATER 531 446 439 440 488 491 

B-FACTORS 16.87 17.15 27.3 33.44 25.32 19.35 

PROTEIN 20.56 21.82 28.17 35.61 29.52 23.73 

LIGAND/ION 13.52 13.31 18.97 25.26 21.79 15.97 

WATER 35.47 36.19 41.21 44.83 42.7 38.27 

RMSD       

BOND LENGTHS 

(Å) 
0.016 0.014 0.009 0.013 0.018 0.016 

BOND ANGLES 

(˚) 
1.455 1.371 1.042 1.319 1.456 1.368 
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Table A2.6. Gibbs energy profiles computed at  

B3LYP-D3BJ/6-311+G(d,p)+Fe(LanL2DZ)(PCM=Diethylether)//B3LYP/6-

31G(d)+Fe(LanL2DZ), considering doublet and quadruplet electronic states. Energies are 

given in kcal/mol. 

ΔG 
     

Path A Reactants TS1-a Int1-a 

complex 

TS2-a Product 4 

formation 

doublet 0.2 18.6 (barrierless) -55.7 

quartet 0.0 20.8 12.6 15.1 -55.7 

 

ΔG 
     

Path B Reactants TS1 int - complex TS2 Product 7 

formation 

doublet 0.2 15.7 3.3 (barrierless) -52.4 

quartet 0.0 15.7 5.8 1.6 -52.4 

 

ΔG 
     

Path C Reactants TS1 int - complex TS2 Product 7 

formation 

doublet 0.2 4.3 (could not be 

optimized) 

7.3 -52.4 

quartet 0.0 3.2 -7.1 8.4 -52.4 
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Table A2.7. GcoA sequence conservation analysis. 

resid 

(GcoA) 

AA 

(GcoA) 

relative 

entropy 
z-score percentile 

1 M 3.28 2.59 98.0 

2 T 1.42 -0.18 51.4 

3 T 0.95 -0.89 16.5 

4 T 1.44 -0.16 52.6 

5 E 0.59 -1.42 1.7 

6 R 0.63 -1.36 2.7 

7 P 0.69 -1.28 4.7 

8 D 0.79 -1.12 9.1 

9 L 0.67 -1.31 3.7 

10 A 1.02 -0.78 20.9 

11 W 1.49 -0.09 55.5 

12 L 0.96 -0.87 17.7 

13 D 1.04 -0.75 21.6 

14 E 1.10 -0.67 27.8 

15 V 1.67 0.19 64.4 

16 T 2.10 0.83 81.3 

17 M 1.10 -0.67 28.0 

18 T 0.84 -1.06 11.8 

19 Q 1.28 -0.39 43.2 

20 L 2.17 0.94 83.8 

21 E 0.96 -0.87 17.4 

22 R 0.84 -1.06 11.5 

23 N 2.14 0.89 83.0 

24 P 2.56 1.52 91.6 

25 Y 3.15 2.40 97.3 

26 E 1.95 0.61 77.6 

27 V 1.30 -0.37 44.2 

28 Y 3.24 2.54 97.5 

29 E 1.05 -0.74 22.6 

30 R 2.11 0.84 81.6 

31 L 1.98 0.65 78.6 

32 R 2.43 1.32 88.2 

33 A 0.98 -0.85 18.9 

34 E 1.81 0.39 71.5 

35 A 1.20 -0.52 36.9 

36 P 2.43 1.32 88.5 

37 L 1.74 0.29 67.8 

38 A 1.20 -0.51 37.3 

39 F 1.64 0.15 62.9 

40 V 1.79 0.36 70.0 

41 P 1.61 0.10 61.4 

42 V 0.88 -1.00 13.5 

43 L 0.97 -0.85 18.7 

44 G 1.62 0.11 62.2 

45 S 0.75 -1.19 6.6 

46 Y 1.65 0.16 63.6 

47 V 1.38 -0.25 47.7 

48 A 1.28 -0.39 43.5 

49 S 2.13 0.88 82.6 

50 T 1.53 -0.03 57.5 

51 A 1.09 -0.68 26.8 

52 E 1.19 -0.54 35.9 

53 V 0.92 -0.93 15.5 

54 C 2.79 1.86 95.6 

55 R 1.06 -0.72 24.1 

56 E 0.73 -1.22 6.1 

57 V 1.71 0.25 66.1 

58 A 1.07 -0.71 24.8 
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59 T 0.69 -1.28 4.2 

60 S 1.37 -0.27 47.4 

61 P 1.01 -0.80 19.9 

62 D 1.06 -0.72 24.3 

63 F 2.67 1.69 94.3 

64 E 1.17 -0.56 34.2 

65 A 1.30 -0.37 44.7 

66 V 0.82 -1.08 10.6 

67 I 0.96 -0.87 17.2 

68 T 1.03 -0.77 21.4 

69 P 1.02 -0.79 20.6 

70 A 1.06 -0.72 23.6 

71 G 1.25 -0.43 41.3 

72 G 0.84 -1.06 11.3 

73 R 1.87 0.48 74.9 

74 T 1.27 -0.41 41.8 

75 F 2.23 1.02 85.5 

76 G 2.00 0.68 79.4 

77 H 1.18 -0.55 34.6 

78 P 1.61 0.10 61.7 

79 A 1.32 -0.34 45.7 

80 I 1.48 -0.10 54.8 

81 I 1.81 0.40 71.7 

82 G 1.12 -0.63 30.7 

83 V 1.46 -0.12 53.8 

84 N 1.84 0.44 73.2 

85 G 2.06 0.77 80.6 

86 D 1.29 -0.37 44.0 

87 I 0.83 -1.07 10.8 

88 H 3.61 3.09 99.3 

89 A 0.76 -1.17 7.4 

90 D 0.79 -1.12 9.3 

91 L 1.44 -0.15 53.1 

92 R 2.60 1.58 93.1 

93 S 0.78 -1.15 8.1 

94 M 1.18 -0.55 34.9 

95 V 1.74 0.29 67.3 

96 E 1.15 -0.60 31.9 

97 P 1.69 0.22 65.1 

98 A 0.85 -1.04 12.0 

99 L 1.86 0.47 74.0 

100 Q 1.38 -0.24 48.2 

101 P 2.15 0.91 83.3 

102 A 1.00 -0.81 19.7 

103 E 0.74 -1.21 6.4 

104 V 1.80 0.38 71.3 

105 D 1.04 -0.75 21.9 

106 R 0.72 -1.24 5.7 

107 W 1.50 -0.07 56.5 

108 I 1.58 0.06 59.7 

109 D 0.80 -1.12 9.8 

110 D 0.90 -0.96 14.7 

111 L 1.39 -0.23 48.6 

112 V 1.51 -0.04 57.0 

113 R 1.42 -0.19 51.1 

114 P 1.09 -0.67 27.5 

115 I 1.40 -0.21 49.9 

116 A 1.49 -0.08 55.8 

117 R 1.09 -0.68 26.5 

118 R 0.81 -1.10 10.1 

119 Y 1.91 0.55 76.7 

120 L 1.40 -0.21 50.1 

121 E 0.97 -0.86 18.4 
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122 R 0.77 -1.16 7.9 

123 F 1.65 0.16 63.9 

124 E 1.10 -0.66 29.0 

125 N 0.75 -1.18 6.9 

126 D 0.88 -1.00 14.0 

127 G 2.33 1.18 87.2 

128 H 0.78 -1.14 8.8 

129 A 1.11 -0.66 29.2 

130 E 1.87 0.49 75.2 

131 L 1.96 0.63 77.9 

132 V 1.20 -0.52 36.4 

133 A 0.65 -1.33 3.2 

134 Q 1.11 -0.65 29.5 

135 Y 2.23 1.03 85.7 

136 C 2.19 0.97 84.5 

137 E 1.43 -0.17 51.8 

138 P 2.58 1.55 91.9 

139 V 1.55 0.01 59.0 

140 S 1.91 0.54 76.4 

141 V 1.21 -0.49 38.3 

142 R 1.61 0.10 60.9 

143 S 1.32 -0.33 46.4 

144 L 1.85 0.46 73.5 

145 G 1.17 -0.56 34.4 

146 D 1.23 -0.47 39.8 

147 L 1.24 -0.45 40.5 

148 L 1.78 0.36 69.8 

149 G 2.62 1.60 93.6 

150 L 1.74 0.29 67.6 

151 Q 0.43 -1.66 0.2 

152 E 1.22 -0.48 39.1 

153 V 1.30 -0.37 44.5 

154 D 1.21 -0.49 38.1 

155 S 0.86 -1.02 12.5 

156 D 1.09 -0.68 27.3 

157 K 1.47 -0.10 54.3 

158 L 1.93 0.58 77.1 

159 R 1.32 -0.33 46.7 

160 E 1.32 -0.34 45.9 

161 W 3.88 3.50 99.8 

162 F 2.38 1.26 87.7 

163 A 1.89 0.52 76.2 

164 K 0.72 -1.23 5.9 

165 L 1.99 0.66 78.9 

166 N 1.22 -0.48 39.3 

167 R 0.71 -1.25 5.2 

168 S 1.75 0.30 68.3 

169 F 1.09 -0.68 27.0 

170 T 1.30 -0.36 45.2 

171 N 3.30 2.63 98.3 

172 A 1.14 -0.61 31.0 

173 A 0.82 -1.09 10.3 

174 V 0.97 -0.86 17.9 

175 D 1.54 0.00 58.5 

176 E 1.64 0.15 62.7 

177 N 1.93 0.57 76.9 

178 G 2.62 1.60 93.9 

179 E 1.83 0.44 73.0 

180 F 3.02 2.21 96.3 

181 A 1.41 -0.20 50.4 

182 N 2.72 1.75 94.8 

183 P 1.67 0.19 64.6 

184 E 1.24 -0.46 40.0 
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185 G 0.84 -1.06 11.1 

186 F 1.97 0.64 78.4 

187 A 0.63 -1.37 2.5 

188 E 0.66 -1.33 3.4 

189 G 1.16 -0.58 33.2 

190 D 1.82 0.41 72.2 

191 Q 0.78 -1.14 8.4 

192 A 1.48 -0.10 54.5 

193 K 1.28 -0.40 42.8 

194 A 0.94 -0.91 15.7 

195 E 1.86 0.47 74.2 

196 I 1.83 0.43 72.5 

197 R 0.76 -1.17 7.1 

198 A 0.94 -0.90 16.2 

199 V 0.79 -1.12 9.6 

200 V 1.40 -0.22 49.6 

201 D 1.08 -0.69 25.8 

202 P 1.03 -0.77 21.1 

203 L 1.06 -0.72 23.8 

204 I 1.16 -0.57 33.4 

205 D 1.15 -0.59 32.4 

206 K 1.14 -0.60 31.4 

207 W 1.50 -0.07 56.8 

208 I 0.86 -1.02 12.8 

209 E 0.54 -1.51 0.7 

210 H 1.16 -0.58 32.9 

211 P 2.54 1.49 90.4 

212 D 1.87 0.49 75.7 

213 D 0.90 -0.96 15.0 

214 S 2.21 1.00 85.0 

215 A 1.10 -0.66 28.5 

216 I 1.41 -0.20 50.6 

217 S 2.84 1.94 95.8 

218 H 1.82 0.41 72.0 

219 W 2.23 1.03 86.0 

220 L 1.38 -0.24 47.9 

221 H 2.10 0.82 81.1 

222 D 1.17 -0.56 33.9 

223 G 1.47 -0.11 54.1 

224 M 1.87 0.48 74.7 

225 P 2.22 1.02 85.3 

226 P 1.44 -0.16 52.8 

227 G 2.48 1.40 89.2 

228 Q 1.66 0.17 64.1 

229 T 1.53 -0.01 58.2 

230 R 1.58 0.06 60.0 

231 D 1.15 -0.59 32.2 

232 R 0.77 -1.16 7.6 

233 E 1.19 -0.53 36.1 

234 Y 1.24 -0.46 40.3 

235 I 2.05 0.75 80.1 

236 Y 1.70 0.23 65.4 

237 P 1.59 0.07 60.4 

238 T 2.13 0.88 82.3 

239 I 1.55 0.00 58.7 

240 Y 2.26 1.07 86.2 

241 V 1.72 0.27 66.6 

242 Y 1.14 -0.60 31.2 

243 L 1.73 0.28 67.1 

244 L 1.43 -0.17 51.6 

245 G 2.44 1.35 88.9 

246 A 1.80 0.38 71.0 

247 M 1.87 0.49 75.4 
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248 Q 2.73 1.78 95.1 

249 E 2.54 1.50 90.9 

250 P 2.54 1.49 90.7 

251 G 1.73 0.27 66.8 

252 H 2.52 1.46 90.2 

253 G 1.18 -0.54 35.1 

254 M 1.28 -0.40 42.5 

255 A 1.01 -0.79 20.1 

256 S 1.79 0.36 70.3 

257 T 1.43 -0.16 52.3 

258 L 1.40 -0.22 49.1 

259 V 1.08 -0.70 25.3 

260 G 2.11 0.85 81.8 

261 L 2.37 1.24 87.5 

262 F 1.68 0.20 64.9 

263 S 1.04 -0.75 22.1 

264 R 1.61 0.11 61.9 

265 P 2.19 0.97 84.3 

266 E 1.57 0.03 59.2 

267 Q 3.39 2.76 98.5 

268 L 1.32 -0.34 46.2 

269 E 1.16 -0.57 33.7 

270 E 0.94 -0.91 16.0 

271 V 2.06 0.77 80.3 

272 V 0.89 -0.98 14.3 

273 D 0.87 -1.01 13.0 

274 D 1.53 -0.03 57.2 

275 P 2.16 0.92 83.5 

276 T 0.57 -1.45 1.0 

277 L 1.12 -0.63 30.5 

278 I 1.48 -0.09 55.3 

279 P 1.10 -0.67 28.3 

280 R 1.14 -0.60 31.7 

281 A 1.88 0.50 75.9 

282 I 1.76 0.32 68.8 

283 A 1.05 -0.73 22.9 

284 E 2.65 1.66 94.1 

285 G 1.76 0.32 68.6 

286 L 1.39 -0.24 48.4 

287 R 2.60 1.58 92.9 

288 W 3.80 3.37 99.5 

289 T 1.32 -0.33 46.9 

290 S 1.64 0.15 63.1 

291 P 2.67 1.69 94.6 

292 I 2.59 1.57 92.6 

293 W 3.60 3.07 99.0 

294 S 1.75 0.30 68.1 

295 A 1.18 -0.54 35.4 

296 T 1.28 -0.40 43.0 

297 A 0.90 -0.96 14.5 

298 R 2.38 1.26 88.0 

299 I 0.96 -0.87 17.0 

300 S 1.12 -0.64 30.2 

301 T 1.48 -0.09 55.0 

302 K 1.06 -0.73 23.1 

303 P 1.53 -0.02 57.7 

304 V 1.44 -0.15 53.3 

305 T 1.39 -0.23 48.9 

306 I 1.49 -0.08 56.0 

307 A 0.97 -0.86 18.2 

308 G 2.30 1.14 86.5 

309 V 1.29 -0.38 43.7 

310 D 0.48 -1.59 0.5 
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311 L 1.83 0.43 72.7 

312 P 1.78 0.35 69.5 

313 A 1.24 -0.45 41.0 

314 G 2.31 1.15 87.0 

315 T 1.02 -0.79 20.4 

316 P 0.62 -1.38 2.2 

317 V 2.05 0.75 79.9 

318 M 1.22 -0.48 39.6 

319 L 0.85 -1.03 12.3 

320 S 1.18 -0.54 35.6 

321 Y 1.77 0.33 69.0 

322 G 1.60 0.08 60.7 

323 S 2.43 1.33 88.7 

324 A 2.19 0.97 84.8 

325 N 2.97 2.14 96.1 

326 H 2.13 0.88 82.1 

327 D 2.49 1.41 89.4 

328 T 1.26 -0.43 41.5 

329 G 0.69 -1.28 4.4 

330 K 0.78 -1.14 8.6 

331 Y 2.51 1.44 89.7 

332 E 0.92 -0.93 15.2 

333 A 1.11 -0.65 29.7 

334 P 1.77 0.33 69.3 

335 S 1.10 -0.66 28.7 

336 Q 0.61 -1.40 2.0 

337 Y 2.79 1.86 95.3 

338 D 1.99 0.67 79.1 

339 L 1.41 -0.19 50.9 

340 H 1.22 -0.49 38.8 

341 R 2.60 1.58 93.4 

342 P 0.99 -0.83 19.2 

343 P 1.27 -0.41 42.0 

344 L 0.69 -1.28 4.9 

345 P 1.53 -0.02 58.0 

346 H 3.27 2.58 97.8 

347 L 1.43 -0.16 52.1 

348 A 1.59 0.07 60.2 

349 F 3.12 2.36 96.8 

350 G 2.52 1.45 89.9 

351 A 1.00 -0.81 19.4 

352 G 2.31 1.14 86.7 

353 N 1.07 -0.71 24.6 

354 H 3.59 3.07 98.8 

355 A 1.31 -0.34 45.5 

356 C 4.79 4.86 100.0 

357 A 1.40 -0.22 49.4 

358 G 2.55 1.51 91.4 

359 I 1.09 -0.68 26.3 

360 Y 2.01 0.69 79.6 

361 F 1.33 -0.31 47.2 

362 A 1.65 0.16 63.4 

363 N 1.71 0.24 65.8 

364 H 0.88 -1.00 13.8 

365 V 1.49 -0.08 56.3 

366 M 1.24 -0.45 40.8 

367 R 1.30 -0.36 45.0 

368 I 1.95 0.61 77.4 

369 A 1.20 -0.51 37.1 

370 L 1.86 0.48 74.4 

371 E 1.28 -0.40 42.3 

372 E 1.21 -0.50 37.8 

373 L 1.80 0.38 70.8 
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374 F 2.07 0.79 80.8 

375 E 1.06 -0.73 23.3 

376 A 1.05 -0.75 22.4 

377 I 1.58 0.06 59.5 

378 P 2.18 0.95 84.0 

379 N 1.85 0.46 73.7 

380 L 1.79 0.37 70.5 

381 E 1.16 -0.58 32.7 

382 R 1.21 -0.49 38.6 

383 D 1.21 -0.50 37.6 

384 T 0.87 -1.01 13.3 

385 R 0.59 -1.43 1.5 

386 E 0.68 -1.29 3.9 

387 G 0.63 -1.36 2.9 

388 V 1.20 -0.52 36.6 

389 E 0.58 -1.44 1.2 

390 F 1.61 0.10 61.2 

391 W 1.46 -0.13 53.6 

392 G 2.59 1.56 92.4 

393 W 3.14 2.39 97.1 

394 G 1.07 -0.71 25.1 

395 F 3.03 2.23 96.6 

396 R 2.55 1.51 91.2 

397 G 1.97 0.63 78.1 

398 P 1.72 0.26 66.3 

399 T 1.08 -0.69 26.0 

400 S 0.72 -1.24 5.4 

401 L 2.14 0.89 82.8 

402 H 1.63 0.12 62.4 

403 V 1.70 0.24 65.6 

404 T 0.95 -0.89 16.7 

405 W 2.59 1.56 92.1 

406 E 1.11 -0.64 30.0 

407 V 1.08 -0.70 25.6 
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Table A2.8. Pseudomonas putida strains used in this study. 

Strain ID Genotype Description of strain construction 

CJ025 KT2440  catA2 

catA2 was deleted from P. putida KT2440 

using pCJ004 and this deletion was 

confirmed by diagnostic colony PCR 

amplification of a 2,089 bp product with 

primer pair oCJ084/oCJ085. 

 

CJ028 
KT2440  catBCA::Ptac:xylE  

catA2 

catBCA was replaced in CJ025 with 

Ptac:xylE using pCJ005 and this gene 

replacement was confirmed by diagnostic 

colony PCR amplification of a 3,078 bp 

product with primer pair oCJ086/oCJ087. 

 

AM140 
KT2440  catBCA::Ptac:xylE  

catA2 pcaHG 

pcaHG was deleted by transforming 

CJ028 with pCJ011. The gene replacement 

was confirmed by amplification of a 2049 

bp fragment using primers 

oCJ106/oCJ107. 

AM142 
KT2440  catBCA::Ptac:xylE  

catA2 pcaHG / pBTL-2 
AM140 transformed with pBTL-2 

AM144 

KT2440  catBCA::Ptac:xylE  

catA2 pcaHG / pCJ021 (gcoAB 

in pBTL-2) 

AM140  transformed with pCJ021 

AM148 

KT2440  catBCA::Ptac:xylE  

catA2 pcaHG / p0AM27 

(gcoABF169A in pBTL-2) 

AM140  transformed with pAM027 

CJ612 KT2440  catBCA catA2 

catBCA was deleted from CJ025 by 

transforming CJ025 with pCJ105. The 

gene deletion was confirmed by 

amplification of a 2407 bp product using 

primers oCJ086/oCJ087. 

 

AM154 
KT2440  Ptac:pcaHG catBCA 

catA2 

Native promoter of pcaHG replaced with 

Ptac by transforming CJ612 with pCJ020. 

The gene replacement was confirmed by 

amplification of an 1201 bp fragment 

using primers oAM127/oCJ135. 

AM155 
KT2440  Ptac:pcaHG catBCA 

catA2 / pBTL-2 
AM154 transformed with pBTL-2 

AM156 

KT2440  Ptac:pcaHG catBCA 

catA2 / pCJ021 (gcoAB in 

pBTL-2) 

AM154 transformed with pCJ021 

AM157 
KT2440  Ptac:pcaHG catBCA 

catA2 / (gcoABF169A in pBTL-2) 
AM154 transformed with pAM027 
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Table A2.9. Plasmids used in this study.  

Plasmid ID Use Description of strain construction   

pBTL-2 Empty vector pBTL-2 was described previously in 503 

pCJ004 Deletion of catA2 in P. putida KT2440 Construction of pCJ004 was described 

previously in Johnson and Beckham.465 

 

pCJ005 Replacing catBCA with Ptac:xylE in P. 

putida KT2440 

The 5’ targeting region was amplified from P. 

putida KT2440 genomic DNA with primer pair 

oCJ042/oCJ043 (1,104 bp, which incorporated 

the tac promoter), xylE (969 bp) was amplified 

from P. putida mt-2 (ATCC 23973) genomic 

DNA with primer pair oCJ044/oCJ045, and the 

3’ targeting region was amplified using primer 

pair oCJ046/oCJ047 (1033 bp). These fragments 

were then assembled into pCM433 digested with 

AatII and SacI (7991 bp). 

 

pCJ011 Deletion of pcaHG in P. putida KT2440 Construction of pCJ011 was described 

previously in Johnson and Beckham.465 

 

pCJ020 Insertion of tac promoter upstream of 

pcaHG in P. putida KT2440 

Construction of pCJ020 was described 

previously in Johnson and Beckham.465 

 

pCJ021 Episomal expression of gcoAB on pBTL-

2 

Construction of pCJ021 was described 

previously in Tumen-Velasquez, et al.282 

 

pCJ105 Deletion of catBCA in P. putida KT2440 The 5’ (1054 bp) and 3’ (1044 bp) targeting 

regions were amplifed from pCJ005 with 

primers oCJ542/oCJ543 and oCJ544/oCJ545, 

respectively, and assembled into pK18sB 

(Genbank MH166772 504) digested with EcoRI 

and HindII.  

 

pAM027 Episomal expression of gcoABF169A on 

pBTL-2 

pCJ021 was linearly amplified using oAM173 

and oAM174 to introduce the gcoA 

F169 mutation by site-directed mutagenesis and 

treated with NEB KLD Enzyme Mix (New 

England Biolabs), which includes kinase, ligase, 

and DpnI enzymes to phosphorylate and 

circularize the PCR product and digest the 

template, according to the manufacturer's 

instructions. 

 

pGcoA-F196A, 

pGcoA-F196H, 

pGcoA-F196I, 

pGcoA-F196L, 

pGcoA-F196S, 

pGcoA-F196V 

Expression of GcoA containing F196A, 

F196H, F196I, F196L, F196S, or F196V 

mutations 

pCJ047 (pGEX-6P-1 vector containing WT 

GcoA70) was linearly amplified using forward 

primers F196A, F196H, F196I, F196L, F196S, 

or F196V and F169rev to introduce the various 

gcoA mutations by site-directed mutagenesis 

and treated with NEB KLD Enzyme Mix (New 

England Biolabs), which includes kinase, ligase, 

and DpnI enzymes to phosphorylate and 

circularize the PCR product and digest the 

template, according to the manufacturer's 

instructions. 
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Table A2.10. Sequences of DNA oligos used in this study. 

F169rev AGCTTGGCGAACCACTCG 

F169A GAACCGCTCGgcCACCAACGCC 

F169H GAACCGCTCGcaCACCAACGCC 

F169I GAACCGCTCGaTCACCAACGC 

F169L GAACCGCTCGcTCACCAACGC   

F169S GAACCGCTCGTcCACCAACGC   

F169V GAACCGCTCGgTCACCAACGC 

oCJ042 ccgaaaagtgccacctGACGTCcctgttgctcgatcaacgc 

oCJ043 tcataAGATCTctcctgtgtgaaattgttatccgctcacaattccacacattatacgagccg

atgattaattgtcaacagctctgttgccaggtcccgtc 

oCJ044 aggagAGATCTtatgaacaaaggtgtaatgcgacc 

oCJ045 cgaacGCGGCCGCgcaataagtcgtaccggaccatc 

oCJ046 attgcGCGGCCGCgttcgaggttatgtcactgtgattttg 

oCJ047 gctggatcctctagtGAGCTCcgcctgctccaggttg 

oCJ084 CCTCAATGGCTTTGCCAG  

oCJ085 GTACAACACACTGCCAGC  

oCJ086 TGTGGGCATGGTGTGTTC  

oCJ087 TCTTCAAAGCGTCCGGTG  

oCJ106 ATCTTGAACCAACGCACC  

oCJ107 CACAAGGCAATCCTGATCG  

oCJ135 AGGCTGATGTTGATGTGC  

oCJ542 aggaaacagctatgacatgattacGAATTCcctgttgctcgatcaacgccag 

oCJ543 cgaacGCGGCCGCtgttgccaggtcccgtcagg 

oCJ544 gacgggacctggcaacaGCGGCCGCgttcgag 

oCJ545 cgttgtaaaacgacggccagtgccAAGCTTcgcctgctccaggttgaatgc 

oAM127 GAGCTGTTGACAATTAATCATCGGC 

oAM173 GAACCGCTCGgcCACCAACGCC 

oAM174 AGCTTGGCGAACCACTCG 
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Table A.2.11 DFT optimized geometries  

Electronic energies (E), zero point energy (ZPE), free energy (G(T)), quasiharmonic 

corrected free energy (qh-G(T)), and electronic energy from high level single point 

calculation (E Single point) of all stationary points (in a.u.). Cartesian coordinates are 

reported in xyz format.  

Structure E (au) ZPE (au) G(T) (au) qh-G(T) (au) E Single Point (au) 

1 - syringol -536.495040 0.170476 -536.361137 -536.360232 -536.706360 

Fe=O-Porph - doublet -1625.106262 0.317660 -1624.839694 -1624.837490 -1625.567736 

Fe=O-Porph - quartet -1625.106093 0.317696 -1624.840115 -1624.837883 -1625.567464 

FeH2O-Porph - doublet -1626.387773 0.338497 -1626.101953 -1626.099515 -1626.878338 

3 - hemiacetal -611.711120 0.175635 -611.573661 -611.572350 -611.959659 

7 - acetal -535.284576 0.149181 -535.170634 -535.169544 -535.479338 

Fe-Porph - sextet -1549.964112 0.312990 -1549.704649 -1549.700465 -1550.402389 

Fe=O-Porph - doublet + 

Syringol  

(reactant complex) 

-2161.610445 0.489091 -2161.193023 -2161.181629 -2162.291362 

Fe=O-Porph - quartet + 

Syringol  

(reactant complex) 

-2161.610252 0.489162 -2161.193304 -2161.181929 -2162.290915 

TS1-a - doublet -2161.574263 0.482285 -2161.159708 -2161.150955 -2162.264394 

TS1-b - doublet -2161.578885 0.482284 -2161.163139 -2161.155284 -2162.269456 

TS1-a - quartet -2161.572822 0.482653 -2161.160202 -2161.149881 -2162.260628 

TS1-b - quartet -2161.578118 0.482402 -2161.163372 -2161.155008 -2162.268868 

Int1-b - doublet -2161.595046 0.484420 -2161.180622 -2161.170366 -2162.290290 

Int1-a - quartet -2161.585020 0.485263 -2161.172652 -2161.160884 -2162.274849 

Int1-b - quartet -2161.593829 0.485312 -2161.178962 -2161.168993 -2162.286346 

TS2-b - quartet -2161.590346 0.480888 -2161.177325 -2161.169410 -2162.289260 

TS2-a - quartet -2161.579121 0.484609 -2161.165749 -2161.154995 -2162.270819 

TS1-c - doublet -2161.598186 0.483285 -2161.182677 -2161.174168 -2162.287930 

TS1-c - quartet -2161.599963 0.483375 -2161.184856 -2161.176470 -2162.289148 

Int1-c - quartet -2161.623252 0.487968 -2161.207527 -2161.195638 -2162.309777 

TS2-c - doublet -2161.593206 0.481997 -2161.180272 -2161.170068 -2162.282252 

TS2-c - quartet -2161.589202 0.481568 -2161.176370 -2161.167267 -2162.279422 
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A3 Supporting Information for Characterization of a two-enzyme system for 

plastics depolymerization. 

Appendix section A3 has been adapted with permission from Knott et al.,297 Copyright © 

2020, Proceedings of the National Academy of Sciences of the United States of America. 

 

A3.1 Supplementary Materials and Methods 

A3.1.1 Plasmid construction 

pET-21b(+) (EMD Millipore)-based plasmids for expression of the various 

Ideonella sakaiensis PETase and MHETase enzymes, as well as homologous, and mutant 

proteins were either synthesized by Twist Bioscience or constructed using NEBuilder® 

HiFi DNA Assembly Master Mix (New England Biolabs) and/or the Q5® Site-Directed 

Mutagenesis Kit (New England Biolabs) such that each protein has a C-terminal hexa-

histidine epitope tag. For DNA assembly, DNA fragments were either amplified using 

Q5® High-Fidelity 2X Master Mix (New England Biolabs) or synthesized by Integrated 

DNA Technologies. Kits and master mixes were used according to the manufacturer’s 

instructions. Plasmids were initially transformed into NEB® 5-alpha F'Iq Competent E. 

coli (New England Biolabs) and confirmed using Sanger sequencing by GENEWIZ, Inc.  

 

A3.1.2 Protein expression and purification 

For initial screening for soluble protein expression of the proteins of interest, 

various cell lines and induction methods were used to purify protein for kinetic assays.505 

For expression and purification, OverExpressTM E. coli C41 (DE3) (Lucigen) cells were 

transformed with pET21b(+) plasmid constructed with the gene of interest. Single colonies 
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from transformation were then inoculated into a starter culture of Luria Broth (LB) media 

containing 100 μg/mL ampicillin and grown at 37°C overnight. The starter culture was 

inoculated at a 100- fold dilution into a 2xYT medium containing 100 μg/mL ampicillin 

and grown at 37°C until the optical density measured at 600 nM (OD600) reached 0.6-0.8. 

Protein expression was then induced by addition of isopropyl β-D-1-thiogalactopyranoside 

(IPTG) to a final concentration of 1 mM. Cells were maintained at 20°C for 18 to 24 hours 

following IPTG induction, harvested by centrifugation, and stored at -80°C until 

purification. Harvested cells were resuspended in a lysis buffer (300 mM NaCl, 10 mM 

imidazole, 20 mM Tris HCl, pH 8.0,) and lysed using a bead beater (BioSpec Products, 

Inc.). Lysate was clarified by centrifugation at 40,000 x g for 45 minutes. Clarified lysate 

was then applied to a 5 mL HisTrap HP (GE Healthcare) Ni-NTA column using an ÄKTA 

Pure chromatography system (GE Healthcare) and eluted using 300 mM NaCl, 300 mM 

imidazole, 20 mM Tris HCl, pH 8.0.  Resulting fractions containing proteins of interest 

were applied to a Sephacryl S-100 26/60 HR (GE Healthcare) size exclusion column 

equilibrated with 100 mM NaCl, 20 mM Tris HCl, pH 7.5 for biochemical assays, or the 

fractions were applied to a Superdex 75 pg 16/60 (GE Healthcare) size exclusion column 

equilibrated with 100 mM NaCl, 20 mM Tris HCl, pH 7.5 for crystallography. Protein in 

eluted fractions from Ni-NTA and size exclusion columns were assessed using SDS-PAGE 

with Coomassie staining and Western blot using primary antibody against the hexa-

histidine epitope tag (Invitrogen). Total protein was assessed by BCA assay.506 For proteins 

that did not express, or expressed in inclusion bodies, using the above described expression 

protocol, additional E. coli expression cell lines were tested, including Rosetta 2 (DE3) 

(Novagen), BL21 (DE3), and Lemo21 (DE3) (New England Biolabs), as was expression 
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by autoinduction at 30°C in ZYP-5052 media.505 All studies reported were performed with 

freshly purified protein. The use of lyophilized protein was attempted, however, 

specifically for MHETase, inconsistent enzyme inhibition behaviors were observed. 

Chimera proteins were expressed and purified as described above with the 

following noted exceptions: Single colonies from transformation into C41 (DE3) 

competent cells were used to inoculate a starter culture of 200 mL Terrific Broth (TB) 

media containing 100 µg/mL ampicillin for overnight outgrowth at 37°C. From the starter 

culture, 50 mL was used to inoculate 1 L of TB media containing 100 µg/mL ampicillin. 

For purification, cells were disrupted by sonication. In the final chromatography step a 

Superdex 200 pg 16/600 (GE Healthcare) size exclusion column equilibrated with 100 mM 

NaCl, 20 mM Tris HCl, pH 7.5 was used. 

 

A3.1.3 Crystallography 

After purification, as described above, MHETase protein was concentrated to a 

range of concentrations (9-14 mg/mL) and dialyzed into 100 mM NaCl, 10 mM Tris, pH 

7.0 for crystallography. For seleno-methionine labeling of MHETase, K-MOPS minimal 

media was used.507 Cells were grown to an OD600 of 0.5 after which 100 mg/L of DL-

seleno-methionine (Sigma), 100 mg/L lysine, threonine and phenylalanine, leucine, 

isoleucine and valine were added as solids. IPTG (1 mM final concentration) was then 

added after 20 min and cells were grown for a further 16 h at 20°C.  Seleno-methionine 

labeled protein was purified as described above. MHETase was crystallized at a range of 

concentrations from 9-14 mg/mL by sitting-drop vapor diffusion. Several conditions 
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yielded crystals, four of which were used to obtain datasets, one of which contained seleno-

methionine labelled protein. 

The crystals were cryo-cooled in liquid nitrogen after the addition of glycerol to 

20% (v/v) while leaving the other components of the mother liquor at the same 

concentration. Seleno-methionine MHETase crystals belonging to space group P22121 

were used to obtain phase information using the I03 beamline at the Diamond Light Source 

(Oxford, UK). Data were obtained from 3600 images collected at 0.9795 Å with 0.1° 

increments.  All images were integrated using XDS,508 and scaled using SCALA.509 Phases 

were obtained using PHASERSAD in the CCP4i software in combination with PARROT 

and SHELXD.510, 511 The initial output was subsequently built using BUCCANEER and 

further refined using iterative rounds of COOT and PHENIX.512-514  One molecule of 

MHETase was observed in the asymmetric unit of the P22121 seleno-methionine SAD 

dataset. Three additional native datasets, each containing 1800 images collected at 0.1° 

increments, were collected at beamline I03 of the Diamond Light Source. The structure of 

native MHETase were obtained using molecular replacement from a refined molecule of 

MHETase obtained initially from the seleno-methionine SAD data. All structures were 

refined using iterative rounds of COOT and PHENIX.512-514 Cell constants, 

crystallographic data and details of the refined models are summarized in Table A3.1.515 

Structural figures were generated with PYMOL (Schrödinger, LLC) with accompanying 

sequence alignments generated in Clustal W,516 and rendered using ESPript 3.0.517 

 

A3.1.4 Ligand synthesis 
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MHET, MHEI, and MHEF synthesis. Mono(2-hydroxyethyl) terephthalate 

(MHET) and mono(2-hydroxyethyl) isophthalate (MHEI) and mono(2-hydroxyethyl) 

furanoate (MHEF) were synthesized via the condensation of either terephthloyl chloride, 

isophthloyl chloride, or the acyl chloride of 2,5-furan dicarboxylic acid, respectively, with 

monoprotected ethylene glycol (tBOC-EG) which was subsequently deprotected to yield 

the final product.  

Initially, tBOC-EG was prepared by stirring one molar equivalent of ethylene 

glycol (EG) with one molar equivalent of di-tert-butyl decarbonate with 0.01 equivalents 

of 4-dimethylaminopyridine (DMAP) as a catalyst in dichloromethane (DCM). The 

reaction mixture was allowed to stir for 24 hours and was subsequently washed with DI 

water, 1 M HCl, and brine follow by drying with sodium sulfate. The solvent was removed, 

and the product was purified via silica gel column chromatography to yield the mono-

protected tBOC-EG.  The yield of this reaction was 60% at a final purity of 99+% (via 

NMR and HPLC).  

To form MHET, MHEI, or MHEF either one molar equivalent of terephthloyl 

chloride, isophthloyl chloride, or the acyl chloride of 2,5-furan dicarboxylic acid, 

respectively, was dissolved in DCM with one molar equivalent of tBOC-EG. One molar 

equivalent of triethylamine (TEA) was then added in dropwise over a period of 30 minutes. 

The reaction solution was subsequently washed with DI water and brine and then dried 

over sodium sulfate prior to removing the DCM. The crude product was subsequently taken 

up in a mixture of 10% acetone in DCM and purified via silica gel chromatography.  

NMR for MHET, MHEF, and MHEI is provided in Figures A3.18, A3.19, and A3.20, 

respectively. 
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A3.1.5 Enzyme activity and synergy with PETase 

Quenching enzymatic reactions. Previous studies of MHETase activity report the 

use of an equal volume of pH 2.5 sodium phosphate buffer and a heat treatment at 80-85°C 

for 10 min to quench enzymatic activity.85, 518 We found this to be an inconsistent method 

of quenching enzyme activity, such that some level of enzyme activity continues after 

treatment, as quantified by HPLC analysis. To determine a reliable method for quenching 

enzymatic activity we performed quenching trial experiments in triplicate for reactions 

containing 250 µM MHET, 90 mM NaCl, 10% (v/v) DMSO, 45 mM sodium phosphate, 

pH 7.5, at 30°C, for both reactions containing enzyme in order to compare the quenching 

capacity of a given method, and reactions without enzyme to evaluate the level of non-

enzymatic hydrolysis caused by the treatment method. Quenching solution components 

intended to denature the enzyme, such as a reducing agent (TCEP), chaotropic agent 

(GuHCl), or strong acid (6N HCl) proved either inadequate to completely quench 

enzymatic activity, or rather resulted in high levels of acid-mediated hydrolysis of the 

substrate. The active-site inhibitor PMSF inconsistently quenched enzymatic activity. 

Polar solvents (ethanol, methanol, and Isopropanol) were most effective at quenching 

enzymatic activity. The quenching solutions used are summarized in Table A3.6. Based on 

the results, an equal volume of 100% methanol followed by a heat treatment at 85°C for 

10 min was selected as the most reliable method of quenching, which also yields the lowest 

levels of non-enzymatic hydrolysis of MHET. 

Determination of enzyme turnover rates. Comparative assays for each enzyme were 

performed at the same enzyme and substrate concentration. Reactions were performed in 
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triplicate over a 15 min time course using 5 nM enzyme concentration and 250 µM MHET 

in 90 mM NaCl, 10% (v/v) DMSO, 45 mM sodium phosphate, pH 7.5, at 30°C. Reactions 

were terminated using an equal volume of 100% methanol followed by heat treatment at 

85°C for 10 min. Product and substrate were quantified by HPLC. Apparent turnover rate 

(kcat) was determined by terephthalic acid (TPA) produced. 

Michaelis-Menten kinetics of MHETase and variants. Reactions were performed in 

triplicate over a 10 min time course using 5 nM enzyme and substrate concentrations 

ranging from 10 μM to 250 μM MHET in 90 mM NaCl, 10% (v/v) DMSO, 45 mM sodium 

phosphate, pH 7.5, at 30°C. Each reaction was terminated using an equal volume of 100% 

methanol and heat treatment at 85°C for 10 min. Product and substrate were quantified by 

HPLC. Initial reaction velocities were calculated from TPA produced over time and kinetic 

parameters were determined by nonlinear regression of the initial velocities fit to the 

Michaelis-Menten equation. The wild-type MHETase and both homologous enzymes were 

fitted to the Michaelis-Menten model with substrate inhibition (Equation A3.1) while the 

MHETase S131G mutant was fitted to the simple Michaelis-Menten model (Eq. 2) using 

GraphPad Prism version 8.4.1 for MacOS (GraphPad Software, San Diego, California 

USA), as follows: 

𝑣 =  
𝑉𝑚𝑎𝑥 [𝑆]

𝐾𝑚 + [𝑆](1 +
[𝑆]
𝐾𝑖

)
 

(A3.1) 

𝑣 =  
𝑉𝑚𝑎𝑥 [𝑆]

𝐾𝑚 + [𝑆]
 

(A3.2) 

While both substrate inhibition and product inhibition are possible in these 

reactions, the relationship between initial reaction velocity and initial substrate 

concentration indicates substrate inhibition predominates in these reaction conditions. Low 
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substrate concentrations were considered in these kinetic studies in order to minimize the 

effect of substrate inhibition.  

Enzymatic degradation of PET film. Amorphous PET film (2-3% crystallinity, 

Goodfellow, UK) was incubated with enzyme of interest in polypropylene tubes containing 

90 mM NaCl, 10% (v/v) DMSO, 45 mM sodium phosphate, pH 7.5, at 30°C for 96 hours. 

The reaction was terminated by addition of equal volume 100% methanol and PET coupons 

were removed from the reaction solution. The reaction solution was heat treated at 85°C 

for 10 minutes. PET coupons were washed with consecutive rinses of 1% SDS, 100% 

DMSO, ultrapure water, and 95% ethanol. Coupons were then vacuum dried for 24 h at 

60°C for scanning electron microscopy.  

Activity assay of MHETase with non-MHET substrates. Evaluation of MHETase 

activity was performed in triplicate using 5 nM enzyme concentration and 25 µM, 50 µM, 

and 250 µM substrate concentration at 30°C for 24 h in a 0.5 mL reaction volume. The 

reaction was carried out in 90 mM NaCl, 10% (v/v) DMSO, 45 mM sodium phosphate, pH 

7.5, reaction buffer with three concentrations of each substrate (MHET, MHEI, or MHEF). 

Reactions commenced upon addition of enzyme or an equal volume of reaction buffer for 

the no enzyme controls. At the end of 24 h the reactions were terminated using an equal 

volume of 100% DMSO and heat treatment at 85°C for 10 min. Product and substrate were 

analyzed by HPLC. Values reported as percentage of substrate hydrolyzed into product.  

HPLC method. Standards of BHET, TPA, 2,5-furandicarboxylic acid, and 

isophthalate were obtained from Sigma Aldrich. MHET, MHEI, and MHEF were 

synthesized as described above. Analyte analysis of samples was performed on an Agilent 

1260 LC system (Agilent Technologies, Santa Clara, CA) equipped with a G1315A diode 
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array detector (DAD). Each sample and standard were injected using a volume of 10 µL 

onto a Phenomenex Luna C18(2) column, 5 μm, 4.6 x 150 mm (Phenomenex, Torrance, 

CA). The column temperature was maintained at 40°C and the mobile phase used to 

separate the analytes of interest was composed of 20 mM phosphoric acid in water (A) and 

100% methanol (B). The separation was carried out using a constant flow rate of 0.6 

mL/min and a gradient program of: at t = 0 min (A) = 80% and (B) = 20%; at t = 15 min 

(A) = 35% and (B) = 65%; at t = 15.01 min through 20 min (A) = 80% and (B) = 20% for 

a total run time of 20 min. The calibration curve for each analyte was evaluated between 

concentrations of 0.1 – 200 mg/L. DAD detection at a wavelength of 240 nm was 

performed for each analyte. Ten calibration standards were used with an r2 coefficient of 

0.995 or better and a calibration verification standard (CVS) at 100 mg/L for each analyte 

was analyzed every 18 samples to ensure the integrity of the initial calibration.  Samples 

were diluted with an equal volume of ultrapure water for analysis. 

 

A3.1.6 Scanning Electron Microscopy.  

Dried PET coupons sized 2.5 cm x 0.5 cm were placed on aluminum stubs using 

carbon tape, and were sputter coated with 9 nm of iridium. SEM imaging was performed 

using an FEI quanta 400 FEG instrument under low vacuum (0.45 torr), beam-accelerating 

voltage of 25 keV. 

 

A3.1.7 Bioinformatics 

Sequence selection and conservation analysis. 6,671 tannase family sequences 

were retrieved by a PSI-BLAST search against the NCBI non-redundant database with Is 
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MHETase (A0A0K8P8E7.1) as initial query sequence on November 16, 2018. A total of 

three iterations of the PSI-BLAST search were carried out, and all 6,671 hits had E-values 

of 1e-50 or better. A multiple sequence alignment of the 6,671 tannase family sequences 

was carried out with MAFFT 519. The amino acid conservation at each site of the multiple 

sequence alignment was evaluated by computing the relative entropy according to the 

following equation:520 

R. E =  ∑ (pilog
pi

pi
MSA

)

20

i=1

 

(A3.3) 

 

where pi is the frequency of the ith amino acid in the given site and pi
MSA is the overall 

frequency of the ith amino acid in the multiple sequence alignment.  

Phylogenetic analysis. Through a keyword search of the NCBI protein database 

(https://www.ncbi.nlm.nih.gov/protein) with BioPython,521 functional annotation for the 

6,671 sequences was retrieved. From the sequence description in the NCBI database, 338 

and 51 sequences of the 6,671 sequences were clearly annotated as ferulic acid esterases, 

or as tannases, respectively. Profile hidden Markov models (HMMs) were constructed for 

ferulic acid esterases and tannases with the dataset of 338 and 51 sequences, respectively, 

using the HMMER software (version 3.1b2).522 Sequence identity thresholds of 95% and 

60% were, respectively, applied to the set of 338 ferulic acid esterases and 51 tannases 

resulting in a set of 120 sequences (86 FAEs, 31 tannases, Is-MHETase, and 2 Is-MHETase 

close homologs). The 120 sequences were aligned with MAFFT519 and phylogenetic 

analysis with 1000 bootstrap replicates was conducted in MEGA7.523 For the phylogenetic 

tree, the evolutionary distances were computed using the JTT matrix-based method.524 The 

https://www.ncbi.nlm.nih.gov/protein
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minimum evolution tree was searched using the Close-Neighbor-Interchange (CNI) 

algorithm172 at a search level of 1, and the Neighbor-joining algorithm525 was used to 

generate the initial tree. Gaps in the alignment were handled using pairwise deletion. There 

were a total of 1440 positions in the final dataset. 

Identification of homologous enzymes. MHETase shares low sequence similarity 

(<53%) with most sequences in the tannase family, with the exception of two homologous 

sequences, one from Comamonas thiooxydans (strain: NCBI:txid363952, protein: 

Genbank WP_080747404.1) (24) and one from Hydrogenophaga sp. PML113 (strain: 

NCBI:txid1899350, protein:Genbank WP_083293388.1). In the time since identification 

of this C. thiooxydans sequence, this accession entry was removed from Genbank upon 

request of the submitter. Three other strains of C. thiooxydans also carry this sequence 

(protein:Genbank WP_034389536.1), though lacking 28 residues at the N-terminus. These 

include C. thiooxydans strains DS1 (protein:INSDC KGH18114.1), DF1 (protein:INSDC 

KGH28153.1), and DF2 (protein:INSDC DGH05124.1). Using the original protein 

accession sequence (WP_080747404.1), SignalP prediction indicates the sequence encodes 

a 70-residue signal sequence. We attempted expression of both C. thiooxydans and 

Hydrogenophaga sp. PML113 enzymes without the predicted signal peptide, however the 

enzymes did not express. 

 

A3.1.8 Molecular docking 

MHETase structure preparation. MHETase structure was taken from starting 

structures used for molecular dynamics simulations. The MHETase structure was prepared 

with Schrodinger’s Protein Preparation Wizard in Schrodinger).526-528 PropKa was used to 
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optimize hydrogen bonds at pH 7.0; OPLS3 force field529 was used to conduct a restrained 

minimization on all heavy atoms (to ensure less than 0.30 Angstrom deviation from starting 

structure position).  

Ligand structure preparation. MHET and MHEI structures were built in 

Schrodinger using Maestro Workspace tools. All ligands were energetically minimized 

using Schrodinger LigPrep,530 according to OPLS3 force field.531 Ionization states of 

MHET and MHEI were requested with Epik at pH of 7.0, 532, 533 although no additional 

ionization states were generated.   

Flexible ligand/flexible receptor docking. Induced Fit Docking (IFD) is 

Schrodinger’s flexible ligand/flexible receptor docking tool.530, 532, 534-536 IFD utilizes two 

other Schrodinger modules, Prime for amino-acid side chain prediction and refinement, 

and Glide for ligand docking, to achieve binding site flexibility during docking simulations. 

Ligands were docked into MHETase active site (determined by co-crystallization with 

benzoic acid) by trimming (mutating and back-mutating) all residues within 5 Å of the 

catalytic triad, except for the catalytic triad. This was necessary as attempts to mutate 

catalytic triad residues to Alanine then back-mutate after initial docking (as is procedure in 

IFD) would result in chemically incompetent catalytic triad residues. After docking and 

amino-acid refinement, binding modes were scored and ranked using the Glide XP scoring 

function. Resultant predicted binding poses were then analyzed to determine if each pose 

would result in cleavage of an ester bond, such poses were determined to be chemically 

relevant. Those chemically relevant poses with the lowest predicted binding free energies 

(i.e. lowest Glide XP score) are discussed in detail in the Results.  
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A3.1.9 Molecular simulations 

The starting point for molecular dynamics (MD) simulations was chain A of the 1.8 

Å resolution structure (PDB code 6QZ4). This structure was chosen because it has electron 

density for the widest range of residues (6QZ3 lacks residues 36-39 and 6QZ1 lacks 

residues 56-60). The bound calcium ion and the crystal waters are maintained (sulfate is 

deleted). For a variety of residues with alternate conformations, conformation A was 

chosen for the following: Ser143, Ile149, Ser240, and Asn403. Conformation B was chosen 

for Ser401 and Leu486. Initial proposal for protonation states was given by H++ server 

(http://biophysics.cs.vt.edu/H++) at pH 7.0,537 consistent with Yoshida et al. reaction 

conditions.518 Of the acidic residues (glutamic and aspartic acid), Glu230 was determined 

to be protonated. For histidine residues, His91 and His528 are singly protonated at ND1, 

His293, His 467, and His488 are singly protonated at NE2, and His166 and His241 are 

doubly protonated. The overall charge on MHETase with these protonation states is -6; 6 

sodium ions were added to the solution phase to neutralize. Five disulfides are formed: 

Cys51 - Cys92, Cys224 - Cys529, Cys303 - Cys320, Cys340 - Cys348, and Cys577 - 

Cys599. 

All simulations were built using CHARMM version 43a1,329 and simulated with 

the CHARMM36 force field for the protein,538 CHARMM force field for carbohydrates, 

539, 540 and TIP3P water molecules.541 Topologies and forcefield parameters for MHET 

were generated by CGenFF program version 2.2.0, 542, 543 for use with CGenFF forcefield 

version 4.0.544, 545 

The simulation box is cubic, with each box side approximately 110 Å long. 

Approximately 132,000 atoms are modeled in each system. Classical MD simulations of 
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150 ns in length were run in triplicate for the following five scenarios: 1), 2) free MHETase 

(no substrate bound) with calcium ion bound at calcium binding site (Phe415 open and 

closed), 3), 4) MHETase with MHET bound at active site with calcium ion bound at 

calcium binding site (Phe415 open and closed), and 5) free MHETase with neither substrate 

nor calcium ion bound (Phe415 open). For the simulations with bound MHET, the initial 

state was prepared as follows. Near neutral pH, MHET exists in solution as a salt, thus the 

carboxylate moiety of MHET is deprotonated in our simulations (for reference, the pKa of 

the first and second acidic moieties of TPA are 3.54 and 4.46 at 25°C (PubChem)). The 

initial configuration for MHET bound at the active site of MHETase was prepared in the 

following manner. Is PETase, bound with PET tetramer from a prior molecular docking 

study,546 was trimmed back to a hydroxyethyl-capped PET dimer maintaining the ester 

bond nearest to the catalytic triad as well as the repeat units on either side. Following MM 

and QM/MM minimization, restraints were placed on two distances in order to prepare an 

enzyme-substrate configuration primed for catalysis: the nucleophilic attack distance 

between Ser225 oxygen and PET carbon (target: 2.0 Å), and the scissile C-O ester bond 

distance (target: 1.4 Å). Force constants of 200 kcal/mol/Å2 were utilized in both cases. 

The catalytic residues of MHETase were then aligned with those of PETase. Subsequently 

trimming the PET dimer back to the heavy atoms it shares in common with MHET gave 

the starting point for MD simulations with MHET bound. 

All classical MD simulations were performed at 303 K to match the conditions for 

hydrolytic assays performed by Yoshida et al.518 Systems were density equilibrated for 1 

ns at a constant pressure of 1 atmosphere and constant temperature of 303 K (controlled 

via the Nosé-Hoover barostat and thermostat); subsequent production runs were performed 
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with constant volume and temperature (303 K) in NAMD 2.9.330 All bonded hydrogen 

distances were constrained utilizing the SHAKE algorithm.547 The timestep was 2 fs. A 

nonbonded cutoff distance of 10 Å was utilized, with a switching distance of 9 Å, and a 

nonbonded pair list distance of 13 Å. The long-range electrostatics were described via the 

Particle Mesh Ewald (PME) method with a sixth order b-spline, a Gaussian distribution 

with a width of 0.312 Å, and 1 Å grid spacing. The velocity Verlet multiple timestepping 

integration scheme was used, with the full nonbonded interactions evaluated every 

timestep, full electrostatics interactions evaluated every 3 timesteps, and 6 timesteps 

between atom reassignments.  

Following 1 ns of dynamics with classical forcefield, the CHAMBER utility548 of 

ParmEd version 3.0.3 was used to convert the CHARMM coordinate, topology, parameter, 

and protein structure files to AMBER formatted coordinate and topology files for hybrid 

quantum mechanics/molecular mechanics (QM/MM) simulations by the sander program 

of AMBER version 12.549 The AMBER software was used to carry out all QM/MM 

calculations,360, 550 with the Self-Consistent Charge Density-Functional Tight-Binding 

(SCC-DFTB) semiempirical QM method using the Third-Order Parameterization for 

Organic and Biological Systems (3OB) to describe the QM region.333 An 8 Å cutoff was 

used for nonbonded interactions and PME used for long-range electrostatics. Periodic 

boundary conditions were utilized, the timestep was 1 fs, and SHAKE was applied only to 

hydrogen atoms in the MM region (hydrogen atoms in the QM region were not constrained 

by the SHAKE algorithm). The Langevin thermostat and barostat were utilized with 

collision frequency of 1.0 ps-1 and pressure relaxation time of 2.0 ps.  
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The QM region includes the MHET substrate and the three catalytic residues 

(Ser225, Asp492, and His528, each cut across the Cα/Cβ bond). For step 1 of the catalytic 

mechanism (acylation), there are 46 atoms in the QM region, with a QM region charge of 

-2. Hydrogen link atoms are utilized where covalent bonds cross the boundary between the 

QM and MM regions. For step 2 of the catalytic mechanism (deacylation), the ethylene 

glycol product is removed (as it was shown to leave the active site after the acylation step) 

and a single water molecule is added to the QM region, giving 39 atoms in the QM regions 

still with a charge of -2.  

Two-dimensional free energy surfaces were prepared for acylation and deacylation 

via umbrella sampling simulations of each step. Order parameters utilized as reaction 

coordinates for both steps are the breaking and forming C-O bonds. For acylation, this is 

the breaking MHET ester bond (“r1”) and the forming AEI bond between S125 and MHET 

carbonyl carbon (“r2”). For deacylation, this is the forming bond between water oxygen 

(“r1”) and MHET carbonyl carbon and the breaking AEI bond between TPA and S125 

(“r2”). Harmonic restraints are placed on these distances with force constant of 400 

(kcal/mol)/Å2. Windows are spaced by 0.1 Å increments for each of the two bonds 

(acylation: r1 between 1.3 and 3.4; r2 between 1.3 and 2.9; deacylation: r1 between 1.3 and 

3.4; r2 between 1.3 and 3.9, neglecting some combinations that are particularly high energy 

in each case). Umbrella sampling simulations are performed in the NVE ensemble. Each 

window is equilibrated for 25 ps; data is collected on subsequent 500 ps. The variational 

free energy profile (vFEP) method551 was utilized to produce the two-dimensional free 

energy profile from the probability distributions of each window. Block averaging (10 
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blocks for each set of umbrella sampling data) was utilized to estimate error bars on the 

free energy differences and reaction rate constants.   

To aid in the visualization of the acylation and deacylation reactions in Is 

MHETase, QM/MM transition path sampling (TPS) simulations were undertaken.552 In 

particular, the Aimless Shooting (AS) flavor of TPS was employed.553, 554 TPS is a 

powerful technique for studying rare events because the trajectories that it generates are 

completely unrestrained and do not bias the reaction along any chosen reaction 

coordinate.552 The AS variety has only one adjustable parameter (dt, which here is equal to 

25 fs). The simulation time for each MHETase AS trajectory is 2 ps, which was sufficient 

for the trajectory to relax to both stable basins for reactant and product. Other simulation 

parameters, including the QM region, forcefield, timestep, cutoff distances, etc. are the 

same as in the QM/MM two-dimensional umbrella sampling simulations, described above. 

Path sampling simulations were undertaken purely for illustrative purposes; no data was 

analyzed from these trajectories. For both acylation and deacylation, the initial 

configuration (which represents a configuration that is putatively part of the transition state 

ensemble) was taken from the end point configuration of the US window restrained to 

distances of 1.9 Å for both the breaking and forming C-O bonds. For acylation, 6 out of 21 

trajectories were accepted (meaning they connected reactants to products). For deacylation, 

13 out of 23 trajectories were accepted. For both acylation and deacylation, the movie was 

made from the last accepted trajectory. 
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A3.2 Supplementary Figures 

A 

 

B 
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Figure A3.1: (A) Sequence alignment and secondary structure homology. The core 

sequence of Ideonella sakaiensis MHETase (residues 80-600) is shown aligned to PETase 

with regions of strong structural homology boxed in pink for common α-helices and boxed 

in blue for common β-strands. The lid domain is boxed in dark grey. The secondary 

structure elements are labelled according to the standard /β hydrolase nomenclature with 

α-helices depicted as spirals, β-strands as arrows, and numbering corresponding to the 3-

dimensional representation presented in Figure A3.1D. Similar residues are shown in red 

text with identical residues in solid red boxes. B) Active site comparison of MHETase 

(PDB code 6QZ3) and PETase (PDB code 6EQE). Where two residues indices are given 

separated by a backslash, the first number applies to MHETase and the second to PETase. 

Lid domain of MHETase is shown in dark gray.  
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Figure A3.2: Alternate positions of residue Phe415 captured in multiple crystal structures. 

(A) The apo-structure (PDB ID: 6QZ4) with Phe415 depicted in yellow in the open 

conformation. The active site is populated with several water molecules (cyan spheres). 

The 2Fo–Fc electron density map was contoured at 1.3 σ. (B) A mixed conformation of 

Phe451 (orange) was refined in structure PDB ID: 6QZ1. Electron density for the benzoic 

acid (purple) was weaker than the surrounding residues, suggesting that the site it not fully 

occupied; hence the alternative positions shown here likely represent a mixture of bound 

and free states. The 2Fo–Fc electron density map was contoured at 0.5 σ to highlight the 

dual conformation. (C) The fully bound form of benzoic acid in the active site (PDB ID: 

6QZ3) reveals Phe415 (green) in the closed conformation. The 2Fo–Fc electron density 

map was contoured at 1.3 σ. (D) As a point of reference to Figure A3.1C, the concerted 

movement of residues Gln410 and Phe415 on ligand binding is illustrated with purple 

arrows in a superposition of the apo enzyme (yellow) with the ligand bound state (green). 

The relative position of benzoic acid is depicted in purple. 
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Figure A3.3: Effect of calcium binding on MHETase motion from molecular dynamics 

simulations. A) Root mean square fluctuations (RMSF) for the heavy atoms of each 

MHETase amino acid (backbone and side chain atoms) for three different situations. “Free 

MHETase” refers to MHETase bound with neither calcium ion nor MHET. “Ca2+ bound” 

has calcium bound at the calcium binding site but with empty active site. “Ca2+ and MHET 

bound” has calcium bound at calcium binding site and MHET bound at the active site. Each 

trace represents the average RMSF from three independent MD trajectories, each of 150 

ns in length. RMSF analysis was performed in CHARMM. Shown in dashed boxes are the 

lid domain, the region immediately surrounding the Ca2+ binding site, and the loop region 

near the active site that is significantly stabilized by Ca2+ binding (approximately residues 

125 through 150 and appearing in red in panel B). B) MHETase structure colored by the 

RMSF difference between “Free MHETase” (purple trace in panel A) and “Ca2+ bound” 

(orange trace in panel A) showing the regions wherein Ca2+ significantly stabilizes the 

enzyme (red), regions where there is little effect (white/pink), and those regions where the 

trend is actually reversed (blue).  
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Figure A3.4: Molecular dynamics of MHET binding at MHETase active site. The 

distances noted represent the average ± standard deviation from three independent MD 

simulations, each of 150 ns in length. Gly132 and Glu226 comprise the oxyanion hole and 

interact with the carbonyl oxygen in the Michaelis complex and throughout the acylation 

reaction; Arg411 and Ser416 interact strongly with the carboxylate motif.  
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Figure A3.5: Time-traces for key distances in MD simulations of MHET bound at 

MHETase active site. Panels B-J show the dynamic time traces for the distances annotated 

in panel A. These are the same distances for which averages and standard deviations are 

shown in Figure A3.4. The three simulations referenced in each panel are identical MD 

simulations of 150 ns in length.  
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Figure A3.6: One-dimensional potentials of mean force (PMF) for acylation and 

deacylation steps. PMFs along the minimum free energy path (MFEP) for A) acylation 

reaction and B) deacylation reaction. The MFEPs were computed from the two-

dimensional free energy surfaces. These 1D PMFs represent the free energy along the 

MFEP.  
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Figure A3.7: Post-acylation simulation of active site and reaction products. Water floods 

the active site after ethylene glycol (EG) leaves the active site post-acylation, as indicated 

by molecular dynamics simulations. Three independent MD trajectories with classical 

forcefield were run of the acyl-enzyme intermediate (AEI) immediately following the first 

chemical step (acylation). In all three simulations, EG leaves the active site within 4 ns. 

Results from one such trajectory are shown A) in the first 100 ps after acylation and B) in 

the time period 400-500 ps after acylation. EG leaves the active site in the intervening time. 

Water molecules within 3 Å of both the carbonyl carbon of the AEI and NE2 atom of 

His528 are shown every 2 ps. The backbone trace and catalytic residues of MHETase are 

shown in white cartoon and sticks representation, respectively. Purple sticks show the 

terephthalic acid moiety of the AEI and EG. Analysis and image were created in VMD.555 
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Figure A3.8: Conservation analysis of 6,671 tannase family sequences. A) Conservation 

scores (relative entropy) of positions in tannase family sequences, plotted against the 603 

positions in MHETase. A higher relative entropy implies a greater level of amino acid 

conservation in the site. B) Conservation scores of active-site residues in MHETase within 

6 Å of the MHET substrate, including Gln410 (6.3 Å). Conservation scores are shown as 

percentiles. Ala257, Gln410, Arg411, Phe415, and Ser416 are the least conserved active-

site positions in the active site and are more variable than 81% of all positions in MHETase. 

C) Closest distance between atoms of MHETase active-site residues and the MHET 

substrate. The molecular coordinates for MHETase bound with MHET are the same as 

those in the model from which the molecular simulations were started. 
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Figure A3.9: Amino acid frequencies of active-site positions in MHETase within 6 Å of 

the MHET substrate, including Gln410 (6.3 Å). The frequency of amino acids for each 

position was determined from a MAFFT multiple sequence alignment of 6,671 tannase 

family sequences. The positions are named using Is MHETase numbering, and the red bars 

indicate the amino acids in Is MHETase. 
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Figure A3.10: Disulfide bond cysteines in 6,671 tannase family sequences. A) 

Conservation of Cys positions forming five disulfide bonds in MHETase. Conservation 

scores are shown as percentiles. Ao FAEB-1 has a 6th disulfide bond between Cys76 and 

Cys129 which are very variable positions and are less conserved than 98% of positions in 

multiple sequence alignment. B) Histogram of Cys occurrence in tannase family sequences 

showing the rarity of a 6th disulfide bond. Assuming, all Cys form disulfide bonds, less 

than 8% of tannase family sequences have six disulfide bonds. 
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Figure A3.11: Phylogenetic analysis of 120 tannase family sequences with minimum 

evolution method and 1000 bootstrap replicates.  Nodes with bootstrap values between 

75% and 100% are indicated with gray circles having sizes that are proportional to the 

bootstrap values. Multiple sequence alignment was conducted with MAFFT, and the 

phylogenetic analysis was conducted with MEGA7. Comamonas and Hydrogenophaga are 

the close MHETase homolog sequences, with accession codes WP_080747404.1 and 

WP_083293388.1, respectively. AoFAE-B1 and AoFAE-B2 correspond to the Aspergillus 

oryzae ferulic acid esterases, Q2UP89.1 (PDB 3WMT) and Q2UMX6.1 (PDB 6G21), 

respectively, which in addition to the recently deposited structures for MHETase (PDB 

6QZ1, 6QZ2, 6QZ3, and 6QZ4), the structure from Palm et al. (PDB 6QG9),85 and 
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Fusarium oxysporum (PDB 6FAT), are currently the tannase family sequences with solved 

crystal structures. From the tree, it is clear that FAEs (solid lines) are more phylogenetically 

similar to MHETase (also shown in solid line) than tannases (dashed lines). 
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Figure A3.12: Validation by NMR of synthesized mono-(2-hydroxytheyl)-isophthalate. 

1H NMR spectrum of MHEI with peak assignments. Integration and peak splitting confirm 

MHEI was formed and that the product is not BHET. 
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Figure A3.13: Validation by NMR of synthesized mono-(2-hydroxytheyl)-furanoate. 1H 

NMR spectrum of MHEF with peak assignments. Integration and peak splitting confirm 

MHEF was formed and that the product is not BHET. 
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Figure A3.14: Validation by NMR of synthesized mono-(2-hydroxytheyl)-terephthalate. 

1H NMR spectrum of MHET with peak assignments. Integration and peak splitting confirm 

MHET was formed and that the product is not BHET. 

  

O

O

HO

O

OHa
b

a,b

c

c

d

de

e

f

f

H2O

DMSO

TMS



 

 

 

312 

 

 

Figure A3.15: Flexible molecular docking studies indicate low energy, catalytically active 

binding mode for MHET, but not MHEF or MHEI. MHET (purple sticks), MHEF (yellow 

sticks), MHEI (green sticks) from flexible docking studies with MHETase binding site 

(grey sticks and ribbons) with ligand visualized in three different ways. A) Enzyme 

backbones aligned bound with MHET and MHEF. B) Alignment of the carboxylate moiety 

of MHEF to the carboxylate moiety of MHET, in which case the MHEF carbonyl does not 

lie in the oxyanion hole (as well as the ester bond being located far from the catalytic 

residues). C) Alignment of the carbonyl of MHEF to the carbonyl of MHET, in which case 

the carboxylate is out of range to interact with Arg411. D) Enzyme backbones aligned 

bound with MHET and MHEI. E) Alignment of the carboxylate moiety of MHEI to the 

carboxylate moiety of MHET, presenting similar issues as with MHEF. F) Alignment of 

the carbonyl from MHEI to the carbonyl of MHET. The overlaid binding scores represent 

the lowest energy binding score for catalytically competent poses (i.e. wherein the catalytic 

triad was intact).  
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Figure A3.16: SEM of amorphous PET film after 96 h enzyme treatment at 30°C. 

Digestion conditions represent treatment with no enzyme, treatment with 0.4 mg 

MHETase/g PET, treatment with 0.4 mg PETase/g PET, simultaneous treatment with 0.4 

mg PETase and 0.4 mg MHETase/g PET, and treatment with each chimeric enzyme 

corresponding to samples presented in Figure A3.4D.  
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Figure A3.17: Evolutionary analysis by Maximum Likelihood method of known and 

putative TPA gene clusters. MUSCLE multiple sequence alignment of known and putative 

TPA gene clusters and prediction of the best evolution model were performed using MEGA 

X 556. The evolutionary history was inferred by using the Maximum Likelihood method 

and General Time Reversible model 172. The tree with the highest log likelihood (-

27899.85) is shown. The percentage of trees in which the associated taxa clustered together 

is shown next to the branches. Initial tree(s) for the heuristic search were obtained 

automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise 

distances estimated using the Maximum Composite Likelihood (MCL) approach, and then 

selecting the topology with superior log likelihood value. A discrete Gamma distribution 

was used to model evolutionary rate differences among sites (5 categories (+G, parameter 

= 0.9655)). The rate variation model allowed for some sites to be evolutionarily invariable 

([+I], 17.46% sites). The tree is drawn to scale, with branch lengths measured in the number 

of substitutions per site. This analysis involved 9 nucleotide sequences. All positions with 
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less than 95% site coverage were eliminated, i.e., fewer than 5% alignment gaps, missing 

data, and ambiguous bases were allowed at any position (partial deletion option). There 

were a total of 4369 positions in the final dataset. Evolutionary analyses were also 

conducted in MEGA X. Accession numbers for source sequences used are AB238679 for 

Comamonas sp. E6, FOKN01000001 for Delftia tsuruhatensis, NZ_AWTM01000090 for 

Comamonas thiooxydans DS1, NZ_BBYR01000104 for Ideonella sakaiensis, 

NZ_MIYM01000023 and NZ_MIYM01000001 for Hydrogenophaga sp. PML113 

clusters I and II, respectively, CP000271 for Paraburkholderia xenovorans LB400, 

NC_008269 for Rhodococcus jostii RHA1, and AY502076 for Rhodococcus sp. DK17. 
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Figure A3.18: Schematic representation of putative TPA catabolic gene clusters in 

Hydrogenophaga sp. PML113 and Comamonas thiooxydans DS1, compared to Ideonella 

sakaiensis. A frame-shift in the I. sakaiensis tphR coding sequence results in a truncated 

protein. Searches against the genomes of C. thiooxydans strains DF1 and DF2 returned 

partial sequences due to short contig lengths. 
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Figure A3.19: Sequence identity matrices for putative TPA catabolic proteins. Identity 

values obtained from pairwise alignments performed by Clustal Omega.557 
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A3.3 Supplementary Tables 

Table A3.1. Crystallographic data, model refinement, and crystallization conditions of Is-

MHETase. 

Data set SeMet 

 

Native 1 

 

Native 2 

 

Native 3 

 

Space Group  P22121 P22121 P212121 P1 

Wavelength (Å)  0.9795 0.9795 0.9795 0.9795 

Resolution Range (Å) 49.30 - 1.60 46.00 - 1.70 46.24 - 1.80 95.29 - 1.90 

Unique reflections 84000 70855 122377 506864 

Completeness (%)a 99.8 (98.9) 99.6 (98.0) 98.2 (96.9) 93.7 (92.4) 

Anomalous Completeness 

(%)a  
99.8 (98.5)    

Rmergeb  0.063 (0.511)  0.056 (0.584) 0.067 (0.550) 0.057 (0.254) 

CC(1/2)c 0.999 (0.902)  0.999 (0.900) 0.999 (0.914)  

Multiplicityd  12.6 (11.0)  6.4 (6.5) 6.7 (6.6) 1.7 (1.7) 

Anomalous Multiplicityd 6.6 (5.6)     

I/σIa   20.2 (4.6) 15.4 (3.1) 14.7 (2.9) 7.1 (2.6) 

 a = 77.37 Å, 

b = 89.02 Å, 

c = 91.64 Å 

a = 77.20 Å, 

b = 89.88 Å, 

c = 92.00 Å 

a = 90.21 Å, 

b = 92.80 Å, 

c = 159.99 Å 

a = 110.49 Å, 

b = 135.63 Å, 

c = 138.15 Å, 

α = 83.09o, 

β = 67.91o, 

 = 67.57o 

     

Model Refinement     

Resolution Range (Å)  45.82 - 1.60 46.00 – 1.70 46.24 - 1.80 46.46 – 1.90 

No. of residues:  A: 40-55, 62-603 A: 40-55, 61-603 A: 36-603, 

B: 36-603 

A: 42-603 , B:43-603, 
C: 43-603, D: 43-603, 

E:  43-603, F: 43-603, 

G: 41-603, H: 42-603, 

I: 43-603, J: 43-603 

No. of water, ligands 748,  1 Ca, 1 benzoic 

acid  

552, 1 Ca, 1 benzoic 

acid  

1407, 2 Ca 6125, 10 Ca 

Rwork/Rfree (%)e 16.20 (17.80)  16.45 (19.18) 18.24 (20.51) 18.54 (20.54) 

B averagef  25.8 32.5 30.9 28.8 

Geometry bond, anglesg

  

0.003, 0.613 0.008, 0.900 0.005, 0.715 0.003, 0.576 

Ramachandranh  97.47, 0.0 97.48, 0.2 97.0, 0.0 97.07, 0.02 

Molprobity Clash Score 1.61 1.85 3.70 4.15 

Beamline I03 I03 I03 I03 

PDB IDi  6QZ3 6QZ1 6QZ4 6QZ2 

a Signal to noise ratio of intensities, highest resolution bin in brackets. b Rm : ∑h∑i|I/(h,i) - 

I(h)|⁄∑h∑i /I(h,i) where I(h,i) are symmetry-related intensities and I(h) is the mean intensity 

of the reflection with unique index h . c CC1/2 is the correlation coefficient of the mean 

intensities between two random half-datasets. d Multiplicity for unique reflections. e 5% of 
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reflections were randomly selected for determination of the free R factor, prior to any 

refinement. f Temperature factors averaged for all atoms. g RMS deviations from ideal 

geometry for bond lengths and restraint angles (9). h Percentage of residues in the ‘most 

favoured region’ of the Ramachandran plot and percentage of outliers (MOLPROBITY).558 

iProtein Data Bank identifiers for coordinates.   

Crystallography conditions: SeMet; 0.1 M sodium cacodylate (pH 6.5), 9% PEG 8000.  

Native 1; 0.1 M sodium acetate (pH 5.5), 24% PEG 5000 MME.  Native 2; ammonium 

acetate (pH 4.5), 22.5% PEG 10000.  Native 3; 0.1 M sodium citrate (pH 5.5), 1.0 M 

ammonium phosphate monobasic. All conditions used 20% glycerol as a cryoprotectant. 
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Table A3.2. Tannase family sequences used in phylogenetic analysis. 

 Accession Annotation Organism Taxon 

1 A0A0K8P8E7.1 
mono(2-hydroxyethyl) 

terephthalate hydrolase 
Ideonella sakaiensis Betaproteobacteria 

2 WP_080747404.1 
tannase/feruloyl esterase 

family alpha/beta 
Comamonas thiooxydans Betaproteobacteria 

3 WP_083293388.1 
tannase/feruloyl esterase 

family alpha/beta 
Hydrogenophaga sp. Betaproteobacteria 

4 Q2UP89.1 
probable feruloyl esterase 

b-1 
Aspergillus oryzae Ascomycota 

5 Q2UMX6.1 
Probable feruloyl esterase 

B-2 
Aspergillus oryzae Ascomycota 

6 KQO20166.1 feruloyl esterase Acidovorax sp. Betaproteobacteria 

7 SFM74645.1 feruloyl esterase Bradyrhizobium sp. Alphaproteobacteria 

8 EGC99108.1 feruloyl esterase Burkholderia sp. Betaproteobacteria 

9 RLJ38044.1 feruloyl esterase Acidovorax sp. Betaproteobacteria 

10 RKR69440.1 feruloyl esterase Acidovorax sp. Betaproteobacteria 

11 SOD27033.1 feruloyl esterase Variovorax sp. Betaproteobacteria 

12 REF22346.1 feruloyl esterase 
Microbacterium 

trichothecenolyticum 
Actinobacteria 

13 RAR84815.1 feruloyl esterase Acidovorax anthurii Betaproteobacteria 

14 ALV26718.1 feruloyl esterase 
Pannonibacter 

phragmitetus 
Alphaproteobacteria 

15 ODT65815.1 feruloyl esterase Pelagibacterium sp. Alphaproteobacteria 

16 KMO18581.1 feruloyl esterase Methylobacterium platani Alphaproteobacteria 

17 SYX90233.1 
putative feruloyl esterase b-

1 
Pseudomonas reidholzensis Gammaproteobacteria 

18 SFO05094.1 feruloyl esterase Formivibrio citricus Betaproteobacteria 

19 SFV19457.1 feruloyl esterase Bradyrhizobium arachidis Alphaproteobacteria 

20 OYX09584.1 feruloyl esterase Rhizobiales bacterium Alphaproteobacteria 

21 OLB33458.1 feruloyl esterase Acidobacteria bacterium 
unclassified 

Acidobacteria 

22 OLD21188.1 feruloyl esterase Acidobacteria bacterium 
unclassified 

Acidobacteria 

23 SEB13840.1 feruloyl esterase Variovorax sp. Betaproteobacteria 

24 SDU16980.1 feruloyl esterase 
Amycolatopsis 

keratiniphila 
Actinobacteria 

25 SEM06276.1 feruloyl esterase Variovorax sp. Betaproteobacteria 

26 RKT74992.1 feruloyl esterase Saccharothrix variisporea Actinobacteria 

27 PJJ32606.1 feruloyl esterase Afipia broomeae Alphaproteobacteria 

28 CCE09743.1 putative feruloyl esterase Bradyrhizobium sp. Alphaproteobacteria 

29 KVV28346.1 feruloyl esterase Burkholderia multivorans Betaproteobacteria 

30 KXU82530.1 feruloyl esterase 
Paraburkholderia 

monticola 
Betaproteobacteria 

31 OYX06871.1 feruloyl esterase 
Sphingomonadales 

bacterium 
Alphaproteobacteria 

32 ACC69322.1 feruloyl esterase 
Paraburkholderia 

phymatum 
Betaproteobacteria 

33 PVX62318.1 feruloyl esterase Sphingomonas sp. Alphaproteobacteria 

34 ETF04378.1 feruloyl esterase Advenella kashmirensis Betaproteobacteria 

35 KVR34266.1 feruloyl esterase Burkholderia ubonensis Betaproteobacteria 

36 SOB89932.1 feruloyl esterase Alcanivorax xenomutans Gammaproteobacteria 

37 KPV20554.1 feruloyl esterase Variovorax paradoxus Betaproteobacteria 
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38 OFW45315.1 feruloyl esterase Acidobacteria bacterium 
unclassified 

Acidobacteria 

39 RKD63451.1 feruloyl esterase Caballeronia udeis Betaproteobacteria 

40 SEO24475.1 feruloyl esterase Bradyrhizobium sp. Alphaproteobacteria 

41 ODU08862.1 feruloyl esterase Rubrivivax sp. Betaproteobacteria 

42 KOV79372.1 feruloyl esterase Nocardia sp. Actinobacteria 

43 OYZ97564.1 feruloyl esterase Novosphingobium sp. Alphaproteobacteria 

44 ORY14570.1 feruloyl esterase b precursor Clohesyomyces aquaticus Ascomycota 

45 SCK19622.1 feruloyl esterase Variovorax sp. Betaproteobacteria 

46 PYG17545.1 feruloyl esterase Novosphingobium sp. Alphaproteobacteria 

47 SAK87127.1 feruloyl esterase Caballeronia fortuita Betaproteobacteria 

48 RAR95830.1 feruloyl esterase Rahnella sp. Gammaproteobacteria 

49 AQQ72604.1 feruloyl esterase Talaromyces piceae Ascomycota 

50 SEI21695.1 feruloyl esterase Paraburkholderia hospita Betaproteobacteria 

51 XP_002341414.1 feruloyl esterase, putative Talaromyces stipitatus Ascomycota 

52 PZQ62240.1 feruloyl esterase Variovorax paradoxus Betaproteobacteria 

53 XP_016588953.1 feruloyl esterase Sporothrix schenckii Ascomycota 

54 ODU17436.1 feruloyl esterase Variovorax sp. Betaproteobacteria 

55 ENH84593.1 feruloyl esterase b Colletotrichum orbiculare Ascomycota 

56 SDF78426.1 feruloyl esterase Lechevalieria fradiae Actinobacteria 

57 ESZ94426.1 feruloyl esterase b precursor Sclerotinia borealis Ascomycota 

58 CUA69813.1 
putative feruloyl esterase b-

2 
Rhizoctonia solani Basidiomycota 

59 ORY10730.1 feruloyl esterase b precursor Clohesyomyces aquaticus Ascomycota 

60 PIG83702.1 feruloyl esterase b precursor Aspergillus arachidicola Ascomycota 

61 KYF55538.1 feruloyl esterase Sorangium cellulosum 
delta/epsilon 

subdivisions 

62 XP_002844880.1 feruloyl esterase b Microsporum canis Ascomycota 

63 KFG78502.1 putative feruloyl esterase Metarhizium anisopliae Ascomycota 

64 SDC72403.1 feruloyl esterase Cupriavidus sp. Betaproteobacteria 

65 XP_018178631.1 feruloyl esterase b Purpureocillium lilacinum Ascomycota 

66 XP_009650693.1 feruloyl esterase b Verticillium dahliae Ascomycota 

67 CEL56090.1 
putative feruloyl esterase b-

1 os=aspergillus 
Rhizoctonia solani Basidiomycota 

68 OJW26926.1 feruloyl esterase Sphingopyxis sp. Alphaproteobacteria 

69 XP_013423336.1 putative feruloyl esterase Aureobasidium namibiae Ascomycota 

70 SFT75211.1 feruloyl esterase Paraburkholderia aspalathi Betaproteobacteria 

71 XP_025497975.1 feruloyl esterase b precursor Aspergillus aculeatinus Ascomycota 

72 GAT22098.1 feruloyl esterase b precursor Aspergillus luchuensis Ascomycota 

73 SFG45211.1 feruloyl esterase Novosphingobium sp. Alphaproteobacteria 

74 SIN83151.1 feruloyl esterase 
Paraburkholderia 

phenazinium 
Betaproteobacteria 

75 KNG46319.1 feruloyl esterase b precursor Stemphylium lycopersici Ascomycota 

76 OAQ87654.1 feruloyl esterase Purpureocillium lilacinum Ascomycota 

77 PMD29264.1 
putative ferulic acid 

esterase 
Hyaloscypha variabilis Ascomycota 

78 GCB21914.1 
probable feruloyl esterase 

arb_07085 
Aspergillus awamori Ascomycota 

79 XP_001932100.1 feruloyl esterase b precursor 
Pyrenophora tritici-

repentis 
Ascomycota 
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80 EMT66649.1 
putative feruloyl esterase b-

2 
Fusarium oxysporum Ascomycota 

81 XP_025508882.1 feruloyl esterase Aspergillus aculeatinus Ascomycota 

82 OAQ76531.1 feruloyl esterase Purpureocillium lilacinum Ascomycota 

83 KLU81119.1 feruloyl esterase b Magnaporthiopsis poae Ascomycota 

84 OMP83047.1 feruloyl esterase b Diplodia seriata Ascomycota 

85 PTD08579.1 putative feruloyl esterase Fusarium culmorum Ascomycota 

86 RKT10778.1 feruloyl esterase Paraburkholderia sp. Betaproteobacteria 

87 XP_025430110.1 
putative feruloyl esterase b-

2 
Aspergillus saccharolyticus Ascomycota 

88 XP_025492021.1 feruloyl esterase Aspergillus uvarum Ascomycota 

89 ODU15911.1 feruloyl esterase Variovorax sp. Betaproteobacteria 

90 OXC77937.1 tannase precursor Caballeronia sordidicola Betaproteobacteria 

91 KPX81997.1 tannase Pseudomonas meliae Gammaproteobacteria 

92 RMP50230.1 tannase Pseudomonas savastanoi Gammaproteobacteria 

93 RMV15745.1 tannase Pseudomonas savastanoi Gammaproteobacteria 

94 KPX21055.1 tannase Pseudomonas amygdali Gammaproteobacteria 

95 SPD56196.1 tannase Cupriavidus taiwanensis Betaproteobacteria 

96 BAQ47614.1 tannase 
Methylobacterium 

aquaticum 
Alphaproteobacteria 

97 OTP71705.1 tannase precursor Caballeronia sordidicola Betaproteobacteria 

98 AEA83596.1 tannase precursor Pseudomonas stutzeri Gammaproteobacteria 

99 OUI87529.1 tannase Acetobacter sp. Alphaproteobacteria 

100 KQP45511.1 tannase Pseudorhodoferax sp. Betaproteobacteria 

101 AUB50195.1 tannase precursor Klebsiella pneumoniae Gammaproteobacteria 

102 OAJ68072.1 tannase Gluconobacter cerinus Alphaproteobacteria 

103 ERK18637.1 tannase precursor Pantoea sp. Gammaproteobacteria 

104 CDL19993.1 tannase precursor Klebsiella pneumoniae Gammaproteobacteria 

105 OAG73259.1 tannase Gluconobacter japonicus Alphaproteobacteria 

106 KRC31825.1 tannase Acidovorax sp. Betaproteobacteria 

107 BAU88379.1 tannase Streptomyces laurentii Actinobacteria 

108 KMS92636.1 tannase Streptomyces regensis Actinobacteria 

109 KAK47681.1 tannase Caballeronia jiangsuensis Betaproteobacteria 

110 AKN72753.1 tannase Streptomyces sp. Actinobacteria 

111 OLL31673.1 tannase Burkholderia sp. Betaproteobacteria 

112 KDR33867.1 tannase Caballeronia zhejiangensis Betaproteobacteria 

113 KQB59229.1 tannase Acidovorax sp. Betaproteobacteria 

114 XP_003014523.1 tannase, putative Trichophyton benhamiae Ascomycota 

115 KZT17459.1 tannase Acidovorax sp. Betaproteobacteria 

116 KQO35844.1 tannase Acidovorax sp. Betaproteobacteria 

117 KXU83547.1 tannase 
Paraburkholderia 

monticola 
Betaproteobacteria 

118 KOV87180.1 tannase Nocardia sp. Actinobacteria 

119 KJK45095.1 tannase 
Lechevalieria 

aerocolonigenes 
Actinobacteria 

120 KEZ68139.1 tannase Pseudomonas amygdali Gammaproteobacteria 
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Table A3.3. Michaelis-Menten kinetic parameters  

Enzyme Km Vmax Ki R2 kcat/ Km 

 (µM) (µM s-1) (µM)  (µM-1 s-

1) 

Is MHETase 23.17±1.65 0.25±0.05 307.30±20.65 0.90 2.17 

Is MHETase S131G 184.10±3.50 0.11±0.03 - 0.93 0.06 

Comamonas thiooxydans  174.70±4.75 0.20±0.05 78.80±3.04 0.93 0.23 

Hydrogenophaga sp. 

PML113 

41.09±3.38 

0.01±0.00 

221.50±19.01 0.93 0.13 

Results of fitting initial reaction velocities of enzymatic turnover of substrate 

concentrations between 10 µM and 250 µM using Michaelis-Menten models. The model 

with substrate inhibition is used for Is MHETase, Comamonas thiooxydans, and 

Hydrogenophage sp. PML113, while the classic Michaelis-Menten model is used for Is 

MHETase S131G. Non-linear regression performed using GraphPad Prism (8.4.1) is 

reported, along with 95% confidence intervals for each parameter and R2 value given for 

fit of the model to the data. 
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Table S4. Synergistic degradation of amorphous PET film. 

PETase 

Loading 

MHETase 

Loading 

TPA MHET BHET Sum Products 

Average St. Dev. Average St. Dev. Average St. Dev. Sum St. Dev. 

(mg Enzyme /g PET) (mM) (mM) (mM) (mM) 

0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.1 0 0.01 0.00 0.02 0.01 0.00 0.00 0.02 0.01 

0.1 0.1 0.11 0.03 0.00 0.00 0.00 0.00 0.12 0.03 

0.1 0.2 0.19 0.02 0.00 0.00 0.00 0.00 0.19 0.02 

0.1 0.3 0.27 0.03 0.00 0.00 0.00 0.00 0.27 0.03 

0.1 0.4 0.30 0.05 0.00 0.00 0.00 0.00 0.30 0.05 

0.1 0.5 0.27 0.05 0.00 0.00 0.00 0.00 0.28 0.05 

0.1 0.6 0.22 0.03 0.00 0.00 0.00 0.00 0.23 0.03 

0.1 0.8 0.25 0.02 0.00 0.00 0.00 0.00 0.25 0.02 

0.1 1 0.27 0.08 0.00 0.00 0.00 0.00 0.28 0.08 

0.2 0 0.03 0.01 0.06 0.01 0.00 0.00 0.10 0.02 

0.2 0.1 0.44 0.05 0.00 0.00 0.00 0.00 0.44 0.05 

0.2 0.2 0.41 0.12 0.00 0.00 0.00 0.00 0.42 0.12 

0.2 0.3 0.44 0.10 0.00 0.00 0.00 0.00 0.45 0.10 

0.2 0.4 0.49 0.04 0.00 0.00 0.00 0.00 0.49 0.04 

0.2 0.5 0.53 0.06 0.00 0.00 0.00 0.00 0.53 0.06 

0.2 0.6 0.40 0.08 0.00 0.00 0.00 0.00 0.40 0.08 

0.2 0.8 0.29 0.01 0.00 0.00 0.00 0.00 0.30 0.01 

0.2 1 0.37 0.17 0.00 0.00 0.00 0.00 0.37 0.17 

0.3 0 0.09 0.00 0.15 0.00 0.00 0.00 0.23 0.01 

0.3 0.1 0.61 0.07 0.00 0.00 0.00 0.00 0.61 0.07 

0.3 0.2 0.76 0.02 0.00 0.00 0.00 0.00 0.76 0.02 

0.3 0.3 0.85 0.08 0.00 0.00 0.00 0.00 0.85 0.08 

0.3 0.4 0.80 0.15 0.00 0.00 0.00 0.00 0.81 0.15 

0.3 0.5 0.89 0.03 0.00 0.00 0.00 0.00 0.89 0.03 

0.3 0.6 0.86 0.13 0.00 0.00 0.00 0.00 0.86 0.13 

0.3 0.8 0.89 0.07 0.00 0.00 0.00 0.00 0.89 0.07 

0.3 1 0.81 0.12 0.00 0.00 0.00 0.00 0.81 0.12 

0.4 0 0.14 0.01 0.19 0.01 0.00 0.00 0.33 0.02 

0.4 0.1 0.93 0.15 0.00 0.00 0.00 0.00 0.93 0.15 

0.4 0.2 1.03 0.15 0.00 0.00 0.00 0.00 1.03 0.15 

0.4 0.3 1.06 0.06 0.00 0.00 0.00 0.00 1.06 0.06 

0.4 0.4 1.07 0.04 0.00 0.00 0.00 0.00 1.07 0.04 

0.4 0.5 1.06 0.02 0.00 0.00 0.00 0.00 1.06 0.02 

0.4 0.6 1.08 0.06 0.00 0.00 0.00 0.00 1.08 0.06 

0.4 0.8 1.18 0.06 0.00 0.00 0.00 0.00 1.18 0.06 

0.4 1 1.13 0.10 0.00 0.00 0.00 0.00 1.13 0.10 

0.5 0 0.20 0.01 0.23 0.01 0.00 0.00 0.43 0.03 

0.5 0.1 1.10 0.03 0.00 0.00 0.00 0.00 1.10 0.03 

0.5 0.2 1.17 0.07 0.00 0.00 0.00 0.00 1.17 0.07 

0.5 0.3 1.35 0.13 0.00 0.00 0.00 0.00 1.35 0.13 

0.5 0.4 1.30 0.07 0.00 0.00 0.00 0.00 1.30 0.07 

0.5 0.5 1.30 0.10 0.00 0.00 0.00 0.00 1.30 0.10 

0.5 0.6 1.32 0.04 0.00 0.00 0.00 0.00 1.32 0.04 

0.5 0.8 1.39 0.10 0.00 0.00 0.00 0.00 1.39 0.10 

0.5 1 1.27 0.22 0.00 0.00 0.00 0.00 1.27 0.22 

0.6 0 0.26 0.02 0.29 0.02 0.00 0.00 0.56 0.05 

0.6 0.1 1.35 0.09 0.00 0.00 0.00 0.00 1.35 0.09 

0.6 0.2 1.45 0.05 0.00 0.00 0.00 0.00 1.45 0.05 

0.6 0.3 1.46 0.16 0.00 0.00 0.00 0.00 1.46 0.16 

0.6 0.4 1.52 0.11 0.00 0.00 0.00 0.00 1.52 0.11 

0.6 0.5 1.52 0.06 0.00 0.00 0.00 0.00 1.52 0.06 
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0.6 0.6 1.75 0.18 0.00 0.00 0.00 0.00 1.75 0.18 

0.6 0.8 1.66 0.20 0.00 0.00 0.00 0.00 1.66 0.20 

0.6 1 1.49 0.04 0.00 0.00 0.00 0.00 1.49 0.04 

0.7 0 0.29 0.04 0.27 0.03 0.00 0.00 0.57 0.07 

0.7 0.1 1.50 0.13 0.00 0.00 0.00 0.00 1.50 0.13 

0.7 0.2 1.51 0.15 0.00 0.00 0.00 0.00 1.51 0.15 

0.7 0.3 1.53 0.09 0.00 0.00 0.00 0.00 1.53 0.09 

0.7 0.4 1.58 0.05 0.00 0.00 0.00 0.00 1.58 0.05 

0.7 0.5 1.46 0.08 0.00 0.00 0.00 0.00 1.46 0.08 

0.7 0.6 0.87 0.61 0.00 0.00 0.00 0.00 0.87 0.61 

0.7 0.8 1.14 0.48 0.00 0.00 0.00 0.00 1.14 0.48 

0.7 1 1.72 0.38 0.00 0.00 0.00 0.00 1.72 0.38 

0.8 0 0.34 0.02 0.33 0.01 0.00 0.00 0.67 0.03 

0.8 0.1 1.52 0.05 0.00 0.00 0.00 0.00 1.52 0.05 

0.8 0.2 1.60 0.39 0.00 0.00 0.00 0.00 1.61 0.40 

0.8 0.3 1.80 0.02 0.00 0.00 0.00 0.00 1.80 0.02 

0.8 0.4 1.80 0.08 0.00 0.00 0.00 0.00 1.80 0.08 

0.8 0.5 1.56 0.24 0.00 0.00 0.00 0.00 1.56 0.24 

0.8 0.6 1.78 0.09 0.00 0.00 0.00 0.00 1.79 0.09 

0.8 0.8 1.68 0.01 0.00 0.00 0.00 0.00 1.68 0.01 

0.8 1 1.82 0.13 0.00 0.00 0.00 0.00 1.82 0.13 

0.9 0 0.36 0.01 0.33 0.01 0.00 0.00 0.68 0.01 

0.9 0.1 1.58 0.30 0.00 0.00 0.00 0.00 1.58 0.30 

0.9 0.2 1.80 0.14 0.00 0.00 0.00 0.00 1.80 0.14 

0.9 0.3 2.03 0.09 0.00 0.00 0.00 0.00 2.03 0.09 

0.9 0.4 1.95 0.09 0.00 0.00 0.00 0.00 1.95 0.10 

0.9 0.5 1.85 0.13 0.00 0.00 0.00 0.00 1.85 0.13 

0.9 0.6 1.91 0.05 0.00 0.00 0.00 0.00 1.91 0.05 

0.9 0.8 1.56 0.85 0.00 0.00 0.00 0.00 1.56 0.85 

0.9 1 1.60 0.23 0.00 0.00 0.00 0.00 1.60 0.23 

1 0 0.46 0.03 0.38 0.02 0.00 0.00 0.84 0.05 

1 0.1 1.81 0.07 0.00 0.00 0.00 0.00 1.81 0.07 

1 0.2 1.83 0.25 0.00 0.00 0.00 0.00 1.83 0.25 

1 0.3 1.86 0.30 0.00 0.00 0.00 0.00 1.86 0.30 

1 0.4 1.96 0.07 0.00 0.00 0.00 0.00 1.96 0.07 

1 0.5 1.94 0.07 0.00 0.00 0.00 0.00 1.94 0.07 

1 0.6 2.13 0.07 0.00 0.00 0.00 0.00 2.13 0.07 

1 0.8 2.11 0.08 0.00 0.00 0.00 0.00 2.11 0.08 

1 1 2.23 0.24 0.00 0.00 0.00 0.00 2.23 0.24 

1.2 0 0.55 0.02 0.40 0.02 0.00 0.00 0.95 0.04 

1.2 0.1 2.16 0.08 0.00 0.00 0.00 0.00 2.16 0.08 

1.2 0.2 2.11 0.05 0.00 0.00 0.00 0.00 2.11 0.05 

1.2 0.3 2.28 0.10 0.00 0.00 0.00 0.00 2.29 0.10 

1.2 0.4 2.25 0.05 0.00 0.00 0.00 0.00 2.25 0.05 

1.2 0.5 2.30 0.05 0.00 0.00 0.00 0.00 2.31 0.05 

1.2 0.6 2.32 0.13 0.00 0.00 0.00 0.00 2.32 0.13 

1.2 0.8 2.18 0.09 0.00 0.00 0.00 0.00 2.18 0.10 

1.2 1 2.26 0.11 0.00 0.00 0.00 0.00 2.26 0.11 

1.4 0 0.59 0.03 0.39 0.01 0.00 0.00 0.98 0.04 

1.4 0.1 2.21 0.15 0.00 0.00 0.00 0.00 2.21 0.15 

1.4 0.2 2.37 0.29 0.00 0.00 0.00 0.00 2.37 0.29 

1.4 0.3 2.22 0.11 0.00 0.00 0.00 0.00 2.22 0.11 

1.4 0.4 2.25 0.22 0.00 0.00 0.00 0.00 2.26 0.22 

1.4 0.5 2.57 0.10 0.00 0.00 0.00 0.00 2.57 0.10 

1.4 0.6 2.49 0.01 0.00 0.00 0.00 0.00 2.49 0.01 

1.4 0.8 2.49 0.04 0.00 0.00 0.00 0.00 2.49 0.04 

1.4 1 2.43 0.06 0.00 0.00 0.00 0.00 2.44 0.06 

1.6 0 0.74 0.03 0.41 0.01 0.00 0.00 1.15 0.04 

1.6 0.1 2.41 0.16 0.00 0.00 0.00 0.00 2.41 0.16 

1.6 0.2 2.46 0.04 0.00 0.00 0.00 0.00 2.46 0.04 

1.6 0.3 2.49 0.15 0.00 0.00 0.00 0.00 2.49 0.15 

1.6 0.4 2.41 0.10 0.00 0.00 0.00 0.00 2.41 0.10 

1.6 0.5 2.70 0.30 0.00 0.00 0.00 0.00 2.71 0.31 

1.6 0.6 2.63 0.09 0.00 0.00 0.00 0.00 2.63 0.09 

1.6 0.8 2.63 0.16 0.00 0.00 0.00 0.00 2.63 0.16 

1.6 1 2.58 0.03 0.00 0.00 0.00 0.00 2.58 0.03 
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1.8 0 0.81 0.05 0.43 0.03 0.00 0.00 1.24 0.08 

1.8 0.1 2.56 0.07 0.00 0.00 0.00 0.00 2.56 0.07 

1.8 0.2 2.55 0.07 0.00 0.00 0.00 0.00 2.55 0.07 

1.8 0.3 2.57 0.21 0.00 0.00 0.00 0.00 2.57 0.21 

1.8 0.4 2.71 0.17 0.00 0.00 0.00 0.00 2.71 0.17 

1.8 0.5 2.66 0.02 0.00 0.00 0.00 0.00 2.66 0.02 

1.8 0.6 2.60 0.05 0.00 0.00 0.00 0.00 2.60 0.05 

1.8 0.8 2.54 0.07 0.00 0.00 0.00 0.00 2.54 0.07 

1.8 1 2.65 0.20 0.00 0.00 0.00 0.00 2.65 0.20 

2 0 0.87 0.04 0.45 0.02 0.00 0.00 1.32 0.06 

2 0.1 2.51 0.11 0.00 0.00 0.00 0.00 2.52 0.11 

2 0.2 2.57 0.23 0.00 0.00 0.00 0.00 2.57 0.23 

2 0.3 2.66 0.08 0.00 0.00 0.00 0.00 2.66 0.08 

2 0.4 2.62 0.26 0.00 0.00 0.00 0.00 2.62 0.26 

2 0.5 2.73 0.12 0.00 0.00 0.00 0.00 2.73 0.12 

2 0.6 2.66 0.09 0.00 0.00 0.00 0.00 2.66 0.09 

2 0.8 2.01 0.37 0.00 0.00 0.00 0.00 2.01 0.37 

2 1 2.87 0.13 0.00 0.00 0.00 0.00 2.87 0.13 

Reported values represent average and standard deviation for PET constituent monomers 

released during reactions performed in triplicate over 96 h at 30°C. 
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Table A3.5. Putative protocatechuate-dioxygenases in Hydrogenophaga sp. PML113 and 

Comamonas thiooxydans 

Organism Query Hit Accession Numbers % Identity E-value Bit score 

Hydrogenophaga sp. 

PML113 

LigA 
WP_070398564.1 67.2 2.34E-49 166 

WP_070400956.1 43.1 8.31E-27 101 

LigB 
WP_070398565.1 63.0 1.35E-122 384 

WP_070400957.1 56.6 5.73E-114 359 

Comamonas 

thiooxydans DS1 

LigA 
KGH27325.1 65.0 1.25E-46 158 

KGH19511.1 61.7 4.68E-44 151 

LigB KGH23198.1 62.1 1.45E-76 252 

Comamonas 

thiooxydans DF1 

LigA 
KGH27550.1 65.0 1.23E-46 158 

KGH13041.1 61.7 4.6E-44 151 

LigB 
KGH19836.1 (partial sequence) 69.9 3.14E-56 175 

KGH19529.1 (partial sequence) 62.8 2.23E-47 152 

Comamonas 

thiooxydans DF2 

LigA 
KGH19350.1 65.0 1.24E-46 158 

KGH20562.1 61.7 4.66E-44 151 

LigB 
KGH20561.1 62.3 5.18E-119 374 

KGH19470.1 (partial sequence) 61.4 8E-60 204 

Putative protocatechuate (PCA)-dioxygenases in Hydrogenophaga sp. PML113 and 

Comamonas thiooxydans strains DS1, DF1, and DF2. PCA-2,3-dioxygenase from 

Paenibacillus sp. JJ-1b (PraA, accession number BAH79099.1), PCA-3,4-dioxygenase 

alpha and beta subunits from Pseudomonas putida KT2440 (PcaH and PcaG, accession 

numbers WP_010955312.1 and WP_009682255.1) and PCA-4,5-dioxygenase alpha and 

beta subunits from Sphingobium sp. SYK-6 (LigA and LigB, accession numbers 

BAK65924.1 and BAK65925.1) were used as query. Only hits with >100 bit score from 

tblastn searches against whole-genome sequences are shown. 
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Table S6. Summary of conditions tested for quenching MHETase enzymatic activity  

Quenching solution 
Non-enzymatic hydrolysis of 

MHET (%) 
Enzyme activity quenched? 

 No heat treatment 
85°C, 

10 min 
No heat treatment 85°C, 10 min 

20% (v/v) DMSO mixed with 80% 

(v/v) Buffer Q: 100 mM NaCl, 200 

mM sodium phosphate, pH 2.5 

0 0 No No 

20% (v/v) DMSO, 80 mM NaCl, 

160 mM sodium phosphate, pH 2.5 
0 0 No No 

6N HCl, 50% DMSO 4.6 39.4 

Unknown  

(high levels of 

acidolysis) 

Unknown  

(high levels of 

acidolysis 

100% methanol 0.18 0.25 Yes Yes 

95% ethanol 0 0.69 
Yes 

 (causes precipitation) 

Yes 

 (causes 

precipitation) 

100% DMSO 0 0 No No 

100 nM PMSF in 100% DMSO 0 1.3 No Inconsistent 

10 mM TCEP in H2O 0 0.14 No No 

6M GuHCl 0 0.62 No No 

100 nM PMSF in 100% 

isopropanol 
0 0.54 Inconsistent Inconsistent 

6M GuHCl, 10 mM TCEP 0 0.37 No No 

Summary of trial experiments performed in triplicate to determine the most satisfactory 

method for quenching MHETase enzymatic activity. Experiments were performed in 

reaction buffer (250 µM MHET, 90 mM NaCl, 10 % (v/v) DMSO, 45 mM sodium 

phosphate, pH 7.5) and quenched by addition of equal volume of the described quenching 

solution. The selected quenching method, using 100% methanol and 10 min heat treatment 

at 85°C, is indicated in grey. 
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