15 research outputs found

    Surface Reconstruction from Constructive Solid Geometry for Interactive Visualization

    Get PDF
    A method is presented for constructing a set of triangles that closely approximates the surface of a constructive solid geometry model. The method subdivides an initial triangulation of the model’s primitives into triangles that can be classified accurately as either on or off of the surface of the whole model, and then recombines these small triangles into larger ones that are still either entirely on or entirely off the surface. Subdivision and recombination can be done in a preprocessing step, allowing later rendering of the triangles on the surface (i.e., the triangles visible from outside the model) to proceed at interactive rates. Performance measurements confirm that this method achieves interactive rendering speeds. This approach has been used with good results in an interactive scientific visualization program

    High-performance geometric vascular modelling

    Get PDF
    Image-based high-performance geometric vascular modelling and reconstruction is an essential component of computer-assisted surgery on the diagnosis, analysis and treatment of cardiovascular diseases. However, it is an extremely challenging task to efficiently reconstruct the accurate geometric structures of blood vessels out of medical images. For one thing, the shape of an individual section of a blood vessel is highly irregular because of the squeeze of other tissues and the deformation caused by vascular diseases. For another, a vascular system is a very complicated network of blood vessels with different types of branching structures. Although some existing vascular modelling techniques can reconstruct the geometric structure of a vascular system, they are either time-consuming or lacking sufficient accuracy. What is more, these techniques rarely consider the interior tissue of the vascular wall, which consists of complicated layered structures. As a result, it is necessary to develop a better vascular geometric modelling technique, which is not only of high performance and high accuracy in the reconstruction of vascular surfaces, but can also be used to model the interior tissue structures of the vascular walls.This research aims to develop a state-of-the-art patient-specific medical image-based geometric vascular modelling technique to solve the above problems. The main contributions of this research are:- Developed and proposed the Skeleton Marching technique to reconstruct the geometric structures of blood vessels with high performance and high accuracy. With the proposed technique, the highly complicated vascular reconstruction task is reduced to a set of simple localised geometric reconstruction tasks, which can be carried out in a parallel manner. These locally reconstructed vascular geometric segments are then combined together using shape-preserving blending operations to faithfully represent the geometric shape of the whole vascular system.- Developed and proposed the Thin Implicit Patch method to realistically model the interior geometric structures of the vascular tissues. This method allows the multi-layer interior tissue structures to be embedded inside the vascular wall to illustrate the geometric details of the blood vessel in real world

    Efficient contouring of functionally represented objects for additive manufacturing

    Get PDF
    Functionally (implicitly) defined 3D objects allow us to quite easily model parts with complex topology such as lattices and organic-like structures with a high level of flexibility. Previous works in this area are based on the direct generation of CNC programs for the 3D printing of these objects and are backed by the growing support for this input format from hardware manufacturers. Efficient contouring of functionally defined models, however, is not an easy task. In this paper, we develop an algorithm for contour extraction of implicitly defined objects for direct additive manufacturing (AM). By comparing various adaptive and exhaustive (non-adaptive) methods of the function representation contouring for AM (FRepCAM), we make a set of recommendations for its usage depending on the specific resolution of the printer. In particular, we use a novel criterion based on affine arithmetic to maintain efficiency while preserving the robustness of the contouring process. The techniques mentioned were evaluated for algebraic and non-algebraic solids and heterogeneous models under a resolution that is comparable with that of current AM technology. The results show that the chosen adaptation criteria allow us to efficiently obtain a contour for complex models and generally outperform those of traditional algorithms based on exhaustive enumeration, especially for high-resolution contouring. In addition, the results present proof of the printability of implicitly defined objects with different 3D printing techniques

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest

    Accurate geometry reconstruction of vascular structures using implicit splines

    Get PDF
    3-D visualization of blood vessel from standard medical datasets (e.g. CT or MRI) play an important role in many clinical situations, including the diagnosis of vessel stenosis, virtual angioscopy, vascular surgery planning and computer aided vascular surgery. However, unlike other human organs, the vasculature system is a very complex network of vessel, which makes it a very challenging task to perform its 3-D visualization. Conventional techniques of medical volume data visualization are in general not well-suited for the above-mentioned tasks. This problem can be solved by reconstructing vascular geometry. Although various methods have been proposed for reconstructing vascular structures, most of these approaches are model-based, and are usually too ideal to correctly represent the actual variation presented by the cross-sections of a vascular structure. In addition, the underlying shape is usually expressed as polygonal meshes or in parametric forms, which is very inconvenient for implementing ramification of branching. As a result, the reconstructed geometries are not suitable for computer aided diagnosis and computer guided minimally invasive vascular surgery. In this research, we develop a set of techniques associated with the geometry reconstruction of vasculatures, including segmentation, modelling, reconstruction, exploration and rendering of vascular structures. The reconstructed geometry can not only help to greatly enhance the visual quality of 3-D vascular structures, but also provide an actual geometric representation of vasculatures, which can provide various benefits. The key findings of this research are as follows: 1. A localized hybrid level-set method of segmentation has been developed to extract the vascular structures from 3-D medical datasets. 2. A skeleton-based implicit modelling technique has been proposed and applied to the reconstruction of vasculatures, which can achieve an accurate geometric reconstruction of the vascular structures as implicit surfaces in an analytical form. 3. An accelerating technique using modern GPU (Graphics Processing Unit) is devised and applied to rendering the implicitly represented vasculatures. 4. The implicitly modelled vasculature is investigated for the application of virtual angioscopy

    Isosurface modelling of soft objects in computer graphics.

    Get PDF
    There are many different modelling techniques used in computer graphics to describe a wide range of objects and phenomena. In this thesis, details of research into the isosurface modelling technique are presented. The isosurface technique is used in conjunction with more traditional modelling techniques to describe the objects needed in the different scenes of an animation. The isosurface modelling technique allows the description and animation of objects that would be extremely difficult, or impossible to describe using other methods. The objects suitable for description using isosurface modelling are soft objects. Soft objects merge elegantly with each other, pull apart, bubble, ripple and exhibit a variety of other effects. The representation was studied in three phases of a computer animation project: modelling of the objects; animation of the objects; and the production of the images. The research clarifies and presents many algorithms needed to implement the isosurface representation in an animation system. The creation of a hierarchical computer graphics animation system implementing the isosurface representation is described. The scalar fields defining the isosurfaces are represented using a scalar field description language, created as part of this research, which is automatically generated from the hierarchical description of the scene. This language has many techniques for combining and building the scalar field from a variety of components. Surface attributes of the objects are specified within the graphics system. Techniques are described which allow the handling of these attributes along with the scalar field calculation. Many animation techniques specific to the isosurface representation are presented. By the conclusion of the research, a graphics system was created which elegantly handles the isosurface representation in a wide variety of animation situations. This thesis establishes that isosurface modelling of soft objects is a powerful and useful technique which has wide application in the computer graphics community

    Superquadric representation of scenes from multi-view range data

    Get PDF
    Object representation denotes representing three-dimensional (3D) real-world objects with known graphic or mathematic primitives recognizable to computers. This research has numerous applications for object-related tasks in areas including computer vision, computer graphics, reverse engineering, etc. Superquadrics, as volumetric and parametric models, have been selected to be the representation primitives throughout this research. Superquadrics are able to represent a large family of solid shapes by a single equation with only a few parameters. This dissertation addresses superquadric representation of multi-part objects and multiobject scenes. Two issues motivate this research. First, superquadric representation of multipart objects or multi-object scenes has been an unsolved problem due to the complex geometry of objects. Second, superquadrics recovered from single-view range data tend to have low confidence and accuracy due to partially scanned object surfaces caused by inherent occlusions. To address these two problems, this dissertation proposes a multi-view superquadric representation algorithm. By incorporating both part decomposition and multi-view range data, the proposed algorithm is able to not only represent multi-part objects or multi-object scenes, but also achieve high confidence and accuracy of recovered superquadrics. The multi-view superquadric representation algorithm consists of (i) initial superquadric model recovery from single-view range data, (ii) pairwise view registration based on recovered superquadric models, (iii) view integration, (iv) part decomposition, and (v) final superquadric fitting for each decomposed part. Within the multi-view superquadric representation framework, this dissertation proposes a 3D part decomposition algorithm to automatically decompose multi-part objects or multiobject scenes into their constituent single parts consistent with human visual perception. Superquadrics can then be recovered for each decomposed single-part object. The proposed part decomposition algorithm is based on curvature analysis, and includes (i) Gaussian curvature estimation, (ii) boundary labeling, (iii) part growing and labeling, and (iv) post-processing. In addition, this dissertation proposes an extended view registration algorithm based on superquadrics. The proposed view registration algorithm is able to handle deformable superquadrics as well as 3D unstructured data sets. For superquadric fitting, two objective functions primarily used in the literature have been comprehensively investigated with respect to noise, viewpoints, sample resolutions, etc. The objective function proved to have better performance has been used throughout this dissertation. In summary, the three algorithms (contributions) proposed in this dissertation are generic and flexible in the sense of handling triangle meshes, which are standard surface primitives in computer vision and graphics. For each proposed algorithm, the dissertation presents both theory and experimental results. The results demonstrate the efficiency of the algorithms using both synthetic and real range data of a large variety of objects and scenes. In addition, the experimental results include comparisons with previous methods from the literature. Finally, the dissertation concludes with a summary of the contributions to the state of the art in superquadric representation, and presents possible future extensions to this research

    A framework for hull form reverse engineering and geometry integration into numerical simulations

    Get PDF
    The thesis presents a ship hull form specific reverse engineering and CAD integration framework. The reverse engineering part proposes three alternative suitable reconstruction approaches namely curves network, direct surface fitting, and triangulated surface reconstruction. The CAD integration part includes surface healing, region identification, and domain preparation strategies which used to adapt the CAD model to downstream application requirements. In general, the developed framework bridges a point cloud and a CAD model obtained from IGES and STL file into downstream applications

    Adaptive 3D web-based environment for heterogeneous volume objects.

    Get PDF
    The Internet was growing fast on the last decade. Interaction and visualisation became an essential feature online. The demand for online modelling and rendering in a real-time, adaptive and interactive manner exceeded the growth and development of the hardware resources including computational power and memories. Building up and accessing an instant 3D Web-based and plugin-free platform started to be a must in order to generate 3D volumes. Modelling and rendering complicated heterogeneous volumes using online applications requires good Internet bandwidth and high computational power. A large number of 3D modelling tools designed to create complicated models in an interactive manner are now available online, the problem of using such tools is that the user needs to acquire a certain level of modelling knowledge In this work, we identify the problem, introduce the theoretical background and discuss the theory about Web-based modelling and rendering, including client- server approach, scenario optimization by solving constraint satisfaction problem, and complexity analysis. We address the challenges of designing, implementing and testing an online, Web-based, instant 3D modelling and rendering environment and we discuss some of its characteristics including adaptivity, platform independence, interactivity, and easy-to-use after presenting the theoretical part of implementing such an environment. We also introduce platform-independent modelling and rendering environment for complicated heterogeneous volumes with colour attributes based on client- server architecture. The work includes analysis and implementation for different rendering approaches suitable for different kind of users. We also discuss the performance of the proposed environment by comparing the rendering approaches. As an additional feature of our modelling system, we discuss aspects of securing the model transferring between client and the server
    corecore