
 
 

Adaptive 3D Web-based environment 

for heterogeneous volume objects 

 

 

 
Ali Abdallah 

 

 

 

 

A thesis submitted in partial fulfilment of the requirements of 

Bournemouth University for the degree of Doctor of 

Philosophy 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

October 2019 



1 
 

Copyrights Statement 

“This copy of the thesis has been supplied on condition that anyone who consults 

it is understood to recognise that its copyright rests with its author and due 

acknowledgement must always be made of the use of any material contained in, 

or derived from, this thesis.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

 

Abstract 

The Internet was growing fast on the last decade. Interaction and visualisation 

became an essential feature online. The demand for online modelling and 

rendering in a real-time, adaptive and interactive manner exceeded the growth 

and development of the hardware resources including computational power and 

memories. Building up and accessing an instant 3D Web-based and plugin-free 

platform started to be a must in order to generate 3D volumes. Modelling and 

rendering complicated heterogeneous volumes using online applications requires 

good Internet bandwidth and high computational power. A large number of 

3D modelling tools designed to create complicated models in an interactive 

manner are now available online, the problem of using such tools is that the user 

needs to acquire a certain level of modelling knowledge 

In this work, we identify the problem, introduce the theoretical background and 

discuss the theory about Web-based modelling and rendering, including client-

server approach, scenario optimization by solving constraint satisfaction 

problem, and complexity analysis. We address the challenges of designing, 

implementing and testing an online, Web-based, instant 3D modelling and 

rendering environment and we discuss some of its characteristics including 

adaptivity, platform independence, interactivity, and easy-to-use after presenting 

the theoretical part of implementing such an environment. We also introduce 

platform-independent modelling and rendering environment for 

complicated heterogeneous volumes with colour attributes based on client-

server architecture. The work includes analysis and implementation for different 

rendering approaches suitable for different kind of users. We also discuss the 

performance of the proposed environment by comparing the rendering 

approaches. As an additional feature of our modelling system, we discuss aspects 

of securing the model transferring between client and the server.  

 

 

 



3 
 

Table of contents 

1    Introduction   

     1.1 Brief description of Web-based modelling . . . . . . . . . . . . . . . . .. .  13 

           1.1.1 Web-based modelling concepts. . . . . . . . . . . . . . . . . . . . . . .  13 

           1.1.2 Web-based geometric representation. . . . . . . . . . . . . . . . . . .  15 

                     1.1.2.1 Client-server approach . . . . . . . . . . . . . . . . . . . . . . .  17 

                     1.1.2.2 Rendering approaches and tools . . . . . . . . . . . . . . . .  18 

                     1.1.2.3 Proposed approach (implementation and novelty) . .  20 

           1.1.3 Heterogeneous volumes and constructive modelling. . . . . . .  21 

      1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 

           1.2.1 Research aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

           1.2.2 Research questions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 

           1.2.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 

      1.3 Objectives and outputs. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

      1.4 Summary. . . . . . . . . . .  .. . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

      1.5 Report structure. . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  32 

  

2    Literature review  

      2.1 Geometric representations and background  . . . . . . . . . . . . . . . . .  34 

      2.2 Relevant shape modelling systems and tools. . . . . . . . . . . . . . . . .  37 

            2.2.1 Shape and volume modelling systems . . . . .  . . . . . . . . . . .  37 

      2.3 Non-ideal Web-based 3D modelling solutions  . . . . . . . . . . . . . .  40 

      2.4 Approaches to collaborative shape and volume modelling 

pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

41 

      2.5 Web-services and interaction using client-server architecture  . . .  42 

      2.6 Rendering concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

      2.7 Web-based 3D modelling security. . . . . . . . . . . . . . . . . . . . . . . . .  45 

      2.8 Relevant Web-based 3D modelling systems . . . . . . . . .  . .. . . . . .  47 

      2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 

  



4 
 

  

  

3    Theoretical aspects of 3D environment  

      3.1 Characteristics of 3D Web-based instant modelling and 

rendering environment (WRMR). . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .   51 

            3.1.1 Function, boundary, and hybrid representations . . . . . . . . .  52 

      3.2 Pure client-server architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

      3.3 Adaptive environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 

      3.4 Scenario optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

      3.5 3D Environment analysis . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

            3.5.1 Web-based instant modelling and rendering core parts 

analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

                      3.5.1.1 Modelling of heterogeneous volume objects with FRep.  71 

                      3.5.1.2 Rendering approaches Analysis. . . . . . . . . . . . . . . .  74 

      3.6 Heterogeneous volumes with attributes. . . . . . . . . . . . . . . . . . . . .  77 

            3.6.1 Primitive model colouring approach (Leaf colouring) . . . . .  80 

            3.6.2 Heterogeneous volume colouring approach (Node 

colouring). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 

      3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 

  

4    Engineering, design and implementation  

      4.1 WRMR general characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 

      4.2 WRMR core engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 

             4.2.1 Connection speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

             4.2.2 Machine information detection . . . . . . . . . . . .  . . . . . . . . .  85 

             4.2.3 WebGL information task. . . . . . . . . . . . . . . . . . . . . . . . . . .  85 

             4.2.4 Operating system detection task . . . . . . . . . . . . . . . . . . . .  86 

             4.2.5 Screen information detection task . . . . . . . . . . . . . . . . . . . .  86 

        4.3 WRMR conceptual design . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 

                     4.3.1 WRMR input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 

                     4.3.2 WRMR process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88 



5 
 

                     4.3.3 WRMR Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

      4.4 WRMR major parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

            4.4.1 User command and control. . . . . . . . . . . . . . . . . . . . . . . . . .  90 

            4.4.2 Data extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 

            4.4.3 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 

                     4.4.3.1 Code Protection using obfuscation. . . . . . . . . . . . . .  92 

                     4.4.3.2 Authentication and authorisation. . . . . . . . . . . . . . .  93 

                     4.4.3.3 Data files extraction. . . . . . . . . . . . . . . . . . . . . . . . .  94 

      4.5 WRMR modules . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 

      4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97 

   

5    Implementation  

      5.1 WRMR implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

            5.1.1 Rendering using MC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

            5.1.2 WebGL rendering approach. . . . . . . . . . . . . . . . . . . . . . . . .  99 

            5.1.3 Ray marching (SDF) rendering approach . . . . . . . . . . . . . .  101 

            5.1.4 OpenGL rendering approach using C++. . . . . . . . . . . . . . . .  101 

            5.1.5   Image slides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  102 

      5.2 Heterogeneous volumes with attributes. . . . . . . . . . . . . . . . . . . . .  104 

            5.2.1 Primitive model colouring approach (Leaf colouring) . . . . .  107 

            5.2.2 Heterogeneous volume colouring approach (Node 

colouring) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108 

      5.3 WRMR Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108 

            5.3.1 WRMR tasks and functions. . . . . . . . . . . . . . . . . . . . . . . . . .  108 

            5.3.2 HyperFun to JavaScript converter (HFtoJS). . . . . . . . . . . . .  111 

      5.4 Case studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .  113 

            5.4.1 Case study 1: Instant collaboration. . . . . . . . . . . . . . . . .  113 

            5.4.2 Case study 2: Parameterised modelling and rendering. . . . .  114 

            5.4.3 Case study 3: Partially rendering. . . . . . . . . . . . . . . . . . . . .  114 

       5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115 

  



6 
 

6   Experiments, tests and results  

      6.1 Rendering experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116 

      6.2 Comparing rendering techniques using different parameters. . . .  120 

            6.2.1 Marching cubes experiments. . . . . . . . . . . . . . . . . . . . . . . . .  121 

            6.2.2 WebGL experiments. . . . . . . . . . . . . . . . . . . . . .  . . . . . . . .  123 

            6.2.3 Ray marching using signed distance fields experiments . . .  125 

            6.2.4 Server based data extraction and delivery . . . . . . . . . . . . . .  126 

      6.3 Comparing different scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . .  127 

           6.3.1 Internet bandwidth constraint. . . . . . . . . . . . . . . . . . . . . . . . .  128 

            6.3.2 Hardware constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129 

            6.3.3 Browser constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 

      6.4 WRMR testing . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132 

            6.4.1 WRMR online random testing . . . . . . . . . . . . . . . . . . . . . . .  132 

             6.4.2 Comparing WRMR with existing online systems . . . . . . . .  134 

      6.5 HyperFun to JavaScript converter (HFtoJS) . . . . . . . . . . . . . . . . .  135 

      6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136 

.   

      7 Conclusion  

            7.1 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137 

            7.2 Future work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141 

 

       APPENDIX A 

       APPENDIX B 

 

 

    BIBLIOGRAPHY 

 

 

  

 

  

  

 



7 
 

List of Figures 

Figure 1. Web-based, adaptive, real-time, platform independent and 

interactive are the main characteristic of the proposed 3D Web-based 

environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52 

Figure 2. Hybrid Representation, a combination of both boundary and 

functional representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 

Figure 3. Forward and backward conversion between FRep and BRep.  .  54 

Figure 4. HRep Bi-directional conversion . . . . . . . . . . . . . . . . . . . . . . . .  55 

Figure 5. Client Server Architecture [Ramani et al., 2003]. . . . . . . . . . . .  56 

Figure 6. Client-server 3D Web-Based modelling and rendering architecture 

[Ramani et al., 2003]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

Figure 7. Proposed Client-Side Architecture (Thin and Fat Clients) . . . .  59 

Figure 8. Proposed server-side Architecture with polygonisation and 

rendering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

Figure 9. HRep modelling architecture showing different modelling 

techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 

Figure 10. Proposed adaptive shape modelling architecture (WRMR). . .  62 

Figure 11. Different Types of Scenarios and Decision-Making. . . . . . . .  63 

Figure 12. Scenario decision tree showing the three different parameters 

(BW, HW, and WB), and the four resulting outputs (WebGL, OpenGL, 

SDF and MC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 

Figure 13. Optimised decision tree showing the minimum number of 

nodes and leaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

Figure 14. Constraint satisfaction diagram showing the transition from 

state to state depending on variable constraint. . . . . . . . . . . . . . . . . . . . . .  70 

Figure 15. Structure of the Real-time Modelling and Rendering (WRMR) 

environment. .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72 

Figure 16. Constructive tree showing simple models as leaves and 

operations as nodes. . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 

Figure 17. A constructive tree for a complicated heterogeneous model 

with different HF functions as operations. . . . . . . . . . . . . . . . . . . . . . . . . .  79 



8 
 

Figure 18. Two different approaches to colouring, (a) using primitive 

model colouring (Leaf), (b) using complicated heterogeneous volume 

modelling (Node). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 

Figure 19. WRMR parts and functionality, these parts are Modelling, 

Control, Environment Set-up, Rendering, Visualising and Data Delivery. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 

Figure 20.  Conceptual model of WRMR core engine . . . . . . . . . . . . . . . . .  84 

Figure 21. Information gathered from the client machine. . . . . . . . . . . . .  87 

Figure 22 WRMR process part showing source code integration in the 

client’s memory background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. , .  88 

Figure 23. The process of extracting raw data as vertices and faces can be 

done using different rendering approaches. . . . . . . . . . . . . . . . . . . . . .  91 

Figure 24. The three different security threats and their defences: Code 

Protection (Obfuscation), Authentication and Authorisation, and Data 

Extraction. . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92 

Figure 25. Data-flow diagram showing how authentication and 

authorisation are implemented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94 

Figure 26.  WRMR parts, modules and their interconnections . . . .. . . .  95 

Figure 27. Complicated hemisphere model showing its modelling phases 

and then rendered after applying different functions using MC. . . . . . . .  99 

Figure 28. Hemisphere rendered using WebGL . . . . . . . . . . . . . . . . . . . .  100 

Figure 29. Hemi-sphere rendered using ray-marching of SDF . . . . . . . . .  101 

Figure 30. Hemisphere rendered using OpenGL (C++) at the server-side..  102 

Figure 31. Image Slider Matrix (35 by 35). . . . . . . . . . . . . . . . . . . . . . . .  103 

Figure 32. Image Slider with rotation angles and speed control. . . . . . . .  103 

Figure 33. Heterogeneous volumes with colour attributes generated using 

different rendering approaches: Leaf a, d; and Node b, c. . . . . . . . . . . . .  105 

Figure 34. A cross-section for a complicated heterogeneous volume with 

colour attributes showing the internal structure of the model. . . . . . . . . .  106 

Figure 35. Heterogeneous volume with colour attributes being modelled 

in JavaScript and rendered using WRMR . . . . . . . . . . . . . . . . . . . . . . . .  106 



9 
 

Figure 36. Set of background tasks showing how functions and attributes 

being transformed and processed in WRMR background. . . . . . . . . . . . .  109 

Figure 37. Components of the proposed environment: left part 

(Interpreter) and the right part (Rendering and Visualisation) . . . . . . . . .  109 

Figure 38. Heterogeneous volumes modelled and rendered on the client-

side using MC algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 

Figure 39. Heterogeneous volumes modelled and rendered on the client-

side using WebGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   . . . . . . . . . .  111 

Figure 40. Client-side ray marching rendering (SDF) for heterogeneous 

volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   111 

Figure 41. Server-side rendering for heterogeneous volumes using 

OpenGL . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

Figure 42. HF to JavaScript Converter main parts. . . . . . . . . . . . . . . . . .  112 

Figure 43. Online HyperFun to JavaScript Converter. . . . . . . . . . . . . . . .  112 

Figure 44. Android Robots rendered using different approaches: MC (a), 

WebGL (b), server-side using C++ (c) . . . .. . . . . . . . . . . . . . . . . . . .  117 

Figure 45. Hemisphere models: MC (a), WebGL (b), Server-side (C++ ) (c) 

and SDF (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 

Figure 46. Complicated models: MC (a), WebGL (b), Server-side using C++ 

(c), SDF (d) . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 

Figure 47. Complicated models: Hemi-MC (a), Infinity-MC (b), Double 

helix-MC (c) . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 

Figure 48. Complicated models: Double helix-MC (a) , Rabbit-WebGL 

(b) and Rabbit-SDF (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119 

Figure 49. Complicated models: Spiral-MC (a), Faucet-WEbGL (b) and 

Hemi-SDF (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119 

Figure 50. Graphical representation for the extracted values, comparing 

three different objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123 

Figure 51. Graphical representation for the extracted values, comparing 

2 different objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 

Figure 52. Bar chart representation for the extracted values, comparing 

two different objects . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 



10 
 

List of Tables 

Table 1. List of Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

Table 2. Scenario-based on three different parameters: Bandwidth, 

Hardware, and Web-browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 

Table 3. Comparing different rendering approaches (MC, WebGL using 

Three.js, and SDF on the client side and server-side rendering using 

OpenGL) . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120 

Table 4. Experiment applied to three different objects using MC 

rendering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122 

Table 5. Experiment applied on three different objects using WebGL 

rendering. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125 

Table 6. Experiment applied on three different objects using signed 

distance fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126 

Table 7. Experiment applied on sake-pot object using server based 

rendering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127 

Table 8. Internet bandwidth change experiment, showing the rendering 

time in seconds for each rendering technique on a certain machine. . . .  128 

Table 9. Rendering complicated models using WebGL rendering 

approach running on four different machines with different hardware 

resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 

Table 10. Server-based rendering and sending images to clients in the 

form of image-slides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132 

    Table 11. Random users with random internet speed and hardware . . . . .  133 

    Table 12. Testing HyperFun to JavaScript convertor (HFtoJS) . . . . . . . . . 135 

 

 

 

 

 

 



11 
 

Acknowledgements 

I would like to express my gratitude to my supervisors: Prof. Alexander Pasko, 

Prof. Peter Comninos, Dr. Oleg Fryazinov  and Dr. Valery Adzhiev for their 

encouragement and patience. 

I would like to thank my wife, daughter, and son for their support and 

encouragement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



12 
 

Declaration 

I declare that this report has been written and created by myself. The report has 

not been submitted for any degree. The work in this report has been undertaken 

by myself except where otherwise stated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

Chapter 1  

Introduction 

1.1 Brief description of Web-based modelling 

1.1.1 Web-based modelling concepts 

Computer-Aided Design (CAD) helps engineers and designers to efficiently create, 

modify and analyse geometric shapes resembling real-life objects. It uses mathematical 

formulas to define a geometrical shape using computer software. Its revolution started 

early at the MIT in the mid-1960s as a result of early interest in computer graphics, 

which developed rapidly as computers became more affordable, and the application 

areas have gradually expanded [Sutherland, 2003]. 

Visualisation, exploration, and interaction with 3D models became an essential 

tool for different sectors. Hardware dedicated for computing graphics including 

graphics adapters and processing power is not growing fast and not meeting the 

rapid increase of demand from the graphics community, which realised that 

hardware started to be a bottleneck for the modelling process, and believed that 

relying on the slow hardware development to generate more complex 3D models 

is not convincing any more. Alternative solutions were required to overcome 

hardware bottleneck problems that is why researchers started to focus their 

research on proposing and developing new rendering algorithms 

to minimise rendering run-time and reduce hardware storage and processing 

power. [Wang et al., 2016] 

Many CAD systems exited as desktop modelling applications. Such systems are 

very efficient with high performance and precision. Thus, the need for 

collaboration and model sharing leads to take the CAD system online. Building 

up a Web-based collaborative 3D shape-modelling environment requires a deep 

investigation regarding three major aspects, namely Networking, Modelling and 

Visualisation. Problems surrounding these topics need to be discussed, resolved 



14 
 

and solutions to be implemented. Different parts of the proposed environment 

need to communicate throughout a predefined network, which constitutes its 

backbone. 3D volumes need to be modelled using a modeller, which is 

considered as the core of the environment. Visualisation is the part where 

rendering and volume displaying takes place and is considered as the output of 

the environment  

The pipeline of the creation of 3D models is composed of three phases: 

Modelling, Processing, and Rendering. Volume is usually represented using 

discrete geometric data or procedurally with continuous functions in the 

modelling phase, the preparation for rendering and visualisation takes place in 

the processing phase. Security concepts such as watermarking and data 

compression can be implemented in this phase.  Rendering is the last stage, where 

volumes are displayed after setting up the sampling frequency the camera 

viewpoint, etc. [Vanhoey et al., 2017]. Enough information should be carefully 

collected about the real object to be modelled. The second step is determining all 

the necessary functions and parameters to be transformed into model data ready 

for rendering. Texturing is the last step where visualisation of the model takes 

place. Model interaction in virtual environments gives a certain level of reality 

especially when it comes to real-time movements accompanied by shadows 

reflected from the light source. [Popvski et al., 2014]. 

Web-browsers started to adapt and support 3D graphics thanks for the rapid 

development of the Graphics processor units (GPUs) with their ability to process 

3D graphics. Different 3D graphics applications were introduced as visualisation 

solutions [Jung et al., 2012]. Modern computers, and even smaller devices such 

as tablets and smart-phones, are supplied with a suitable graphics adapter. Sons 

et al., focused on improving the functionality and performance of the browser 

when dealing with the GPU at the client side [Sons et al., 2010]. They designed 

an extension to the Web browser as an attempt to increase the performance. Web-

based graphical environment resides externally on an application service 

provider’s network and on the GPU, which is managed and controlled at the 

client-side using visualisation tools. 



15 
 

Online applications should be efficient and characterised by the instant response. 

In order to keep the environment up-to-date, an information regarding hardware, 

bandwidth and performance, and memory consumption should be collected. 

Scenario Optimisation usually provides efficient and accurate instant decision-

making depending on the continuous monitoring and tracking for the emerging 

changes of hardware, connection and software resources. It helps in reducing the 

time cost by making use of the available resources [Mars and Hundt, 2009].  The 

scalability and availability of any environment, especially online one, depends 

on scenario optimisation, which constitutes an essential factor of success. 

1.1.2 Web-based geometric representation 

Online applications designed for interactive 3D modelling and rendering are 

developing rapidly, and the need for rendering complicated volumes is growing 

fast. Rendering interactive high-quality complex models require a big amount of 

data, wide network bandwidth and a vast amount of computational resources. 

Hoppe in 1977 introduced the Progressive Mesh (PM) which supports complex 

rendering and gradual transmission. The problems with PM lies in the 

huge number of triangle faces that constitute the complex model, which leads to 

a considerably big data volume up to tens of Megabytes, in addition to the edge 

collapse process, where big number of edge collapse operations take place and 

generate a big amount of data added to the original PM volume data be 

transmitted over the network. Moreover, every time the mesh is adjusted or 

updated, the request will be sent to the server side, then thousands of rendering 

operations and calculations should take place on the client-side which affects the 

instant visualisation process due to the huge number of requested information 

transmitted over the network and the massive amount of rendering operations 

that takes place in both the server and the client side.  [Chen et al., 2016] 

Computational performance and high memory consumption started to become an 

issue in computer graphics, for those reasons, architectures started to deploy 

caches to reduce rendering time and extensive computational power. Caches help 

users when accessing the network, where geometric model access time could be 

high. Meshes can be compressed by eliminating repeated data from the original 



16 
 

mesh. Mesh compression uses triangle strips and can be easily decoded using 

hardware graphics adapters which uses the mesh in sequential order, for that 

reason, ray tracing, which access the mesh in an arbitrary order, cannot access 

such representation, that is why ray-strips was proposed by researchers, to 

support ray tracing. [Deitrich et al., 2007]. 

Developing and accessing an easy to use 3D browser-based application based on 

wide-spread application program interface (API), and plugins free environment 

started to be a must inorder to produce 3D models. All modern browsers started 

to support WebGL, a JavaScript-based environment for working with computer 

graphics that is supported in most of the online modelling and visualisation 

systems. [Fisseler et al., 2017]. WebGL becomes a popular graphics API because 

some browsers, especially on mobile devices, have very limited support of 

commonly used extensions and limited on processing power and memory storage 

resources. Some techniques such as geometry compression were added to 

JavaScript libraries in-order to decrease 3D data files dedicated to complicated 

models and due to the fact that not all 3D file extensions could be supported on 

various platforms. Progressive object loading is another technique used to 

decrease the load on the limited hardware resources and allows different users to 

use the Web-based platform at the same time. [Fisseler et al., 2017]. 

The increasing demand for 3D models forces online Web-based applications to 

start using Web technologies such as X3D and WebGL. The excessive usage of 

artefacts leads to model distortion and negatively affect the rendering and 

visualisation processes especially when using numerous parameters. In order 

to evaluate the 3D model visual quality, successive snapshots of the 3D 

model were taken from different angles, these snapshots then construct the 2D 

image metrics which was used by researchers to compare the metrics with the 

original model. [Lavoue et al., 2016][Fisseler et al., 2017]. 

 

 



17 
 

1.1.2.1 Client-server approach 

Client-server architecture allows for the information exchange between a server 

and a client, where the server is a large-capacity computer, with a huge amount 

of information stored on it, and available for sharing with different clients. The 

clients are smaller computers that are used to perform local computing 

tasks.  Storing big amount of information on servers or clients is a serious 

problem especially when clients with low connection speeds and/or hardware 

resources (storage space and memory) are requesting services with big data files. 

Transmission of 3D scenes still a major problem in spite of the huge efforts and 

researchers dedicated to resolve such kind of problems [Limper et al., 2013]. 

Cloud computing including virtualisation and parallel computing could be one of 

the useful available solutions, where online big data storage and processing on 

demand can be applied [Wu et al., 2014].  

3D scenes are difficult to integrate into HTML files, and Web browsers are not 

designed to deal with large 3D data files with a vast amount of computational 

resources. One of the available options is to develop a partially interactive and 

immersive flash animation from a 3D scene [Rodrigues et al., 2011]. Another 

option is to play back a reproduced “flat” 3D environment in the browser; such 

environment is composed of several pictures covering 360 degrees and stitching 

them together, all the above possible solutions use the Internet as a transmission 

media to transmit information (images and data) between the environment’s 

servers and the clients. 

Even though the rapid development of the hardware graphics adapters supported 

by special memories, and despite the widening of the bandwidth, interactive 

instant visualisation still a challenge and is subjected to visual quality loss. The 

standard built-in tools outputting the model in the standard format of polygonal 

meshes have many drawbacks and limitations resulting in insufficient 

convenience of modelling (especially in a collaborative mode), and inefficiency 

of communications through the network and visualisation, thus being at odds 

with the current cutting edge of the technology in terms of hardware and 

networking abilities. More specifically, in terms of building proper client-server 



18 
 

architecture for 3D Web-based systems, the development of the collaborative 

tools for modelling and visualisation requires flexible and efficient handling of 

hardware and software resources of each client to achieve the efficient workflow. 

1.1.2.2 Rendering approaches and tools 

The term rendering is defined as the process of visualising geometric models and 

transform it into a visible image. Rasterisation and ray-tracing are two of the most 

applied rendering algorithms. Rasterisation algorithm projects the rendered 3D 

objects onto the image plane after generating model dots and transforms them 

into pixels. Hardware components were developed to increase graphics 

computing performance and was supported with multiple and parallel 

rasterisation units. Nowadays, GPUs are supported with sub-processors designed 

to manipulate different kinds of shaders simultaneously rather than stacking them 

in the pipeline. In Ray-tracing algorithms, the observer shoots ray into the scene 

through the camera-aligned grid, the closest intersection with the model surface 

is then selected. Ray tracing can generate high-resolution images and is now 

available for real-time rendering. [Deitrich et al., 2007] 

Many 3D modelling tools designed to create complicated models in an interactive 

way are now available online, the problem of using such tools is that the user 

needs to acquire a certain level of modelling knowledge. Most of these modelling 

systems use polygonal meshes that can be rendered quickly and using low 

hardware resources. Major weaknesses can be noticed in such systems such as 

the inability to edit or change parameters during the modelling process and the 

lack of tracking the construction history of the model during the modelling 

process. [Lindborg et al., 2017]. Some modelling systems use voxels to create 

complex models, such systems are very slow in the visualisation (rendering) 

process, and oblige users to store a huge amount of data on their machines.  

Object geometry is widely represented by polygonal meshes, such representation 

is easy to understand and modify. Polygonal meshes representation is restricted 

to a limited number of predefined consecutive operation. One of the most well-

known formats to represent and store 3D models is polygonal meshes using the 



19 
 

boundary Representation (BRep) because it can be easily implemented on the 

Web browser and is supported by most of the application program interfaces 

(APIs). Polygonal meshes are described as an approximation of the mathematical 

model, and they still have issues including the loss of the real-model visual 

properties and precision in addition to the large consumption of memories and 

difficulties over distributed networks, not mentioning the limitation in accessing 

the construction history during the modelling process. Scalar fields is an 

alternative representation which can be used in web-based modelling. One of the 

main examples is Signed Distance Fields (SDF) representation which is a 

function-based representation gained a lot of attention because of its 

characteristics. Such representation proved to be very efficient in applying many 

operations such as blending, offsetting and others. It can be divided into two 

types exact and approximates, and both divisions are suitable for display, 

animation etc… When the field value matches the Euclidean distance, the scalar 

field is transformed into the distance field, and then we can differentiate between 

two cases: signed and unsigned distance fields. In the unsigned distance field, the 

sign is determined by the position of the target point whether it is inside or 

outside the geometry. In the signed distance field, the iso-value 

that constitutes the distance to the mesh is negative on the mesh surface and 

positive everywhere else. [Sanchez et al., 2015]. 

Some complex scenes, could be huge and need a lot of computational power, 

sometimes may need more than one CPU, Ram and GPU should be implemented 

on the same machine, or may use different hardware machines to compute 

one scene. The scene may be divided and distributed among the hardware 

resources to be rendered, and then combined to perform one rendered scene. In 

this way, we can make use of multiple hardware to render one massively complex 

scene. [Deitrich et al., 2007]. 

Complex geometrical models with massive data started to evolve due to the rapid 

change and evolution that is taking place in 3D modelling applications. Real-time 

rendering started to put a huge pressure on the hardware platforms that is why 

researchers started to pay attention on the level of details techniques and tools. 



20 
 

By using the suitable LOD, users during the rendering process started to pay 

attention to the distance between the viewing point and the viewed geometry in 

order to reduce the huge load on the hardware resources. As a result, choosing 

the correct LOD lead to low-cost hardware resources and faster rendering, and 

improvement in real-time visualisation. LOD is still incapable to run smoothly 

with massive data models transmitted over the Internet that restricts online real-

time visualisation [Chen et al., 2016]. 

Building up an interactive Web-based architecture, that supports wide range of 

different hardware and software configurations on both client and server side 

requires optimisation of modelling and rendering response time for viewing 3D 

models. Optimisation of the tools and techniques is also required at the rendering 

level. A certain level of model quality is required in order to meet accurate 

measurements [Fisseler et al., 2017]. Internet speed with much bandwidth is 

essential for transmitting large 3D data files over the network and Internet for 

interaction and rendering. Large data files require the use of data streaming and 

compression techniques to speed up data transmission process over the Internet. 

Securing the model is a crucial issue in this aspect, encoding data at the server 

side could be done in almost no time, and the problem stays at the client side, 

where the decoding process takes place. The decoding time at the client side must 

be low to reduce the transmission time. [Fisseler et al., 2017]. In this work we 

focus on designing, implementing and testing a 3D instant Web-based 

environment, supported with different rendering approaches suitable for different 

users. Our scope is to research and develop an adaptive, interactive, easy-to-use 

and platform independent environment. 

1.1.2.3 Proposed approach (Implementation and novelty) 

This work proposes a theoretical modelling framework to be designed and 

implemented, such a framework will include combining different modelling 

systems (Function and Boundary representations), and will be supported by 

different rendering approaches. The proposed modelling system will integrate 

two different systems and combine their characteristics in a hybrid one, thus 

allowing users to benefit from the characteristics of both modelling systems in 



21 
 

one new system. Different rendering approaches will be implemented to support 

the hybrid modelling framework. Our implementation will include a new method 

that allows desktop models to be transformed into Web-based models. A model 

conversion tool will support the proposed framework to allow desktop users to 

convert their models into Web-based models without the need to acquire and 

knowledge about Web-scripting language. The proposed framework will also 

support the creation of heterogeneous volumes with different densities attributes, 

in our work we will focus on colouring attributes and will propose two different 

colouring approaches in Chapter 3 section (3.6). 

1.1.3 Heterogeneous volumes and constructive modelling 

The amount of 3-dimensional space needed for an object is called a volume. 

Volumes represented as point sets with both physical and photometric attributes 

such as colours and densities are called hyper-volumes [Schmitt et al., 2001]. 

Heterogeneous volumetric objects consist of a point set, where each point 

contains a set of various attributes referred to it. An attribute can be defined as a 

numerical measure of the physical property. Using-real valued functions, both 

geometry (point set) and attributes can be modelled separately. Researchers 

proposed many representations including boundary, functional and volumetric 

representation for heterogeneous objects. [Schmitt et al., 2001]. Gupta et al., 

defined heterogeneous objects as a set of composed objects with a different set 

of material and are divided into three categories, objects with multi-marital, 

objects composed of sub-objects, and clear material boundary objects [Gupta et 

al., 2010]. Kumar et al., described heterogeneous objects as objects made up of 

several non-uniform materials and different compositions with different 

microscopic characteristics [Kumar et al., 1998].  

Constructive modelling is the process of decomposing one complex model into 

a set of simple or primitives, for example, spheres and cubes. These simplest 

volumes that have scalar attributes representing their colours, densities, 

temperatures etc., are considered as 3D point sets, where different operations 

such as difference, intersection, and union in addition to linear transformation 

functions are applied to them to reconstruct a new complex model forming a 



22 
 

constructive tree, where leaves are primitive objects and nodes are the applied 

functions [Schmitt et al., 2004].   

 1.2 Problem statement 

The demand of graphics computer is growing much faster than the hardware 

dedicated to computer graphics such as graphics adapters and processing powers. 

This issue leads to what is called hardware bottleneck problem in the modelling 

process because the demand for complex 3D graphics is much faster than the 

dedicated hardware. This problem makes it inconvenient to relay on slow 

hardware and directly affects both complex volume rendering, and real-time 

concept. To solve this issue, we will focus on proposing and developing different 

rendering approaches that suit different hardware resources to minimise 

rendering run-time and to assure instant modelling while making full use of the 

available hardware storage and processing power.  

The principal purpose of this work is to propose the theoretical framework for 

the adaptive Web-based environment for heterogeneous volumetric objects as 

well as to develop the practical methods and tools to test the proposed theory. In 

this document, we explore the problems of building an adaptive 3D Web-based 

real-time modelling and rendering environment (WRMR). We mean by WRMR, 

an architecture or environment that is platform independent, reliable, and 

collaborative. It enables instant users’ interaction for the purpose of 3D 

shape modelling and rendering in a collaborative manner. In this work, we focus 

on a particular emphasis on rendering aspects, thus defining the most efficient 

way of communication between the server and the clients depending on the 

available resources. To validate the proposed framework, we compared it to the 

available state-of-technology projects, using different research and technical 

dimensions. We tracked the progress of other similar available online systems, 

we made a detailed observation and performed data analysis to support the 

planning processes and to avoid replication of existing online systems. We also 

highlighted the benefits of the proposed framework in chapter 6, section 4, 

paragraphs 6.4.1 and 6.4.2. 



23 
 

Building up an instant adaptive environment is one thing, protecting it, and the 

generated 3D volume is another thing to consider. Delivering 3D models over 

the Web efficiently and securely is a must as the Internet became widely spread 

and being accessed by almost everybody. Some Web-

based modelling applications are already developed, most of them are not 

platform independent and are designed to serve certain users with specific 

platforms, and not designed to serve all kinds of users with different platforms 

simultaneously.  

One of the real challenges is to develop an easy to use 3D browser-based platform 

independent and plugins free environment supported by a friendly interface. This 

3D modelling and rendering environment for heterogeneous volume objects 

should be accompanied by a solid multi-rendering technique engine wish is 

capable of visualising different complicated volumes based on different 

rendering approach. Choosing the most suitable rendering approach, even with 

3D complex volumes that usually accompanied by massive data, will make use 

of the available hardware resources, and will improve rendering time and will 

assure instant interaction and modelling. The ability to pass parameters (colour, 

texture, etc…) to models in the modelling stages is a tough work especially when 

working with heterogeneous volumes with different densities. 

1.2.1 Research aim 

The aim of the research is to investigate, research, design and implement an 

instant adaptive 3D Web-based shape modelling and rendering environment that 

allows instant online modelling for heterogeneous volume objects supported by 

different parameters and attributes, to allow non-professional and professional 

users to use efficient modelling tools and rendering techniques, and to deliver 

online complicated 3D objects, as well as to assure model’s security by applying 

suitable security defences on the proposed environment, in addition to data 

extraction and delivery which supports model security concept and assures 

delivering the model safely and efficiently over the Web. 

 



24 
 

1.2.2 Research questions 

Based on the research problem, the following questions should be answered: 

1) The demand from graphics community for complex models is increasing, 

and the development of hardware resources is not meeting their need, the 

rapid growth of the need for developing complex volumes with vast data is 

yet facing the limitations of the computation power and storage. 

Implementing different rendering approaches that require lower storage 

and processing power started to be in focus for the researchers. Recently 

they started to implement different rendering algorithms to escape 

hardware bottleneck problem. The question to be asked is: “How the 

available rendering algorithms and techniques are efficiently used in an 

open Web-based user-friendly environment in order to develop 

heterogeneous volumes while reducing their massive data and decreasing 

the rendering time and still maintaining high 

resolution and optimal usage?” 

2) Online modelling is another point of interest, such an environment should 

be user-friendly and must be efficient and available for every single client 

with any hardware platform available on the Web. Clients with different 

hardware storage and computational power may exist which makes it hard 

to design an adaptive environment without noticing all the wide variety of 

users over the Web. In this work, we will answer the following question 

“What are the best practices and techniques needed to build up a Web-

based environment and how to distinguish the proposed environment from 

what already exists online? “  

3) Two major modelling approaches already exist for desktop and online 

modelling, Boundary representation (BRep) uses polygonal meshes, it is 

easy to be implemented and is supported by most of the application 

program interfaces. Function representation (FRep) is another approach for 

modelling, it uses continuous functions to represent a volume, it reduces its 

complexity and keeps its construction history while maintaining low 



25 
 

storage. Combining the two systems in one Hybrid representation 

modelling system (HRep) allows to benefit from the characteristics of the 

two systems together, therefore the following question should be answered: 

“What theoretical and practical methods should be applied to combine two 

different modelling systems in one hybrid web-based system which 

benefits from their characteristics.” 

4) JavaScript is widely used language in Web-based applications. Desktop 

modelling uses some other languages such as C++ or HyperFun (HF). HF 

is a high-level programming language used to present (FRep) objects to do 

the modelling and generate volumes on desktops using the language 

compiler [Cartwright et al., 2005][Vilbrandt et al., 2004][Fryazinov et al., 

2008]. Our goal is to take the modelling process from desktop level to the 

Web and make it easy for desktop users to use their own desktop modelling 

source code over the Web. To solve such an issue, the following question 

should be answered: “What are the best practices in moving 3D models 

from desktop to the Web, and what are the necessary tools and techniques 

needed to change a modelling language from desktop language to Web-

based suitable to run on the Web-browsers?” 

5) Online modelling applications are usually supported with one rendering 

technique and serve certain users with defined hardware resources. For 

example, Tinkercad is a Web-based application designed to generate 

simple models based on primitive objects [Tinkercad]. It uses Obj file 

format to save models, and is tailored for users with low hardware 

resources. Shapesmith is another Web-based application that supports by a 

limited number of modelling functions and needs more hardware resources. 

[Shapesmith].  

This issue leads to a limitation of the number of users and forces them 

to render their complex objects using the only available rendering 

technique. The question arises here as follows: What if a certain user with 

specific computational power needs to use the environment, and what if a 

user decided to visualise his model using another rendering approach? 



26 
 

Using the suitable rendering approach leads to low-cost hardware 

resources, and to faster rendering, and improvement in instant 

visualisation. To solve such an issue, the following question: “How to 

research and implement the right and efficient rendering approaches based 

on different scenarios?” should be answered. 

6) All Web-based applications are open source applications, and thus are 

vulnerable to huge security risks and threats. Shapesmith for example, 

prevents normal users to access the application and asks them to send 

access requests using their personal emails in order to enforce security. 

Shapeways askes users to use login methods such as Gmail and Facebook, 

and it forces them to input a considerable amount of personal information 

including names, emails, addresses etc.., which could be an exhausting 

process in order to assure privacy, and online protection.  

Ensuring security over the proposed environment while keeping both 

online and open source concepts alive and well-functioning remains a big 

question to be answered. Extracting and delivering data files over the Web 

is another issue to be discussed, and the question about extracting and 

delivering 3D complex objects data over the Web efficiently, and integrate 

different models online smoothly and securely should be researched and 

solved. The question to be answered is “What is the best practices to 

support Web-based open-source 3D shape modelling environments with a 

certain level of online security?” 

7) Modelling with heterogeneous volumes with attributes such as colour and 

texture is a must in order to take the volumes into another level. Passing 

parameters to volumes at the modelling phase stays a challenge especially 

when we do online modelling, such an issue should be investigated and 

solved. The question to be answered is: “How to implement online 

heterogeneous volumes with different densities and attributes?” 

 



27 
 

1.2.3 Contribution 

The novelty of this work consists of:  

1-  Combining two different modeling approaches (BRep and FRep) in one 

unique approach (HRep) allowing users to make use of the characteristics 

of both approaches.  

2- Dealing with HF users to transform their models from HF functions into 

JS functions suitable for Web browsers within a glance using an HFtoJS 

converter designed and implemented for this purpose. This approach 

allows desktop models to be available on the Web-browser in an 

interactive manner.  

3- Dealing with heterogeneous volumes with attributes was a challenge 

especially when dealing with volumes with different densities and 

colours. This work solved the problem of dealing with heterogeneous 

volumes with attributes by introducing two different colouring 

approaches. 

The work will address the following problems: 

1) Modelling level: 

We address the heterogeneous volume objects modelling where the 

internal structure of the models must be visualised and presented with the 

surface. Both function and boundary representations are combined as part 

of the solution to this fundamental problem [Pasko et al., 1995], Thus 

introducing a hybrid representation (HRep), which is a combination and 

integration between both function and boundary representation of models. 

Heterogeneous volume modelling with attributes such as colour and texture 

should be discussed and implemented. 

 

 



28 
 

2) Rendering Level: 

Different rendering approaches will be implemented corresponding to 

different scenarios; these scenarios will use a special core engine running 

on the server-side of the environment to collect information about the client 

requesting the service. The rendering approaches will be distributed among 

the server and the client sides, depending on the obtained scenario. 

3) Data extraction and delivery level: 

3D data extraction and delivery using a well-known and predefined file 

formats allow online users to load, integrate, display and access 3D models 

efficiently. 

This document will discuss and try to solve the problems listed below: 

 Researching the most efficient way of communication between servers and 

clients for efficient modelling services. 

 Collecting information about clients’ resources and connectivity is a 

serious problem to be solved, monitoring and detecting the changes at the 

client side should be included in the solution. 

 Clients with different hardware resources may be presented; different 

scenarios should be introduced to interact with the clients’ needs. 

 Scenario optimisation should be investigated, discussed and implemented 

to assure the quality of service and platform independence. 

 Clients with different hardware resources and bandwidth require different 

rendering approaches to be discussed and implemented. 

 Investigate and discuss the possibility of implementing the environment in 

the cloud for better interaction and storage. 

 Protect online code and deliver access rights and permissions to authorised 

users. Implement security procedures to protect both, the server-based 3D 

models and the low-resolution and high-resolution heterogeneous volume 

objects rendered on the client-side.  



29 
 

 Implement special engines for 3D data extraction and storage to allow 

online 3D data delivery and integration. 

 Discuss and implement a platform suitable for heterogeneous modelling 

that allow passing attributes (parameters) at the modelling level. 

The main contributions of this work are following: 

1) The work successfully combines two different modelling systems in one 

Hybrid system. Thus, Boundary representation (BRep), are combined and 

integrated into one Hybrid representation (HRep). 

2) A HyperFun-to-JavaScript converter (HFtoJS) was designed and 

implemented to allow HyperFun (HF) users to use online modelling based 

on JavaScript. HFtoJS converts HF functions, codes and, libraries into 

JavaScript (JS) functions, codes, and libraries suitable for Web-based 

modelling. Using HFtoJS, we managed to solve a major problem of 

taking HyperFun to the Web and allow HF users to write HF functions 

and convert them to JS functions ready to be executed on the Web-

browser. 

3) Heterogeneous volumes with colour attributes were approached from two 

different perspectives, where two colouring methods were developed 

(leave and node colouring) to allow users to deal with heterogeneous 

volumes and to apply different colouring approaches. Those colouring 

approaches allow both external and internal volume colouring, where 

different coulours can be applied to the internal structure of the volume 

as well as its external structure. 

 

 

 

 



30 
 

Below a list of published contributions. 

Problem Contribution Publication 

/Outcome 

Web-based Modelling  Adaptive environment ACHI 2014 

Online 3D 

environment security 

Obfuscation, 

Authentication/Authorization and data 

extraction 

 ICT and Societal 

Challenges 2017 

 

Model exchange Data extraction and delivery  FASSI 2017 

Models with densities Heterogeneous volumes with attributes  IEEE: ACIT 2018 

Heterogeneous 3D 

volumes on the Net 

Real-time heterogeneous volumes on the 

Web 
 Journal to be 

submitted soon. 

Table 1: list of contributions 

  The list of publications is presented in Appendix A. 

1.3 Objectives and outputs 

The aim of this project is to explore different ways of building a Web-based 

interactive architecture for a modelling system based on hybrid representation, 

with different types of adaptations to the clients’ needs with particular 

consideration of rendering techniques. After surveying related works, we 

describe an adaptive 3D shape modelling environment of a Web-based system, 

considering in detail a pure client-server one, and then an adaptive one. We will 

try to identify four of the most probable scenarios to support decision-making 

using client-server communications. After that, we will use different rendering 

approach (Marching Cubes, WebGL, Server rendering using C++ and Sign 

Distance Field) depending on the client infrastructure and try to introduce models 

with attributes. Finally, we present the experiments and discuss the results as well 

as some practical recommendations presenting the advantages and disadvantages 

of the tested techniques. 

As an output, the document will put into test four different rendering approaches, 

and try to apply them to simple and complicated heterogeneous volumes, and to 



31 
 

compare the performance of the rendering approaches regarding GPU power 

needed and time taken. The document will summarise the result obtained in a 

table showing the time taken for each rendered model using one of the three 

different rendering approaches taking place on the client-side; it also compares 

the efficiency of each approach and presents the results using different charts. 

After considering the time and the GPU power for each technique, the 

environment will be able to determine what kind of service has to be delivered to 

the client. 

1.4 Summary 

In this work, we introduce a new framework for modelling and rendering 

environment. The proposed framework combines two different modelling 

systems (BRep and FRep)  in a hybrid one HRep, we discuss and put into test 

four different rendering approaches, we also propose a system to convert desktop 

functions into Web-based function suitable for online modelling and rendering, 

and we deal with heterogeneous modelling with attributes while focusing on 

volumes with different densities and colours using two different colouring 

approaches implemented to serve the proposed environment.  

The research allows users to take benefit from the characteristics of both BRep 

and FRep in a hybrid representation HRep. Using HRep, users can use functions 

to represent their models, take advantage of the constriction history of the 

modelling process, transform their functions to polygonal meshes for rendering, 

transmit models over the Web using low space data files, and others.  

Another benefit of this work, is the ability to take the modelling process into the 

Web by transforming desktop modelling functions mainly HyperFun functions 

into Web-based JavaScript functions suitable for online modelling and rendering. 

This process allows HF users to transform their models into JS models suitable 

for the Web-browser in an interactive manner. 



32 
 

Heterogeneous volumes with attributes allow users to deal with volumes with 

different densities, and benefit from applying different colours attributes for both 

the internal and the external structure of the volume. 

1.5 Report structure 

This document is organised as follows: 

Chapter II will introduce a general overview of the related work related to online 

modelling and rendering and will discuss some of the researchers’ work.  A brief 

introduction to Web-based modelling will be presented and will include relevant 

research areas and the available non-ideal solutions. The modelling theory will 

be presented and will focus on the collaborative shape modelling environments 

in addition to the client-server architecture. A general overview of the available 

rendering approaches will be presented. We will discuss some aspects of securing 

online applications and some available 3D geometric models 

and modelling systems.      

Chapter III is the theoretical part; it includes the theory behind the proposed 

online 3D environment. We start by defining the 3D environment and move to 

discuss different representations for modelling, we first discuss the Boundary and 

the Function representations and later we propose the Hybrid representation 

including the forward-backward transformation.  The document will also discuss 

client-server architecture and adaptive environment concepts. Four different 

rendering techniques will be presented and discussed, these rendering techniques 

are as follows: Marching cubes, WebGL, OpenGL C++, and ray-marching using 

Sign Distance Fields. The complexity of the used algorithms to implement 

different rendering approaches will be discussed and compared for performance. 

Modelling with attributes will be also discussed and implemented. 

In chapter IV we will cover the engineering and the implementation phases of 

the project. We start with the platform implementation including the core engine, 

then we implement some security concepts including authentication and 

authorisation, code encryption and decryption (obfuscation) and mesh delivery. 



33 
 

Data extraction and delivery will be implemented after and we will focus on the 

user-server interaction while developing the front end-user interface. 

Chapter V will discuss the implementation of our work including the four 

rendering approaches in addition to the implementation of heterogamous 

volumes with attributes. The chapter will include a discussion about important 

tasks and modules. We perform volumes’ implementation, testing, and 

comparison then we summarise the work, present a conclusion, and discuss the 

limitation and propose some future work.  

Chapter VI will be dedicated to experiments as we are going to put into test 

different rendering approaches, and compare them according to different 

constraints (availability, bandwidth, and performance). Delivering 

heterogeneous 3D data models will be discussed and implemented and then 

compared according to the used rendering techniques 

Chapter VII is the finale chapter where we present the conclusion of our work, 

in addition to future work. 

 

 

 

 

 

 

 

 

 



34 
 

Chapter 2  

Literature review 

Creating 3D models and scenes can be done using nowadays modern 3D 

technologies and modelling tools which are available online for public use. 

Complex models with internal material properties and the ability to define or 

change certain parameters during the modelling process usually need a certain 

level of knowledge. Tools that allow user interaction and support the changing 

parameters process are available online but with considerable limitations, such 

as the lack of tracing the model development history and the inability to access 

some operations [Lindborg et al., 2017]. In the literature review, we will 

introduce some related terms and notations in the background section, then we 

present some of the commonly used graphical representations including 

polygonal meshes and voxels. Boundary and Function Representations are also 

introduced and highlighted in addition to signed distance fields and the HyperFun 

language. The non-ideal solution section discusses the interactive systems and 

tools, cloud technologies, distributed environments, collaborative models, and 

modelling frameworks and pipelines. The client-server architecture section 

comes next to present what was done on the client-server level using the Web as 

a network to exchange 3D data. Rendering tools are highlighted next, Marching 

Cubes, WebGL, ray casting, OpenGL are different approaches for rendering. In 

the security section, we highlight the watermarking concept, in addition to code 

obfuscation and mesh compression. And finally, we presented some real 

modelling systems available online. 

2.1 Geometric representations and background 

In this section we discuss geometric principles and formats that are used in CAD. 

We will also outline and define the terms which will be used in the thesis. 



35 
 

In computer graphics, 3D models are commonly represented using polygonal 

meshes. In spite of the restriction of the number of operations on the geometric 

object, meshes allow full understanding and modification of the 3D models and 

scalar fields can fill up the gaps and allow the manipulation with a huge number 

of additional restricted operations. Polygonal meshes have many problems such 

as loss of visual properties and precession for real models, they consume a large 

amount of memory, still face difficulties over networks and have no construction 

history [Sanchez et al., 2015]. High-resolution meshes can be generated using 

modelling shapes through part-based models and labelled objects are essential. 

This technique lacks the ability of any modification since it relies on gathering 

and combining parts retrieved from the database. Soltani et al., extracted models 

from multi-view depth maps using generative models, the obtained 2D images 

are then used to render 3D novel and detailed objects [Soltani et al., 207].  

Modern modelling systems deal with wide range of different geometric 

representations. One of these representations is polygonal meshes using 

Boundary Representation (BRep) which consists of set of vertices and the 

information on their connectivity into set of connected polygons. This 

representation is an approximation of the real models because of discrete nature 

of the polygonal data [Kobbelt et al., 2000]. Bounding the edges of the faces and 

vertices introduce us to the concept of Boundary representation (BRep).  Solid 

modelling is considered as an advanced way of 3D modelling through which 

solid parts of the 3D volume can be represented using wire frames.  

Another alternative representation to BRep is scalar fields representation. 

Geometric representation with scalar fields is based on a function that maps from 

point coordinates to scalar values for each point in 3D space. An example of 

representation with continuous scalar fields is Function Representation (FRep), 

where the mapping is done by a continuous function which defines the geometry 

of the object. FRep allows to efficiently describe the exact shape of the volume 

object without using high computational resources [Pasko et al., 1995]. A special 

high-level programming language called HyperFun (HF) was introduced to 

present FRep objects in order to do the modelling and to generate volumes after 



36 
 

rendering, HF is a desktop environment and it uses C++ or Java language 

compiler [Cartwright et al., 2005]. Signed Distance fields (SDF) is another well-

known modelling representation and is defined by Canelhas et al., SDF is a 

surface representation where a 3D volume is transformed and represented as a 

scalar field where the field is negative inside the geometry, zero at the boundaries, 

and positive elsewhere [Canelhas et al., 2016].  

Another discrete representation of the volume objects is by using voxels. Voxels 

are set of small boxes of the same size; in some way it is an extension of pixels 

into 3D space. Voxelisation is a process of using voxels to represent 3D volumes 

[Laine, 2013].  Volumetric convolutional networks are defined as deep networks 

used to present 3D volumes [Wu et al., 2015]. 3D shapes can be represented 

using voxels that can be used to build up complex models but with certain 

limitation such as high consumption of memory. Using volumetric convolutional 

networks, 3D shapes can be represented based on novel Voxelisation. 3D models 

can also be generated using 2D depth maps or silhouettes, where 3D models can 

be generated from a multi-view presentation. In comparison, the multi-view 

technique produces much higher resolution models than voxels. Soltani et al., 

concluded that detailed real-world objects can be generated from the multi-view 

representation [Soltani et al., 2017]. Great interest was shown from both 

designers and 3D CAD users in conceptual design. 

Rendering with Marching Cubes (MC) is one of the most applied rendering 

techniques in 3D modelling, it iterates over a grid of cubes to generate a 

polygonal mesh [Lorensen and Cline, 1987].  OpenGL is a set of libraries suitable 

for 3D graphics based on C++ compiler [Rodrigues and Robinson, 2009]. 

WebGL is defined as an application program interface for low-level 3D graphics 

which is independent of any platform over the Web. It enables Web applications 

to take advantage of 3D graphics hardware acceleration in a standard way [Evans 

et al., 2014], [Khronos]. Ray casting iterates over pixels to produce 3D volumes, 

where rays are shot from a camera to the pixel to detect the intersection of the 

ray with that pixel [Congote et al., 2011]. 



37 
 

Lindborg et al., used graph-based representation, which allows users to change 

parameters and request changes any time they need. In their work, they used 

sphere tracing, which is a direct rendering technique that uses geometric distance, 

to render implicit surfaces. Their system was based on the transformation from a 

scene graph into functions stored inside the shader for fast representation. They 

developed a node editor to generate a scene by connecting the provided nodes to 

the root node. The resulted node tree is converted into shader code 

which constitutes the geometry and then compiled using sphere tracing algorithm 

inside the fragment shader to be rendered and visualised. [Lindborg et al., 2017]. 

2.2  Relevant shape modelling systems and tools 

Relevant Web-based 3D modelling application must be able to handle a 

visualisation-specific representation that consists of registered and merged 

points, surface, and even volume data as well as the corresponding meta-

information in order to provide important features for visualisation. The 

information is re-formatted in a structured way after data acquisition and before 

filtering the data accordingly. After that, all data sets (scalar values and vectors) 

are transformed into a certain representation and ready for rendering step [Jung 

et al., 2012]. In this section we will present the related work related to different 

modelling systems and the relevant geometric representations. We start by 

presenting different types of geometric representation including polygonal 

meshes and voxels, then we move to different modelling approaches including 

BRep, FRep and SDF and we present some different tools and techniques 

designed for modelling purposes including HyperFun and Constructive solid 

geometry tools. 

2.2.1 Shape and volume modelling systems. 

Three main shape representations were discussed including BRep, FRep and 

SDF. BRep uses polygonal meshes in the form of inter-related faces and vertices 

to represent a model, FRep is a mathematical representation of the model and 

SDF uses signed distances between points and surfaces.  



38 
 

Most of the collaborative modelling tools adopt BRep. It mainly uses polygonal 

meshes (set of faces and vertices) to represent a model in a 3D virtual world and 

can use parametric surfaces inside [Asghari, 2013].  

One of the most known rendering techniques for implicit surfaces using FRep is 

polygonisation with polygon rendering, where three-dimensional objects (made 

up of flat polygons) are used to approximate shapes. In their work Sanchez et al., 

dealt with signed Euclidean distance as a continuous real function that can 

evaluate polygonal meshes very efficiently. They took the convolution product 

of the distance field with the kernel in order to smooth it. [Sanchez et al., 2015]. 

SDF uses a function to represent object geometry. In contrast to the discrete data 

structure that represents inaccurate and sometimes deformed model and is 

represented by polygonal meshes, SDF functions assure the continuous 

representation by returning the Euclidean distance to an object and can be used 

for real-time parameterised and interactive modelling. [Lindborg et al., 2017]. 

SDF is represented by a procedural tree which contains both: primitive objects 

or models as leaves having distance property and operations as nodes that assure 

real-time modelling. The authors introduced a modelling prototype that uses 

heterogeneous objects that can add, change or even connect nodes together, 

which is implemented in C++. They used sphere tracing based on direct rendering 

to assure quick visualisation using direct hardware resources implemented in 

OpenGL. The goal of their prototype is to attain parameterisation over an 

interactive environment. Lindborg et al., succeeded in proposing and developing 

heterogeneous volumes that can be edited at the modelling and rendering levels 

using sphere tracing. The benefits of the work include the ability to deal with 

parametrised heterogeneous volumes using SDF in an interactive manner. Their 

work has some drawbacks such as restriction to set of predefined nodes and 

leaves and the inability to visually represent moving objects 

The Web-ready modelling systems, which are based on FRep are quite rare and 

generally based either on HyperFun language [Cartwright et al., 2005] or 

BlobTree structure [Galbraith et al., 2004]. Cartwright et al., used HyperFun 

(HF) to implement shape modelling applications based on the Web and rely on 



39 
 

open system architecture [Cartwright et al., 2005]. HF depends on experimental 

systems to achieve interaction and relies on Java applet for Web collaboration 

[Fayolle et al., 2005], FVRML/FX3D [Liu and Sourin, 2006], XISL [Parulek et 

al., 2006], Hyperfox plug-in for Firefox [Vilbrandt et al., 2010] and Websockets 

[Grasberger et al., 2013]. HF files can be of small sizes even for complex 

geometric objects [Vilbrandt et al., 2004]. The size of the HF file is not dependent 

on accuracy or mathematical precision, which allows for efficient 

implementation of a client-server modelling system. The main issue with HF is 

that it is not designed to work on the Web-browser and it needs a mediator to 

load HF models (after rendering) on the Web-browser using Java applets.  HF 

can deal with parameterised hyper-volume objects based on their Function 

Representations. Parameters including colour and texture can be passed to the 

function in the modelling phase before rendering. Objects are defined as 

functions followed by necessary attributes represented by scalar functions. HF 

function is evaluated during the construction of the FRep tree, where operations 

constitute the nodes and the simple volumes occupied the leaves [Schmitt et al., 

2004]. Lindborg et al., used SDF representation to represent their models 

[Lindborg et al., 2017].  

Another technique using constructive modelling approach is the Constructive 

Solid Geometry (CSG), where shapes (geometry) and attributes are combined in 

an organised manner and are presented as 3D models using an array of voxels 

and scalar fields (attributes) [Schmitt et al., 2004]. Schmitt et al., discussed 

another approach called interactive volume sculpting, where the sculpting 

process focuses on the deformed model by adding-removing material. They 

mentioned that when a complex model consists of both normal and deformed 

parts, it can be broken apart into two parts: primitives and non-primitives. The 

primitives can be processed with CSG or Function Representation, while the 

deformed parts can be sculpted and then added to the CGS tree. CSG suffers from 

some limitations such as the limited set of primitives and operations, this makes 

it difficult to work with complex models when decomposing these models into 

primitive volumes. The alternative is using a constructive FRep tree which can 

easily deal with complex models [Schmitt et al., 2001]. 



40 
 

As a conclusion for what was mentioned before, BRep using polygonal meshes 

has certain limitations including lack of model precision, large memory 

consumption, and no construction history. Voxels face large memory 

consumption when dealing with complex models. HyperFun is not designed to 

be implemented on the browser and needs a mediator to load HF models in the 

browser, the mediator makes it impossible to allow model interaction. Major 

problems and difficulties will arise when using the above-mentioned approaches 

over the Web and those problems may go more explicit when dealing with 

heterogeneous volume objects. A huge amount of data to be stored especially for 

complex 3D objects makes the process of saving information, parameters, and 

operations of 3D objects into a low cost and small size file is a real challenge.  

2.3  Non-ideal Web-based 3D modelling solutions 

Many CAD systems are available as Web-based applications, either as server-

based or cloud-based solutions. Such systems are designed for online modelling 

and rendering but with certain limitations. Some lack interactivity, others use pre-

defined and limited tools for modelling and rendering, and few are designed to 

serve a considerable number of different users with different platforms. In this 

section we will highlight the growth of available CAD systems and their 

performance in the cloud. 

Co-CAD, a “multi-user CAD prototype system” [Gisi and Sacchi, 1994] was 

limited to interaction between two people. In order to avoid conflicts between the 

designers, sort of coordination policy was proposed by Klein [Klein, 1991]. The 

cPAD system [Shyamsundar and Gadh, 2001] was developed to support Web-

based collaborative object design with assembly features that allow designers to 

perform real-time geometric modifications. COCADCAM was presented as a 

CAD/CAM system with collaborative concepts that contains geometry editing, 

processing and modelling [Ramani et al., 2003], [Santos and Strok, 2004]. In 

order to apply interactive detection and follow-up of improvement model during 

download, Schwartz et al., discussed a “novel progressive streaming approach” 

and employed it for the huge BTF data set [Schwartz et al., 2013].  Using a 



41 
 

similar method, and by using image geometries, X3DOM compressed and 

transmitted lightweight geometry [Jung et al., 2012]. The Web-based 

environment can be adopted by distributed design environments because it is 

easy to use, with a common interface, universal standards and available for real-

time access [Qin and Wright, 2004].  Nowadays, different frameworks can 

support Web-based systems in a collaborative way. Distributed object modelling 

environment (DOME) was first introduced by MIT, and was designed to deal 

with modelling problems [Abrahamson et al., 2000].  

Technologies such as visualisation and parallel computing can be empowered 

with cloud computing, especially when we deal with rendering on demand, 

efficiency and availability. Users can make use of the high computational power 

such as the high speed and the huge storage available over the Web, when using 

cloud computing for real-time 3D rendering. Wu et al., discussed the concept of 

collecting information about clients in real-time. They also discussed the 

distribution, share and access of big data files of 3D models on the cloud [Wu et 

al., 2014]. 

2.4 Approaches to collaborative shape and volume modelling 

pipeline 

A 3D modelling framework presented by Tsai et al., is based on three major 

stages, 3D point clouds segmentation, bare-bones model generation, and surface 

structure addition [Tsai et al., 2017]. The cloud-based segmentation and 

processing were based on a special available algorithm used to segment the data 

into different groups discussed by Grilli et al., [Grilli et al., 2017]. The bare-bone 

volume model phase composes the components of the model together by 

identifying the necessary parameters of stage one. To form the bare-bone, a CSG 

algorithm was used to connect the components of the model together to form the 

skeleton structure. Stage three represents the decoration phase, where additional 

surface structures were added after filtering the point clouds, and finally, the 

mesh objects were added into the model [Tsai et al., 2017]. As a result, Tsai et 

al., developed a frame to build up heritage buildings by combining mesh objects 



42 
 

with polyhedral models using the above three phases. Their results showed that 

data points were reduced and detailed elements were preserved in addition to 

offering a multi-level detailed object. 

Branko and Leitao aimed to employ the features of different tools to cover all the 

stages of the design process using single-script approach. They designed a 

procedure to describe the required analysis as well as the model itself by 

proposing an algorithmic approach without affecting the workflow. Their 

methodology includes model analysis as well as the model description and is 

subdivided into three different phases: CAD modelling, Building Information 

Modelling (BIM) and analysis integration consequently [Branko and Leitao, 

2017]. Phase one uses programming tools for modelling and visualising 3D 

objects using Rosetta, which is a programming environment suitable for the 3D 

design processes [Leitao and Lopes, 2011]. In phase two, the geometric model is 

then visualised using BIM software. The BIM model is then supported by 

decorative elements as a final step [Branko and Leitao, 2017].  

Vanhoey et al., focused on the 3D object creation pipeline which starts by 

modelling through processing and ends up with rendering. They discussed in 

their work the level of distortion a geometric model may acquire under the 

influence of light-material interaction. They concluded the strong influence of 

light and material on the object distortion. As a result, they proposed a simple 

metric that helps in regulating geometry processing by measuring distortions 

[Vanhoey et al., 2017]. Cahyawiajya and Supriana proposed a three stages 

solution based on model generation stage proceded by an image processing stage 

and followed by model rendering stage.  [Cahyawiajya and Supriana, 2015]. 

2.5 Web-services and interaction using client-server architecture  

In a client-server architecture, polygonal meshes can be generated from the 

server, and transmitted over the network as vertices and faces to be rendered and 

visualised on the client’s browser [Limper at al., 2013] [Evans et al., 2014] 

[Lavoue et al., 2013]. Web-based 3D modelling systems can make use of the 

services available online using what is known as a Service-Oriented Architecture 



43 
 

(SOA). SOA uses many Web services such as XML and  JSON as Web-service 

protocols and plays a major role in controlling and managing the collaboration 

between different running applications and platforms [Jung  et al., 2012], [Erl, 

2005].  

Some researchers used a stream of images to view the model from different 

angles, and they displayed them on the browser [Rodrigues et al., 2011]. Koller 

et al., transfer images to clients and include a number of active defence methods 

to guard against 3D reconstruction attack by providing an interesting proposal to 

the protection system with a remote rendering service [Koller et al., 2004]. 

The main question to be asked in Web-based modelling is the client-server 

interactions, i.e., the information that the server sends to the client to render the 

model. In the case of volume data, the amount of information transmitted 

between a server and a client can be significantly large and the client often 

requires installing an additional software tool. Thus, in X3D format 3D objects 

supporting point, surface and volume primitives are described, but additional 

plug-ins for the browser needs to be installed.  

2.6 Rendering concepts 

Different rendering approaches are available and are supported with different 

rendering tools. In this section we discuss the rendering approaches for volume 

models represented by representations other than BRep including Marching 

Cubes (MC), ray casting, volume rendering and image streaming.  

Marching cubes is used to create a triangle mesh using a simple computer 

graphics algorithm which iterates or marches over a grid of cubes and extracts a 

polygonal mesh of an iso-surface from a three-dimensional scalar field (voxels) 

[Lorensen and Cline, 1987]. Rendering with ray casting or ray tracing is another 

widespread technique, which iterates over pixels rather than objects and produces 

better effects such as shadowing, transparency, texturing and reflections. Rays 

are shot from a camera to the pixel; the ray intersects with existing objects, and 

the closest intersection is selected. Volume rendering is another technique, where 



44 
 

RGBA volumes are formed and continuous functions are reconstructed out of 

discrete data set to be projected onto the 2D plane. Web-based direct volume 

rendering with ray-casting was presented in [Congote et al., 2011], the purpose 

of discussing direct volume rendering was to investigate in medical imaging as 

well as in radar meteorology. Reflectancd information can be obtained by using 

a certain framework based on WebGL.  

WebGL was introduced as an extension so that JavaScript can interface with 

OpenGL [Rodrigues and Robinson, 2009]. It is using OpenGL libraries, and is 

defined entirely within an HTML document and loaded into a Web browser. 3D 

graphics are generated by OpenGL engine (libraries) and being accessed by the 

browser using WebGL [Rodrigues et al., 2011]. WebGL interface has the ability 

to communicate, to access and to control the client’s graphics hardware GPU. It 

allows direct access to the Graphics Process Unit (GPU) hardware, where a new 

set of objects and functions were established to support the HTML specifications 

for 3D graphics. The advantage of this application program interface API is the 

accelerated adoption, where no plug-ins installation is needed any more. It is 

well-known that WebGL is slow when rendering a large amount of 3D data 

because of the slow operation speed of the script especially when rendering 

complex objects with a huge amount of data. Another issue is that WebGL causes 

network traffic load and delay in transmitting repeated 3D data. In order to reduce 

rendering transmission and computational complexity, Kang and Lee proposed a 

way to organise 3D modelling data into unit-based data using tile-based 

rendering as an attempt to increase WebGL rendering speed [Kang and Lee, 

2017]. Most 3D services need special plug-ins in-order to display 3D models on 

Web browsers, plug-ins come with some advantages such as good quality of 

service with Web sites using the same plug-ins and great functionality. However, 

we can also recognise some disadvantages of the plug-ins such as applications’ 

duplication when using different browsers, sudden emerging errors, cross 

platforms limitation, and security threats, where malware could be embedded 

with the plug-in [Kang and Lee, 2017]. 



45 
 

HTML5 was created in 2014 as an alternative to standard HTML 4.01 to support 

multimedia including audio and video contents in the browser without the need 

for any additional plug-ins. WebGL is one of the features of HTML5 standard 

allowing to bring 3D graphics into Web applications. Kang and Lee used HTML5 

and WebGL to display 3D data related to city modelling and tried to discover the 

requirements and the limitations by attempting to a use bin-packing algorithm, 

which allows modelling data to tile in units [Kang and Lee, 2017].  

One of the useful ways to render 3D models at the server side is by using C++ 

compiler using OpenGL libraries which maintains full control at the CPU level 

and produces 3D objects rendered at high resolution and considerable speed. 

OpenGL has become the graphics engine of choice due to its sheer power and 

ease of integration. It supports 3D models and provides functionality to 3D 

modelling applications. Since Web browsers do not understand OpenGL, 

JavaScript is used as a wrapper in order to interface with the browser and translate 

OpenGL graphics outputs into statements that the Web browser understands and 

displays [Rodrigues and Robinson, 2009].  Adopting a strip triangulation 

algorithm using Matlab based on C++, Wang et al., introduced a lightweight 

design to connect the outlines in neighbouring sections and construct the inner 

surface of voids. They used 32 GB of random access memory and a core i7-3770 

processor to generate hollowing models in an optimised manner [Wang et al., 

2017]. 

2.7 Web-based 3D modelling security  

Securing 3D models and protecting them from theft and piracy were put into 

research. The majority of methods are for BRep data that is why we focused on 

three different security concepts including digital watermarking, code 

obfuscation and mesh compression. 

 Digital watermarking was one of the techniques designed to hide information of 

the 3D model. Only authorised users can detect watermarking as an attempt to 

enforce authentication and copyright [Xiao and Shih, 2010]. Digital 

watermarking can provide a sort of protection for digital files that constitutes 3D 



46 
 

models, and can enforce for copyrights [Zeki et al., 2013]. Lin and Wu proposed 

in 2002 a way of extracting watermark rendering conditions transformation [Lin 

and Wu, 2012]. Spectral watermarking framework accompanied by a blind two-

way parametric digital data was introduced by Lui et al.,. They used a method 

called optical fringe projection encoding method to encode 3D models into 

encrypted 2D referenced fringes using random keys [Li et al., 2012].  

Code obfuscation, which is a way to encrypt the source code of 3D models, was 

put into focus by Satoshi [Satoshi, 2000]. Canetti et al. proved that when using 

cryptography, access into black boxes turned to be weak, when compared with 

3D functions. Canetti mentioned insecure protocols when using hash functions 

[Canetti et al., 2004]. Barak et al., confirmed the immunity of some obfuscatory 

against algebraic attacks [Barak et al., 2014]. Watermarking still has its limitation 

when dealing with large number of vertices, it also has no defined representation 

[Chou et al., 2009]. 

Mesh compression technique started to be a point of interest due to the huge 

demand of transmitting 3D Web-based scenes over the Internet, in addition the 

wide range of different platforms and devises with different GPU powers and 

memories [Limper et al., 2013], [Peng et al., 2005], [Maglo et al., 2012]. Hoppe 

introduced Progressive Meshes (PM), which is a successive and continuous 

format of polygonal meshes and have the capability to display 3D objects with 

great details by making use of the client’s resources [Hoppe,1996], [Lavoue et 

al., 2013]. PM can minimise the size of the 3D scene and speed up the 

transmission over the Internet and can do compression associated with colour and 

texture attributes without losing the details [Lee et al., 2012]. Lee et al., discussed 

the above-mentioned issues and proposed an algorithm that allows for quick 

compression of 3D data and generates a (P3DW) binary compressed file. The 

curvature prediction was another 3D data compression techniques presented by 

Maglo et al., The authors discussed a wavelet formulation method in order to 

improve the efficiency of the rate distortion (R-D). They also presented a 

quantisation method as an attempt to increase the compression rate [Malgo et al., 

2012]. Dong et al., suggested CRYPTON, an intra-origin data control system, 



47 
 

which can monitor 3D data at the client browser [Dong et al., 2013]. Kang and 

Lee discussed the slow rendering problem, when using high-resolution textures, 

and worked on improving the rendering speed using tile units to represent 3D 

data [Kang and Lee, 2017]. 

Developing an independent 3D system with collaborative platform and able to 

share information over the Web-browser may face many threats. One of these 

threats is packet sniffing over the network that allows sniffers to watch and access 

classified information such as account names and passwords. Another kind of 

threats is password attacks, stealing passwords may allow the attackers to gain 

access over the environment and allow them to create an illegal back door to the 

environment [Yu et al., 2003]. 

2.8 Relevant Web-based 3D modelling systems 

Web browsers are now capable of handling 3D objects in an interactive way 

allowing 3D manipulation techniques such as object scaling, rotation, shadowing 

and translation in its development phase. Using a browser plug-in, Google 

released its O3D API in April 2009. Opera released their 3D canvas two years 

earlier in 2007. Web browsers need access to clients’ hardware, mainly GPU and 

memory, in order to handle 3D graphics. OpenGL, which was developed by 

Silicon Graphics Inc, in 1992, is an Application Program Interface (API), with 

high performance and portability so-called “Device independent”. Applications 

depending on OpenGL are designed to run on all platforms, providing a set of 

useful graphics tools and functions 

3D search engines have recently been deployed on the Web [Chen et al., 2003], 

[Corney et al., 2002], [Varnic, 2003]. Several systems allow users to download 

3D models stored in their databases. Google SketchUp provides a small but well-

defined set of modelling tools that are easy to learn [Googleskechup]. A general 

shape modelling description language for procedural models, the Generative 

Modelling Language (GML), was introduced in order to provide modelling 

operations for polygonal shapes, which are tessellated on-the-fly adaptively 

[Havemann, 2005]. Berndt et al., noted that “GML allows for very compact 



48 
 

model descriptions, especially useful in a Web context” [Berndt et al., 2005]. Its 

suitability for 3D modelling by non-expert users was also assessed [Greth et al., 

2005]. Krottmaier et al., introduced PROBADO as a co-operative digital library 

project funded by the German Science Foundation (Deutche Forschungs 

Gemeinschaft, DFG) [Krottmaier et al., 2007]. Its main purpose is to integrate 

generalised documents, in particular, music and 3D models of architectural 

buildings, into the workflow of existing libraries [Krottmaier et al., 2007].   

Recently, many browser-based 3D modelling programs started to appear on the 

Web. Developers started to integrate primitive 3D Web-enabled applications; 

such that applications enable ordinary users create their own object models. 

3DTin is a browser-based modelling tool developed by Jayesh Salvi 

[Blog.3dtin1]. It feels like a virtual Lego application that provides a non-

technical user with primitive tools and introduces him/her to the possibility to 

create simple 3D designs. In 3DTin, models are built from cubes with a few 

primary colours, primitive tools exist to convert the cubes to rounded–formed 

shapes with a considerable level of smoothness and this leads to the increase of 

the polygon count and slows down the application. In order to allow people to 

design more interesting and detailed objects, Salvi added new shapes including 

cylinders, cones, wedges, spheres, and several variations of these shapes. 

Another 3D solid modelling software in the browser is Tinkercad [Tinkercad], 

which requires WebGL. It combines the simplicity of the Web with the basics of 

the 3D-design process. It has a user-friendly Web service that offers variously 

shaped 3D brushes and tools for easy drawing and allows for 3D designs aimed 

at 3D printing. Tinkercad models can be exported in the STL format and shared 

with different users providing a good and efficient way to share projects. 

Shapesmith is a recently issued 3D object browser-based modelling system 

[Shapesmith], which aims to be a powerful parametric application that is open 

and extensible. Using Shapesmith, one can export designed models for printing, 

even though it is still in an early stage of development. ShapeJS, a generative 

geometric modelling language, developed by Shapeways, is based on JavaScript 

and 8-bit voxel models [Shapeways]. Applied Shapes Limited uses geometric 

modelling for the aim of jewellery design, 3D printing, education and healthcare, 



49 
 

and accessibility, computer games and other applications [Applied Shapes]. The 

company relies on Uformia's Uformit (abbreviation for You Form It), which 

allows designers to customise their designs and have full control in choosing and 

editing their models [Uformit]. 3D CAD tools, such as AutoCAD 360 and Fusion 

360, are available on the cloud and allow users to draw different geometric shapes 

with the ability to save and edit objects using a Web-browser. Such tools use 

cloud-based rendering and delivering. NX 3D software developed by Siemens 

relies on a virtual desktop infrastructure to conduct 3D graphics using a privet 

cloud environment. Another collaborative Web-based and cloud-based CAD 

system is OnShape, which allows different users to edit and modify the same 

model at the same time [OnShape]. 3D software packages and services allow 

users to design and perform 2D and 3D models rendering using Web-browser 

cloud-based environments in a remote collaborative manner. Cloud-based 

environments support most of these software packages and services either fully 

or partially [Wu et al., 2016]. 

2.9 Conclusion 

In this chapter, we presented some related terms and notations of modelling and 

rendering, and we discussed some of the works done by researches. We 

highlighted the problems, difficulties, and limitations of their work. We 

researched the concepts of designing, developing and implementing Web-based 

modelling and rendering solutions for heterogeneous volumes, and we discussed 

all the limitations of being interactive, real-time, platform independent and 

collaborative.  

After highlighting the problem of different modelling and rendering approaches, 

we can figure out that the problem become even more obvious when the Web is 

involved. Heterogeneous volumes objects make the problem even more complex 

and explicit. That is why a new representation is needed, and this work will try 

to research, design, implement and put into test such a new representation needed 

for the new CAD tool. 

 



50 
 

Chapter 3  

Theoretical aspects of 3D environment 

Online 3D modelling and rendering methods and tools are developing rapidly, 

and both users and developers started to show a great interest in 

online modelling due to the available solutions that allow rapid rendering of 

high-quality complex models. Recent online applications allow rapid response 

and a convincing level of interactivity. Users of these applications can interact 

with 3D models including editing, saving, and exchanging of models over the 

Web. Modelling environments use the clients’ hardware to do the rendering and 

visualisation, therefore, users should be provided with considerable hardware 

resources as well as a reasonable internet bandwidth. Most of the modern 

browsers allow handling of 3D graphics without extra plug-ins. JavaScript 

became the most common and well-known online scripting language that uses 

WebGL, which provides direct access to the GPU for rendering. Online 3D 

environments need to be platform independent and are able to adapt to users with 

different software configurations. Some users may not have enough hardware 

resources or may not be able to go rendering in the browser that is why different 

rendering techniques should be implemented taking into consideration different 

scenarios. In order to exchange models and information between different 3D 

environments and users, client-server architecture should be designed and 

implemented to allow data exchange and to decide the rendering side (server or 

client). The client-server architecture is divided into three main parts: 

Networking, Modelling, and Rendering. The server-side allows server based 

rendering with high definition models using the server hardware power, but with 

major limitation, the model will not be sent to the client, it sends a stream of 

images of the rendered model to the client instead. The client-side allows instant 

rendering using the client’s computational power, with the ability to instant 

model editing, saving and updating. One example of the server-side approach is 

a server using C++ with OpenGL while a client uses conventional web 



51 
 

technologies (HTML and JavaScript) to display stream of images. Since the 3D 

environment is an online and open source based architecture, it needs a certain 

level of security to assure certain level model protection. In addition to data 

extraction and exchange between different environments that allows model’s 

exchange. 

In this chapter, we aim to present the theoretical problems of our work, will 

discuss and analyse them from different perspectives. Dealing with different 

rendering approaches leads to different scenarios that are based on different 

constraints. Scenario optimisation analysis should be performed to identify the 

problem, generate the scenario optimisation tree, and present the theoretical part 

of the scenario optimisation using the constraint satisfaction problem (CSP) 

analysis which is a mathematical way used to formulate the problem, reveals the 

optimal solution and satisfies certain constraints using predefined mathematical 

questions. The problem of using FRep and SDF will be discussed and will present 

the theoretical analysis for both. Different rendering approaches will be used 

based on the scenario optimisation process. Complexity analysis will take place 

to measure the performance and make comparisons between different rendering 

approaches. Heterogeneous volume objects are 3D complex models with 

different materials and densities distributed in a non-uniform way among the 

model and can handle different attributes such as colours, textures, etc. [Schmitt, 

2008] [While, 2006]. The problem of using heterogeneous volumes with 

attributes will be discussed; the problem will be approached from two different 

points (node and leaf colouring approaches) accompanied by the theoretical 

analysis for both simple and complicated heterogeneous volume colouring. 

3.1  Characteristics of 3D Web-based real-time modelling and 

rendering environment (WRMR) 

Being online, 3D environments should possess some of the basic characteristics 

necessary to their survival and continuity. Since such environments completely 

relay on the Web-browser which is not designed to handle 3D volume objects by 

nature, this makes them vulnerable to different issues such as additivity, 



52 
 

interactivity and real-time processing. This work is concerned with a 3D 

modelling and rendering environment. The proposed environment is a Web-

based environment, it makes use of the rapid development of the Web-browser 

and their ability to access the graphics adapter GPU at the client-side. The 3D 

Web-based real-time modelling and rendering environment (WRMR) aims to be 

an adaptive one, which can adapt to all users’ needs and requirements,  it is able 

to deal with different modelling needs and rendering requirements, and is 

designed to serve a wide range of users with different hardware and platforms. 

3D volume modelling and rendering take place in real-time, and it depends on 

the clients’ computational power to do the rendering (Fig 1). 

 

Figure 1: Web-based, adaptive, real-time, platform independent and interactive 

are the main characteristic of the proposed 3D Web-based environment 

3.1.1 Function, Boundary, and Hybrid representations 

As it was discussed above in 2.1, different representations are available in 3D 

modelling. BRep, which is an approximation for the exact model, is one of these 

representations which uses polygonal meshes in the form of inter-related faces 

and vertices. The mesh can be rendered to generate 3D volumes to be displayed 

on the Web using modern browsers. One of the major issues when dealing with 

BRep is the absence of the model’s construction history during the modelling 

process. Another issue is the huge size of the mesh file when dealing with 

complex volumes. Mesh files may face serious problems when transferring them 



53 
 

over the internet. The size of HF files are relatively small compared to BRep 

files, while representing shapes with similar complexity. [Cartwright et al., 

2005], [Vilbrandt et al., 2004].  

It is clear that both BRep and FRep have advantages and problems on modelling 

and rendering stages. Thus, BRep is widely supported by graphics hardware and 

therefore suitable for rendering purposes, while FRep allows greater flexibility 

on the modelling stage yet not being properly supported on the rendering stage. 

To combine advantages of both representations a hybrid approach should be 

used. In the context of this work it is not just a hybrid representation, but a hybrid 

environment, that can adapt to both BRep and FRep modelling and has the ability 

to use different rendering approaches without the need to change any of its 

characteristics. As a result it allows to use their features in order to implement a 

collaborative and adaptive environment which is able to deal with different 

modelling needs and rendering requirements. (Fig 2).  

 

 

 

Figure 2: Hybrid representation, a combination of both BRep and FRep 

Hybrid representation (HRep) embraces both BRep and FRep by employing the 

idea that the model can be stored in either representation and converted to another 

if necessary. In this context HRep is a combination of these two representations 

in a way that the appropriate representation is chosen given the current task, such 

as modelling or rendering.  

HRep 

FRep BRep 



54 
 

FRep can be converted to BRep by using surface extraction methods, such as 

polygonization [Lorensen and Cline, 1987]. This process takes a continuous 

function which defines a scalar value in every point in the domain and results the 

finite set of triangles which approximates the surface of the zero-level set of this 

function with a certain precision. The efficiency of this method decreases with 

increased precision and the extraction process [Pantaleoni, 2011]. Alternatively, 

a voxelisation process for a scalar field can be used, i.e. extraction of the voxel 

set that belong to the interior of FRep object followed by extraction of BRep from 

the voxel grid (Fig 3). 

Figure 3: Forward and backward conversion between FRep and BRep   

The conversion from BRep to FRep can be done with a signed distance field 

(SDF). Here for a polygonal mesh (boundary in BRep) the function is defined as 

a signed distance function, where the value of this function is the Euclidean 

distance to the polygonal mesh multiplied by the sign [Sanchez et al., 2012]. The 

distance can be found by finding the closest element in the polygonal mesh, while 

the sign is defined differently with respect to the interior of the polygonal mesh. 

Note that we have to clearly distinguish interior points and exterior points, i.e. 

the boundary should be well-defined. Combining FRep and BRep together allows 

to benefit from both representations for modelling and rendering purposes. This 

two-way integration (Fig. 4) allows transferring any model from FRep to 

polygonal representation (the mesh), and vice-versa. 



55 
 

 

Figure 4: HRep bi-directional conversion    

The main encouragement of using Hybrid represented (HRep) models is the 

reduced complexity of the models, this allows us to get rid of all the problems 

resulted from dealing with large 3D data files and huge resources. However, the 

major drawback of these models is difficulties of controlling and implementing 

them inside a Web browser because non-polygonal objects are not supported 

inside the browsers for rendering 3D scenes [Fryazinov et al., 2008]. Modern 

browsers use polygonal mesh to load and display 3D volume objects, they also 

allow the user to edit the scenes (translate, rotate, scale) inside the Web browser 

in an interactive manner.  

The proposed environment may acquire a hybrid representation or HRep. It 

includes all the characteristics of both representations and can deal with the 

internal structure of the volumes; it can also track and save the constructive tree 

of the model during the modelling process. 

3.2 Pure client-server architecture 

Client/server architecture is a network environment for information exchange 

and services share between servers from one side and among clients from the 

other side. The clients are smaller computers that users use to perform their 

computer-based responsibilities. The client-server architecture reduces the 

multiple iterations of a single file and allows computers to access the same files 

and applications by turning the organisation into a centralised point.  



56 
 

 

 

Figure 5: Client-server architecture [Ramani et al., 2003] 

A fat client is a computer with high functionality and is totally independent of 

the main server, while a thin client is totally dependent on a server's applications. 

Even though the fat client can perform many functions without being connected, 

periodic connection to the server is still needed.  In contrast, the thin client totally 

depends on the server and performs little processing each time it needs to treat or 

validate input data. A decision should be made in order to design a client-server 

application. This decision directly affects both clients and servers, and the task 

distribution as well. Decisions on adaptive system design are usually forced by 

clients’ infrastructures and hardware characteristics.  

Web applications started to take advantage of the client-server architecture using 

Web technologies for dynamic content and interactive environment (Fig. 5) 

[Ramani et al., 2003]. 3D immersive environment started to be adapted to the 

Web browsers and 3D documents started to be generated and retrieved for 3D 

objects exchange. Graphical capability to create 3D virtual environments is 

specific to Web3D applications. Web3D is an interactive web-based 3D 

environment which has the ability to integrate different technologies and tools 

including programming languages, file formats and protocols [Chourio et al., 

2011]. Combining the above elements in one Web3D application is a challenge 

for both designers and developers; sometimes, additional software should be 

installed, in order to allow 3D Web-based applications to use their visualisation 

on the client's GPU. Since such applications are independent of the content of the 



57 
 

hosting Web page they usually cause weak interaction with the elements of the 

page.  

Web-based modelling depends on the performance of the client’s hardware, the 

Web also allows exchange information between clients and servers. Client-server 

architecture could be a good solution for Web-based modelling and rendering 

because users can make use of both the clients’ and the servers’ performance. 

Modelling complicated volumes may require high hardware performance which 

can be available on the server-side, rendering the model could be quick and 

efficient when using the clients' machine. Furthermore, securing the model and 

the environment needs a client-server architecture to assure authentication and 

authorization in addition to data protection and control. 

WRMR, is an online Web-based and platform-independent environment, which 

allows users to create, edit and delete heterogeneous volume objects in a 

collaborative manner. WRMR is a system developed and implemented on a local 

personal server for the purposes of testing heterogeneous volumes with attributes 

using different rendering approaches. In the context of this environment, the 

server and the client are defined as following. The server is responsible for 

performing most of the complicated computational functionalities including solid 

modelling, rendering, and constraint solving tasks so that the client's size can be 

reduced. The user can perform tasks on the geometry and can import primitive 

geometrical objects stored in the database, or on a local storage device. The 

client-side may have a copy of the main CAD model, loaded to the Web browser 

using JavaScript and WebGL techniques. The Web browser GUI loads basic 

tools from the server and is able to perform and generate 3D geometries using 

the user’s hardwae resources (GPU and local memory) (Fig. 6). 

The system we discuss here is platform-independent from the client point of 

view. The client may have very small hardware resources to process 3D data, we 

consider the server to be responsible for performing most of the tasks using its 

powerful computational resources. When the 3D object is processed, rendered 

and images are generated, all the other operations in a shape modelling system 

based on HRep, including editing the functions and changing or adding 



58 
 

primitives and tasks to them, can be done on the client-side using its low 

resources.  

Figure 6: Client-server 3D Web-Based modelling and rendering architecture 

[Ramani et al., 2003] 

Information is transformed from the server to the client in different forms, 

depending on the capabilities of the client, the data can be as WebGL texture 

objects, polygonal mesh or images. The work on the server and on the client is 

connected by a code written in JavaScript. We would like to stress that the 

proposed WRMR should be scalable, where a client can be anything, including 

desktop, mobile or a pad. In the case of mobile and pad, the server should be able 

to generate images after performing the rendering, instead of generating 3D data. 

The proposed client-side architecture stores the files downloaded from the server, 

in the client-side cache as WebGL texture objects, and these textures are managed 

by JavaScript code (Fig. 6). Textures arriving from the server are encapsulated 

in the image object that can be passed to OpenGL without requiring any further 

processing that allows for achieving instant speeds. JavaScript plays the role of 

a director for the work happening in other parts of the browser and graphics 

driver. The client-side rendering is done by utilising X3DOM, which uses 

JavaScript with WebGL. WRMR will support both thin and fat clients and will 

be able to decide where to make the rendering (client or server-side) depending 

on the bandwidth, hardware capability and memory available at the client 

(Figure. 7). 



59 
 

 

Figure 7: Proposed client-side architecture (thin and fat clients) 

The server-side of the whole system will be able to do the rendering job for a 

model loaded from the primitive objects stored in the server database or sent to 

the server from the client-side. The server performs iso-surface polygonisation, 

while rendering will be held by client-side WebGL. The server-side is 

responsible for performing most of the computationally intensive functionalities, 

where solid modelling and constraint solving operations take place. The server is 

composed of a static file hosting that serves HTML, JavaScript, and CSS in 

addition to the Tile Server Web Application. Both mobile and desktop machines 

with different hardware and software computing potentials and 3D rendering 

capabilities are served in the same and equal manners. Using a hybrid approach, 

low-end mobile clients can be served by the servers (Fig. 8), while desktops are 

served using direct Web-based 3D rendering using X3DOM [Jung et al., 2012]. 

 

Figure 8: Proposed server-side architecture with polygonisation and rendering 

 

 

Model Polygonis- 

ation  Rendering Image 



60 
 

3.3  Adaptive environment 

The proposed WRMR will consider the bandwidth at the clients, the machine 

used (desktop or mobile), and the machine GPU and memory, and it will decide 

where to do the polygonisation, what type of rendering must be done and on what 

side (client or server). It will also decide what type of Hybrid representation 

(HRep) should go for (if necessary). The key point here is how to integrate the 

concept of the HRep with WebGL tools and techniques and with JavaScript 

engines.  

 

Figure 9: HRep modelling architecture showing different modelling techniques 

WRMR will include objects processed by the server and delivered to the client 

as a stream of images; objects may be represented as a point cloud, polygons 

using <XML> for FRep or polygons generated by WebGL rendering techniques 

(Fig. 9). The hardware on the client-side can be very different. Different 

parameters of the client should be taken into account to choose the best possible 

way to deliver the rendered model from the server to the client. These parameters 

include the type of the client machine (desktop or mobile), CPU and GPU 

availability and power, amount of available memory, and the existence of the 

supported software (such as WebGL support in the browser). WRMR should take 



61 
 

all the above-mentioned parameters into account, and choose the best possible 

way to deliver the model to the client. 

The proposed environment is divided into three main parts. The networking part 

is responsible for determining the most efficient way of communication between 

the clients and WRMR, and for choosing the best scenario or group of scenarios 

among all possible available ones in order to achieve the best practice. The 

modelling section is the one responsible for holding all the modelling processes, 

it is also responsible for loading and saving 3D volume objects from and into the 

cloud, and/or the physical data storage in the form of 3D data files. The modelling 

section also assures the interaction and integration among different users. The 

visualisation part is responsible for visualising the objects generated from the 

modelling part, for that purpose, different rendering techniques are available. The 

best practice can be chosen from a wide range of available rendering techniques 

supported by WRMR (Fig. 10). 

In the client-server architecture, it may happen that the client may have powerful 

hardware resources; in this case, the environment should transfer not the rendered 

objects but the model itself where the rendering takes place. Models generated 

from the server-side can be delivered as follows:  

• Images obtained after direct rendering; 

• Objects delivered as image slices (voxel array); 

• Objects delivered as discrete data structures, for example, point clouds or 

polygonal meshes; 

WRMR should be able to adapt, react and interact with clients according to their 

capabilities. It uses different scenarios depending on the clients’ needs and 

available resources (Fig. 10). To make a decision regarding the appropriate 

scenario, WRMR collects information about a specific client’s machine and 

retrieves data related to the available resources and bandwidth. The collected data 

or information is used to analyse the resources at the client-side, and by using 



62 
 

scenario optimisation, the best-selected scenario or group of scenarios will be put 

into action (Fig. 11). 

 

Figure 10: Proposed adaptive shape modelling architecture (WRMR) 

3.4  Scenario Optimisation  

We mean by scenario optimisation the process of finding the best solution for the 

problem based on different parameters or variables. The problem we are trying 

to solve or optimise is about choosing the correct rendering approach based on 

the changing input parameters, which are in our case the client bandwidth, the 

available computational power or hardware power, and the available browser 

parameters. Optimising the problem helps in choosing the right rendering 

approach based on the available parameters, and the ability to switch from one 

rendering approach to another when a change in the parameters is detected. 



63 
 

Figure 11: Different types of scenarios and decision-making 

In practice, we identified four most common scenarios as follows:  

1) The server detects a low bandwidth and low computational resources client; 

the model is rendered at the server and sent to the client as images.  

2) A client with good bandwidth is detected, but its browser does not support 3D 

rendering; the server does the rendering from different angles and sends the result 

as a stream of images. The images are loaded to a slider, which allows the 

transformation of the object on the client. 

3) A client with good bandwidth is detected and its browser supports 3D 

rendering; however, it has low computational resources. The polygonisation of 

the model is done on the server who sends the polygonal mesh to the client. The 

client uses its own resources to render the mesh. 

4) A client with a high-performance machine is identified by the server; the 

complete model is sent to the client, where the rendering process takes place 



64 
 

using the client local resources. In this scenario, the server transfers the model 

data only. 

In order to benefit from the identified scenarios, Scenario Optimisation (SO) can 

be applied to improve services delivered to the clients. SO provides online 

optimisation based on the continuous and online information collected from the 

clients’ machines, and due to instant monitoring of the hardware performance, 

and internet connection speed to reduce time cost and make use of the available 

hardware resources [Mars and Hundt, 2009].  The main idea that stands behind 

SO is that rendering techniques can be optimised and improved to support a 

particular defined scenario. For that reason, SO framework can be designed and 

implemented to take advantage of instant hardware and bandwidth monitoring 

and to support WRMR and improve the rendering service. 

Different scenarios are based on three different input parameters, these 

parameters determine what scenario to be used. Since it is a client-server based 

architecture, the bandwidth (BW in the Table 2) at the client-side plays a major 

role in determining what scenario to be issued, thus user bandwidth is considered 

the first parameter in the scenario issuing process. Both GPU and memory at the 

client-side are responsible for rendering and delivering the 3D volume objects, 

and constitute the Hardware parameter (HW). The last parameter is the available 

Web-browser (WB) at the client-side, this parameter is a major parameter in 

determining the rendering side, if the Web-browser allows 3D rendering and 

displaying then the rendering will take place at the client-side, else it will take 

place at the server-side. Table 2 contains the three above mentioned scenario 

parameters, each parameter is assigned one of two values, 1 for reasonable 

availability, and 0 for low availability or absence. The letter “P” represents the 

percentage of the occurrences of each parameter. The “output” represents the 

rendering scenario to take place and “P(out)” represents the percentage of the 

used rendering approach depending on the input parameters. Table 2 shows that 

each parameter has only two different values (True, False) or (1, 0), and the 

occurrence of each parameter is 50% for each value. Since we have three 

different parameters, then we can conclude the following number of scenarios  



65 
 

S
ce

n
ar

io
 

B
W

 

P
(B

W
) 

H
W

 

P
(H

W
) 

W
B

 

P
(W

B
) 

P
(S

ce
n

ar
io

) 

o
u

tp
u

t 

P
(o

u
t)

 

1 

1 50% 

1 50% 

1 50% 1/8 WebGL 1/8 

2 0 50% 1/8 OpenGL 1/2 

3 

0 50% 

1 50% 1/8 MC 1/4 

4 0 50% 1/8 OpenGL 1/2 

5 

0 50% 

1 50% 

1 50% 1/8 SDF 1/8 

6 0 50% 1/8 OpenGL 1/2 

7 

0 50% 

1 50% 1/8 MC 1/4 

8 0 50% 1/8 OpenGL 1/2 

Table 2: Scenario-based on three different parameters: Bandwidth, Hardware, 

and Web-browser 

𝑛 =  𝑣𝑝                                     (3.1) 

𝑛 =  23                              (3.2) 

Where n is the number of scenarios, v is the number of values (1, 0) for each 

parameter and p is the number of available parameters. Thus, the number of 

predicted scenarios (n) is 8. 

Since we are working with four different rendering techniques, Table 2 shows 

that half of the scenarios go for one rendering technique, which is the server-

based and using C++ and OpenGL. 1/4 of them uses the MC rendering 

techniques, and both WebGL and SDF are 1/8 each. (See descriptions for the four 

different rendering approaches in 2.6) 

 

 



66 
 

 

Figure 12:  Scenario decision tree showing the three different parameters (BW, 

HW, and WB), and the four resulting outputs (WebGL, OpenGL, SDF and MC) 

The above scenario (Table 2) can be represented as a decision binary tree where 

each node represents one of the three parameters (Bandwidth, Hardware and Web 

Browser), each node has two branches (1, 0), as a result, eight leaves, each leaf 

representing a rendering technique. From the decision tree, we can notice that the 

leaves are of four values, 1/2 of them are for OpenGL, 1/4 for MC, 1/8 for 

WebGL and 1/8 for SDF (Fig 12). Starting with the BW parameter, if the 

bandwidth is good enough then move left else move right, the second node is the 

HW, if the available hardware is powerful enough then move left, else move 

right, and the last parameter is the WB, if the browser allows rendering, then 

move left else move right. 

The following recursive algorithm can be applied to implement the decision tree 

in Fig. 12: 

 Step1: An empty leaf as a start 

 Step2: Split data by selecting a feature 

 Check for every split 

 Step 3: no more splitting? Make a decision 



67 
 

 Step 4: else, use recursion on the split by going back to 

step 2  

 End 

The decision tree in Fig. 12 showed the following: 

1- If WB is false (Does not support rendering), then the decision is Server-

based rendering using OpenGL. 

2- If HW is false (low hardware) and WB is true, then the decision is MC 

rendering at the client-side. 

3- Else the decision is divided into between WebGL an SDF depending on 

the result of BW, if true WebGL, else SDF. 

 

Figure 13: Optimised decision tree showing the minimum number of nodes and 

leaves 

The conclusion above allows us to optimise the decision tree as shown in Fig. 13 

by applying the followings: 

1- Starts with the WB as a node, then follows the HW and ends up with the 

BW. 

2- Use the same recursive algorithm discussed earlier. 



68 
 

In order to solve the above decision tree, constraint satisfaction problem (CSP) 

will be applied to formulate the problem and reveals the optimal solution for each 

state. CSP is defined by a set of variables, set of constraints and set of domains. 

Each variable (X1, X2… Xn,) is represented by Xi, each constraint (C1, C2… Cm) is 

represented by Cj and represents a subset of the set of variables with a valid 

combination of values by giving values to some or all the available variables. The 

domain Dk represents the possible values of the variable Xi: 

𝑐𝑠𝑝 = < 𝑋 , 𝐷 , 𝐶 >                       (3.3) 

                               𝑋, 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑏𝑎𝑙𝑒𝑠, {𝑋1 , . . . , 𝑋𝑛}                            (3.4) 

                     𝐷, 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥.  {𝐷1, . . . , 𝐷𝑛}                       (3.5) 

                                          𝐷𝑖 = {𝑉1, … , 𝑉𝑛} 𝑓𝑜𝑟 𝑋𝑖                   (3.6) 

             𝐶, 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 , 𝐶𝑖 = < 𝑠𝑐𝑜𝑝𝑒, 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 >              (3.7) 

By applying CSP model to our values and constraints using equations (3.3, 3.4, 

3.5, 3.6 and 3.7) we obtain the following: 

                                            𝑋 = {𝐵𝑊, 𝐻𝐷, 𝑊𝐵}                  (3.8) 

                                                    𝐷 = {0 , 1}                              (3.9) 

                                         𝐶 = {(∀𝑥𝑖), (𝐶𝑖(𝑥𝑖) ≤   𝛥𝑖)}                       (3.10) 

Where the variable x includes the following parameters: Bandwidth (BW), 

Hardware (HW) and Web Browser (WB). Δi is a finite possible value. The 

domain for each variable is either true or false (1 or 0) and the relationship of the 

constraint is that for every x, there is a finite set of all possible values. 

                                             𝑐𝑠𝑝 = < 𝑋 , 𝐷 , 𝐶 >                         (3.11) 

 Where: 

                                           𝑥 = {𝑥𝑖   /   1 ≤ 𝑖 ≤ 3}              (3.12) 



69 
 

x: is the set of variables { 𝑥1 , 𝑥2 , 𝑥3 } 

                      𝐷 = {𝐷(𝑥1) , 𝐷(𝑥2) , 𝐷(𝑥3)} = {{0,1}, {0,1}, {0,1}}           (3.13) 

D: is the set of domains of the variables of x. 

                                          𝑐 = {𝑐𝑗    /   1 ≤ 𝑗 ≤ 𝑚}                        (3.14) 

C: is the finite set of constraints. 

For each constraint Cj, there is a relation defined by: 

                                               𝑐𝑗(𝑥𝑗) ⊆  𝛥𝑗                                     (3.15) 

Where: 

                                           𝑥𝑗 = (𝑥𝑗1 , 𝑥𝑗2 , 𝑥𝑗3 )              (3.16) 

and  

                                    𝛥𝑗 = 𝐷(𝑥𝑗1 ) ∗ 𝐷(𝑥𝑗2) ∗ 𝐷(𝑥𝑗3)             (3.17) 

Let R be the finite set of rendering techniques of constraint C, which means for 

each instance of xj, there exists a unique mode rj ϵ R. The same mode corresponds 

to several instances. 

                                        𝑅 = { 𝐻𝑊, 𝑀𝐶, 𝑆𝐷𝐹, 𝑂𝐺𝐿}            (3.18) 

Therefore, WebGL rendering (HW), for example, corresponds to the display 

mode where all constraints are satisfied (1,1,1). Signed Distance Field rendering 

(SDF) corresponds to the display mode where all constraints are satisfied (0,1,1). 

MC rendering (MC) corresponds to the display mode where all constraints are 

satisfied {(1,0,1), (0,0,1)}. Server-side rendering using OpenGL (OGL) 

corresponds to the display mode where all constraints are satisfied 

{(1,1,0),(1,0,0),(0,1,0),(0,1,0)} 

The selection and the transition between the different rendering techniques R can 

be defined as deterministic automata. 



70 
 

                                                𝛴 = ( 𝑅 , 𝛥 , 𝛿 )               (3.19) 

Where: R is the finite set of rendering techniques, Δ is the finite set of all 

possible values and δ is the transition function: 

                                                𝛿 ∶  𝑅 ∗  𝛥 →  𝑅               (3.20) 

 

Figure 14: Constraint satisfaction diagram showing the transition from state to 

state depending on variable constraint 

The deterministic automata are represented in Figure 14 and allow to graphically 

represent the transition between different rendering modes depending on the 

changes of the variables where all constraints are satisfied. The set of variables 

is represented by BW, HW, and WB, where each variable has two data sets as 

follows:  

                             𝐻𝑊 ∗ (1,1,1) → 𝐻𝑊   𝑤ℎ𝑒𝑟𝑒 𝛥 𝑖𝑠 (1,1,1)              (3.21) 

         𝐻𝑊 ∗ (1,0,1) →  𝑀𝐶   𝑤ℎ𝑒𝑟𝑒 𝛥 𝑖𝑠 (1,0,1)            (3.22) 



71 
 

3.5 3D Environment analysis 

The goal is to create a Web-based heterogeneous volume modelling and 

rendering environment suitable for a wide range of online users. The modelling 

pipeline for the proposed environment is composed of three major phases as 

discussed above: Modelling, Processing, and Rendering. FRep and BRep are 

both used in the modelling part. Such representations allow us to track the 

modelling process using the constructive tree, and they can generate volumes 

having internal structures. Polygonal meshes approximate the precise model and 

are used to visually represent them and HF functions are used to store models.  

3.5.1 Web-based instant modelling and rendering core parts analysis 

Modelling and rendering are the major parts necessary for the modelling and 

development process as shown in Figure 15. 

3.5.1.1  Modelling of heterogeneous volume objects with FRep 

Complex geometry can be represented using a continuous real-valued function, 

i.e. with Function Representation (FRep). Three different values are assigned to 

this function as point coordinates. The term implicit surface of the geometry is 

used when assigning a zero set to the function in order to represent its surface 

[Pasko et al., 2004]. The continuous function that represents the geometry is 

defined as follows (eq. 3.23): 

                             𝑓(𝑥, 𝑦, 𝑧) ≥ 0               (3.23) 

Where: the corresponding implicit surface of the geometry is defined as follows: 

                            𝑓(𝑥, 𝑦, 𝑧) = 0                (3.24) 

Where x, y, and z are three variable values assigned to the function of point 

coordinates. 

Since geometric models can be described by a continuous function, this allows 

for applying different algebraic and geometric operations. The process of 



72 
 

disintegrating the complex geometry into a set of primitive shapes combined 

using different operations is a constructive approach that resembles Constructive 

Solid Geometry (CSG). In other words, CSG is used to build up a complex 

geometry starting from a set of primitive ones using algebraic operations. FRep 

makes use of the same concept of representing primitives and operations with a 

continuous real-valued functions of point coordinates. FRep uses the concept of 

CSG to keep the construction history of the model. It is composed of primitive 

objects supported by a set of relations and operations including intersection, 

union, subtractions, etc. [Pasko et al., 2004] [ Gupta et al., 2010]. 

 

Figure 15: Structure of the Real-time modelling and rendering (WRMR) 

environment 

HyperFun (HF) is a self-contained programming language designed to interpret 

FRep models. It is a specialised high-level programming language that allows for 

building up complicated models from scratch, it contains all the necessary 

operations suitable to define and implement FRep models. The language contains 

a library that includes a wide range of different geometric operations such as 

blending, rotating, intersecting, and many other operations. It is platform 

independent and allows Web-based participation by delivering models in the 



73 
 

form of Java Applets suitable for Web-browsers [Pasko et al., 2004], [Pasko et 

al., 2001].  

Signed Distance Field SDF is described as an implicit scalar function 

[Oleynikova et al., 2016] and is represented as follows (eq. 3.25): 

                                      𝑓(𝑥) = {
𝑑(𝑥, 𝜕𝛺)   𝑖𝑓 𝑥 ∈ 𝛺

−𝑑(𝑥, 𝜕𝛺)   𝑖𝑓 𝑥 ∈  �ͨ�
            (3.25) 

Where: 𝜕Ω is the set of boundary points of Ω. 

The primitive type of geometric model can be referred to a point set. At any point 

of the point set, there exist a mathematical model of the object property called 

point set attribute, where each point set and its attribute can be assigned a real-

valued function and a tree structure. Attributes assigned to homogenous solids 

allow for editing the solid as a whole but not its components. A scalar field is a 

real-valued function and when combined with a set or a subset of 3D space is 

then transformed into heterogeneous volume. The scalar field in a heterogeneous 

volume may represent the volume attribute, its density field, or its distance field 

[Pasko et al., 2001]. 

As discussed in chapter II, FRep is defined as a uniform representation for 3D 

geometry, and includes a set of set points (objects) O, operations P, and relations 

R: . O is represented as a continuous function F(x) where the points 

with F(x) ≥ 0 constitute the geometry. Heterogeneous objects can be 

mathematically represented as follows (eq. 3.28): 

                                  𝐻 = (𝑂, 𝑀)           (3.26) 

   𝐻𝑖 = (𝑂𝑖, 𝑀𝑐)             (3.27) 

     𝐻 =  ∑ 𝐺𝑖
𝑛
𝑖=1  𝑎𝑛𝑑 𝐺𝑖 =  ∑ 𝐺𝑖𝑗

𝑚
𝑗=1                     (3.28) 

Where Heterogeneous objects are represented by H, which is also a set of n cells, 

O is the Object information and M is the material composition, Hi refers to the ith 



74 
 

point in the Object Oi, accompanied by m sub-objects with a specific material 

(Mc) [Gupta et al., 2010]. 

In general, a hyper-volume object, which is a point set accompanied by attributes, 

can be represented as follows [Schmitt et al., 2004] (eq. 3.39) 

        𝑜 = (𝐺, 𝐴1, . . . , 𝐴𝑘): (𝐺, 𝑆1(𝑋), . . . , 𝑆𝑘(𝑋))                         (3.29) 

 

The above formula (eq. 3.29) representing the hyper-volume objects is called 

constructive hyper-volume model. X is an Euclidean space point, G is a point set 

and Si is a function standing for an attribute Ai and G and Si are represented using 

FRep as real-valued definition function F called constructive geometry tree. F is 

evaluated during the construction of the tree, by traversing the geometry tree 

structure, where operations constitute the nodes and the simple volumes occupied 

the leaves [Schmitt et al., 2004], [Schmitt et al., 2001]. The attribute functions 

are also constructed with trees, where primitives are leaves and operations are 

nodes. The attribute is evaluated in a similar manner as F by traversing 

throughout the attribute tree. 

HF deals with parameterised hyper-volume objects represented with FRep. 

Objects are defined as functions followed by necessary attributes represented as 

scalar functions. Users can build 3D volume objects from scratch using FRep 

library which allows adaptation and customisation and the can make use of the 

existing functions for primitives such as blocks, spheres, and other basic 

primitives as well as more complex primitives such as convolution surfaces with 

different skeletons, metaballs, soft and blobby objects in addition to a wide range 

of deformation functions including twisting, blending, scaling, etc. [Schmitt et 

al., 2001].  

3.5.1.2  Rendering approaches analysis 

One of the major roles for any instant and Web-based modelling and rendering 

environment is to be platform independent thus serve different users with 



75 
 

different hardware resources. To do so, different rendering approaches should be 

taken into consideration in order to deliver different models to different clients 

based on their available hardware power. In this work, we suggested four 

different rendering approaches, three of them are client-side and the last one is 

server-side rendering. The client side rendering approaches are Marching Cubes 

(MC) (the algorithm is discussed in details in 4.5.1.1), WebGL (the algorithm is 

discussed in details in 4.5.1.2) and Signed Distance Fields (SDF) (the algorithm 

is discussed in details in 4.5.1.3) while the server-side is rendering using C++ 

(the algorithm is discussed in details in 4.5.1.4). Information collection process 

should take place in order to determine what kind of rendering approach should 

take place based on the client’s hardware, available Internet bandwidth, and the 

graphics adapter power. 

Below we describe in more detail four rendering techniques, three client-based 

and one server-based. MC is a surface rendering originally developed to study 

medical images. It is an isosurface extraction algorithm where volume data are 

subjected to a division approach and are processed using cells or cubes. The 

intersection between the cube edges and the isosurface is detected and classified 

as inside or outside the isosurface [Cirne et al., 2013], [Parmar et al., 2016]. The 

server-based rendering approach uses OpenGL, a rendering library, which is a 

platform independent and supports 3D graphics. OpenGL has an application 

programming interface (API) and supported by a utility ToolKit library (GLUT) 

that makes it possible to visualise 3D scenes on different platforms. The server 

uses OpenGL to generate a stream of images to be displayed on the client browser 

using image-slides technique. WebGL is based on a scripting language emerged 

from OpenGL API and is written in JavaScript suitable for 3D graphics rendering 

on the Web-browser using programmable shaders. WebGL is supported with 

different libraries such as tools modelling and rendering, one of the most well-

known libraries is THREE.js [Congote et al., 2012]. Signed distance field (SDF) 

is an alternative representation over mesh-based ones in terms of efficiency with 

respect to visualisation while keeping advantages of implicit modelling. SDF 

rendering can be accelerated by using sphere tracing, a type of ray-tracing which 

utilises a distance property of the scalar field. [Zollhofer et al., 2015]. 



76 
 

The process of measuring the efficiency of an algorithm is called algorithm 

complexity analysis, which depends on the number of steps including operations, 

conditions and loops, and the time needed to execute them. Big O notation 

O(g(n)) is used to measure the run-time using the worst-case algorithm scenario 

and is represented as follows (eq:3.30): 

     𝑓(𝑛) = 𝑂(𝑔(𝑛))          (3.30) 

The list of sequence statements in the algorithm is represented by C and the 

loops (for, while, do etc…) are represented by n 

      𝑓(𝑛) ≤ 𝐶 ∗ 𝑔(𝑛)         (3.31) 

Below, we will try to apply the complexity analysis to the three rendering 

approaches starting from the MC algorithm, followed by WebGL and SDF 

rendering. The main loops and the sequence statements of the three algorithms 

will be taken into account in their most general forms in order to calculate the 

complexity of the algorithm in terms of n. 

1) MC algorithm. 

The complexity analysis for the MC algorithm is :  

    𝑓(𝑛) = ((𝑐 + 1)𝑛 − (𝑐 + 1)) ∗  (𝑛 − 1) ∗  (𝑛 − 1) → 𝑂(𝑛3)           (3.32) 

2) WebGL algorithm. 

The complexity analysis for WebGL algorithm is 𝑂(𝑛4):  

𝑓(𝑛) = (((𝑐 + 1)𝑛 − (𝑐 + 1))) ∗ (𝑛 − 1)  ∗  (𝑛 − 1)) + (((𝑐 + 1)𝑛 −

(𝑐 + 1)) ∗  (𝑛 − 1)  ∗ (𝑛 − 1) ((𝑐 + 1)𝑛 − (𝑐 + 1)))  → 𝑂(𝑛4)                 (3.33) 

3) SDF algorithm. 

The complexity analysis for SDF algorithm is :  



77 
 

𝑓(𝑛) = [(((𝑐1 + 1)𝑛 − (𝑐1 + 1)) + ((𝑐2 + 1)𝑛 − (𝑐2 + 1))) ∗ (𝑛 − 1)] +

               [(((𝑐4 + 1)𝑛 − (𝑐4 + 1)) + ((𝑐5 + 1)𝑛 − (𝑐5 + 1))) ∗ (𝑛 − 1)]   

𝑓(𝑛) = 𝑂(𝑛2) + 𝑂(𝑛2) → 𝑂(𝑛2)             (3.34) 

By comparing equations (3.32), (3.33) and (3.34) we can conclude that the level 

of complexity of the MC algorithm is O(n3) while WebGL is O(n4) and SDF is 

O(n2) that means SDF is less complex and much faster than WebGL and MC. 

MC is less complex than WebGL and therefore faster. 

The detailed explanations of the above algorithms are found in appendix B 

3.6 Heterogeneous volumes with attributes. 

Heterogeneous volumes are objects composed of different internal materials. In 

this work we are using heterogeneous models that are based on FRep, which is 

composed of a set of volumes and set of operations on them. FRep benefits from 

a constructive approach, where the resulting function is composed of basic 

functions for primitives and operations. This approach is one of the most used 

approaches in heterogeneous modelling. The constructive approach applies 

different operations on primitive models to integrate them into a more 

complicated model by generating a constructive tree where leaves contain 

primitive models defined by a real-valued function f and nodes are operations as 

shown in Figure 16.  

Shcmitt et al., discussed the concepts of heterogeneous volumes which are point 

sets and functions representing attributes [Schmitt et al., 2004] as follows: 

           𝑜 = (𝐺, 𝐴1, … , 𝐴𝑘): (𝐺, 𝑆1(𝑥), … , 𝑆𝑘(𝑥))                 (3.35) 

Where x=(x1, … xn) Euclidean space point, Si is a function standing for an 

attribute Ai and G is a point set. 

Figure 3.16 shows a constructive tree of primitive objects combined to construct 

a volume, in our case a tap. The leaves are primitive objects subjected to 



78 
 

operations (union operation). As a result, both primitive objects and operations 

constitute the whole volume. Three operations were applied to generate the final 

volume (Fig 16).  

FRep functions are used to model heterogeneous volumes with different 

densities. Primitive models are used to construct a more complicated volume 

using HF operations.  

               𝑀 = (𝑃, 𝑂, 𝐶)                                            (3.36) 

Where M is the model, P is the set of primitive objects, O is the set of operations 

applied, and C is the set of attributes. 

 

Figure 16: Constructive tree showing simple models as leaves and operations 

as nodes 

The equation above (eq. 3.36) shows that a heterogeneous model is composed 

of set of primitive objects subjected to a set of different operation, HF functions 

in our case, and different colour attributes. A constructive tree can be built and 

contains different successive heterogeneous volumes with their attributes and 

functions. The constructive tree for a hemisphere with microstructure model is 

shown in Figure 17, it is composed of six consecutive levels, each level carries 



79 
 

different models, operations and attributes. The primitive models are 

consequently transformed into more complicated one as the layers of the tree 

goes high. Different operations were applied including intersection, blending, 

rotating and union. The operations are HF based operations and the colour 

attributes are applied all along the modelling process on different tree levels. 

 

Figure 17: A constructive tree for a complicated heterogeneous model with 

different HF functions as operations 

In this work, we dealt with the colour attributes in two different approaches: 

primitive model colouring and heterogeneous model colouring. Both approaches 

use (eq. 3.35) and (eq. 3.36) at the modelling phase to apply colour attributes 

 



80 
 

3.6.1 Primitive model colouring approach (Leaf colouring) 

This approach is based on colouring primitive models on leaves level in the 

modelling constructive tree. This allows primitive multi-models colouring before 

combining them into one model and is basically used in simple models. Figure 

18 shows primitive models coloured with different colours and then joined 

together to form the final model (Fig 18.a). 

Several steps are applied while using primitive model or leaf colouring approach, 

these steps are: 

Create geometry 

Use MC to transform the geometry into the mesh 

Create mesh material 

Assign colour attribute to mesh 

Display primitive model. 

3.6.2 Heterogeneous volume colouring approach (Node colouring) 

In this approach, we apply the colouring process at the node level of the 

constructive tree. The same concept of colouring is used; the major difference is 

by applying the colouring process at the mesh level. The colour attribute is set 

during the modelling phase, more than one colour can be applied to different 

nodes of the constructive tree, thus providing a multi-coloured complicated 

model, which allows applying different colours to heterogeneous volumes taking 

into considerations its density and its internal structure (Fig 18.b).  



81 
 

 

Figure 18: Two different approaches to colouring, (a): using primitive model 

colouring (Leaf), (b): using complicated heterogeneous volume modelling 

(Node) 

3.7 Summary 

In this chapter, we discussed the theory behind 3D Web-based modelling 

environments, and we focused on its different characteristics. We also discussed 

different scenarios for online rendering and implemented a special scenario 

optimisation framework using constraints satisfaction problem (CSP). We finally 

discussed the design of the proposed 3D environment and discussed some of its 

features. We presented the major parts of the proposed environment and 

discussed complexity of the rendering approaches being used.  In Chapter 4, we 

will discuss the implementation phase of the design presented, we will focus on 

the different rendering techniques, and compare results. We will also discuss the 

characteristics of the proposed 3D environment in terms of functionality and 

performance, and we will present some major tools offered by the environments 

as well as the supporting parts such as security, data delivery, and real-time 

performance. 

 

 



82 
 

Chapter 4 

Engineering, design and implementation 

The Web-based real-time modelling and rendering environment (WRMR) is a 

client-server, Web-based and platform independent environment, it uses the 

browser as an interface and can gain access to clients’ hardware resources. The 

client-side is developed using JavaScript and Visual Basic .Net technologies 

while the server-side uses C++. As discussed above, WRMR is an adaptive 

environment designed to serve different types of uses in real-time. In this Chapter 

we are going to discuss in details the components of WRMR. Figure 19 shows 

that the environment is subdivided into five inter-related parts that work together 

to do the job. 

4.1 WRMR general characteristics 

WRMR is built up from different modules integrated together to perform the 

modelling and rendering tasks as required. In this section, we will discuss the 

reasons for connecting different modules together as shown in Figure 19. Since 

WRMR is an online application, it is based on FRep and SDF modelling 

functions, users need to access it directly by writing their own functions in the 

form of JavaScript functions or my load them from saved files. HF function needs 

to be transformed into JavaScript functions to be understood by the environment.  

Most users may not get the knowledge of transforming HF into JavaScript 

functions that is why we designed an “HF to JS” converter that supports the 

interpreter which works as an input to WRMR. The environment is a client-server 

architecture, and the job is distributed among clients and servers as discussed 

above. The decision on what side should the modelling and rendering take place 

is directly related to the user computational power. WRMR encapsulate four 

different rendering approaches, three of which are client-side and the last one is 

server-side. Different rendering approaches require two types of modelling 

functions (FRep and SDF).   So far three different modules should be integrated 



83 
 

together to perform the job. When completing the process, it is useful to save the 

work (both modelling functions and rendered modelled), for that reason WRMR 

contains a special module to save the 3D volume. 

 

 

 

 

 

 

Figure 19: WRMR conceptual parts: input, process, and output 

4.2 WRMR core engine 

WRMR core engine is the information collection centre, through which it can 

analyse the client, and collect valuable information about the target platform, its 

operating system, and available Internet connection speed. The job of the core 

engine is to collect information from different inputs and deliver the outputs to 

the WRMR in the form of XML. The inputs and outputs are subjected to 

independent threads and synchronous calls. The engine performs a series of calls 

that take place independently, these calls are necessary to collect information 

about target platforms and operating systems necessary for the decision-making 

process that will take place. The output of the core engine will be used to decide 

the side of rendering (client or server) as well as what rendering approach to be 

used. These calls or tasks are as follows: 

 Connection Speed detection. 

 Machine Info detection. 

 WebGL Information detection. 

 Operating System (OS) Info detection.     



84 
 

 Screen Info detection.     

 Output the results in an XML format. 

 

Figure 20: Conceptual model of WRMR core engine 

These calls collect information and data about the client machine and send it to 

WRMR using XML messages. This process takes place periodically as long as 

the client is connected to WRMR and as long as it is requesting services. It is 

necessary to keep checking the inputs at the core engine and detect the changes 

that may happen.  When a change is detected, the output will then change and the 

environment adapts to the changes and adjust its performance (Fig. 20). WRMR 

core engine detects the IP address of the client and determines its location, then 

checks the connection speed available in bits/sec to analyse the transfer rate 

(bandwidth) using the “Connection Speed detection” module. The necessary 

information to identify the type of the machine (computer, mobile, pad) is 

collected using the “Machine Info detection” module. The running browser is 

declared using “Browser Info detection” module, and the operating system can 

be identified using the “OS Info detection”. The size of the screen can be 

determined using the “Screen Info detection” module. 

4.2.1 Connection speed 

Detecting the connection speed or the bandwidth transfer rate at the client’s 

machine is a critical issue for WRMR. It helps in making the right decision about 



85 
 

where, how and when the rendering process will take place. One of the efficient 

practices to test download speed is by downloading a file with a predefined size 

and calculates the necessary time for the download process to complete.  Another 

way is to use a Web service to do the job. The problem with Web services is not 

always accurate. Our tests showed inconsistency when using different Web 

services to test the broadband speed. The Alternative solution is to measure the 

download by implementing a JavaScript function on our server to test the 

download speed at the client-side. In this way, we can measure the connection 

between the client and our server quickly, and respectively. A pre-defined file of 

a fixed size of 10 Megabytes located on the server side stared to be downloaded 

on the client-side as soon as the client is connected to WRMR. The duration of 

the download process is calculated by subtracting the end time from the start 

time. The transfer rate is obtained by dividing the file size in Kbytes by the 

duration obtained. 

4.2.2 Machine information detection  

Detecting and collecting information about the machine requesting the service 

helps WRMR decide how to deliver the service and distinguish between different 

devices including computers mobiles, tablets, etc... The machine info detection 

process determines the agent of the user and checks whether it is a pad, a smart-

phone or a computer device. Some modern tablets are more efficient than old 

desktop machines and has more computational power. The user’s browser info 

could be not the most reliable way as some browsers allow giving fake id for 

security reasons, collecting information helps in supporting the security system 

of WRMR as discussed in section 4.3.3.2. 

4.2.3 WebGL information task 

WebGL is the core or the engine of the modelling process, WRMR needs to know 

whether the requesting machine is WebGL supported or not. Initialising a canvas 

successfully at the requesting machine indicates that the machine is WebGL 

enabled and informs WRMR that the client can render 3D models using a browser 



86 
 

and GPU.  WebGL is developing fast, a new version (WebGL 2.0) was released 

and supported with a lot of interesting features to support the rendering process. 

4.2.4 Operating system detection task  

WRMR needs to know about the operating system being used at the client-side. 

The ability to determine the machine operating system gives a good idea to 

WRMR about types of actions and responses to be taken with the appropriate 

kinds of services. The types of operating system can be listed as follows: 

Windows, UNIX, and MacOS.   

4.2.5 Screen information detection task  

Calculating the screen width and height gives an idea about the machine used and 

whether it is a desktop, laptop, smart-phone or a tablet device. This set of 

parameters such as the type of the machine used, its available GPU and memory 

help in making the right decision in choosing the right rendering approach based 

on the pre-defined scenarios. The most critical information needed from the client 

hardware is as follows: the connection speed, the browser ability to use WebGL, 

and the hardware power (GPU and memory).  

The diagram (Fig. 21) shows a case study in the machine info detection process. 

It starts by determining the agent of the user and then checks the kind of the 

device (portable or desktop). It then determines the functioning operating system. 

Checking WebGL ability is next; this can be done either from the canvas 

initialisation, where successful initialisation indicates that the machine supports 

WebGL or by analysing the Web browser information. For example, if the 

running browser is Internet Explorer of version 10 and earlier, it means that 

WebGL is not supported.  



87 
 

Figure 21: Information gathered from the client machine 

4.3 WRMR conceptual design  

WRMR is divided into three interrelated conceptual blocks: input, process, and 

output as discussed in 4.1.  Figure 19 shows the blocks with their components, 

the input contains the interpreter, HyperFun (HF) file, mesh data file, and 

parameters and settings modules. The process part contains the rendering, instant 

code management, and parameter exchange modules. The output contains low-

resolution flat wired polygons, high-resolution surface, light surface, image 

slides, and model data file module as shown in Figure 19. All the above-

mentioned modules are designed to support the modelling and rendering process, 

the pipeline for the three parts will be discussed later in 4.3.2. 

4.3.1 WRMR input  

 The first WRMR block is the input part that contains different modules including 

Interpreter, HF and SDF files and parameters and settings. The interpreter plays 

the input role to WRMR and allows users to write HF or SDF functions to be 

executed and rendered instantly. It also allows importing data from outside the 

environment mainly HF and SDF functions as well as mesh data files in the form 



88 
 

of faces and vertices. The attributes and settings function allows to adjust the 3D 

heterogeneous volumes details and control some parameters related to them such 

as density, distances, colours, etc.  

HFtoJS is a converter responsible for transforming the HF functions into 

JavaScript functions ready for rendering using the WRMR. WRMR depends on 

HF functions and attributes as inputs using the interpreter. The environment was 

developed using JavaScript language because it is a Web-based online 

application. Users familiar with HF functions find it difficult to transform them 

and attributes into JavaScript code suitable for the environment. That is why we 

developed the HFtoJS converter, which is an online instant converter that 

converts HF functions into JavaScript functions 

4.3.2 WRMR process  

The process block contains different modules including rendering, code 

management, and parameter exchange. The process stage is responsible to load 

the source code into the client’s memory. The core code is divided into three parts 

as follows: set-up code, client interpreter code and the complementary code as 

shown in Figure 22. The set-up code is essential to set all the parameters 

necessary to launch the rendering process such as preparing the scene, setting the 

camera, determining the rendering approach, and initialising the canvas if 

needed.  

 

Figure 22: WRMR process part showing source code integration in the client’s 

memory background 



89 
 

The idea of the interpreter is to evaluate the expression by calling compiled 

functions given the original source code. The interpreter allows users to freely 

add, modify and delete line-code ready to be executed in instant time. It is located 

in the middle between the set-up code and the complementary code. The set-up 

part and the complementary part include all the predefined modelling functions 

written in JavaScript and are essential for the modelling process. The three 

mentioned above parts are integrated into one main code stream loaded in the 

client’s browser memory. Model input and changing parameters and settings are 

two supporting tools designed to help the client to edit the model and change 

some of its characteristics. These supporting tools can immediately modify the 

heterogeneous volume and control its behaviour, location, resolution, and the 

angle of vision. The parametric tools use JavaScript language and are loaded into 

a special tunnel or memory stream using the client’s browser memory. They are 

also used to transfer different variables and parameters among WRMR files. 

4.3.3 WRMR Output 

The rendering and visualising part includes the followings: flat wired polygons, 

high-resolution surfaces, light surfaces, image slides, and object data files. This 

part is responsible for displaying the model after rendering it using one of the 

available rendering approaches. The low resolution flat wired polygons resulted 

from MC rendering, WebGL rendering produces high-resolution models and the 

SDF rendering generates models using light rays. Image slides are received from 

the server-side where the rendering takes place. 3D objects data file allows to 

save all the models in OBJ or X3D file formats, the user can use these models 

later in any other modelling environments. 

4.4 WRMR major parts 

The proposed environment is an online set of tools suitable for instant modelling 

and rendering. Some supportive tools are designed and implemented to make it 

easy-to-use, safe and interactive. These parts are user control, data extraction and 

delivery and security. 



90 
 

4.4.1 User command and control 

The user command tool allows users to set-up attributes and parameters in 

addition to the ability to write and edit complicated volume functions instantly. 

The environment is supported by an interpreter, the interpreter is necessary and 

works as an input to WRMR. As discussed before, since WRMR is an online, 

and interactive environment, there is a need to let users write their own modelling 

functions (HF commands) using an open-source JavaScript language. Using the 

interpreter, users can write, edit, delete and save models, in addition to the 

available ready-made models provided by the environment. Primitive and 

complicated heterogeneous models are available online.  

4.4.2 Data extraction 

The data extraction process is directly connected to the rendering type of the 

process. The environment can make use of the client’s GPU and memory and has 

the ability to build up 3D volumes using polygons generated by MC and WebGL 

rendering. Saving 3D volumes is a need to any 3D modelling environment, 3D 

volumes are represented in many ways including functions and meshes, and there 

is a need to save these functions and meshes for later use. Functions can be HF 

or JavaScript, and both represent 3D volumes and can be saved before and during 

the rendering process in TEXT or JS files. The polygons are constructed by 

extracting raw data in the form of faces and vertices on the client’s machine. 

Extracted data are saved in 3D data files in the form of X3D or OBJ data, and 

can be easily imported and loaded to the environment. OBJloader is a special 

function provided by WebGL THREE.js library to load OBJ files. This process 

allows hiding the raw data (faces and vertices) from users and can protect the 

model from theft and piracy. 

The raw data (faces and vertices) are extracted using (eq. 4.1,4.2,4.3)  

                                  (4.1) 

               



91 
 

Where s represents the cube size 

The point set of the rendered model can be extracted using equation 4.1, where a 

set of nested loops representing the three-dimensional axis are applied to extract 

all the points constituting the model in free space. Here x, y, and z represent three 

axes in space and s represents the cube size.. 

Server-based rendering is used when the user requesting a service is using a low 

hardware device and is unable to go rendering using his/her GPU. The server-

based rendering then uses the server GPU to generate a stream of images in the 

form of image slides. (Fig 23). 

Figure 23: The process of extracting raw data as vertices and faces can be done 

using different rendering approaches. 

4.4.3 Security 

Theft and piracy are two big concerns, when dealing with online environments. 

Security tools and techniques should be taken into account to protect the 

environment and the models from illegal users since it is an open source online 

environment.  

Code protection using Obfuscation, Authentication and Authorisation, and Data 

files extraction are three security techniques implemented as an attempt to protect 



92 
 

the environment or at least to make it really difficult for illegal users to access it 

and steal the models are shown in Figure 24. 

 

Figure 24: The three different security threats and their defences: Code 

Protection (Obfuscation), Authentication and Authorisation, and Data 

Extraction 

4.4.3.1 Code protection using obfuscation 

Code obfuscation is a process used to encrypt source code, mainly the JavaScript 

code, without losing its functionality. It can still run even after encoding. 

Obfuscation is used to protect source code against reverse engineering. It can 

construct and publish encrypted programs with the same functionality of the 

source program using an encryption key. The main purpose of obfuscation is to 

make it difficult to be read and understood by non-authorised users while keeping 

its functionality [Rivest et al., 1978]. HyperFun code is text, using the code 

converter which is supported by WRMR, the environment is able to convert HF 

functions into JavaScript functions (will be discussed later), and can encrypt 



93 
 

those functions since they are JavaScript functions.  A special algorithm 

(Obfuscator) was implemented to encode the source code of the environment and 

the modelling functions. This code is in JavaScript, it is encrypted by the 

encryption algorithm while keeping it functional. This makes it difficult for users 

to read and understand the source code of WRMR as well as the encrypted HF 

functions (after being converted to JavaScript functions). The algorithm starts by 

deleting the unnecessary spaces and notes after scanning the source code to be 

encrypted. All functions and variables are scanned and detected and then listed 

to be encrypted. An encryption key is used to encrypt the functions and variables 

and then to save the encrypted code to another JavaScript file. A special function 

is used to determine the level of encryption complexity as shown in equation 4.2: 

 𝑙 = ∑ ∑ 𝑖 ∗ 𝑗𝑘𝑏
𝑗=0

𝑎
𝑖=0                                  (4.2) 

Where a is the length of the buffer, k is the complexity level 

The idea behind Obfuscation is to encrypt the source code while keeping its 

functionality. Equation 4.2 uses all the keywords and functions represented by 

char(i), reads from the source code and stores in the buffer. After selecting the 

word, it iterates over every single character using a loop, and encrypts it by 

multiplying its ASCII code by the logarithmic function Key(k). 

4.4.3.2  Authentication and authorisation 

Authentication techniques are used to protect the environment form illegal users 

to access it. Privileges for authenticated users are granted after collecting basic 

information to monitor their behaviour and activity as discussed in section 4.2.2. 

User activities are saved in a log file for later monitoring. Users can be granted 

different privileges and access rights in order to save, edit, delete and access the 

source code of the models as shown in Figure 24. Information about a user 

requesting a service from the environment are collected and stored. This 

information includes the IP address, username and password, browser info, 

bandwidth available, etc. Users can be offered a full mode access and the ability 



94 
 

to edit, save and delete models. Others may be granted a model view access, and 

this means they can only view models with no edit or save privileges (Fig. 25). 

 

Figure 25: Data flow diagram showing how authentication and authorisation 

are implemented 

4.4.3.3 Data files extraction 

The process of extracting the faces and vertices from the client GPU and saving 

them to a 3D data file in the form of polygons allows hiding the source code of 

the JavaScript’s functions used to construct the model. The OBJLoader functions 

provided by WebGL Three.js library allow displaying the model saved in the 3D 

data file without showing the source code or raw data. 

The extraction process starts by extracting all existing vertices and faces and 

saving them in a buffer to be written later in the 3D data file. The point set is 

expressed in equation 4.1. 

After the extraction process is completed, the extracted vertices and faces are 

saved in an OBJ or X3D file. The 3D data file can be shared and can be loaded 

into the Web browser using the following source code: 



95 
 

<X3D id="x3d1">  

 <Scene id="scene1">  

             <Viewpoint position="0.26255 0.13231 0.33884"     

                       orientation="- 0.25605 0.95645 0.08664 0.55979" >     

</Viewpoint>  

               <Transform id="Hemisphere">  

                      <Inline url="Hspher.x3d" solid="false"></Inline>  

               </Transform>    

   </Scene> </X3D> 

4.5 WRMR modules 

From the design prospective, WRMR is composed of five inter-connected parts. 

These parts are modelling, environment setup, rendering, visualizing 

(displaying), and data delivery. Some features are optional such as code 

obfuscation, data extraction, model extraction, etc. (Fig. 26). 

 

Figure 26: WRMR parts, modules and their interconnections 

The first part is the modelling part where geometric functions are implemented 

and are divided into two types: FRrep and SDF functions. Those two used 

function representations precisely define the heterogeneous model and describe 

its characteristics. Editing the modelling functions can be done using the 



96 
 

interpreter, which is a special tool designed to allow clients to write and modify 

their own modelling functions in instant mode. Another option is to save and load 

model functions from files, usually text or JavaScript files. These files contain 

heterogeneous models written in JavaScript language and ready to be executed 

as soon as they are loaded to the interpreter. The third option is to load pre-

defined models supported by the environment, those simple and complicated 

heterogeneous models are loaded in the internal part of the environment. Users 

can use these models, edit them and save their own version for future use (Figure 

26). 

The second part is the environment set-up, where all the environmental settings 

take place. In this part, the environment decides whether to orient the user to use 

WRMR server or to use his/her local machine (client-side) depending on the 

scenario optimization and information collection discussed in 3.4 and 4.2. This 

part is responsible for collecting information about the user requesting the service 

and then redirecting him/her to one of the four available rendering options. The 

user will never worry about the rendering platform or the modelling system being 

used, all that he/she needs is basic modelling expertise. 

The third part is rendering, where four rendering approaches will be available 

and ready to be used, these approaches are as follows: MC, WebGL, SDF, and 

OpenGL rendering. The first three approaches are client-side rendering while the 

fourth one is server-based rendering. The visualization part is the fourth part 

where 3D volumes are displayed. The precision of the 3D volume including its 

density depends on the applied rendering approach. The modelling, rendering, 

and visualisation parts are interconnected and can exchange data and commands. 

The last part is data extraction and delivery, where models can be saved in two 

ways. The first one is saving the modelling functions in a text or JavaScript file. 

This allows loading the functions to the interpreter for rendering or further 

editing. It also allows modifying the model outside the environment. The second 

way is to save the 3D volume data as point sets (faces and vertices) in a 3D file 

format such as OBJ or X3D files. This allows for loading 3D models directly to 

the environment without passing through the interpreter. 



97 
 

4.6 Summary 

In this chapter we discussed the design phase of the environment. We started by 

presenting the parts of WRMR, then we discussed its core engine and the data 

collection methods. The major parts of WRMR included user command and 

control, data extraction and delivery. We also focused on the security part 

including obfuscation, user authentication, and data file extraction, and we 

discussed the different threats in our attempt to protect the environment and the 

models. We presented the conceptual design of the environment and discussed 

its parts and modules including the inputs, process and outputs, in additions to 

the interconnections between different modules. 

 

 

 

 

 

 

 

 

 

 

 



98 
 

Chapter 5 

Implementation 

Being a Web-oriented environment, most of the tasks for adaptation take place 

in the browser, meaning in the JavaScript code. Thus, at the start of the work, the 

server requests the information about the client by running specialised JavaScript 

module. The client sends the requested information (connection speed, machine 

info, browser info detection, OS info, and screen resolution info) to the server as 

XML messages as discussed earlier. The server selects one of the above-

mentioned scenarios based on the information requested from the client. This 

process is periodically repeated during the work, while the client is connected to 

the server to ensure that the selected scenario is still the right one.  

5.1 WRMR implementation 

Four different rendering approaches are put into test: starting with MC rendering, 

then WebGL, followed by ray marching (SDF) and ending up with OpenGL 

using C++. The first three are client-based while the fourth one is a server-based 

rendering.  

5.1.1 Rendering using MC 

The MC algorithm was published by Lorensen and Cline in 1987 [Lorensen and 

Clinen, 1987]. By computing iso-surfaces from discrete volume data, MC 

produces a triangle mesh, and thus BRep can be built [Chi Sio et al., 2010]. We 

implement the algorithm using the pure JavaScript code, JavaScript is 

responsible for generating the triangle mesh at the client-side, and then do the 

rendering at his/her GPU. We  took Hemisphere as an example, which is a semi-

sphere with an internal grid of rods, to show both, the external structure and the 

internal grid. We start by creating a mesh for the Hemisphere object and set up 

the x, y, and z coordinate in the 3D plane.  



99 
 

 

 mesher = mesh['Marching Cubes'], field = cobject['Hemisphere'](); 

 result = mesher(field.data, field.dims); 

 x = -1; 

 y =-3.9; 

 z = 0; 

        drawObjMesh(mesher, field, result, x, y, z); 

The Hemisphere object is modelled and then rendered using the MC algorithm 

by setting up the x, y, and z coordinates of the object to be created (centre of the 

object), its radius, and a lattice. A series of modelling sequences took place to 

obtain the final hemisphere object to be rendered (Fig. 27); the rendered object 

was of sharp edges and suitable for clients with limited GPU power [Pasko et al., 

2010]. 

 

Figure 27: Complicated hemisphere model showing its modelling phases and 

then rendered after applying different functions using MC 

5.1.2 WebGL rendering approach 

Khronos Group developed and maintained both OpenGL and WebGL in addition 

to COLLADA. This allows for the creation of a fully integrated and dynamic 3D 

Web applications based on JavaScript [Khronos].     



100 
 

 

 

 

 

 

 

 

 

 

Figure 28: Hemisphere rendered using WebGL 

In WebGL, both WebGL functions and the MC algorithm are used in the 

rendering process. The MC algorithm is used to create the volume parameters 

(the mesh), and WebGL does the rendering using predefined functions loaded 

from a special JavaScript engine (Three.js) to display the scene and to animate 

the model. The result is a high-resolution object with precise features (Fig. 28). 

The main difference between MC and WebGL is that MC rendering uses 

wire mesh materials to obtain flat wired polygons with low resolution, while 

WebGL uses “Lambert Material” with the ability to adjust the size of the mesh 

to get different resolutions. WebGL allows for rendering at the client’s GPU with 

high power and generates heterogeneous models with considerable resolutions in 

such a way: 

 Using MC the mesh is created on the server and sent to the client to be 

visualised, while in WebGL, the model is sent to the client, where the mesh 

is created. 

 WebGL uses the Binary Space Partition Tree (BSP tree), which is used 

before rendering the scene to cast shadows and to remove hidden surfaces. 

It also uses Constructive Solid Geometry (csg.js) with Three.js JavaScript 

engine. 



101 
 

5.1.3 Ray marching (SDF) rendering approach 

Ray marching using signed distance field or SDF acquired a huge advantages 

over mesh-based using MC and WebGL rendering approaches in terms of 

performance and runtime. Ray marching is the most efficient way to render 

signed distance fields.  [Zollhofer et al., 2015] as shown in Figure 29. 

 

Figure 29: Hemi-sphere rendered using ray marching of SDF 

5.1.4 OpenGL rendering approach using C++ 

OpenGL is a software interface built from different libraries and designed to 

operate and access graphics hardware or the graphics process units (GPUs). Since 

it is a hardware-independent interface, it can be implemented on many hardware 

platforms. It is a server-based rendering approach depending on C++ compilers, 

which uses the OpenGL commands and functions to do the rendering (Fig. 30). 

OpenGL depends on the MC algorithm and is designed to work on desktop 

applications using C language unlike WebGL which is designed to run on the 

Web-browser using JavaScript language.  



102 
 

Figure 30: Hemisphere rendered using OpenGL (C++) at the server-side 

5.1.5 Image slides  

Server-based rendering is one of the rendering approaches used in delivering 3D 

models to low recourses clients. The server renders the model, and start to take 

sequential snapshots of the model from different angels. The server sends to users 

a stream 3D images to construct the 3D model as an image slides. The server 

makes a 35 by 35 snapshots of the rendered object to constitute a 3D image slider 

with 1225 images (Fig. 31). The image stream may reach up to 122500 KB 

supposing that each image is of 100 KB. The slider loads an image in the slider 

and stores the next one in the clients’ memory, when the user requests the second 

image, the third one will be loaded to the buffer (memory) and so on. In that way, 

we reduce the memory needed to launch the slider to 200 KB only. Each image 

a dimension of   914 * 415 pixels, the horizontal and vertical resolution is 96 dpi 

and the colour information stored in the image (bit depth) used is 24. 



103 
 

Figure 31: Image slider matrix (35 by 35) 

 

Figure 32: Image slider with rotation angles and speed control 

Figure 31 describes the axis of rotation following the longitude and latitude 

concept. The model can rotate over the x and y-axis, each cell in the matrix refers 

to one of the images loaded in the memory at the client side and given an index 

composed of x and y, a cell of (x, y) represents an image taken from a certain 

angle with certain longitude and latitude. The user can view the 3D object from 

all angles, and can change the direction of the slider by clicking on the arrows, 

or by moving the mouse on the rotating model. The client can determine the 



104 
 

rotation speed of the slider depending on the available bandwidth and the 

available resources (Fig. 32). 

5.2 Heterogeneous volumes with attributes  

Heterogeneous volumes are volumes with different densities. In our work, we 

focused on rendering heterogeneous volumes using different rendering 

approaches. Attributes were added at the modelling level where modelling 

functions are modified and colouring attributes were set to modelling functions 

as parameters. Several tests using both WebGL and MC rendering approaches 

were applied to generate heterogeneous volumes with colour attributes. 

Heterogeneous volumes were generated with different densities represented by 

colours. Both Leaf and Node colouring approaches, as explained in Chapter III, 

were used and showed no major difference in rendering time and efficiency. Leaf 

colouring is easy to use but does not allow multi-colouring for the same 

heterogeneous sub-model as shown in Fig 33 (a) and (d). Each part of the model 

can be coloured with one and only one colour. This method is easy to be 

implemented and used and is dedicated to simple models with few coloured parts. 

Node colouring is a multi-colouring technique; it allows colouring heterogeneous 

volumes (with internal structure colouring). Multi-colouring can be applied to 

the whole volume and even part of the volume. This approach is hard to 

implement but more useful as it allows generating heterogeneous volumes with 

real densities and colours, it also allows internal structure colouring as shown in 

Fig 33 (b) and (c).  

Both colouring approaches were put into the test. First we generate a complicated 

model with leaf as shown in Fig 33, and we compared the time taken to render 

the coloured model with the rendering time of the same model without colouring 

and we came out with a conclusion that no time difference was noticed. We then 

applied the node colouring technique in order to colour the internal structure of 

the complicated model. We measured the rendering time before and after 

colouring, and the result was interesting as no major difference was detected. 



105 
 

And we came up with a conclusion that colouring complicated models with 

different densities do not affect the rendering time of the model.   

 

 

Figure 33: Heterogeneous volumes with colour attributes generated using 

different rendering approaches: Leaf a, d; and Node b, c 

Node colouring is more efficient to use, especially when dealing with multi-

coloured heterogeneous volumes having internal structures. We implemented a 

heterogeneous volume with different densities (Fig 34), and we applied the node 

colouring algorithm as shown in Fig. 35. Node colouring takes place at the 

modelling level while trying to construct the volume by applying different 

modelling functions. When the modelling phase is completed, we applied the 

rendering phase, and we measured the rendering time before and after applying 

the three colours, the result showed no difference in rendering time, then we made 

a cross-section to show the internal structure of the volume, and how node 

colouring can apply colours to the internal structure of the volume (Fig. 34).  

Different cross-sections were made along the Y and the Z-axis. The experiment 

and internal structure colouring was clearly shown. 



106 
 

 

Figure 34: A cross-section for a complicated heterogeneous volume with 

colour attributes showing the internal structure of the model 

 

Figure 35: Heterogeneous volume with colour attributes being modelled in 

JavaScript and rendered using WRMR 

The example in Figure 35 shows different colouring steps, colouring is applied 

during the modelling process and not at the end of it. Node colouring can be 

applied after each operation and different colours can be applied for the same 

model taking into consideration colouring its internal structure as well. Cylinders 

were created using “hfCylynder” function which is an HF function written in JS 

using the HFtoJS converter, The below example code shows that the first 

colouring step took place right after applying the “r_union” operation between 



107 
 

two cylinders (node colouring). The result is a coloured cylinders after applying 

the union operation. The second colouring step took place right after joining the 

sphere with the union of the two cylinders. And the last colouring operation 

happened after the subtraction operation and right before the blending operation. 

5.2.1 Primitive model colouring approach (Leaf colouring) 

Primitive colouring or leave colouring as mentions above is an approach to colour 

a whole part of a model with one colour, different parts of a model can be 

coloured with one colour each. This approach does not take into consideration 

colouring the internal structure of the volume. The code below is written in 

JavaScript using WebGL THREE.js library and is used to generate primitive 

multi-coloured models using primitive colouring approach. We used the 

“THREE.Geometry” function to create three different sub-volumes, each created 

sub-volume has its own modelling functions and is subjected to a series of 

modelling operations. When the modelling process finishes and just before 

rendering, colouring operation is applied to each sub-volume to assign one single 

colour to each using the “outputmesh” function as shown in the algorithm below. 

var geometry0 = new THREE.Geometry(); 

var geometry1 = new THREE.Geometry(); 

var geometry2 = new THREE.Geometry(); 

geometry0 = mcalgo(values , points, geometry0); 

geometry1 = mcalgo(values2 , points, geometry1); 

geometry2 = mcalgo(values3 , points, geometry2); 

var materialNormal = new THREE.MeshNormalMaterial() 

var material = new THREE.MeshNormalMaterial( { colour: 0x00ff00, 

shading: THREE.FlatShading } ); 

var obj1 = new THREE.Mesh( geometry0 ); 

outputmesh(geometry0, 0xff0000); 

outputmesh(geometry1, 0x00ff00); 

outputmesh(geometry2, 0x0000ff); 

 



108 
 

5.2.2 Heterogeneous volume colouring approach (Node colouring) 

Heterogeneous volume colouring or node colouring takes place during the 

modelling process and not at the end of it. This approach can be applied to both 

simple and complicated volumes. The algorithm below is written in JavaScript 

code and is used to generate heterogeneous multi-coloured volume. It is clear that 

the colouring function “cl” is used just after the operation function “r_union” in 

the middle of the modelling process. Different colours can be assigned to the 

same volume or sub-volume, the result is a heterogeneous multi-coloured volume 

with coloured internal structure as shown in the algorithm below. 

spi5 =  r_union(spi3,spi4)  ;  

cl(spi5,0xff0000); 

spi6 =  r_union(spi1,spi2)  ;  

spi6 =  r_subtraction(spi6,sph2)  ;  

cl(spi6,0x00ff00); 

my_model  =   r_union(spi5,spi6)  ; 

5.3 WRMR implementation 

5.3.1 WRMR tasks and functions 

The proposed environment is composed of two different major parts, the 

modelling part to the left and the rendering and visualisation part to the right as 

shown in Figure 36. Using the modelling part, the user can write, edit, save and 

delete HF functions encoded in JavaScript language using an interpreter, which 

is located in the left part of the environment. The environment also supports 

ready-to-use models and clients can use them instantly. Rendering and 

visualisation are located in the right part of the environment. Instant rendering is 

available by allowing direct and immediate transformation of HF functions 

encoded in JavaScript language to be rendered and visualised. The process of 

rendering and visualising starts by reading the functions written in the interpreter, 

integrating these functions with the core of the environment, then applying the 

selected rendering approach and displaying the rendered volume on the client’s 

screen. Models can be loaded from outside the environment using .js or .txt file 



109 
 

formats, and they can be saved back as functions or as models using .OBJ and 

.X3D files. This allows for the model exchange between users over the Web in 

the form of HF functions written in JavaScript language or in the form of a 

polygonal mesh.  

 

Figure 36: Set of background tasks showing how functions and attributes being 

transformed and processed in WRMR background 

Figure 37: Components of the proposed environment: left part (Interpreter) 

and the right part (rendering and visualisation) 

The WRMR interface is divided into two major parts: the interpreter and 

visualiser. The interpreter is the place where the user writes the JavaScript code, 

while the visualiser is the part where rendering and visualising take place as 

shown in Figure 38. A set of HF functions and attributes were re-written using 

JavaScript functions and take place in the WRMR background. When starting the 

front-end applications, a set of configuration and setting-up code takes place and 

is saved up at the client’s memory in a stream called Main Code Stream (or 



110 
 

MCS). MCS is then edited by the interpreter, when HF functions are written by 

the client, and by the JavaScript Parameter (JSP) controller supported by the 

model input controller. The interpreter is responsible for sending the HF 

functions written in JavaScript to the MCS, while the JSP is responsible for 

setting up attributes and model’s characteristics and sending them to MCS. In 

general, MCS contains the environment set-up code in addition to the code of the 

HF function written in JavaScript in addition to model attributes code. All are 

lined up and sent to the rendering module, which consists of three different client-

side rendering sub-modules, and one server-side rendering sub-module. When 

the rendering is completed, the visualisation module takes action and displays the 

volume being rendered on the client’s browser.  

 

Figure 38: Heterogeneous volumes modelled and rendered on the client-side 

using MC algorithm 

Heterogeneous volumes with different densities, types, and nature can be 

generated using the proposed environment. Different rendering approaches can 

generate different types of volumes. Server-based rendering generates a stream 

of images in the form of image slides, where client-base rendering generates 

interactive volumes with different densities as shown in Figures 37-41.  



111 
 

 

Figure 39: Heterogeneous volumes modelled and rendered on the client-side 

using WebGL 

Figure 40: Client-side ray marching rendering (SDF) for heterogeneous 

volumes 

 

Figure 41: Server-side rendering for heterogeneous volumes using OpenGL 

5.3.2 HyperFun to JavaScript converter (HFtoJS). 

HFtoJS converter as discussed in 4.4.1 is responsible to convert HF functions to 

JavaScript functions. WRMR is designed to render JavaScript (JS) functions 

rather than HF ones. Users may not be familiar with transformation process from 



112 
 

HF to JS. That is why we implemented an HFtoJS converter which is composed 

of two parts, the left, and right parts.  

Figure 42: HF to JavaScript converter main parts 

 

Figure 43: Online HyperFun to JavaScript converter 

The converter was developed using JavaScript code, and it allows HF users to 

write HF functions on the left side of the converter, or can simply upload HF files 

using the file management task located in the left part as well. The written HF 

functions and the loaded functions are then processed and sent to the right part 

of the converter, where a series of syntax and lexical analysis steps take place. 



113 
 

The output of this process is a pure JavaScript code loaded into the right side and 

can be saved into a JavaScript file (Fig. 43). 

5.4 Case studies 

In order to make use of all the above-mentioned rendering approaches, while 

focusing on delivering the models (rendering them) to the client according to his 

needs, three different case studies are being discussed and implemented. The first 

case to study is instant collaboration. The reason for selecting such a case to study 

is to explore the advantages and disadvantages of approaching instant 

collaboration methods and techniques and to measure the performance at the end-

users. The second case to study is about parametrised models, where attributes 

such as colour and textures can be passed to the model at the modelling stage. 

The purpose is to develop an environment that is able to handle complicated 

models with different densities and apply different colouring attributes at 

different levels. The third case study to discuss is partial rendering or partial 

visualizing. We will try to investigate how to partially display the model in order 

to protect it and to reduce the rendering and visualizing time at the client-side.   

5.4.1 Case study 1: Instant collaboration 

The concept of collaboration does not only mean that models should be available 

for sharing and editing. In our case, the concept of collaboration should give us 

the ability to modify a model at one client and to notice the updates made on the 

model all over WRMR. Changing the model parameters at one screen should 

directly affect the model attributes at other clients, so that, the model at other 

clients will be updated and changed as soon as the initial one is modified in real-

time and even before saving it. In that way, all other clients can see the updates 

simultaneously. When a client finishes editing a model, the modified model will 

be updated, saved and redistributed all over WRMR for all other clients. The 

purpose of this case study is to allow clients to share instant modelling and 

rendering simultaneously and instantly. Different tests were made while trying to 

measure the performance of instant collaboration. We measured the transmission 

time as well the editing time of the model over the Web at the client-side.  



114 
 

5.4.2 Case study 2: Parameterised modelling and rendering 

So far, our tested models are delivered in a static way, the image slider in Figure 

32 shows some parameters to control the rotation of the object over the slider. 

Volumes with attributes can be part of the WRMR system as it is designed to be 

a dynamic environment, where 3D models are subjected to changes and editing. 

Parametric features can be applied to enrich WRMR with powerful tools that help 

in dynamic modelling and allow for accessing the model and changing its 

parameters before rendering it. The change of parameters can be applied at both 

functions and meshes, making full use of the HRep concepts using forward-

backward (BFRep-FBRep) transformation discussed in Chapter III. 

Heterogeneous volumes with colour attributes were introduced and two different 

approaches for colouring were discussed in section 5.2. Colouring attributes were 

approached from two different prospective, Node and leaf. Node colouring is 

limited to colour a whole part of the volume, while leaf colouring allows to multi-

colour one single part, including its internal structure. We applied multi-

colouring attributes to heterogeneous volumes and results showed that it is 

possible to colour the external part of the volume as well as its internal structure. 

Different volumes with colour attributes were put into the test to measure the 

performance and efficiency. Colouring complicated volumes showed no major 

difference in rendering time. The tests assured that colouring the internal 

structure of the model is possible.     

5.4.3 Case study 3: Partially rendering 

Rendering the whole object and displaying it on the client’s screen makes it 

vulnerable for code stealing. As an attempt to protect the model, it will be useful 

to do partial rendering at the client-side, so that the client will be able to render a 

part of the model and not the whole one. The rendered part of the model will be 

the one facing the camera, and only that part of the model will be displayed on 

the screen. When the user navigates or moves the model, a new mesh will be sent 

to the client to be rendered and displayed showing the new desired part of the 

model. This case study helps in protecting the model from piracy, but could be 

very expensive regarding the required time and bandwidth and should be 



115 
 

subjected to deep investigation and researching. One of our approaches focused 

on sending images rendered at the server-side to the clients. The stream of images 

could be large and need high internet speed and large storage as images are sent 

in large numbers to cover the model from all angles. To avoid this bottleneck 

conflict at the server-side, we displayed one image on the client screen, and load 

another one in the memory buffer, when the client requests to see the next image, 

the buffered image is displayed in his browser and a new image is loaded to the 

buffer and so on. Using this technique allows users with low internet and small 

storage to view large volumes sequentially. To test this approach, we developed 

a prototype, which is based on a considerable number of images generated at the 

server-side and sent to the client. The stream of images was controlled and 

monitored in a way, no more than two images can be sent to the client at the same 

time. One to be displayed and the other to be stored in the buffer. When the user 

requests to see the buffered image, it will be moved to the screen and a new image 

will be sent to the buffer. We measured the time taken to load the whole images 

to the buffer and found out that to load the whole model we need a considerable 

amount of memory and time. While when loading one image in the buffer at a 

time, the model goes slower, but with convincing loading time and a small 

amount of memory. 

5.5 Summary 

In this chapter we discussed the implementation phase of the environment. 

WRMR was composed of three major parts including input, process, and output. 

The implementation included four different rendering approaches taking into 

consideration the colour attributes. Three different case studies were presented 

and discussed. The chapter ended up with the front-end implementation, which 

described the implemented part of the environment and its user interface in 

addition to the HyperFun to JavaScript converter. 

 

 



116 
 

Chapter 6 

Experiments, tests and results 

In this chapter, we put WRMR into the test to measure the performance and to 

validate the novelty of this work. Hybrid representation HRep will be tested by 

implementing different types of models using both FRep and BRep. Hperfun to 

JavaScript converter will be tested and we will measure both performance and 

validity.  

6.1 Rendering experiments 

The purpose of the following set of experiments is to determine the efficiency 

and usability of the proposed Hybrid Representation HRep. A series of different 

experiments took place to test the performance of the different rendering 

approaches and to compare results using different scenarios. We start by 

experimenting the four different rendering approaches (MC, WebGL, signed 

distance fields and server-based rendering using C++) as mentioned in Chapter 

IV. Testing these approaches using a single machine first running a Chrome Web 

browser with a high-speed network connection to the server then we move to 

apply these tests on different hardware platforms. The aim of these tests is to 

check the rendering time of different volumes (simple and complicated) and 

compare different rendering approaches. The MC algorithm written in JavaScript 

code was applied on the client-side using polygonisation. WebGL rendering is 

on the client-side too. OpenGL rendering using C++ code is on the server-side, 

where 3D objects are transformed into still images and sent to the client. 

Heterogeneous volumes with attributes were also considered using both 

polygonisation and ray-casting. Attributes such as colours are calculated and 

displayed for each point. We introduced two types of heterogeneous volume 

colouring. The first one is the leaf or primitive colouring which allows multi-

model colouring before combining them into a complicated one. The other one 

is the node or complex colouring, which usually takes place at the mesh level. 



117 
 

The still images are put together to perform a 3D image slider to enable the user 

to view the object from different angles. For that purpose, the server generates a 

series of images that constitute a bi-dimensional matrix. As the client browses 

the object from different angles using the mouse, the loaded images started to 

change on the slider, rotating around different axes, and the adjacent images start 

to load in the buffer as mentioned in Chapter IV. 

Models with different complexities were used in our second test (see Figures 47-

49). We focused on the rendering time as shown in Table 3. We used rendering 

with low resolution on the client machine in order to achieve a good performance 

rate, this caused clear visible sharp edges and lower quality (Fig 44(a), 45(a), 

46(a)). In order to increase the resolution, more computational resources will be 

needed on the client-side (Fig 44(b), 45(b), 46(b)). 

Using simple models, no major differences in timing were detected while 

applying different rendering approaches. However, as the complexity of the 

object increased, the difference in timings started to appear. In general, for the 

same initial conditions, the best timings were achieved in case of rendering 

purely on a server-side and sending the result as images to the client. Thus, the 

need for re-rendering the model at every change in camera position makes it hard 

to work with the model in an interactive manner.  

 

 

(a)                (b)             (c) 

Figure 44: Android Robots rendered using different approaches: MC (a), 

WebGL (b), Server-side using C++ (c) 



118 
 

 

 

(a)         (b)         (c)   (d) 

Figure 45: Hemisphere models: MC (a), WebGL (b), Server-side (C++ ) (c) 

and SDF (d) 

 

(a)       (b)         (c)            (d) 

Figure 46:  Complicated models: MC (a), WebGL (b), Server-side using C++ 

(c), SDF (d) 

 

(a)                                          (b)                                (c)  

Figure 47:  Complicated models: Hemi-MC (a), Infinity-MC (b), Doubl helix- 

MC(c) 

 



119 
 

 

(a)                              (b)                              (c) 

Figure 48:  Complicated models: Double helix-MC (a), Rabbit-WebGL (b), 

Rabbit-SDF (c) 

 

 

(a)                          (b)                                    (c) 

Figure 49:  Complicated models: Spiral-MC (a), Faucet- WebGL (b), Hemi- 

SDF (c) 

Rendering simple objects using different approaches was really quick and took 

little time, the rendering time started to rise, when we rendered more complicated 

objects. It can be noticed that the amount of time and GPU power started to rise 

up, when we applied WebGL with high-resolution to complicated objects. As a 

result, MC can be applied on low GPU power and the time needed for rendering 

is less ten times less than the time needed for WebGL rendering. Clients could 

use WebGL, if they were supported with considerable GPU performance. Ray-

marching using SDF can be applied using two different ways, the first one is by 

using the HF functions directly which can be very quick, and the other one is by 

using the mesh transferred from the server, which allows 3D data extraction for 

faces and vertices.  In our case, both ways were used and put into test and showed 



120 
 

very little time when rendering complicated models, but it still needs good 

computational resources. Table 3 shows the time needed in milliseconds for each 

approach in order to render 3D object.  

3D Objects MC  WebGL SDF Server Rendering 

Rabbit 0.012 0.009 0.004 0.0009 

Faucet 0.017 0.13 0.006 0.0011 

Double Helix 0.143 1.539 0.0512 0.0011 

Infinity 0.144 1.556 0.0529 0.0012 

Spiral 0.431 3.25 0.165 0.0016 

Sand 0.202 1.842 0.0653 0.0013 

Android Robot 0.021 0.196 0.0152 0.178 

Hemisphere 0.168 1.782 0.0535 0.0012 

Sake Pot 0.507 4.597 0.2563 0.0018 

Table 3: Comparing different rendering approaches (MC, WebGL using 

Three.js, and SDF on the client side and server-side rendering using OpenGL) 

A quick analysis for Table 3 shows that the rabbit shows the smallest rendering 

time in all rendering techniques. The construction of the rabbit model is simple 

and no complicated functions were applied. Models with more complicated 

functions started to show higher rendering time, the spiral and sake pot models 

for example need more complicated function than other used models and thus 

they showed more rendering time using MC and WebGL. 

6.2 Comparing rendering techniques using different parameters 

Experiments were applied to the four different rendering techniques using 

WRMR, simple and complicated heterogeneous volumes were modelled, 

rendered and filed using data extraction (OBJ and X3D). Different models were 

examined and measured in terms of rendering time, number of vertices and faces, 

data file size, and model complexity. 



121 
 

We put into test each of the above rendering approaches, then measured different 

parameters related to two different types of models (simple and complicated). 

The parameters are data model extraction time, No. of vertices, No. of faces, file 

loading time and file size. 

6.2.1 Marching Cubes experiments 

We put into test the MC rendering approach, and we measured the above 

mentioned parameters on two types of models, the simple and the complicated 

ones as shown in Table 4. 

Table 4 shows the following: 

 Rendering time difference between the three objects is minor 

 The number of extracted faces and vertices for the two complicated objects 

are approximately the same and they are as double as those for the simple 

objects 

 The OBJ loading time for all objects is relatively acceptable and less than 

0.6 sec. 

 Simple volumes rendered using MC and generating polygonal meshes have 

small file size (less than 100 Kbytes), while complicated volumes have big 

size  files (more than 1.5 Mbytes)   

 X3D file loading time is faster than OBJ file 

 Both X3D and OBJ files have approximately same size. 

Table 4 shows that the number of faces and vertices started to rise with more 

complicated models. The loading time is also affected with the level of model 

complications. Faucet model, with average complication compared to the other 

available models, showed average rendering time, average number of faces, 

and vertices and average OBJ loading time. This clearly shows that the 



122 
 

rendering time, number of faces and vertices and the OBJ loading time is 

directly proportional to the model level of complication  

Rendering using MC    

  H
em

is
p

h
er

e 
 

S
ak

e 
P

o
t 

 

 an
d

ro
id

  

 D
o

u
b

le
 H

el
ix

 

F
au

ce
t 

In
fi

n
it

y
 

Data extraction time in sec 0.372 0.271 0.112 0.296 0.213 0.195 

No. of Vertices 52501 55649 2827 50365 42865 35685 

No. of Faces 27122 27818 1362 25135 21585 18352 

Total 79623 83467 4189 75500 64450 54037 

Loading .OBJ File in sec 0.540 0.601 0.114 0.521 0.425 0.384 

OBJ File Size in KB 1707 1875 86 1685 1525 1369 

loading  X3D File 0.001 0.001 0.001 0.001 0.001 0.001 

X3D File Size in KB 1976 2158 96 1895 1698 1522 

Table 4: Experiment applied to three different objects using MC rendering 

The bar chart shows the variation of extraction time between 0.112 for simple 

object and 0.372 as max for the hemisphere complicated object (Fig 50). This 

variation indicates that the extraction process could be very fast and with no 

major difference between simple and complicated objects when applying MC 

rendering. As to the number of the extracted faces and vertices, Figure 50 clearly 

shows that the more complicated the object is, the more vertices and faces to be 

extracted, this will require more extraction time. 



123 
 

 

Figure 50: Graphical representation for the extracted values, comparing 

different objects 

6.2.2 WebGL experiments 

3D complicated volumes were tested by changing resolution parameter, six 

different phases were applied for six different resolutions. From the results shown 

in Table 5 we can conclude the followings: 

1- The loading time is increasingly changing while changing the resolution 

of the extracted objects. When the density goes higher, more faces and vertices 

are needed and therefore more loading time will be needed to display the 

model. Suppose the normal model got a 100% density, in this experiment we 

tried to render the same model with different densities. Loading the 

hemisphere model with only 30% of its original density (distorted surface) 

took 0.178 sec, rising the resolution up to 80% of its original density (close 

enough to its normal shape) took 1.707 sec, which means ten times increase. 

2- The number of extracted faces and vertices increased while going up with 

the resolution of the model and therefore the file size increased. 

3- Table 5 shows that as complicated as the 3D object goes, the more 

extraction time is needed, and more faces and vertices to be extracted, 

therefore, more storage space needed to save the OBJ files. 

0
10000
20000
30000
40000
50000
60000
70000
80000
90000



124 
 

4- Figure 51 shows a big difference in extraction time between two different 

complicated objects, as the resolution goes higher, the extraction time 

increases. 

5- Figure 52 compares the OBJ file sizes, the more complicated the model 

is, the bigger is the OBJ file size. In our test, more than 5 Mbytes were needed 

to store a hemisphere model rendered using 80% of its original density (close 

enough to its normal shape) in an OBJ file.  It needed 1.5 Mbytes to store sake 

pot model at the same resolution 

 

Figure 51: Graphical representation for the extracted values, comparing two 

different objects 

 

 

Figure 52: Bar chart representation of the extracted values, comparing two 

different Objects 



125 
 

 

D
en

si
ty

 

L
o
ad

 t
im

e 
in

 

se
c 

N
o
. 
o
f 

V
er

ti
ce

s 

V
er

ti
ce

s 

E
x
tr

ac
ti

o
n
 T

im
e 

N
o
. 
o
f 

F
ac

es
 

F
ac

es
 

E
x
tr

ac
ti

o
n
 T

im
e 

T
o
ta

l 
ex

tr
ac

ti
o
n
 

T
im

e 

.O
b
j 

S
iz

e 
in

 K
B

 

Hemisphere: Complicated Object using hybrid modelling 

30% 0.178 12868 25.775 12868 17.189 42.964 769 

40% 0.401 12868 60.006 12868 73.319 133.325 1787 

50% 0.49 38160 419.981 38160 285.74 705.721 2341 

60% 0.977 55648 1076.842 55648 918.586 1995.428 2751 

70% 1.574 73568 3584.225 73568 2544.588 2128.813 4666 

80% 1.707 94584 8544.011 94584 6585.005 4529.016 5227 

Sake-Pot: Complicated Object using hybrid modelling 

30% 0.191 2636 5.7 2636 2.997 8.697 157 

40% 0.203 7848 39.002 7848 21.513 60.515 322 

50% 0.285 16460 180.2 16460 90.034 270.234 531 

60% 0.541 28468 136.8 28468 121.641 258.441 699 

70% 1.359 37492 124.859 37492 280.196 405.055 1053 

80% 2.259 40488 1140.211 40488 1140.211 1080.422 1355 

Table 5: Experiment applied on three different objects using WebGL rendering 

MC and WEbGL are both used to demonstrate the forward conversion from FRep 

to BRep at the rendering level in the proposed HRep environment.  

6.2.3 Ray marching using signed distance fields experiments 

Experiments on rendering with SDF were applied and results in Table 6 showed 

the following results: 

 Rendering time difference among the different objects is small. 



126 
 

 The number of faces and vertices for complicated volumes are much more 

than those for simple volumes. 

 The rendering time is considered acceptable for all models as all rendering 

processes showed values less than 1 sec that reveals the low time required 

to render models with SDF. 

Rendering using SDF  

  H
em

is
p
h
er

e 
 

S
ak

e 
P

o
t 

 

A
n
d
ro

id
  

S
an

d
 

in
fi

n
it

y
 

D
o

u
b

le
 

H
el

ix
 

Rendering time /s 0.51 0.38 0.1592 0.31 0.42 0.49 

No. of Vertices 58534 57692 3128 54256 39586 58474 

No. of Faces 29139 29813 1652 27158 20015 28547 

Total 87673 87505 4780 81414 59601 87021 

Table 6: Experiment applied on three different objects using signed distance 

fields 

Table 6 shows SDF models performance, it is clearly shown that the rendering 

time is relatively low for all models with different complication level. The 

number of extracted vertices and faces is relatively close as well. SDF is used to 

demonstrate the backward conversion from BRep to FRep in the proposed HRep 

environment.  

6.2.4 Server based data extraction and delivery 

OpenGL is used for rendering complicated volumes at the server side to generate 

a stream of images taken from different angles and with fixed size. This process 

is dedicated to serve simple users with no GPU power.  The number of generated 

images determines the precision of the model. We put into test eight different 

image-shot rates which is the time taken between two generated images, we 

started from two till nine, the number of generated images is maximum at the rate 



127 
 

two and minimum at the rate nine. In Table 7, we can find that at the rate two, 

the image matrix contains 2025 images (45 by 45 images). When the image rate 

goes up to nine, the image matrix became 484 images (22 by 22 images).  

 

 

 

 

 

 

 

 

 

 

 

 

Table 7: Experiment applied on sake-pot object using server based rendering 

From Table 7, we can conclude that the time needed to generate a stream of 

images is directly proportional to the used snapshot image rate. The storage 

needed to save images is related to the size of the image stream. When the image 

matrix shrinks (snap-shot is 9), the model precision is reduced and thus low 

storage is needed 

6.3 Comparing different scenarios 

Different scenarios with three major parameters were implemented as discussed 

earlier, these parameters are internet bandwidth, hardware and Web-browser. 

Different experiments on different scenarios were put into test to examine the 

S
n
ap

-s
h
o
t 

ra
te

 

M
at

ri
x
 s

iz
e 

N
o
. 
o
f 

im
ag

es
 

T
im

e 
ta

k
en

 

Im
ag

es
/s

ec
 

Im
ag

e 
si

ze
\K

b
y
te

s 

T
o
ta

l 
si

ze
 

2 45*44 2025 198 10.23 100 197.76 

3 42*42 1764 224 7.88 100 172.27 

4 38*38 1444 274 5.27 100 141.01 

5 35*35 1125 160 7.03 100 109.86 

6 32*32 1024 141 6.57 100 87.26 

7 28*28 784 126 6.22 100 76.56 

8 25*25 625 112 5.58 100 61.03 

9 22*22 484 104 4.65 100 47.27 



128 
 

environment performance and adaptivity. The experiments will examine the 

bandwidth change, the hardware change and the Web-browser over different 

rendering techniques, the rendering time, which is the time taken to do the 

rendering of different kinds of heterogeneous models using different rendering 

techniques. It will be a good indicator whether the rendering technique is good 

to be used by the users. 

6.3.1 Internet bandwidth constraint  

In this experiment, we put into test the four rendering approaches while setting 

the Internet bandwidth as changeable parameter.  

 0.5 MB 1 MB 2 MB 4 MB 8 MB 14 MB 

WebGL       

Double Helix 50 1.874 1.08 0.93 1.07 2.48 1.038 

Double Helix 100 
1.767 1.31 1.25 1.24 4.23 1.33 

Infinity 50 
1.11 0.77 0.81 0.82 0.79 0.83 

Infinity 100 
1.75 1.22 1.22 1.31 1.34 1.26 

Spiral 50 
2.05 1.93 1.95 1.88 2.158 2.07 

Spiral 100 
2.83 2.56 2.67 2.20 2.71 2.69 

MC 
      

Double Helix 
1.31 1.19 1.08 1.05 1.17 1.08 

Infinity 
1.36 1.19 1.19 1.17 1.24 1.17 

Spiral 
0.98 0.97 0.95 0.99 0.93 0.99 

SDF 
      

Infinity 
0.96 1.13 1.04 1.06 1.22 1.15 

Spiral 
0.90 0.88 0.88 0.87 0.80 0.80 

Table 8: Internet bandwidth change experiment, showing the rendering time in 

seconds for each rendering technique on a certain machine. 



129 
 

The experiment takes place on a machine running a core I5 5300U CPU with 2.3 

GHz 2.9 GHz and a 4 GB of installed memory, the used GPU is an Intel HD 

graphics 5500 with a core speed of 300-950 MHz and 64-128 bit bus, the browser 

is a 64-bit Chrome version 67.0.3396.99. This experiment requires a change on 

Internet bandwidth (uploads and downloads). For that reason, we installed 

Bandwidth Shaper Net-Limiter version 4.0.36.0 to control the changes of Internet 

download and upload speed. Table 8 shows that three rendering techniques were 

put into test, and in WebGL rendering, we applied different resolutions on 

different heterogeneous complicated models. 

The time taken for each model using different rendering methods reveals the 

following (Table 8): 

 Maximum rendering time at 0.5 MB bandwidth is 2.83 sec when rendering 

spiral using WebGL, while minimum rendering time at 14 MB bandwidth is 

0.476 sec when rendering spiral using SDF. 

 The rendering time does not change significantly, when using a certain 

rendering approach to rendering different complicated models.  

 SDF showed the best rendering practice, when rendering with different 

bandwidths. 

 Rendering with SDF showed that the difference between the minimum time 

that is 0.77 sec at 4MB and the maximum time, which is 0.9 sec, is minor 

and less than 0.1 of a sec. 

The results shown above (Table 8) validate the functionality of the system using 

HRep by applying all the available rendering techniques that suit different kinds 

of users successfully and within a convincing rendering time even for low 

bandwidth users. 

6.3.2 Hardware constraint 

The purpose of this experiment is to examine the performance of the environment 

when using different hardware resources. It was conducted after putting into test 



130 
 

four different machines with different hardware specs and after neglecting the 

Internet bandwidth factor by connecting all the machines over a local area 

network to the same server. 

The test was applied to four different hardware machines with different CPU, 

RAM and GPU powers, we called then M1, M2, M3 and, M4 consequently and 

had the following hardware specs: 

 M1: Core I5 5300U CPU: 2.3 GHz 2.9 GHz   Memory: 4 GB   GPU: Intel HD 

Graphics 5500  

 M2: Intel Core i7 6700 CPU @3.40GHz Memory 16 GB 64 bit Windows 7   

GPU Inter® HD Graphics 530  

 M3: Intel ® Core ™ 2 Duo CPU E4600 @ 2.4Ghz  Memory: 3 GB  32 bit 

Window 7  

 M4: Intel® Core ™ 2 Duo CPU E4600 @2.4 GHz  Memory: 2 GB 64Bit OS 

windows 7 GPU: Intel® G33/G31 Express Chipset Family   

The hardware constraint test using Table 9 showed the following: 

 Different models with different densities got different rendering time when 

using WebGL rendering approach. The fastest rendering time was obtained 

when using the highest GPU. 

 Heterogeneous volumes failed to be rendered when using WebGL or SDF 

rendering approaches over a low hardware device (M4 in our case). 

 Heterogeneous volumes rendering using MC showed different rendering 

time, when rendered over different hardware platforms, the quickest 

rendering obtained when rendering with the highest GPU. 

 The complexity of the rendered volume showed no difference when using 

MC rendering approach, it can be used even on low hardware recourses. 



131 
 

 Rendering with SDF approach over different machines showed a 

considerable difference in rendering speed, and it failed to load on a very 

low hardware platform (M4). 

Rendering 

Approaches Machines M1  M2  M3 M4 

WebGL Double Helix  50 0.33 sec 0.4 sec 1.41 sec - 

Double Helix 100 0.89 sec 0.95 sec 4.1 sec - 

Faucet 50 0.32 sec 0.36 sec 0.76 sec - 

Faucet 100 0.55 sec 0.56 sec 3.70 sec - 

Spiral 50 0.39 sec 0.56 sec 1.59 sec - 

Spiral 100 1.15 sec 1.29 sec 5.31 sec - 

MC Double Helix 0.42 sec 0.49 sec 2.12 sec 1.3 sec 

Faucet 0.39 sec 0.64 sec 1.66sec 0.98 sec 

Spiral 0.39 sec 0.43 sec 1.72 sec 2.51 sec 

SDF Faucet 0.23 sec 0.35sec 1.82 sec - 

Spiral 0.528 sec 0.55 sec 1.31 sec - 

Table 9: Rendering complicated models using WebGL rendering approach 

running on four different machines with different hardware resources 

6.3.3 Browser constraint 

Clients with browsers not supporting graphics can also access the environment 

and make use of its services by depending on its servers to do the rendering using 

OpenGL. Clients will receive a stream of images to reconstruct the model. Table 

10 shows how the flow of images is affected by bandwidth change. One 

Megabyte of download capacity is enough to load 10 images, which is enough to 

see the model from a good angle of view. 

In this test, we did the rendering on the server side using C++, then send a stream 

of images to a moderate hardware recourses client. The only variable parameter 



132 
 

is the Internet bandwidth, which was managed and controlled by the bandwidth 

shaper net-limiter version 4.0.36.0. The bandwidth was segmented into six parts 

and the stream of images was sent to the user over each bandwidth.  

Download 

speed 

256 

KB/sec 

512 

KB/sec 

1  

MB/sec 

1.5 

MB/sec 

3  

MB/sec 

6 

 B/sec 

No. of 

Images/s 2.56 5.12 10.24 15.3 30.72 61.44 

Time Taken  13.8 6.83 3.41 2.28 1.14 0.57 

Table 10: Server-based rendering and sending images to clients in the form of 

image-slides 

Table 10 showed the following results: 

 A minimum bandwidth of 1 MB is needed to launch a slider in a 

considerable time 

 Users with 6 GB RAM can easily get the slider in less than 0.6 sec. 

 The hardware resources are negligible with no effect in this experiment. 

 Rendering time at the server side is negligible with no effect on the 

overall image transmission process. 

6.4 WRMR testing 

6.4.1 WRMR online random users. 

Rendering using WRMR was put into the test by asking random users from 

different places to access the environment. Those users had different internet 

upload-download speeds and were using different hardware platforms including 

desktops, laptops, pads, and smartphones. They were asked to implement and run 

three different models as shown in Figure 49.  

 



133 
 

 

Table 11: Random users with random internet speed and hardware 

The hardware specs for all users were as follows: 

User 1: Samsung Galaxy S7, 5.1-inch, quad-HD display,4GB of RAM 

User 2: Iphpne 6, Dual-core 1.4 GHz Typhoon (ARM v8-based),PowerVR, 

GX6450 (quad-core graphics),1 GB RAM 

User 3: HP Pavilion X360,Core i5,16GB,Intel Integrated HD Graphics 520 

User 4: Galaxy Book S, Snapdragon™ 8cx processor,8GB RAM  

User 5: iPad Pro, A12X Bionic processor, Neural Engine, M12 coprocessor, 

256GB 

User 6:HP ProDesk 400 G5, Core™ i7 processor (i7-8700),32 GB DDR4, 

Integrated: Intel® UHD Graphics 630 

User Internet speed Hardware Infinity 

(MC)  

Faucet 

(WebGL) 

Hemi 

(SDF) 

User 1 1 MB/2 MB Samsung Galaxy S7 6.8  - - 

User 2 2 MB/4 MB Iphpne 6 4.2  12.6  - 

User 3 4 MB/8 MB HP Pavilion X360 0.3  0.7 0.9  

User 4 4 MB/8 MB Galaxy Book S 6.1  15.3  - 

User 5 2 MB/6 MB iPad Pro 3.8   9.4  24 .2  

User 6 1 MB/2 MB HP ProDesk 400 0.6  1.2  1.3  

User 7 2 MB/4 MB HP Elite Desktop 0.8  1.4  1.5  

User 8 2 MB/4 MB Huawei Y9 Prime 7.1  - - 

User 9 4 MB/8 MB HP ProDesk 400 0.4  1.1  1.3  

User 10 8 MB/16 MB HP Pavilion X360 0.9  1.8   1.5  



134 
 

User 7: HP Elite Desktop, Core i5 3.2GHz, 8GB RAM, AMD Radeon™ , 

graphics2,4 

User 8: Huawei Y9 Prime, 4GB RAM, touchscreen, 16M colours. 

User 9: HP ProDesk 400 G5,Core™ i5 processor, 32 GB DDR4, Integrated: 

Intel® UHD Graphics 630 

User 10: HP Pavilion X360, Core i3,8GB,Intel Integrated HD Graphics 520 

Table 11 shows that all users were able to access the environment and make use 

of at least one of the available rendering approaches. It clearly shows that some 

mobile phones failed to do rendering using WebGL and SDF, this was one of the 

weaknesses of the environment, future research should focus on allowing low 

hardware resources to access and do modelling and rendering using WRMR. The 

rendering time using different rendering approaches is considerably high with 

some mobile and PAD devices. Rendering time should be reduced to make it 

feasible for the user to use the environment  

6.4.2 Comparing WRMR with other existing online systems 

WRMR is an online environment for 3D modelling and rendering, one of the 

important characteristics is combining two well know representations into a 

hybrid one making use of both characteristics. This makes it so different from 

other existing online 3D systems. Tinkercad for example 

(https://www.tinkercad.com/dashboard) is an online modelling system, it is 

limited to primitive or predefined objects only, while WRMR can develop any 

complicated volume from scratch. Tinkercad allows users to drag and drop 

primitive objects and combine them together, while WRMR allows writing 

modelling function, and save those functions for later use. ShapeJS is another 

online modelling system (http://shapejs.shapeways.com/ide), it is equipped with 

an interpreter for writing JS code and supported with instant rendering and 

visualization. WRMR supports all the above-mentioned characteristics, with 

one major difference, which is allowing HF users to convert their desktop 

models into JS models using an HFtoJS converter. This tool is considered a huge 

advantage over ShapeJS. Uformit (http://uform.co/) uses grid-based 

computation for low hardware resources, WRMR uses different rendering 

https://www.tinkercad.com/dashboard
http://shapejs.shapeways.com/ide
http://uform.co/


135 
 

approaches to achieve a better goal and allow different users with different 

hardware resources to do online modelling. 

6.5 Hyperfun to JavaScript converter (HFtoJS). 

HFtoJS is dedicated to HF users who are not familiar with scripting languages 

especially JavaScript. The purpose is to allow those users to take their desktop 

models into the Web without doing additional efforts. Here comes the novelty of 

developing such a converter to make it easy for HF users to do online modelling 

without paying attention to the scripting language. In order to demonstrate the 

novelty of this work, we tested the converter by allowing different users to write 

their functions using HyperFun language, and then run them on WRMR using 

HFtoJS converter.  

Model Pass/ Fail Comments 

Model 1 Pass No modification needed 

Model 2 Pass Model needed modification 

Model 3 Fail - 

Model 4 Pass No modification needed 

Model 5 Pass - 

Model 6 Fail No modification needed 

Model 7 Pass Model needed modification 

Model 8 Pass Model needed modification 

Model 9 Pass Model needed modification 

Model 10 Pass Model needed modification 

Table 12: Testing HyperFun to JavaScript converter. 

The process of conversion from HF to JS was quite good. Ten different users 

were asked to do ten different HF models and try to run them using WRMR with 

the HFtoJS converter, the results were shown in Table 12. Only two out of ten 



136 
 

models failed to convert their models and the other eight were passed.  Five out 

of ten needed modification or adjustments to suit the conversion process and 

three out of ten needed no further modifications at all. From the result we can 

conclude that HFtoJS converter works fine but with certain limitations including 

the way the user is presenting his HF code, the types of declared variables, the 

lines, breaks and spaces used, and other special symbols. HFtoJS converter needs 

more investigation, modification, and implementations to suit different ways of 

HF codes, functions, and variables.  

6.6 Summary 

In this chapter, we demonstrated the novelty of this work by testing the usefulness 

and functionality of the system. We put into test different rendering approaches, 

and we compared the results using different inputs. These rendering approaches 

were as follows: Marching cubes, WebGl, and Signed distance fields. Different 

scenarios were tested and a deep comparison was made using the following 

constraints: internet bandwidth, hardware, and browser. Heterogeneous 

modelling with colour attributes was tested and showed promising results in 

terms of colouring the interior structure of the model as well as its exterior. We 

also tested the proposed Hybrid Representation HRep and demonstrate its 

usefulness. We also showed the importance of the HyperFun to JavaScript 

converter (HFtoJS) by testing it and determining its strength and weakness. 

 

 

 

 

 

 

 

 



137 
 

Chapter 7 

 Conclusion 

7.1 Summary 

Internet is developing rapidly, and the demand on the Internet resources is getting 

bigger. On the other hand, Web-browsers started to be suitable environments for 

3D modelling, and new rendering tools and techniques appear. All these facts 

reflect a need, which is taking shape modelling into online interactive level using 

the rapid progress of Internet and Web-browsers. Such an interactive 

environment should be adaptive and flexible, should contain all possible 

rendering tools and modelling techniques, all together to produce solid and easy 

to use applications based on what is called an adaptive and interactive 3D shape 

modelling environment (WRMR).  

In this work, we focused on three major points and tried to confirm and validate 

their importance to the proposed system. We introduced the concept of hybrid 

representation HRep, by combining two different representations, Function and 

Boundary, in a new Hybrid one. We also introduced, discussed, and implemented 

Heterogeneous volumes with attributes based on the proposed hybrid 

representation and we proposed two different colouring approaches for that 

purpose. We also implemented a Hyperfun to JavaScript converter (HFtoJS) in-

order to take HF desktop models over the Web using a converter responsible to 

convert HF code into JS code suitable for online modelling. 

We have proposed a 3D Web-based modelling and rendering environment, we 

described its architecture as a client-server environment, and we proposed 

different scenarios by tring to solve the constraint satisfaction problem and we 

dealt with the creation of heterogeneous volumes with attributes. We 

implemented the proposed environment after discussing the design and all the 

parts and modules necessary to make it functional. Security concepts were taken 

into consideration, and some security modules were discussed and implements to 



138 
 

provide a certain level of protection. We put the environment into tests by 

experimenting with the different rendering approaches and by applying different 

scenarios. This document discussed the basic concepts of such an environment 

and tried to focus on three essential elements, namely: Networking, Modelling 

and Rendering. It came up with different scenarios to predict the client asking for 

the service and to select the best way of the service. The document also presented 

a core engine (in JavaScript) responsible for information gathering about the 

clients to help in decision-making. We outlined some advantages and 

disadvantages of both FRep and BRep and we discussed a Hybrid Representation 

behaviour and integration to improve modelling results. The document ended up 

with real examples of the concept regarding the rendering techniques, where four 

different rendering techniques were implemented (MC, WebGL, SDF and server 

based C++); three of them were on the client side, and one on the server side. 

Simple 3D objects were created using these rendering techniques and some basic 

recognition were taken regarding these techniques. Three different case studies 

were proposed to be researched, discussed and implemented.  

Starting with networking, we have considered the features of a client-server 

WRMR to establish the most convenient and efficient way of 3D Web-based 

modelling and rendering with the particular emphasis on the latter. We described 

the specifics of interactive client-server architecture for modelling and rendering 

and identified four of the most common scenarios for executing those processes 

along with necessary communication and decision-making using WRMR. 

Four different rendering techniques were implemented in order to explore the 

characteristics of the proposed WRMR. These techniques include server-based 

rendering based on C++ code, where still images are sent to the client. Client side 

rendering is using WebGL. Client side polygonisation using MC is implemented 

as JavaScript code and client side rendering using SDF as well. First, we showed 

that rather simple objects can be successfully rendered using different techniques 

as a proof of concept. Then complicated models were rendered using the four 

different methods.  



139 
 

We spotted three different threats and tried to implement security solutions to 

overcome them. After introducing the adaptive environment, we discussed its 

scenarios and different rendering approaches available for complicated 

heterogeneous volume objects. Since the environment is Web-based, it was 

necessary to implement a specialised algorithm to secure the code and protect it. 

A special obfuscation algorithm was introduced to make it really hard for others 

to break the code. Authentication and authorisation modules were implemented 

to protect the environment from illegal access and prevent non-authorised users 

to have full access to it. Two different access rights were granted to two different 

kinds of users. Finally, we tried to protect the models themselves by hiding the 

functions and raw data (the mesh) from non-authorised users. We implemented 

special modules to extract the mesh (vertices and faces) and saved them in an 

OBJ file. Ordinary users can load the file and access the model without having 

any access to the functions and data. The model became accessible but well 

protected against piracy. Some of the conclusions that can be noted are:  

1) A hybrid representation can be achieved by mixing two available 

representations (Function and Boundary), and make use of both 

characteristics. 

2) Gathering information about the client requesting the service is a key factor 

in determining what kind of service (i.e., rendering technique) to deliver. 

The collected information helps WRMR in decision making, a core engine 

running in the background in a continuous manner detects any critical 

changes that may happen at the client’s machine. 

3) Different scenarios should be considered, the document introduced four 

different and essential ones. More scenarios can be considered, enabling 

WRMR to improve decision-making.  The proposed environment allows 

for reliable and efficient rendering process referring to the four discussed 

scenarios.  

4) Different rendering approaches can be applied to both simple (no 

attributes) and heterogeneous volume objects. The main issue regarding 



140 
 

both objects is the GPU power consumption and the time needed to do the 

rendering. Simple objects proved to use low GPU power in a short time, 

while heterogeneous volume models (complicated objects) showed high 

GPU power consumption and considerable rendering time. 

5) Rendering at the server side using C++ implementation can be very 

efficient in terms of processing power and rendering time. However, the 

problem is that objects are delivered to clients as still images. Image slides 

could be a good solution, where a series of continuous snap-shot images 

are delivered to the client to constitute a 3D sliding object that can be seen 

from different angles. The client needs a moderate Internet bandwidth to 

load the slider. 

6)  Rendering using MC is very efficient in both rendering time and GPU 

power consumption. It takes place at the client side. Both simple and 

complicated objects can be rendered in a short time. This method best suits 

clients with low GPU power and it delivers low-resolution objects only. 

7) Rendering using WebGL is suitable for high-resolution objects and proved 

to be the optimal solution on machines with high GPU power. Rendering 

takes place at the client-side and it consumes the client’s GPU power to its 

limit. In general, this process requires a considerable rendering time that 

varies according to the object resolution. 

8) Rendering using SDF can be used for heterogeneous volumes and proved 

to be optimal solution with high GPU power on the client-side. This 

approach proved to so quick with high resolution. 

9) Heterogeneous volumes with attributes proved to be a good solution. They 

were approached from two different prospective, and showed good results 

using WRMR.  

10) Building up WRMR, which is capable to interact with different kinds of 

clients, is a challenge and needs further research. More investigations 

should be done, different scenarios can be added, more rendering 



141 
 

techniques could be introduced, and more complicated objects can be 

implemented and compared. 

11) Obfuscation with a special encryption algorithm can be applied to make it 

hard for code breaker to break it and change its content, for that reason a 

special algorithm was applied to generate obfuscated code. 

12) Granting access for users can prevent un-authorized users to access critical 

parts of the environment. Different users can be granted different access 

rights, which helps in controlling users and monitoring their behaviour. 

13)  Extracting raw data from the GPU buffer can be done. A special algorithm 

was implemented to extract vertices and faces and save them to Wavefront 

OBJ and X3D file formats. 

14) Using X3D and OBJ file formats after data extraction can hide the model’s 

functions and data from users. The displayed models may lose some of their 

characteristics, but it can protect them against piracy. 

15)  HyperFun models can be converted to JavaScript models suitable for the 

Web using a special converter. 

7.2 Future work 

Based on the accomplished studies and experiments the future work will focus 

on implementing a platform independent environment, supported with a smart 

core engine enhanced with a scenario optimisation for decision making. For that 

purpose, all mentioned and new rendering techniques will be integrated and 

aligned to fit different clients’ needs and demands. In order to satisfy these 

emerging needs the proposed environment requires full adaptation and 

integration between different rendering techniques acquainted by a solid 

modelling system, which is supported by a framework for scenario optimisation 

and protected by a special security and immunity system. 

The following recommendations reflecting the advantages and drawbacks of the 

tested rendering techniques provided by the WRMR can be stated: 



142 
 

 Satisfy the necessary cloud computing infrastructure requirements in order 

to develop a cloud based WRMR that allows instant information collection 

and has direct access to heterogeneous volume objects saved in data files 

for modelling and rendering purposes.  

 Implement a scenario optimisation framework that supports WRMR with 

the best available solution based on predefined scenarios. This framework 

will be able to combine two or more solutions to provide clients with 

optimal rendering for better service. 

 More experiments on complicated objects should be executed to further 

analyse the behaviour of these objects in terms of their modelling and 

rendering within the proposed WRMR. 

 Other rendering techniques such as ray casting and volume rendering 

should be investigated, implemented and compared with existing 

techniques. 

 Implementation of an intelligent engine in the core of WRMR promises 

more functionality to support decision-making and thus for providing better 

rendering services. 

 Deep investigation, technical implementation, and testing will take place 

to support the proposed case studies discussed in Section 4: real time 

collaboration, parameterised modelling and rendering, and partial 

rendering in order to prove their efficiency and adaptability regarding time 

and resources. 

 Securing WRMR should be investigated to protect the online models and 

to prevent hackers from changing or reusing the models or accessing the 

source code. 

 More experiments and tests should be done in real cases to ensure security 

success. 



143 
 

 More types of privileges and access rights should be granted to allow wide 

variety of users to access the environment. 

 3D models extraction process should be improved to cover different types 

of 3D file formats. 

Future work will include exploration of collaborative Web-based modelling and 

rendering of heterogeneous objects with a complicated internal structure in the 

context of a flexible interactive WRMR. It will also include scenario optimisation 

solutions, which will be able to determine the best solution to be delivered based 

on the defined scenarios. Different case studies will be researched and developed. 

Securing both WRMR and the 3D objects will be investigated and implemented 

to ensure better protection and availability. Implementing a more complicated 

obfuscation algorithm and granting more access rights to different kinds of users 

with different security levels. More 3D file formats will be available and the 

extraction process will be more precise and accurate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



144 
 

Appendix A 
 

List of publications 

Abdallah, A., 2018. Real-Time Heterogeneous Volume Modelling And 

Rendering Environment. International Arab Conference On Information 

Technology (ACIT’2018), 19, 129-136. DIO: 

https://doi.org/10.1109/ACIT.2018.8672700 

Abdallah, A., Fryazinov, O., Adzhiev, V., Pasko, A., 2014. 3D Web-Based Shape 

Modelling: Building up an Adaptive Architecture. ACHI 2014: The Seventh 

International Conference on Advances in Computer-Human Interactions, 

Barcelona, Spain. 96-102. DIO: 

https://www.thinkmind.org/index.php?view=article&articleid=achi_2014_4_40

_20229 

Abdallah, A., 2017. 3D Web-Based Shape Modelling: Data Extraction and 

Delivery. FASSI 2017, the Third International Conference on Fundamentals and 

Advances in Software Systems Integration, Rome, Italy, 2017. Conference paper 

5-11. DIO: https://www.thinkmind.org/index.php?view=article&articleid 

=fassi_2017_1_20_80016.  

Abdallah, A., 2017, Securing Online 3D Web-Based Models. ICT   and Societal 

Challenges, LAU Beirut / New York, April 2017. DIO: 

https://www.researchgate.net/publication/316988424_SECURING_ONLINE_3

D_WEB-BASED_MODELS_Research_in_Progress 

Abdallah, A., Fryazinov, O., Adzhiev, V., Pasko, A., 2019, Heterogeneous 3D 

Volumes on the Net: Real-Time Modelling and Rendering, (in progress), journal 

ready for submission. 

Implementation of the Web-based Real-time Modelling and Rendering 

Environment (WRMR): http:// 212.98.139.67:82/lmd_online/interactive/online/ 

3denv.html 

 

https://doi.org/10.1109/ACIT.2018.8672700
https://www.thinkmind.org/index.php?view=article&articleid=achi_2014_4_40_20229
https://www.thinkmind.org/index.php?view=article&articleid=achi_2014_4_40_20229
https://www.thinkmind.org/index.php?view=article&articleid%20=fassi_2017_1_20_80016
https://www.thinkmind.org/index.php?view=article&articleid%20=fassi_2017_1_20_80016
https://www.researchgate.net/publication/316988424_SECURING_ONLINE_3D_WEB-BASED_MODELS_Research_in_Progress
https://www.researchgate.net/publication/316988424_SECURING_ONLINE_3D_WEB-BASED_MODELS_Research_in_Progress
http://212.98.139.67/


145 
 

Appendix B 

Complexity Analysis 

1) MC generic algorithm in terms of loops and statements 

Loop3() 

  Loop2 () 

    Loop1 () { 

   <<list of sequence statements>> 

      } 

The Big-O notation for MC algorithm is expressed as follows: 

                         𝑓(𝑛) = 𝑓1 ∗ 𝑓2 ∗ 𝑓3           (3.37) 

Loop 3 is expressed as follows: 

                        𝑓1(𝑛) = (𝑛 − 1) + 𝑐 ∗ (𝑛 − 1)                 (3.38)       

   𝑓1(𝑛) = (𝑐 + 1)(𝑛 − 1) → 𝑂(𝑛)                                  (3.39) 

           𝑓1(𝑛) = (𝑐 + 1)𝑛 − (𝑐 + 1) →  𝑂(𝑛)                        (3.40) 

Loop 2 is expressed as follows:  

𝑓2(𝑛) = (𝑛 − 1) → 𝑂(𝑛)                                (3.41) 

Loop 3 is expressed as follows:  

𝑓3(𝑛) = (𝑛 − 1) → 𝑂(𝑛)                               (3.42) 

The complexity analysis for the MC algorithm is :  

    𝑓(𝑛) = ((𝑐 + 1)𝑛 − (𝑐 + 1)) ∗  (𝑛 − 1) ∗  (𝑛 − 1) → 𝑂(𝑛3)           (3.43) 

WebGL generic algorithm in terms of loops and statements 

Loop3()  



146 
 

Loop2() 

Loop1 (…){ 

< list of sequence statements>> 

} 

Loop6 (…) 

Loop5 (…) 

Loop4 (…){ 

<list of sequence statements>> 

While loop{ 

<<list of sequence statements>> 

}} 

2) The Big-O notation for WebGL algorithm is expressed as follows: 

𝑓(𝑛) = (𝑓1 ∗ 𝑓2 ∗ 𝑓3) + (𝑓4 ∗ 𝑓5 ∗ 𝑓6 ∗ 𝑓7)               (3.44) 

Where: 

Loop 1 is expressed as follows: 

     𝑓1(𝑛) = (𝑛 − 1) + 𝑐 ∗ (𝑛 − 1)                         (3.45)    

     𝑓1(𝑛) = (𝑐 + 1)(𝑛 − 1) → 𝑂(𝑛)                           (3.46) 

  𝑓1(𝑛) = (𝑐 + 1)𝑛 − (𝑐 + 1) →  𝑂(𝑛)             (3.47) 

Loop 2 is expressed as follows:  

          𝑓2(𝑛) = (𝑛 − 1) → 𝑂(𝑛)                               (3.48) 

Loop 3 is expressed as follows:  

 𝑓3(𝑛) = (𝑛 − 1) → 𝑂(𝑛)                          (3.49) 

Loop 4 is expressed as follows:  



147 
 

       𝑓4(𝑛) = (𝑛 − 1) + 𝑐 ∗ (𝑛 − 1)             (3.50) 

            𝑓4(𝑛) = (𝑐 + 1)(𝑛 − 1) → 𝑂(𝑛)                   (3.51) 

      𝑓4(𝑛) = (𝑐 + 1)𝑛 − (𝑐 + 1) →  𝑂(𝑛)               (3.52) 

Loop 5 is expressed as follows:  

𝑓5(𝑛) = (𝑛 − 1) → 𝑂(𝑛)                     (3.53) 

Loop 6 is expressed as follows:  

𝑓6(𝑛) = (𝑛 − 1) → 𝑂(𝑛)                     (3.54) 

Loop 7 is expressed as follows:  

   𝑓7(𝑛) = (𝑛 − 1) + 𝑐 ∗ (𝑛 − 1)                (3.55) 

  𝑓7(𝑛) = (𝑐 + 1)(𝑛 − 1) → 𝑂(𝑛)              (3.56) 

  𝑓7(𝑛) = (𝑐 + 1)𝑛 − (𝑐 + 1) →  𝑂(𝑛)                (3.57) 

𝑓(𝑛) = (((𝑐 + 1)𝑛 − (𝑐 + 1))) ∗ (𝑛 − 1)  ∗  (𝑛 − 1)) + (((𝑐 + 1)𝑛 −

(𝑐 + 1)) ∗  (𝑛 − 1)  ∗ (𝑛 − 1) ((𝑐 + 1)𝑛 − (𝑐 + 1)))             (3.58) 

The complexity analysis for WebGL algorithm is 𝑂(𝑛4):  

  𝐹(𝑛) = 𝑂(𝑛3) +   𝑂(𝑛4) → 𝑂(𝑛4)                (3.59) 

 

3) SDF generic algorithm in terms of loops and statements 

Loop3(){ 

Loop1(){ 

<SDF list of sequence statements>>} 

Loop2(){ 

 <list of sequence statements>>} 



148 
 

} 

Loop6(){  

Loop4(){ 

<list of sequence statements>>} 

Loop5(){ 

 <list of sequence statements>>} 

} 

The Big-O notation for SDF algorithm is expressed as follows: 

𝑓(𝑛) =  (𝑓1 + 𝑓2) ∗  𝑓3  +  (𝑓4 + 𝑓5) ∗  𝑓6                      (3.60) 

Where:  

Loop 1 is expressed as follows:  

 𝑓1(𝑛) = (𝑐1 + 1)𝑛 − (𝑐1 + 1) →  𝑂(𝑛)                          (3.61) 

Loop 2 is expressed as follows:  

𝑓2(𝑛) = (𝑐2 + 1)𝑛 − (𝑐2 + 1) →  𝑂(𝑛)                             (3.62) 

Loop 3 is expressed as follows:  

𝑓3(𝑛) = (𝑛 − 1) → 𝑂(𝑛)                         (3.63) 

Loop 4 is expressed as follows: 

𝑓4(𝑛) = (𝑐4 + 1)𝑛 − (𝑐4 + 1) →  𝑂(𝑛)                        (3.64) 

Loop 5 is expressed as follows: 

                               𝑓5(𝑛) = (𝑐5 + 1)𝑛 − (𝑐5 + 1) →  𝑂(𝑛)                       (3.65) 

Loop 6 is expressed as follows:  

𝑓6(𝑛) = (𝑛 − 1) → 𝑂(𝑛)                                   (3.66) 



149 
 

The complexity analysis for SDF algorithm is :  

𝑓(𝑛) = [(((𝑐1 + 1)𝑛 − (𝑐1 + 1)) + ((𝑐2 + 1)𝑛 − (𝑐2 + 1))) ∗ (𝑛 − 1)] +

               [(((𝑐4 + 1)𝑛 − (𝑐4 + 1)) + ((𝑐5 + 1)𝑛 − (𝑐5 + 1))) ∗ (𝑛 − 1)](3.67) 

𝑓(𝑛) = 𝑂(𝑛2) + 𝑂(𝑛2) → 𝑂(𝑛2)               (3.68) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



150 
 

BIBLIOGRAPHY 

 

Abrahamson, S., Wallace, D., Senin, N., Sferro, P., 2000. Integrated Design In A 

Servicemarket Place. J. Computer-Aided Design, 32, 97-107. 

Adzhiev, V., Kazakov, M., Pasko, A., and Savchenko, V., 2000. Hybrid System 

Architecture for Volume Modelling. Computers & Graphics, 24(1), 67–78. 

Applied Shaped Limited. Applied Shapes. Available from: 

http://appliedshapes.com 

Asghari, M., 2013. An Overview on Boundary Representation Data Structures 

for 3D Models Representation. Proceedings of the 3rd International Symposium 

and Exhibition on Geoinformation. 14. 

Barak, B., Garg, S., KAlai, T. Y., Paneth, O., S, Amit., 2014. Protecting 

Obfuscation against Algebraic Attacks. In: Nguyen P.Q., Oswald E. (eds) 

Advances in Cryptology – EUROCRYPT 2014. EUROCRYPT 2014. Lecture 

Notes in Computer Science, Springer, Berlin, Heidelberg, 221-238.  

Behr, J., Jung, Y., Keil, J., Drevensek, T., Zoellner, M., Eschler, P., and Fellner, 

D., 2010. A scalable Architecture for the Html5/X3d Integration Model X3dom. 

In proceedings of the 15th International Conference on Web 3D Technology, ser. 

Web3D ’10, New York, NY, USA: ACM, 185–194. 

Berndt, R., Fellner, D. and Havemann. S., 2005. Generative3d models: A Key to 

More Information within Less Bandwidth at Higher Quality. In Web3D ’05: 

Proceedings of the Tenth International Conference on 3D Web Technology, ACM 

Press, New York, NY, USA, 111–121. 

3DTin, 3D Modelling for Everyone. Available from: https://3dtin.wordpress.com/ 

Branco, R., and Leitao, A., 2017. Integrated Algorithm Design: A Single-Script 

Approach for Multiple Design Tasks, Ecaade 35, Design Tool-Theory, 1, 729-

738. 

http://appliedshapes.com/
https://3dtin.wordpress.com/


151 
 

Bürger, R. and Hauser, H., 2007. Visualisation of Multi-Variate Scientific Data. 

In Eurographics, State of the Art Reports (STARs), 117–134. 

Cahyawiajya, S., and Supriana, I., 2015. Fast and Low Cost Automated Human 

3D Modeling and Skeleton Generation. International Journal of Computer 

Sciences, 12(3), 176-181. 

Caliskan, A., and Cevik, U., 2017. Three-Dimensional Modeling in Medical 

Image Processing by Using Fractal Geometry, Journal of Computer, 12(5), 479-

485. 

Canelhas, D., Schaffernicht, E., Stoyanov, T., and Lilienthal, A., 2016. An 

EigenShapes Approach to Compressed Signed Distance Fields and Their Utility 

in Robot Mapping, Robotics (Cs. RO), 6(3), 1-13. 

Canetti, R., Goldreich, O., and Halevi, S., 2004. The Random Oracle 

Methodology, Revisited. Journal of the ACM (JACM), 51(4), 557-594. 

Cartwright, R., Adzhiev, V., Pasko, A., Goto, Y., and Kunii, T. L., 2005. Web-

Based Shape Modelling with HyperFun, IEEE Computer Graphics and 

Applications, 25(2), 60–69.  

Chen, D., Ouhyoung, M., Tian, X., and Shen. Y., 2003. On Visual Similarity 

Based 3D Model Retrieval. Computer Graphics Forum, 223–232. 

Chen, J., Li, J., and Li, M., 2016. Progressive Visualisation of 

Complex 3d Models over the Internet, Trasaction in GIS, 20(6), 887-902. 

Cho, S., Baek, D., Baek, S., Lee, K., and Bang, H., 2014. 3D Volume Drawing 

on a Potter’s Wheel. IEEE Computer Graphics and Application Special Issues: 

Beyond the Screen, 34(3), 50-58. 

Chou, D., Jhou C.-Y., and Chu, S.-C., 2009. Reversible Watermark For 3D 

Vertices Based On Data Hiding in Mesh Models. International Journal of 

Innovative Computing, Information and Control, 5(7), 1893-1901. 

 



152 
 

Chourio, X., Luengo, F., and Pirela-Morillo, G., 2011, Creating Multiusere 

Web3D Applications Embedded in Web Pages. IJCSI International Journal of 

Computer Science Issues, 8(1), 67-73. 

Chi Sio, C., Ngan, M., Yi, J., Chen, X., 2010. Volume Rendering with Marching 

Cube Algorithm. University of Southern California. 

Cirne, M and Pedrini, H., 2013. Marching cubes Technique for Volumetric 

Visualization Accelerated with Graphics Processing Units, Journal of the 

Brazilian Computer Society, 223–233.  

Collberg, C., and Thomborson, C., 2000. Watermarking, Tamper- Proofing, And 

Obfuscation - Tools for Software Protection. Technical Report TR00-03, The 

Department of Computer Science, University of Arizona. 

Congote, J., Kabongo, L., Moreno, A., Segura, A., Beristain A, Posada J, Ruiz, 

O., 2012. Volume Ray Casting in WebGL. Computer Graphics. InTech. Rijeka, 

157–178 . 

Congote, J., Segura, A., Kabongo, L., Moreno, A., Posada, J., and Ruiz, O., 2011. 

Interactive Visualization of Volumetric Data with WebGL in Real-Time. In 

Proceedings of the 16th International Conference on 3D Web Technology, ser. 

Web3D ’11. ACM, 137–146. 

Corney, J., Rea, H., Clark, D., 2002. Pritchard, J., Breaks, M., and Macleod. R., 

Coarse Filters For Shape Matching. IEEE Computer Graphics & Applications, 

22(3), 65–74. 

Dietrich, A., Gobbetti, E., and Yoon, S., 2007. Massive-Model Rendering 

Techniques. IEEE computer graphics and applications, 27(6), 20-34. 

Dong, X., Chen, Z., Siadati, H., Tople, S., Saxena, P., Liang, Z., 2013. Protecting 

Sensitive Web Content from Client-Side Vulnerabilities with CRYPTONs. 

Proceedings of the 2013 ACM SIGSAC conference on Computer & 

communications security, 1311-1324. 

Erl, T., 2005. Service-Oriented Architecture: Concepts, Technology, and Design. 

1st edition, Upper Saddle River, NJ, USA: Prentice Hall PTR.  



153 
 

Evans, A., Romeo, M., Bahrehmand, A., Agenjo, J., and Blat, Josep, 2014. 3D 

Graphics on the Web: a Survey. Interactive Technology Group. University 

Pompeu Fabra, Barcelona, Spain, 41, 43-61. 

Fayolle, P.-A., Schmitt, B., Goto, Y., and Pasko, A., 2005. Web-Based 

Constructive Shape Modelling Using Real Distance Functions. IEICE - Trans. 

Inf. Syst, 88(5), 828–835.  

Fayolle, P., and Pasko., A, 2016. Surface Discretization of Multi-material 

Heterogeneous Volume Objects. ICME Workshop,  

Fisseler, D., Muller, G., and Weichert, F., 2017. Web-Based 

Scientific Exploration and Analysis of 3D Scanned Cuneiform Datasets 

for Collaborative Research. Informatics. 4(4), 1-16. 

Fryazinov, O., Pasko, A., and Adzhiev, V., 2008. An Exact Representation Of 

Polygonal Objects By C1-Continuous Scalar Fields Based On Binary Space 

Partitioning. IEEE Computer Society, the National Centre for Computer 

Animation, Bournemouth University, UK. 132-139. 

Calbriath, G., MacMurchy, P., and Wyvill, B., 2004. BlobTree Trees. 

Proceedings of Computer International Conference, CGI, Crete, Greece. 78-85. 

Gerth, B. Berndt, R., Havemann, S., and Fellner. D., 2005. 3D Modelling For 

Non-Expert Users with the Castle Construction Kit V0.5. The 6th International 

Symposium on Virtual Reality (VAST 2005), Archaeology and Intelligent 

Cultural Heritage, Pisa, Italy. 1-9. 

Gisi, M. A., and Sacchi, C., 1994. Co-CAD, a Multi-User Collaborative 

Mechanical Cad System, Presence Teleoperators & Virtual Environments. 3(4), 

341-350. 

Trimble Inc. Sketchup, Where Great Ideas Get to work, Design it. Make it. Enjoy 

the process. Available from: http://sketchup.google.com. 

Grasberger, H., Shirazian, P., Wyvill, B., and Greenberg, S., 2013. A Data 

Efficient Collaborative Modelling Method Using Websockets and the Blob tree 



154 
 

for Over-The Air Networks. In proceedings of the 18th International Conference 

on 3D Web Technology, ser. Web3D ’13. New York, NY, USA: ACM. 2–37. 

Grillie, E., Menna, F. and Remondino, F., 2017. A Review of Point Clouds 

Segmentation and Classification Algorithms. International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W3, 

339-334. 

Gupta, V., Kasana, K.S., Tandon, P., 2010. Computer Aided Design Modeling 

for Heterogeneous Objects. International Journal of Computer Science, IJCSI. 

7(2), 31-38.  

Havemann, S., 2005. Generative Mesh Modelling. PhD thesis, Braunschweig 

Technical University, Germany. 

Hoppe, H., 1966. Progressive Meshes. In proceedings to the Twenty-Third 

Annual Conference on Computer Graphics and Interactive Techniques, 

Louisiana. 99-108. 

Jung, Y., Behr, J,. Drevensek, T., Wagner, S., 2012. Declarative 3D Approaches 

for Distributed Web-Based Scientific Visualization Services, Proceedings of the 

1st International Workshop on Declarative 3D for the Web Architecture. 869, 7. 

Kang, S. and Lee, J., 2017. Developing a Title-Based Rendering Method to 

Improve Rendering Speed of 3D Geospatial with HTML and WebGL, Hindawi, 

Journal 0f Sensors. 2017, 11. 

Klein, M., 1991. Supporting Conflict Resolution in Cooperative Design, IEEE 

Transactions on Systems, J. Man and Cybernetics, Special issue on Distributed 

Artificial Intelligence. 21(6), 1379-1390. 

Kobbelt, L., Bischoff, S., Botschm M., Kahler, K., Rossl, C., Shneider, R., and 

Vorsatz, J., 2000. Geometric Modeling Based on Polygonal Meshes. 

Eurographic. 1-48. 

Koller, D., Turitzin, M., Levoy, M., Tarini, M., Croccia, G., Cignoni, P., and 

Scopigno, R., 2004. Protected Interactive 3D Graphics Via Remote Rendering. 

ACM Trans. Graph, 23(3), 695–703.  



155 
 

Khronos Group, Khronos royalty-free open standards for 3D graphics, Virtual 

and Augmented Reality, Parallel Computing, Neural Networks, and Vision 

Processing. USA. Available from: https://www.khronos.org/. 

Krottmaier, H., Kurth, F., Steenweg, T., H.-J, A., and Fellner. D., 2007. 

PROBADO - A Generic Repository Integration Framework. In Proceedings of 

the 11th European Conference on Digital Libraries, LNCS 4675 (3), 518–521. 

Kumar, V., Rajagopalan, S., Cutkosky, M., and Dutta, D., 1998. Representation 

and Processing of Heterogeneous Objects for Solid Freeform Fabrication. IFIF 

WG5.2 Geometric modelling workshop. 7-9. 

Laine, S., 2013. A Topological Approach to Voxelization, EGSR '13 Proceedings 

of the Eurographics Symposium on Rendering. 77-86 

Lavoue, G., Larabi, M., and Vasa, L., 2016. On The Efficiency Of Image Metrics 

For Evaluating The Visual Quality Of 3D Models, IEEE Transaction On 

Visualization And Computer Graphics. 22(8), 1987-1999 

Lee, H., Lavoue, G., and Dupont, F, 2012. Rate-Distortion Optimization For 

Progressive Compression Of 3D Mesh With Colour Attributes. The Visual 

Computer, 137-153. 

Leitao, A. and Lopes, J., 2011. Portable Generative Design for CAD Application. 

Integration through Computation. Proceedings of the 31st Annual Conference of 

the Association for Computer-Aided Design in Architecture (ACADIA). 196-203. 

Li, S., Xiao, Y, and Wang, X., 2013. Three-Dimensional Information Security 

Combined Fringe Projection With Double Random Phase Encoding Optics 

Communication. ScienceDirect Journal, Optics Communications. 296, 35-40. 

Limper, M., Wanger, S., Stein, C., Jung, Y., Strok, A., IGD, F, Darmstadt, T., 

2013. Fast delivery of 3D Web content: A case study. Web3D '13 Proceedings of 

the 18th International Conference on 3D Web Technology, 11-17. 

Lindborg, T., Gifford, P., and Fryazinov, O., 2017. 

Interactive Parameterized Heterogeneous 3D Modelling With Signed Distance 

Fields. SIGGRAPH '17 ACM SIGGRAPH 2017. Posters Article. 6, 1. 

https://www.khronos.org/
http://www.web3d2013.org/


156 
 

Lin, Y., and Wu, J., 2012. Unseen Visible Watermarking For Colour Plus Depth 

Map Images. IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), 1801-1804. 

Liu, Q. and Sourin, A., 2006. Function-defined Shape Metamorphoses in Visual 

Cyber worlds. Visual Comput., 22(12), 977–990. 

Lui, Y., Prabhakaran, B., Guo, X., 2012. Spectral Watermarking for 

Parameterized Surfaces. IEEE Transaction on Information Forensics and 

Security. 7(5), 1459-1471. 

Lorensen, W., and Cline, H., 1987. Marching Cubes: A High Resolution 3D 

Surface Construction Algorithm. Proceeding SIGGRAPH '87 Proceedings of the 

14th annual conference on Computer graphics and interactive techniques, NY 

USA. 21(4), 163-169. 

Maglo, A., Courbet, C., Alliez, P., Hudelot, C., 2012. Progressive Compression 

of Manifold Polygon Meshes. Computers and Graphics, Elsevier, Shape 

Modeling International (SMI) Conference 2013, 36 (5), 49-359. 

Mars, J., and Hundt, R., 2009. Scenario Based Optimization: A Framework for 

Statically Enabling Online Optimizations, Code Generation and Optimization. 

International Symposium,  Seattle, WA, USA. 169-170. 

McHenry, K. and Bajcsy, P., 2008. An Overview of 3D Data Content, File 

Formats and Viewers. National Center for Supercomputing Application, 1205 W 

Clark, Urbana. 

Oleynikova , H., Millane, A., Taylor, Z., Galceran, E., Nieto , J., and Siegwart , 

R., 2016. Signed Distance Fields: A Natural Representation for Both Mapping 

and Planning. Geometry and Beyond Representations, Physics, and Scene 

Understanding for Robotics, Ann Arbor, MI, USA. 6. 

Parmar, B., and Bhatt, T., 2016. Volume Visualization Using Marching Cubes 

Algorithms: Survey & Analysis, IJIRT, 2(11), 21-25. 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4907622
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4907622


157 
 

Parulek, J., Novotny, P., and Sramek, M., 2006. Xisla Development Tool for 

Construction of Implicit Surfaces. In SCCG 06: Proceedings Of The 22nd Spring 

Conference On Computer Graphics, Comenius University, Bratislava, 128–135. 

Pasko A., and Adzhiev V., 2004. Function-Based Shape Modelling: 

Mathematical Framework and Specialized Language. In: Winkler F. (eds) 

Automated Deduction in Geometry. ADG 2002. Lecture Notes in Computer 

Science, 2930,132-160. 

Pasko, A., Adzhiev V., Sourin, A. and Savchenko, V., 1995. Function 

Representation in Geometric Modelling: Concepts, Implementation and 

Applications. The Visual Computer, 11, 429–446. 

Pasko, A., Adzhiev, V., 2001. Schmitt, B., and Schlick, C., Constructive 

Hypervolume Modeling. Graphical Models, ScienceDirect Journal.  63(6), 413-

442. 

Pasko, G., Pasko A., and Kunii., T., 2005. Bounded Blending for Function-based 

Shape Modelling, IEEE CG&A magazine, 25, 36-45. 

Pasko, A., Vilbrandt, T., Fryazinov, O., Adzhiev V., 2010. Procedural Function-

Based Spatial Microstructures. Shape Modelling International Conference, Aix 

in Provence, France. 47-56. 

Pantaleoni, J., 2011. VoxelPipe: A Programmable Pipeline for 3D Voxelization, 

HPG '11 Proceedings of the ACM SIGGRAPH Symposium on High Performance 

Graphics, Vancouver, British Columbia, Canada. 99-106 

Pan, J., Zheng, J., and Zhao, G., 2013. Blind Watermarking of NURBS Curves 

and Surfaces. Computer Aided Design, 45(2), 144-153. 

Peng, J., Kim, C.,-S., and Jay Kuo, C. C., 2005. Technologies for 3D Mesh 

Compression: A survey. J. Comum. Image Represent, 688-733. 

Popvski, F., Nedelkovski, I., and Mijakovska, S., 2014. Generating 3D Model In 

Virtual Reality And Analyzing Its Performance. International Journal of 

Computer Science & Information Technology (IJCSIT), 6, 6. 

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Alexander%20Pasko
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Turlif%20Vilbrandt
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Oleg%20Fryazinov
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Valery%20Adzhiev
https://research.nvidia.com/users/jacopo-pantaleoni
http://highperformancegraphics.org/


158 
 

Qin, S., Wright, D., 2004. Incremental Simulation Modelling for Internet 

Collaborative Design, Proc. of ImechE, Part B, Journal of Engineering 

Manufacture, 218, 1009-1015. 

Ramani, K., Agrawat, A., and Babu, M., 2003. CADDAC: Multi-Client 

Collaborative Shape Design System with Server-based Geometry Kernel. In 

Journal of Computing and information Science in Engineering. 3(2), 170-173. 

Rezayat, M., 2000. The enterprise-Web Portal for Life-Cycle Support.  J. 

Computer-Aided Design, 32, 85-96. 

Requicha, A., 1980. Representations for Rigid Solids: Theory, Methods, and 

Systems. ACM Computing Surveys, 12(4), 437-464. 

Rivest, R., Adleman, Len., and Dertouzos, L. C., 1978. On Data Banks and 

Privacy Homomorphisms. In Foundations Of Secure Computation, Work- shop, 

Georgia Inst. Tech., Atlanta, Ga., 197, Academic, New York. 169-179. 

Rodrigues, M., Kormann, M., and Davison, L., 2011. A Case Study Of 3D 

Technologies In Higher Education: Scanning The Metalwork Collection of 

Museums Sheffield and its Implications to Teaching And Learning, International 

Conference On Information Technology Based Higher. IEEE, 1-6. 

Rodrigues, R. And Robinson, A., 2009, Developing Interactive 3D Models for E-

Learning applications. Book chapter in M.T. de Mello, Hipermidias Interfaces 

Digitais em EAD, Editora Laborciencia Ltd, Sao Paulo, C.Z. Carvalho Neto, and 

F.J. Spanhol (Eds), 155-175. 

Sanchez, M., Fryazinov, O., Pasko, A., 2012. Efficient evaluation of continuous 

signed distance to a polygonal mesh. 12 Proceedings of the 28th Spring 

Conference on Computer Graphics, NY, USA. 101-108.  

Sanchez, M., Fryazinov, O., Fayolle, P., and Pasko, A., 2015. Convolution 

Filtering Of Continuous Signed Distance Fields For Polygonal Meshes. 

Computer Graphics Forum, 00 (0), 1-12. 



159 
 

Santos, P., Strok, A., 2004. SmartSketches: A Multimodal Approach to Improve 

Usability in the Early States of Product Design, D 18b SketchAR Technical 

Report, Information Society Technologies (ITS). 

Satoshi, H., 2000. Zero-knowledge and code obfuscation. In T. Okamoto, Editor, 

Advances in Cryptology - ASIACRYPT 2000, Lecture Notes in Computer 

Science, Kyoto, Japan, International Association for Cryptologic Research, 

Springer-Verlag, Berlin Germany, 443-457 

Schmitt, B., Pasko, a., Adzhiev, V., and Schlick, V., 2001. Constructive 

Texturing Based on Hypervolume Modeling. The Journal of Visualization and 

Computer Animation, 12(5), 297-310 

Schimitt, B., Pasko, a., and Schlick, C., 2004. Constructive Sculpting of 

Heterogeneous Volumetric Objects Using Trivariate B-splines. The Visual 

Computer, International Journal of Computer Graphics, 20 (2–3), 130–148. 

Schmitt, B., Pasko, A., Adzhiev, V., Paskp, G., and Schlick, C., 2008. Modelling 

Function-Based Mixed-Dimensional Objects with Attributes, Part of the Lecture 

Notes in Computer Science book series (LNCS), 4889, 90-117. 

Schwartz, C., Ruiters, R., Weinmann, M., and Klein, R., 2013. WebGL-based 

Streaming and Presentation of Objects with Bidirectional Texture Functions, 

ACM Journal on Computing and Cultural Heritage, 6(3),11. 

Shapesmith, Parametric Open Source 3D Modelling. Available from: 

http://shapesmith.net. 

Shapeways, Write Code, Generate Products. Available from: 

http://shapejs.shapeways.com 

Shyamsundar, N., Gadh., R., 2001. Internet-Based Collaborative Product Design 

with Assembly Features and Virtual Design Spaces, Computer-Aided Design, 33, 

637–651. 

Slavcheva, M., Kehl, W., Navab, N., and Ilic, S., 2006. SDF-2-SDF: Highly 

Accurate 3D Object Reconstructions, Computer Vision – ECCV 2016, 680-696. 

http://shapejs.shapeways.com/
https://link.springer.com/book/10.1007/978-3-319-46448-0


160 
 

Soltani, A., Huang, H., Wu, Jiajun, Kulkarni, T. and Tenenbaum, J., 2017. 

Synthesizing 3D Shapes Via Modeling Multi-View Depth Maps and Silhouettes 

With Deep Generative Networks, IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), Honolulu, HI, USA. 2511-2519. 

Sons, K., Klein, F., Rubinstein, D., Byelozyorov, S., Slusallek, P., 2010. 

XML3D- Interactive 3D Graphics for the Web. Proceedings of the 15th 

International Conference on Web 3D Technology, 175-184. 

Sutherland, I., 2003. Sketchpad: A Man-Machine Graphical Communication 

System, University of Cambridge, UK. 

Autodesk Tinkercad. From mind to design in minutes. Available from: 

http://tinkercad.com. 

Tsai, F., Chang, H. and Lin, E.-W., 2017. Combining 3D Volume and Mesh 

Models for Representing Complicated Heritage Buildings. The International 

Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences. XLII-2/w5, 673-677. 

Uformit, Online Marketplace and Platform for Personalized Design. Available 

from: www.uformit.com. 

Vanhoey, K., Sauvage, B., Kraemer, P., and Lavoue, G., 2017. Visual Quality 

Assessment of 3D Models: On the Influence of Light-Material Interaction. ACM 

Transaction on Applied Perception. 15(1.), 1-18. 

Vilbrandt, C., Pasko, G., Pasko, A., Fayolle, P., Vilbrandt, T., Goodwin, J., and 

Goodwin, J., 2004. Cultural Heritage Preservation Using Constructive Shape 

Modelling. 23 (1), 25–41. 

Vilbrandt, T., Fryazinov, O., Stamm, C. and Pasko, A., 2010. A Web-Oriented 

Function-Based Volume Modelling Framework. Computer Graphics & 

Geometry. 12, 41–51.  

Vranic. D., 2003. An Improvement Of Rotation Invariant 3D Shape Descriptor 

Based On Functions On Concentric Spheres. In IEEE International Conference 

On Image Processing (ICIP 2003). 3, 757–760. 



161 
 

Wang, R., Yu, B., Marco, J., Hu, T., Gutierrez, D., Bao, H., 2016. Real-time 

Rendering on a Power Budget, ACM Transaction on Graphics. Anaheim, CA. 

35(4) 

Wang, W., Liu, Y., Wang, C., Lui, L., and Lui X., 2017. Support-Free Hallowing, 

IEEE Transaction on Visualization and Computer Graphics. 24(10), 2787-2798. 

While, L., Himgston, P., Barone, L., and Hunand, S., 2006. A Faster Algorithm 

for Calculating Hyper volume. IEEE Transaction on Evolutionary Computation, 

10 (1), 29-38 

Wu, D., Rosen, D.W., Wang, L., and Schaefer, D., 2014. Cloud-Based 

Manufacturing: Old Wine in New Bottles?, Variety Management in 

Manufacturing. Proceedings of the 47th CIRP Conference on Manufacturing 

Systems. 17, 94-99. 

Wu, D., Terpenny, J., and Schaefer, D., 2016. Digital Design and Manufacturing 

on the Cloud: A Review of Software and Services, Artificial Intelligence for 

Engineering Design, Analysis and Manufacturing, Cambridge University. 31(1), 

104-118 

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J., 2015. 3D 

ShapeNets: A Deep Representation for Volumetric Shapes. IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA. 9. 

Xiao, D. And Shih, F.Y, 2010. A Reversible Image Authentication Scheme 

Based On Chaotic Fragile Watermark. International Journal Of Innovative 

Commuting, Information And Control, 6(20), 4731-4742. 

Yu, H., Zhang, J., Wang, L., and Barksdale, J., 2003.  A secure Web Application: 

3D Visualization and Collaboration, Proceedings of the 2nd IASTED 

International Conference, Communication, Internet, and Information 

Technology, Scottsdale. AZ, USA. 13-18 

Zeki, A., Abu Bakar, A., 2013. 3D digital watermarking: Issues and Challenges. 

Proceeding of the International conference on Artificial Intelligence in Computer 

Science and ICT, Langkawi, Malaysia. 334-342. 



162 
 

Zollhofer, M., Dai,  A., Innmann, M., Wu, C., Stamminger,  M. , Theobalt,  C. 

and Nießner,  M., 2015.  Shading-Based Refinement on Volumetric Signed 

Distance Functions. ACM Transactions on Graphics (TOG),34(4), 96:1-96:14. 


