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Abstract

Image-based high-performance geometric vascular modelling and reconstruction is
an essential component of computer-assisted surgery on the diagnosis, analysis and
treatment of cardiovascular diseases. However, it is an extremely challenging task
to efficiently reconstruct the accurate geometric structures of blood vessels out of
medical images. For one thing, the shape of an individual section of a blood vessel is
highly irregular because of the squeeze of other tissues and the deformation caused
by vascular diseases. For another, a vascular system is a very complicated network
of blood vessels with different types of branching structures. Although some existing
vascular modelling techniques can reconstruct the geometric structure of a vascular
system, they are either time-consuming or lacking sufficient accuracy. What is more,
these techniques rarely consider the interior tissue of the vascular wall, which consists
of complicated layered structures. As a result, it is necessary to develop a better
vascular geometric modelling technique, which is not only of high performance and
high accuracy in the reconstruction of vascular surfaces, but can also be used to
model the interior tissue structures of the vascular walls.

This research aims to develop a state-of-the-art patient-specific medical image-
based geometric vascular modelling technique to solve the above problems. The
main contributions of this research are:

• Developed and proposed the Skeleton Marching technique to reconstruct the
geometric structures of blood vessels with high performance and high accuracy.
With the proposed technique, the highly complicated vascular reconstruction
task is reduced to a set of simple localised geometric reconstruction tasks,
which can be carried out in a parallel manner. These locally reconstructed vas-
cular geometric segments are then combined together using shape-preserving
blending operations to faithfully represent the geometric shape of the whole
vascular system.

• Developed and proposed the Thin Implicit Patch method to realistically model
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the interior geometric structures of the vascular tissues. This method allows
the multi-layer interior tissue structures to be embedded inside the vascular
wall to illustrate the geometric details of the blood vessel in real world.
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Chapter 1

Introduction

1.1 Context

Cardiovascular Diseases (CVDs) are a group of disorders of the heart and the blood
vessels (World Health Organization 2017), including heart attack, stroke, hyper-
tension, coronary heart disease, angina and dementia (British Heart Foundation
2018). It has been identified as the number one cause of death globally in the World
Health Organisation (WHO) report published in May 2017. The death caused by
CVDs is 17.9 million in 2016, representing 31% of all global deaths (World Health
Organization 2017, 2018). It is anticipated that this number will increase to over
23.3 million by 2030 (Alwan 2011), which makes CVDs remain leading cause of
death for a long time.

Although a large number of CVDs are preventable, they are continually rising
mainly because of the inadequate preventive measures (World Health Organization
2010). The high-complexity of vascular structures makes the traditional operations
on CVDs unsafe or even infeasible. For one thing, blood vessels in CVDs are of
variable sizes and curvatures. Their appearances and geometries can be perturbed
by stents, calcifications, aneurysms and stenosis, and they are often embedded in-
side other complex anatomical tissues and organs (Lesage et al. 2009). For another,
CVDs exhibit high patient-specific dependence on different situations, such as gen-
der, age, eating habits and living conditions. As a result, the Computer-assisted
Surgery (CAS) techniques, such as Minimally Invasive Vascular Surgery (MIVS)
technique, are proposed to assist the surgeons on the cure of CVDs (Lepore et al.
2000). As a necessary part of the CAS techniques, the geometric reconstruction
of blood vessels prior to the real surgery plays an important role on the minimally
invasive vascular surgeries.
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The CAS technique is an interdisciplinary field based on medical imaging, virtual
reality, micro-technologies and robotics (Kaladji et al. 2012). It is also frequently
referred to as computer-aided surgery, computer-assisted intervention, image-guided
surgery and surgical navigation (Papademetris et al. 2009). The CAS has dramat-
ically changed the performance of disease diagnoses and surgeries by improving the
diagnostic accuracy and the less invasive surgical interventions (Peters 2001).

One of the most fundamental tasks of MIVS is the geometric reconstruction of
blood vessels (Lepore et al. 2000). The images of the vessels are collected with
imaging techniques and stored as a dataset. During the collection process, the
position and grey value information of the scanned blood vessels are stored in the
medical image but these pieces information are usually with a discrete manner and
cannot represent the blood vessels as a complete geometry. In order to reconstruct
the geometric structures of the blood vessels out of the medical image, a certain
geometric vascular modelling technique should be proposed to solve this problem.

Geometric vascular modelling is a very challenging task due to the fact that blood
vessels are of high complexity in their structures. The deformations, bifurcations and
distortion of blood vessels with varieties of sizes and curvatures make the accurate
representation of a single blood vessel very hard. Besides, the complicated joints
and connections of different blood vessels significantly increase the difficulties of the
modelling task.

Although the shapes and structures of the blood vessels are variable and diverse,
there are several common geometric features of the blood vessels. First, the shape
of a blood vessel is a cylinder-like structure. This structure can be approximated
by a collection of templates or models, such as cylinders or cones (Tyrrell et al.
2007; Wu et al. 2011; Zhang et al. 2007). Secondly, a blood vessel is often topo-
logically regarded as a centreline or a skeleton. This is an important geometric
clue for the vascular reconstruction which can be used to assist the image segmen-
tation of blood vessels (Bloomenthal 1995b; Lefdal 2016; Smistad et al. 2012).
Thirdly, the cross-section of a normal blood vessel is usually a generalised circle. It
is straightforward to reconstruct the shape of a blood vessel step-by-step as a series
of cross-sections (Kumar et al. 2015). Furthermore, a vascular tree has a large
number of blood vessels. Apart from the areas of joints, each blood vessel can be
reconstructed geometrically independent of others. A vascular tree can therefore be
reconstructed as a composition of many local blood vessel segments (Bloomenthal
et al. 1990b; Middleditch et al. 1985). These geometric features of a vascular system
are important information for developing high-performance and robust algorithms
for reconstructing the geometric structures of a given blood vessel.
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Geometric vascular modelling is also an essential task of many other research
fields. For example, hemodynamic analysis studies the physical laws of the blood
flow in blood vessels. This study requires the accurate geometric structures of blood
vessels to be known. The vascular tissue modelling focuses on the fine modelling
of the interior structures inside the vascular wall. This modelling is based on the
accurately reconstruction of blood vessels. The virtual surgery with interactive
editing on blood vessels allows vascular surgeries being operated on the reconstructed
blood vessels without a real surgery. Geometric vascular modelling plays a key role
during this operation to faithfully reflect the surgery of the cardiovascular diseases
in reality.

1.2 Geometric Vascular Modelling

Geometric vascular modelling aims at extracting geometric information of the blood
vessels from a given medical image using a certain vascular medical imaging tech-
nique. It is related to the volumetric vascular imaging techniques, geometric mod-
elling techniques and the geometric representation of blood vessels.

1.2.1 Volumetric Vascular Imaging Techniques

The preliminary requirement of geometric vascular modelling is the acquisition of
volumetric medical images of different digital imaging modalities (Kishore et al.
2013). A volumetric medical image is a 3D image scanned from a part of the whole
human body. By using image visualisation and geometric modelling techniques, a
virtual and visual model can be created from a given medical image for geometric
and biological analysis and researches. The visualisation and modelling techniques
can be used either before the surgery to simulate the whole surgical process and
reduce the surgical risk (Oentoro 2009) or during the intra-operative stage to give
a visual assistance for the surgeons (Taylor et al. 2002).

A medical image is a representation of the internal structure or function of an
anatomic region in the form of an array of picture elements called pixels or voxels
(Larobina et al. 2013). A medical image can be captured by different imaging
techniques. The X-ray imaging technique is the oldest imaging method invented to
detect the hard matters inside the human body (Cox et al. 1896). But it does not
produce true 3D medical images. The true 3D imaging modality were absent until
modern 3D imaging techniques were developed. These techniques can produce image
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data as well as their descriptive information, such as Computed Tomography (CT),
Magnetic Resonance Imaging (MRI) and Magnetic Resonance Angiogram (PET)
scanners. A CT scanner combines an X-ray device with a computer, emits X-rays
around the patient to penetrate human body from different directions. These X-rays
are fed into computer to bring the information together into a picture of the body.
An MRI scanner is a tunnel-shaped piece of equipment, where a patient lies on a
table that slides into the scanner with the body being surrounded by a magnetic
field. Signals are generated from the magnetic field and fed into a computer to create
a picture of the body (Kim et al. 2000). A PET scanner detects parts of gamma rays
emitted indirectly by positron emission radionuclide tracer and produces 3D image
of functional processes of scanned body. It is a nuclear medicine technique (Das
2014). There are several other kinds of medical imaging techniques, Diffuse Optical
Tomography (DOT) (Boas et al. 2001) and ultrasound for instance, to acquire
images from part of the human body. No matter what imaging technique being
used, the scanning results are stored in medical images and these images require
further investigation and analysis to extract geometric and biological information.

A medical image is usually stored in a discrete dataset. It contains the geometric
information of the scanning object, descriptive information of patient identification
and demographics, as well as the technical information of the examination, series
and slices. The commonly used medical image formats are Analyze format, Neu-
roimaging Informatics Technology Initiative (NIfTI) format, Medical Image NetCDF
(MINC) format and Digital Imaging and Communications in Medicine (DICOM)
format (Larobina et al. 2013).

A medical image is a structured dataset. This dataset contains topology, geome-
try and attribute information to represent and implement the objects hidden inside
the image. Topology is a set of properties of an object with certain geometric trans-
formations (Weiler 1986), such as triangle, vertex, line and their transformations.
Geometry is the instantiation of the topology. It is the specification of a 3D form
such as point coordinates of a triangle (Schroeder et al. 2005b). Attributes are sup-
plemental information of the dataset structure, including scalars, vectors, normals,
texture coordinates and tensors. Together with the topology and the geometry, this
information is to be modelled to represent the objects hidden inside the images.

The image-based modelling applies clinical information and dataset extracted
from the medical image to visualise and reconstruct the specific tissues of the image
for the purpose of geometric and biomedical analysis and processing.

A medical image is the input of the image-based modelling, which extracts,
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visualises and reconstructs the region of interest out of the medical image. The
image-based modelling aims at the representation of specific tissues in the medial
image, such as bones, skins, blood vessels and so forth.

In terms of blood vessels, the vascular images are captured by vascular imag-
ing modalities. In order to visualise the inside of the blood vessels, angiography
is normally used in the vascular imaging techniques. There are mainly three types
of angiography, X-ray angiography, Positron Emission Tomography (MRA) and CT
angiography (Christie et al. 2014; Herrick et al. 2004; Kishore et al. 2013). The
X-ray angiography is the traditional way to capture the image of blood vessels. A
radio-opaque contrast agent is usually injected into the blood vessel such that the
lumen of the blood vessel can be imaged with X-ray based techniques. With the
development of digital techniques, Digital Subtraction Angiography (DSA) is intro-
duced on the X-ray angiography to give better visualised blood vessels (Mistretta
et al. 1981). However, since the contrast agent is potential for nephrotoxicity and
the X-ray is harmful to the human body, the X-ray angiography is much less used
than before. The MRA is one of the most used vascular image techniques today.
It combines the advantages of DSA and MRI together to gain the fully anatomi-
cal 3D image of blood vessels (Hartung et al. 2011). In contrast with the X-ray
method, the MR angiography is not invasive because no intra-arterial puncture is
required. Besides the vessel lumen, it can examine the vessel wall and surrounding
structures. This allows the detection of inflammation and oedema of the vessels wall.
The CT angiography is able to capture the 3D images of the blood vessels and the
surrounding structures. It gives a huge space on the image processing and analysis
techniques on the research of blood vessels. Small and deformed blood vessels and
vascular diseases can be visualised with this technique. It is a promising technique
on the vascular image modalities.

1.2.2 Geometric Modelling

Geometric modelling is a branch of applied mathematics and computational ge-
ometry on the description of geometric shapes. It is usually about the study of
techniques and algorithms relating to specifying geometric shapes in the 2D and 3D
spaces in terms of points, curves, surfaces, solids, functions and other techniques.
It is widely used in a variety of different areas such as Computer-aided Geometric
Design (CAGD), reverse engineering, real-world shape reconstruction, Computer-
aided Manufacturing (CAM), geometric information processing, image processing,
molecular modelling, computational fluid dynamics, computer graphics, computer
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animation and so forth (Gallier 2018; Mortenson 1997).

Based on the representation form of a geometric model, geometric modelling can
be categorised as wireframe modelling, surface modelling, solid modelling (Weiler
1986) and function-based modelling (Pasko et al. 2002a, 1995). Wireframe mod-
elling is one of the earliest geometric modelling techniques, which represents a ge-
ometry using points and curves on the objects. Surface modelling is the most used
geometric modelling technique. The shape of a geometric object is mathematically
described and represented as a set of surfaces. These surfaces are graphically dis-
played but may not be geometrically connected. Since each surface is independent
of the others, the integrity checking features are absent. Solid modelling represents
a geometric object in the form of solid (Hoffmann 2004). The solid is a boundary-
based volume with a closed surface. Compared with surface modelling, the inside
and outside of the solid are divided by this closed surface. Other geometric proper-
ties of the solid, such as the centre of gravity, can also be analysed. Function-based
modelling represents a shape by using a scalar field function. A level set of the func-
tion is regarded as an implicit surface and this surface divides the volume into two
implicit solids. The set-theoretic operations are commonly used in function-based
modelling to make very complicated geometric shapes.

Geometric modelling techniques can also be classified into two groups: explicit
modelling techniques and implicit modelling techniques, according to whether a ge-
ometric representation can explicitly provide the points on the geometry. Explicit
modelling typically represents a 3D object as point clouds, a wireframe or a tri-
angle mesh. Although it is a preferred approach for the purpose of visualisation,
explicit techniques are very inconvenient at combining geometric shapes and han-
dling branched structures (Bloomenthal 1995b). In contrast, implicit modelling
represents a geometric object implicitly in the form of field functions, which can be
easily blended together to generate more complicated geometries. Since a vascu-
lar tree is with complicated shapes, implicit modelling is the favoured method for
geometric vascular modelling tasks (Bloomenthal et al. 1997; Li 2007).

1.2.3 Vascular-specific Geometric Representations

Depending on the accuracy required in an application, a blood vessel can be rep-
resented geometrically in many ways, such as vascular skeleton, a combination of
models and image segmentation results. A vascular skeleton is the supporting struc-
tures of blood vessel trees (Preim et al. 2014). With the skeleton, a blood vessel can
be represented as a group of blobs (Wyvill et al. 1998; Yureidini et al. 2012) or recon-
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structed as the approximation of sweep surfaces (Hong et al. 2012; Kretschmer et al.
2013). In some research works, a blood vessel is modelled locally using some simple
geometric primitives, such as cylinders, cones and spheres. Together with some vas-
cular geometric information extracted from a given medical image, the combination
of these models is an effective way of representing blood vessels (Zhang et al. 2007).
The image segmentation of a vascular image aims at identifying the region of blood
vessels by separating them from other tissues (Antiga 2002). The grey value and
position of the voxels in the region are identified and recorded. Although blood
vessels can be represented as the boundaries of the identified region, the segmenta-
tion result is far less accurate to present the geometric structures of a blood vessel
(Lesage et al. 2009).

The visualisation of volumetric data containing blood vessels plays an impor-
tant role in the research of geometric vascular modelling. In some cases, when the
visualisation of the blood vessels is the main purpose of vascular modelling task,
explicit extraction of geometric information is in general not required (Hahn et al.
2001; Preim et al. 2008; Schumann et al. 2007). The most commonly used vascu-
lar visualisation techniques are volume rendering, isosurface extraction (Lorensen
et al. 1987) and Maximum Intensity Projection (MIP) (Oeltze et al. 2005). Vol-
ume rendering gives a good visual result of the volume dataset, but small vascular
structures may be distorted or disappeared due to the low resolution of the original
dataset (Pommert et al. 1992). Vascular visualisation using the isosurface extrac-
tion method can produce iso-value surfaces from the medical image but it usually
fails to hold the small vascular structures to be connected as a complete tunnel when
the vascular periphery is inhomogeneous and the adjacent organs are with similar
imaging properties (Hahn et al. 2001). MIP projects the voxels of medical data in a
visualisation plane with maximum intensity such that the medical image is rendered
as a 2D image. It is a rather simple way of visualisation but cannot correctly reflect
depth relations and small structures may not be rendered (Preim et al. 2014).

Although visualisation technique renders blood vessels in a visualised way and
gives an interactive user interface to manipulate the blood vessels hidden inside the
medical images (Hansen et al. 2005), it presents no geometric information of the
blood vessels and is regarded as a complement of geometric vascular modelling. As
a matter of fact, it is insufficient to visualise the blood vessels without the geometric
vascular structures in applications concerning Computer-assisted Surgery (CAS).
These applications require an accurately reconstructed geometric structure of the
blood vessels to assist the surgeries in reality.
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1.3 Aims and Objectives

Geometric vascular modelling has been widely investigated by a variety of ap-
proaches and researches. Although applications on geometric vascular modelling
have achieved great progress in the past two decades, it is still a challenging task
to faithfully reconstruct the geometric structures of blood vessels with high accu-
racy and high performance. For one thing, a vascular tree is with high-complicated
reticular formations. Stenosis, aneurysm, thrombosis, atherosclerosis and other de-
formed irregular pathological parts make them even more complex in their geometric
structures. It is extremely challenging to accurately represent the geometric struc-
tures of a vascular tree in an effective manner. For another, blood vessels are made
of soft tissues with various shapes, complex branches and different sizes. The high-
accuracy reconstruction of the complicated vascular tree is inherently difficult and
computationally expensive. It is urgently required to optimise this reconstruction to
improve the modelling performance. What is more, a blood vessel is a lumen with
a thin wall. This wall is a multi-layer thin solid with a thickness which cannot be
effectively represented as a geometric surface, since a geometric surface has no thick-
ness. However, the existing geometric vascular modelling techniques reconstruct the
blood vessels as surface-based geometric shapes without the faithful representation
of the real-world blood vessels. A vascular tissue modelling technique is required to
overcome this shortage.

A good geometric vascular modelling technique should be able to provide high
accuracy and high performance on the geometric representation of complicated vas-
cular trees and give interior structure descriptions of the vascular wall. This research
aims to develop a state-of-the-art patient-specific medical image-based vascular geo-
metric modelling technique to solve these problems. More specifically, this research
will focus on the following three areas:

• High-accuracy geometric representation of the complicated vascular system.
A blood vessel can be reconstructed in many ways. The model-based method
uses templates to simulate the shapes of blood vessels and gives hemodynamic
analysis on them. The modelling result is represented with parametric surfaces
but the result is too ideal to describe the shapes of blood vessels in reality.
Instead of using the templates, the sweep surface method applied the vascular
segmentation on the reconstruction of blood vessels and gives a much better
result. However, its reconstruction accuracy can only be guaranteed at the
data points on the cross-sections of the sweep surface. The reconstructed
blood vessel between two neighboured cross-sections of the sweep surface is an
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approximation and cannot accurately represent the original vascular shape. In
this research, the Localised Implicit Object is proposed to replace the sweep
surface on the vascular skeleton, which accurately reconstructs the shape of a
section of a blood vessel without ignoring the data points on it. The accurately
reconstructed vascular sections are then combined together using the shape-
preserving blend operations to form a complete vascular tree.

• High-performance computation geometric vascular reconstruction approach.
Although the sweep surface method has been used to reconstruct the geomet-
ric structures of blood vessels, its computation is very heavy for large modelling
task. On the one hand, albeit the sweep surface method has been successfully
applied on vascular modelling and achieved satisfactory accuracy on the cross-
sections of the sweep surfaces, but extra operations on coordinate transforma-
tion and ordering of the data points on cross-sections limit the performance fo
the modelling. The accuracy out of the cross-sections is unguaranteed. On the
other hand, the sweep surface method is a two-step modelling technique. The
data points on a cross-section of the sweep surface have to be approximated to
be generalised circles first and many consecutive generalised circles are then
being fitted into a generalised cylinder. This research proposed the Skeleton
Marching technique to avoid this inefficiency. With the localised implicit ob-
ject, many sections of blood vessels are directly reconstructed from the data
points of blood vessels. Since this direct reconstruction is parallel computing
friendly, the performance of the proposed method is significantly improved.

• Tissue modelling of the interior material structures inside the vascular wall.
The wall of a blood vessel is very thin but also with interior structures. The
surface-based vascular modelling treats the vascular wall as a surface rather
than a thin solid, which neither correctly reflects the physical truth nor can
be printed out using additive manufacturing techniques for further research.
As a solution, this research proposes Thin Implicit Patch (TIP) and Implicit
Interior Structures (IIS) to model the geometric structures of tissues inside
the vascular wall. Various structures can be embedded inside the vascular
wall with simple implementation and cheap computation. It gives a new idea
on solid modelling and additive manufacturing applications.

1.4 Outline and Contributions

In this research, the geometric vascular structure is implicitly reconstructed out
of volumetric vascular images with parallel computing accelerations. The wall of a
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blood vessel is implicitly modelled as a thin solid with interior structures to represent
the vascular wall in the real world. Figure 1.1 illustrates the process of this research.

Start

Vascular 
Image Data

Skeleton 
Marching

Thin Implicit 
Patch

End

Geometric Structure 
of Surface-based 

Blood Vessels

Geometric Structure 
of Blood Vessels as 

Thin Solids

• High-accuracy
• High-performance

• Flexible Surface Thickening
• Interior Structures Embedded

Figure 1.1: Flowchart of this Research

The rest of this thesis is structured as follows:

Chapter 2 discusses the related research background. The vascular modelling
techniques are firstly reviewed in several different aspects concerning vascular sys-
tems, skeletonisation, segmentations and localisations, and common models and
templates used in vascular modelling. Then the key techniques of implicit mod-
elling are discussed, including the conception of the implicit object, the flexibility
of the implicit blending operation and the brief discussion of the implicit surface
modelling techniques.

Chapter 3 discusses the high-performance computation geometric vascular recon-
struction based on implicit modelling techniques. This is the main contribution of
this research. A parallel technique called Skeleton Marching is proposed for fast re-
construction of blood vessels. Long and complex blood vessels are divided into short
and simple vessel segments guided by the shape of the skeleton, then small point
clouds are collected with localised segmentation method, which are then fitted in
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parallel with a set of implicit surfaces. A complex vascular tree is finally constructed
by blending these objects together. This vascular modelling divides large implicit
modelling task into small independent sub-tasks and makes them work simultane-
ously. With the shape-preserving blending operation, this vascular modelling can
generate high-accuracy geometric vascular trees.

Chapter 4 investigates the thickening technique of geometric surfaces for mod-
elling a real-world vascular tissue. This is another contribution to this research.
The implicit offset surface is proposed to convert a surface to an implicit thin solid.
Several construction methods of implicit offset surface are proposed. This offset
surface can be applied to both parametric and implicit surfaces to convert them to
be thin implicit solids. Inside these thin solids, interior structures can be embedded
to simulate the internal composition of real-world 3D objects. In this way, a blood
vessel with a thin vascular wall can be printed out such that the reconstruction
of the vascular tree is not only visualisable and touchable but also producible and
manufacturable.

Chapter 5 gives a conclusion of this research and discusses the future work.
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Chapter 2

Related Work

The research of image-based geometric vascular modelling involves many aspects.
This chapter discusses the related works including skeletonisation, model-based
methods, vascular segmentation and the implicit modelling techniques.

2.1 Skeleton and Modelling

A skeleton is the supporting structure of an organism when talking about geometric
medical image modelling (Preim et al. 2014). For vasculatures, a skeleton is usu-
ally a centreline which is identified as the locus of the centres of maximal spheres
inside the vascular structure (Hong 2013). But a vascular skeleton can be another
path inside the blood vessel rather than the centreline, as long as it represents the
geometric topology of the vasculatures. Skeletonisation is the process of locating
skeleton of vasculatures. With respect to the innate property of natural representa-
tion on a solid object, the combination of skeletonisation and implicit techniques is
particularly suitable for natural form modelling (Antiga et al. 2003). Most vascu-
lar reconstruction techniques are skeleton-based because it is natural and easier to
build a tunnel-shaped structure with the guidance of the skeleton. For example, the
arterial path line generated with skeleton-based modelling can be used to construct
a 3D solid fluid computational model (Hossain et al. 2011). But in some situations,
such as small local region or simple geometries, a skeleton may not be necessary and
skeleton-free method plays a more important role (Liang et al. 2013).
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2.1.1 Skeletonisation

Skeletonisation is a powerful tool for the compact description of shapes and planning
of paths. In most cases, it is to find the skeletons out of a medical image.

Zhou presents an efficient skeletonisation algorithm of 3D medical images. The
skeletons are interpreted as connected centrelines which consist of medial points of
consecutive clusters (Zhou et al. 1999). Telea presents a simple and robust skele-
tonisation algorithm for arbitrary 3D objects (Telea et al. 2002). This method
is based on the Fast Marching Method (FMM) by computing the parameterised
boundary location of every pixel. Lower memory costs and shorter running times
are required of this method for both 2D and 3D applications. Antiga presents a
robust and accurate method to get the centrelines of tubular objects. This method
solves the Eikonal equations on the Voronoi diagram to find the centreline. It has
been used on the 3D modelling of vascular segments (Antiga et al. 2003). Bühler
surveys the geometric methods of visualisation and qualification on centreline com-
putation, boundary dictation projection techniques and geometric model generation
out of the vessel data (Bühler et al. 2004). The extraction of retinal centreline is an
important application of skeletonisation of medical images. Sofka proposes a new
technique for extracting vessels of retinal images (Sofka et al. 2006). The central
idea of this method is the combination of matched-filter responses, confidence mea-
sures and vessel boundary measures. It is an efficient and effective vessel centerline
extraction algorithm. The interactive extraction of the centreline of a tubular ob-
ject is an effective way of skeletonisation. Zhang describes a user-steered method
for interactive centreline tracking. This method has been used on coronary artery
tracking (Zhang et al. 2008).

The skeletonisation can be accelerated by GPU computing. Smistad presents
an airway segmentation and centreline extraction method implemented with GPU
acceleration. This method significantly reduces memory usage and processing time
(Smistad et al. 2012). The GPU-accelerated segmentation and centreline extrac-
tion of coronary arteries is also discussed in Lefdal’s thesis. Different methods and
approaches are compared and a suitable method is chosen for the parallel imple-
mentation (Lefdal 2016).

A skeletonisation with less manual operations is expected for high-performance
computation vascular modelling. Kumar presents a novel semi-automatic method for
the segmentation and centreline extraction of blood vessels (Kumar et al. 2015). A
user-initiated seed is required at the end of the blood vessel tree and the 3D cross-
section analysis is done by single-scale or multi-scale circle enhancement filter to
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track the trunk and bifurcation of the blood vessel. This method can be combined
with an optional active contour post-processing to improved the accuracy of the
extraction.

Machine learning can be used on the skeletonisation of vascular structures. Bates
proposes a method to extract the centreline of the vessels using Convolutional Neural
Networks. The Convolutional Long Short-Term Memory units (ConvLSTM) is used
to extend the 2D centrelines to be 3D forms in anisotropic and complex microscopy
images. Both 2D and 3D convolutional comparators are effective of this hybrid
convolutional-recurrent architecture (Bates et al. 2017). A similar topic on deep
feature extraction of vessel segmentation and centreline prediction can be found at
(Tetteh et al. 2017). Machine learning for pixel classification tasks is applied in this
paper.

2.1.2 Skeleton-based Modelling

One of the earliest work on combining implicit modelling with skeletons can be
found at (Bittar et al. 1995). In this paper, the author uses medial axis and implicit
surface to reconstruct 3D solid from an unstructured point set. Smooth freeform
solids can be generated with this method. Bloomenthal focuses on the skeletal design
of natural forms in his dissertation (Bloomenthal 1995b). The geometries from real-
world objects can be mimicked by the design of geometric shapes guided with the
skeletal design. This paper deeply discusses the techniques of implicit modelling and
the design of skeletal objects. No geometric reconstructions are mentioned. Cani-
Gascuel applies the idea of skeleton on the implicit surface design and animation
(Cani-Gascuel et al. 1997). The articulated skeletons coated with implicit flesh are
used to make the animation of simple characters, and the the specific properties of
implicit surfaces are used to maintain the constant volume of the animation.

Skeleton-based implicit surfaces allow interactively design and display curved
models. Cani focuses on the surfaces with skeletons as graphs of interconnected
curves and presents a new solution of interactive implicit modelling called subdivi-
sion curve primitives. The surfaces can be efficiently and correctly displayed using
local meshes around the curves. This method can be used to represent different
levels of details of the model (Cani et al. 2001).

A practical application of the skeletons on vascular modelling are the reconstruc-
tions of vasculatures. Selle presents a group of methods for the geometrical analysis
of vessel systems based on row medical images (Selle et al. 2002). The skeletons of
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the vessels are determined after the image segmentation, and the structures of the
partial veins and their vascular territories are approximated with different methods.
This is a successful application of skeleton-based modelling, but the the modelling
results are not precise for further geometric analysis.

Angelidis proposes a skeleton represented as interconnected subdivided curves
and surfaces to control the shapes of the model (Angelidis et al. 2002). The level
of the subdivision of the skeleton determines the level of the details of the implicit
surfaces. A new solution of avoiding the unwanted blendings is also proposed. The
skeleton can be used for the interactive modelling of user-defined strokes. Alexe
extracts the skeleton of a 2D contour to define an implicit surface that fits the
contour. The 3D shape is reconstructed from the implicit surface with a natural
aspect. This method is accessible for fast and easy shape prototyping (Alexe et al.
2004). Allegre presents a hybrid modelling frame work called HybridTree for the
modelling of complex 3D objects (Allègre et al. 2006). It combines skeletal implicit
primitives, triangle meshes and point set models in a coherent fashion. Both the
advantages of triangle meshes on local deformation and the flexibility of implicit
surfaces on combining shapes are utilised in this method. In order to efficiently
reconstruct the surface model of blood vessels, Yureidini proposes a new implicit
modelling consists of local implicit surfaces generated by blobby models on skeletons.
An energy function is used to replace the original blob for the reconstruction. It is a
very efficient reconstruction of blood vessels (Yureidini 2014; Yureidini et al. 2012).
Skeleton-based implicit surfaces can be decorated with geometric details. Zanni
applies Gabor noises on the skeleton-based implicit surfaces and creates enhanced
implicit primitives without blurred details (Zanni et al. 2012).

2.1.3 Sweep Surface

A typical application of skeletonisation is sweep surface, which is a natural idea of
building vascular structures. It generates a set of 2D vascular contours and then
composes them together using different techniques. This idea can also be applied on
a volume rather than a surface. Wang presents a method for modelling the sweep
volume from a moving solid. This is one of the earliest research in this field (Wang
et al. 1986). Schroeder presents an implicit modelling technique on the generation
of sweep surfaces and volumes (Schroeder et al. 1994). This method is applicable
for any geometric representation with a distance function. It is used on the main-
tainability design and robot path planning. Zhang reconstructs the patient-specific
vascular geometric models using hexahedral solid NURBS for isogeometric analysis
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(Zhang et al. 2007). The skeleton-based sweeping method is used to construct the
hexahedral control meshes. This method uses templates to simulate the geometries
of blood vessels, therefore the reconstruction cannot achieve high accuracy.

A successful application of skeleton-based vascular modelling with sweep surfaces
can be found in the conception of bivariate implicit spline. Based on it, Hong de-
velops a high accurate implicit geometric representation of vascular trees from given
volumetric medical dataset to reconstruct high accurate implicit cylinders with ar-
bitrary cross sections (Hong et al. 2012). Hong demonstrates that skeletal curve is
the best way to represent topology of vasculatures, because of its complexity and
naturally representation of complicated structures such as 3D context. Firstly they
make a simple coordinate transformation from Cartesian space to Frenet frame space
which consists of binormal, normal, and tangent. Then they represent implicit spec-
ification of freeform cross section by using 2D piecewise algebraic splines (Li et al.
2009). Along skeleton with variable cross sections, they construct freeform implicit
cylinders in Frenet frame space, but without bifurcations permission. A blending
function is introduced to reconstruct the branched blood vessels with flexible blend-
ing range control. This blending function is a piecewise polynomial shape operator
which has smooth distributions on any required degree. Their work starts with a
pre-segmented data so that the reconstruction result heavily relies on the accuracy
of segmentation.

Kretschmer gives a similar solution of the skeleton-based vascular modelling
(Kretschmer et al. 2013). This paper presents a solution of interactive implicit
vascular modelling techniques, including how to convert vascular contours to 2D
implicit sweep template for sweep surface generation, how to eliminate undesirable
bulges in blending but preserve the original shapes meanwhile, and how to locally
update the model interactively. This paper develops vascular modelling in three
steps. (1) Implicit description of polygons by using precomputed implicit represen-
tations to abridge computation complexity, and construction of sweep template by
Catmull-Rom spline (Twigg 2003). (2) Defining the implicit sweep using Frenet
frameworks to convert the world coordinate to tangent coordinate, and doing inter-
polation because the sweep templates are sparse. (3) Using gradient-base blending
operations to smooth and eliminate bulges (Gourmel et al. 2013).

Sweep surface has several limitations. Firstly, there are two extra operations of
sweep surface method: indispensable coordinate transformation for orthogonality
between the blood vessel and the sweep surface, and unavoidable points sorting
up on the cross-sections for spline approximation. These operations reduced the
performance of the modelling. Secondly, the density of cross-sections influences the
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reconstruction. Data points between two consecutive cross-sections are ignored. The
larger the density of the cross-sections, the better the modelling quality. Lastly,
vascular modelling based on sweep surface uses two-step approximation. Cross-
sections are firstly approximated as a series of closed splines, then these splines are
approximated as a generalised cylinder. Modelling performance will decrease with
this two-step operation.

2.1.4 Skeleton-free Modelling

The skeleton is not indispensable for surface modelling when the modelling is re-
garded as a general object. Liang reconstructs the implicit surfaces from point clouds
of tubular objects (Liang et al. 2013). The modelling space is divided into the inte-
rior region and the exterior region by a boundary surface fitted from the data points.
The anisotropic Gaussian function with signed distance functions is used to smooth
noises and solve the non-uniform open boundaries. The tubular experiments in this
paper do not require skeletons, but this method is hard to apply on complicated
vasculatures, especially the tiny and complicated parts such as capillaries.

The famous marching cube method can also be regarded as a skeleton-free mod-
elling (Lorensen et al. 1987; Newman et al. 2006). This algorithm creates triangles
of constant density surfaces from medical images. A case table is made by the
divide-and-conquer approach to generate inter-slice connectivity. By maintaining
the inter-slice connectivity, the surface of the 3D object hidden inside the medical
image is constructed. This method has been a standard of the surface visualisation
of medical images. However, it is more a visualisation method rather than a recon-
struction method. The surfaces generated by this algorithm is far accurate from the
requirement of geometric analysis.

2.2 Templates and Model-based Methods

Blood vessels are geometric objects with long thin shapes. A single blood vessel
can be regarded as a generalised cylinder, and the junction of different blood vessels
also has specific shapes. A model-based vascular modelling uses geometric models
and templates to simulate the different shapes of blood vessels (Schumann et al.
2007). In contrast, a model-free vascular modelling has no template assumptions
but uses other techniques, such as vascular segmentation, to reconstruct the blood
vessels (Preim et al. 2008).
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The model-based vascular modellings are usually used for vascular decomposition
and classification or the analysis of blood current. Agin studies the representation
and description of curved objects with simple geometric primitives. The joints of
these primitives are also discussed. This is one of the earliest work on the modelling
of generalised cylinders (Agin 1972). Hahn describes a pipeline of image procession
for the symbolic models of vascular reconstruction (Hahn et al. 2001). A blood ves-
sels is regarded as a truncated cone and different cones are smoothly blended at the
branching joints. This pipeline is proposed for the visualisation of the vasculatures
and aims at medical education and therapy planning. Frangi reviews the 3D mod-
elling for functional analysis of cardiac images. This review surveys the research of
cardiac modelling for two decades and conclude that the 3D model-based modelling
can improve the diagnostic value of cardiac images (Frangi et al. 2001).

A template sweeping along the skeleton of a blood vessel can be treated as a
model-based vascular reconstruction. In the paper of (Antiga et al. 2003), the
author mainly discusses how to compute the centrelines of blood vessels but also
mentions the blood vessel model generated from a sweeping maximal inscribed ball
along the vascular centreline .

Zhang proposes a model-based vascular reconstruction for isometric analysis
(Zhang et al. 2007). Image processing techniques are firstly use to improve the
quality of input image data, then templates are designed to match different shapes
of blood vessels along the vascular skeletons. NURBS meshes are used to generate
the surface of the blood vessels based on a variety of templates. This is a typical
model-based vascular modelling method.

Wang presents an extension algorithm to repair the segmentation flaws of cere-
brovascular structure with G2 continuous Ball B-spline curve (Wang et al. 2016).
The Ball B-spline is good at representing tubular structures and gives out model-
based vascular tree with smooth joints. This method can be regarded as a vascular
modelling technique.

Priem overviews the visualisation techniques on vascular structures, including
volume rendering and surface rendering (Preim et al. 2008). Particularly, this paper
distinguishes model-based approaches and model-free approaches. The model-based
methods create ideal easy-to-interpret visualisation with model assumptions, while
the model-free methods represent the data with a more faithful way. Interaction
techniques and virtual angioscopy are also discussed. Another review of model-
based vascular modelling can be found at Urick’s work (Urick et al. 2017). This
paper reviews the literature on patient-specific arterial network modelling. One of
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the main steps of the modelling mentioned in this paper is the analysis of suitable
model generation. NURBS is used for the isogeometric finite element analysis in the
examples of the paper.

2.3 Vascular Segmentation

A model-free vascular modelling usually uses image segmentation to assist the ge-
ometric reconstruction of blood vessels. Image segmentation is one of the most
important techniques of image information extraction. It partitions an image into
distinct constituent subregions, which are homogeneous with some defined charac-
teristics (Drever et al. 2007). Conventionally, segmentation is the prerequisite of
reconstruction (Hong 2012; Yureidini 2014; Zhang et al. 2007), but there are also
some segmentation-free approaches for the task of vascular modelling (Kretschmer
et al. 2013). This means blood vessels may be reconstructed in a more natural way
than the segmentation-based method.

Region growing segmentation is a robust image segmentation algorithm for freeform
regions (Adams et al. 1994). Based on the region growing technique, Masutani de-
velops an algorithm to acquire the topological information of tree-like objects such
as vascular shapes (Masutani et al. 1996). This algorithm extended the theory
of mathematical morphology for closed space inside binary shapes. The superior
features such as parametric controllability can be shown. Similar with the region
growing method, Xu develops the gradient vector flow (GVF) for active contours
(Xu et al. 1997). The GVF computes the gradient vectors of a gray-level map from
the image as the external force. This new external force does not require initialisa-
tion but can get fine convergence to concave boundaries.

Antiga discusses the patient-specific modelling of large arteries in his disserta-
tion (Antiga 2002). Various 3D modelling of vascular structures are addressed in
this thesis, such as snakes and level set. Computational geometry techniques are
developed to solve segmentation, reconstruction and other specific problems of 3D
modelling of vasculatures. Fluid-dynamics analyses are discussed in the paper.

Selle’s method for geometrical and structural analysis of vessel systems is a
skeleton-based and segmentation-based reconstruction for lier surgical planning (Selle
et al. 2002). After the segmentation of the vessels, the geometrical and structural
shapes of the vessels are analysed with the assistance of the vascular skeletons. The
vascular territories are approximated with different methods and visualised with
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graphics primitive fitted to the skeleton.

The application of convolution surfaces on the modelling of vasculatures produces
excellent visualised results. Based on this application, Oeltze presents a visualisa-
tion method for the vasculatures inside medical images (Oeltze et al. 2005). Using
the skeleton and the diameter information as in put, this method produces smooth
transitions at branchings and closed rounded ends with convolution surfaces. Al-
though very smooth blood vessels can be visualised, this method lacks of accurate
geometric information of the vessels.

Vessel segmentation algorithms are surveyed in detail in Kirbas’ review (Kirbas
et al. 2004). This review surveys vessel segmentation algorithms into several cate-
gories: pattern recognition techniques, model-based approaches, tracking-based ap-
proaches, artificial intelligence-based approaches, neural network-based approaches,
and miscellaneous tube-like object detection approaches. This is one of the most
detailed reviews on the problem of vessel segmentation.

Boskamp reviews how to analyse and visualise blood vessels of medical images
(Boskamp et al. 2005). The key techniques of vascular modelling, including seg-
mentation, skeletonisation, topological and morphometrical analysis methods are
all discussed. A number of clinical and medical applications are described in this
paper.

One of the most general reviews of vascular segmentation can be found at (Lesage
et al. 2009). In this paper, the authors review the literatures of vascular segmenta-
tion from the views of models, features and extraction schemes. The model assump-
tions of the vessel appearance and geometry can be embedded in the segmentation
approaches, the image features are used to evaluate the models, and the extraction
schemes combining the model and the feature is discussed to perform the segmen-
tation task.

Schumann presents an accurate and high-quality model-free reconstruction of
vascular structures (Schumann et al. 2008). A point cloud is firstly extracted
as the result of a segmentation. The signed distance field is generated by using
Multi-level Partition of Unity Implicits (MPUI) and then polygonised with a surface
tracking approach. This method makes a good tradeoff between the accuracy and
smoothness.

Antiga presents a vascular modelling framework for computational hemodynam-
ics (Antiga et al. 2008). The techniques of image processing, geometric analysis
and mesh generation are used in this framework. This paper proposes implicit de-
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formable models for the image segmentation task. This is a novel approach for
segmentation on vascular images. Selective initialised points of blood vessels are
used as a strategy for this segmentation. This framework is a part of the open
source software Vascular Modeling Toolkit.

Taylor describes the patient-specific modelling of cardiovascular mechanics (Tay-
lor et al. 2009). After the acquisition of patient-specific anatomic and physiologic
data, image segmentation and image-based geometric modelling are used to recon-
struct the geometry of the vascular tree. The reconstruction is represented as an
automatic mesh generation. This is a new application of cardiovascular mechanics.

Wu proposes a technique to accurately obtain the vascular structure of patient-
specific vasculatures (Wu et al. 2011). An accurate and smooth centreline step is
firstly applied to fit the cross-sections of blood vessels. A level set method is then
used to segment the vessels out of the medical image. The segmentation results
are used to reconstruct the surface of the blood vessel by generating a set of topo-
logically preserved quadrilateral patches. This method receives a good balance on
smoothness, number of triangles and distance error.

Shang presents a novel active contour model for the segmentation of vessel tree
(Shang et al. 2011). A region competition-based active contour model is firstly
introduced to segment the thick vessels. Then a vascular vector field is defined
to evolve the active contour along the centreline for the thin and weak vessels. A
dual curvature strategy is finally used to smoothen the surface of blood vessels
without changing the shapes. This method is accurate and robust for the automatic
extraction of blood vessel trees.

Hong’s vascular modelling technique gives high-accuracy high-smoothness vas-
cular geometries (Hong 2012, 2013; Hong et al. 2012, 2015). This method is a
skeleton-based, segmentation-based and model-free implicit vascular modelling tech-
nique.

One of the latest work of vascular modelling with image segmentation and im-
plicit modelling can be found at (Kerrien et al. 2017). Both the segmentation and
reconstruction of the vasculature are addressed in this paper. The segmentation is
based on an original tracking algorithm which filters the points extracted from the
vessel surface surrounded the centreline. Blobby models are used to automatically
reconstruct each local unstructured point set along the centreline. The vascular tree
is a new model of the local implicit models.

Several other model-free vascular modelling techniques mentioned in previous

21



sections also use segmentation results to achieve the reconstruction of blood vessel
(Kretschmer et al. 2013; Kumar et al. 2015; Yureidini 2014; Yureidini et al. 2012).
In contract with the model-based methods, the model-free methods generate more
faithful blood vessels rather than idea geometric shapes. However, the quality of
segmentation results directly determines the precision of the reconstruction results.

2.4 Implicit Modelling Techniques

In order to accurately reconstruct the structure of a complicated vascular tree, a
correct geometric representation of the structure plays an essential role. Consider-
ing the various shape of a single blood vessel and the complex joints of the branched
vascular tree, the implicit modelling is the favoured modelling technique. On the
one hand, implicit modelling is good at representing freeform objects. An implicit
function can be either with concise expression to give simple shapes or with a care-
ful configuration to give complex implicit objects. Each part of the blood vessel,
no matter whether it is straight or curvy, thick or thin, long or short, can all be
effectively represented. On the other hand, an implicit object with complex shape
can be efficiently represented by combining implicit objects with simple shapes. By
using the shape-preserving blending operations, the shapes of the vascular joints can
be preserved as much as possible to the original data points. As a result, the accu-
racy of the implicit modelling can be guaranteed. The rest of this chapter discusses
implicit modelling and related techniques.

2.4.1 An Overview

A geometric object can be represented in the form of implicit functions, relevant
geometric modelling techniques developed based on this idea is called implicit mod-
elling (Gomes et al. 2009). In general, a scalar function can be used to represent any
attribute associated with a geometric object across a 3D volume, not just about its
geometric shape. Implicit modelling technique is also referred to as solid modelling
(Hoffmann 2004; Hoffmann et al. 1991; Lim et al. 1995; Shapiro et al. 1999), volume
modelling (Kaufman et al. 2005), level set methods (Museth et al. 2002; Osher
et al. 2006; Shang et al. 2011; Zhao et al. 2001) or F-reps (Function Representation)
(Bernhardt et al. 2010; Menon et al. 1996; Pasko et al. 1995), depending on the
context in which the technique is applied.

Implicit modelling was given less attention by the researchers of computer graph-
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ics before the 1980s (Foley et al. 1982). Sabin proposes the use of potential surfaces
for the description of arbitrary surfaces. This is one of the pioneer works on implicit
modelling, where the zero-value of the scalar function is regarded as the implicit sur-
face of a potential field. In addition, some Implicit blending operations are discussed
in this paper (Sabin 1968).

Ricci introduces the concepts of the intersection and union operations for the
smoothly joining of implicit objects (Ricci 1974). Middleditch is another pioneer
on the study of implicit blending operations. In the paper of (Middleditch et al.
1985), he presents a technique for blending definition and profile control. Several
implementations on 3D objects are visualised. Warren introduces a new definition of
geometric continuity for implicit blending operations (Warren 1989). The blending
of two or more polynomials always gives simple expression.

Hoffmann investigates and extends the potential method for implicit blend-
ing operations (Hoffmann 1993; Hoffmann et al. 1985). In order to avoid the
pseudo-Euclidean distance of blending functions, Rockwood proposes the displace-
ment blending which embeds the zero surface of the blending functions with a C1

continuous algebraic distance.

Blinn uses implicit functions to draw algebraic surfaces and develops an algo-
rithm that can be used for modelling electro density maps of molecular structures
(Blinn 1982). The conception of blobby molecules (blobs) is proposed, where the
implicit functions are the sum of radially symmetric functions with a Gaussian pro-
file. Typically, a blob is an exponential function but can be replaced with piecewise
polynomials to reduce the computational complexity (Blanc et al. 1995; Wyvill et
al. 1986). Bloomenthal extends this idea and introduces convolution surfaces which
gives fluid topological changes and smooth joints (Bloomenthal et al. 1991). The
blob is also known as metaball (Nishimura 1985) or soft object (Wyvill et al. 1990).

Sederberg uses piecewise algebraic surfaces for geometric modelling. This method
can blend algebraic surfaces together with any degree of smoothness. It can also be
used for solid modelling (Sederberg 1985, 1987).

The implicit surfaces and their applications receive more attentions after 1990s.
Muraki uses blobs for implicit modelling (Muraki 1991). A Blobby model is ex-
pressed as an isosurface of a scalar filed and different blobs can be blended together
to form a very complicated shape.

Bloomenthal explains interactive techniques for implicit modelling (Bloomenthal
et al. 1990a). In other papers, he discusses how to eliminate the bulges and creases
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when implicit surface blends together (Bloomenthal 1995a, 1997). Kacic-Alesic
presents several techniques on the controlling of blended surfaces (Alesic et al.
1991). Pasko describes an implicit blending operation based on the modified R-
function. The method supports both intuitive shape control and aesthetic blending
by hand drawn strokes (Pasko et al. 1994; Pasko et al. 1995; Pasko et al. 2002b).

Desbrun presents a hybrid model for the animation of soft inelastic substance
(Desbrun et al. 1995). Opalach overviews the modelling, rendering and animation
of implicit surfaces in (Opalach et al. 1995) and presents the use of implicit surfaces
for computer generated character animation in his dissertation (Opalach 1996).

In the course note of SIGGRAPH 1996, implicit surfaces are surveyed and com-
pared with other modelling techniques (Menon et al. 1996). In the book of (Bloo-
menthal et al. 1997), Bloomenthal examines the definition, representation, and ge-
ometric properties of the implicit surface and its practical methods.

Implicit surfaces are used to design and animate complex deformable models by
Cani-Gascuel (Cani-Gascuel et al. 1997). Implicit surfaces are introduced as extra
layers coating any kind of structure that moves and deforms over time.

The implicit representation of a geometry is multi-isocontour with possible self-
intersection and undesirable singularities. In order to overcome these problems,
Bajaj presents the details of the implicit surface patches as several implicit algebraic
surface splines (Bajaj 1997). Their use in C1 and C2 interpolation and interactive
freeform modelling are also discussed.

Barthe combines implicit surfaces with soft blending operations in a Construc-
tive Solid Geometry (CSG) tree to develop new shapes with limited number of
parameters (Barthe et al. 1998).

Wyvill proposes the Blob Tree for arbitrary compositions of implicit surfaces.
The rendering algorithms of implicit surfaces is also discussed (Wyvill et al. 1998).
The Blob Tree is extended to be locally restricted in a later work (Groot et al.
2009).

Variational implicit surfaces are proposed for arbitrary manifold topology by
Turk. A key strength of the variational implicit surfaces is both the location of
points on the surface and surface normals can be directly specified (Turk et al.
1999, 2002).

Implicit surfaces and implicit blending operations are widely used on geometric
modelling fields in the 21st century. Barthe presents a new implicit blending operator
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defined by an extruded implicit curve in an implicit extrusion field. This extrusion
field is a 2D space that each blending coordinate is a potential field (Barthe et
al. 2001). Museth presents a level set framework for the blending of implicit sur-
faces (Museth et al. 2002). Speed functions are defined as surface editing operators,
which encapsulates all the information required to deform a surface. The proposed
operators are regionally and globally supported for surface editing with quick com-
putation. Barthe uses a freeform curve to define the blending regions of two implicit
primitives (Barthe et al. 2004, 2003). The new blending operator unifies the sharp
transitions and smooth transitions in a single formula such that general blending
ideas are supported for freeform implicit modelling.

In (Zhao et al. 2001), the fast reconstruction of implicit surfaces based on vari-
ational and Partial Differential Equation (PDE) methods are used to reconstruct
surface from scattered dataset. This is a pioneer work of level set surface recon-
struction based on the proposal of level set methods and dynamic implicit surfaces
(Osher et al. 2006).

SIGGRAPH 2003 presents the advances in implicit techniques in its course note.
Variational implicit surfaces, radial basis functions and level set approaches are
surveyed. The tools related to implicit modelling techniques and the fundamentals
of implicit surfaces that make these tools work best are described (Yoo et al. 2003).

Multi-level Partition of Unity Implicits (MPUI) is a shape representation allows
to construct surface models from very large point set (Ohtake et al. 2003b). This
approach is flexible on local shape functions and can accurately represent sharp
features with appropriate shape functions. The seperation of local approximation
and local blending makes the representation can be rapidly evaluated.

Li proposes smooth unit step functions to define novel implicit blending operators
(Li 2004, 2007; Li et al. 2008). The proposed operators can achieve any level of
smoothness and the blending range is controllable. The shape of the blending result
can be preserved to the original shapes as much as possible. Similarly, Hsu proposes
two frameworks to transform exiting union and intersection blending operations to a
new family that the blending range can be controlled (Hsu 2013); Zanni introduces
an improved blending operator to give control over the topology changes (Zanni
et al. 2015).

In order to describe sharp features of an implicitly defined surface, Song aug-
ments an implicit surface by adding edge descriptors and vertex descriptors which
are defined by the distance field of edge curves such that the augmented function
contains the sharp features (Song et al. 2009). This method has been used on the
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reconstruction of a point cloud with a sharp feature.

Bernhardt presents a new implicit blending solution that happens only at the
overlapped region of two implicit objects but leaves a clean status for other parts
of the objects (Bernhardt et al. 2010). Gourmel extends this idea to the gradient-
based implicit blend, which uses not only the values of blended field functions but
also their gradients (Gourmel et al. 2013). This method suppresses the bulge
problems of constructive implicit modelling.

Effectively rendering of implicit surfaces is one of the difficulties of implicit mod-
elling. This problem is detailedly discussed in Sigg’s dissertation (Sigg 2006). This
thesis proposes different ways of representing implicit functions with real-time per-
formances. Level set method, signed distance function and quadratic surfaces are
discussed in this thesis. A progressive rendering technique is proposed by Gamito
which gives coarse-to-fine visualisation of implicit surface to overcome the slow pro-
cedure of ray casting method (Gamito et al. 2007).

Point Set Surface (PSS) is an important meshless surface representation. Guen-
nebaud proposes a new PSS based on the Moving Least Squares (MLS) fitting of
algebraic sphere (Guennebaud et al. 2007). This surface can be expressed by ei-
ther a projection procedure or an implicit form. It is a very efficient computational
representation of implicit surfaces. Poisson surface reconstruction creates water-
tight surfaces from oriented point sets. This method is robust for noisy point set
scanned from real-world and gives fine details of the reconstruction implicit sur-
faces (Kazhdan et al. 2006). An extended work explicitly incorporates the points
as interpolation constraints can be found at (Kazhdan et al. 2013).

The developing of implicit modelling requires more mathematical algorithms
for better control of geometric shapes. Li proposes a new type of bivariate spline
which can be created from any given set of 2D polygons with any required degree of
smoothness. The basis function of this spline are piecewise polynomials such that the
evaluation is fast and accurate (Li et al. 2009). When it is used as a parametric spline
technique, this bivariate spline is partial shape-preserving implicit splines which can
achieve the same effects of the classical Non-uniform Rational Basis Spline (NURBS)
but with relatively smaller set of control points (Li et al. 2011). These new splines
are powerful tools on implicit modelling of objects with complicated shapes. Based
on the bivariate implicit splines, Hong develops a vascular reconstruction technique
for the accurate construction of blood vessels. The qualitative and the quantitative
validations show that this method is of high accuracy and smoothness (Hong et al.
2012).

26



Inspired by the dynamic implicit surfaces, Stam derives a time-evolving implicit
surface based on velocity. This formulas have been applied on surface tracking
and the motion blurred blobby surfaces. The normal component of the velocity is
unknown in this method (Stam et al. 2011).

A short paper about tessellation of implicit surface with Cabor noise is pre-
sented by Zanni. This method blends implicit primitives without blurring the de-
tails (Zanni et al. 2012). Berger surveys a benchmark to evaluate and compare
implicit surface modelling from point clouds. The pipeline of measuring a surface
reconstruction algorithm is categorised into three phases: surface modelling, sam-
pling and evaluation. The experiments in this paper demonstrate the state of surface
reconstruction algorithms (Berger et al. 2013).

Rouhani presents a fast and flexible surface reconstruction techniques based on
implicit B-spline with local support (Rouhani et al. 2015). This technique recon-
struct a surface by solving a sparse system of equations. A novel weighting technique
is introduced to smoothly blend implicit patches together. This method is efficient
for handling large dataset with low computations.

Implicit modelling can also be used for stream modelling. In (Tao et al. 2016),
Tao presents an interactive approach for the stream surface generation. A sketch-
based interface is firstly designed to given topological clue of the streaming, and a
3D seeding curve is identified to generate a stream surface that captures the flow
pattern. In the last, the streamlines are removed to give the final stream surface.
This method gives an intuitive painting metaphor for many users.

One of the latest implicit geometric reconstruction techniques is proposed by
Liu (Liu et al. 2017). This paper presents a surface reconstruction that involves the
total variation of the implicit representation to minimize the occurrence of spurious
sheets. This method can achieve high quality reconstruction results but reduce the
use of extra sheets of the implicit modelling.

Implicit modelling has become a powerful tool on the surface and solid modelling
of complicated geometries. There are three main advantages of implicit modelling
(Bloomenthal 1990). Firstly, implicit model can be represented as either surface
or solid by the same implicit function. Secondly, the inside and outside of the
surface of an implicit model are directly determined by the implicit function. The
most important property owned by implicit modelling is that implicit models can
be easily combined together using certain blending (or composition) operations to
form much more complicated object.

27



The slow development of implicit modelling before 1990s comes from the diffi-
culty of effective representation of implicit geometric objects. The evaluation of an
implicit function is much heavier than a parametric function (Bloomenthal 1990;
Bloomenthal et al. 1990b). The problem has been progressively solved by fast de-
velopment of powerful modern General-purpose Computing on Graphics Processing
Units (GPGPU) with parallel computing (Araújo et al. 2015; Chen et al. 2014; Li
et al. 2009; Owens et al. 2007). The main difficulty now is how to precisely design
or reconstruct required shapes using implicit functions (Zanni et al. 2012).

2.4.2 Implicit Function

Implicit modelling technique uses implicit functions to express geometric shapes for
surface modelling and solid modelling. An implicit function is in general a mapping
f : Rm → Rn. In terms of implicit modelling, the scale function f : R3 → R is used
to represent a 3D object. For example, a surface in the 3D space can be represented
as the α-isosurface of an implicit function f :

{X ∈ R3 : f(X) = α} (2.1)

In contrast, an explicit function is a function in which the dependent variable
can be written explicitly in terms of the independent variable. It is defined in the
form of:

y = f(x1, x2, . . . , xn) (2.2)

When the independent variables (x1, x2, . . . , xn) are expressed with other param-
eters, u and v for example, this function is a parametric function.

The implicit function has several distinctive advantages over the explicit function.
Firstly, an implicit function gives the position relation between a given point and an
implicit object. For example, the sign of implicit function f(X) at a given point X0

directly indicates whether this point is inside or outside, or on the implicit surface
f(X) = 0. Collision detection is therefore easier on implicitly represented objects.

Secondly, the function value at a given point directly provides the distance in-
formation from this point to the zero level set of the implicit function. In this
way, two implicit function can be easily blended together to form a new implicit
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function. This is very important for modelling branching structures. For example,
Figure 2.1 shows the scaler field of the min operation between implicit function
f(x, y) = 4x2 + y2

4
− 1 and f(x, y) = x2

4
+ 4y2 − 1. The 0-isocontour of the new

implicit function is also shown.

Figure 2.1: The Scalar Field of a 2D Implicit Function

Thirdly, implicit function has simple forms for spheres, cylinders, ellipsoids,
cubes and many other common used geometries. For example, a unit sphere in
3D space can be implicitly represented as:

f(X) = ‖X‖ − 1 = 0,X ∈ R3 (2.3)

This representation is much simpler than the explicit and parametric counter-
parts of a unit sphere. Equation 2.4 gives an explicit unit sphere and Equation 2.5
shows a parametric representation.

z = ±
√

1− x2 − y2 (2.4)





x = sin θ cosφ

y = sin θ sinφ

z = cos θ

(2.5)

The implicit function is a flexible mathematical tool for solid modelling. It has
concise expression and is versatile on modelling freeform shapes. A complex implicit
object can be assembled by simple implicit objects. This is an essential requirement
for vascular modelling.
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2.4.3 Special Implicit Functions

The Radial Basis Function (RBF) and the Signed Distance Function (SDF) are two
special implicit functions. They are especially important for implicit modelling.

Radial Basis Function

The RBF is one of the simplest implicit functions. It is a real-valued function
whose values depend only on the distance from the original point. The combination
of RBFs is widely used on approximately given functions. In terms of geometric
modelling, the RBF technique is an effective way to approximate the surfaces from
unorganised points.

Buhmann surveys the development of RBF method and explains its usefulness
(Buhmann 2000). The approximation of spheres and the computation of interpolants
for large dataset are discussed. Carr uses the RBF method to reconstruct smooth
and manifold surfaces from unorganised point data (Carr et al. 2001). The surfaces
are implicitly defined as the zero level set of a RBF fitted to the given dataset. Very
large datasets can be evaluated by a greedy algorithm which significantly compresses
the number of RBF centres. Holes can be smoothly filled by this method.

Ohtake applies the coarse-to-fine hierarchy to the RBF method to reduce its
sensitivity of points density (Ohtake et al. 2003a, 2004; Ohtake et al. 2005). A
downsampling is firstly used to construct the hierarchy of the dataset, then the ap-
proximation is starting from the coarsest level with local supported basis function
and progressively gains fine results. This method is faster than the globally sup-
ported RBF methods. An extension work based on the coarse-to-fine hierarchy is the
sparse surface reconstruction with adaptive partition of unity and RBF (Ohtake et
al. 2006). Ohtake combines the adaptive partition of unity approximation with the
compactly supported RBF fitting and generates high-quality surface reconstruction.

Similarly, Tobor presents a multi-scale scheme for the reconstruction of implicit
surfaces from discrete points (Tobor et al. 2006). Attributes are allocated in this
scheme to give a better reconstruction results. The RBF techniques are used to
reconstruct surface parts and these parts are hierarchically blended together with
partition of unity functions.

Pan also presents a coarse-to-fine approach for the implicit surface reconstruction
from scattered points (Pan et al. 2010). This method uses a two-level method on
the reconstruction. The coarse level uses local quadratic approximation to compute
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the signed distances from the point set to the underlying surface, while the fine
level performs a fitting to the residual errors on the surface points and additional
off-surface points. The final result with a good approximation is the sum of these
two intermediate functions.

The Dual-RBF is a novel implicit surface reconstruction approach. In the paper
(Lin et al. 2009), Lin simulates the polar field model to initialise the Dual-RBF
model and applies multi-level strategy to adjust the accuracy of the reconstruc-
tion. The Dual-RBF model becomes robust and shows faster modelling on surface
reconstructions. The GPU acceleration is used on the visualisation of the surface.

A radial basis function consists of a linear combination of translated basis func-
tions and the RBF approximation is essentially a problem of solving a linear system.
In order to avoid the trivial solutions, extra layers of data points are constructed at
the inside and outside of the original data points (Carr et al. 2001). A substitutional
way is using direct RBF fitting. By using the ellipsoid constraints, Li proposes a
direct RBF fitting method that approximates the data point with a one-step fitting.
This method is especially suitable for small and sparse dataset (Li et al. 2004b).

As another solution of avoiding the use of extra offset points, Macedo presents the
Hermite RBF implicits for the approximation of unstructured points with normals
(Macêdo et al. 2009, 2010). By using Hermite data, which consists of the points and
their normals, this method gives details of the reconstructed implicit surfaces and
shows computing effectiveness when compared with other approaches.

The difficulty of solving a RBF interpolation grows rapidly with the increase of
data size. In order to overcome this problem, Torres proposes a fast algorithm for
RBF interpolation with Gaussians by means of localisation and iteration (Torres et
al. 2009). This method uses Gaussians in small spreads to achieve localised solution
of the global problem. This localisation happens during the solution procedure of
the global basis functions. The global effect is then added back via interactions.
The convergence can be obtained and the efficiency of the algorithm is excellent.

Another performance improving solution is using parallel computing. Yokata
develops a parallel algorithm for RBF interpolation with O(N) complexity and O(N)

storage. Gaussians with small variances are used in this method as the basis function
instead of the use of maltiquadratic and polyharmonic basis functions. The accuracy
of the this algorithm can achieve the matching precision (Yokota et al. 2010).

Ijiri proposes a contour-based volume image segmentation with the idea of im-
plicit surface reconstruction (Ijiri et al. 2013). Hermite RBF interpolation is used
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to obtain the scalar filed of a joint spatial-range domain. This method produces seg-
mentation boundary that passes through all contours, including both high-contrast
image and blurred image. In another paper, Ijiri presents a novel 3D modelling tech-
nique for the real-world flowers extracted from CT images (Ijiri et al. 2014). A new
active contour model is designed for the flower CT to fit and reconstruct the shaft
and sheet of a flower respectively. This is a semi-automatic modelling technique.

Liu proposes a closed-form formulation of surface reconstruction based on the
Hermite RBF (Liu et al. 2016). The quasi-solution is used to approximate the
surface such that no global operations are required on the generation of the implicit
functions. This method is robust and efficient for the reconstruction of real-world
objects.

The surface reconstruction using RBF is still a popular research topic at present.
For example, Cuomo (Cuomo et al. 2017) focuses on the theoretical and practical
issues of using RBF for the surface reconstruction from unorganised points, Crivel-
laro proposes an algorithm for adaptive multilevel interpolation based on the RBF
for surface reconstruction (Crivellaro et al. 2017), and DeRossi discusses the con-
struction of RBF-based Partition of Unity interpolants (De Rossi et al. 2017).

More details of the radial basis function will be discussed in Chapter 3.

Signed Distance Function

In 3D spaces, an isocontour of an implicit function represents a surface. The distance
between two isocontours is usually unknown since the gradient value of the implicit
function may not be a constant. In contrast, the Signed Distance Function (SDF)
can hold this distance such that the shape of the geometry represented as a SDF is
easier to control. However, finding the distance from a point to a curve or surface is
in general computationally impractical, the SDF should be approximated in other
ways.

Taubin is one of the pioneers on the approximation of distance functions. He
proposes the simple approximate distance with first order to efficiently carry out
the estimation of the distance from a point set without using the nonlinear optimi-
sation techniques (Taubin 1988). In another paper, Taubin demonstrates that the
minimisation process can be reduced to a problem of generalised eigenvector fiting
in certain cases and can be computed in real time (Taubin 1991). However, the
approximate distance shows limitation on certain families of implicit curves and sur-
faces such as circles, planes, spheres and cylinders. Taubin introduces an improved
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approximation distance to evaluate the distance from a point to a curve or surface.
The iterative procedures are not required either but the results are with the same
quality as those based on the exact distance (Taubin 1993).

The calculation of the distance between a point to a geometric object attracts
the attentions of other researchers. Barbier presents the algorithms for the distance
between a point to specific geometries, including cylinder, cone, line-swept sphere
and cone-sphere. Some acceleration algorithms relating to distance estimation are
also developed (Barbier et al. 2004). Tankelevich presents a new geometric mod-
elling technique based on level sets and distance fields, which has the advantage of
smooth converging to threshold surfaces (Tankelevich et al. 2004).

Zeng presents a PDE-driven method to reconstruct the 3D objects from point
cloud. A shape is represented as an SDF and a PDE is directly applied onto the
point cloud with the SDF as the constraint. With this method, a deformable surface
can shrink to the surface of the object (Zeng et al. 2005).

In order to model and analyse physical fields within a geometric object, Freytag
uses approximate distance fields on geometric data (Freytag et al. 2006). The use
of approximate distance avoids the difficulties on mesh-based reconstructions. The
distances are used to model fields satisfying boundary conditions with arbitrary
precision. The heat transfer applications are used to demonstrate the modelling
capability of this method.

Rouhani presents a distance estimation for the fitting of implicit polynomials
(Rouhani et al. 2012). The height of a simplex is used to estimate the real orthogonal
distance and the proposed distance can be treated as a coefficient of the implicit
polynomial. The distance is differentiable such that any gradient-based optimisation
can use this distance.

In order to better represented the blended soft objects more diverse, Hsu proposes
the morphological operations of distance function to deform a primitive soft object
(Hsu et al. 2015). More than two morphological operations can be applied onto a
soft object to deform it with more flexibility.

More details of the signed distance function will be discussed in Chapter 4.
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2.4.4 Implicit Object

The geometry represented by implicit functions is an implicit object. Mathemati-
cally, a 3D implicit object is represented as a scalar field function f : R3 → R (Velho
et al. 2007). An implicit object can be either a solid or a surface.

Definition 2.1 (Implicit Object). Let U ⊂ R3,V ⊂ R, and let f : U → R be an
implicit function. An Implicit Object O is a subset of U, such that O = {X ∈ U :

f(X) ∈ V}.

The level set ∂Ωα = {X ∈ U : fα(X) = α} is a surface dividing space U into
two parts: the interior region Ω−α = {X ∈ U : fα(X) < α} and the exterior region
Ω+
α = {X ∈ U : fα(X) > α}.

Particularly, the 0 level set Z(f) = ∂Ω0 is the implicit surface of O, ∂Ω0 ∪Ω−0 =

{X ∈ U : f(X) 6 0} is the interior implicit solid of O, and ∂Ω0 ∪ Ω+
0 = {X ∈ U :

f(X) > 0} is the exterior implicit solid of O.

Figure 2.6 demonstrates the interior implicit solid (Figure 2.2(a)), exterior im-
plicit solid (Figure 2.2(b)) and implicit surface (Figure 2.2(c)) in a 2D condition.
The implicit function f(x, y) = min(4x2 + y2

4
− 1, x

2

4
+ 4y2 − 1) is represented as

three implicit objects by f(x, y) < 0, f(x, y) > 0 and f(x, y) = 0 respectively. The
objects are rendered with blue colour.

A 3D implicit object is usually represented as a surface-based object. For one
thing, the solid modelling normally focuses on the geometric shape of a 3D object
without the attention on its interior structures. The internal part of the object is
usually regarded as a solid with evenly distributed materials. For another, a 3D
implicit modelling task usually expresses a modelling result as a closed geometric
shape. The modelling result can be regarded as an interior implicit solid ∂Ω0 ∪ Ω−0
enclosed by the implicit surface ∂Ω0. In many applications, it is more convenient to
consider it as a surface object for the purpose of geometric analysis. What is more,
geometric modelling on real-world 3D object uses the data points collected from the
surface of the object and reconstructs these points to be a geometric surface. It
is reasonable to use a surface-based object as the representation of the real-world
object.

Two examples of the surface-based object are shown in Figure 2.3. The object
in Figure 2.3(a) is the surface of the implicit solid f(x, y, z) = max(min(1

4
x2 + 4y2 +

z2− 1, 4x2 + 1
4
y2 + z2− 1), z) 6 0. The object in Figure 2.3(b) is the Clebsch Cubic

Surface. It is the 0 level set of Equation 2.6.
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(a) Ω−0 = {X : f(X) < 0} (b) Ω+
0 = {X : f(X) > 0}

(c) ∂Ω0 = {X : f(X) = 0}

Figure 2.2: 2D Implicit Objects

f(x, y, z) = 81(x3 + y3 + z3)

− 189(x2y + x2z + y2x+ y2z + z2x+ z2y)

+ 54xyz + 126(xy + xz + yz)

− 9(x2 + y2 + z2)− 9(x+ y + z) + 1

(2.6)

The geometry of a surface-based object can either be designed by mathematical
approaches or reconstructed from real-world object. For the latter one, unorganised
points are usually sampled from the surface of the real-world object and these points
will be approximated into a geometric surface (Berger et al. 2016; Berger et al. 2014;
Hoppe 1994). In terms of implicit modelling, this approximation is called implicit
surface reconstruction.

Definition 2.2 (Implicit Surface Reconstruction). Implicit Surface Modelling is
to find an implicit function f : R3 → R such that

∑n
i=1 d(Pi, Z(f)) = 0, where
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(a) A 3D Implicit Solid (b) Clebsch Cubic Surface

Figure 2.3: 3D Implicit Objects

{P1,P2, . . . ,Pn} are n distinct points sampled from a given surface S ⊂ R3, Z(f) =

{X ∈ R3 : f(X) = 0} is the 0 level set of f , d(Pi, Z(f)) = minP∈Z(f)(‖Pi − P‖) is
the Euclidean distance from point Pi to the surface Z(f).

Implicit surface reconstruction has been widely used on the reconstruction of
complicated objects, especially soft tissues hidden inside medical images. Represen-
tative implicit surface modelling methods are level set method (Zhao et al. 2001),
Moving Least Squares (MLS) method (Guennebaud et al. 2007; Klein et al. 2004),
variational implicit surface method (Turk et al. 1999), adaptively sampled distance
field method, Multi-level Partition of Unity Implicits (MPUI) method (Frisken et al.
2000), Radial Basis Function (RBF) method (Li et al. 2004b; Macêdo et al. 2010;
Wu 1992) and other methods (Pan et al. 2016, 2017; Wu et al. 2015).

2.4.5 Blending Operation

A distinctive geometric property of implicit objects is they can be combined to form
new shapes using binary blending operator (composition operator).

Definition 2.3 (Implicit Blending Operator). Let f0 : Rn → R and f1 : Rn → R
be two implicit functions, n = {2, 3} . An Implicit Blending Operator is a mapping
g : R2 → R such that g = g(f0, f1) is a composite function.

An effective method to build blending operators is using Constructive Solid Ge-
ometry (CSG) operations. Let O0 = {X ∈ R3 : f0(X) 6 0} and O1 = {X ∈ R3 :

f1(X) 6 0} be two implicit objects represented by field functions f0 : R3 → R and
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f1 : R3 → R. The implicit objects corresponding to the intersection O0 ∩O1, union
O0 ∪ O1 and subtraction O0\O1 of O0 and O1 can be defined using the maximum
function g = max(f0, f1), a special and the simplest intersection blending operator,
in the following way:





O0 ∩ O1 = {X ∈ R3 : g(f0(X), f1(X)) 6 0}
O0 ∪ O1 = {X ∈ R3 : −g(−f0(X),−f1(X)) 6 0}
O0\O1 = {X ∈ R3 : g(f0(X),−f1(X)) 6 0}

(2.7)

For a general blending operation g(x, y) , the blending operators g∩, g∪ and g\

corresponding to the intersection, union and subtraction of two implicitly repre-
sented geometric shapes with function f0 and f1 are defined in the following way:





intersection: g∩(f0, f1) = g(f0, f1)

union: g∪(f0, f1) = −g(−f0,−f1)

subtraction: g\(f0, f1) = g(f0,−f1)

(2.8)

In solid modelling, g∩(f0, f1) and g∪(f0, f1) are often defined as g∩(f0, f1) =

max(f0, f1) and g∪(f0, f1) = min(f0, f1) (Ricci 1974). The min blending has been
demonstrated in Figure 2.2. Although these two blending operators are simple, max

and min are not generally differentiable and not suitable for modelling smooth solid
geometric objects.

Various soft max and min functions are proposed to blend implicit objects
smoothly. For instance, a soft max function can be defined as g(f0, f1) = 1

k
ln(ekf0 +

ekf1) using a hardness control factor k > 0 . Let g∩ = g, then g∪ and g\ can be given
with Equation 2.8. Although the soft blending functions defined in this way have a
high degree of continuity, they lack blending span controllability. When an implicit
object is blended with other objects using these blending operations, its entire shape
will be distorted with no part of its original shape being kept unchanged.

Another soft blending operator is the R-function, whose sign is completely deter-
mined by the sign of its arguments (Rvachev 1963; Shapiro 1991, 1994). The most
popular R-function is Rα = 1

1+α
(f0 + f1 +

√
f 2

0 + f 2
1 − 2αf0f1), where α = α(f0, f1)

is a symmetric function and α ∈ (−1, 1]. Let g∩ = Rα, g∩ and g\ can then be
constructed with Equation 2.8.

When α = 0, intersection function g∩ is reduced to simplifiedR-function g∩(f0, f1) =

f0 + f1 +
√
f 2

0 + f 2
1 (Pasko et al. 1995). When α = 1, it is reduced to a max func-

37



tion g∩(f0, f1) = 1
2
(f0 + f1 + |f0 − f1|) = max(f0, f1) (Ricci 1974). Simplified

R-function is C1 continuous piecewise bivariate polynomial and can be extended to
Cm continuous in the form of g∩(f0, f1) = (f0 + f1 +

√
f 2

0 + f 2
1 )(f 2

0 + f 2
1 )

m
2 (Pasko

et al. 1995). Function max is C0 continuous and can be extended to a Cn-smooth
piecewise polynomial maxn,δ function (Li 2007).

Smooth piecewise polynomial maxn,δ function is a Cn-smooth max function (
n > 0 ) with a smoothness span controller δ > 0 developed in (ibid.):

maxn,δ(x, y) = 1
2
(x+ y + |x− y|n,δ) (2.9)

where

|x|n,δ =

{
|x| for n = 0

δ
n

∣∣nx
δ

∣∣
n

for n = 1, 2, 3, . . .
(2.10)

and

|x|n =





|x| for n = 0
1

2(n+1)
[(n− x) |1− x|n−1

+(n+ x) |1 + x|n−1] for n = 1, 2, 3, . . .

(2.11)

With maxn,δ, a set of Cn-smooth shape-preserving blending operators g∩n,δ , g∪n,δ
and g\n,δ can be constructed in the following way (ibid.):





g∩n,δ(f0, f1) = maxn,δ(f0, f1)

g∪n,δ(f0, f1) = −g∩n,δ(−f0,−f1)

g\n,δ(f0, f1) = g∩n,δ(f0,−f1)

(2.12)

where δ > 0, n = 0, 1, 2, . . . .

Both sharp and smooth joints can be produced from shape-preserving blending
operators. With additional smoothness span controller δ > 0 , they are ideal choices
for composition of implicit functions.

Figure 2.4 presents the intersection blending between implicit functions f0(x, y) =

y − sin(0.5x) and f1(x, y) = y − cos(6x). Figure 2.4(a) shows the blending result
with Rα function. g∩ is reduced to a max function when α = 1. Sharp blending
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can be observed when the curves of the two functions joint. Figure 2.4(b) presents
blending result using the soft max function. When k = 10, blending span is smaller
than k = 3 and the shape of blending is preserved better also. In general, the larger
the value of k, the better the blending result preserves the shape.
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Figure 2.4: Implicit Intersection Blending

Figure 2.5 presents the intersection blending between implicit functions f0(x, y) =

y − sin(0.5x) and f1(x, y) = y − cos(6x) using the shape-preserving blending oper-
ation. Both the two blending results are C2 continuous, but smaller δ value gives
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narrower smoothness span and better preserves the original shapes of f0 and f1.
The bulge at x = π is also smaller.
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Figure 2.5: Shape-preserving Blending

Figure 2.6 presents an implicit geometry designed by the 0 level set of the implicit
function

f(x, y, z) = g∪2,0.5(g∩(g\(x− 0.2, x+ 0.2), g\(y − 0.2, y + 0.2)), z) (2.13)

where g\ and g∩ are sharp blending subtraction and intersection operators, g∪2,0.5
is the C2-smoothness shape-preserving union blending operator with smoothness
span controller 0.5.

In addition to the CSG operations, blending operators can also be defined in
other ways, such as linear blend (Bloomenthal 1997), hyperbolic blend (Kleck
1989), super-elliptic blend (Rockwood 1989) and convolution blend (Bloomenthal
et al. 1991; Sherstyuk 1999). More literatures about implicit blending can be found
at (Angles et al. 2017; Barthe et al. 1998; Barthe et al. 2003; Bernhardt et al. 2010;
Gourmel et al. 2013; Groot et al. 2009; Hoffmann et al. 1985; Pasko et al. 1994;
Pasko et al. 1995; Sabin 1968; Wyvill et al. 1998; Zanni et al. 2015).
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(a) (b)

Figure 2.6: A Blending between a Square Column and a Plane

2.5 Visualisation Techniques

In order to visually present the internal details of a volumetric image, the medical
image and the modelling results are required to be rendered by visualisation tech-
niques (Preim et al. 2008). A medical image is usually rendered as a volumetric
object and the modelling results are usually rendered as a surface object.

2.5.1 Volume Rendering

A medical image dataset is a large 3D matrix or a group of 2D matrices generated
with imaging techniques. In order to rebuild the structure of a Volume of Interest
(VOI), it is helpful to visualise the dataset and interactively reconstruct organs or
tissues in the VOI. Volume rendering is a visualisation technique for this purpose
(Kaufman et al. 2005; Pommert et al. 1992).

The volume rendering can be generally categorised as direct volume rendering
and indirect volume rendering (Ruikar et al. 2018). Direct volume rendering tech-
nique directly renders 2D projections of the volume from the discrete image dataset.
All the data of the image can be observed simultaneously. Parallel computing is
usually used to accelerate this rendering. In contrast, indirect volume rendering
uses slices, textures or isosurfaces to simulate the volume. Indirect rendering is less
commonly used although it is computational cheaper than direct rendering.

Direct volume rendering uses transfer functions to represent a voxel of the medi-
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cal image with specific values, such as material value, colour value and opacity value.
A transfer function is a Lookup Table (LUT) designed to accentuate important fea-
tures and minimise less important or extraneous details of a huge dataset. Artefacts
may be generated from different colour choices and data interactions.

There are mainly three transfer functions of volume rendering: colour transfer
function, opacity transfer function and gradient opacity function. Colour transfer
function is used to identify different tissues out of the image. It is modality-specific
and anatomy-specific. For example, skin and bone have different intensity values
and can be distinguished. Opacity transfer function controls the opacity of different
tissue types such that the interior part of the image can be visualised. Gradient
opacity function is used to adjust the opacity value of the image. The regions with
low gradient values are decreased to highlight the boundaries between tissue types.
The image is enhanced in this way for better identification of tissues (Levoy 1988).

2.5.2 Surface Rendering

A medical image can be evaluated as a discrete field function. Carefully selected iso-
surfaces extracted from this field correspond to different tissue types. The rendering
of these isosurfaces is another visualisation technique of implicit modelling.

For the image-based modelling, an isosurface is a level set of the image. The
voxels on this isosurface share a constant value to represent a specific tissue. An
isosurface can either be directly extracted from the image volume or be generated
with geometric modelling techniques. It is a surface existed inside the image volume
space and can be rendered much faster than the rendering of the whole volume.

The most common used visualisation of surface rendering techniques are poly-
gonisation and ray tracing. Polygonisation describes subdivision of a surface into
polygons. It is a standard surface rendering method and has gained wide hardware
support. A surface can be polygonised either as triangles or polygons. Normals of
points and triangles are usually calculated during the polygonisation for better mesh
description (Bloomenthal 1988). Ray tracing determines the visibility of surfaces
by tracing imaginary rays of light from the viewer’s eye to the object in the scene
(Foley 1996). It involves creating a ray and tracing its path as it reflects or refracts
through the scene. One can determine what light might arrive at its source from the
other direction. Ray tracing is capable of generating high realistic rendering results
but is also computational heavier (Wald et al. 2001).
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2.6 Summary

The image-based vascular modelling is an interdisciplinary research filed. The com-
plex structures of the vascular trees, the various shapes of the blood vessels and
the flexible joints of the connections make the modelling task extremely hard. This
chapter reviewed the vascular modelling techniques from several aspects on vascu-
lar skeleton, templates and segmentation of vascular images, and implicit modelling
techniques for the following reasons:

• A single blood vessel is with simple shape and structure that both explicit
modelling and implicit modelling are available techniques. However, a vas-
cular tree consists of various blood vessels, each of which has its own unique
geometry and property. What is more, considering the complex connections
of these blood vessels, the explicit modelling shows impracticability on the
modelling task. Although the implicit modelling is less controllable on the
geometric shapes than the explicit counterpart, the convenient blending oper-
ations suit the vascular modelling very much.

• The basic geometric character of a blood vessel is its long thin shape. It is
straightforward to consider a blood vessel as a curve represented as its skeleton
or centreline and move a surface or a solid on the curve to get the structure of
the vessel. Although a blood vessel can be directly reconstructed without the
assistance of the skeleton, most of the existing vascular modelling techniques,
the sweep surface method for instance, use skeleton-based approaches. Skele-
tonisation has been an independent research field on vascular modelling and
the skeletons improve the accuracy of the modelling task.

• The shape of a blood vessel is a generalised cylinder and this cylinder can be
roughly regarded as a truncated cone or a combination of several cones. This
idea is the model-based vascular modelling. Although this method produces
nice visualised blood vessels, the geometry of the vessel is too ideal to fit the
real-world object. In most cases, the model-based vascular modelling is used
for the analysis of hemodynamic or educational purpose.

• The avoid of using model-based method leads to the segmentation-based vascu-
lar modelling. Image segmentation is widely researched in image analysis and
processing. The segmented vascular image extracts the vascular data points
out of the background and other tissues of the medical image. These data
points are usually fitted into surfaces or solids using specific methods. The
segmentation-based vascular modelling reconstructs the geometry of the blood
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vessel more faithfully than the model-based method. It closely cooperates with
the blood vessel skeleton on modern vascular modelling techniques.

• Besides these aspects, the vascular modelling also shows diversity on the mod-
elling scopes. A global modelling treat the vascular tree as a single modelling
object without caring the shape differences between large blood vessels and
the small ones or the disagreements of the intensive image parts and the weak
regions (Liang et al. 2013). In contrast, a local modelling focuses on a local
region of the whole image space in order for high-quality vascular modelling
of the specific region. This localised strategy may require the assistance of the
implicit modelling technique to blend localised modelling results together. It
is often used by the high-accuracy vascular modelling techniques.

• The implicit function is the mathematical fundamental of implicit modelling
technique. The implicit objects are the geometric objects represented with
implicit functions. The blending operation plays the core work of implicit
modelling, which combines different implicit objects together without complex
computation. The visualisation technique renders the modelling result on the
screen for interaction and better observation of the implicit objects.

Geometric vascular modelling is a popular research area on the reconstruction of
human bodies. Most of the existing approaches reviewed in this chapter use skeleton
and segmentation for the accurate geometric vascular modelling tasks. Although
some of these approaches give good reconstruction results, there are lots of spaces
to improve the modelling performance. For example, the sweep surface achieves
satisfactory modelling results in some applications (Hong et al. 2012; Kretschmer
et al. 2013), but this method is a two-step appoach requiring extra operations and
the reconstruction accuracy cannot be guaranteed out of the cross-sections of the
sweep surface. Not only the unnecessary computations should be avoided but also
the modelling performance and accuracy could be improved.
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Chapter 3

Skeleton Marching-based Vascular
Reconstruction

3.1 Introduction

Reconstruction of blood vessels is to rebuild the geometric structures of blood vessel
wall out of medical images. As discussed in previous chapters, this reconstruction
can be mathematically categorised into explicit modelling and implicit modelling
(Preim et al. 2008). Implicit modelling is the favoured method for its flexibility on
implicit blending operations. This research uses implicit modelling technique for
vascular reconstruction.

Vascular modelling aims at reconstructing the geometric structures of blood ves-
sel wall extracted from segmentation result of vascular medical images. A blood ves-
sel is in the shape of a thin tubular structure and is often represented as a centreline
or skeleton of the tube. The skeleton of a blood vessel is an important geometric
clue on vascular modelling. It has been widely discussed whether skeleton-based
or skeleton-free modelling technique satisfy the requirement of vascular modelling
(Hong et al. 2012; Kretschmer et al. 2013; Wu et al. 2011). In general, skeleton-free
modellings, such as marching cube (Lorensen et al. 1987) and Multi-level Partition
of Unity Implicits (MPUI) (Ohtake et al. 2003b), are prone to generate surfaces
with poor quality and therefore additional smoothing operations are required. Yet
the skeleton-based method is more straightforward and applicable for vascular mod-
elling, since the skeleton is an immanent geometric property of tubular structures.

The sweep surface method is an intuitionistic way of skeleton-based vascular
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modelling technique. It generates a series of cross-sections along the skeleton by
sweeping a surface and approximates these cross-sections to be a generalised cylinder.
This is a two-step approximation modelling method. A cross-section is approximated
as a spline, and a set of splines is approximated to be a generalised cylinder.

Inspired by sweep surface method, this chapter proposes the Skeleton Marching
technique to produce high-performance computation and high-accuracy vascular tree
using localised implicit geometric objects. Instead of using sweep surface, a marching
implicit solid is used to sweep the blood vessel along the skeleton, which not only
avoids the two-step approximation of sweep surface, but also improves the modelling
performances.

3.2 Skeleton Marching

Skeleton marching is an implicit modelling technique for the geometric reconstruc-
tion of blood vessels. The skeleton of a blood vessel is first represented as a spline
curve. This spline curve is then divided into several overlapped shorter segments,
which assist a localised image segmentation technique to extract point clouds cor-
responding these segments. These small point clouds are then fitted and blended
into a whole blood vessel represented as an implicit surface. All the locally recon-
structed implicit blood vessels are then blended to represent the geometry of the
whole vascular system.

Reconstructing a vascular tree with skeleton marching technique is similar to
exploring a cave with multiple branching structures by following the cave skeleton,
and thus can be directly implemented in a parallel manner, as each branch and each
vascular segment can be reconstructed independently of other branches or vascu-
lar segments. The skeleton marching technique consists of subdivision of skeleton,
localised implicit reconstruction, localised implicit object and parallel computing.
Figure 3.1 illustrates the process of skeleton marching technique.

3.2.1 Subdivision of Skeleton

The basic idea of skeleton marching is localisation, which not only simplifies the
modelling complexity but also accelerates the modelling speed. A vascular image
contains highly complicated blood vessels together with large amount of non-vascular
information. Due to the high complexity of the vascular structure, it is in general
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Figure 3.1: Flowchart of Skeleton Marching

difficult to produce satisfactory results for both large and small blood vessels glob-
ally. A localised region marching along the skeleton of the blood vessel is proposed
to subdivide a vascular modelling into small modelling tasks for producing more ro-
bust and more accurate reconstruction results. The localised region on the skeleton
contains a short segment of a blood vessel and this segment is going to be recon-
structed as a localised implicit object. This object is a small generalised cylinder
whose position and size are determined by the length and curvature of the skeleton
enclosed in it.
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In order to subdivide a blood vessel into short vascular segments with a reason-
able shape, the skeleton of this blood vessel is regarded as a parametric curve such
that its curvature and length can be acquired for the subdivision.

Suppose a 3D curve is represented as a parametric function γ : (α, β)→ R3, then
the skeleton of a blood vessel can be represented as a parametric curve (Pressley
2010)

γ(t) = (x(t), y(t), z(t)), t ∈ (α, β) (3.1)

The curvature of the curve γ is given by

κ =
‖γ̇ × γ̈‖
‖γ̇‖3

(3.2)

The length of the curve started from point γ(t0) is given by

s(t) =

∫ t

t0

‖γ̇(u)‖du (3.3)

With the curvature and length, a long and curvy skeleton can be subdivided into
shorter and less curvy segments such that the corresponded vascular segments are
in simple shapes. The neighboured segments will share an overlapped part which
will be used as the blending connection after these segments being reconstructed as
localised implicit objects.

This subdivision is delineated in Algorithm 1, which generates a set of knot
pairs segk = (αk, βk). One knot pair marks the two ends of a skeleton segment. The
shape of this segment is controlled by L and K such that the curve of the segment
is neither too long nor too curvy. Consequently the localised region surrounded the
skeleton segment is simple enough. The data points in this small region can be easily
extracted and reconstructed to be a localised implicit object.

In order to smoothly blend the neighboured localised implicit objects together,
Algorithm 1 is designed that the start endpoint αk of knot pair segk is in the middle
of knot pair segk−1. This overlapped region is long enough to avoid unwanted bulges
when blending.

Figure 3.2 gives an example of this subdivision. A medical volume containing
a blood vessel is rendered in Figure 3.2(a). This blood vessel is very curvy and is
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Algorithm 1: Division of an Unbranched Skeleton
parameter: L: threshold of length

K: threshold of curvature
input : curve: C = {γ(t) : t ∈ (α, β)}

knots: α = t0 < t1 < · · · < tn = β
output : knot pair: segk = (αk, βk)

k ← 0 ;
while ti+1 6= β do

i← 0 ;
j ← i+ 1 ;
len← s(tj)− s(ti) ;
cur← |κ(tj)− κ(ti)| ;
if len > L or cur > K then

segk ← (ti, tj);
k ← k + 1 ;
i← j ;
j ← i+ 1 ;

else
j ← j + 1 ;

end
end

expected to be subdivided into shorter and less curvy segments. In Figure 3.2(b),
a skeleton is shown as a curve inside the blood vessel. Nine markup knots are
located with Algorithm 1, each markup knot αk is paired with αk+2 such that two
consecutive segments share a common part. These nine markup points produce
seven segments shown in Figure 3.3.

3.2.2 Localised Implicit Reconstruction

Subdivision of vascular skeleton simplifies the reconstruction of a blood vessel by
breaking down a big modelling task into many small sub-tasks. Due to the simplicity
of each local vascular shape, the localised reconstruction of the region surrounded a
skeleton segment is simple, accurate and efficient.

A skeleton segment is a short curve inside a localised blood vessel. The shape of
the blood vessel segment is small and simple such that the point data of the vascular
segment can be collected with any possible image segmentation algorithm. Consider
the two end points of the segment have been determined, implicit deformable model
is used in this research (Antiga et al. 2008). This segmentation technique evolves a
level set inside a blood vessel from its start point to the endpoint and the points on
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Figure 3.2: Subdivision of a Skeleton

the surface of the blood vessel are collected segment by segment. For a small blood
vessel segment, this algorithm gives efficient and effective segmentation results.

Figure 3.4 presents localised segmentation results of seven vascular segments
from a curvy blood vessel. Each segmentation result is a scatter point cloud. From
Figure 3.4(a) to Figure 3.4(g), meshes are rendered with the data points for better
observation. In Figure 3.4(h), all the data points are shown with different colours.

The localised segmentation collects the surface point clouds of the small blood
vessels corresponding the skeleton segments. Each point cloud is a small dataset
with a capsule-like shape and is expected to be reconstructed as a surface. Because
of the simplicity of the small dataset, an uncomplicated surface fitting algorithm is
preferred.

By using the implicit deformable model segmentation method (Antiga et al.
2008), the localised segmentation result is always a closed point cloud without holes
and self-intersections, as shown in Figure 3.4. Although some of them have curvy
parts, the general shape is always a capsule or deformed ellipsoid. Under such
conditions, the direct Radial Basis Function (RBF) surface fitting with ellipsoid
constraints is selected to reconstruct these localised blood vessel segments, which is
a high-accuracy surface fitting method designed for small datasets (Li et al. 2004b).
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Figure 3.3: Subdivided Skeleton Segments

In general, RBF method discretises implicit function as a linear combination of
radial basis functions {φi}ni=1 centred at the input surface points {Pi}ni=1 (Canezin
2016; Coombe 2006), such that the implicitly blended function

∑n
i=1 γiφi(ri) is the

desired implicit surface, where ri is distance from a general point P to the i-th point
Pi, and γi is the weight of the i-th radial basis function φi (Li et al. 2004a,b). The
primary advantage of RBF is that no connection information of point in the dataset
is required.

The general form of a radial basis function is:

f(X) =
∑

i

γiφ(‖X−Ci‖) (3.4)
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Figure 3.4: Localised Segmentations of a Curvy Blood Vessel

where γi ∈ R are the coefficients of the basis function and Ci are the centres of
data points.

The direct RBF surface fitting with ellipsoid constraints is based on an assump-
tion that the RBF-based surface fitting problem can be regarded as a blending of two
implicit surfaces: a surface fitted by radial basis functions and a surface modelled
by a low degree polynomial. Since the implicit surface of a radial basis function is
always a blobby model, a polynomial constraint representing a closed-surface, such
as an ellipsoid, is an ideal choice to deform the blob to be the desired shape.

Given a set of points P = {Pi}ni=1 from a surface, the direct RBF fitting with
ellipsoid constraint is to fit points set P as an implicit function f(X):

f(X) =
n∑

i=1

γiφi(‖X−Pi‖) +
m∑

j=1

βjψj(X) (3.5)

where φ is a radial basis function and
∑m

j=1 βjψj(X) is a polynomial always
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representing an ellipsoid, X = (x, y, z) is a general point.

Assume f(Pi) = 0, i = 1, 2, . . . , n, then f(X) = 0 can be expressed in the
following matrix form:

[
Φ Ψ

ΨT 0

][
γ

β

]
=

[
0

0

]
(3.6)

where

Φ = [φ1, φ2, . . . , φn]

Ψ = [ψ1, ψ2, . . . , ψm]

γ = [γ1, γ2, . . . , γn]T

β = [β1, β2, . . . , βm]T

As shown in (Li et al. 2004b), the solution to Equation 3.6 can be obtained by
solving an eigensytem subject to the condition that

∑m
j=1 βjψj(X) always represents

an ellipsoid.

The direct RBF surface fitting with ellipsoid constraint is especially suitable for
the reconstruction of small datasets like the localised segmentation results shown in
Figure 3.4. For one thing, this method is fast for small dataset. As a one-step fitting
algorithm based on the solution of the eigensystem in Equation 3.6, this direct fitting
technique does not require additional information such as surface normals and extra
fitting layers. The fitting is fast when the dataset is small. In addition, because
of the ellipsoid constraint, this method always gives bounded fitting results which
is the expected shape of a vascular segment. As the fitting results are expressed
as implicit functions, it is easier to combine the reconstructed vascular segments
together using implicit blending operations. Furthermore, since each closed vascular
segment has a simple shape, the corresponding implicit shape has a simple form,
whose computational cost can be dramatically saved. This will be discussed in the
next section. The last but not least, this method is a high-accuracy surface fitting
method when the shape of the datasets are simple. The fitting errors are very small
and can be negligible.

Figure 3.5 presents localised modelling results of a curvy blood vessel correspond-
ing the segmentation results of Figure 3.4. Both the reconstructed surfaces and the
data points are rendered. The whole curve blood vessel is given in Figure 3.5(h). It
is the blending result of the implicit objects shown in other seven subfigures. The
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blending smoothness can be any degree by using the shape-preserving blending op-
erators in Equation 2.12, but in this figure the smoothness degree is set to n = 2

with a smoothness span controller δ = 0.2.

Table 3.1 gives the distance errors of the localised modelling results of the seven
subfigures in Figure 3.5(a) to Figure 3.5(g). The distance is measured from each data
point to the reconstructed surface. The distance error is evaluated by the standard
deviation of all the distances of a localised reconstruction result. It is shown that
the errors are so small that the data points can be regarded as on the surface.

Table 3.1: Distance Error of the Localised Implicit Reconstruction

Localised Reconstruction Number of Points Standard Derivation (millimetres)

(a) 308 2.46677×10−10

(b) 384 1.56189×10−10

(c) 574 1.49556×10−9

(d) 568 1.72521×10−9

(e) 568 2.89805×10−10

(f) 352 4.96290×10−10

(g) 303 1.31824×10−10

3.2.3 Localised Implicit Object

The localised reconstruction of vascular segments generates a group of bounded
small implicit objects O0,O1, . . .On, which are defined by a set of implicit functions
f0, f1, . . . , fn in an image space U ⊂ R3. Although each individual implicit object
Oi takes only a small region Ui ⊂ U, the evaluation of the corresponding implicit
function fi is crossing the whole image space U. Its evaluation is expected to be
limited inside Ui and as the implicit object Oi is only a locally defined implicit
object.

Definition 3.1 (Localised Implicit Object). An implicit object O∗ = {X ∈ U∗ :

f(X) 6 0} is said to be a Localised Implicit Object if it is a bounded object defined
in U∗ ⊂ U, such that {X ∈ U∗ : f(X) 6 0} = {X ∈ U : f(X) 6 0}, where U ⊂ R3.

A localised implicit object Oi is a set defined in domain Ui ⊂ U and is expected
to be blended with another localised implicit object Oj defined in Uj ⊂ U. However,
these two implicit objects cannot be blended together directly because the domains of
the corresponding implicit functions are different. In order to achieve this blending,
their domains have to be extended to the origin domain U. The truncated implicit
function is used to do this extension.
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(a) Segment 0 (b) Segment 1 (c) Segment 2

(d) Segment 3 (e) Segment 4 (f) Segment 5

(g) Segment 6 (h) Blending Result

Figure 3.5: Localised Reconstruction of a Curvy Blood Vessel

Definition 3.2 (Truncated Implicit Function). A field function f̄ : R3 → R is said
to be a Truncated Implicit Function (TIF ) of an implicit function f if there exists a
sub-domain U∗ ⊂ R3, such that the implicit solid O∗ = {X ∈ U∗ : f̄(X) 6 0} is a
localised implicit object.

For a normal implicit function f , let U∗ be the domain on which it is truncated,
then the truncated implicit function of f on U∗ can be expressed in the following
form: The truncated implicit function f̄ equals to a normal implicit function f inside
U∗ but is truncated outside the domain. With the truncated implicit function, a
localised implicit object can be defined as:

f̄(X) =

{
f(X) X ∈ U∗
c� 1 otherwise

(3.7)

where c is a sufficient large constant.
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With the truncated implicit function, a group of localised implicit objects can
be quickly evaluated inside their localised defining domains and be blended together
in a global domain. It dramatically improves the performance of the geometric
reconstruction process when the number of the localised implicit objects is large
and sizes of them are small.

Figure 3.6 demonstrates how the truncated implicit function works. In Fig-
ure 3.6(a), isocontours of implicit function f(x, y) = (0.5x2 − 1)2 + 2y2 − 1.2 are
shown and the 0 level set Z(f) = {f = 0} is marked. Since an implicit object is
an interior implicit solid {f 6 0}, the evaluation outside Z(f) should be avoided.
In Figure 3.6(b), the implicit function f has been truncated to be inside a sub-
domain enclosing Z(f) such that the unwanted evaluation outside this sub-domain
is eliminated.
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(a) Isocontours without TIF
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(b) Isocontours with TIF

Figure 3.6: Isocontours of an Implicit Function

However, since an implicit function cannot explicitly represents an implicit sur-
face, there is no direct way to generate points or surfaces of an implicit function
(Bloomenthal 1995b). In order to located the sub-domain Ui of the localised implicit
object Oi, the location of the localised segmentation will be used as a substitution.
Consider the small size of the localised segmentation, a minimum cubic bounding
box is chosen to be the sub-domain Ui.

Figure 3.7 shows the differences between a globalised implicit object and a lo-
calised implicit object with their minimum bounding box. The branched blood
vessel has been subdivided into 41 simple vascular sections and their data points
on the vascular walls, which are rendered as blue points, have been extracted by
the implicit deformable model segmentation method (Antiga et al. 2008). A same
one simple vascular section has been reconstructed as a capsule-like object with red
colour. Although the two objects are geometrically identical, they are generated
from difference domains. The fitting of Figure 3.7(a) uses the global domain and
costs 35.34 seconds on a CPU. In contrast, Figure 3.7(b) costs 4.89 seconds inside a
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localised domain. The domains are marked with a red frame box. The whole point
data are rendered in the figures to show the size of the global domain.

(a) (b)

Figure 3.7: Globalised Implicit Object and Localised Implicit Object

Table 3.2 compares the fitting speeds of the blood vessel segments in Figure 3.5.
The globalised fitting costs much more time than the localised fitting since the
localised fitting uses truncated implicit function such that only the sub-domain of
the localised implicit object is evaluated and the fitting is much faster.

Table 3.2: CPU Fitting of Blood Vessel Segments (seconds)

Segment Number of Points Globalised Fitting Localised Fitting

0 308 34.76 5.16
1 384 42.45 5.21
2 574 60.61 6.25
3 568 62.24 5.71
4 568 61.03 5.73
5 352 38.45 5.13
6 303 35.34 4.89

Figure 3.8 compares the fitting speed of each blood vessel segments. The speed
remains at a low level of the globalised fitting using the normal implicit function.
Averagely nine points are fitted per second. In contrast, the fitting speed of using
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the localised implicit function is about ten times faster, and the speed is growing
when the number of points is increasing.
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Figure 3.8: CPU Fitting Comparison of Blood Vessel Segments

By using the truncated implicit function, the fitting speed of the localised implicit
object is dramatically improved at the algorithmic level. Since the fitting of one
localised implicit object is independent to the others, the fitting efficiency can be
further improved by using parallel computing techniques.

3.2.4 Parallel Computing

The subdivision of vascular skeleton turns a big modelling task into many small sub-
tasks, each of them is regarded as a localised reconstruction and generates a localised
implicit object. A notable feature of the localised implicit objects is that they are
independent to the others such that the localised reconstructions are friendly with
parallel computing techniques.

Parallel computing is a computational technique that simultaneously carries out
a calculation as many sub-calculations to improve the computational efficiency (Al-
masi et al. 1989). There are several different types of parallel computing, but only
data parallelism is used in this research.

Data parallelism distributes the data across multiple processors for parallel com-
puting. It receives great attentions with the fast developing of General-purpose
Computing on Graphics Processing Units (GPGPU). The massive parallel proces-
sors and memories on a GPGPU are able to process complicated tasks in a parallel
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manner and significantly improve the computational efficiency (Owens et al. 2007).

Data parallelism has been used on the RBF fitting with ellipsoid constraint to im-
prove the performance of the vascular reconstruction. For a point cloud P = {Pi}ni=1

from the localised segmentation, the implicit function Equation 3.6 is expressed and
distributed over the GPGPU as a kernel of parallel computing. The solution is
transferred back to the host programme on CPU for further processing.

Table 3.3 compares the fitting time of the blood vessel segments based on Ta-
ble 3.2. In this table, column 3 and 4 show the globalised fitting time on CPU and
GPU. The improvement of the fitting on GPU is significantly. Column 5 and 6 give
the localised fitting on CPU and GPU, but the fitting on GPU is even slower. This
is because the localised implicit objects of the blood vessel segments are too small
to be accelerated. Data transformation between CPU and GPU slows down the
acceleration. The fitting speed comparison is given in Figure 3.9. The experiments
are remotely running on an HPC with an Intel(R) Xeon(R) CPU E5–2680 and a
Nvidia Tesla K40M GPU.

Table 3.3: Fitting Time of Blood Vessel Segments (seconds)

Globalised Fitting Localised Fitting
Segment Number of Points CPU GPU CPU GPU

0 308 34.76 5.48 5.16 5.47
1 384 42.45 6.00 5.21 5.49
2 574 60.61 7.12 6.25 6.10
3 568 62.24 7.01 5.71 6.15
4 568 61.03 7.12 5.73 6.15
5 352 38.45 5.66 5.13 5.72
6 303 35.34 5.57 4.89 5.41
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Figure 3.9: Fitting Speed Comparison of Blood Vessel Segments
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Besides the data parallelism of the modelling on one implicit object, multiple
localised modellings can be processed concurrently. This is also regarded as task
parallelism (Subhlok et al. 1993). Localised implicits and localised modelling are
designed for this purpose. Because the calculation of one localised implicit object
is independent of the others, different localised implicits can be configured into
different streams for concurrent computing. What is more, higher parallelism can
be achieved when multiple GPU devices are available.

3.3 Discussion and Experiments

A skeleton marching technique is proposed in this chapter using the localised im-
plicit objects for the reconstruction of blood vessels. The segmentation, surface
fitting and parallel computing of a single localised implicit object have been dis-
cussed to illustrate the proposed method. However, it is worth to stress that this
method is designed for the reconstruction of the vascular tree rather than blood ves-
sel segments. This section discusses the advantages and limitations of the proposed
method with further experiment results.

3.3.1 Discussion

The vascular reconstruction with skeleton marching is a high-accuracy and high-
performance computation vascular reconstruction method. Compared with the
sweep surface method, it has several distinctive advantages on blood vessel recon-
struction:

• No coordinate transformation is required. Each vascular segment is recon-
structed to be a localised implicit object inside the image space. This recon-
struction does not need the Frenet coordinate.

• The dataset of each localised reconstruction does not need to be sorted out.
The reconstruction of a vascular segment is a surface fitting on an unorganised
dataset. The coordinates of the data points are the only prerequisite of this
fitting.

• All data points are used by the proposed method. The reconstruction of a
blood vessel segment is based on a 3D point cloud rather than a surface of
points. No data point will be neglected.
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• The fitting of a localised implicit object is a one-step fitting. The data points
of a vascular segment are directly reconstructed as an implicit object. No
further fitting operation is required.

• The proposed method is a high-performance computation vascular reconstruc-
tion. On the one hand, the localised implicit object limited the evaluation of
each vascular segment reconstruction inside a small region. The fitting effi-
ciency is dramatically improved. On the other hand, the proposed method is
parallel computing-friendly. All localised implicit objects can be reconstructed
in a parallel manner to save more computational time.

• This vascular reconstruction is a high-accuracy implicit modelling technique.
For one thing, the direct RBF fitting with ellipsoid constraint is a high-
accuracy surface fitting method. Various shapes can be accurately captured
and represented. For another, the blended shape of the localised implicit ob-
jects are preserved as much as possible by using the shape-preserving implicit
blending operations. Both the smoothness degree and smoothness span can
be flexibly controlled to adjust the blending results.

The main drawback of the proposed method is the overuse of data points. In
order to blend neighboured vascular segments together, each segment has overlapped
regions with its neighbours and the data points in these regions will be processed
twice. This overuse of data points guarantees the smoothness of blending result but
slightly declined the modelling efficiency. However, the size of the overlapped region
are controlled by the length and curvature of the vascular segments such that this
negative issue can be suppressed as much as possible. This overuse can be observed
in Figure 3.4(h). The size of the overlapped regions will be optimised in the future
work.

In the rest of this section, the reconstructions of an unbranched blood vessel, a
branched blood vessel and a blood vessel tree are presented to demonstrate how the
proposed method works.

3.3.2 Experimental Results

Unbranched Blood Vessel

In the previous parts of this chapter, the reconstruction of an unbranched blood
vessel has been detailedly discussed. In this section, another reconstruction of an
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unbranched blood vessel is presented in Figure 3.10. Figure 3.10(a) shows a volume
rendering of this blood vessel. The skeleton has been represented as a cubic Hermite
spline and 13 ordered knots have been positioned on it using Algorithm 1. Spline
segments are divided in such a way that knot ti is paired with ti+2. Each segment
overlaps with its neighbours, this is to make sure that the adjacent locally fitted
implicits blended smoothly. Figure 3.10(b) gives the localised segmentation of each
spline segment. Random colours distinguish different point clouds, for which small
and simple shapes can be observed. Figure 3.10(c) shows the localised modelling
result of one point cloud. Figure 3.10(d) presents the blending result of all modelling
results with point clouds rendering. The shape-preserving blending operations are
used (Li 2007). Figure 3.10(e) shows the reconstructed blood vessel without point
clouds.

(a) (b) (c) (d) (e)

Figure 3.10: Reconstruction of an Unbranched Blood Vessel

Branched Blood Vessel

Figure 3.11 shows a branched blood vessel reconstructed with the proposed method.
The blood vessel in Figure 3.10 can be found at the top right part. Figure 3.11(a),
Figure 3.11(b) and Figure 3.11(c) give the point clouds, point clouds on blood vessel
wall and blood vessel wall as implicit surface respectively.

This branched blood vessel consists of 59 segments from 7 smaller unbranched
blood vessels. Each segment corresponds to a small point cloud extracted with
localised segmentation. Small and simple-shaped implicit objects are fitted from
these point clouds and then blended together to create the final result. The seg-
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mentation and surface fitting of one point cloud has no relation to the others and
therefore are parallel-friendly. The underlying implicit function of the surface fitting
is represented as truncated implicit function which makes the fitting very fast.

(a) (b) (c)

Figure 3.11: Reconstruction of a Branched Blood Vessel

Blood Vessel Tree

The reconstruction of a blood vessel tree is similar to the reconstruction of branched
blood vessels. The blood vessel tree is firstly interactively disassembled into many
unbranched blood vessels with overlapped parts to their neighbours. Then a single
unbranched blood vessel is subdivided along its skeleton to be vascular segments
with simple and less curvy shape. These small segments will be reconstructed into
localised implicit objects.

Figure 3.12 presents a reconstructed blood vessel tree with 294 segments from
58 unbranched blood vessels. The original image is rendered as a volume in Fig-
ure 3.12(a). In Figure 3.12(b), the point clouds of the 294 segments are rendered
with random colours. In Figure 3.12(c), both the points and the reconstructed sur-
face are rendered. Figure 3.12(d) gives the reconstructed vascular tree without the
points.
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(a) (b)

(c) (d)

Figure 3.12: Reconstruction of Blood Vessel Tree

The flowchart in Figure 3.13 illustrates this reconstruction. Localised segmen-
tation is applied on short blood vessel segments guided by skeleton segments, then
localised segmentation results are fitted in parallel to produce a set of simple lo-
calised implicits. Implicit blending operation combines them together to get the
final vascular tree. Compared with Figure 3.1, this figure emphasises the parallel
computing used in the Skeleton Marching technique.

Parallel computing plays an important role in the proposed reconstruction method.
For a single localised modelling on one point cloud, data parallelism aims at the ac-
celeration of the RBF fitting. Multiple localised modellings are accelerated by task
parallelism. This two-step parallel computing greatly improves the modelling per-
formance.
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Figure 3.13: Flowchart of Skeleton Marching on Parallel Computing

Parallel Computing

Table 3.4 compares the performances of reconstructing blood vessel(s) on CPU and
GPU with globalised fitting and localised fitting. Dataset A,B and C in the first col-
umn correspond to the reconstructed blood vessel(s) in Figure 3.10(c), Figure 3.10(e)
and Figure 3.11(c)respectively. The number of data points of these datasets are
316, 4196 and 17503.

Figure 3.14 gives a comparison of the modelling speed of the three examples in
Table 3.4. The first bars show the globalised fitting speed on the CPU remains at
a stable level. The second bars reflect the rapid growing of globalised fitting speed
on the GPU when the number of data points increases. In contrast, the modelling
speed differences between the localised fitting over the CPU and GPU are not such
significant. The performance of the localised fitting on GPU is even worse than the
CPU counterpart when the dataset is small, but its advantage is emerging with the
increasing of the size of the dataset. This is because the localised fitting makes the
evaluation of each fitting as small as possible, while parallel computing gives limited
improvement on calculation with small sizes.
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Table 3.4: Fitting Time of Blood Vessels (seconds)

Globalised Fitting Localised Fitting
Example Number of Points CPU GPU CPU GPU

A 316 36.70 5.79 5.40 5.61
B 4196 437.02 25.12 15.30 12.09
C 17503 1823.99 93.48 52.25 35.24
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Figure 3.14: Fitting Speed Comparison of Blood Vessels

3.4 Summary

The skeleton-based vascular modelling is the mainstream approach on the accu-
rate reconstruction of blood vessels out of medical images. Among the existing
skeleton-based vascular modelling techniques, the sweep surface method allows a
high-accuracy modelling results at the cross-sections but it is far less accurate at
the vascular sections between two consecutive sweep surfaces. What is more, the
performance of the this method is discounted on its two-step approximation. In
order to avoid this problem and improve the performance of geometric vascular
modelling, this chapter proposes skeleton marching technique to give a one-step and
parallel-friendly geometric reconstruction of the blood vessels.

With the proposed technique, a vascular tree is firstly divided along the vascular
skeleton into short simple blood vessel sections and a small simple point cloud is ex-
tracted from each of these vessel sections using a segmentation technique. Then a set
of simple implicit shapes are reconstructed in parallel from the set of point clouds.
A high-accuracy vascular tree is finally generated by blending these localised im-
plicit objects together using shape-preserving blending operations. Compared with
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the CPU-intensive implementation, much less time is required using the proposed
parallel implicit fitting technique.
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Chapter 4

Vascluar Tissue Modelling with Thin
Implicit Patch

4.1 Introduction

In geometric modelling, an object is usually represented as a surface which has no
thickness. Although it is convenient to analyse and visualise surface-based objects,
there are two limitations of representing objects as surfaces. For one thing, a surface-
based object without thickness neither exists in real world nor can be manufactured
in a proper way. Thickening techniques are required to covert a surface to be a thin
solid for manufacturing. For another, a surface-based object lacks the description
of interior structures of the corresponding real-world object. Even though a surface
can be converted to a thin solid using a certain geometric processing tool, it is in
general difficult to covert a traditional parametric representation into volumetric
object with highly complex interior geometric structures (Wang et al. 2013).

In terms of vascular reconstruction, a blood vessel is commonly regarded as a
long thin solid and represented as a tubular surface. The vascular wall is usually
considered as a surface object such that its complex tissue structures are often ig-
nored. However, as shown in Figure 4.1, a real vascular wall is not simply a surface
object, it is actually a solid object with highly complicated multi-layer geometric
structures. Combining accurately reconstructed vascular surfaces with realistically
modelled interior vascular tissue structures is not only a necessary task for 3D vas-
cular printing, but can make relevant analysis and simulation more accurate and
more meaningful.
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Figure 4.1: Diagram of the Structure of an Artery (Britannica 1911)

As can be seen later, reconstructing a vascular wall with a thickness and embed-
ding interior structures can be easily achieved by using implicit modelling technique.
This is mainly due to the fact that an implicit function is a field representation,
which can be used to represent a geometric object both as a solid and a surface.
Many objects in the real world cannot be simply treated as surface or solid, but
mixtures of both, such as a blood vessel wall, a football, or an empty teapot. These
objects have thin solid surfaces with specific internal material structures and it is
not straightforward to effectively represent both their external shapes and their
internal geometric structures. Implicit modelling provides an ideal representation
for modelling real-world geometric objects. Secondly, implicit objects can be easily
combined together to generate complicated objects. Therefore a thin solid object
can be directly obtained from an implicit surface using certain implicit blending
operations. In addition, once an object has been represented as an implicit func-
tion, it is easy to analyse its geometric properties, which is especially important for
Computer-aided Manufacturing (CAM). What is more, when a surface geometry is
represented implicitly, the surface-to-solid conversion operation is easier to operate
and less computationally expensive than the method based on explicit representa-
tions (Maekawa 1999; Musialski et al. 2015).

This chapter discusses how to convert a surface-based object into a thin solid ob-
ject with a required interior geometric structure using implicit modelling technique.
A novel technique called Thin Implicit Patch (TIP) is proposed for modelling solid
objects with their internal geometric structures. With the thin implicit patch, any
surface-based objects can be easily converted into thin implicit surfaces. Any re-
quired interior structures can then be designed and embedded inside the thin surfaces
for the purpose of additive manufacturing. Figure 4.2 illustrates the thin implicit
patch technique.
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Figure 4.2: Flowchart of Thin Implicit Patch

4.2 Thin Implicit Patch

A Thin Implicit Patch (TIP) is a thin implicit solid in 3D space. In contrast with
thickened thin solid converted from parametric surfaces, a thin implicit patch is
directly represented as an implicit function.

Definition 4.1 (Thin Implicit Patch). An implicit object Ξ defined by a field func-
tion f(X) is said to be a Thin Implicit Patch (TIP) if there exists a finite surface
patch S, such that all points on the surface of Ξ have approximately the same
distance to surface S.

For an implicit surface S = Z(f) defined by function f , it is easy to construct a
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thin solid by formula Ξ = g\(S,S + d), where d is a positive constant. For example,
Figure 4.3 presents a simple thin solid based on the implicit object in Figure 2.6.

(a) (b)

Figure 4.3: A Simple Thin Solid

However, the thin solid constructed in this way is not thin implicit patch de-
scribed in Definition 4.1 , since the thickness of the thin solid is neither uniform
nor controllable. Figure 4.4 demonstrates this non-uniformity. Thin solid in Fig-
ure 4.4(a) is based on implicit function f(x, y, z) = g∪2,0.9(

1
4
x2 + 4y2 + z2 − 1, 4x2 +

1
4
y2 + z2 − 1) and formula Ξ = g\(Z(f), Z(f) + 0.2) chopped by the implicit plane
f(x, y, z) = z. As can been seen directly, the thickness is non-uniform. Figure 4.4(b)
shows its intersecting surface on unit plane z.

(a) A 3D Object (b) An Intersecting Plane of the Object

Figure 4.4: Thin Implicit Solid with Non-uniform Thickness

The object in Figure 4.5 is converted from the Clebsch Cubic Surface with the
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formula Ξ = g∩(g\(S,S + 100), f), where S is the Clebsch Cubic Surface defined
by Equation 2.6. The thin solid in Figure 4.6 is converted from a Bézier surface
patch using formula Ξ = g\(S,S+100), where S is the implicit surface of the Bézier
patch. The non-uniform thickness of the two objects can be directly observed. This
non-uniformity is due to the same reason explained in the previous example. Here,
the constant value d = 100 has no geometric meaning.

Figure 4.5: Thin Implicit Solid of Clebsch Surface with Non-uniform Thickness

Figure 4.6: Thin Implicit Solid of Bézier Surface with Non-uniform Thickness

Although these objects are easy to construct, they are not thin implicit patch
according to Definition 4.1 , since the thickness is non-uniform. In order to control
the thickness of a thin implicit patch such that the corresponding geometric object
approximately satisfies the condition described in Definition 4.1 , implicit offset
surface is proposed to define uniform thin implicit patch.
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4.2.1 Implicit Offset Surface

A thin solid converted from a surface has two surfaces. The two surfaces are offset
surfaces of the original surface. Mathematically, an offset surface ¯̄S of a given
surface S is a surface reconstructed from surface S such that the distance from
any point on the surface ¯̄S to S is constant. The surface S, from which an offset
surface is generated, is often referred to as the generator surface. Generally, it is
difficult to find out an exact offset surface for a given surface S if S is parametrically
represented. This is because finding the offset surface often involves an optimisation
process which can be very challenging if the given parametric surface has a complex
shape. In addition, the offset surface may self-intersect and may not be able to give
a geometrically meaningful result. Complex additional operations are often needed
to solve this problem (Maekawa 1999).

In this research, an algorithm for finding the offset surface is proposed by using
implicit functions. With the proposed technique, the non-implicit surfaces are firstly
converted into implicit surfaces by implicit modelling techniques. As is shown later,
it is much easier to acquire an offset surface from an implicitly represented surface.

Definition 4.2 (Implicit Offset Surface). An Implicit Offset Surface (IOS) is an
implicit surface reconstructed from a given surface representation such that the
reconstructed implicit surface has a constant distance to the given surface.

In general, two implicit offset distance functions can be generated by extruding
the given surface along and against the surface normal. The distance between the
two different implicit offset surfaces is always a constant, therefore the subtraction
blending of the two implicit offset surfaces always gives a uniform-thickness solid.
Thus, a thin implicit patch can be defined with two implicit offset surfaces.

Definition 4.3 (Thin Implicit Patch). A Thin Implicit Patch (TIP) Ξ is the implicit
surface obtained by blending two implicit offset surfaces from a given surface S:

Ξ = ¯̄Sd0\ ¯̄Sd1 (4.1)

where ¯̄Sd0 and ¯̄Sd1 are implicit offset surfaces of S, d0 < d1 are two constants.
The thickness value of thin implicit patch Ξ is d = d1 − d0.

Based on the representation of the generator surface, a thin implicit patch and
its implicit offset surfaces can be constructed from dual-layer reconstruction, ap-
proximate distance or morphological implicits.
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4.2.2 TIP as Dual-layer Reconstruction

If the generator surface is a parametric surface, then accurate sampling points can
be extract to generate implicit offset surfaces.

Here, an approximate method fro converting an explicit geometric surface, such
as a parametric surface, is proposed by fitting an implicit surface to a set of points
sampled from the surface. More specifically, an implicit offset surface ¯̄Sd = Z( ¯̄f) with
distance d to a surface object S = Z(f) can be approximately built by sampling
n distinct points {Pi}ni=1 ∈ S, such that ¯̄f(Pi + dNi) = 0, where Ni = ∇f(Pi)

|∇f(Pi)| ,
i = 1, 2, . . . , n.

In the above description, S = Z(f) is the implicit surface converted from the
generator parametric surface, which can be regarded as an implicit offset surface
with a distance d = 0 to the generator surface.

The thin implicit patch constructed in this way is a blending of a dual-layer
reconstruction. This section illustrates this construction technique with the implicit
reconstruction of the legendary Utah teapot.

Utah Teapot

The Utah teapot is a classical parametric geometry constructed with Bézier surfaces
(Prautzsch et al. 2002).

A Bézier curve is a parametric curve. The curve passes its end control points
and its shape is controlled by other control points. An n-degree Bézier curve can be
defined using Bernstein polynomial with n+ 1 control points P0,P1,P2, . . . ,Pn as:

C(t) =
n∑

i=0

PiBi,n(t) (4.2)

where

Bi,n(t) = Ci
nt
i(1− t)n−i, i = 0, 1, 2, . . . , n (4.3)

Bézier curve can also be presented in matrix form. For instance, the cubic Bézier
curve can be rewritten in the following way:
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C(t) = [1, t, t2, t3]




1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1







P0

P1

P2

P3




(4.4)

A Bézier surface can be defined to have different orders, depending on the size
of control points used. A Bézier patch defined by (n+ 1)(m+ 1) control points can
be expressed in the following form:

S(u, v) =
n∑

i=0

m∑

j=0

Pi,jBi,n(u)Bj,m(v) (4.5)

For example, a bicubic Bézier patch in matrix form can be expressed in the
following form:

S(u, v) = U ·M ·P ·MT ·VT (4.6)

where

U = [1, u, u2, u3] V = [1, v, v2, v3]

M =




1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1




P =




P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33




The classic Utah teapot consists of 32 cubic Bézier patches. Figure 4.7 presents
one of these parametric patches corresponding to a half of the teapot spout, where
the 16 control points are shown as follows:
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P00

P01

P02

P03

P10

P11

P12

P13

P20

P21

P22

P23

P30

P31

P32

P33




=




1.700 0.000 1.425

1.700 −0.660 1.425

1.700 −0.660 0.600

1.700 0.000 0.600

2.600 0.000 1.425

2.600 −0.660 1.425

3.100 −0.660 0.825

3.100 0.000 0.825

2.300 0.000 2.100

2.300 −0.250 2.100

2.400 −0.250 2.025

2.400 0.000 2.025

2.700 0.000 2.400

2.700 −0.250 2.400

3.300 −0.250 2.400

3.300 0.000 2.400




× 100 (4.7)

Figure 4.7: A Bézier Patch of Utah Teapot

With Equation 4.6, a collection of accurate sampling points P = {Pi}ni=1 can
be directly extracted. These points are used to generate implicit offset surfaces of
S(u, v). The coefficients γ and β of Equation 3.6 based on the 16 control points
of Equation 4.7 are γ = [2.17210,−3.57079× 101, 1.92390× 101, 7.21065, 1.20099×
10−1,−2.29573×101, 1.06950×101, 2.70430, 4.51216×10−1, 1.28569×101,−2.48906×
101, 5.25909, 7.82499, 8.59436,−1.58211×101, 9.35959] and β = [2.25205×104, 3.51007×
101,−2.70181× 101,−9.38856× 101,−6.26586× 10−2,−2.03431× 10−2,−1.11525×
10−1, 8.04324× 10−1, 3.92215× 10−1, 4.27144× 10−1], where the β are the 10 coeffi-

76



cients of an ellipsoid.

Utah Teapot with TIP

After a point cloud P = {Pi}ni=1 has been sampled from a Bézier surface patch used
for modeling the Utah teapot, the patch can be approximately converted into a thin
implicit patch.

Figure 4.8 illustrates this conversion process. Sampling points are firstly ex-
tracted and fitted into an implicit surface in Figure 4.8(a). RBF fitting with ellipsoid
constraint is then used to give a rounded boundary result. The unwanted rounded
redundancy comes from the ellipsoid constraint and has been trimmed to a correct
shape showing in Figure 4.8(b). The trimming planes come from the control points
of the Bézier patch. In Figure 4.8(c), the prospective half spout is represented as
thin implicit patch in formula Ξ = g\(S−1,S1), where S is the implicit surface in
Figure 4.8(b). Compared with the object in Figure 4.6, the thickness d has clear
geometric meaning.

This construction can be flexible. For instance, let Q0 = P − d0N and Q1 =

P + d1N , a uniform thin implicit patch with thickness (d0 + d1) is given by Ξ =

g\(S−d0 ,Sd1), where S−d0 and Sd1 are implicit offset surfaces fitted from Q0 and Q1

respectively.

4.2.3 TIP as Approximate Distance

The thickness d of a thin implicit patch Ξ can be regarded as the approximate
distance of the generator surface S.

The Euclidean Distance to Geometric Objects

The Euclidean distance to a geometric object can be represented as the distance
function. A distance function is an implicit function precisely gives the Euclidean
distance from a point in space to the surface of a geometric object (Osher et al.
2006).

Definition 4.4 (Distance Function). Let ∂Ω be a surface, a Distance Function of
∂Ω is defined as follows (ibid.):
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(a) Implicit Object of Bézier Patch (b) Trimmed Implicit Object of Bézier
Patch

(c) Thin Implicit Patch of Bézier Patch

Figure 4.8: Parametric Surface to Thin Implicit Patch

d(X) = min
XI∈∂Ω

(‖X−XI‖) (4.8)

where ‖ • ‖ is the Euclidean length of a vector.

A distinct property of distance function is ‖∇d‖ ≡ 1, since d is a Euclidean
distance. Besides, the distance function implies that X ∈ ∂Ω when d(X) = 0.

A Signed Distance Function (SDF) is an implicit function defined with ‖φ(X)‖ =

d(X) for all X (Osher et al. 2006). More specifically:
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φ(X) =





−d(X) for X ∈ Ω−

0 for X ∈ ∂Ω

d(X) for X ∈ Ω+

(4.9)

The same shape can be represented by either normal implicit function or signed
distance function. For example, a 2D unit sphere can be represented as the 0 level
set of f(X) = x2 + y2− 1 as a normal implicit function, or φ(X) =

√
x2 + y2− 1 as

an SDF. But the later one has property ‖∇φ‖ = 1 when X 6= 0 such that the level
sets with same steps give evenly changed concentric circles. Figure 4.9 shows this
difference. Level set 0, 0.2, 0.4, . . . are displayed. The evenly changed isocontours
can be observed from Figure 4.9(b).
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Figure 4.9: Comparison between Implicit Function and SDF

The Signed Distance Function can be used to construct skeletal surfaces based
on simple geometries (Bloomenthal 1990). For example, in 3D space the shape of
the SDF of a point is a sphere, a line segment will give a capsule, and a Bézier curve
produces a curvy tube. Complex geometries can be generated from simple skeletons
in this way. However, it is heavy to compute an SDF and there is no closed-form
solution when the degree of the skeletal expression is greater than 2. For instance,
a cubic Bézier curve has no closed-form signed distance function, as it has to solve
a quintic function. Numerical solutions is used to approximate the result in this
circumstance.
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Approximate Distance

As discussed before, the gradient of a distance function keeps a constant value. If
the underlying implicit function of an implicit solid is a distance function, formula
Ξ = g\(S,S + d) will give a thin implicit patch with uniform thickness d. Although
an implicit function is not necessarily to be a distance function, the value of the
generalised normal N = ∇f

|∇f | remains to 1. When distance d is small, the value of
this generalised normal is a good approximation of d (Taubin 1988, 1991).

Definition 4.5 (Approximate Distance). Let f : R3 → R be an implicit function,
P ∈ R3 be a regular point, Z(f) = {X ∈ R3 : f(X) = 0} . The Approximate
Distance from P to Z(f) is an algebraic distance (Taubin 1991):

d̃(P, Z(f)) ≈ |f(P)|
|∇f(P)| (4.10)

The approximate distance can be explained by the Taylor decomposition. For
any P ∈ R3, let Q ∈ Z(f) be the nearest point from P to Z(f) such that Q = P−ε,
where ε is the vector from Q to P, then f(Q) = f(P − ε) = 0. With the Taylor
decomposition, f(P− ε) = f(P)−∇f(P) · ε+ o(|ε|2) = 0, where the dot (·) is the
dot product. Since f(Q) = 0, when |ε| is small enough, f(P)−∇f(P) · ε ≈ 0. Let
d̃ be the distance from P to the surface Z(f), then ε = d̃ ∇f(P)

|∇f(P)| . Thus d̃ ≈
|f(P)|
|∇f(P)| .

When the gradient ∇f does not analytically exist, numerical techniques, such
as the finite difference, can be used to calculate the gradient of a given implicit
function.

Let f = f(x, y, z) be an implicit function, its first-order central difference on the
x direction is:

Do
xf :=

∂f

∂x
≈ fi+1 − fi−1

2∆x
(4.11)

where ∆x is the unit step on x direction of Cartesian grid, fi is the function
value at the i-th grid.

The formulas of y and z directions can be obtained similarly, and the gradient
of f can be numerically represented as:

∇f =

[
∂f

∂x
,
∂f

∂y
,
∂f

∂z

]
≈ [Do

xf,D
o
yf,D

o
zf ] (4.12)
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When ‖∇f‖ = 0, the average gradient is estimated from the neighbours of the
current position for evaluation.

Figure 4.10 demonstrates the approximate distances of implicit function f(x, y) =

(0.8x2−1)2+2y2−1.2. Contours of level sets 0.0, 0.1, 0.2, 0.3 and 0.4 are shown. The
smaller the value of the level set, the better the approximate distance is preserved.
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Figure 4.10: Approximate Distance

Distance Function with TIP

The approximate distance illustrates that an implicit function can be regarded as a
distance function when the distance value is small. Both the implicit offset surface
and thin implicit patch can then be redefined with distance function.

Definition 4.6 (Implicit Offset Surface). An Implicit Offset Surface of an implicit
surface S = Z(f) is ¯̄Sd = Z(d̃) + d, where d̃ is the approximate distance of f , d is a
small constant.

Definition 4.7 (Thin Implicit Patch). A Thin Implicit Patch (TIP) Ξ is the implicit
blending of two implicit offset surfaces from surface S:

Ξ = ¯̄Sd0\ ¯̄Sd1 = g\(Z(d̃) + d0, Z(d̃) + d1) (4.13)

where d0 < d1 are two small constants.

Figure 4.11 gives an example of this thin implicit patch. The thin patch in
the figure is based on formula Ξ = g\(Z(d̃), Z(d̃) + 0.2), where d̃ = f

|∇f | and f =

g∪2,0.9(
1
4
x2 + 4y2 + z2 − 1, 4x2 + 1

4
y2 + z2 − 1). Compared with Figure 4.4, the
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thin implicit patch gains a uniform thickness. The object in Figure 4.11(c) and
Figure 4.11(d) are a same object converted from the Clebsch Cubic Surface with
the formula Ξ = g∩(g\(S,S + 0.1), f), where S is the Clebsch Cubic Surface defined
by Equation 2.6, f(x, y, z) = x2 + y2 + z2 − 4. In Figure 4.11(c), it is rendered in a
translucent colour to see the thickness of each part. Compared with Figure 4.5, the
thickness is uniform.

(a) Thin Implicit Patch (b) 2D Thin Implicit Patch

(c) TIP of Clebsch Surface (d) TIP of Clebsch Surface

Figure 4.11: Thin Implicit Patch with Approximated Distance

The underlying implicit function can be more complex. Figure 4.12 gives the
thin-patched Utah teapot spout with formula Ξ = g\(Z(d̃), Z(d̃)+2), where d̃ = f

|∇f |
and f is the implicit function reconstructed from point cloud sampled from para-
metric surface in Figure 4.7. Compared with the dual-reconstructed spout in Fig-
ure 4.8(c), this spout has the same shape but requires only one implicit reconstruc-
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tion.

Figure 4.12: Thin Implicit Spout with Approximated Distance

4.2.4 TIP as Morphological Implicits

Uniform thin implicit patch can also be constructed as morphological implicits.

Mathematical morphology is a technique to analyse and process geometrical
structures based on set theory (Haralick et al. 1987). The two basic operations of
mathematical morphology is dilation and erosion. For binary image A and struc-
turing element B, dilation is defined as A ⊕ B = {x | Bx ∩ A 6= ∅}, and erosion
is defined as A 	 B = {x | Bx ⊆ A}, where Bx = {x + b | b ∈ B}. Dilation gives
thicken effect and erosion gives narrowing effect on images. Dilation and erosion are
also known as Minkowski sum and difference (Lien 2010; Schneider 1993; Varadhan
et al. 2006).

Definition 4.8 (Morphological Implicits). Let O = {X ∈ R3, α ∈ R : f(X) 6 α}
be an implicit solid, B = {X ∈ R3, τ ∈ R+ : ‖f(X)‖ 6 τ} be an implicit solid sphere
with radius τ . Morphological Implicits are dilation and erosion results between O
and B:

{
O ⊕ B = {X | BX ∩ O 6= ∅}
O 	 B = {X | BX ⊆ O}

(4.14)
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where BX = {X+b | b ∈ B} is the translation of structuring element B with X.

Figure 4.13 and Figure 4.14 show the morphological dilation and erosion of func-
tion f = g∪2,0.9(

1
4
x2+4y2−1, 4x2+ 1

4
y2−1) and structure element B =

√
x2 + y2−0.1.

Sub-figures (a) show the 0 level set of f , and (b) show the morphological results in
dashed lines together with the original shapes in solid lines. The morphological
implicit is an implicit offset surface of the original shape.
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Figure 4.13: Implicit Dilation
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Figure 4.14: Implicit Erosion

With morphological implicits, outward and inward uniform thin implicit patches
are defined as:

{
Ξ+
τ = g\(O,O ⊕ B)

Ξ−τ = g\(O 	 B,O)
(4.15)

Figure 4.15 and Figure 4.16 present the outward and inward uniform thin im-
plicit patches. Compared with the thin implicit patch generated with approximate
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distance in Figure 4.11, these two results give sharp corners when the original shape
has negative curvatures, which should be avoided. Although morphological implicits
can be used on any implicit objects, the computation is quite heavy especially in
3D conditions.
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Figure 4.15: 2D Outward Thin Implicit Patch
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Figure 4.16: 2D Inward Thin Implicit Patch

4.3 Implicit Interior Structures

Converting a surface-based object into a thin-patched object has a direct application
on additive manufacturing. With the proposed technique, a visible surface can be
converted to be a printable thin solid. Though it is relatively a simple task to convert
a surface into a thin solid, this thin solid does not contain any interior structures and
cannot correctly represent a real-world object. For example, the vascular wall shown
in Figure 4.1 has multi-layered structures and should not be simply considered as a
thin-patched surface.
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With the traditional parametric surface based Computer-aided Design (CAD)
techniques, it is very difficult to design and model complicated biological tissue
structures and embed them inside a geometric object, since explicitly represented
geometric objects are difficult to blend. In contrast, the thin implicit patch is
represented as implicit functions such that implicit blending operations can be used
to embed the interior structures inside the patch. The implicit represented interior
structures are called Implicit Interior Structures (IIS) in this research.

It is a challenging task to geometrically represent the interior vascular structures
because of their high irregularity and complexity. These kind of structures are
usually regarded as porous structures (Liu et al. 2014; Scheffler et al. 2006). A
porous structure can either be reconstructed from real-world porous object or be
designed as an artifact. For the real-world porous object, its existing structure is
required to be attained in advance. But in many cases, such as the vascular wall
of a medical image, the interior structures of the vascular wall cannot be acquired
yet. For an artifact design, a porous structure can be either regular-shaped pores or
irregular-shaped pores. Regular porous structures are easier to design but are not
natural and realistic. Irregular porous structures are favoured as the representation
of a real-world object but require flexible control of the irregularity and intricacy
(Hollister et al. 1992; Kou et al. 2010).

This section shows how to design and model both regular and irregular porous
structures using implicit functions and how to embed them into the thin implicit
patch as implicit interior structures.

4.3.1 Implicit Porous Structures

Porous structures are 3D solid structures with interconnected pores (Chow et al.
2007). In geometric modelling, porous structures are usually designed based on
models (Coutelieris et al. 2012). For example, the lattice model packs unit cells
into regular patterns to form regular-shaped porous structures (Gibson et al. 2014;
Hollister et al. 2002); the stochastic model generates cells with stochastic processes
to form the regular pattern (Schroeder et al. 2005a). The voronoi model uses
voronoi cell to aggregate high-degree irregular porous structures (Kou et al. 2010).

Porous structures can be represented as implicit functions. The porous geometric
structures defined using are called implicit porous structures.

Definition 4.9 (Implicit Porous Structure). An implicit object ℵ of a field function
f(X) is said to be an Implicit Porous Structure if ℵ = Z(f) is a porous structure,
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where Z(f) is the 0 level set of f .

The shapes of implicit porous structures are various. Both regular-shaped and
irregular-shaped porous structures can be easily generated by implicit functions.
Figure 4.17 gives several examples of implicit porous structures.

Regular boxes are given in Figure 4.17(a). The lattice structure is generated with
the implicit function f(x, y, z) = sign(sin(1

2
x))+sign(sin(1

2
y))+sign(sin(1

2
z))+ 1

2
= 0.

They are rendered in translucent colour to make their inner structures visible.

The object in Figure 4.17(b) is a regular-shaped ellipsoidal porous structure
generated by the implicit function f(x, y, x) = cos(2x) sin(3y) cos(4z)− 1

2
= 0. The

structure looks like many ellipsoids.

In Figure 4.17(c), a pseudo irregular-shaped porous structure is given by the
implicit function f(x, y, z) = 2 − cos(2x + πy) − cos(2x − πy) − cos(2y + πz) −
cos(2y−πz)−cos(2z−πx)−cos(2z+πx) = 0. The geometry of this implicit porous
structure is complex and can be regarded as an irregular-shaped structure.

Fox example, Figure 4.18 shows the subtraction blending result between the TIP
of Clebsch Surface in Figure 4.11(d) and an implicit porous structure. The function
of the porous structure is f(x, y, x) = cos(4x) sin(6y) cos(8z)− 1

2
= 0.

Since implicit functions can be blended together easily, the implicit porous struc-
tures can be designed with a variety of ways (Li et al. 2018). However, no matter
how complex the shape of the structure is, it can always be easily embedded into
existing implicit objects. This research focuses on how to embedded the implicit
porous structures into the thin implicit patches.

4.3.2 TIP with Inner Structures

Thin solids with interior structures are widely existed in the real world. As shown
in Figure 4.19, both the skin and the leaf have multiple layers with different cells,
and a vascular wall consists of many different tissues. All these structures can be
regarded as implicit porous structures inside a thin implicit patch.

The basic idea of the embedment of an implicit porous structure inside a thin
implicit patch is a trimming operation of the structure such that it has a similar
shape but is thinner than the patch.

Let ¯̄Sd0 , ¯̄Sd1 , ¯̄Sd2 and ¯̄Sd3 be four implicit offset surfaces of S, where d0 < d1 <
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(a) Boxes (b) Ellipsoids

(c) Irregular Structure

Figure 4.17: Implicit Porous Structures

d2 < d3. Let ℵ be an implicit porous structure. An inner-structured thin implicit
patch can be directly constructed in the following way:

(a) Ξ+ = ¯̄Sd0\ ¯̄Sd3
(b) Ξ− = ¯̄Sd1\ ¯̄Sd2
(c) Ξ# = Ξ−\ℵ
(d) Ξ = Ξ+\Ξ#

(4.16)

where Ξ+ and Ξ− are the outer and inner thin implicit patches, Ξ# is the inner
thin patch deformed by the implicit porous structure ℵ , Ξ is the inner-structured
thin implicit patch.

For example, in Figure 4.20, an inner-structured thin implicit patch is con-
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Figure 4.18: Porous Structure on TIP of Clebsch Surface

(a) Skin (Dwight et al. 1923) (b) Leaf (Wood 1870)

(c) Vascular Wall (Betts 2013)

Figure 4.19: Interior Structures of Real-world Thin Solids

89



structed based on the implicit function f(x, y, z) = g∪2,0.9(
1
4
x2 + 4y2 + z2 − 1, 4x2 +

1
4
y2 + z2 − 1). Let S = Z(f) and d0 = 0, d1 = 0.2, d2 = 0.4, d3 = 0.6, then

• in Figure 4.20(a), the outer implicit patch is given by Ξ+ = ¯̄Sd0\ ¯̄Sd3

• in Figure 4.20(b), the inner implicit patch is give by Ξ− = ¯̄Sd1\ ¯̄Sd2

• in Figure 4.20(c), the structured inner implicit patch is constructed by Ξ# =

Ξ−\ℵ, where ℵ is the implicit porous structure shown in Figure 4.17(b)

• in Figure 4.20(d), the final inner-structured thin implicit patch is generated
by Ξ = Ξ+\Ξ#

(a) Ξ+ = ¯̄Sd0\ ¯̄Sd3 (b) Ξ− = ¯̄Sd1\ ¯̄Sd2

(c) Ξ# = Ξ−\ℵ (d) Ξ = Ξ+\Ξ#

Figure 4.20: Inner-structured Thin Implicit Patch

With the proposed method, for instance, the thin solid spout of the Utah teapot
can be embedded with certain porous structures directly. Let S be the implicit
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surface expressed as the approximate distance, ℵ be the implicit porous structure
shown in Figure 4.17(c), d0 = 0, d1 = 1, d2 = 2, d3 = 3, according to Equation 4.16,
the outer implicit patch, inner implicit patch, structured thinner implicit patch and
the inner-structured thin implicit patch are given in Figure 4.21.

(a) Ξ+ = ¯̄Sd0\ ¯̄Sd3 (b) Ξ− = ¯̄Sd1\ ¯̄Sd2

(c) Ξ# = Ξ−\ℵ (d) Ξ = Ξ+\Ξ#

Figure 4.21: Inner-structured Spout

4.3.3 Multi-layer TIP

More implicit porous structures can be embedded into a same thin solid to make
multi-layer inner structure within a thin implicit patch.

Let S be an implicit surface, ¯̄Sdi be the implicit offset surfaces of S. A thin
implicit patch with n layers of interior structures can be constructed in the following
way:
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Ξ+ = ¯̄Sd0\ ¯̄Sd2n+1

Ξ−i = ¯̄Sd2i−1
\ ¯̄Sd2i

Ξ#
i = Ξ−i \ℵi

Ξ = Ξ+\Ξ#
0 \Ξ#

1 \ . . . \Ξ#
i \ . . . \Ξ#

n

(4.17)

where Ξ+ is the outer thin implicit patch, Ξ−i is the i-th inner thin implicit patch,
ℵi is the i-th implicit porous structure, Ξ#

i is the i-th structured inner thin implicit
patch, ¯̄Sdi is an implicit offset surface of S, i = (0, 1, . . . , n−1), d is a small constant
such that d2i−1 < d2i.

Figure 4.22 shows an implicitly modelled multi-layer blood vessels tissue struc-
tures for a section of a blood vessel. It is modelled as a thin solid with three layers
of implicit porous structures. This simulated vascular wall is peeled layer by layer
to show its inner structures. It is generated in the following way:

Ξ+ = ¯̄Sd0\ ¯̄Sd7
Ξ−0 = ¯̄Sd1\ ¯̄Sd2
Ξ#

0 = Ξ−0 \ℵ0

Ξ−1 = ¯̄Sd3\ ¯̄Sd4
Ξ#

1 = Ξ−1 \ℵ1

Ξ−2 = ¯̄Sd5\ ¯̄Sd6
Ξ#

2 = Ξ−2 \ℵ2

Ξ = Ξ+\Ξ#
0 \Ξ#

1 \Ξ#
2

(4.18)

In Figure 4.23, the spout of the Utah teapot has been modelled as a TIP with
inner structures with embedded three-layer implicit porous structures created based
on the formula Equation 4.17. Theoretically, the implicit porous structures can
be embedded into any implicit solid to make various geometries with complicated
interior structures. More examples will be given in the next section.

In this section, a porous structure design technique using implicit functions is
developed. With the proposed technique, a geometric object with a required in-
terior geometric structure can be represented as an implicit function. It can be
further extended from the perspective of interior geometric structure design to in-
terior structure reconstruction when the actual internal geometric structures, such
as the vascular tissue structures, can be digitally captured.

92



(a) (b)

Figure 4.22: A Simulated Vascular Wall with Multi-layers

Figure 4.23: The Spout with Multi-layer Interior Structures

4.4 Discussion and Experiments

In previous sections, both the implicit surface and the parametric surface have been
converted into thin solid together with a certain embedded interior material struc-
ture. Multiple thin implicit patches can be combined together to build more complex
thin-patched objects with shape-preserving implicit blending operations. In this sec-
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tion, some more experimental results are presented to demonstrate the flexibility,
advantages, as well as the limitations of the proposed method.

4.4.1 Discussion

Firstly, the prospered method is capable of converting any surface-based objects into
thin implicit solid surfaces. The half teapot shown in Figure 4.24 is a blending of
nine thin implicit solid patches, each of which is obtained by converting a bicubic
Bézier surface patch used for building the classic Utah teapot. In general, geometric
complexity can always be divided into simple ones and converted into a set of thin
implicit solid patches with the proposed method, which are then combined them
together to form a whole thin solid.

Figure 4.24: Printable Half Teapot

Secondly, the implicitly represented shapes of thin solids can be easily edited. For
example, the original Utah teapot was designed for visualisation purpose without
eliminating unwanted connections inside it. Figure 4.25(a) shows unwanted connec-
tion between the teapot body and the spout. As an implicit object, this redundancy
can be easily removed by using subtraction blending operation. The trimmed con-
nection is shown in Figure 4.25(b). The connection between the handle and the
teapot body also has this problem. Figure 4.26 compares the original connection
designed for the Utah teapot and the trimming result of these unwanted parts.

In addition, the internal material structures can be embedded inside the thin solid
patch with the proposed method. Figure 4.27 shows the thin solid surface converted
from the half teapot, together with embedded porous internal material structures.
Figure 4.27(a) gives the rendering of the geometric model and Figure 4.27(b) presents
the printed result. It is worth noting that it is difficult to build this thin-solid porous
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(a) Unwanted Connection (b) Trimmed Connection

Figure 4.25: Inner Connection of Spout and Body of the Utah Teapot

(a) Unwanted Connection (b) Trimmed Connection

Figure 4.26: Inner Connection of Handle and Body of the Utah Teapot

object using parametric offset surfaces and related thickening techniques from the
original bicubic Bézier patches.

(a) (b)

Figure 4.27: Thin Implicit Patch of the Utah Teapot
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The main limitation of the proposed method is that an additional trimming
process needs to be applied after the implicit fitting operation. This is because an
implicitly represented object constructed from this method will always generate a
relatively rounded boundary and has to be trimmed to create the thin-solid surface.
Figure 4.8(a) and Figure 4.8(b) compare the non-trimmed and the trimmed implicit
objects. The required trimming plane or surface should be carefully constructed to
give the correct result.

4.4.2 Further Experimental Results

The proposed method can also be used on unorganised points. These points are
sampled from real-world objects and have been reconstructed as implicit objects.

Human Face

Figure 4.28 presents a human face reconstructed from sampling points and printed
as a thin implicit surface.

Figure 4.28(a) gives the original point cloud. These points are collected from
a real human face. An implicit object is reconstructed from these points and ren-
dered as an implicit surface in Figure 4.28(b). This implicit surface is trimmed and
converted into a thin patch shown in Figure 4.28(c). The thin patch is printed out
using a 3D printer. Figure 4.28(d) shows the printed result.

In this example, the porous interior structures have been embedded into the
thin solid geometric surface but are not easy to observe in Figure 4.28(d), since the
patch is very thin. Note that the redundant parts at the shoulder of the head in
Figure 4.28(b) come from the inaccurate implicit surface fitting (Li et al. 2004b).

Human Tibia

Figure 4.29 shows a reconstructed human tibia represented as a thin implicit patch
with porous structures on it.

Figure 4.29(a) shows an implicitly reconstructed tibia object. The sampling
points collected from a real tibia is not shown. With the proposed method, this
implicitly represented tibia is converted as a thin implicit patch. Figure 4.29(b)
renders the thin-patched tibia together with the original points. The thin-patched
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(a) (b)

(c) (d)

Figure 4.28: Thin Implicit Patch of a Face

tibia is chopped by a plane to show its inner side. Figure 4.29(c) embeds porous
structures onto the thin-patched tibia. This tibia has been printed out and shown
in Figure 4.29(d).

Blood Vessel

The thin implicit patch is initially proposed to model the tissue structures of the
blood vessel wall. By suing the proposed method, the original surface-based blood
vessel geometric representation can be converted into a thin solid surface patch
represented as an implicit function. Because the shape of a blood vessel segment
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(a) (b)

(c) (d)

Figure 4.29: Thin Implicit Patch of a Tibia

is a short thin generalised cylinder, the conversion does not need extra trimming
operations.

Figure 4.30 presents the blood vessel segments with thin solid wall modelled with
the proposed TIP method corresponding to Figure 3.5. They are rendered with a
translucent colour to show the thickness. No interior structures are integrated in
this example.

The thin solid blood vessel wall segments in Figure 4.30(a) to Figure 4.30(h) are
achieved by converting the surface objects shown in Figure 3.5(a) to Figure 3.5(h)
using the approximate distance method.

Interior structures can be integrated into the thin-patched curvy blood vessel.
Figure 4.31 shows this integration. Figure 4.31(a) shows a porous structure embed-
ded into the vessel wall. The blending of the thin solid vascular surface and the
modelled interior porous structure is shown in Figure 4.31(b).

98



(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.30: Thin-patched Blood Vessel

(a) (b)

Figure 4.31: Blood Vessel with Interior Structures

The proposed method can be used on more complex blood vessel. Figure 4.32
shows the TIP-represented branched blood vessel converted from Figure 3.11. For
better observation only the middle part is shown. Figure 4.32(a) gives a render-

99



ing result without interior structures being integrated. Figure 4.32(b) shows the
porous structures to be embedded into the blood vessels wall. Figure 4.32(c) shows
the blending result of the thin solid vascular solid wall and the modelled interior
structure.

(a) (b) (c)

Figure 4.32: Branched Blood Vessel with Interior Structures

Multi-layer Vascular Wall

As shown in Figure 4.1, a real vascular wall consists of multiple layers of different
issues. These issues can be simulated with the multi-layer implicit porous structures
inside the vascular wall.

Figure 4.33 provides a cross-section view of the multi-layered blood vessel tissue
structure. Figure 4.33(a) gives a longitudinal cross-section view of the vascular wall
and Figure 4.33(b) provides a close-up view to show the details of this section.
Figure 4.33(c) and Figure 4.33(d) show two cross-sections of this wall.

4.5 Summary

To the author’s best knowledge, all the existing geometric vascular modelling tech-
niques are surface-based, where the complex vascular wall tissue structures are rarely
considered. However, the real-world blood vessels are with solid walls and a wall con-
sists of multiple layers with interior material structures. The surface-based object
cannot faithfully represent the geometries of the real-world blood vessels. In order
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(a) (b)

(c) (d)

Figure 4.33: A Multi-layer Vascular Wall

to solve this problem, this chapter presents a technique to convert the surface-based
implicit object to the thin implicit solid with interior structures to give a correct
representation of the reconstructed blood vessels.

The thin implicit patch is proposed to convert a surface-based object to be a
thin solid object. With the proposed method, the surface of the original object
is first represented as an implicit surface by using the direct RBF surface fitting
with ellipsoid constraint, then one or more implicit offset surfaces are generated
with implicit blending operations. A thin solid is acquired by blending these offset
surfaces. The implicitly modelled interior structures are used to simulate the internal
structures of a solid. These structures can either be designed with implicit functions
or be modelled from real-world objects. Since they are implicit objects, the implicit
blending operations can embed them inside another implicit object. With TIP,
both the single-layer and multi-layer thin implicit patches can be easily generated.
The reconstruction of the Utah teapot is used as an example to illustrate how the
proposed techniques work and how to embed porous structures into the converted
thin-solid.

The proposed methods have been used on the reconstruction of thin solids from
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the real world. A human face and a human tibia have been converted into thin
implicit patches with interior structures embedded. These two items have been
printed out with a 3D printer, as implicitly represented geometric objects are ad-
ditive manufacturing friendly and can be printed directly using 3D printers. Blood
vessels reconstructed with the method proposed in Chapter 4 are also thin-patched
and inner-structured. A short segment of this blood vessel is constructed with a
multi-layer vascular wall. These examples demonstrate that the proposed methods
can not only convert surface to thin solid with the desired thickness but also be able
to edit the shape and interior material structures of the thin solid.

The proposed methods can be used on the fine solid reconstruction of real-world
objects with sophisticated structures. The future study of this method will be
high-accuracy and high-performance geometric reconstruction of multi-layer vascular
walls.
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Chapter 5

Conclusion and Future Work

The geometric vascular modelling plays an essential role in the applications of
computer-assisted surgery and minimally invasive vascular surgery. The compli-
cated blood vessels extracted from the medical images are required to be accurately
reconstructed branch by branch and then combined together to be a complete vas-
cular tree. This reconstructed vascular tree is an integrated geometry such that
further geometrical and biomedical analysis can be continued.

It is a challenging job to reconstruct the geometric structures of blood vessels
because these blood vessels are of a complicated tree structure with various branches
and joints. How to faithfully represent the shape of a single blood vessel and how
to effectively combine different blood vessels together to make a complete vascular
geometry place huge difficulties on the vascular modelling task. Although variety of
vascular modelling techniques have been proposed, they are either too ideal on the
shape representation to give the accurate description of blood vessels or too ineffi-
cient on the reconstruction of the surface approximation to give a high-performance
computation vascular modelling. Besides, blood vessels are with highly complex tis-
sue structures, but the existing vascular modelling techniques are all surface-based,
the true structure of the vascular wall cannot be faithfully reflected. In order to
solve these problems, this research sought to develop a new image-based geometric
vascular modelling technique to give fine descriptions on the vascular wall with an
advanced modelling approach.

In this research, a high-performance computation parallel vascular geometry re-
construction technique, called Skeleton Marching, has been proposed. There are
several distinguished advantages of this technique.

First, this technique can provide accurate reconstruction with low computational
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complexity. It allows to divide the blood vessels into short and less curvy segments
such that both the segmentation and the surface fitting only target very small point
datasets sampled from very simple geometries. The direct RBF surface fitting with
ellipsoid constraint guarantees the accuracy of the surface fitting of each vascular
segments, and the shape-preserving blending operations assure the joints combined
by different blood vessels hold the original shape as much as possible. Both of these
two algorithms are with low time complexity.

Secondly, unlike some other methods, such as the sweep surface method, the
skeleton marching method approximately represent the data points of a vascular
segment as a short capsule-like localised implicit object and directly blends them
into a vascular tree. No extra operations are required and the modelling performance
is therefore improved.

Thirdly, this is a parallel-friendly technique. The skeleton marching method is
based on the implicit modelling technique such that different blood vessel branches
and different vascular sections can be reconstructed independently from the recon-
struction of other vessel branches and sections.

Another main contribution made in this research is the introduction of the Thin
Implicit Patch (TIP), a novel vascular tissue structure modelling technique. To
the best knowledges of the author, this is the first vascular modelling technique to
augment the surface-based vascular wall to be thin solid with interior structures.
The proposed method is simple and easy to be implemented, and can be applied
to model any required tissue structures. There are two originalities in the TIP
technique:

Most existing vascular modelling techniques are surface-based. Despite the fact
that a surface is easy to be visualised and is convenient for subtractive manufactur-
ing, it is in general difficult to model real-world volumetric complex tissue structures.
In addition, the surface-based geometric representation is not additive manufactur-
ing friendly. It has to be converted into a volumetric form for the purpose of 3D
printing. This is not a trivial task when internal geometric structures of an ob-
ject need to be considered. The TIP technique proposed in this research provides
a method for converting any given surface into an implicit function representing a
thin solid object. This technique can produce a thin implicit surface with a uni-
form thickness. Both artificial and real-world data have been used to show the
effectiveness and the efficiency of the TIP method.

A vascular wall is not only a thin surface with a thickness but also consists of high
complex multi-layered tissue structures. Although the real fine internal structure
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of the vascular wall is hard to capture by normal medical imaging techniques, it
is possible to model its structure with high faithfulness. In this research, Implicit
Interior Structures (IIS) are designed by the implicit porous structures with real
field functions such that complex internal structures can be easily embedded inside
the thin implicit patch. The integration of implicit offset surfaces and IIS gives out
multi-layered thin surfaces. This is a novel method for fine reconstruction of the
geometric vascular tissue structures.

This research has achieved the goal of developing a high-performance computa-
tion and high-accuracy geometric vascular reconstruction technique, though there
are still many technical issues which remain to be solved in the future work.

First, further improvement of the performance on the proposed method is still
needed. Although the modelling performance has been significantly improved by the
skeleton marching approach, there are still many areas which need to be optimised.
For one thing, the surface fitting of the localised implicit objects has multiple choices.
Though the direct RBF fitting with ellipsoid constraint is designed for small dataset
and it works fine in this research, it does not mean no better fitting method can be
chosen. The solution of the eigensystem in the direct RBF fitting is still cumbersome
even with parallel computing. A better surface fitting will improve the modelling
performance at the algorithmic level. For another, the skeleton marching method
can be redesigned to make it more parallel computing efficient. Although parallel
computing has been used in the implementation of the proposed method, it is only
running on the remote HPC which has multiple GPUs. With improved algorithm
and improved GPU technology, the skeleton marching technique can be running on
a local computer with a GPU of massive processing cores.

Secondly, it is with the fine vascular reconstruction based on the true anatomical
structures of the blood vessel wall or the captured vascular tissues structures using a
certain tissue imaging technique. While it is an interesting and useful improvement
from the surface-based vascular modelling to the thin solid vascular modelling with
interior structures. But what can be achieved with the proposed technique are still
very limited. On the one hand, the vascular image in this research does not contain
useful information of the internal structure of vascular wall due to the limitation of
ordinary imaging techniques. Although porous structures are used to simulate the
inside of the blood vessel wall, it is far from sufficient to represent the true interior
structures of the real-world blood vessels. The vascular tissue modelling proposed in
this research only provides a possible solution to integrate interior structures inside
the vascular wall, but there still is a long way to go for the faithful reconstruction
of the actual tissue structures. On the other hand, what has been achieved for the
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interior structures of the vascular wall is only a coarse representation of blood vessels
without noticing the more detailed structures on the cell or deeper level. However,
the cardiovascular diseases may occur inside a cell and behave as the deformation or
injury of cells. The fine reconstruction of the vascular tissue requires more detailed
geometric description on these fine and delicate structures.

Thirdly, in addition to the two relatively more immediate tasks, some investiga-
tions on the hemodynamic analysis based on the vascular geometries reconstructed
from patient-specific dataset will be carried out in future. The geometric recon-
struction of blood vessels will not only supply the geometric structures of the blood
vessels but it is also a premise on the blood flow simulation inside the vascular lu-
men. This is because the cardiovascular diseases may lead to the deformation of the
blood vessels and then influence the blood transformation and biological functions
of related tissues. The analysis of the hemodynamic plays an essential role on the
diagnosis and treatment of the cardiovascular diseases (Antiga et al. 2008; Mittal
et al. 2016). In addition, the research of endovascular devices is closely related with
the hemodynamic analysis. The research and development of these high-precision
instruments rely on accurate modelling of the vascular geometry and computational
blood fluid simulation.

Last but not least, it is the research on virtual surgery by interactively modifying
the vascular geometric shapes or geometric structures. The virtual surgery allows
the surgeons to modify the shape of the blood vessels and observe the surgical results
without real surgery. Interactive editing can deform and change the shape or size
of the blood vessels to enable flexible analysis of cardiovascular diseases and related
researches.
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