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Surface Reconstruction from Constructive Solid

Geometry for Interactive Visualization

Doug Baldwin

Department of Computer Science
SUNY Geneseo

Abstract. A method is presented for constructing a set of triangles
that closely approximates the surface of a constructive solid geometry
model. The method subdivides an initial triangulation of the model’s
primitives into triangles that can be classified accurately as either on or
off of the surface of the whole model, and then recombines these small
triangles into larger ones that are still either entirely on or entirely off the
surface. Subdivision and recombination can be done in a preprocessing
step, allowing later rendering of the triangles on the surface (i.e., the
triangles visible from outside the model) to proceed at interactive rates.
Performance measurements confirm that this method achieves interactive
rendering speeds. This approach has been used with good results in an
interactive scientific visualization program.

1 Introduction

Constructive solid geometry (CSG) is a technique for modeling three-dimensional
solids as set-theoretic combinations of simple primitive shapes [1]. Common
primitives are such shapes as cylinders, cones, spheres, polyhedra, etc. Com-
bining operations typically include union, intersection, and difference or comple-
ment. CSG was first used to represent solid models for computer aided design
and manufacturing, and has since found applications in computer graphics and
other areas.

The work reported in this paper is motivated by a need to render CSG-defined
geometries in certain particle physics visualizations. Specifically, a visualization
tool named IViPP [2] is being developed to support visual analysis of results
from the MCNPX [3] simulator. MCNPX simulates reactions between subatomic
particles, using a form of CSG to describe the physical environment within which
the reactions occur. IViPP needs to display both particle data and the geometry
of the surrounding environment. It must update its displays at interactive rates,
fast enough for users to smoothly rotate, zoom, and similarly manipulate their
view.

This paper’s main contribution is a method for constructing a small set of
triangles that closely approximates the surface of a CSG model. The set of tri-
angles can be constructed in a preprocessing step, and subsequently rendered at
interactive rates. Section 2 compares this approach to previous ways of rendering



2 Doug Baldwin

CSG, while Section 3 describes the method itself. Section 4 presents data regard-
ing the performance and effectiveness of this approach. Section 5 summarizes the
work’s status and suggests directions for further research.

2 Background and Previous Work

The method described in this paper builds a mesh of triangles representing a CSG
model’s surface; similar approaches have also been pursued by other researchers.
For example, the “constructive cubes” algorithm [4] adapts the marching cubes
isosurface construction algorithm [5] to approximate the surface of a CSG model.
The ACSGM approach [6] is also based on marching cubes, but is considerably
more sophisticated than constructive cubes in how it approximates the surface
of the CSG model. Chung [7] uses a three-stage method, consisting of spatial
subdivision followed by triangulation proper followed by triangle refinement to
preserve sharp edges and corners. More recently, C̆ermák and Skala describe a
method for triangulating implicit surfaces [8] that could be adapted to CSG. The
method proposed in the present paper is conceptually simpler than ACSGM or
Chung’s approach, and unlike any of the previous efforts, detects unnecessarily
small triangles and combines them into larger ones to reduce the total number of
triangles. Like constructive cubes and ACSGM, this paper’s method can trade
image quality for computing resources. However, the primary resource consumed
by this paper’s method is time, whereas constructive cubes consumes significant
amounts of both time and memory (the resource requirements of ACSGM are
not discussed in [6]).

Triangulating the surface of a CSG model can be an unacceptable bottleneck
for CAD applications in which users want to edit models and see the results
in real time [9]. However, in visualization, geometry is often static, and users
need only simple real-time interactions (e.g., changes of viewpoint). Triangu-
lated surfaces are attractive in such settings, because the triangulation itself
can be rendered very quickly, and it only needs to be constructed once—after
construction, different renderings of the same set of triangles display the surface
from whatever viewpoints are needed.

One of the oldest alternatives to surface triangulation for CSG rendering
is ray tracing [10]. However, classic ray tracing cannot be done at interactive
speeds, due to the need to compute multiple ray-primitive intersections for every
pixel in the display. Speeds can be improved by dividing the CSG model into
spatial subregions in such a way that only a few primitives lie in each region
[11]; recent research has divided the model in such a way that the primitives
in each subregion can be ray traced in the GPU [12]. GPU-assisted ray tracing
achieves interactive speeds on small to medium-size models, but does require
custom GPU programming. In contrast, the approach introduced in this paper
reduces CSG rendering to drawing triangles, something that is well-supported
by modern graphics hardware without custom programming.

Goldfeather [13] proposed a method that uses hardware depth and color
buffers to evaluate and render CSG models. Wiegand [14] adapted this idea to
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more widely available graphics hardware, using a depth buffer (albeit capable of
being saved to and restored from main memory) and a stencil buffer, and showed
how to access that hardware via standard APIs such as OpenGL. Subsequent
work [15, 16] improved the asymptotic execution time of depth-and-stencil-buffer
rendering algorithms, and showed how to perform the necessary buffer compar-
isons in the GPU [9, 17]. These improvements have yielded interactive rendering
speeds for some models, but the algorithms still require considerable computa-
tion for each frame, and are sensitive to hardware characteristics (e.g., depths
of buffers, memory-to-frame-buffer bandwidths, GPU capabilities).

Liao and Fang describe a volumetric approach to CSG rendering [18] that
builds a three-dimensional texture map from a CSG model and then renders the
model by drawing slices through that texture map. Because this approach can
build the texture map prior to rendering, it can run in constant time per frame,
and can easily achieve interactive speeds. However, it requires large amounts of
memory for the texture map, and care must be taken to avoid aliasing in the
rendered images.

3 Surface Reconstruction by Triangle Subdivision

A small set of triangles that approximates the surface of a CSG model can be
constructed by the process illustrated in Figure 1. The process begins with trian-
gulations of the model’s primitives, created without concern for how primitives
interact in the overall model. Each triangle from a primitive is then subdivided
into smaller triangles. Vertices of these subtriangles coincide as much as possi-
ble with intersections between the edges of the triangle and the surface of the
model. Subdivision continues until the triangles are small enough to be classi-
fied as either inside the modeled object, on its surface, or outside the object
without producing visual anomalies. Only those triangles on the model’s surface
need be drawn in order to render the model. The total number of such triangles
is reduced by recombining subtriangles into their parent triangle whenever the
parent’s subtriangles are either all on the surface or all off (inside or outside) it.

Fig. 1. Triangle subdivision. Initial triangle, with portion on model’s surface in gray
(A); subtriangles after one (B) and two (C) levels of subdivision; subtriangles are
recombined into their parent if all all are on or all are off the surface (D)
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3.1 Triangle Subdivision

The visual quality of the images produced by triangle subdivision, and the speed
with which they can be rendered, depend on how triangles are divided in or-
der to approximate the CSG model’s surface. Specifically, the division scheme
should yield a small number of triangles, while faithfully representing the sur-
faces, edges, and corners of the model. Triangle subdivision is therefore driven
by changes in the classification of triangle edges relative to the CSG model (i.e.,
whether an edge is inside the modeled object, outside it, or on its surface).
Changes in classification can only happen at intersections between the edge and
the surface of the CSG model, which are found in the standard manner [10]: solve
the equations for the points at which edges intersect primitives, split edges into
segments at these points, and then combine segments according to the Boolean
operations used to combine primitives. To avoid the need for extreme numeric
accuracy to determine that a segment lies on a surface of a primitive, triangle
edges are considered to lie on a primitive if either that primitive is the “source”
for the edge’s triangle (primitive p is the source for triangle t if t is one of the
triangles produced by triangulating p, or if t is a subtriangle of a triangle whose
source is p), or if the entire edge lies within a small tolerance of the primitive’s
surface. Once the points at which classifications change are known, a triangle is
divided into subtriangles according to rules 1 through 4 below. Figure 2 summa-
rizes these rules, using dots to indicate points at which an edge’s classification
changes.

Fig. 2. Triangle subdivision rules

1. If no edge of the triangle changes classification, split the triangle into two
subtriangles along the line from the center of the longest edge to the oppo-
site vertex. Note that even if no edge changes classification, the triangle’s
interior might; this rule ensures that subdivision continues until any changes
in classification anywhere in a triangle must intersect an edge.

2. If exactly one edge changes classification, split the triangle into two subtrian-
gles along the line from one of the points at which that edge’s classification
changes to the opposite vertex.
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3. If two edges change classification, split the triangle into three subtriangles,
along a line connecting one classification-change point from each edge, and
along the line from one of these points to the opposite vertex. If either edge
changes classification multiple times, use the classification-change points
closest to the edges’ common vertex.

4. If all three edges change classification, split the triangle into four subtriangles
along lines between one change point from each edge. For two of the edges,
use the change points closest to the common vertex, as in Rule 3; for the
third edge, choose a change point arbitrarily.

These rules keep the overall number of triangles small by maximizing the
likelihood that different subtriangles will lie on different sides of an edge of the
CSG model (rules 2, 3, and 4), or by making progress towards reducing the size
of triangles to the point where further splitting is unnecessary (rule 1).

3.2 Subdivision Order and Stopping Criteria

Both the order in which triangles are considered for subdivision and the criteria
for stopping subdivision can be tuned to reduce the number of triangles produced
and the time required to do so. Tuning is supported by storing triangles awaiting
subdivision in a priority queue. Triangles are subdivided when they are removed
from this queue, with subtriangles placed back in the queue. The goal of the
priority function is to divide visually important triangles before unimportant
ones, but different functions can reflect different measures of importance. For
example, triangles may be prioritized by size (divide larger, and thus visually
more prominent, triangles before smaller ones), age (divide older triangles, likely
to be cruder approximations to the model’s surface, before newer triangles), etc.

In all cases, a priority of 0 or less indicates that a triangle should be classified
without further subdivision. Priority functions can take advantage of this fact to
limit the time or other resources used by triangle subdivision: setting priorities
to 0 when the allocated resources have been exhausted stops further subdivision
and forces the triangles currently in the priority queue to receive “best guess”
classifications.

When a triangle no longer needs subdividing, it is classified as either on the
model’s surface or off the surface, based on the heuristic that triangles are on
the surface if and only if more than half of the total length of their edges is.

It is sometimes possible to stop subdividing a triangle sooner than the priority
function would. In particular, if all of a triangle’s edges are on the surface, or
all are off, and no edge changes its classification, then subdivision can stop as
soon as the shortest edge is shorter than the model’s minimum feature size.
This early end to subdivision is permissible because when a triangle’s shortest
edge is shorter than the model’s minimum feature, any feature that affects the
classification of the triangle’s interior must also intersect an edge. If no such
intersections occur, as indicated by no edge changing its classification, then the
entire triangle has the same classification as its edges. Minimum feature size must
be estimated, but simple estimates work well. For example, the implementations
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discussed below estimate minimum feature size as half the size of the smallest
feature in any primitive.

Finally, triangles that are “small” by various measures are discarded instead
of being further divided. In particular. . .

– Subtriangles that cover only a small fraction of their parent’s area leave large
siblings to be processed by future subdivisions and are visually insignificant.
To avoid creating such subtriangles, changes in edge classification in either
the first or last 0.05% of an edge are ignored when dividing triangles.

– Triangles with nearly collinear vertices are numerically unstable. Therefore,
triangles are discarded if the sum of the lengths of the two short edges is
nearly equal to the length of the longest edge.

– Triangles with nearly equal vertices are also numerically unstable. Therefore,
triangles are discarded if, for any edge, the ratio l/d is close to the machine
epsilon for floating point numbers, where l is the length of the edge and d
is the distance from the origin to one of the edge’s endpoints (l/d close to
epsilon indicates that changes in vertex coordinates across the edge will be
difficult to recognize numerically).

3.3 The Complete Algorithm

Figure 3 summarizes the complete algorithm for triangulating and rendering
a CSG model. This figure presents two central functions, “triangulate” and
“draw.” “Triangulate” generates a list of triangles that approximates the surface
of a CSG model, while “draw” renders these triangles to some display device.
Calls on “triangulate” and “draw” may be separated. In particular, the time-
consuming triangulation can be done once when the model is created (or when
it changes), with only the faster drawing done for each frame.

4 Results

A prototype program for CSG rendering by triangle subdivision has been coded
using C++ and OpenGL. Figure 4 shows two CSG models rendered by this
program. For both models, triangles were prioritized for subdivision by the length
of their longest side, and subdivision stopped when that length was less than
the equivalent of five pixels on the display device.

The left-hand image in Figure 4 is a perforated shell, constructed by sub-
tracting a number of cylinders (the perforations) from a difference of two spheres
(the shell). Table 1 presents the performance of triangle-subdivision rendering
on several variations on this model. The variations differ in the number of cylin-
ders removed from the shell, and thus in the total number of primitives in the
model. The “Triangles Created” and “Triangles Drawn” columns are the total
number of triangles created during subdivision, and the number actually used
for drawing after recombination, respectively. Recombination is able to remove
about 90% of the triangles generated. “Frames per Second” is the rate at which
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triangulate( CSG model m )

list of triangles l = triangulations of primitives in m

priority queue q = priority queue containing triangles in l

while q is not empty

dequeue triangle t from q

if t.priority <= 0

v = sum of lengths of parts of edges of t on m’s surface

d = sum of lengths of edges of t

if v > d / 2

t.classification = ON

else

t.classification = OFF

else if t’s shortest edge is shorter than m’s minimum feature

and no edge of t changes its classification

if all edges of t have classification ON

t.classification = ON

else

t.classification = OFF

else if t is not "small"

t.subtriangles = divide t per rules in Figure 2

for each triangle s in t.subtriangles

enqueue s in q

t.classification = UNKNOWN

end while

for each triangle t in l

recombine( t )

return l

draw( triangle t )

if t.classification == UNKNOWN

for each triangle s in t.subtriangles

draw( s )

else if t.classification == ON

render t to display

recombine( triangle t )

if t.classification == UNKNOWN

for each triangle s in t.subtriangles

recombine( s )

if all members of t.subtriangles have same classification, c

t.classification = c

Fig. 3. Triangulating and rendering a CSG model
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Fig. 4. Some CSG models rendered by triangle subdivision: perforated shell (left) and
pipe network (right)

the triangulated model is rendered. Speeds of over 10 frames per second were
achieved in all cases. All data was collected on an Apple MacBook Pro with 2.16
GHz Intel Core 2 Duo processor and ATI Radeon X1600 video chipset, running
under Mac OS X 10.4.10 and OpenGL 2.0. Frame rates were measured using
Apple’s OpenGL profiler.

Table 1. Triangulation and rendering data for perforated shells

Primitives Triangulation Triangles Triangles Frames per
Time (Sec) Created Drawn Second

8 2.58 30260 3990 89.7
16 9.20 55166 6692 54.2
28 27.12 93336 10597 34.2
44 65.57 142558 15973 22.5
64 141.44 209060 22596 16.1
88 270.11 285209 30594 12.0
116 420.13 332448 35426 10.2

CSG rendering by triangle subdivision has also been incorporated into IViPP,
which is beginning to see production use as a visualization tool for physics re-
search. Typical geometries in this setting consist of several tens of “cells,” each
described by a CSG expression containing on the order of 1 to 3 primitives.
IViPP treats each cell as a separate CSG model. Triangle subdivision is used
to triangulate each cell, and cells are rendered by rendering their surface tri-
angles. A standard depth buffer then handles occlusions of one cell by another,
occlusions of particle tracks by cells and cells by tracks, etc. IViPP prioritizes
triangles for subdivision by size and the time that has elapsed since beginning
triangulation: during the first second, a triangle’s priority is the length of its
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shortest edge; after one second priorities are always 0, preventing further sub-
division. IViPP is successfully visualizing models as large as a nuclear reactor
consisting of 71 cells collectively containing 138 primitives. IViPP takes about 1
minute to triangulate this model, and renders it at about 12 frames per second
(using the same computer configuration that produced the performance data for
the perforated shell).

5 Conclusions

A new way of rendering CSG models at interactive speeds has been described.
Distinguishing features of this method include using triangle subdivision followed
by recombination to generate a small set of triangles that closely follows the
surface of the CSG model, a priority mechanism that allows image quality to
be balanced against resource usage, and the ability to separate time-consuming
analysis of the CSG model from rendering. Rendering speeds of over 10 frames
per second have been achieved on models containing over 100 primitives, an
entirely adequate speed for interactive applications. The method is in successful
production use in the IViPP visualization program.

The factor that ultimately limits the utility of this method is triangulation
time, not rendering time. However, time can be a factor in prioritizing triangles
for subdivision, allowing triangulation time to be controlled. Experience with
IViPP suggests that such time limits do not seriously compromise image quality.

CSG rendering by triangle subdivision can be extended in a number of ways.
Perhaps most significantly, it assumes that triangulations of primitives are easy
to generate. While this is true for many primitives, some CSG systems support
primitives whose triangulations are not obvious (e.g., general quadric surfaces).
The method also needs to be tested on very large CSG models, i.e., ones contain-
ing thousands of primitives. Since triangles divide independently of each other,
the concurrency provided by multicore processors seems a promising way to
speed triangle subdivision, but has not yet been investigated. Finally, additional
combinations of priority schemes and resource limits for subdivision may yield
further improvements in image quality and triangulation time.
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