452 research outputs found

    Efficient online computation of core speeds to maximize the throughput of thermally constrained multi-core processors

    Full text link
    Abstract—We address the problem of efficient online computation of the speeds of different cores of a multi-core processor to maximize the throughput (which is expressed as a weighted sum of the speeds), subject to an upper bound on the core temperatures. We first compute the solution for steady-state thermal conditions by solving a linear program. We then present two approaches to computing the transient speed curves for each core: (i) a local solution, which involves solving a linear program every time step (of about 10 ms), and (ii) a global solution, which computes the optimal speed curve over a large time window (of about 100 s) by solving a non-linear program. We showed that the local solution is insensitive to the weights assigned in the performance objective (hence the need for the global solution). This is because a reduction in the speed of a core can only reduce the temperature of the other cores over much larger time periods (of the order of several seconds). The local solution is then completely determined by the temperature constraint equations. We show that the constraint matrix exhibits a special property- it can be expressed as the sum of a diagonal matrix and a matrix with identical rows. This allows us to solve the multi-core thermal constraint equations analytically to determine the (temporally) local optimum speeds. Further, we showed that due to this property, the steady-state speed solution selects a set of threads to operate at maximum temperature, and turns off all unused cores. Hence, to ensure that all available threads are scheduled, we impose a “fairness ” constraint. Finally, we show how the open-loop speed control methods proposed above could be used together with a feedback controller to achieve robustness to model uncertainty. I

    The Thermal-Constrained Real-Time Systems Design on Multi-Core Platforms -- An Analytical Approach

    Get PDF
    Over the past decades, the shrinking transistor size enabled more transistors to be integrated into an IC chip, to achieve higher and higher computing performances. However, the semiconductor industry is now reaching a saturation point of Moore’s Law largely due to soaring power consumption and heat dissipation, among other factors. High chip temperature not only significantly increases packing/cooling cost, degrades system performance and reliability, but also increases the energy consumption and even damages the chip permanently. Although designing 2D and even 3D multi-core processors helps to lower the power/thermal barrier for single-core architectures by exploring the thread/process level parallelism, the higher power density and longer heat removal path has made the thermal problem substantially more challenging, surpassing the heat dissipation capability of traditional cooling mechanisms such as cooling fan, heat sink, heat spread, etc., in the design of new generations of computing systems. As a result, dynamic thermal management (DTM), i.e. to control the thermal behavior by dynamically varying computing performance and workload allocation on an IC chip, has been well-recognized as an effective strategy to deal with the thermal challenges. Over the past decades, the shrinking transistor size, benefited from the advancement of IC technology, enabled more transistors to be integrated into an IC chip, to achieve higher and higher computing performances. However, the semiconductor industry is now reaching a saturation point of Moore’s Law largely due to soaring power consumption and heat dissipation, among other factors. High chip temperature not only significantly increases packing/cooling cost, degrades system performance and reliability, but also increases the energy consumption and even damages the chip permanently. Although designing 2D and even 3D multi-core processors helps to lower the power/thermal barrier for single-core architectures by exploring the thread/process level parallelism, the higher power density and longer heat removal path has made the thermal problem substantially more challenging, surpassing the heat dissipation capability of traditional cooling mechanisms such as cooling fan, heat sink, heat spread, etc., in the design of new generations of computing systems. As a result, dynamic thermal management (DTM), i.e. to control the thermal behavior by dynamically varying computing performance and workload allocation on an IC chip, has been well-recognized as an effective strategy to deal with the thermal challenges. Different from many existing DTM heuristics that are based on simple intuitions, we seek to address the thermal problems through a rigorous analytical approach, to achieve the high predictability requirement in real-time system design. In this regard, we have made a number of important contributions. First, we develop a series of lemmas and theorems that are general enough to uncover the fundamental principles and characteristics with regard to the thermal model, peak temperature identification and peak temperature reduction, which are key to thermal-constrained real-time computer system design. Second, we develop a design-time frequency and voltage oscillating approach on multi-core platforms, which can greatly enhance the system throughput and its service capacity. Third, different from the traditional workload balancing approach, we develop a thermal-balancing approach that can substantially improve the energy efficiency and task partitioning feasibility, especially when the system utilization is high or with a tight temperature constraint. The significance of our research is that, not only can our proposed algorithms on throughput maximization and energy conservation outperform existing work significantly as demonstrated in our extensive experimental results, the theoretical results in our research are very general and can greatly benefit other thermal-related research

    Coordinated power management in heterogeneous processors

    Get PDF
    Coordinated Power Management in Heterogeneous Processors Indrani Paul 164 pages Directed by Dr. Sudhakar Yalamanchili With the end of Dennard scaling, the scaling of device feature size by itself no longer guarantees sustaining the performance improvement predicted by Moore’s Law. As industry moves to increasingly small feature sizes, performance scaling will become dominated by the physics of the computing environment and in particular by the transient behavior of interactions between power delivery, power management and thermal fields. Consequently, performance scaling must be improved by managing interactions between physical properties, which we refer to as processor physics, and system level performance metrics, thereby improving the overall efficiency of the system. The industry shift towards heterogeneous computing is in large part motivated by energy efficiency. While such tightly coupled systems benefit from reduced latency and improved performance, they also give rise to new management challenges due to phenomena such as physical asymmetry in thermal and power signatures between the diverse elements and functional asymmetry in performance. Power-performance tradeoffs in heterogeneous processors are determined by coupled behaviors between major components due to the i) on-die integration, ii) programming model and the iii) processor physics. Towards this end, this thesis demonstrates the needs for coordinated management of functional and physical resources of a heterogeneous system across all major compute and memory elements. It shows that the interactions among performance, power delivery and different types of coupling phenomena are not an artifact of an architecture instance, but is fundamental to the operation of many core and heterogeneous architectures. Managing such coupling effects is a central focus of this dissertation. This awareness has the potential to exert significant influence over the design of future power and performance management algorithms. The high-level contributions of this thesis are i) in-depth examination of characteristics and performance demands of emerging applications using hardware measurements and analysis from state-of-the-art heterogeneous processors and high-performance GPUs, ii) analysis of the effects of processor physics such as power and thermals on system level performance, iii) identification of a key set of run-time metrics that can be used to manage these effects, and iv) development and detailed evaluation of online coordinated power management techniques to optimize system level global metrics in heterogeneous CPU-GPU-memory processors.Ph.D

    MULTI-SCALE SCHEDULING TECHNIQUES FOR SIGNAL PROCESSING SYSTEMS

    Get PDF
    A variety of hardware platforms for signal processing has emerged, from distributed systems such as Wireless Sensor Networks (WSNs) to parallel systems such as Multicore Programmable Digital Signal Processors (PDSPs), Multicore General Purpose Processors (GPPs), and Graphics Processing Units (GPUs) to heterogeneous combinations of parallel and distributed devices. When a signal processing application is implemented on one of those platforms, the performance critically depends on the scheduling techniques, which in general allocate computation and communication resources for competing processing tasks in the application to optimize performance metrics such as power consumption, throughput, latency, and accuracy. Signal processing systems implemented on such platforms typically involve multiple levels of processing and communication hierarchy, such as network-level, chip-level, and processor-level in a structural context, and application-level, subsystem-level, component-level, and operation- or instruction-level in a behavioral context. In this thesis, we target scheduling issues that carefully address and integrate scheduling considerations at different levels of these structural and behavioral hierarchies. The core contributions of the thesis include the following. Considering both the network-level and chip-level, we have proposed an adaptive scheduling algorithm for wireless sensor networks (WSNs) designed for event detection. Our algorithm exploits discrepancies among the detection accuracy of individual sensors, which are derived from a collaborative training process, to allow each sensor to operate in a more energy efficient manner while the network satisfies given constraints on overall detection accuracy. Considering the chip-level and processor-level, we incorporated both temperature and process variations to develop new scheduling methods for throughput maximization on multicore processors. In particular, we studied how to process a large number of threads with high speed and without violating a given maximum temperature constraint. We targeted our methods to multicore processors in which the cores may operate at different frequencies and different levels of leakage. We develop speed selection and thread assignment schedulers based on the notion of a core's steady state temperature. Considering the application-level, component-level and operation-level, we developed a new dataflow based design flow within the targeted dataflow interchange format (TDIF) design tool. Our new multiprocessor system-on-chip (MPSoC)-oriented design flow, called TDIF-PPG, is geared towards analysis and mapping of embedded DSP applications on MPSoCs. An important feature of TDIF-PPG is its capability to integrate graph level parallelism and actor level parallelism into the application mapping process. Here, graph level parallelism is exposed by the dataflow graph application representation in TDIF, and actor level parallelism is modeled by a novel model for multiprocessor dataflow graph implementation that we call the Parallel Processing Group (PPG) model. Building on the contribution above, we formulated a new type of parallel task scheduling problem called Parallel Actor Scheduling (PAS) for chip-level MPSoC mapping of DSP systems that are represented as synchronous dataflow (SDF) graphs. In contrast to traditional SDF-based scheduling techniques, which focus on exploiting graph level (inter-actor) parallelism, the PAS problem targets the integrated exploitation of both intra- and inter-actor parallelism for platforms in which individual actors can be parallelized across multiple processing units. We address a special case of the PAS problem in which all of the actors in the DSP application or subsystem being optimized can be parallelized. For this special case, we develop and experimentally evaluate a two-phase scheduling framework with three work flows --- particle swarm optimization with a mixed integer programming formulation, particle swarm optimization with a simulated annealing engine, and particle swarm optimization with a fast heuristic based on list scheduling. Then, we extend our scheduling framework to support general PAS problem which considers the actors cannot be parallelized

    Aggressive and reliable high-performance architectures - techniques for thermal control, energy efficiency, and performance augmentation

    Get PDF
    As more and more transistors fit in a single chip, consumers of the electronics industry continue to expect decline in cost-per-function. Advancements in process technology offer steady improvements in system performance. The improvements manifest themselves as shrinking area, faster circuits and improved battery life. However, this migration toward sub-micro/nano-meter technologies presents a new set of challenges as the system becomes extremely sensitive to any voltage, temperature or process variations. One approach to immunize the system from the adverse effects of these variations is to add sufficient safety margins to the operating clock frequency of the system. Clearly, this approach is overly conservative because these worst case scenarios rarely occur. But, process technology in nanoscale era has already hit the power and frequency walls. Regardless of any of these challenges, the present processors not only need to run faster, but also cooler and use lesser energy. At a juncture where there is no further improvement in clock frequency is possible, data dependent latching through Timing Speculation (TS) provides a silver lining. Timing speculation is a widely known method for realizing better-than-worst-case systems. TS is aggressive in nature, where the mechanism is to dynamically tune the system frequency beyond the worst-case limits obtained from application characteristics to enhance the performance of system-on-chips (SoCs). However, such aggressive tuning has adverse consequences that need to be overcome. Power dissipation, on-chip temperature and reliability are key issues that cannot be ignored. A carefully designed power management technique combined with a reliable, controlled, aggressive clocking not only attempts to constrain power dissipation within a limit, but also improves performance whenever possible. In this dissertation, we present a novel power level switching mechanism by redefining the existing voltage-frequency pairs. We introduce an aggressive yet reliable framework for energy efficient thermal control. We were able to achieve up to 40% speed-up compared to a base scheme without overclocking. We compare our method against different schemes. We observe that up to 75% Energy-Delay squared product (ED2) savings relative to base architecture is possible. We showcase the loss of efficiency in present chip multiprocessor systems due to excess power supplied, and propose Utilization-aware Task Scheduling (UTS) - a power management scheme that increases energy efficiency of chip multiprocessors. Our experiments demonstrate that UTS along with aggressive timing speculation squeezes out maximum performance from the system without loss of efficiency, and breaching power & thermal constraints. From our evaluation we infer that UTS improves performance by up to 12% due to aggressive power level switching and over 50% in ED2 savings compared to traditional power management techniques. Aggressive clocking systems having TS as their central theme operate at a clock frequency range beyond specified safe limits, exploiting the data dependence on circuit critical paths. However, the margin for performance enhancement is restricted due to extreme difference between short paths and critical paths. In this thesis, we show that increasing the lengths of short paths of the circuit increases the margin of TS, leading to performance improvement in aggressively designed systems. We develop Min-arc algorithm to efficiently add delay buffers to selected short paths while keeping down the area penalty. We show that by using our algorithm, it is possible to increase the circuit contamination delay by up to 30% without affecting the propagation delay, with moderate area overhead. We also explore the possibility of increasing short path delays further by relaxing the constraint on propagation delay, and achieve even higher performance. Overall, we bring out the inter-relationship between power, temperature and reliability of aggressively clocked systems. Our main objective is to achieve maximal performance benefits and improved energy efficiency within thermal constraints by effectively combining dynamic frequency scaling, dynamic voltage scaling and reliable overclocking. We provide solutions to improve the existing power management in chip multiprocessors to dynamically maximize system utilization and satisfy the power constraints within safe thermal limits

    An Intelligent Framework for Energy-Aware Mobile Computing Subject to Stochastic System Dynamics

    Get PDF
    abstract: User satisfaction is pivotal to the success of mobile applications. At the same time, it is imperative to maximize the energy efficiency of the mobile device to ensure optimal usage of the limited energy source available to mobile devices while maintaining the necessary levels of user satisfaction. However, this is complicated due to user interactions, numerous shared resources, and network conditions that produce substantial uncertainty to the mobile device's performance and power characteristics. In this dissertation, a new approach is presented to characterize and control mobile devices that accurately models these uncertainties. The proposed modeling framework is a completely data-driven approach to predicting power and performance. The approach makes no assumptions on the distributions of the underlying sources of uncertainty and is capable of predicting power and performance with over 93% accuracy. Using this data-driven prediction framework, a closed-loop solution to the DEM problem is derived to maximize the energy efficiency of the mobile device subject to various thermal, reliability and deadline constraints. The design of the controller imposes minimal operational overhead and is able to tune the performance and power prediction models to changing system conditions. The proposed controller is implemented on a real mobile platform, the Google Pixel smartphone, and demonstrates a 19% improvement in energy efficiency over the standard frequency governor implemented on all Android devices.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    A Survey of Fault-Tolerance Techniques for Embedded Systems from the Perspective of Power, Energy, and Thermal Issues

    Get PDF
    The relentless technology scaling has provided a significant increase in processor performance, but on the other hand, it has led to adverse impacts on system reliability. In particular, technology scaling increases the processor susceptibility to radiation-induced transient faults. Moreover, technology scaling with the discontinuation of Dennard scaling increases the power densities, thereby temperatures, on the chip. High temperature, in turn, accelerates transistor aging mechanisms, which may ultimately lead to permanent faults on the chip. To assure a reliable system operation, despite these potential reliability concerns, fault-tolerance techniques have emerged. Specifically, fault-tolerance techniques employ some kind of redundancies to satisfy specific reliability requirements. However, the integration of fault-tolerance techniques into real-time embedded systems complicates preserving timing constraints. As a remedy, many task mapping/scheduling policies have been proposed to consider the integration of fault-tolerance techniques and enforce both timing and reliability guarantees for real-time embedded systems. More advanced techniques aim additionally at minimizing power and energy while at the same time satisfying timing and reliability constraints. Recently, some scheduling techniques have started to tackle a new challenge, which is the temperature increase induced by employing fault-tolerance techniques. These emerging techniques aim at satisfying temperature constraints besides timing and reliability constraints. This paper provides an in-depth survey of the emerging research efforts that exploit fault-tolerance techniques while considering timing, power/energy, and temperature from the real-time embedded systems’ design perspective. In particular, the task mapping/scheduling policies for fault-tolerance real-time embedded systems are reviewed and classified according to their considered goals and constraints. Moreover, the employed fault-tolerance techniques, application models, and hardware models are considered as additional dimensions of the presented classification. Lastly, this survey gives deep insights into the main achievements and shortcomings of the existing approaches and highlights the most promising ones

    Energy Efficient Servers

    Get PDF
    Computer scienc

    DYNAMIC THERMAL MANAGEMENT FOR MICROPROCESSORS THROUGH TASK SCHEDULING

    Get PDF
    With continuous IC(Integrated Circuit) technology size scaling, more and more transistors are integrated in a tiny area of the processor. Microprocessors experience unprecedented high power and high temperatures on chip, which can easily violate the thermal constraint. High temperature on the chip, if not controlled, can damage or even burn the chip. There are also emerging technologies which can exacerbate the thermal condition on modern processors. For example, 3D stacking is an IC technology that stacks several die layers together, in order to shorten the communication path between the dies to improve the chip performance. This technology unfortunately increases the power density per unit volumn, and the heat from each layer needs to dissipate vertically through the same heat sink. Another example is chip multi-processor. A chip multi-processor(CMP) integrates two or more independent actual processors (called “cores”), onto a single integrated circuit die. As IC technology nodes continually scale down to 45nm and below, there is significant within-die process variation(PV) in the current and near-future CMPs. Process variation makes the cores in the chip differ in their maximum operable frequency, and the amount of leakage power they consume. This can result in the immense spatial variation of the temperatures of the cores on the same chip, which means the temperatures of some cores can be much higher than other cores. One of the most commonly used methods to constrain a CPU from overheating is hardware dynamic thermal management(HW DTM), due to the high cost and inefficiency of current mechanical cooling techniques. Dynamic voltage/frequency scaling(DVFS) is such a broad-spectrum dynamic thermal management technique that can be applied to all types of processors, so we adopt DVFS as the HW DTM method in this thesis to simplify problem discussion. DVFS lowers the CPU power consumption by reducing CPU frequency or voltage when temperature overshoots, which constrains the temperature at the price of performance loss, in terms of reduced CPU throughput, or longer execution time of the programs. This thesis mainly addresses this problem, with the goal of eliminating unnecessary hardware-level DVFS and improving chip performance. The methodology of the experiments in this thesis are based on the accurate estimation of power and temperature on the processor. The CPU power usage of different benchmarks are estimated by reading the performance counters on a real P4 chip, and measuring the activities of different CPU functional units. The jobs are then categorized into powerintensive(hot) ones and power non-intensive(cool) ones. Many combinations of the jobs with mixed power(thermal) characteristics are used to evaluate the effectiveness of the algorithms we propose. When the experiments are conducted on a single-core processor, a compact dynamic thermal model embedded in Linux kernel is used to calculate the CPU temperature. When the experiments are conducted on the CMP with 3D stacked dies, or the CMP affected by significant process variation, a thermal simulation tool well recognized in academia is used. The contribution of the thesis is that it proposes new software-level task scheduling algorithms to avoid unnecessary hardware-level DVFS. New task scheduling algorithms are proposed not only for the single-core processor, but aslo for the CMP with 3D stacked dies, and the CMP under process variation. Compared with the state-of-the-art algorithms proposed by other researchers, the new algorithms we propose all show significant performance improvement. To improve the performance of the single-core processors, which is harmed by the thermal overshoots and the HW DTMs, we propose a heuristic algorithm named ThreshHot, which judiciously schedules hot jobs before cool jobs, to make the future temperature lower. Furthermore, it always makes the temperature stay as close to the threshold as possible while not overshooting. In the CMPs with 3D stacked dies, three heuristics are proposed and combined as one algorithm. First, the vertically stacked cores are treated as a core stack. The power of jobs is balanced among the core stacks instead of the individual cores. Second, the hot jobs are moved close to the heat sink to expedite heat dissipation. Third, when the thermal emergencies happen, the most power-intensive job in a core stack is penalized in order to lower the temperature quickly. When CMPs are under significant process variation, each core on the CMP has distinct maximum frequency and leakage power. Maximizing the overall CPU throughput on all the cores is in conflict with satisfying on-chip thermal constraints imposed on each core. A maximum bipartite matching algorithm is used to solve this dilemma, to exploit the maximum performance of the chip
    • …
    corecore